WorldWideScience

Sample records for neocortical neurofibrillary tangles

  1. Entorhinal Cortex: Antemortem Cortical Thickness and Postmortem Neurofibrillary Tangles and Amyloid Pathology.

    Science.gov (United States)

    Thaker, A A; Weinberg, B D; Dillon, W P; Hess, C P; Cabral, H J; Fleischman, D A; Leurgans, S E; Bennett, D A; Hyman, B T; Albert, M S; Killiany, R J; Fischl, B; Dale, A M; Desikan, R S

    2017-05-01

    The entorhinal cortex, a critical gateway between the neocortex and hippocampus, is one of the earliest regions affected by Alzheimer disease-associated neurofibrillary tangle pathology. Although our prior work has automatically delineated an MR imaging-based measure of the entorhinal cortex, whether antemortem entorhinal cortex thickness is associated with postmortem tangle burden within the entorhinal cortex is still unknown. Our objective was to evaluate the relationship between antemortem MRI measures of entorhinal cortex thickness and postmortem neuropathological measures. We evaluated 50 participants from the Rush Memory and Aging Project with antemortem structural T1-weighted MR imaging and postmortem neuropathologic assessments. Here, we focused on thickness within the entorhinal cortex as anatomically defined by our previously developed MR imaging parcellation system (Desikan-Killiany Atlas in FreeSurfer). Using linear regression, we evaluated the association between entorhinal cortex thickness and tangles and amyloid-β load within the entorhinal cortex and medial temporal and neocortical regions. We found a significant relationship between antemortem entorhinal cortex thickness and entorhinal cortex ( P = .006) and medial temporal lobe tangles ( P = .002); we found no relationship between entorhinal cortex thickness and entorhinal cortex ( P = .09) and medial temporal lobe amyloid-β ( P = .09). We also found a significant association between entorhinal cortex thickness and cortical tangles ( P = .003) and amyloid-β ( P = .01). We found no relationship between parahippocampal gyrus thickness and entorhinal cortex ( P = .31) and medial temporal lobe tangles ( P = .051). Our findings indicate that entorhinal cortex-associated in vivo cortical thinning may represent a marker of postmortem medial temporal and neocortical Alzheimer disease pathology. © 2017 by American Journal of Neuroradiology.

  2. “End-Stage” Neurofibrillary Tangle Pathology in Preclinical Alzheimer's Disease: Fact or Fiction?

    Science.gov (United States)

    Abner, Erin L.; Kryscio, Richard J.; Schmitt, Frederick A.; SantaCruz, Karen S.; Jicha, Gregory A.; Lin, Yushun; Neltner, Janna M.; Smith, Charles D.; Van Eldik, Linda J.; Nelson, Peter T.

    2011-01-01

    Among individuals who were cognitively intact before death, autopsies may reveal some Alzheimer's disease-type pathology. The presence of end-stage pathology in cognitively intact persons would support the hypothesis that pathological markers are epiphenomena. We assessed advanced neurofibrillary (Braak stages V and VI) pathology focusing on nondemented individuals. Data from the National Alzheimer's Coordinating Center database (n = 4,690 included initially) and from the Nun Study (n = 526 included initially) were analyzed, with antemortem information about global cognition and careful postmortem studies available from each case. Global cognition (final Mini-Mental State Examination scores [MMSE] and clinical ‘dementia’ status) was correlated with neuropathology, including the severity of neurofibrillary pathology (Braak stages and neurofibrillary tangle counts in cerebral neocortex). Analyses support three major findings: 1. Braak stage V cases and Braak VI cases are significantly different from each other in terms of associated antemortem cognition; 2. There is an appreciable range of pathology within the category of Braak stage VI based on tangle counts such that brains with the most neurofibrillary tangles in neocortex always had profound antemortem cognitive impairment; and 3. There was no nondemented case with final MMSE score of 30 within a year of life and Braak stage VI pathology. It may be inappropriate to combine Braak stages V and VI cases, particularly in patients with early cognitive dysfunction, since the two pathological stages appear to differ dramatically in terms of both pathological severity and antemortem cognitive status. There is no documented example of truly end-stage neurofibrillary pathology coexisting with intact cognition. PMID:21471646

  3. Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Castellani Rudy J

    2008-09-01

    Full Text Available Abstract Alzheimer disease (AD is a chronic neurodegenerative disease that is characterized by progressive memory loss. Pathological markers of AD include neurofibrillary tangles, accumulation of amyloid-β plaques, neuronal loss, and inflammation. The exact events that lead to the neuronal dysfunction and loss are not completely understood. However, pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor α, are increased in AD, along with gene expression of major histocompatibility complex (MHC class II molecules and macrophage migration inhibitory factor (MIF. MHC class II molecules are found in microglia of the brain, while MIF is found in both microglia and neurons of the hypothalamus, hippocampus, and cortex. MIF is not only a lymphocyte mediator but also a pituitary factor with endocrine properties and can mediate phosphorylation of the extracellular signal-regulated kinase-1/2 MAP kinases pathway. In this study, we looked at CD74, an integral membrane protein that acts as both a chaperone for MHC class II molecules as well as a receptor binding site for MIF. CD74 was recently found to be increased in microglia in AD cases compared to age-matched controls, but has not been reported in neurons. In our analysis, immunohistochemistry revealed a significant increase in CD74 primarily in neurofibrillary tangles, amyloid-β plaques, and microglia. This is the first finding to our knowledge that CD74 is increased in neurons of AD cases compared to age-matched control cases.

  4. Isolation and partial characterization of Alzheimer neurofibrillary tangles

    International Nuclear Information System (INIS)

    Goni, F.; Alvarez, F.; Gorevic, P.D.; Pons-Estel, F.

    1986-01-01

    Neurofibrillary tangles (NFT) were isolated from cerebral cortex of three cases of Alzheimer's disease (AD) by SDS-βME treatment followed by sucrose gradient ultracentrifugation. This material was predominantly NFT by electron microscopy and was excluded from all pore-sized polyacrylamide gels. It remained insoluble in strong acid and basic conditions, chaotropic and reducing agents. It resisted digestion by trypsin, chymotrypsin, subtilisin, urea-pepsin, collagenase, pronase, hyaluronidase, lipases and phospholipases but yielded a consistent amino acid analysis showing the presence of cysteine and methionine, more than 20% hydrophobic residues and 12% basic residues. Subjected to automated Edman degradation presented a non-reactive amino terminus. Under electron microscopy NFT appeared to be composed mainly by single and double filaments. Single filaments can turn and intertwine with themselves to make the regular arrangement of the double filaments. Purified NFT have been used to raise high titered polyclonal antisera for immunohistological studies. It specifically reacted with isolated NFT, affected neurons in cases of AD, aging brains, postencephalitic Parkinson's disease, Down's syndrome and dementia pugilistica but no reaction was observed with normal brain, cerebrovascular amyloid angiopathy, or the amyloid core from neuritic plaques

  5. Lhermitte-Duclos disease with neurofibrillary tangles in heterotopic cerebral grey matter

    Directory of Open Access Journals (Sweden)

    Daniel Rusiecki

    2016-06-01

    Full Text Available Lhermitte-Duclos disease (LDD, a disorder first described by French physicians Lhermitte and Duclos in 1920 [25], is a benign, slow growing dysplastic gangliocytoma of the cerebellum, characterized by replacement of the granule cell layer by abnormal granule and Purkinje like cells. The most frequent presenting signs and symptoms are megalocephaly, increased intracranial pressure, nausea, hydrocephalus, ataxia, gait abnormalities, and intermittent headaches, all of which are attributed to the mass effect [6,11,25]. Many cases are associated with a mutation in the phosphatase and tensin homolog or PTEN gene which is also involved in numerous otherwise unrelated central nervous system abnormalities, namely Cowden syndrome [1,6,11], autism spectrum disorder [18], cerebral cortical dysplasia [11,30] and Bannayan-Riley-Ruvalcaba syndrome [30]. The presence of cortical heterotopia has been reported in a small number of LDD cases [3,5,17,32]. We describe a unique case of LDD with cerebral cortical heterotopic grey matter containing neurofibrillary tangles.

  6. Increased neurofibrillary tangles in the brains of older pedestrians killed in traffic accidents.

    Science.gov (United States)

    Gorrie, C A; Rodriguez, M; Sachdev, P; Duflou, J; Waite, P M E

    2006-01-01

    Older people are over-represented in pedestrian fatalities, and it has been suggested that the presence of cognitive impairment or dementia in these individuals may contribute to their accidents. Using neuropathological methods, we aimed to compare the prevalence of dementia pathology in fatally injured older pedestrians with similarly aged ambulatory subjects who died from other causes. The brains of 52 pedestrians (65-93 years) and 52 controls (65-92 years) were assessed for neurofibrillary tangles (NFT), neuritic plaques, Lewy bodies and vascular lesions using established neuropathological criteria. The examination for Alzheimer's disease (AD) pathology showed that 43% of the pedestrians had NFT scores of III-VI using Braak and Braak staging, compared with 23% of the controls (p vascular dementia or dementia with Lewy bodies. These results suggest that cognitive decline associated with AD, even in the earliest stages of the disease, may be a factor in fatal traffic accidents for older pedestrians. Special measures for pedestrian safety are necessary in areas with high densities of older citizens and especially for those diagnosed as having a mild cognitive impairment or AD.

  7. Methods for labeling .beta.-amyloid plaques and neurofibrillary tangles

    Science.gov (United States)

    Barrio, Jorge R.; Petric, Andrej; Satyamurthy, Nagichettiar; Small, Gary W.; Cole, Gregory M.; Huang, Sung-Cheng

    2001-01-01

    A method for labeling .beta.-amyloid plaques and neurofibrillary tangles in vivo and in vitro, comprises contacting a compound of formula (I): ##STR1## with mammalian tissue. In formula (I), R.sub.1 is selected from the group consisting of --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C.dbd.C(CN).sub.2 -alkyl, --C.dbd.C(CN).sub.2 -alkylenyl-R.sub.4 , ##STR2## R.sub.4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R.sub.5, is a radical selected from the group consisting of --NH.sub.2, --OH, --SH, --NH-alkyl, --NHR.sub.4, --NH-alkylenyl-R.sub.4, --O-alkyl, --O-alkylenyl-R.sub.4, --S-alkyl, and --S-alkylenyl-R.sub.4 ; R.sub.6 is a radical selected from the group consisting of --CN, --COOH, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)-halogen, --C(O)NH , --C(O)NH-alkyl, --C(O)NH-alkylenyl-R.sub.4 ; R.sub.7 is a radical selected from the group consisting of O, NH, and S; and R.sub.8 is N, O or S. R.sub.2 and R.sub.3 are each independently selected from the group consisting of alkyl and alkylenyl-R.sub.10, wherein R.sub.10 is selected from the group consisting of --OH, --OTs, halogen, spiperone, spiperone ketal and spiperone-3-yl. Alternatively, R.sub.2 and R.sub.3 together form a heterocyclic ring, optionally substituted with at least one radical selected from the group consisting of alkyl, alkoxy, OH, OTs, halogen, alkylenyl-R.sub.10, carbonyl, spiperone, spiperone ketal and spiperone-3-yl. In the compounds of formula (I), one or more of the hydrogen, halogen or carbon atoms can, optionally, be replaced with a radiolabel.

  8. Compositions for labeling .beta.-amyloid plaques and neurofibrillary tangles

    Science.gov (United States)

    Barrio, Jorge R [Agoura Hills, CA; Petric, Andrej [Ljubljana, SI; Satyamurthy, Nagichettiar [Los Angeles, CA; Small, Gary W [Los Angeles, CA; Cole, Gregory M [Santa Monica, CA; Huang, Sung-Cheng [Sherman Oaks, CA

    2008-03-11

    Compositions useful for labeling .beta.-amyloid plaques and neurofibrillary tangles are provided. The compositions comprises compounds of formula (I): ##STR00001## wherein R.sub.1 is selected from the group consisting of --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C.dbd.C(CN).sub.2-alkyl, --C.dbd.C(CN).sub.2-alkylenyl-R.sub.4, ##STR00002## wherein R.sub.4 is a radical selected from the group consisting of alkyl, substituted alkyl, aryl and substituted aryl; R.sub.5 is a radical selected from the group consisting of --NH.sub.2, --OH, --SH, --NH-alkyl, --NHR.sub.4, --NH-alkylenyl-R.sub.4, --O-alkyl, --O-alkylenyl-R.sub.4, --S-alkyl, and --S-alkylenyl-R.sub.4; R.sub.6 is a radical selected from the group consisting of --CN, --COOH, --C(O)O-alkyl, --C(O)O-alkylenyl-R.sub.4, --C(O)-alkyl, --C(O)-alkylenyl-R.sub.4, --C(O)-halogen, --C(O)NH-alkyl, --C(O)NH-alkylenyl-R.sub.4 and --C(O)NH.sub.2; R.sub.7 is a radical selected from the group consisting of O, NH, and S; and R.sub.8 is N, O or S; and R.sub.2 is selected from the group consisting of alkyl and alkylenyl-R.sub.10 and R.sub.3 is alkylenyl-R.sub.10, wherein R.sub.10 is selected from the group consisting of --OH, --OTs, halogen, spiperone, spiperone ketal, and spiperone-3-yl, or R.sub.2 and R.sub.3 together form a heterocyclic ring, optionally substituted with at least one radical selected from the group consisting of alkyl, alkoxy, OH, OTs, halogen, alkyl-R.sub.10, carbonyl, spiperone, spiperone ketal and spiperone-3-yl, and further wherein one or more of the hydrogen, halogen or carbon atoms are optionally replaced with a radiolabel.

  9. Novel human neuronal tau model exhibiting neurofibrillary tangles and transcellular propagation.

    Science.gov (United States)

    Reilly, Patrick; Winston, Charisse N; Baron, Kelsey R; Trejo, Margarita; Rockenstein, Edward M; Akers, Johnny C; Kfoury, Najla; Diamond, Marc; Masliah, Eliezer; Rissman, Robert A; Yuan, Shauna H

    2017-10-01

    Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia and progressive supranuclear palsy, which are associated with the pathological aggregation of tau protein into neurofibrillary tangles (NFT). Studies have characterized tau as a "prion-like" protein given its ability to form distinct, stable amyloid conformations capable of transcellular and multigenerational propagation in clonal fashion. It has been proposed that progression of tauopathy could be due to the prion-like propagation of tau, suggesting the possibility that end-stage pathologies, like NFT formation, may require an instigating event such as tau seeding. To investigate this, we applied a novel human induced pluripotent stem cell (hiPSC) system we have developed to serve as a human neuronal model. We introduced the tau repeat domain (tau-RD) with P301L and V337M (tau-RD-LM) mutations into hiPSC-derived neurons and observed expression of tau-RD at levels similar to total tau in postmortem AD brains. Tau aggregation occurred without the addition of recombinant tau fibrils. The conditioned media from tau-RD cultures contained tau-RD seeds, which were capable of inducing aggregate formation in homotypic mode in non-transduced recipient neuronal cultures. The resultant NFTs were thioflavin-positive, silver stain-positive, and assumed fibrillary appearance on transmission electron microscopy (TEM) with immunogold, which revealed paired helical filament 1 (PHF1)-positive NFTs, representing possible recruitment of endogenous tau in the aggregates. Functionally, expression of tau-RD caused neurotoxicity that manifested as axon retraction, synaptic density reduction, and enlargement of lysosomes. The results of our hiPSC study were reinforced by the observation that Tau-RD-LM is excreted in exosomes, which mediated the transfer of human tau to wild-type mouse neurons in vivo. Our hiPSC human neuronal system provides a model for further studies of tau

  10. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia

    Science.gov (United States)

    Planel, Emmanuel; Bretteville, Alexis; Liu, Li; Virag, Laszlo; Du, Angela L.; Yu, Wai Haung; Dickson, Dennis W.; Whittington, Robert A.; Duff, Karen E.

    2009-01-01

    Alzheimer’s disease and other tauopathies are characterized by the presence of intracellular neurofibrillary tangles composed of hyperphosphorylated, insoluble tau. General anesthesia has been shown to be associated with increased risk of Alzheimer’s disease, and we have previously demonstrated that anesthesia induces hypothermia, which leads to overt tau hyperphosphorylation in the brain of mice regardless of the anesthetic used. To investigate whether anesthesia enhances the long-term risk of developing pathological forms of tau, we exposed a mouse model with tauopathy to anesthesia and monitored the outcome at two time points—during anesthesia, or 1 wk after exposure. We found that exposure to isoflurane at clinically relevant doses led to increased levels of phospho-tau, increased insoluble, aggregated forms of tau, and detachment of tau from microtubules. Furthermore, levels of phospho-tau distributed in the neuropil, as well as in cell bodies increased. Interestingly, the level of insoluble tau was increased 1 wk following anesthesia, suggesting that anesthesia precipitates changes in the brain that provoke the later development of tauopathy. Overall, our results suggest that anesthesia-induced hypothermia could lead to an acceleration of tau pathology in vivo that could have significant clinical implications for patients with early stage, or overt neurofibrillary tangle pathology.—Planel, E., Bretteville, A., Liu, L., Virag, L., Du, A. L., Yu, W. Y., Dickson, D. W., Whittington, R. A., Duff, K. E. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. PMID:19279139

  11. Interaction of Aluminum with PHFτ in Alzheimer’s Disease Neurofibrillary Degeneration Evidenced by Desferrioxamine-Assisted Chelating Autoclave Method

    Science.gov (United States)

    Murayama, Harunobu; Shin, Ryong-Woon; Higuchi, Jun; Shibuya, Satoshi; Muramoto, Tamaki; Kitamoto, Tetsuyuki

    1999-01-01

    To demonstrate that aluminum III (Al) interacts with PHFτ in neurofibrillary degeneration (NFD) of Alzheimer’s disease (AD) brain, we developed a “chelating autoclave method” that allows Al chelation by using trivalent-cationic chelator desferrioxamine. Its application to AD brain sections before Morin histochemistry for Al attenuated the positive fluorescence of neurofibrillary tangles, indicating Al removal from them. This method, applied for immunostaining with phosphorylation-dependent anti-τ antibodies, significantly enhanced the PHFτ immunoreactivity of the NFD. These results suggest that each of the phosphorylated epitopes in PHFτ are partially masked by Al binding. Incubation of AD sections with AlCl3 before Morin staining revealed Al accumulation with association to neurofibrillary tangles. Such incubation before immunostaining with the phosphorylation-dependent anti-τ antibodies abolished the immunolabeling of the NFD and this abolition was reversed by the Al chelation. These findings indicate cumulative Al binding to and thereby antigenic masking of the phosphorylated epitopes of PHFτ. Al binding was further documented for electrophoretically-resolved PHFτ on immunoblots, indicating direct Al binding to PHFτ. In vitro aggregation by AlCl3 was observed for PHFτ but was lost on dephosphorylation of PHFτ. Taken together, phosphorylation-dependent and direct PHFτ-Al interaction occurs in the NFD of the AD brain. PMID:10487845

  12. Distribution of precursor amyloid-β-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques

    International Nuclear Information System (INIS)

    Lewis, D.A.; Higgins, G.A.; Young, W.G.; Goldgaber, D.; Gajdusek, D.C.; Wilson, M.C.; Morrison, J.H.

    1988-01-01

    Neurofibrillary tangles (NFT) and neuritic plaques (NP), two neuropathological markers of Alzheimer disease, may both contain peptide fragments derived from the human amyloid β protein. However, the nature of the relationship between NFT and NP and the source of the amyloid β proteins found in each have remained unclear. The authors used in situ hybridization techniques to map the anatomical distribution of precursor amyloid-β-protein mRNA in the neocortex of brains from three subjects with no known neurologic disease and from five patients with Alzheimer disease. In brains from control subjects, positively hybridizing neurons were present in cortical regions and layers that contain a high density of neuropathological markers in Alzheimer disease, as well as in those loci that contain NP but few NFT. Quantitative analyses of in situ hybridization patterns within layers III and V of the superior frontal cortex revealed that the presence of high numbers of NFT in Alzheimer-diseased brains was associated with a decrease in the number of positively hybridizing neurons compared to controls and Alzheimer-diseased brains with few NFT. These findings suggest that the expression of precursor amyloid-β-protein mRNA may be a necessary but is clearly not a sufficient prerequisite for NFT formation. In addition, these results may indicate that the amyloid β protein, present in NP in a given region or layer of cortex, is not derived from the resident neuronal cell bodies that express the mRNA for the precursor protein

  13. [18F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer's disease

    International Nuclear Information System (INIS)

    Harada, Ryuichi; Okamura, Nobuyuki; Furumoto, Shozo; Furukawa, Katsutoshi; Ishiki, Aiko; Tomita, Naoki; Arai, Hiroyuki; Hiraoka, Kotaro; Watanuki, Shoichi; Miyake, Masayasu; Matsuda, Rin; Inami, Akie; Tashiro, Manabu; Shidahara, Miho; Ishikawa, Yoichi; Tago, Tetsuro; Funaki, Yoshihito; Iwata, Ren; Yoshikawa, Takeo; Yanai, Kazuhiko; Kudo, Yukitsuka

    2015-01-01

    Visualization of the spatial distribution of neurofibrillary tangles would help in the diagnosis, prevention and treatment of dementia. The purpose of the study was to evaluate the clinical utility of [ 18 F]THK-5117 as a highly selective tau imaging radiotracer. We initially evaluated in vitro binding of [ 3 H]THK-5117 in post-mortem brain tissues from patients with Alzheimer's disease (AD). In clinical PET studies, [ 18 F]THK-5117 retention in eight patients with AD was compared with that in six healthy elderly controls. Ten subjects underwent an additional [ 11 C]PiB PET scan within 2 weeks. In post-mortem brain samples, THK-5117 bound selectively to neurofibrillary deposits, which differed from the binding target of PiB. In clinical PET studies, [ 18 F]THK-5117 binding in the temporal lobe clearly distinguished patients with AD from healthy elderly subjects. Compared with [ 11 C]PiB, [ 18 F]THK-5117 retention was higher in the medial temporal cortex. These findings suggest that [ 18 F]THK-5117 provides regional information on neurofibrillary pathology in living subjects. (orig.)

  14. Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature

    Science.gov (United States)

    Nelson, Peter T.; Alafuzoff, Irina; Bigio, Eileen H.; Bouras, Constantin; Braak, Heiko; Cairns, Nigel J.; Castellani, Rudolph J.; Crain, Barbara J.; Davies, Peter; Del Tredici, Kelly; Duyckaerts, Charles; Frosch, Matthew P.; Haroutunian, Vahram; Hof, Patrick R.; Hulette, Christine M.; Hyman, Bradley T.; Iwatsubo, Takeshi; Jellinger, Kurt A.; Jicha, Gregory A.; Kövari, Enikö; Kukull, Walter A.; Leverenz, James B.; Love, Seth; Mackenzie, Ian R.; Mann, David M.; Masliah, Eliezer; McKee, Ann C.; Montine, Thomas J.; Morris, John C.; Schneider, Julie A.; Sonnen, Joshua A.; Thal, Dietmar R.; Trojanowski, John Q.; Troncoso, Juan C.; Wisniewski, Thomas; Woltjer, Randall L.; Beach, Thomas G.

    2013-01-01

    Clinicopathologic correlation studies are critically important for the field of Alzheimer disease (AD) research. Studies on human subjects with autopsy confirmation entail numerous potential biases that affect both their general applicability and the validity of the correlations. Many sources of data variability can weaken the apparent correlation between cognitive status and AD neuropathologic changes. Indeed, most persons in advanced old age have significant non-AD brain lesions that may alter cognition independently of AD. Worldwide research efforts have evaluated thousands of human subjects to assess the causes of cognitive impairment in the elderly, and these studies have been interpreted in different ways. We review the literature focusing on the correlation of AD neuropathologic changes (i.e. β-amyloid plaques and neurofibrillary tangles) with cognitive impairment. We discuss the various patterns of brain changes that have been observed in elderly individuals to provide a perspective for understanding AD clinicopathologic correlation and conclude that evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of Aβ plaques and neurofibrillary tangles. Although Aβ plaques may play a key role in AD pathogenesis, the severity of cognitive impairment correlates best with the burden of neocortical neurofibrillary tangles. PMID:22487856

  15. [{sup 18}F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Ryuichi [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Okamura, Nobuyuki [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Furumoto, Shozo [Tohoku University, Frontier Research Institute for Interdisciplinary Science, Sendai (Japan); Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Furukawa, Katsutoshi; Ishiki, Aiko; Tomita, Naoki; Arai, Hiroyuki [Tohoku University, Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Sendai (Japan); Hiraoka, Kotaro; Watanuki, Shoichi; Miyake, Masayasu; Matsuda, Rin; Inami, Akie; Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai (Japan); Shidahara, Miho [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai (Japan); Tohoku University School of Medicine, Division of Medical Physics, Sendai (Japan); Ishikawa, Yoichi; Tago, Tetsuro; Funaki, Yoshihito; Iwata, Ren [Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Yoshikawa, Takeo; Yanai, Kazuhiko [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Kudo, Yukitsuka [Tohoku University, Division of Neuro-imaging, Institute of Development, Aging and Cancer, Sendai (Japan); Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan)

    2015-03-20

    Visualization of the spatial distribution of neurofibrillary tangles would help in the diagnosis, prevention and treatment of dementia. The purpose of the study was to evaluate the clinical utility of [{sup 18}F]THK-5117 as a highly selective tau imaging radiotracer. We initially evaluated in vitro binding of [{sup 3}H]THK-5117 in post-mortem brain tissues from patients with Alzheimer's disease (AD). In clinical PET studies, [{sup 18}F]THK-5117 retention in eight patients with AD was compared with that in six healthy elderly controls. Ten subjects underwent an additional [{sup 11}C]PiB PET scan within 2 weeks. In post-mortem brain samples, THK-5117 bound selectively to neurofibrillary deposits, which differed from the binding target of PiB. In clinical PET studies, [{sup 18}F]THK-5117 binding in the temporal lobe clearly distinguished patients with AD from healthy elderly subjects. Compared with [{sup 11}C]PiB, [{sup 18}F]THK-5117 retention was higher in the medial temporal cortex. These findings suggest that [{sup 18}F]THK-5117 provides regional information on neurofibrillary pathology in living subjects. (orig.)

  16. Neurofibrillary tangles and the deposition of a beta amyloid peptide with a novel N-terminal epitope in the brains of wild Tsushima leopard cats.

    Directory of Open Access Journals (Sweden)

    James K Chambers

    Full Text Available Beta amyloid (Aβ deposits are seen in aged individuals in many of the mammalian species that possess the same Aβ amino acid sequence as humans. Conversely, neurofibrillary tangles (NFT, the other hallmark lesion of Alzheimer's disease (AD, are extremely rare in these animals. We detected Aβ deposits in the brains of Tsushima leopard cats (Prionailurus bengalensis euptilurus that live exclusively on Tsushima Island, Japan. Aβ42 was deposited in a granular pattern in the neuropil of the pyramidal cell layer, but did not form argyrophilic senile plaques. These Aβ deposits were not immunolabeled with antibodies to the N-terminal of human Aβ. Sequence analysis of the amyloid precursor protein revealed an amino acid substitution at the 7th residue of the Aβ peptide. In a comparison with other mammalian animals that do develop argyrophilic senile plaques, we concluded that the alternative Aβ amino acid sequence displayed by leopard cats is likely to be related to its distinctive deposition pattern. Interestingly, most of the animals with these Aβ deposits also developed NFTs. The distributions of hyperphosphorylated tau-positive cells and the two major isoforms of aggregated tau proteins were quite similar to those seen in Alzheimer's disease. In addition, the unphosphorylated form of GSK-3β colocalized with hyperphosphorylated tau within the affected neurons. In conclusion, this animal species develops AD-type NFTs without argyrophilic senile plaques.

  17. Alzheimer disease pathology in subjects without dementia in 2 studies of aging: the Nun Study and the Adult Changes in Thought Study.

    Science.gov (United States)

    SantaCruz, Karen S; Sonnen, Joshua A; Pezhouh, Maryam Kherad; Desrosiers, Mark F; Nelson, Peter T; Tyas, Suzanne L

    2011-10-01

    Individuals with antemortem preservation of cognition who show autopsy evidence of at least moderate Alzheimer disease (AD) pathology suggest the possibility of brain reserve, that is, functional resistance to structural brain damage. This reserve would, however, only be relevant if the pathologic markers correlate well with dementia. Using data from the Nun Study (n = 498) and the Adult Changes in Thought (ACT) Study (n = 323), we show that Braak staging correlates strongly with dementia status. Moreover, participants with severe(Braak stage V-VI) AD pathology who remained not demented represent only 12% (Nun Study) and 8% (ACT study) of nondemented subjects. Comparison of these subjects to those who were demented revealed that the former group was often significantly memory-impaired despite not being classified as demented. Most of these nondemented participants showed only stage V neurofibrillary pathology and frontal tangle counts that were slightly lower than a comparable (Braak stage V) dementia group. In summary, these data indicate that, in individuals with AD-type pathology who do not meet criteria for dementia, neocortical neurofibrillary tangles are somewhat reduced and incipient cognitive decline is present. Our data provide a foundation for helping to define additional factors that may impair, or be protective of, cognition in older adults.

  18. Alzheimer Disease Pathology in Subjects Without Dementia in Two Studies of Aging: The Nun Study and the Adult Changes in Thought Study

    Science.gov (United States)

    SantaCruz, Karen S.; Sonnen, Joshua A.; Pezhouh, Maryam Kherad; Desrosiers, Mark F.; Nelson, Peter T.; Tyas, Suzanne L.

    2012-01-01

    Individuals with antemortem preservation of cognition who show autopsy evidence of at least moderate Alzheimer disease (AD) pathology suggest the possibility of brain reserve, that is, functional resistance to structural brain damage. This reserve would, however, only be relevant if the pathologic markers correlate well with dementia. Using data from the Nun Study (n = 498) and the Adult Changes in Thought (ACT) Study (n = 323), we show that Braak staging correlates strongly with dementia status. Moreover, participants with severe (Braak stage V–VI) AD pathology who remained not demented represent only 12% (Nun Study) and 8% (ACT study) of nondemented subjects. Comparison of these subjects to those who were demented revealed that the former group was often significantly memory impaired despite not being classified as demented. Most of these nondemented participants showed only stage V neurofibrillary pathology and frontal tangle counts that were slightly lower than a comparable (Braak stage V) dementia group. In summary, these data indicate that, in individuals with AD-type pathology who do not meet criteria for dementia, neocortical neurofibrillary tangles are somewhat reduced and incipient cognitive decline is present. Our data provide a foundation for helping to define additional factors that may impair, or be protective of, cognition in older adults. PMID:21937909

  19. The biological substrates of Alzheimer's disease

    International Nuclear Information System (INIS)

    Scheibel, A.B.; Wechsler, A.F.; Brazier, M.A.B.

    1986-01-01

    This book contains 21 selections. Some of the titles are: Dementia of the Alzheimer Type: Genetic Aspects; Determination of Cerebral Metabolic Patterns in Dementia Using Positron Emission Tomography; Pathology of the Basal Forebrain in Alzheimer's Disease and Other Dementias; Characterization of Neurofibrillary Tangles with Monoclonal Antibodies Raised Against Alzheimer Neurofibrillary Tangles; and HLA Associations in Alzheimer's Disease

  20. Endogenous murine tau promotes neurofibrillary tangles in 3xTg-AD mice without affecting cognition.

    Science.gov (United States)

    Baglietto-Vargas, David; Kitazawa, Masashi; Le, Elaine J; Estrada-Hernandez, Tatiana; Rodriguez-Ortiz, Carlos J; Medeiros, Rodrigo; Green, Kim N; LaFerla, Frank M

    2014-02-01

    Recent studies on tauopathy animal models suggest that the concomitant expression of the endogenous murine tau delays the pathological accumulation of human tau, and interferes with the disease progression. To elucidate the role of endogenous murine tau in a model with both plaques and tangles, we developed a novel transgenic mouse model by crossing 3xTg-AD with mtauKO mice (referred to as 3xTg-AD/mtauKO mice). Therefore, this new model allows us to determine the pathological consequences of the murine tau. Here, we show that 3xTg-AD/mtauKO mice have lower tau loads in both soluble and insoluble fractions, and lower tau hyperphosphorylation level in the soluble fraction relative to 3xTg-AD mice. In the 3xTg-AD model endogenous mouse tau is hyperphosphorylated and significantly co-aggregates with human tau. Despite the deletion of the endogenous tau gene in 3xTg-AD/mtauKO mice, cognitive dysfunction was equivalent to 3xTg-AD mice, as there was no additional impairment on a spatial memory task, and thus despite increased tau phosphorylation, accumulation and NFTs in 3xTg-AD mice no further effects on cognition are seen. These findings provide better understanding about the role of endogenous tau to Alzheimer's disease (AD) pathology and for developing new AD models. © 2013.

  1. TANGLED MAGNETIC FIELDS IN SOLAR PROMINENCES

    International Nuclear Information System (INIS)

    Van Ballegooijen, A. A.; Cranmer, S. R.

    2010-01-01

    Solar prominences are an important tool for studying the structure and evolution of the coronal magnetic field. Here we consider so-called hedgerow prominences, which consist of thin vertical threads. We explore the possibility that such prominences are supported by tangled magnetic fields. A variety of different approaches are used. First, the dynamics of plasma within a tangled field is considered. We find that the contorted shape of the flux tubes significantly reduces the flow velocity compared to the supersonic free fall that would occur in a straight vertical tube. Second, linear force-free models of tangled fields are developed, and the elastic response of such fields to gravitational forces is considered. We demonstrate that the prominence plasma can be supported by the magnetic pressure of a tangled field that pervades not only the observed dense threads but also their local surroundings. Tangled fields with field strengths of about 10 G are able to support prominence threads with observed hydrogen density of the order of 10 11 cm -3 . Finally, we suggest that the observed vertical threads are the result of Rayleigh-Taylor instability. Simulations of the density distribution within a prominence thread indicate that the peak density is much larger than the average density. We conclude that tangled fields provide a viable mechanism for magnetic support of hedgerow prominences.

  2. Seidel-Smith cohomology for tangles

    DEFF Research Database (Denmark)

    Rezazadegan, Reza

    2009-01-01

    We generalize the “symplectic Khovanov cohomology” of Seidel and Smith (Duke Math J 134(3):453–514, 2006) to tangles using the notion of symplectic valued topological field theory introduced by Wehrheim and Woodward (arXiv:0905.1368).......We generalize the “symplectic Khovanov cohomology” of Seidel and Smith (Duke Math J 134(3):453–514, 2006) to tangles using the notion of symplectic valued topological field theory introduced by Wehrheim and Woodward (arXiv:0905.1368)....

  3. Early Alzheimer-type lesions in cognitively normal subjects.

    Science.gov (United States)

    Tsartsalis, Stergios; Xekardaki, Aikaterini; Hof, Patrick R; Kövari, Enikö; Bouras, Constantin

    2018-02-01

    Amyloid deposits and tau-immunoreactive neurofibrillary tangles, together with neuronal and synaptic loss, are the neuropathological hallmarks of Alzheimer's disease (AD). Both proteins are present in the normal brain during aging. However, the temporal sequence of their involvement in the onset of AD pathology remains controversial. To define whether amyloid β protein deposits or tau protein lesions appear first during normal brain aging, we performed an immunohistological study on serial sections from 105 autopsy brains (age range: 40-104 years) from patients free of clinical signs of cognitive decline, using anti-tau (AT8) and anti-amyloid (4G8) antibodies in the hippocampus, entorhinal cortex, inferior temporal cortex (Brodmann area 20), prefrontal cortex (Brodmann area 9), occipital cortex (Brodmann areas 17 and 18), and in the brainstem. All cases older than 48 years displayed at least a few neurofibrillary tangles, which appeared more frequently in the entorhinal than in the transentorhinal cortex. Tau pathology in these areas preceded tau inclusions in the brainstem. Furthermore, the first site of the apparition of tau pathology is inconsistent, being the entorhinal cortex in most cases, and in fewer cases, the transentorhinal region. There was no case presenting with amyloid deposition in the absence of neurofibrillary tangles, lending evidence to the fact that neurofibrillary tangles appear earlier than amyloid plaques during normal brain aging. However, the role of amyloid in promoting tau deposition cannot be excluded in some cases but may not represent the sole mechanism of disease induction and progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Neocortical arealization: evolution, mechanisms, and open questions.

    Science.gov (United States)

    Alfano, Christian; Studer, Michèle

    2013-06-01

    The mammalian neocortex is a structure with no equals in the vertebrates and is the seat of the highest cerebral functions, such as thoughts and consciousness. It is radially organized into six layers and tangentially subdivided into functional areas deputed to the elaboration of sensory information, association between different stimuli, and selection and triggering of voluntary movements. The process subdividing the neocortical field into several functional areas is called "arealization". Each area has its own cytoarchitecture, connectivity, and peculiar functions. In the last century, several neuroscientists have investigated areal structure and the mechanisms that have led during evolution to the rising of the neocortex and its organization. The extreme conservation in the positioning and wiring of neocortical areas among different mammalian families suggests a conserved genetic program orchestrating neocortical patterning. However, the impressive plasticity of the neocortex, which is able to rewire and reorganize areal structures and connectivity after impairments of sensory pathways, argues for a more complex scenario. Indeed, even if genetics and molecular biology helped in identifying several genes involved in the arealization process, the logic underlying the neocortical bauplan is still beyond our comprehension. In this review, we will introduce the present knowledge and hypotheses on the ontogenesis and evolution of neocortical areas. Then, we will focus our attention on some open issues, which are still unresolved, and discuss some recent studies that might open new directions to be explored in the next few years. Copyright © 2012 Wiley Periodicals, Inc.

  5. TORSIONAL OSCILLATIONS OF A MAGNETAR WITH A TANGLED MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Link, Bennett; Van Eysden, C. Anthony, E-mail: link@montana.edu, E-mail: anthonyvaneysden@montana.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-05-20

    Motivated by stability considerations and observational evidence, we argue that magnetars possess highly tangled internal magnetic fields. We propose that the quasi-periodic oscillations (QPOs) seen to accompany giant flares can be explained as torsional modes supported by a tangled magnetic field, and we present a simple model that supports this hypothesis for SGR 1900+14. Taking the strength of the tangle as a free parameter, we find that the magnetic energy in the tangle must dominate that in the dipolar component by a factor of ∼14 to accommodate the observed 28 Hz QPO. Our simple model provides useful scaling relations for how the QPO spectrum depends on the bulk properties of the neutron star and the tangle strength. The energy density in the tangled field inferred for SGR 1900+14 renders the crust nearly dynamically irrelevant, a significant simplification for study of the QPO problem. The predicted spectrum is about three times denser than observed, which could be explained by preferential mode excitation or beamed emission. We emphasize that field tangling is needed to stabilize the magnetic field, so should not be ignored in treatment of the QPO problem.

  6. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males...... and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...

  7. PET imaging of neocortical monoaminergic terminals in Parkinson's disease

    International Nuclear Information System (INIS)

    Marie, R.M.; Barre, L.; Rioux, P.; Allain, P.; Lechevalier, B.; Baron, J.C.

    1995-01-01

    Post-mortem neurochemical studies in Parkinson's disease (PD) have shown that, in addition to the typical nigro-striatal dopamine denervation, there exists a concomitant neocortical monoamine fibre deafferentation (of variable severity) whose role in motor, and especially in associated cognitive and affective impairment, remains elusive. We have extensively examined whether PET imaging with 11 C-S-Nomifensine ( 11 C-NMF), a radioligand of the dopamine and norepinephrine presynaptic reuptake sites which has been used so far to investigate the striatum, could provide a method for assessing in vivo the neocortical monoamine terminal loss in PD; previously, this has been a little addressed and controversial issue. To this end, we prospectively selected a highly homogeneous sample of nine non-demented, non-depressed idiopathic PD patients with mild to marked side-to-side asymmetry in motor impairment. In addition to recovering the previously-reported correlations with putaminal 11 C-NMF specific uptake asymmetries, the clinical motor asymmetries also significantly correlated in the clinically expected direction to neocortical (especially frontal) 11 C-NMF asymmetries. suggesting the monoamine neocortical denervation might play a direct role in motor impairment in PD. These results demonstrate that it is possible to assess in vivo the neocortical monoamine terminal loss. and to elucidate its potential role in the complex cognitive and affective impairment, in both PD and atypical degenerative parkinsonism. (author)

  8. Neocortical electrical stimulation for epilepsy : Closed-loop versus open-loop

    NARCIS (Netherlands)

    Vassileva, Albena; van Blooijs, Dorien; Leijten, Frans; Huiskamp, Geertjan

    2018-01-01

    The aim of this review is to evaluate whether open-loop or closed-loop neocortical electrical stimulation should be the preferred approach to manage seizures in intractable epilepsy. Twenty cases of open-loop neocortical stimulation with an implanted device have been reported, in 5 case studies.

  9. Medline Plus

    Full Text Available In a person with Alzheimer disease, neurofibrillary tangles and plaques develop causing both structural and chemical problems in the brain. Alzheimer disease appears to disconnect ...

  10. Neocortical glial cell numbers in human brains.

    Science.gov (United States)

    Pelvig, D P; Pakkenberg, H; Stark, A K; Pakkenberg, B

    2008-11-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex.

  11. A novel PRNP Y218N mutation in Gerstmann-Sträussler-Scheinker disease with neurofibrillary degeneration.

    Science.gov (United States)

    Alzualde, Ainhoa; Indakoetxea, Begoña; Ferrer, Isidre; Moreno, Fermin; Barandiaran, Myriam; Gorostidi, Ana; Estanga, Ainara; Ruiz, Irune; Calero, Miguel; van Leeuwen, Fred W; Atares, Begoña; Juste, Ramón; Rodriguez-Martínez, Ana Belén; López de Munain, Adolfo

    2010-08-01

    Gerstmann-Sträussler-Scheinker (GSS) disease is a prion disease associated with prion protein gene (PRNP) mutations. We report a novel PRNP mutation (Y218N) associated with GSS disease in a pathologically confirmed case and in two other affected family members. The clinical features of these cases met criteria for possible Alzheimer disease and possible frontotemporal dementia. Neuropathologic analysis revealed deposition of proteinase K-resistant prion protein (PrP(res)), widespread hyperphosphorylated tau pathology, abnormal accumulation of mitochondria in the vicinity of PrP deposits, and expression of mutant ubiquitin (UBB(+1)) in neurofibrillary tangles and dystrophic neurites. Prion protein immunoblotting using 3F4 and 1E4 antibodies disclosed multiple bands ranging from approximately 20 kd to 80 kd and lower bands of 15 kd and approximately 10 kd, the latter only seen after a long incubation. These bands were partially resistant to proteinase K pretreatment. This pattern differs from those seen in Creutzfeldt-Jakob disease andresembles those reported in other GSS cases. The approximately 10kd band was recognized with anti-PrP C-terminus antibodies but not with anti-N terminus antibodies, suggesting PrP truncation at the N terminal. This new mutation extends the list of known mutations responsible for GSS disease and reinforces its clinical heterogeneity. Genetic examination of the PRNP gene should be included in the workup of patients with poorly classifiable dementia.

  12. Neuropathological Alterations in Alzheimer Disease

    Science.gov (United States)

    Serrano-Pozo, Alberto; Frosch, Matthew P.; Masliah, Eliezer; Hyman, Bradley T.

    2011-01-01

    The neuropathological hallmarks of Alzheimer disease (AD) include “positive” lesions such as amyloid plaques and cerebral amyloid angiopathy, neurofibrillary tangles, and glial responses, and “negative” lesions such as neuronal and synaptic loss. Despite their inherently cross-sectional nature, postmortem studies have enabled the staging of the progression of both amyloid and tangle pathologies, and, consequently, the development of diagnostic criteria that are now used worldwide. In addition, clinicopathological correlation studies have been crucial to generate hypotheses about the pathophysiology of the disease, by establishing that there is a continuum between “normal” aging and AD dementia, and that the amyloid plaque build-up occurs primarily before the onset of cognitive deficits, while neurofibrillary tangles, neuron loss, and particularly synaptic loss, parallel the progression of cognitive decline. Importantly, these cross-sectional neuropathological data have been largely validated by longitudinal in vivo studies using modern imaging biomarkers such as amyloid PET and volumetric MRI. PMID:22229116

  13. HOMOCLINIC TANGLE BIFURCATIONS AND EDGE STOCHASTICITY IN DIVERTED TOKAMAKS

    International Nuclear Information System (INIS)

    EVANS, T.E.; ROEDER, R.K.W.; CARTER, J.A.; RAPOPORT, B.I.

    2003-01-01

    OAK-B135 The boundary and pedestal region of a poloidally diverted tokamak is particularly susceptible to the onset of vacuum magnetic field stochasticity due to small non-axisymmetric resonant perturbations. Recent calculations of the separatrix topology in diverted tokamaks, when subjected to small magnetic perturbations, show the existence of complex invariant manifold structures known as homoclinic tangles. These structures appear above a relatively low perturbation threshold that depends on certain equilibrium shape parameters. Homoclinic tangles represent a splitting of the unperturbed separatrix into stable and unstable invariant manifolds associated with each X-point (hyperbolic point). The manifolds that make up homoclinic tangles set the boundaries that prescribe how stochastic field line trajectories are organized i.e., how field lines from the inner domain of the unperturbed separatrix mix and are transported to plasma facing surfaces such as divertor target plates and protruding baffle structures. Thus, the topology of these tangles determines which plasma facing components are most likely to interact with escaping magnetic field lines and the parallel heat and particle flux they carry

  14. Medline Plus

    Full Text Available In a person with Alzheimer disease, neurofibrillary tangles and plaques develop causing both structural and chemical problems in the brain. Alzheimer disease appears to disconnect areas ...

  15. Medline Plus

    Full Text Available ... person with Alzheimer disease, neurofibrillary tangles and plaques develop causing both structural and chemical problems in the brain. Alzheimer disease appears to disconnect areas of the ...

  16. Numerical investigations on interactions between tangles of quantized vortices and second sound

    International Nuclear Information System (INIS)

    Penz, H.; Aarts, R.; de Waele, F.

    1995-01-01

    The reconnecting vortex-tangle model is used to investigate the interaction of tangles of quantized vortices with second sound. This interaction can be expressed in terms of an effective line-length density, which depends on the direction of the second-sound wave. By comparing the effective line-length densities in various directions the tangle structure can be examined. Simulations were done for flow channels with square and circular cross sections as well as for slits. The results show that in all these cases the tangles are inhomogeneous in direction as well as in space. The calculated inhomogeneities are in agreement with experiment

  17. Medline Plus

    Full Text Available In a person with Alzheimer disease, neurofibrillary tangles and plaques develop causing both structural and chemical problems in the brain. Alzheimer disease appears to disconnect areas of ...

  18. The Stability and the Security of the Tangle

    OpenAIRE

    Bramas , Quentin

    2018-01-01

    In this paper we study the stability and the security of the Tangle, which is the distributed data structure at the base of the IOTA protocol. The contribution of this paper is twofold. Firstly we present simple model to analyze the Tangle and give the first formal analyzes of the average number of unconfirmed transactions and the average confirmation time of a transaction. Secondly we define the notion of assiduous honest majority that captures the fact that the honest nodes have more hashin...

  19. Neocortical Development in Brain of Young Children

    DEFF Research Database (Denmark)

    Kjaer, Majken; Fabricius, Katrine; Sigaard, Rasmus Krarup

    2017-01-01

    The early postnatal development of neuron and glia numbers is poorly documented in human brain. Therefore we estimated using design-based stereological methods the regional volumes of neocortex and the numbers of neocortical neurons and glial cells for 10 children (4 girls and 6 boys), ranging from...... neonate to 3 years of age. The 10 infants had a mean of 20.7 × 109 neocortical neurons (range 18.0-24.8 × 109) estimated with a coefficient of variation (CV) = 0.11; this range is similar to adult neuron numbers. The glia populations were 10.5 × 109 oligodendrocytes (range 5.0-16.0 × 109; CV = 0.40); 5...

  20. The Tangled Nature Model of evolutionary dynamics reconsidered

    DEFF Research Database (Denmark)

    Andersen, Christian Walther; Sibani, Paolo

    2016-01-01

    The Tangled Nature Model of biological and cultural evolution features interacting agents which compete for limited resources and reproduce in an error prone fashion and at a rate depending on the `tangle' of interactions they maintain with others. The set of interactions linking a TNM individual....... To bring out the structural and dynamical effects of trait inheritance , we introduce and numerically analyze a family of TNM models where a positive integer $K$ parametrises correlations between the interactions of an agent and those of its mutated offspring. For $K=1$ a single point mutation randomizes...

  1. Convergent microRNA actions coordinate neocortical development.

    Science.gov (United States)

    Barca-Mayo, Olga; De Pietri Tonelli, Davide

    2014-08-01

    Neocortical development is a complex process that, at the cellular level, involves tight control of self-renewal, cell fate commitment, survival, differentiation and delamination/migration. These processes require, at the molecular level, the precise regulation of intrinsic signaling pathways and extrinsic factors with coordinated action in a spatially and temporally specific manner. Transcriptional regulation plays an important role during corticogenesis; however, microRNAs (miRNAs) are emerging as important post-transcriptional regulators of various aspects of central nervous system development. miRNAs are a class of small, single-stranded noncoding RNA molecules that control the expression of the majority of protein coding genes (i.e., targets). How do different miRNAs achieve precise control of gene networks during neocortical development? Here, we critically review all the miRNA-target interactions validated in vivo, with relevance to the generation and migration of pyramidal-projection glutamatergic neurons, and for the initial formation of cortical layers in the embryonic development of rodent neocortex. In particular, we focus on convergent miRNA actions, which are still a poorly understood layer of complexity in miRNA signaling, but potentially one of the keys to disclosing how miRNAs achieve the precise coordination of complex biological processes such as neocortical development.

  2. Surgical Treatment of Nonlesional Neocortical Epilepsy: Long-term Longitudinal Study.

    Science.gov (United States)

    Kim, Dong Wook; Lee, Sang Kun; Moon, Hye-Jin; Jung, Ki-Young; Chu, Kon; Chung, Chun-Ki

    2017-03-01

    The proportion of surgery for nonlesional neocortical epilepsy has recently increased, with a decrease in surgery for mesial temporal lobe epilepsy. However, there are only a few studies regarding the long-term surgical outcome and the potential prognostic factors for patients with nonlesional neocortical epilepsy. To evaluate the long-term surgical outcome and to identify possible prognostic factors in patients with nonlesional neocortical epilepsy. In a surgical cohort from September 1995 to December 2005 at the Seoul National University Hospital, we included 109 consecutive patients without lesions identifiable by magnetic resonance imaging who underwent focal surgical resection for drug-resistant neocortical epilepsy. Follow-up information for at least 10 years was available for all but 1 patient. Univariate and standard multiple logistic regression analyses were performed to identify the predictors of surgical outcomes, and a generalized estimation equation model was used for the longitudinal multiple logistic regression analysis of up to 21 years of follow-up. The patients consisted of 64 men and 45 women with ages at surgery ranging from 7 to 56 years (mean [SD], 27.1 [7.8] years). At 1 year after surgery, 59 of 109 patients (54.1%) achieved seizure freedom, and 64 of 108 patients (59.3%) achieved seizure freedom at the last follow-up. Only 11 of 108 patients (10.2%) experienced definite changes in postoperative seizure status. Localizing patterns in functional neuroimaging (strongest odds ratio [OR], 0.30 [95% CI, 0.14-0.66] for fluorodeoxyglucose-positron emission tomography; 0.37 [95% CI, 0.15-0.87] for ictal single-photon emission computed tomography), concordant results in presurgical diagnostic evaluations (OR, 3.15 [95% CI, 1.42-7.02]), the presence of aura (OR, 3.49 [95% CI, 1.54-7.92]), and complete resection of areas of ictal onset with frequent interictal spikes during the intracranial electroencephalographic study (OR, 0.37 [95% CI, 0

  3. The effect of tangled magnetic fields on instabilities in tokamak plasmas

    International Nuclear Information System (INIS)

    Thornton, A J; Kirk, A; Harrison, J R; Chapman, I T; Cahyna, P; Nardon, E

    2014-01-01

    The high pressure gradients in the edge of a tokamak plasma can lead to the formation of explosive plasma instabilities known as edge localised modes (ELMs). The control of ELMs is an important requirement for the next generation of fusion devices such as ITER. Experiments performed on the Mega Amp Spherical Tokamak (MAST) at Culham have shown that the application of non-axisymetric resonant magnetic perturbations (RMPs) can be used to mitigate ELMs. During the application of the RMPs, clear structures are observed in visible- light imaging of the X-point region. These lobes, or tangles, have been observed for the first time and their appearance is correlated with the mitigation of ELMs. Tangle formation is seen to be associated with the RMPs penetrating the plasma and may be important in explaining why the ELM frequency increases during ELM mitigation. Whilst the number and location of the tangles can be explained by vacuum magnetic field modelling, obtaining the correct radial extent of the tangles requires the plasma response to be taken into account

  4. Delayed recall, hippocampal volume and Alzheimer neuropathology: findings from the Nun Study.

    Science.gov (United States)

    Mortimer, J A; Gosche, K M; Riley, K P; Markesbery, W R; Snowdon, D A

    2004-02-10

    To examine the associations of hippocampal volume and the severity of neurofibrillary lesions determined at autopsy with delayed verbal recall performance evaluated an average of 1 year prior to death. Hippocampal volumes were computed using postmortem brain MRI from the first 56 scanned participants of the Nun Study. Quantitative neuropathologic studies included lesion counts, Braak staging, and determination of whether neuropathologic criteria for Alzheimer disease (AD) were met. Multiple regression was used to assess the association of hippocampal volume and neuropathologic lesions with the number of words (out of 10) recalled on the Consortium to Establish a Registry for Alzheimer's Disease Delayed Word Recall Test administered an average of 1 year prior to death. When entered separately, hippocampal volume, Braak stage, and the mean neurofibrillary tangle counts in the CA-1 region of the hippocampus and the subiculum were strongly associated with the number of words recalled after a delay, adjusting for age and education. When hippocampal volume was entered together with each neuropathologic index, only hippocampal volume retained a significant association with the delayed recall measure. The association between hippocampal volume and the number of words recalled was present in both demented and nondemented individuals as well as in those with and without substantial AD neurofibrillary pathology. The association of neurofibrillary tangles with delayed verbal recall may reflect associated hippocampal atrophy.

  5. Three-tangle does not properly quantify tripartite entanglement for Greenberger-Horne-Zeilinger-type states

    International Nuclear Information System (INIS)

    Jung, Eylee; Park, DaeKil; Son, Jin-Woo

    2009-01-01

    Some mixed states composed of only Greenberger-Horne-Zeilinger (GHZ) states can be expressed in terms of only W states. This fact implies that such states have vanishing three-tangle. One of such rank-3 states, Π GHZ , is explicitly presented in this Rapid Communication. These results are used to compute analytically the three-tangle of a rank-4 mixed state σ composed of four GHZ states. This analysis with considering Bloch sphere S 16 of d=4 qudit system allows us to derive the hyperpolyhedron. It is shown that the states in this hyperpolyhedron have vanishing three-tangle. Computing the one-tangles for Π GHZ and σ, we prove the monogamy inequality explicitly. Making use of the fact that the three-tangle of Π GHZ is zero, we try to explain why the W class in the whole mixed states is not of measure zero contrary to the case of pure states.

  6. Brain alpha-amylase - a novel energy regulator important in Alzheimer disease?

    NARCIS (Netherlands)

    Byman, Elin; Schultz, Nina; Huitinga, I.; Fex, Malin; Wennström, Malin

    2018-01-01

    Reduced glucose metabolism and formation of polyglucosan bodies (PGB) are, beside amyloid beta plaques and neurofibrillary tangles, well-known pathological findings associated with Alzheimer's disease (AD). Since both glucose availability and PGB are regulated by enzymatic degradation of glycogen,

  7. Cardiovascular risk factors and future risk of Alzheimer's disease

    NARCIS (Netherlands)

    R.F.A.G. de Bruijn (Renée); M.A. Ikram (Arfan)

    2014-01-01

    textabstractAlzheimer's disease (AD) is the most common neurodegenerative disorder in elderly people, but there are still no curative options. Senile plaques and neurofibrillary tangles are considered hallmarks of AD, but cerebrovascular pathology is also common. In this review, we summarize

  8. Neocortical development as an evolutionary platform for intragenomic conflict

    Directory of Open Access Journals (Sweden)

    Eric eLewitus

    2013-04-01

    Full Text Available Embryonic development in mammals has evolved a platform for genomic conflict between mothers and embryos and, by extension, between maternal and paternal genomes. The evolutionary interests of the mother and embryo may be maximized through the promotion of sex-chromosome genes and imprinted alleles, resulting in the rapid evolution of postzygotic phenotypes preferential to either the maternal or paternal genome. In eutherian mammals, extraordinary in utero maternal investment in the brain, and neocortex especially, suggests that convergent evolution of an expanded mammalian neocortex along divergent lineages may be explained, in part, by parent-of-origin-linked gene expression arising from parent-offspring conflict. The influence of this conflict on neocortical development and evolution, however, has not been investigated at the genomic level. In this hypothesis and theory article, we provide preliminary evidence for positive selection in humans in the regions of two platforms of intragenomic conflict – chromosomes 15q11-q13 and X – and explore the potential relevance of cis-regulated imprinted domains to neocortical expansion in mammalian evolution. We present the hypothesis that maternal- and paternal-specific pressures on the developing neocortex compete intragenomically to influence neocortical expansion in mammalian evolution.

  9. Bell, group and tangle

    International Nuclear Information System (INIS)

    Solomon, A. I.

    2010-01-01

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  10. Calcium ionophore A23187 specifically decreases the secretion of beta-secretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures

    DEFF Research Database (Denmark)

    Sennvik, K; Benedikz, Eirikur; Fastbom, J

    2001-01-01

    Alzheimer's disease (AD) is characterized by the degeneration and loss of neurons, intracellular neurofibrillary tangles and the accumulation of extracellular senile plaques consisting mainly of beta-amyloid (A beta). A beta is generated from the amyloid precursor protein (APP) by sequential beta...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/007/02/0033-0045. Keywords. Neurodegenerative disorder; senile dementia; -amyloid plaques; neurofibrillary tangles. Author Affiliations. Sovan Sarkar1 Anupam Choudhury T N Avinash. II MSc - Biotechnology School of Biotechnology Madurai Kamaraj University Madurai 625021, ...

  12. Effects of gap junction blockers on human neocortical synchronization.

    Science.gov (United States)

    Gigout, S; Louvel, J; Kawasaki, H; D'Antuono, M; Armand, V; Kurcewicz, I; Olivier, A; Laschet, J; Turak, B; Devaux, B; Pumain, R; Avoli, M

    2006-06-01

    Field potentials and intracellular recordings were obtained from human neocortical slices to study the role of gap junctions (GJ) in neuronal network synchronization. First, we examined the effects of GJ blockers (i.e., carbenoxolone, octanol, quinine, and quinidine) on the spontaneous synchronous events (duration = 0.2-1.1 s; intervals of occurrence = 3-27 s) generated by neocortical slices obtained from temporal lobe epileptic patients during application of 4-aminopyridine (4AP, 50 muM) and glutamatergic receptor antagonists. The synchronicity of these potentials (recorded at distances up to 5 mm) was decreased by GJ blockers within 20 min of application, while prolonged GJ blockers treatment at higher doses made them disappear with different time courses. Second, we found that slices from patients with focal cortical dysplasia (FCD) could generate in normal medium spontaneous synchronous discharges (duration = 0.4-8 s; intervals of occurrence = 0.5-90 s) that were (i) abolished by NMDA receptor antagonists and (ii) slowed down by carbenoxolone. Finally, octanol or carbenoxolone blocked 4AP-induced ictal-like discharges (duration = up to 35 s) in FCD slices. These data indicate that GJ play a role in synchronizing human neocortical networks and may implement epileptiform activity in FCD.

  13. Amyloid beta1–42 and the phoshorylated tau threonine 231 in brains of aged cynomolgus monkeys (Macaca fascicularis)

    DEFF Research Database (Denmark)

    Darusman, Huda Shalahudin; Gjedde, Albert; Sajuthi, Dondin

    2014-01-01

    angiopathy, and the tauopathy, to possible neurofibrillary tangles. Six aged monkeys were selected based on their spatial memory performance and profile of biomarkers of AD, divided equally to affected aged subject - with Memory-affected and low amyloid level, and aged with higher performance in memory...

  14. Oh What a Tangled Biofilm Web Bacteria Weave

    Science.gov (United States)

    ... Home Page Oh What a Tangled Biofilm Web Bacteria Weave By Elia Ben-Ari Posted May 1, ... a suitable surface, some water and nutrients, and bacteria will likely put down stakes and form biofilms. ...

  15. A lattice gas model on a tangled chain

    International Nuclear Information System (INIS)

    Mejdani, R.

    1993-04-01

    We have used a model of a lattice gas defined on a tangled chain to study the enzyme kinetics by a modified transfer matrix method. By using a simple iterative algorithm we have obtained different kinds of saturation curves for different configurations of the tangled chain and different types of the additional interactions. In some special cases of configurations and interactions we have found the same equations for the saturation curves, which we have obtained before studying the lattice gas model with nearest neighbor interactions or the lattice gas model with alternate nearest neighbor interactions, using different techniques as the correlated walks' theory, the partition point technique or the transfer matrix model. This more general model and the new results could be useful for the experimental investigations. (author). 20 refs, 6 figs

  16. Quantitative neuropathological study of Alzheimer-type pathology in the hippocampus: comparison of senile dementia of Alzheimer type, senile dementia of Lewy body type, Parkinson's disease and non-demented elderly control patients.

    Science.gov (United States)

    Ince, P; Irving, D; MacArthur, F; Perry, R H

    1991-12-01

    A Lewy body dementing syndrome in the elderly has been recently described and designated senile dementia of Lewy body type (SDLT) on the basis of a distinct clinicopathological profile. The pathological changes seen in SDLT include the presence of cortical Lewy bodies (LB) frequently, but not invariably, associated with senile plaque (SP) formation. Whilst neocortical neurofibrillary tangles (NFT) are sparse or absent, a proportion of these cases show involvement of the temporal archicortex by lesions comprising Alzheimer-type pathology (ATP, i.e. NFT, SP and granulovacuolar degeneration [GVD]). Thus the relationship between SDLT and senile dementia of Alzheimer type (SDAT) is complex and controversial. In this study quantitative neuropathology was used to compare the intensity and distribution of ATP in the hippocampus and entorhinal cortex of 53 patients from 3 disease groups (SDLT, SDAT, Parkinson's disease (PD)) and a group of neurologically and mentally normal elderly control patients. For most brain areas examined the extent of ATP between the patient groups followed the trend SDAT greater than SDLT greater than PD greater than control. Statistical comparison of these groups revealed significant differences between the mean densities of NFT, SP and GVD although individual cases showed considerable variability. These results confirm additional pathological differences between SDAT and SDLT regarding the intensity of involvement of the temporal archicortex by ATP. Many patients with Lewy body disorders (LBdis) show a predisposition to develop ATP albeit in a more restricted distribution (e.g. low or absent neocortical NFT) and at lower densities than is found in SDAT. Some cases of SDLT show minimal SP and NFT formation in both neocortex and archicortex supporting previously published data distinguishing this group from Alzheimer's disease.

  17. Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer's disease.

    Science.gov (United States)

    Kovacech, B; Novak, M

    2010-12-01

    Deposits of the misfolded neuronal protein tau are major hallmarks of neurodegeneration in Alzheimer's disease (AD) and other tauopathies. The etiology of the transformation process of the intrinsically disordered soluble protein tau into the insoluble misordered aggregate has attracted much attention. Tau undergoes multiple modifications in AD, most notably hyperphosphorylation and truncation. Hyperphosphorylation is widely regarded as the hottest candidate for the inducer of the neurofibrillary pathology. However, the true nature of the impetus that initiates the whole process in the human brains remains unknown. In AD, several site-specific tau cleavages were identified and became connected to the progression of the disease. In addition, western blot analyses of tau species in AD brains reveal multitudes of various truncated forms. In this review we summarize evidence showing that tau truncation alone is sufficient to induce the complete cascade of neurofibrillary pathology, including hyperphosphorylation and accumulation of misfolded insoluble forms of tau. Therefore, proteolytical abnormalities in the stressed neurons and production of aberrant tau cleavage products deserve closer attention and should be considered as early therapeutic targets for Alzheimer's disease.

  18. The neocortical network representing associative memory reorganizes with time in a process engaging the anterior temporal lobe.

    Science.gov (United States)

    Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Oostenveld, Robert; McNaughton, Bruce L; Fernández, Guillén; Jensen, Ole

    2012-11-01

    During encoding, the distributed neocortical representations of memory components are presumed to be associatively linked by the hippocampus. With time, a reorganization of brain areas supporting memory takes place, which can ultimately result in memories becoming independent of the hippocampus. While it is theorized that with time, the neocortical representations become linked by higher order neocortical association areas, this remains to be experimentally supported. In this study, 24 human participants encoded sets of face-location associations, which they retrieved 1 or 25 h later ("recent" and "remote" conditions, respectively), while their brain activity was recorded using whole-head magnetoencephalography. We investigated changes in the functional interactions between the neocortical representational areas emerging over time. To assess functional interactions, trial-by-trial high gamma (60-140 Hz) power correlations were calculated between the neocortical representational areas relevant to the encoded information, namely the fusiform face area (FFA) and posterior parietal cortex (PPC). With time, both the FFA and the PPC increased their functional interactions with the anterior temporal lobe (ATL). Given that the ATL is involved in semantic representation of paired associates, our results suggest that, already within 25 h after acquiring new memory associations, neocortical functional links are established via higher order semantic association areas.

  19. Statistical mechanics of neocortical interactions: A scaling paradigm applied to electroencephalography

    Science.gov (United States)

    Ingber, Lester

    1991-09-01

    A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of synaptic interactions. While not useful to yield insights at the single-neuron level, SMNI has demonstrated its capability in describing large-scale properties of short-term memory and electroencephalographic (EEG) systematics. The necessity of including nonlinear and stochastic structures in this development has been stressed. In this paper, a more stringent test is placed on SMNI: The algebraic and numerical algorithms previously developed in this and similar systems are brought to bear to fit large sets of EEG and evoked-potential data being collected to investigate genetic predispositions to alcoholism and to extract brain ``signatures'' of short-term memory. Using the numerical algorithm of very fast simulated reannealing, it is demonstrated that SMNI can indeed fit these data within experimentally observed ranges of its underlying neuronal-synaptic parameters, and the quantitative modeling results are used to examine physical neocortical mechanisms to discriminate high-risk and low-risk populations genetically predisposed to alcoholism. Since this study is a control to span relatively long time epochs, similar to earlier attempts to establish such correlations, this discrimination is inconclusive because of other neuronal activity which can mask such effects. However, the SMNI model is shown to be consistent with EEG data during selective attention tasks and with neocortical mechanisms describing short-term memory previously published using this approach. This paper explicitly identifies similar nonlinear stochastic mechanisms of interaction at the microscopic-neuronal, mesoscopic-columnar, and macroscopic-regional scales of neocortical interactions. These results give strong quantitative support for an accurate intuitive picture, portraying

  20. Multiregional Age-Associated Reduction of Brain Neuronal Reserve Without Association With Neurofibrillary Degeneration or β-Amyloidosis.

    Science.gov (United States)

    Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Yong Ma, Shuang; Wegiel, Jarek; Badmaev, Eulalia; Silverman, Wayne P; de Leon, Mony; Reisberg, Barry; Wisniewski, Thomas

    2017-06-01

    Increase in human life expectancy has resulted in the rapid growth of the elderly population with minimal or no intellectual deterioration. The aim of this stereological study of 10 structures and 5 subdivisions with and without neurofibrillary degeneration in the brains of 28 individuals 25-102-years-old was to establish the pattern of age-associated neurodegeneration and neuronal loss in the brains of nondemented adults and elderly. The study revealed the absence of significant neuronal loss in 7 regions and topographically selective reduction of neuronal reserve over 77 years in 8 brain structures including the entorhinal cortex (EC) (-33.3%), the second layer of the EC (-54%), cornu Ammonis sector 1 (CA1) (-28.5%), amygdala, (-45.8%), thalamus (-40.5%), caudate nucleus (-35%), Purkinje cells (-48.3%), and neurons in the dentate nucleus (40.1%). A similar rate of neuronal loss in adults and elderly, without signs of accelerating neuronal loss in agers or super-agers, appears to indicate age-associated brain remodeling with significant reduction of neuronal reserve in 8 brain regions. Multivariate analysis demonstrates the absence of a significant association between neuronal loss and the severity of neurofibrillary degeneration and β-amyloidosis, and a similar rate of age-associated neuronal loss in structures with and without neurofibrillary degeneration. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  1. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    Science.gov (United States)

    2016-10-01

    neurofibrillary tangles (NFTs), the classical histopathological hallmark of AD consisting of insoluble aggregated tau, have been reported in multiple...and reversible NR1 knockout reveals crucial role of the NMDA receptor in preserving remote memories in the brain. Neuron, 2004. 41(5): p. 781-93. 6

  2. Enhancement of Neocortical-Medial Temporal EEG Correlations during Non-REM Sleep

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2008-01-01

    Full Text Available Interregional interactions of oscillatory activity are crucial for the integrated processing of multiple brain regions. However, while the EEG in virtually all brain structures passes through substantial modifications during sleep, it is still an open question whether interactions between neocortical and medial temporal EEG oscillations also depend on the state of alertness. Several previous studies in animals and humans suggest that hippocampal-neocortical interactions crucially depend on the state of alertness (i.e., waking state or sleep. Here, we analyzed scalp and intracranial EEG recordings during sleep and waking state in epilepsy patients undergoing presurgical evaluation. We found that the amplitudes of oscillations within the medial temporal lobe and the neocortex were more closely correlated during sleep, in particular during non-REM sleep, than during waking state. Possibly, the encoding of novel sensory inputs, which mainly occurs during waking state, requires that medial temporal dynamics are rather independent from neocortical dynamics, while the consolidation of memories during sleep may demand closer interactions between MTL and neocortex.

  3. Neurofibrillary tangle pathology and Braak staging in chronic epilepsy in relation to traumatic brain injury and hippocampal sclerosis: a post-mortem study.

    Science.gov (United States)

    Thom, Maria; Liu, Joan Y W; Thompson, Pam; Phadke, Rahul; Narkiewicz, Marta; Martinian, Lillian; Marsdon, Derek; Koepp, Matthias; Caboclo, Luis; Catarino, Claudia B; Sisodiya, Sanjay M

    2011-10-01

    The long-term pathological effects of chronic epilepsy on normal brain ageing are unknown. Previous clinical and epidemiological studies show progressive cognitive decline in subsets of patients and an increased prevalence of Alzheimer's disease in epilepsy. In a post-mortem series of 138 patients with long-term, mainly drug-resistant epilepsy, we carried out Braak staging for Alzheimer's disease neurofibrillary pathology using tau protein immunohistochemistry. The stages were compared with clinicopathological factors, including seizure history and presence of old traumatic brain injury. Overall, 31% of cases were Braak Stage 0, 36% Stage I/II, 31% Stage III/IV and 2% Stage V/VI. The mean age at death was 56.5 years and correlated with Braak stage (P < 0.001). Analysis of Braak stages within age groups showed a significant increase in mid-Braak stages (III/IV), in middle age (40-65 years) compared with data from an ageing non-epilepsy series (P < 0.01). There was no clear relationship between seizure type (generalized or complex partial), seizure frequency, age of onset and duration of epilepsy with Braak stage although higher Braak stages were noted with focal more than with generalized epilepsy syndromes (P < 0.01). In 30% of patients, there was pathological evidence of traumatic brain injury that was significantly associated with higher Braak stages (P < 0.001). Cerebrovascular disease present in 40.3% and cortical malformations in 11.3% were not significantly associated with Braak stage. Astrocytic-tau protein correlated with the presence of both traumatic brain injury (P < 0.01) and high Braak stage (P < 0.001). Hippocampal sclerosis, identified in 40% (bilateral in 48%), was not associated with higher Braak stages, but asymmetrical patterns of tau protein accumulation within the sclerotic hippocampus were noted. In over half of patients with cognitive decline, the Braak stage was low indicating causes other than Alzheimer's disease pathology. In summary

  4. Epigenome profiling and editing of neocortical progenitor cells during development.

    Science.gov (United States)

    Albert, Mareike; Kalebic, Nereo; Florio, Marta; Lakshmanaperumal, Naharajan; Haffner, Christiane; Brandl, Holger; Henry, Ian; Huttner, Wieland B

    2017-09-01

    The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator Eomes We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the Eomes locus in vivo , which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development. © 2017 The Authors.

  5. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    Science.gov (United States)

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  6. Decay of the vortex tangle at zero temperature and quasiclassical turbulence

    International Nuclear Information System (INIS)

    Nemirovskii, Sergej K.

    2013-01-01

    We review and analyze a series of works, both experimental and numerical and theoretical, dealing with the decay of quantum turbulence at zero temperature. Free decay of the vortex tangle is a key argument in favor of the idea that a chaotic set of quantum vortices can mimic classical turbulence, or at least reproduce many of the basic features. The corresponding topic is referred as the quasiclassical turbulence. Appreciating significance of the challenging problem of classical turbulence it can be expressed that the idea to study it in terms of quantized line is indeed very important and may be regarded as a breakthrough. For this reason, the whole theory, together with the supporting experimental results and numerical simulations should be carefully scrutinized. One of the main arguments, supporting the idea of quasiclassical turbulence is the fact that vortex tangle decays at zero temperature, when the mutual friction is absent. Since all other possible mechanisms of dissipation of the vortex energy, discussed in literature, are related to the small scales, it is natural to suggest that the Kolmogorov cascade takes place with the flow of the energy in space of scales, just like as in the classical turbulence. In the present work we discuss an alternative mechanism of decay of the vortex tangle, which is not associated with dissipation at small scales. This mechanism is a diffusive-like spreading of the vortex tangle due to evaporation of small vortex loops. We discuss a number of experiments and numerical simulations, considering them from the point of view of alternative mechanism.

  7. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination

    Directory of Open Access Journals (Sweden)

    Tatiana Popovitchenko

    2017-11-01

    Full Text Available The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.

  8. The Alzheimer myth and biomarker research in dementia

    NARCIS (Netherlands)

    Richard, E.; Schmand, B.; Eikelenboom, P.; Westendorp, R.G.; van Gool, W.A.

    2012-01-01

    The focus of most of the research on Alzheimer's disease in the last decades has been on senile plaques and neurofibrillary tangles. The vast majority of patients with Alzheimer's disease are over 75 years of age, whereas most of the research focuses on younger subjects. To consider old-age dementia

  9. The Alzheimer Myth and Biomarker Research in Dementia

    NARCIS (Netherlands)

    Richard, Edo; Schmand, Ben; Eikelenboom, Piet; Westendorp, Rudi G.; van Gool, Willem A.

    2012-01-01

    The focus of most of the research on Alzheimer's disease in the last decades has been on senile plaques and neurofibrillary tangles. The vast majority of patients with Alzheimer's disease are over 75 years of age, whereas most of the research focuses on younger subjects. To consider old-age dementia

  10. Is attentional blink a byproduct of neocortical attractors?

    Directory of Open Access Journals (Sweden)

    David N Silverstein

    2011-05-01

    Full Text Available This study proposes a computational model for attentional blink or blink of the mind, a phenomenon where a human subject misses perception of a later expected visual pattern as two expected visual patterns are presented less than 500 ms apart. A neocortical patch modeled as an attractor network is stimulated with a sequence of 14 patterns 100 ms apart, two of which are expected targets. Patterns that become active attractors are considered recognized. A neocortical patch is represented as a square matrix of hypercolumns, each containing a set of minicolumns with synaptic connections within and across both minicolumns and hypercolumns. Each minicolumn consists of locally connected layer 2/3 pyramidal cells with interacting basket cells and layer 4 pyramidal cells for input stimulation. All neurons are implemented using the Hodgkin-Huxley multi-compartmental cell formalism and include calcium dynamics, and they interact via saturating and depressing AMPA / NMDA and GABAA synapses. Stored patterns are encoded with global connectivity of minicolumns across hypercolumns and active patterns compete as the result of lateral inhibition in the network. Stored patterns were stimulated over time intervals to create attractor interference measurable with synthetic spike traces. This setup corresponds with item presentations in human visual attentional blink studies. Stored target patterns were depolarized while distractor patterns where hyperpolarized to represent expectation of items in working memory. Additionally, studies on the inhibitory effect of benzodiazopines on attentional blink in human subjects were compared with neocortical simulations where the GABAA receptor conductance and decay time were increased. Simulations showed increases in the attentional blink duration, agreeing with observations in human studies.

  11. The Genetic Association Between Neocortical Volume and General Cognitive Ability Is Driven by Global Surface Area Rather Than Thickness.

    Science.gov (United States)

    Vuoksimaa, Eero; Panizzon, Matthew S; Chen, Chi-Hua; Fiecas, Mark; Eyler, Lisa T; Fennema-Notestine, Christine; Hagler, Donald J; Fischl, Bruce; Franz, Carol E; Jak, Amy; Lyons, Michael J; Neale, Michael C; Rinker, Daniel A; Thompson, Wesley K; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2015-08-01

    Total gray matter volume is associated with general cognitive ability (GCA), an association mediated by genetic factors. It is expectable that total neocortical volume should be similarly associated with GCA. Neocortical volume is the product of thickness and surface area, but global thickness and surface area are unrelated phenotypically and genetically in humans. The nature of the genetic association between GCA and either of these 2 cortical dimensions has not been examined. Humans possess greater cognitive capacity than other species, and surface area increases appear to be the primary driver of the increased size of the human cortex. Thus, we expected neocortical surface area to be more strongly associated with cognition than thickness. Using multivariate genetic analysis in 515 middle-aged twins, we demonstrated that both the phenotypic and genetic associations between neocortical volume and GCA are driven primarily by surface area rather than thickness. Results were generally similar for each of 4 specific cognitive abilities that comprised the GCA measure. Our results suggest that emphasis on neocortical surface area, rather than thickness, could be more fruitful for elucidating neocortical-GCA associations and identifying specific genes underlying those associations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Effect of seizure on hippocampus in mesial temporal lobe epilepsy and neocortical epilepsy: an MRS study

    International Nuclear Information System (INIS)

    Lee, S.K.; Kim, D.W.; Kim, K.K.; Chung, C.K.; Song, I.C.; Chang, K.H.

    2005-01-01

    This study was performed to evaluate the effect of seizures on the bilateral hippocampus in mesial temporal lobe epilepsy (mTLE) and neocortical epilepsy by single voxel proton magnetic resonance spectroscopy (MRS). Forty-one patients with mTLE having unilateral hippocampal sclerosis and 43 patients with a neocortical epilepsy who underwent subsequent epilepsy surgery were recruited. Ninety-five percent confidence intervals of N-acetyl aspartate/choline (NAA/Cho) and NAA/creatine (NAA/Cr) ratios in 20 healthy control subjects were used as threshold values to determine abnormal NAA/Cho and NAA/Cr. NAA/Cho and NAA/Cr were significantly lower in the ipsilateral hippocampus of mTLE and neocortical epilepsy. Using asymmetry indices for patients with bilaterally abnormal ratios of NAA/Cho and NAA/Cr in addition to using unilateral abnormal ratio, the seizure focus was correctly lateralized in 65.9% of patients with mTLE and 48.8% of neocortical epilepsy patients. Bilateral NAA/Cho abnormality was significantly related to a poor surgical outcome in mTLE. No significant relationship was found between the results of NAA/Cho or NAA/Cr and surgical outcome in neocortical epilepsy. The mean contralateral NAA/Cr ratio of the hippocampus in mTLE was significantly lower in patients with a history of secondary generalized tonic-clonic seizure (SGTCS) than in those without. (orig.)

  13. Effect of seizure on hippocampus in mesial temporal lobe epilepsy and neocortical epilepsy: an MRS study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Kim, D.W.; Kim, K.K. [Seoul National University College of Medicine, Seoul National University Hospital, Department of Neurology, Chongno ku, Seoul (Korea); Chung, C.K. [Seoul National University College of Medicine, Seoul National University Hospital, Department of Neurosurgery, Chongno ku, Seoul (Korea); Song, I.C.; Chang, K.H. [Seoul National University College of Medicine, Seoul National University Hospital, Department of Radiology, Chongno ku, Seoul (Korea)

    2005-12-01

    This study was performed to evaluate the effect of seizures on the bilateral hippocampus in mesial temporal lobe epilepsy (mTLE) and neocortical epilepsy by single voxel proton magnetic resonance spectroscopy (MRS). Forty-one patients with mTLE having unilateral hippocampal sclerosis and 43 patients with a neocortical epilepsy who underwent subsequent epilepsy surgery were recruited. Ninety-five percent confidence intervals of N-acetyl aspartate/choline (NAA/Cho) and NAA/creatine (NAA/Cr) ratios in 20 healthy control subjects were used as threshold values to determine abnormal NAA/Cho and NAA/Cr. NAA/Cho and NAA/Cr were significantly lower in the ipsilateral hippocampus of mTLE and neocortical epilepsy. Using asymmetry indices for patients with bilaterally abnormal ratios of NAA/Cho and NAA/Cr in addition to using unilateral abnormal ratio, the seizure focus was correctly lateralized in 65.9% of patients with mTLE and 48.8% of neocortical epilepsy patients. Bilateral NAA/Cho abnormality was significantly related to a poor surgical outcome in mTLE. No significant relationship was found between the results of NAA/Cho or NAA/Cr and surgical outcome in neocortical epilepsy. The mean contralateral NAA/Cr ratio of the hippocampus in mTLE was significantly lower in patients with a history of secondary generalized tonic-clonic seizure (SGTCS) than in those without. (orig.)

  14. Tangled nonlinear driven chain reactions of all optical singularities

    Science.gov (United States)

    Vasil'ev, V. I.; Soskin, M. S.

    2012-03-01

    Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.

  15. Divergence and inheritance of neocortical heterotopia in inbred and genetically-engineered mice.

    Science.gov (United States)

    Toia, Alyssa R; Cuoco, Joshua A; Esposito, Anthony W; Ahsan, Jawad; Joshi, Alok; Herron, Bruce J; Torres, German; Bolivar, Valerie J; Ramos, Raddy L

    2017-01-18

    Cortical function emerges from the intrinsic properties of neocortical neurons and their synaptic connections within and across lamina. Neurodevelopmental disorders affecting migration and lamination of the neocortex result in cognitive delay/disability and epilepsy. Molecular layer heterotopia (MLH), a dysplasia characterized by over-migration of neurons into layer I, are associated with cognitive deficits and neuronal hyperexcitability in humans and mice. The breadth of different inbred mouse strains that exhibit MLH and inheritance patterns of heterotopia remain unknown. A neuroanatomical survey of numerous different inbred mouse strains, 2 first filial generation (F1) hybrids, and one consomic strain (C57BL/6J-Chr 1 A/J /NaJ) revealed MLH only in C57BL/6 mice and the consomic strain. Heterotopia were observed in numerous genetically-engineered mouse lines on a congenic C57BL/6 background. These data indicate that heterotopia formation is a weakly penetrant trait requiring homozygosity of one or more C57BL/6 alleles outside of chromosome 1. These data are relevant toward understanding neocortical development and disorders affecting neocortical lamination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Alzheimer's-type neuropathology in the precuneus is not increased relative to other areas of neocortex across a range of cognitive impairment.

    Science.gov (United States)

    Nelson, Peter T; Abner, Erin L; Scheff, Stephen W; Schmitt, Frederick A; Kryscio, Richard J; Jicha, Gregory A; Smith, Charles D; Patel, Ela; Markesbery, William R

    2009-02-06

    We studied Alzheimer's disease (AD) pathology in the precuneus and surrounding brain areas. Anatomically, the precuneus corresponds to the medial portion of human cerebral cortical Brodmann Area 7. This study utilized patients from the University of Kentucky Alzheimer's Disease Center autopsy cohort. Data from 47 brains were used comprising patients of differing antemortem cognitive impairment severities, each with longitudinal clinical data and extensive neuropathological data. We assessed whether the precuneus and surrounding areas are differentially vulnerable to AD-type pathological lesions (diffuse amyloid plaques, neuritic amyloid plaques, and neurofibrillary tangles). Eleven areas of brain were evaluated for each case: amygdala, hippocampal CA1, subiculum, entorhinal cortex, frontal cortex, superior and middle temporal gyri, inferior parietal lobule, occipital cortex, posterior cingulate gyrus, Brodmann Area 31, and the precuneus proper. Like other areas of neocortex, the precuneus demonstrated increased diffuse and neuritic amyloid plaques early in the evolution in AD, and increased neurofibrillary tangles late in AD. Correcting for the antemortem cognitive status of the patients, there was no evidence of an increase in the density of AD-type pathology in the precuneus or neighboring areas relative to other areas of cerebral neocortex. Our results are not consistent with the idea that the precuneus is involved in a special way with plaques or tangles relative to other areas of neocortex.

  17. Functional Maps of Neocortical Local Circuitry

    Science.gov (United States)

    Thomson, Alex M.; Lamy, Christophe

    2007-01-01

    This review aims to summarize data obtained with different techniques to provide a functional map of the local circuit connections made by neocortical neurones, a reference for those interested in cortical circuitry and the numerical information required by those wishing to model the circuit. A brief description of the main techniques used to study circuitry is followed by outline descriptions of the major classes of neocortical excitatory and inhibitory neurones and the connections that each layer makes with other cortical and subcortical regions. Maps summarizing the projection patterns of each class of neurone within the local circuit and tables of the properties of these local circuit connections are provided. This review relies primarily on anatomical studies that have identified the classes of neurones and their local and long distance connections and on paired intracellular and whole-cell recordings which have documented the properties of the connections between them. A large number of different types of synaptic connections have been described, but for some there are only a few published examples and for others the details that can only be obtained with paired recordings and dye-filling are lacking. A further complication is provided by the range of species, technical approaches and age groups used in these studies. Wherever possible the range of available data are summarised and compared. To fill some of the more obvious gaps for the less well-documented cases, data obtained with other methods are also summarized. PMID:18982117

  18. Abnormally phosphorylated tau protein in senile dementia of Lewy body type and Alzheimer disease: evidence that the disorders are distinct.

    Science.gov (United States)

    Strong, C; Anderton, B H; Perry, R H; Perry, E K; Ince, P G; Lovestone, S

    1995-01-01

    The relationship between Alzheimer disease (AD) and dementia with Lewy bodies (senile dementia Lewy body type, or SDLT) and dementia in Parkinson's disease is unclear. AD pathology is characterised by both amyloid deposition and abnormal phosphorylation of tau in paired helical filaments (PHF-tau). In AD, abnormally phosphorylated PHF-tau is present in neurofibrillary tangles, in neuritic processes of senile plaques, and also in neuropil threads dispersed throughout the cerebral cortex. Cortical homogenates from 12 cases each of AD and SDLT, 13 cases of Parkinson's disease, and 11 normal controls were examined by Western blot analysis with antibodies that detect PHF-tau. No PHF-tau was found in Parkinson's disease or control cortex. No PHF-tau was found in SDLT cases without histological evidence of tangles. PHF-tau was detectable in SDLT cases with a low density of tangles, and large amounts of PHF-tau were present in AD cases. This study demonstrates that abnormally phosphorylated PHF-tau is only present where tangles are found and not in SDLT cases without tangles or with only occasional tangles. It is concluded that Lewy body dementias are distinct at a molecular level from AD.

  19. Ising model on tangled chain - 1: Free energy and entropy

    International Nuclear Information System (INIS)

    Mejdani, R.

    1993-04-01

    In this paper we have considered an Ising model defined on tangled chain, in which more bonds have been added to those of pure Ising chain. to understand their competition, particularly between ferromagnetic and antiferromagnetic bonds, we have studied, using the transfer matrix method, some simple analytical calculations and an iterative algorithm, the behaviour of the free energy and entropy, particularly in the zero-field and zero temperature limit, for different configurations of the ferromagnetic tangled chain and different types of addition interaction (ferromagnetic or antiferromagnetic). We found that the condition J=J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. Our results indicate also the existence of non-zero entropy at zero temperature. (author). 17 refs, 8 figs

  20. The Existence of Primary Age-Related Tauopathy Suggests that not all the Cases with Early Braak Stages of Neurofibrillary Pathology are Alzheimer's Disease.

    Science.gov (United States)

    Giaccone, Giorgio

    2015-01-01

    The distinction between Alzheimer's disease (AD) and Primary Age-Related Tauopathy (PART) is a hotly debated issue. As most lines of evidence support the tenet that tau pathology occurs downstream of amyloid-β deposition, it seems reasonable to consider PART as a separate disease process not necessarily related to Aβ and hence AD. Following this view, the early stages of neurofibrillary pathology may not always be the forerunner of diffuse neurofibrillary changes and AD. The ongoing debate further enhances the need for greater caution against any future predictions using tau cerebrospinal fluid and imaging biomarkers.

  1. Locally Applied Valproate Enhances Survival in Rats after Neocortical Treatment with Tetanus Toxin and Cobalt Chloride

    Directory of Open Access Journals (Sweden)

    Dirk-Matthias Altenmüller

    2013-01-01

    Full Text Available Purpose. In neocortical epilepsies not satisfactorily responsive to systemic antiepileptic drug therapy, local application of antiepileptic agents onto the epileptic focus may enhance treatment efficacy and tolerability. We describe the effects of focally applied valproate (VPA in a newly emerging rat model of neocortical epilepsy induced by tetanus toxin (TeT plus cobalt chloride (CoCl2. Methods. In rats, VPA ( or sodium chloride (NaCl ( containing polycaprolactone (PCL implants were applied onto the right motor cortex treated before with a triple injection of 75 ng TeT plus 15 mg CoCl2. Video-EEG monitoring was performed with intracortical depth electrodes. Results. All rats randomized to the NaCl group died within one week after surgery. In contrast, the rats treated with local VPA survived significantly longer (. In both groups, witnessed deaths occurred in the context of seizures. At least of the rats surviving the first postoperative day developed neocortical epilepsy with recurrent spontaneous seizures. Conclusions. The novel TeT/CoCl2 approach targets at a new model of neocortical epilepsy in rats and allows the investigation of local epilepsy therapy strategies. In this vehicle-controlled study, local application of VPA significantly enhanced survival in rats, possibly by focal antiepileptic or antiepileptogenic mechanisms.

  2. Facilitation of neocortical presynaptic terminal development by NMDA receptor activation

    Directory of Open Access Journals (Sweden)

    Sceniak Michael P

    2012-02-01

    Full Text Available Abstract Background Neocortical circuits are established through the formation of synapses between cortical neurons, but the molecular mechanisms of synapse formation are only beginning to be understood. The mechanisms that control synaptic vesicle (SV and active zone (AZ protein assembly at developing presynaptic terminals have not yet been defined. Similarly, the role of glutamate receptor activation in control of presynaptic development remains unclear. Results Here, we use confocal imaging to demonstrate that NMDA receptor (NMDAR activation regulates accumulation of multiple SV and AZ proteins at nascent presynaptic terminals of visual cortical neurons. NMDAR-dependent regulation of presynaptic assembly occurs even at synapses that lack postsynaptic NMDARs. We also provide evidence that this control of presynaptic terminal development is independent of glia. Conclusions Based on these data, we propose a novel NMDAR-dependent mechanism for control of presynaptic terminal development in excitatory neocortical neurons. Control of presynaptic development by NMDARs could ultimately contribute to activity-dependent development of cortical receptive fields.

  3. Serum zinc, senile plaques, and neurofibrillary tangles: findings from the Nun Study.

    Science.gov (United States)

    Tully, C L; Snowdon, D A; Markesbery, W R

    1995-11-13

    Zinc appears to have a role in binding amyloid precursor protein in vitro, but it is not known whether zinc plays a role in senile plaque formation in vivo in humans. Serum zinc concentrations were available from 12 sisters who died in the Nun Study, a longitudinal study of aging and Alzheimer's disease. Fasting serum zinc concentrations, determined approximately 1 year before death, showed moderate to strong negative correlations with senile plaque counts in seven brain regions. In all brain regions combined, the age-adjusted negative correlations with serum zinc were statistically significant for total senile plaques and diffuse plaques, and suggestive for neuritic plaques. Thus serum zinc in the normal range may be associated with low senile plaque counts in the elderly.

  4. Neocortical layer 6, a review

    Directory of Open Access Journals (Sweden)

    Alex M Thomson

    2010-03-01

    Full Text Available This review attempts to summarise some of the major areas of neocortical research as it pertains to layer 6. After a brief summary of the development of this intriguing layer, the major pyramidal cell classes to be found in layer 6 are described and compared. The connections made and received by these different classes of neurones are then discussed and the possible functions of these connections, with particular reference to the shaping of responses in visual cortex and thalamus. Inhibition in layer 6 is discussed where appropriate, but not in great detail. Many types of interneurones are to be found in each cortical layer and layer 6 is no exception, but the functions of each type remain to be elucidated.

  5. Cholinergic and dopaminergic activities in senile dementia of Lewy body type.

    Science.gov (United States)

    Perry, E K; Marshall, E; Perry, R H; Irving, D; Smith, C J; Blessed, G; Fairbairn, A F

    1990-01-01

    Analyses of brain tissue in a recently identified group of elderly demented patients suggest a neurochemical basis for some of the clinical features. Senile dementia of the Lewy body type (SDLT) can be distinguished from classical Alzheimer disease (AD) clinically by its acute presentation with confusion frequently accompanied by visual hallucinations, and neuropathologically by the presence of Lewy bodies and senile plaques (but not generally neurofibrillary tangles) in the cerebral cortex. Reductions in the cortical cholinergic enzyme choline acetyltransferase were more pronounced in individuals with (80%) compared to those without (50%) hallucinations and correlated strongly with mental test scores in the group as a whole. In the caudate nucleus, dopamine levels were related to the number of neurons in the substantia nigra, there being a 40-60% loss of both in SDLT--probably accounting for mild extrapyramidal features in some of these cases--compared with an 80% loss in Parkinson disease and no change in AD. The cholinergic correlates of mental impairment in SDLT together with the relative absence of cortical neurofibrillary tangles and evidence for postsynaptic cholinergic receptor compensation raise the question of whether this type of dementia may be more amenable to cholinotherapy than classical AD.

  6. CLASP2 Links Reelin to the Cytoskeleton during Neocortical Development.

    Science.gov (United States)

    Dillon, Gregory M; Tyler, William A; Omuro, Kerilyn C; Kambouris, John; Tyminski, Camila; Henry, Shawna; Haydar, Tarik F; Beffert, Uwe; Ho, Angela

    2017-03-22

    The Reelin signaling pathway plays a crucial role in regulating neocortical development. However, little is known about how Reelin controls the cytoskeleton during neuronal migration. Here, we identify CLASP2 as a key cytoskeletal effector in the Reelin signaling pathway. We demonstrate that CLASP2 has distinct roles during neocortical development regulating neuron production and controlling neuron migration, polarity, and morphogenesis. We found downregulation of CLASP2 in migrating neurons leads to mislocalized cells in deeper cortical layers, abnormal positioning of the centrosome-Golgi complex, and aberrant length/orientation of the leading process. We discovered that Reelin regulates several phosphorylation sites within the positively charged serine/arginine-rich region that constitute consensus GSK3β phosphorylation motifs of CLASP2. Furthermore, phosphorylation of CLASP2 regulates its interaction with the Reelin adaptor Dab1 and this association is required for CLASP2 effects on neurite extension and motility. Together, our data reveal that CLASP2 is an essential Reelin effector orchestrating cytoskeleton dynamics during brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Symplectic homoclinic tangles of the ideal separatrix of the DIII-D from type I ELMs

    Science.gov (United States)

    Punjabi, Alkesh; Ali, Halima

    2012-10-01

    The ideal separatrix of the divertor tokamaks is a degenerate manifold where both the stable and unstable manifolds coincide. Non-axisymmetric magnetic perturbations remove the degeneracy; and split the separatrix manifold. This creates an extremely complex topological structure, called homoclinic tangles. The unstable manifold intersects the stable manifold and creates alternating inner and outer lobes at successive homoclinic points. The Hamiltonian system must preserve the symplectic topological invariance, and this controls the size and radial extent of the lobes. Very recently, lobes near the X-point have been experimentally observed in MAST [A. Kirk et al, PRL 108, 255003 (2012)]. We have used the DIII-D map [A. Punjabi, NF 49, 115020 (2009)] to calculate symplectic homoclinic tangles of the ideal separatrix of the DIII-D from the type I ELMs represented by the peeling-ballooning modes (m,n)=(30,10)+(40,10). The DIII-D map is symplectic, accurate, and is in natural canonical coordinates which are invertible to physical coordinates [A. Punjabi and H. Ali, POP 15, 122502 (2008)]. To our knowledge, we are the first to symplectically calculate these tangles in physical space. Homoclinic tangles of separatrix can cause radial displacement of mobile passing electrons and create sheared radial electric fields and currents, resulting in radial flows, drifts, differential spinning, and reduction in turbulence, and other effects. This work is supported by the grants DE-FG02-01ER54624 and DE-FG02-04ER54793.

  8. Early neurovascular dysfunction in a transgenic rat model of Alzheimer?s disease

    OpenAIRE

    Joo, Illsung L.; Lai, Aaron Y.; Bazzigaluppi, Paolo; Koletar, Margaret M.; Dorr, Adrienne; Brown, Mary E.; Thomason, Lynsie A. M.; Sled, John G.; McLaurin, JoAnne; Stefanovic, Bojana

    2017-01-01

    Alzheimer?s disease (AD), pathologically characterized by amyloid-? peptide (A?) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some A?-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease p...

  9. Influence of Pyrethroid Insecticides on Sodium and Calcium Influx in Neocortical Neurons

    Science.gov (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Using murine neocortical neurons in primary culture, we have compared the ability of 11 structurally diverse pyrethroid insecticides to evoke Na+ ...

  10. An essential role for neuregulin-4 in the growth and elaboration of developing neocortical pyramidal dendrites.

    Science.gov (United States)

    Paramo, Blanca; Wyatt, Sean; Davies, Alun M

    2018-04-01

    Neuregulins, with the exception of neuregulin-4 (NRG4), have been shown to be extensively involved in many aspects of neural development and function and are implicated in several neurological disorders, including schizophrenia, depression and bipolar disorder. Here we provide the first evidence that NRG4 has a crucial function in the developing brain. We show that both the apical and basal dendrites of neocortical pyramidal neurons are markedly stunted in Nrg4 -/- neonates in vivo compared with Nrg4 +/+ littermates. Neocortical pyramidal neurons cultured from Nrg4 -/- embryos had significantly shorter and less branched neurites than those cultured from Nrg4 +/+ littermates. Recombinant NRG4 rescued the stunted phenotype of embryonic neocortical pyramidal neurons cultured from Nrg4 -/- mice. The majority of cultured wild type embryonic cortical pyramidal neurons co-expressed NRG4 and its receptor ErbB4. The difference between neocortical pyramidal dendrites of Nrg4 -/- and Nrg4 +/+ mice was less pronounced, though still significant, in juvenile mice. However, by adult stages, the pyramidal dendrite arbors of Nrg4 -/- and Nrg4 +/+ mice were similar, suggesting that compensatory changes in Nrg4 -/- mice occur with age. Our findings show that NRG4 is a major novel regulator of dendritic arborisation in the developing cerebral cortex and suggest that it exerts its effects by an autocrine/paracrine mechanism. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Patterns of hippocampal-neocortical interactions in the retrieval of episodic autobiographical memories across the entire life-span of aged adults

    Science.gov (United States)

    Viard, Armelle; Lebreton, Karine; Chételat, Gaël; Desgranges, Béatrice; Landeau, Brigitte; Young, Alan; De La Sayette, Vincent; Eustache, Francis; Piolino, Pascale

    2010-01-01

    We previously demonstrated that Episodic Autobiographical Memories (EAMs) rely on a network of brain regions comprising the medial temporal lobe (MTL) and distributed neocortical regions regardless of their remoteness. The findings supported the model of memory consolidation which proposes a permanent role of MTL during EAM retrieval (Multiple-Trace Theory or MTT) rather than a temporary role (standard model). Our present aim was to expand the results by examining the interactions between the MTL and neocortical regions (or MTL-neocortical links) during EAM retrieval with varying retention intervals. We used an experimental paradigm specially designed to engage aged participants in the recollection of EAMs, extracted from five different time-periods, covering their whole life-span, in order to examine correlations between activation in the MTL and neocortical regions. The nature of the memories was checked at debriefing by means of behavioral measures to control the degree of episodicity and properties of memories. Targeted correlational analyses carried out on the MTL, frontal, lateral temporal and posterior regions revealed strong links between the MTL and neocortex during the retrieval of both recent and remote EAMs, challenging the standard model of memory consolidation and supporting MTT instead. Further confirmation was given by results showing that activation in the left and right hippocampi significantly correlated during the retrieval of both recent and remote memories. Correlations among extra-MTL neocortical regions also emerged for all time-periods, confirming the critical role of the prefrontal, temporal (lateral temporal cortex and temporal pole), precuneus and posterior cingulate regions in EAM retrieval. Overall, this paper emphasizes the role of a bilateral network of MTL and neocortical areas whose activation correlate during the recollection of rich phenomenological recent and remote EAMs. PMID:19338022

  12. Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory.

    Science.gov (United States)

    McClelland, James L

    2013-11-01

    The complementary learning systems theory of the roles of hippocampus and neocortex (McClelland, McNaughton, & O'Reilly, 1995) holds that the rapid integration of arbitrary new information into neocortical structures is avoided to prevent catastrophic interference with structured knowledge representations stored in synaptic connections among neocortical neurons. Recent studies (Tse et al., 2007, 2011) showed that neocortical circuits can rapidly acquire new associations that are consistent with prior knowledge. The findings challenge the complementary learning systems theory as previously presented. However, new simulations extending those reported in McClelland et al. (1995) show that new information that is consistent with knowledge previously acquired by a putatively cortexlike artificial neural network can be learned rapidly and without interfering with existing knowledge; it is when inconsistent new knowledge is acquired quickly that catastrophic interference ensues. Several important features of the findings of Tse et al. (2007, 2011) are captured in these simulations, indicating that the neural network model used in McClelland et al. has characteristics in common with neocortical learning mechanisms. An additional simulation generalizes beyond the network model previously used, showing how the rate of change of cortical connections can depend on prior knowledge in an arguably more biologically plausible network architecture. In sum, the findings of Tse et al. are fully consistent with the idea that hippocampus and neocortex are complementary learning systems. Taken together, these findings and the simulations reported here advance our knowledge by bringing out the role of consistency of new experience with existing knowledge and demonstrating that the rate of change of connections in real and artificial neural networks can be strongly prior-knowledge dependent. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Apparent diffusion coefficient measurements in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Ohshita, T.; Oka, M.; Imon, Y.; Yamaguchi, S.; Mimori, Y.; Nakamura, S. [Hiroshima Univ. (Japan). School of Medicine

    2000-09-01

    We measured the apparent diffusion coefficient (ADC), using diffusion-weighted imaging (DWI) and signal intensity on T2-weighted MRI in the cerebral white matter of patients with progressive supranuclear palsy (PSP) and age-matched normal subjects. In PSP, ADC in the prefrontal and precentral white matter was significantly higher than in controls. There was no significant difference in signal intensity on T2-weighted images. The ADC did correlate with signal intensity. The distribution of the elevation of ADC may be the consequence of underlying pathological changes, such as neurofibrillary tangles or glial fibrillary tangles in the cortex. Our findings suggest that ADC measurement might be useful for demonstrating subtle neuropathological changes. (orig.)

  14. Humans and great apes share increased neocortical neuropeptide Y innervation compared to other haplorhine primates

    Directory of Open Access Journals (Sweden)

    Mary Ann eRaghanti

    2014-02-01

    Full Text Available Neuropeptide Y (NPY plays a role in a variety of basic physiological functions and has also been implicated in regulating cognition, including learning and memory. A decrease in neocortical NPY has been reported for Alzheimer’s disease, schizophrenia, bipolar disorder, and depression, potentially contributing to associated cognitive deficits. The goal of the present analysis was to examine variation in neocortical NPY-immunoreactive axon and varicosity density among haplorhine primates (monkeys, apes, and humans. Stereologic methods were used to measure the ratios of NPY-expressing axon length density to total neuron density (ALv/Nv and NPY-immunoreactive varicosity density to neuron density (Vv/Nv, as well as the mean varicosity spacing in neocortical areas 10, 24, 44, and 22 (Tpt of humans, African great apes, New World monkeys, and Old World monkeys. Humans and great apes showed increased cortical NPY innervation relative to monkey species for ALv/Nv and Vv/Nv. Furthermore, humans and great apes displayed a conserved pattern of varicosity spacing across cortical areas and layers, with no differences between cortical layers or among cortical areas. These phylogenetic differences may be related to shared life history variables and may reflect specific cognitive abilities.

  15. Cerebrospinal fluid markers in dementia with lewy bodies compared with Alzheimer disease.

    Science.gov (United States)

    Gómez-Tortosa, Estrella; Gonzalo, Isabel; Fanjul, Samira; Sainz, Maria José; Cantarero, Susana; Cemillán, Carlos; Yébenes, Justo García; del Ser, Teodoro

    2003-09-01

    Most patients with dementia with Lewy bodies (DLB) exhibit diffuse plaque-only pathology with rare neocortical neurofibrillary tangles (NFTs), as opposed to the widespread cortical neurofibrillary-tau involvement in Alzheimer disease (AD). Another pathological difference is the astrocytic and microglial inflammatory responses, including release of interleukins (ILs), around the neuritic plaques and NFTs in AD brains that are absent or much lower in DLB. We analyzed cerebrospinal fluid (CSF) markers that reflect the pathological differences between AD and DLB. To determine CSF concentrations of tau, beta-amyloid, IL-1beta, and IL-6 as potential diagnostic clues to distinguish between AD and DLB. We measured total tau, beta-amyloid1-42, IL-1beta, and IL-6 levels in CSF samples of 33 patients with probable AD without parkinsonism, 25 patients with all the core features of DLB, and 46 age-matched controls. Patients with AD had significantly higher levels of tau protein than patients with DLB and controls (P<.001). The most efficient cutoff value provided 76% specificity to distinguish AD and DLB cases. Patients with AD and DLB had lower, but not significantly so, beta-amyloid levels than controls. The combination of tau and beta-amyloid levels provided the best sensitivity (84%) and specificity (79%) to differentiate AD vs controls but was worse than tau values alone in discriminating between AD and DLB. Beta-amyloid levels had the best correlation with disease progression in both AD and DLB (P =.01). There were no significant differences in IL-1beta levels among patients with AD, patients with DLB, and controls. Patients with AD and DLB showed slightly, but not significantly, higher IL-6 levels than controls. The tau levels in CSF may contribute to the clinical distinction between AD and DLB. Beta-amyloid CSF levels are similar in both dementia disorders and reflect disease progression better than tau levels. Interleukin CSF concentrations do not distinguish between

  16. Holocene pollen and sediment record from the tangle lakes area, central Alaska

    Science.gov (United States)

    Ager, Thomas A.; Sims, John D.

    1981-01-01

    Pollen and sediments have been analyzed from a 5.5 meter‐length core of lacustrine sediments from Tangle Lakes, in the Gulkana Upland south of the Alaska Range (63 ° 01 ‘ 46”; N. latitude, 146° 03 ‘ 48 “ W. longitude). Radiocarbon ages indicate that the core spans the last 4700 years. The core sediments are sandy silt and silty clay; the core shows distinct rhythmic laminations in the lower 398 cm. The laminae appear to be normally graded; peat fibers and macerated plant debris are more abundant near the tops of the laminae. Six volcanic‐ash layers are present in the upper 110 cm of the core.Present‐day vegetation of the Tangle Lakes area is mesic shrub tundra and open spruce woodland, with scattered patches of shrub willow (Salix), balsam poplar (P. balsamifera), spruce (Picea), paper birch (Betula papyrifera), and alder (Alnus). Pollen analysis of 27 core samples suggests that this vegetation type has persisted throughout the past 4700 years, except for an apparently substantial increase in Picea beginning about 3500 years B.P. Percentages of Picea pollen are very low (generally 1–3 percent) in the lower 2 meters of core (ca. 4700 to 3500 years B.P.), but rise to 13–18 percent in the upper 3.4 meters (ca. 3500 years B.P. to present). Previously reported data from this area indicate that Picea trees initially arrived in the Tangle Lakes area about 9100 years B.P., at least 2.5 to 3 thousand years after deglaciation of the region. The present investigation suggests that Picea trees became locally scarce or died out sometime after about 9000 years B.P. but before 4700 years B.P., then reinvaded the area about 3500 years B.P. If this extrapolated age for the Picea reinvasion is accurate it suggests that local expansion of the Picea population coincides with the onset of a Neoglacial interval of cooler, moister climate. This is an unexpected result, because intervals of cooler climate generally coincide with lowering of the altitudinal limit of

  17. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.

    Science.gov (United States)

    Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-04-04

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.

  18. Impact of antidiabetic substances to development of insulin resistance and neurodegenerative changes in mouse models of type 2 diabetes

    OpenAIRE

    Mikulášková, Barbora

    2014-01-01

    Numerous epidemiological and experimental studies have shown that patients suffering from metabolic disorders such as type 2 diabetes mellitus (TDM2), insulin resistance or obesity are at a higher risk of cognitive functions impairment and developing Alzheimer's disease (AD). Impairment of insulin signalling in the brain could contribute to two pathological changes which leads to AD development that include insoluble senile plaques and neurofibrillary tangles, containing an abnormally hyperph...

  19. Longitudinal Assessment of Tau Pathology in Patients with Alzheimer's Disease Using [18F]THK-5117 Positron Emission Tomography.

    Directory of Open Access Journals (Sweden)

    Aiko Ishiki

    Full Text Available The formation of neurofibrillary tangles is believed to contribute to the neurodegeneration observed in Alzheimer's disease (AD. Postmortem studies have shown strong associations between the neurofibrillary pathology and both neuronal loss and the severity of cognitive impairment. However, the temporal changes in the neurofibrillary pathology and its association with the progression of the disease are not well understood. Tau positron emission tomography (PET imaging is expected to be useful for the longitudinal assessment of neurofibrillary pathology in the living brain. Here, we performed a longitudinal PET study using the tau-selective PET tracer [18F]THK-5117 in patients with AD and in healthy control subjects. Annual changes in [18F]THK-5117 binding were significantly elevated in the middle and inferior temporal gyri and in the fusiform gyrus of patients with AD. Compared to patients with mild AD, patients with moderate AD showed greater changes in the tau load that were more widely distributed across the cortical regions. Furthermore, a significant correlation was observed between the annual changes in cognitive decline and regional [18F]THK-5117 binding. These results suggest that the cognitive decline observed in patients with AD is attributable to the progression of neurofibrillary pathology. Longitudinal assessment of tau pathology will contribute to the assessment of disease progression and treatment efficacy.

  20. The Performance of Ictal Brain SPECT Localizing for Epileptogenic Zone in Neocortical Epilepsy

    International Nuclear Information System (INIS)

    Kim, Eun Sik; Lee, Dong Soo; Hyun, In Young; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Lee, Sang Kun; Chang, Kee Hyun

    1995-01-01

    The epileptogenic zones should be localized precisely before surgical resection of these zones in intractable epilepsy. The localization is more difficult in patients with neocortical epilepsy than in patients with temporal lobe epilepsy. This study aimed at evaluation of the usefulness of ictal brain perfusion SPECT for the localization of epileptogenic zones in neocortical epilepsy. We compared the performance of ictal SPECT with MRI referring to ictal scalp electroencephalography (sEEG). Ictal 99m Tc-HMPAO SPECT were done in twenty-one patients. Ictal EEG were also obtained during video monitoring. MRI were reviewed. According to the ictal sEEG and semiology, 8 patients were frontal lobe epilepsy, 7 patients were lateral temporal lobe epilepsy, 2 patients were parietal lobe epilepsy, and 4 patients were occipital lobe epilepsy. Ictal SPECT showed hyperperfusion in 14 patients(67%) in the zones which were suspected to be epileptogenic according to ictal EEG and semiology. MRI found morphologic abnormalities in 9 patients(43%). Among the 12 patients, in whom no epileptogenic zones were revealed by MR1, ictal SPECT found zones of hyperperfusion concordant with ictal sEEG in 9 patients(75%). However, no zones of hyperperfusion were found in 4 among 9 patients who were found to have cerebromalacia, abnormal calcification and migration anomaly in MRI. We thought that ictal SPECT was useful for localization of epileptogenic zones in neocortical epilepsy and especially in patients with negative findings in MRI.

  1. Status of memory loss.

    LENUS (Irish Health Repository)

    Iyer, Parameswaran Mahadeva

    2012-01-01

    A 72-year-old woman presented with first onset of seizure with no prior history of cognitive dysfunction. EEG revealed focal non-convulsive status epilepticus. MRI brain showed a left temporal non-enhancing lesion. Temporal pole biopsy showed acute neuronal necrosis and astrocyte hyperplasia together with extensive amyloid plaques and neurofibrillary tangles. Perivascular oligodendroglial hyperplasia was present. Postmortem examination revealed extensive plaque and tangle disease. Perivascular oligodendroglial hyperplasia was limited to the left temporal area. The presence of focal perivascular oligodendroglial hyperplasia in the left temporal cortex, combined with extensive plaque and tangle disease may have contributed to the focal status epilepticus in this patient. Although the presence of focal perivascular oligodendroglial hyperplasia has been reported in cases of temporal lobe epilepsy, it has not been reported as a cause of seizure in patients with Alzheimer\\'s disease previously. Further studies for clinical-pathologic correlation would be required to confirm this hypothesis.

  2. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.

    Science.gov (United States)

    Wright, C I; Guela, C; Mesulam, M M

    1993-01-01

    Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706

  3. Oxidative Stress and Metabolic Syndrome: Cause or Consequence of Alzheimer's Disease?

    Directory of Open Access Journals (Sweden)

    Diana Luque-Contreras

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is a major neurodegenerative disease affecting the elderly. Clinically, it is characterized by a progressive loss of memory and cognitive function. Neuropathologically, it is characterized by the presence of extracellular β-amyloid (Aβ deposited as neuritic plaques (NP and neurofibrillary tangles (NFT made of abnormal and hyperphosphorylated tau protein. These lesions are capable of generating the neuronal damage that leads to cell death and cognitive failure through the generation of reactive oxygen species (ROS. Evidence indicates the critical role of Aβ metabolism in prompting the oxidative stress observed in AD patients. However, it has also been proposed that oxidative damage precedes the onset of clinical and pathological AD symptoms, including amyloid-β deposition, neurofibrillary tangle formation, vascular malfunction, metabolic syndrome, and cognitive decline. This paper provides a brief description of the three main proteins associated with the development of the disease (Aβ, tau, and ApoE and describes their role in the generation of oxidative stress. Finally, we describe the mitochondrial alterations that are generated by Aβ and examine the relationship of vascular damage which is a potential prognostic tool of metabolic syndrome. In addition, new therapeutic approaches targeting ROS sources and metabolic support were reported.

  4. Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy following Repetitive Head Injury

    Science.gov (United States)

    McKee, Ann C.; Cantu, Robert C.; Nowinski, Christopher J.; Hedley-Whyte, E. Tessa; Gavett, Brandon E.; Budson, Andrew E.; Santini, Veronica E.; Lee, Hyo-Soon; Kubilus, Caroline A.; Stern, Robert A.

    2009-01-01

    Since the 1920s, it has been known that the repetitive brain trauma associated with boxing may produce a progressive neurological deterioration, originally termed “dementia pugilistica” and more recently, chronic traumatic encephalopathy (CTE). We review the 47 cases of neuropathologically verified CTE recorded in the literature and document the detailed findings of CTE in 3 professional athletes: one football player and 2 boxers. Clinically, CTE is associated with memory disturbances, behavioral and personality changes, Parkinsonism, and speech and gait abnormalities. Neuropathologically, CTE is characterized by atrophy of the cerebral hemispheres, medial temporal lobe, thalamus, mammillary bodies, and brainstem, with ventricular dilatation and a fenestrated cavum septum pellucidum. Microscopically, there are extensive tau-immunoreactive neurofibrillary tangles, astrocytic tangles, and spindle-shaped and threadlike neurites throughout the brain. The neurofibrillary degeneration of CTE is distinguished from other tauopathies by preferential involvement of the superficial cortical layers, irregular, patchy distribution in the frontal and temporal cortices, propensity for sulcal depths, prominent perivascular, periventricular and subpial distribution, and marked accumulation of tau-immunoreactive astrocytes. Deposition of beta amyloid, most commonly as diffuse plaques, occurs in fewer than half the cases. CTE is a neuropathologically distinct, slowly progressive tauopathy with a clear environmental etiology. PMID:19535999

  5. Homoclinic tangle of the ideal separatrix in the DIII-D tokamak from (30, 10) + (40, 10) perturbation

    International Nuclear Information System (INIS)

    Punjabi, Alkesh

    2014-01-01

    Trajectories of magnetic field lines are a 1½ degree of freedom Hamiltonian system. The perturbed separatrix in a divertor tokamak is radically different from the unperturbed one. This is because magnetic asymmetries cause the separatrix to form extremely complicated structures called homoclinic tangles. The shape of flux surfaces in the edge region of divertor tokamaks such as the DIII (J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)) is fundamentally different from near-circular. Recently, a new method is developed to calculate the homoclinic tangle and lobes of the separatrix of divertor tokamaks in physical space (A. Punjabi and A. Boozer, Phys. Lett. A 378, 2410 (2014)). This method is based on three elements: preservation of the two invariants—symplectic and topological neighborhood—and a new set of canonical coordinates called the natural canonical coordinates. The very complicated shape of edge surfaces can be represented very accurately and very realistically in these new coordinates (A. Punjabi and H. Ali, Phys. Plasmas 15, 122502 (2008); A. Punjabi, Nucl. Fusion 49, 115020 (2009)). A symplectic map in the new coordinates can advance the separatrix manifold forward and backward in time. Every time the two manifolds meet in a fixed poloidal plane, they intersect and form homoclinic tangle to preserve the two invariants. The new coordinates can be mapped to physical space and the dynamical evolution of the homoclinic tangle can be seen and pictured in physical space. Here, the new method is applied to the DIII-D tokamak to study the basic features of the homoclinic tangle of the unperturbed separatrix from two Fourier components, which represent the peeling-ballooning modes of equal amplitude and no radial dependence, and the results are analyzed. Homoclinic tangle has a very complicated structure and becomes extremely complicated for as the lines take more toroidal turns, especially near the X-point. Homoclinic tangle is the most

  6. Homoclinic tangle of the ideal separatrix in the DIII-D tokamak from (30, 10) + (40, 10) perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Alkesh [Hampton University, Hampton, Virginia 23668 (United States)

    2014-12-15

    Trajectories of magnetic field lines are a 1½ degree of freedom Hamiltonian system. The perturbed separatrix in a divertor tokamak is radically different from the unperturbed one. This is because magnetic asymmetries cause the separatrix to form extremely complicated structures called homoclinic tangles. The shape of flux surfaces in the edge region of divertor tokamaks such as the DIII (J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)) is fundamentally different from near-circular. Recently, a new method is developed to calculate the homoclinic tangle and lobes of the separatrix of divertor tokamaks in physical space (A. Punjabi and A. Boozer, Phys. Lett. A 378, 2410 (2014)). This method is based on three elements: preservation of the two invariants—symplectic and topological neighborhood—and a new set of canonical coordinates called the natural canonical coordinates. The very complicated shape of edge surfaces can be represented very accurately and very realistically in these new coordinates (A. Punjabi and H. Ali, Phys. Plasmas 15, 122502 (2008); A. Punjabi, Nucl. Fusion 49, 115020 (2009)). A symplectic map in the new coordinates can advance the separatrix manifold forward and backward in time. Every time the two manifolds meet in a fixed poloidal plane, they intersect and form homoclinic tangle to preserve the two invariants. The new coordinates can be mapped to physical space and the dynamical evolution of the homoclinic tangle can be seen and pictured in physical space. Here, the new method is applied to the DIII-D tokamak to study the basic features of the homoclinic tangle of the unperturbed separatrix from two Fourier components, which represent the peeling-ballooning modes of equal amplitude and no radial dependence, and the results are analyzed. Homoclinic tangle has a very complicated structure and becomes extremely complicated for as the lines take more toroidal turns, especially near the X-point. Homoclinic tangle is the most

  7. Compensatory responses induced by oxidative stress in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    PAULA I MOREIRA

    2006-01-01

    Full Text Available Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-β deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis.

  8. Calcium channel blockers and Alzheimer's disease★

    Science.gov (United States)

    Tan, Yi; Deng, Yulin; Qing, Hong

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofibrillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers involved in Alzheimer's disease therapy. PMID:25767489

  9. Abstracts from the 7th Canadian Conference on Dementia (CCD) held in Vancouver, October 2013

    OpenAIRE

    Montgomery, S.; Wangsgaard, J.; Koenig, J.; Jeremy,; Pathak, K.; Jude, A.; Davidson, S.; Rice, J.; Cytryn, K.N.; Lungu, O.; Voyer, P.; Wilchesky, M.; Qian, W.; Schweizer, T.; Fischer, C.

    2013-01-01

    Background/Purpose: As of 2011, approximately 747,000 Canadians suffer from some form of dementia; Alzheimer?s disease (AD) is one such form. AD is a neurodegenerative disease characterized by significant neuronal death. Neuronal death has been associated with two pathophysiological features: 1) neurofibrillary tangles within the neurons, and 2) amyloid beta plaque formation between neurons. Excessive production of these two features is manifested by severe cognitive impairment. One of the mo...

  10. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric Aβ and frank neuronal loss

    OpenAIRE

    Cohen, Robert M.; Rezai-Zadeh, Kavon; Weitz, Tara M.; Rentsendorj, Altan; Gate, David; Spivak, Inna; Bholat, Yasmin; Vasilevko, Vitaly; Glabe, Charles G.; Breunig, Joshua J.; Rakic, Pasko; Davtyan, Hayk; Agadjanyan, Michael G.; Kepe, Vladimir; Barrio, Jorge

    2013-01-01

    Alzheimer’s disease (AD) is hallmarked by amyloid plaques, neurofibrillary tangles, and widespread cortical neuronal loss (Selkoe, 2001). The ‘amyloid cascade hypothesis’ posits that cerebral amyloid sets neurotoxic events into motion that precipitate Alzheimer dementia (Hardy and Allsop, 1991). Yet, faithful recapitulation of all AD features in widely used transgenic (Tg) mice engineered to overproduce Aβ peptides has been elusive. We have developed a Tg rat model (line TgF344-AD) expressing...

  11. Pinpointing Synaptic Loss Caused by Alzheimer?s Disease with fMRI

    OpenAIRE

    Brickman, Adam M.; Small, Scott A.; Fleisher, Adam

    2009-01-01

    During its earliest stage, before cell loss and independent of amyloid plaques and neurofibrillary tangles, Alzheimer's disease (AD) causes synaptic loss affecting the basal functional properties of neurons. In principle, synaptic loss can be detected by measuring AD-induced changes in basal function, or by measuring stimulus-evoked responses on top of basal changes. Functional magnetic resonance imaging (fMRI) is sensitive to both basal changes and evoked-responses, and there are therefore t...

  12. Chromosome 13 dementia syndromes as models of neurodegeneration

    DEFF Research Database (Denmark)

    Ghiso, J.; Revesz, T.; Holton, J.

    2001-01-01

    Two hereditary conditions, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with amyloid deposition in the central nervous system and neurodegeneration. The two amyloid proteins, ABri and ADan, are degradation products of the same precursor molecule BriPP bearing......-terminus. Neurofibrillary tangles containing the classical paired helical filaments as well as neuritic components in many instances co-localize with the amyloid deposits. In both disorders, the pattern of hyperphosphorylatedtau immunoreactivity is almost indistinguishable from that seen in Alzheimer's disease....... These issues argue for the primary importance of the amyloid deposits in the mechanism(s) of neuronal cell loss. We propose FBD and FDD, the chromosome 13 dementia syndromes, as models to study the molecular basis of neurofibrillary degeneration, cell death and amyloid formation in the brain....

  13. Experience-Dependent Regulation of Presynaptic NMDARs Enhances Neurotransmitter Release at Neocortical Synapses

    Science.gov (United States)

    Urban-Ciecko, Joanna; Wen, Jing A.; Parekh, Puja K.; Barth, Alison L.

    2015-01-01

    Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs)…

  14. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development

    Directory of Open Access Journals (Sweden)

    Eric eLewitus

    2013-08-01

    Full Text Available There is a basic rule to mammalian neocortical expansion: as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly and presence (gyrencephaly of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- versus connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons towards the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.

  15. Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.

    Science.gov (United States)

    Valverde, F; Facal-Valverde, M V

    1986-01-01

    The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.

  16. Bio-physically plausible visualization of highly scattering fluorescent neocortical models for in silico experimentation

    KAUST Repository

    Abdellah, Marwan

    2017-02-15

    Background We present a visualization pipeline capable of accurate rendering of highly scattering fluorescent neocortical neuronal models. The pipeline is mainly developed to serve the computational neurobiology community. It allows the scientists to visualize the results of their virtual experiments that are performed in computer simulations, or in silico. The impact of the presented pipeline opens novel avenues for assisting the neuroscientists to build biologically accurate models of the brain. These models result from computer simulations of physical experiments that use fluorescence imaging to understand the structural and functional aspects of the brain. Due to the limited capabilities of the current visualization workflows to handle fluorescent volumetric datasets, we propose a physically-based optical model that can accurately simulate light interaction with fluorescent-tagged scattering media based on the basic principles of geometric optics and Monte Carlo path tracing. We also develop an automated and efficient framework for generating dense fluorescent tissue blocks from a neocortical column model that is composed of approximately 31000 neurons. Results Our pipeline is used to visualize a virtual fluorescent tissue block of 50 μm3 that is reconstructed from the somatosensory cortex of juvenile rat. The fluorescence optical model is qualitatively analyzed and validated against experimental emission spectra of different fluorescent dyes from the Alexa Fluor family. Conclusion We discussed a scientific visualization pipeline for creating images of synthetic neocortical neuronal models that are tagged virtually with fluorescent labels on a physically-plausible basis. The pipeline is applied to analyze and validate simulation data generated from neuroscientific in silico experiments.

  17. Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity

    OpenAIRE

    Ingber, Lester

    1984-01-01

    A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules o...

  18. Optimization of microtubule affinity regulating kinase (MARK) inhibitors with improved physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sloman, David L.; Noucti, Njamkou; Altman, Michael D.; Chen, Dapeng; Mislak, Andrea C.; Szewczak, Alexander; Hayashi, Mansuo; Warren, Lee; Dellovade, Tammy; Wu, Zhenhua; Marcus, Jacob; Walker, Deborah; Su, Hua-Poo; Edavettal, Suzanne C.; Munshi, Sanjeev; Hutton, Michael; Nuthall, Hugh; Stanton, Matthew G. (Merck)

    2016-09-01

    Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer’s disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility.

  19. The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments.

    Science.gov (United States)

    Nishikawa, T; Takahashi, T; Nakamori, M; Hosomi, N; Maruyama, H; Miyazaki, Y; Izumi, Y; Matsumoto, M

    2016-12-01

    Neurofibrillary tangles (NFTs), a cardinal pathological feature of neurodegenerative disorders, such as Alzheimer's disease (AD) are primarily composed of hyper-phosphorylated tau protein. Recently, several other molecules, including flotillin-1, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] and cyclin-dependent kinase 5 (CDK5), have also been revealed as constituents of NFTs. Flotillin-1 and PtdIns(4,5)P2 are considered markers of raft microdomains, whereas CDK5 is a tau kinase. Therefore, we hypothesized that NFTs have a relationship with raft domains and the tau phosphorylation that occurs within NFTs. We investigated six cases of AD, six cases of other neurodegenerative diseases with NFTs and three control cases. We analysed the PtdIns(4,5)P2-immunopositive material in detail, using super-resolution microscopy and electron microscopy to elucidate its pattern of expression. We also investigated the spatial relationship between the PtdIns(4,5)P2-immunopositive material and tau kinases through double immunofluorescence analysis. Pretangles contained either paired helical filaments (PHFs) or PtdIns(4,5)P2-immunopositive small vesicles (approximately 1 μm in diameter) with nearly identical topology to granulovacuolar degeneration (GVD) bodies. Various combinations of these vesicles and GVD bodies, the latter of which are pathological hallmarks observed within the neurons of AD patients, were found concurrently in neurons. These vesicles and GVD bodies were both immunopositive not only for PtdIns(4,5)P2, but also for several tau kinases such as glycogen synthase kinase-3β and spleen tyrosine kinase. These observations suggest that clusters of raft-derived vesicles that resemble GVD bodies are substructures of pretangles other than PHFs. These tau kinase-bearing vesicles are likely involved in the modification of tau protein and in NFT formation. © 2015 The Authors Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of

  20. Tau causes synapse loss without disrupting calcium homeostasis in the rTg4510 model of tauopathy.

    Directory of Open Access Journals (Sweden)

    Katherine J Kopeikina

    Full Text Available Neurofibrillary tangles (NFTs of tau are one of the defining hallmarks of Alzheimer's disease (AD, and are closely associated with neuronal degeneration. Although it has been suggested that calcium dysregulation is important to AD pathogenesis, few studies have probed the link between calcium homeostasis, synapse loss and pathological changes in tau. Here we test the hypothesis that pathological changes in tau are associated with changes in calcium by utilizing in vivo calcium imaging in adult rTg4510 mice that exhibit severe tau pathology due to over-expression of human mutant P301L tau. We observe prominent dendritic spine loss without disruptions in calcium homeostasis, indicating that tangles do not disrupt this fundamental feature of neuronal health, and that tau likely induces spine loss in a calcium-independent manner.

  1. Ecology of the aging human brain.

    Science.gov (United States)

    Sonnen, Joshua A; Santa Cruz, Karen; Hemmy, Laura S; Woltjer, Randall; Leverenz, James B; Montine, Kathleen S; Jack, Clifford R; Kaye, Jeffrey; Lim, Kelvin; Larson, Eric B; White, Lon; Montine, Thomas J

    2011-08-01

    Alzheimer disease, cerebral vascular brain injury, and isocortical Lewy body disease (LBD) are the major contributors to dementia in community- and population-based studies. To estimate the prevalence of clinically silent forms of these diseases in cognitively normal (CN) adults. Autopsy study. Community- and population based. A total of 1672 brain autopsies from the Adult Changes in Thought study, Honolulu-Asia Aging Study, Nun Study, and Oregon Brain Aging Study, of which 424 met the criteria for CN. Of these, 336 cases had a comprehensive neuropathologic examination of neuritic plaque density, Braak stage for neurofibrillary tangles, LB distribution, and number of cerebral microinfarcts. Forty-seven percent of CN cases had moderate or frequent neuritic plaque density; of these, 6% also had Braak stage V or VI for neurofibrillary tangles. Fifteen percent of CN cases had medullary LBD; 8% also had nigral and 4% isocortical LBD. The presence of any cerebral microinfarcts was identified in 33% and of high-level cerebral microinfarcts in 10% of CN individuals. Overall, the burden of lesions in each individual and their comorbidity varied widely within each study but were similar across studies. These data show an individually varying complex convergence of subclinical diseases in the brain of older CN adults. Appreciating this ecology should help guide future biomarker and neuroimaging studies and clinical trials that focus on community- and population-based cohorts.

  2. Effects of Memantine and Oleocanthal on Alzheimer's Disease

    Science.gov (United States)

    Houston, Mariyam; Bonacum, Jason; Zhang, Guoping

    2014-03-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by accumulation of neuritic plaques composed of amyloid- β (A β) proteins and neurofibrillary tangles composed of tau proteins. Although there is no known cure for AD, the symptoms can be treated with a drug called memantine. Memantine acts an NMDAR antagonist by inhibiting the action of the NMDA receptor. Recently, Oleocanthal, a phenolic molecule that is found in extra virgin olive oil, has been linked to reduced risk of AD. Though the mechanism by which Oleocanthal plays in reducing the risk of AD is not completely understood, recent studies have shown that Oleocanthal somehow inhibits the formation of the neurofibrillary tangles and reduces the formation of A β senile plaques. Our first-principles calculation, based on Gaussian03 program, shows that in the M2 segment, memantine binds to serine, but ketamine binds to glycine. This may explain their different effects, despite the fact that they are both NMDAR antagonists. Using the same method, we also investigate how Oleocanthal binds to the peptides by comparing the relative energies of each of the structures. Our results may help better understand the mechanism by which Oleocanthal decreases the chances of developing AD. U.S. DOE, DE-FG02-06ER46304; ISU SURE program; University of the CSRC; DEPT of Chemistry and Physics.

  3. Cosmic microwave background polarization signals from tangled magnetic fields.

    Science.gov (United States)

    Seshadri, T R; Subramanian, K

    2001-09-03

    Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500

  4. The Sub-Regional Functional Organization of Neocortical Irritative Epileptic Networks in Pediatric Epilepsy

    Czech Academy of Sciences Publication Activity Database

    Janča, R.; Kršek, P.; Ježdík, P.; Čmejla, R.; Tomášek, M.; Komárek, V.; Marusič, P.; Jiruška, Přemysl

    2018-01-01

    Roč. 9, Mar 23 (2018), č. článku 184. ISSN 1664-2295 R&D Projects: GA MZd(CZ) NV15-29835A Institutional support: RVO:67985823 Keywords : interictal epileptiform discharges * brain networks * epilepsy surgery * irritative zone * propagation * neocortical epilepsy Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 3.552, year: 2016

  5. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun study.

    Science.gov (United States)

    Snowdon, D A; Tully, C L; Smith, C D; Riley, K P; Markesbery, W R

    2000-04-01

    Previous studies suggested that low concentrations of folate in the blood are related to poor cognitive function, dementia, and Alzheimer disease-related neurodegeneration of the brain. Our aim was to determine whether serum folate is inversely associated with the severity of atrophy of the neocortex. Nutrients, lipoproteins, and nutritional markers were measured in the blood of 30 participants in the Nun Study from one convent who later died when they were 78-101 y old (mean: 91 y). At autopsy, several neuropathologic indicators of Alzheimer disease were determined, including the degree of atrophy of 3 lobes of the neocortex (frontal, temporal, and parietal) and the number of neocortical Alzheimer disease lesions (ie, senile plaques and neurofibrillary tangles) as assessed by a neuropathologist. The correlation between serum folate and the severity of atrophy of the neocortex was -0.40 (P = 0.03). Among a subset of 15 participants with significant numbers of Alzheimer disease lesions in the neocortex, the correlation between folate and atrophy was -0.80 (P = 0.0006). Atrophy may be specific to low folate because none of the 18 other nutrients, lipoproteins, or nutritional markers measured in the blood had significant negative correlations with atrophy. Among elderly Catholic sisters who lived in one convent, ate from the same kitchen, and were highly comparable for a wide range of environmental and lifestyle factors, low serum folate was strongly associated with atrophy of the cerebral cortex. Definitive evidence for this relation and its temporal sequence awaits the findings of other studies.

  6. Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies

    Science.gov (United States)

    Head, Elizabeth; Schmitt, Frederick A.; Davis, Paulina R.; Neltner, Janna H.; Jicha, Gregory A.; Abner, Erin L.; Smith, Charles D.; Van Eldik, Linda J.; Kryscio, Richard J.; Scheff, Stephen W.

    2011-01-01

    Human studies are reviewed concerning whether “aging”-related mechanisms contribute to Alzheimer’s disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes involved in APP-related mechanisms, there is no firm connection between genes implicated in human “accelerated aging” diseases (progerias) and AD. The epidemiology of AD in advanced age is highly relevant but deceptively challenging to address given the low autopsy rates in most countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain diseases other than AD afflict older human brains and contribute to cognitive impairment. Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both high-morbidity brain diseases that appear to peak in incidence later than AD chronologically. Because of these common brain diseases of extreme old age, the epidemiology differs between clinical “dementia” and the subset of dementia cases with AD pathology. Additional aging-associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to AD and these hypotheses are discussed. Criteria are proposed to define an “aging-linked” disease, and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging. PMID:21516511

  7. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro.

    Science.gov (United States)

    Hassel, Bjørnar; Elsais, Ahmed; Frøland, Anne-Sofie; Taubøll, Erik; Gjerstad, Leif; Quan, Yi; Dingledine, Raymond; Rise, Frode

    2015-05-01

    Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was

  8. The HIV-1 viral protein Tat increases glutamate and decreases GABA exocytosis from human and mouse neocortical nerve endings.

    Science.gov (United States)

    Musante, Veronica; Summa, Maria; Neri, Elisa; Puliti, Aldamaria; Godowicz, Tomasz T; Severi, Paolo; Battaglia, Giuseppe; Raiteri, Maurizio; Pittaluga, Anna

    2010-08-01

    Human immunodeficiency virus-1 (HIV-1)-encoded transactivator of transcription (Tat) potentiated the depolarization-evoked exocytosis of [(3)H]D-aspartate ([(3)H]D-ASP) from human neocortical terminals. The metabotropic glutamate (mGlu) 1 receptor antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) prevented this effect, whereas the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP) was ineffective. Western blot analysis showed that human neocortex synaptosomes possess mGlu1 and mGlu5 receptors. Tat potentiated the K(+)-evoked release of [(3)H]D-ASP or of endogenous glutamate from mouse neocortical synaptosomes in a CPCCOEt-sensitive and MPEP-insensitive manner. Deletion of mGlu1 receptors (crv4/crv4 mice) or mGlu5 receptors (mGlu5(-/-)mouse) silenced Tat effects. Tat enhanced inositol 1,4,5-trisphosphate production in human and mouse neocortical synaptosomes, consistent with the involvement of group I mGlu receptors. Tat inhibited the K(+)-evoked release of [(3)H]gamma-aminobutyric acid ([(3)H]GABA) from human synaptosomes and that of endogenous GABA or [(3)H]GABA from mouse nerve terminals; the inhibition was insensitive to CPCCOEt or MPEP. Tat-induced effects were retained by Tat(37-72) but not by Tat(48-85). In mouse neocortical slices, Tat facilitated the K(+)- and the veratridine-induced release of [(3)H]D-ASP in a CPCCOEt-sensitive manner and was ineffective in crv4/crv4 mouse slices. These observations are relevant to the comprehension of the pathophysiological effects of Tat in central nervous system and may suggest new potential therapeutic approaches to the cure of HIV-1-associated dementia.

  9. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers.

    Science.gov (United States)

    Lanjakornsiripan, Darin; Pior, Baek-Jun; Kawaguchi, Daichi; Furutachi, Shohei; Tahara, Tomoaki; Katsuyama, Yu; Suzuki, Yutaka; Fukazawa, Yugo; Gotoh, Yukiko

    2018-04-24

    Non-pial neocortical astrocytes have historically been thought to comprise largely a nondiverse population of protoplasmic astrocytes. Here we show that astrocytes of the mouse somatosensory cortex manifest layer-specific morphological and molecular differences. Two- and three-dimensional observations revealed that astrocytes in the different layers possess distinct morphologies as reflected by differences in cell orientation, territorial volume, and arborization. The extent of ensheathment of synaptic clefts by astrocytes in layer II/III was greater than that by those in layer VI. Moreover, differences in gene expression were observed between upper-layer and deep-layer astrocytes. Importantly, layer-specific differences in astrocyte properties were abrogated in reeler and Dab1 conditional knockout mice, in which neuronal layers are disturbed, suggesting that neuronal layers are a prerequisite for the observed morphological and molecular differences of neocortical astrocytes. This study thus demonstrates the existence of layer-specific interactions between neurons and astrocytes, which may underlie their layer-specific functions.

  10. Structural-functional connectivity deficits of neocortical circuits in the Fmr1 (-/y) mouse model of autism

    NARCIS (Netherlands)

    Haberl, M.G.; Zerbi, V.; Veltien, A.A.; Ginger, M.; Heerschap, A.; Frick, A.

    2015-01-01

    Fragile X syndrome (FXS), the most common inherited form of intellectual disability disorder and a frequent cause of autism spectrum disorder (ASD), is characterized by a high prevalence of sensory symptoms. Perturbations in the anatomical connectivity of neocortical circuits resulting in their

  11. Statistical mechanics of neocortical interactions: Constraints on 40-Hz models of short-term memory

    Science.gov (United States)

    Ingber, Lester

    1995-10-01

    Calculations presented in L. Ingber and P.L. Nunez, Phys. Rev. E 51, 5074 (1995) detailed the evolution of short-term memory in the neocortex, supporting the empirical 7+/-2 rule of constraints on the capacity of neocortical processing. These results are given further support when other recent models of 40-Hz subcycles of low-frequency oscillations are considered.

  12. Reduced cell number in the neocortical part of the human fetal brain in Down syndrome

    DEFF Research Database (Denmark)

    Larsen, K.B.; Laursen, H.; Graem, N.

    2008-01-01

    Mental retardation is seen in all individuals with Down syndrome (DS) and different brain abnormalities are reported. The aim of this study was to investigate if mental retardation at least in part is a result of a lower cell number in the neocortical part of the human fetal forebrain. We therefore...

  13. Neocortical gamma oscillations in idiopathic generalized epilepsy

    DEFF Research Database (Denmark)

    Benedek, Krisztina; Berenyi, Antal; Gombkoto, Peter

    2016-01-01

    Objective: Absence seizures in patients with idiopathic generalized epilepsy (IGE) may in part be explained by a decrease in phasic GABAA (type-A c-aminobutyric acid) receptor function, but the mechanisms are only partly understood. Here we studied the relation between ictal and interictal spike......-wave discharges (SWDs) and electroencephalography (EEG) gamma oscillatory activity (30-60 Hz) in patients with IGE. Methods: EEG recordings were obtained of 14 children with IGE (mean age, 8.5 +/- 5 years) and 14 age-and sex-matched controls. Time-frequency analysis of each seizure and seizure-free control epochs...... was performed and cross-coherences of neocortical gamma oscillations were calculated to describe interictal and ictal characteristics of generalized seizures. Results: SWDs were characterized with an abrupt increase of oscillatory activity of 34 and 13-60 Hz, peaking at 3-4 and 30-60 Hz, and with a simultaneous...

  14. Predictive values of F-18-FDG PET and ictal SPECT to find epileptogenic zones in cryptogenic neocortical epilepsies

    International Nuclear Information System (INIS)

    Lee, D. S.; Lee, S. K.; Jeong, Z. K.; Kim, H. Z.; Lee, M. C.; Ko, C. S.

    1997-01-01

    Though cumulated reported sensitivity were 33% (F-18-FDG PET) and 81%(ictal SPECT) in neocortical epilepsy, positive predictive values rather than sensitivity should be referred if we wish to know the reliability of positive findings to predict epileptogenic zones. In cryptogenic neocortical epilepsy which did not have structural lesions on MR, we tried to find performance of F-18-FDG PET and ictal SPECT to find epileptogenic zones. In 77 patients who had no lesion on MR and who were suspected to have neocortical epilepsy on video monitored EEG, ictal SPECT were done in 44 patients and F-18-FDG PET were done in 70 patients. Invasive study and operation was done in 24 patients. The most hyper perfused area or prominently hypometabolic area was suspected to be epileptogenic on ictal SPECT or F-18-FDG PET, respectively. We could find zones of ictal hyperperfusion in 34/44(78%) patients. Positive predictive values of ictal hyperperfusion were 58%, 60%, and 12.5% in frontal lobes (n=12), lateral temporal lobes (20), and parietal lobes (8). We could find hypometabolic areas in 50/70(76%) patients. Positive predictive values of hypometabolism were 78%, 71%, 33%, and 25% in frontal lobes (9), lateral temporal lobes (28), parietal lobes (3) and occipital lobes (4). Among 24 patients who were operated, 17 patients were followed up more than 7 months (15 ± 5). Thirteen patients improved (10 : Engel class I or II, 2: 90% reduction, 1: 75% reduction but multifocal). Five among 11 PET studies were correct, 3 among 10 SPECT studies, and 6 among 11 PET/SPECT studies (55%) were correct for localization. In conclusion, three fourths of patients gave positive results to localized epileptogenic zones in cryptogenic neocortical epilepsy, and predictive values of ictal hyperperfusion or interictal hypometabolism were highest in frontal or lateral temporal lobes if these lobes were found to be culprit though rapid ictal propagation of cortical hyperperfusion confounded the exact

  15. Entropy in the Tangled Nature Model of evolution

    DEFF Research Database (Denmark)

    Roach, Ty N.F.; Nulton, James; Sibani, Paolo

    2017-01-01

    Applications of entropy principles to evolution and ecology are of tantamount importance given the central role spatiotemporal structuring plays in both evolution and ecological succession. We obtain here a qualitative interpretation of the role of entropy in evolving ecological systems. Our...... interpretation is supported by mathematical arguments using simulation data generated by the Tangled Nature Model (TNM), a stochastic model of evolving ecologies. We define two types of configurational entropy and study their empirical time dependence obtained from the data. Both entropy measures increase...... logarithmically with time, while the entropy per individual decreases in time, in parallel with the growth of emergent structures visible from other aspects of the simulation. We discuss the biological relevance of these entropies to describe niche space and functional space of ecosystems, as well as their use...

  16. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Valerie eVingtdeux

    2012-07-01

    Full Text Available Since the discovery of prion diseases, the concept that a transmissible pathogen could be a protein has emerged. As such, this transmissible protein agent can transfer its pathological mis-folded shape to the same but normally folded protein thus leading to the propagation of a disease. This idea is now extrapolate to several neurological diseases associated with protein mis-folding and aggregation, such as Alzheimer’s disease. Alzheimer’s disease (AD is a slowly developing dementing disease characterized by the coexistence of two types of lesions: the parenchymal amyloid deposits and the intraneuronal neurofibrillary tangles (NFT. Amyloid deposits are composed of amyloid-beta peptides that derive from sequential cleavages of its precursor named amyloid protein precursor. Neurofibrillary tangle is characterized by intraneuronal aggregation of abnormally modified microtubule-associated Tau proteins. A synergistic relationship between the two lesions may trigger the progression of the disease. Thus, starting in the medial temporal lobe and slowly progressing through temporal, frontal, parietal and occipital cortex, the progression of NFT is well correlated with clinical expression of the disease. However, little is known about the mechanism driving the spatiotemporal propagation of these lesions ultimately leading to the disease. A growing number of studies suggest a prion-like diffusion of amyloid deposits and NFT. In the present chapter, we will develop the current hypotheses regarding the molecular and cellular mechanisms driving the development and spreading of Alzheimer disease lesions from the window of multivesicular bodies and exosomes.

  17. Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Harada, Ryuichi; Okamura, Nobuyuki; Yoshikawa, Takeo; Yanai, Kazuhiko; Furumoto, Shozo; Tago, Tetsuro; Iwata, Ren; Maruyama, Masahiro; Higuchi, Makoto; Arai, Hiroyuki; Kudo, Yukitsuka

    2013-01-01

    Extensive deposition of senile plaques and neurofibrillary tangles in the brain is a pathological hallmark of Alzheimer's disease (AD). Although several PET imaging agents have been developed for in vivo detection of senile plaques, no PET probe is currently available for selective detection of neurofibrillary tangles in the living human brain. Recently, [ 18 F]THK-523 was developed as a potential in vivo imaging probe for tau pathology. The purpose of this study was to compare the binding properties of [ 18 F]THK-523 and other amyloid imaging agents, including PiB, BF-227 and FDDNP, to synthetic protein fibrils and human brain tissue. In vitro radioligand binding assays were conducted using synthetic amyloid β 42 and K18ΔK280-tau fibrils. Nonspecific binding was determined by the addition of unlabelled compounds at a concentration of 2 μM. To examine radioligand binding to neuropathological lesions, in vitro autoradiography was conducted using sections of AD brain. [ 18 F]THK-523 showed higher affinity for tau fibrils than for Aβ fibrils, whereas the other probes showed a higher affinity for Aβ fibrils. The autoradiographic analysis indicated that [ 18 F]THK-523 accumulated in the regions containing a high density of tau protein deposits. Conversely, PiB and BF-227 accumulated in the regions containing a high density of Aβ plaques. These findings suggest that the unique binding profile of [ 18 F]THK-523 can be used to identify tau deposits in AD brain. (orig.)

  18. Agrin in Alzheimer's Disease: Altered Solubility and Abnormal Distribution within Microvasculature and Brain Parenchyma

    Science.gov (United States)

    Donahue, John E.; Berzin, Tyler M.; Rafii, Michael S.; Glass, David J.; Yancopoulos, George D.; Fallon, Justin R.; Stopa, Edward G.

    1999-05-01

    Agrin is a heparan sulfate proteoglycan that is widely expressed in neurons and microvascular basal lamina in the rodent and avian central nervous system. Agrin induces the differentiation of nerve-muscle synapses, but its function in either normal or diseased brains is not known. Alzheimer's disease (AD) is characterized by loss of synapses, changes in microvascular architecture, and formation of neurofibrillary tangles and senile plaques. Here we have asked whether AD causes changes in the distribution and biochemical properties of agrin. Immunostaining of normal, aged human central nervous system revealed that agrin is expressed in neurons in multiple brain areas. Robust agrin immunoreactivity was observed uniformly in the microvascular basal lamina. In AD brains, agrin is highly concentrated in both diffuse and neuritic plaques as well as neurofibrillary tangles; neuronal expression of agrin also was observed. Furthermore, patients with AD had microvascular alterations characterized by thinning and fragmentation of the basal lamina. Detergent extraction and Western blotting showed that virtually all the agrin in normal brain is soluble in 1% SDS. In contrast, a large fraction of the agrin in AD brains is insoluble under these conditions, suggesting that it is tightly associated with β -amyloid. Together, these data indicate that the agrin abnormalities observed in AD are closely linked to β -amyloid deposition. These observations suggest that altered agrin expression in the microvasculature and the brain parenchyma contribute to the pathogenesis of AD.

  19. GABA action in immature neocortical neurons directly depends on the availability of ketone bodies.

    Science.gov (United States)

    Rheims, Sylvain; Holmgren, Carl D; Chazal, Genevieve; Mulder, Jan; Harkany, Tibor; Zilberter, Tanya; Zilberter, Yuri

    2009-08-01

    In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)), respectively. We show that during postnatal development (P3-P19) if neocortical brain slices are adequately supplied with KBs, E(m) and E(GABA) are both maintained at negative levels of about -83 and -80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E(m) (>5 mV) and E(GABA) (>15 mV). The KB-mediated shift in E(GABA) is largely determined by the interaction of the NKCC1 cotransporter and Cl(-)/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E(m) and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.

  20. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease

    Science.gov (United States)

    Merino-Serrais, Paula; Benavides-Piccione, Ruth; Blazquez-Llorca, Lidia; Kastanauskaite, Asta; Rábano, Alberto; Avila, Jesús

    2013-01-01

    The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles. PMID:23715095

  1. Default activity patterns at the neocortical microcircuit level

    Directory of Open Access Journals (Sweden)

    Artur eLuczak

    2012-06-01

    Full Text Available Even in absence of sensory stimuli cortical networks exhibit complex, self-organized activity patterns. While the function of those spontaneous patterns of activation remains poorly understood, recent studies both in vivo and in vitro have demonstrated that neocortical neurons activate in a surprisingly similar sequential order both spontaneously and following input into cortex. For example, neurons that tend to fire earlier within spontaneous bursts of activity also fire earlier than other neurons in response to sensory stimuli. These 'default patterns' can last hundreds of milliseconds and are strongly conserved under a variety of conditions. In this paper we will review recent evidence for these default patterns at the local cortical level. We speculate that cortical architecture imposes common constraints on spontaneous and evoked activity flow, which result in the similarity of the patterns.

  2. Early life linguistic ability, late life cognitive function, and neuropathology: findings from the Nun Study.

    Science.gov (United States)

    Riley, Kathryn P; Snowdon, David A; Desrosiers, Mark F; Markesbery, William R

    2005-03-01

    The relationships between early life variables, cognitive function, and neuropathology were examined in participants in the Nun Study who were between the ages of 75 and 95. Our early life variable was idea density, which is a measure of linguistic ability, derived from autobiographies written at a mean age of 22 years. Six discrete categories of cognitive function, including mild cognitive impairments, were evaluated, using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery of cognitive tests. Neuropathologic data included Braak staging, neurofibrillary tangle and senile plaque counts, brain weight, degree of cerebral atrophy, severity of atherosclerosis, and the presence of brain infarcts. Early-life idea density was significantly related to the categories of late-life cognitive function, including mild cognitive impairments: low idea density was associated with greater impairment. Low idea density also was significantly associated with lower brain weight, higher degree of cerebral atrophy, more severe neurofibrillary pathology, and the likelihood of meeting neuropathologic criteria for Alzheimer's disease.

  3. Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice

    Directory of Open Access Journals (Sweden)

    Sunn Nana

    2009-12-01

    Full Text Available Abstract Background Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechanisms regulating callosal formation include the guidance of axons arising from pioneering neurons in the cingulate cortex and the development of cortical midline glial populations, but their molecular regulation remains poorly characterised. Recent data have shown that mice lacking the transcription factor Nfib exhibit callosal agenesis, yet neocortical callosal neurons express only low levels of Nfib. Therefore, we investigate here how Nfib functions to regulate non-cell-autonomous mechanisms of callosal formation. Results Our investigations confirmed a reduction in glial cells at the midline in Nfib-/- mice. To determine how this occurs, we examined radial progenitors at the cortical midline and found that they were specified correctly in Nfib mutant mice, but did not differentiate into mature glia. Cellular proliferation and apoptosis occurred normally at the midline of Nfib mutant mice, indicating that the decrease in midline glia observed was due to deficits in differentiation rather than proliferation or apoptosis. Next we investigated the development of callosal pioneering axons in Nfib-/- mice. Using retrograde tracer labelling, we found that Nfib is expressed in cingulate neurons and hence may regulate their development. In Nfib-/- mice, neuropilin 1-positive axons fail to cross the midline and expression of neuropilin 1 is diminished. Tract tracing and immunohistochemistry further revealed that, in late gestation, a minor population of neocortical axons does cross the midline in Nfib mutants on a C57Bl/6J background, forming a rudimentary corpus callosum. Finally, the development of other forebrain commissures in Nfib-deficient mice is also aberrant. Conclusion The formation of the corpus callosum is severely delayed in the absence of Nfib, despite Nfib not being highly expressed in neocortical callosal neurons. Our

  4. Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity

    Science.gov (United States)

    Ingber, Lester

    1984-06-01

    A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules of human short-term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic interactions.

  5. Resection of individually identified high-rate high-frequency oscillations region is associated with favorable outcome in neocortical epilepsy

    Czech Academy of Sciences Publication Activity Database

    Cho, J.R.; Koo, D.L.; Joo, E.Y.; Seo, D.W.; Hong, S.-Ch.; Jiruška, Přemysl; Hong, S.B.

    2014-01-01

    Roč. 55, č. 11 (2014), s. 1872-1883 ISSN 0013-9580 R&D Projects: GA MZd(CZ) NT14489 Institutional support: RVO:67985823 Keywords : epilepsy surgery * high-frequency oscillations * neocortical epilepsy Subject RIV: FH - Neurology Impact factor: 4.571, year: 2014

  6. Volumetric MRI for evaluation of regional pattern and progression of neocortical degeneration in Alzheimer's disease

    International Nuclear Information System (INIS)

    Leinsinger, G.; Teipel, S.; Pruessner, J.; Hampel, H.; Wismueller, A.; Born, C.; Meindl, T.; Flatz, W.; Schoenberg, S.; Reiser, M.

    2003-01-01

    Volumetric analysis of the corpus callosum and hippocampus using MRI in Alzheimer's disease (AD) to evaluate the regional pattern and progression of neocortical neurodegeneration. In subsequent studies we investigated patients with AD and healthy controls. Volumetry was based on MRI-data from a sagittal 3D T1w-gradient echo sequence. The corpus callosum (CC) was measured in a midsagittal slice, and subdivided into 5 subregions. Volumetry of the hippocampus/amygdala-formation (HAF) was performed by segmentation in coronary reoriented slices. In AD patients we found a significant atrophy in the rostrum und splenium of CC. The atrophy was correlated with the severity of dementia, but no correlation was found with the load of white matter lesions. In comparison with 18 FDG-PET, we found a significant correlation of regional CC-atrophy with the regional decline of cortical glucose metabolism. A ROC-analysis demonstrated no significant differences in the diagostic accuracy of HAF volumetry and regional CC volumetry of the splenium (region C5) even in mild stages of dementia. Regional atrophy of CC can be used as a marker of neocortical degeneration even in early stages of dementia in AD. (orig.) [de

  7. Lipids: Part of the tangled web

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M.

    1992-08-01

    Analysis of LDL subclasses by non-denaturing gradient gel electrophoresis has led to the identification of a subclass pattern characterized by predominance of small LDL, designated LDL subclass pattern B. The prevalence of pattern B in the general population is approximately 25%, but varies as a function of age and gender, being relatively uncommon in children and in premenopausal women. The remainder of the population has a predominance of larger LDL (pattern A) or an intermediate pattern. Our findings indicate that LDL subclass pattern B is an integral part of the ``tangled web`` of interrelated coronary disease risk factors associated with insulin resistance. It may be that the pathologic features of this lipoprotein profile, including the relative atherogenicity of small, dense LDL and IDL, contribute importantly to the increased risk of cardiovascular disease in subjects with insulin resistance and hypertension. Furthermore, pattern B serves as a marker for a common genetic trait which may underlie a substantial portion of the familial predisposition to coronary artery disease in the general population. Studies of hormonal, dietary, and pharmacologic influences on expression of this atherogenic phenotype should lead to more effective identification and management of high-risk individuals, and improved approaches to disease prevention in high-risk families.

  8. Lipids: Part of the tangled web

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M.

    1992-08-01

    Analysis of LDL subclasses by non-denaturing gradient gel electrophoresis has led to the identification of a subclass pattern characterized by predominance of small LDL, designated LDL subclass pattern B. The prevalence of pattern B in the general population is approximately 25%, but varies as a function of age and gender, being relatively uncommon in children and in premenopausal women. The remainder of the population has a predominance of larger LDL (pattern A) or an intermediate pattern. Our findings indicate that LDL subclass pattern B is an integral part of the tangled web'' of interrelated coronary disease risk factors associated with insulin resistance. It may be that the pathologic features of this lipoprotein profile, including the relative atherogenicity of small, dense LDL and IDL, contribute importantly to the increased risk of cardiovascular disease in subjects with insulin resistance and hypertension. Furthermore, pattern B serves as a marker for a common genetic trait which may underlie a substantial portion of the familial predisposition to coronary artery disease in the general population. Studies of hormonal, dietary, and pharmacologic influences on expression of this atherogenic phenotype should lead to more effective identification and management of high-risk individuals, and improved approaches to disease prevention in high-risk families.

  9. [Lessons from Guam ALS/PDC study].

    Science.gov (United States)

    Asao, Hirano

    2007-11-01

    An extraordinarily high incidence of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC) affecting the native population was discovered on the island of Guam a half century ago. Guam ALS is identical to classic ALS clinically and pathologically while PDC is marked by progressive parkinsonism and dementia. The unusual histological finding in these fetal neurodegenerative diseases is the presence of numerous neurofibrillary tangles in a selective topographic distribution unassociated with senile plaques. There have been remarkable advances in field of age-associated neurodegenerative disease after our initial study of Guam cases. Four noteworthy topics are presented in this communication. 1) Clinically, the coexistence of parkinsonism and dementia was frequently recognized in Parkinson disease and Alzheimer disease. Some other new disease entities characterized by coexistence of parkinsonism and dementia have been reported. These include progressive supranuclear palsy, frontotemporal dementia and parkinsonism linked to chromosome 17. 2) Neuropathologically, abundant neurofibrillary tangles unassociated with senile plaques were demonstrated in many diseases such as aftermath of boxing and tangle-only dementia. Furthermore, tau-positive structures were recognized not only in neurons but in glial cells in certain diseases. Tauopathy is one of the current hot research subjects. 3) Familial aggregation of Guam ALS patients provoked investigation of familial ALS elsewhere. Familial motor neuron disease with SOD1 mutation is the target of worldwide intense investigation at the present time. SOD1 gene mutation is, however, not found in Guam ALS. 4) The most striking findings of the Guam study is the gradual decline in the incidence of ALS on Guam during a quarter century and virtual disappearance of new patients. This may be linked to a remarkable change in environment and life style of the Chamorro population. The etiology of ALS is still unknown and

  10. A Mutual Self- and Informant-Report of Cognitive Complaint Correlates with Neuropathological Outcomes in Mild Cognitive Impairment.

    Directory of Open Access Journals (Sweden)

    Katherine A Gifford

    Full Text Available This study examines whether different sources of cognitive complaint (i.e., self and informant predict Alzheimer's disease (AD neuropathology in elders with mild cognitive impairment (MCI.Data were drawn from the National Alzheimer's Coordinating Center Uniform and Neuropathology Datasets (observational studies for participants with a clinical diagnosis of MCI and postmortem examination (n = 1843, 74±8 years, 52% female. Cognitive complaint (0.9±0.5 years prior to autopsy was classified into four mutually exclusive groups: no complaint, self-only, informant-only, or mutual (both self and informant complaint. Postmortem neuropathological outcomes included amyloid plaques and neurofibrillary tangles. Proportional odds regression related complaint to neuropathology, adjusting for age, sex, race, education, depressed mood, cognition, APOE4 status, and last clinical visit to death interval.Mutual complaint related to increased likelihood of meeting NIA/Reagan Institute (OR = 6.58, p = 0.004 and Consortium to Establish a Registry for Alzheimer's Disease criteria (OR = 5.82, p = 0.03, and increased neurofibrillary tangles (OR = 3.70, p = 0.03, neuritic plaques (OR = 3.52, p = 0.03, and diffuse plaques (OR = 4.35, p = 0.02. Informant-only and self-only complaint was not associated with any neuropathological outcome (all p-values>0.12.In MCI, mutual cognitive complaint relates to AD pathology whereas self-only or informant-only complaint shows no relation to pathology. Findings support cognitive complaint as a marker of unhealthy brain aging and highlight the importance of obtaining informant corroboration to increase confidence of underlying pathological processes.

  11. Comparison of the binding characteristics of [{sup 18}F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Ryuichi; Okamura, Nobuyuki; Yoshikawa, Takeo; Yanai, Kazuhiko [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Furumoto, Shozo [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Tago, Tetsuro; Iwata, Ren [Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Maruyama, Masahiro; Higuchi, Makoto [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Arai, Hiroyuki [Tohoku University, Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Sendai (Japan); Kudo, Yukitsuka [Tohoku University, Innovation of New Biomedical Engineering Center, Sendai (Japan)

    2013-01-15

    Extensive deposition of senile plaques and neurofibrillary tangles in the brain is a pathological hallmark of Alzheimer's disease (AD). Although several PET imaging agents have been developed for in vivo detection of senile plaques, no PET probe is currently available for selective detection of neurofibrillary tangles in the living human brain. Recently, [{sup 18}F]THK-523 was developed as a potential in vivo imaging probe for tau pathology. The purpose of this study was to compare the binding properties of [{sup 18}F]THK-523 and other amyloid imaging agents, including PiB, BF-227 and FDDNP, to synthetic protein fibrils and human brain tissue. In vitro radioligand binding assays were conducted using synthetic amyloid {beta}{sub 42} and K18{Delta}K280-tau fibrils. Nonspecific binding was determined by the addition of unlabelled compounds at a concentration of 2 {mu}M. To examine radioligand binding to neuropathological lesions, in vitro autoradiography was conducted using sections of AD brain. [{sup 18}F]THK-523 showed higher affinity for tau fibrils than for A{beta} fibrils, whereas the other probes showed a higher affinity for A{beta} fibrils. The autoradiographic analysis indicated that [{sup 18}F]THK-523 accumulated in the regions containing a high density of tau protein deposits. Conversely, PiB and BF-227 accumulated in the regions containing a high density of A{beta} plaques. These findings suggest that the unique binding profile of [{sup 18}F]THK-523 can be used to identify tau deposits in AD brain. (orig.)

  12. Alzheimer's Disease Sequencing Project discovery and replication criteria for cases and controls: Data from a community-based prospective cohort study with autopsy follow-up.

    Science.gov (United States)

    Crane, Paul K; Foroud, Tatiana; Montine, Thomas J; Larson, Eric B

    2017-12-01

    The Alzheimer's Disease Sequencing Project (ADSP) used different criteria for assigning case and control status from the discovery and replication phases of the project. We considered data from a community-based prospective cohort study with autopsy follow-up where participants could be categorized as case, control, or neither by both definitions and compared the two sets of criteria. We used data from the Adult Changes in Thought (ACT) study including Diagnostic and Statistical Manual-IV criteria for dementia status, McKhann et al. criteria for clinical Alzheimer's disease, and Braak and Consortium to Establish a Registry for AD findings on neurofibrillary tangles and neuritic plaques to categorize the 621 ACT participants of European ancestry who died and came to autopsy. We applied ADSP discovery and replication definitions to identify controls, cases, and people who were neither controls nor cases. There was some agreement between the discovery and replication definitions. Major areas of discrepancy included the finding that only 40% of the discovery sample controls had sufficiently low levels of neurofibrillary tangles and neuritic plaques to be considered controls by the replication criteria and the finding that 16% of the replication phase cases were diagnosed with non-AD dementia during life and thus were excluded as cases for the discovery phase. These findings should inform interpretation of genetic association findings from the ADSP. Differences in genetic association findings between the two phases of the study may reflect these different phenotype definitions from the discovery and replication phase of the ADSP. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  13. Chronic traumatic encephalopathy (CTE) in a National Football League Player: Case report and emerging medicolegal practice questions.

    Science.gov (United States)

    Omalu, Bennet I; Hamilton, Ronald L; Kamboh, M Ilyas; DeKosky, Steven T; Bailes, Julian

    2010-01-01

    We present a case of chronic traumatic encephalopathy (CTE) in a retired National Football League (NFL) Player with autopsy findings, apolipoprotein E genotype, and brain tissue evidence of chronic brain damage. This 44-year-old retired NFL player manifested a premortem history of cognitive and neuropsychiatric impairment, which included in part, chronic depression, suicide attempts, insomnia, paranoia, and impaired memory before he finally committed suicide. A full autopsy was performed with Polymerase Chain Reaction-based analyses of his blood to determine the apolipoprotein genotype. Histochemical and immunohistochemical analyses were performed on topographical gross sections of the brain. Autopsy confirmed a fatal gunshot wound of the head. The apolipoprotein E genotype was E3/E3 and the brain tissue revealed diffuse cerebral taupathy (Neurofibrillary Tangles and Neuritic Threads). This will be the third case of CTE in a national football player, which has been reported in the medical literature. Omalu et al., reported the first two cases in 2005 and 2006. This case series manifested similar premortem history of neuropsychiatric impairment with autopsy evidence of cerebral taupathy without any neuritic amyloidopathy. For a definitive diagnosis of CTE to be made, and for medicolegal purposes, a full autopsy must be performed with histochemical and immunohistochemical analyses of the brain to identify the presence of Neurofibrillary Tangles (NFTs) and Neuritic Threads (NTs). Further longitudinal prospective studies are required to confirm the common denominators and epidemiology of CTE in professional American football players, which have been identified by this case series.

  14. Differential antiepileptic effects of the organic calcium antagonists verapamil and flunarizine in neurons of organotypic neocortical explants from newborn rats

    NARCIS (Netherlands)

    Bingmann, D; Speckmann, E J; Baker, R E; Ruijter, J; de Jong, B. M.

    1988-01-01

    Effects of the organic calcium antagonists verapamil and flunarizine on pentylenetetrazol induced paroxysmal depolarizations were tested in organotypic neocortical explants taken from neonatal rats. In these in vitro experiments the papaverin derivative verapamil depressed, and finally abolished,

  15. Mild prenatal protein malnutrition increases alpha2C-adrenoceptor density in the cerebral cortex during postnatal life and impairs neocortical long-term potentiation and visuo-spatial performance in rats.

    Science.gov (United States)

    Soto-Moyano, Rubén; Valladares, Luis; Sierralta, Walter; Pérez, Hernán; Mondaca, Mauricio; Fernández, Victor; Burgos, Héctor; Hernández, Alejandro

    2005-06-01

    Mild reduction in the protein content of the mother's diet from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but leads to significant enhancements in the concentration and release of cortical noradrenaline during early postnatal life. Since central noradrenaline and some of its receptors are critically involved in long-term potentiation (LTP) and memory formation, this study evaluated the effect of mild prenatal protein malnutrition on the alpha2C-adrenoceptor density in the frontal and occipital cortices, induction of LTP in the same cortical regions and the visuo-spatial memory. Pups born from rats fed a 25% casein diet throughout pregnancy served as controls. At day 8 of postnatal age, prenatally malnourished rats showed a threefold increase in neocortical alpha2C-adrenoceptor density. At 60 days-of-age, alpha2C-adrenoceptor density was still elevated in the neocortex, and the animals were unable to maintain neocortical LTP and presented lower visuo-spatial memory performance. Results suggest that overexpression of neocortical alpha2C-adrenoceptors during postnatal life, subsequent to mild prenatal protein malnutrition, could functionally affect the synaptic networks subserving neocortical LTP and visuo-spatial memory formation.

  16. PE859, a novel tau aggregation inhibitor, reduces aggregated tau and prevents onset and progression of neural dysfunction in vivo.

    Directory of Open Access Journals (Sweden)

    Michiaki Okuda

    Full Text Available In tauopathies, a neural microtubule-associated protein tau (MAPT is abnormally aggregated and forms neurofibrillary tangle. Therefore, inhibition of the tau aggregation is one of the key approaches for the treatment of these diseases. Here, we have identified a novel tau aggregation inhibitor, PE859. An oral administration of PE859 resulted in the significant reduction of sarkosyl-insoluble aggregated tau along with the prevention of onset and progression of the motor dysfunction in JNPL3 P301L-mutated human tau transgenic mice. These results suggest that PE859 is useful for the treatment of tauopathies.

  17. Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep

    Directory of Open Access Journals (Sweden)

    Wolfgang Härtig

    2017-08-01

    Full Text Available As part of the extracellular matrix (ECM, perineuronal nets (PNs are polyanionic, chondroitin sulfate proteoglycan (CSPG-rich coatings of certain neurons, known to be affected in various neural diseases. Although these structures are considered as important parts of the neurovascular unit (NVU, their role during evolution of acute ischemic stroke and subsequent tissue damage is poorly understood and only a few preclinical studies analyzed PNs after acute ischemic stroke. By employing three models of experimental focal cerebral ischemia, this study was focused on histopathological alterations of PNs and concomitant vascular, glial and neuronal changes according to the NVU concept. We analyzed brain tissues obtained 1 day after ischemia onset from: (a mice after filament-based permanent middle cerebral artery occlusion (pMCAO; (b rats subjected to thromboembolic MACO; and (c sheep at 14 days after electrosurgically induced focal cerebral ischemia. Multiple fluorescence labeling was applied to explore simultaneous alterations of NVU and ECM. Serial mouse sections labeled with the net marker Wisteria floribunda agglutinin (WFA displayed largely decomposed and nearly erased PNs in infarcted neocortical areas that were demarcated by up-regulated immunoreactivity for vascular collagen IV (Coll IV. Subsequent semi-quantitative analyses in mice confirmed significantly decreased WFA-staining along the ischemic border zone and a relative decrease in the directly ischemia-affected neocortex. Triple fluorescence labeling throughout the three animal models revealed up-regulated Coll IV and decomposed PNs accompanied by activated astroglia and altered immunoreactivity for parvalbumin, a calcium-binding protein in fast-firing GABAergic neurons which are predominantly surrounded by neocortical PNs. Furthermore, ischemic neocortical areas in rodents simultaneously displayed less intense staining of WFA, aggrecan, the net components neurocan, versican and the

  18. Anesthesia and Tau Pathology

    Science.gov (United States)

    Whittington, Robert A.; Bretteville, Alexis; Dickler, Maya F.; Planel, Emmanuel

    2013-01-01

    Alzheimer’s disease (AD) is the most common form of dementia and remains a growing worldwide health problem. As life expectancy continues to increase, the number of AD patients presenting for surgery and anesthesia will steadily rise. The etiology of sporadic AD is thought to be multifactorial, with environmental, biological and genetic factors interacting together to influence AD pathogenesis. Recent reports suggest that general anesthetics may be such a factor and may contribute to the development and exacerbation of this neurodegenerative disorder. Intra-neuronal neurofibrillary tangles (NFT), composed of hyperphosphorylated and aggregated tau protein are one of the main neuropathological hallmarks of AD. Tau pathology is important in AD as it correlates very well with cognitive dysfunction. Lately, several studies have begun to elucidate the mechanisms by which anesthetic exposure might affect the phosphorylation, aggregation and function of this microtubule-associated protein. Here, we specifically review the literature detailing the impact of anesthetic administration on aberrant tau hyperphosphorylation as well as the subsequent development of neurofibrillary pathology and degeneration. PMID:23535147

  19. Epidemiological pathology of dementia: attributable-risks at death in the Medical Research Council Cognitive Function and Ageing Study.

    Directory of Open Access Journals (Sweden)

    Fiona E Matthews

    2009-11-01

    Full Text Available Dementia drug development aims to modulate pathological processes that cause clinical syndromes. Population data (epidemiological neuropathology will help to model and predict the potential impact of such therapies on dementia burden in older people. Presently this can only be explored through post mortem findings. We report the attributable risks (ARs for dementia at death for common age-related degenerative and vascular pathologies, and other factors, in the MRC Cognitive Function and Ageing Study (MRC CFAS.A multicentre, prospective, longitudinal study of older people in the UK was linked to a brain donation programme. Neuropathology of 456 consecutive brain donations assessed degenerative and vascular pathologies. Logistic regression modelling, with bootstrapping and sensitivity analyses, was used to estimate AR at death for dementia for specific pathologies and other factors. The main contributors to AR at death for dementia in MRC CFAS were age (18%, small brain (12%, neocortical neuritic plaques (8% and neurofibrillary tangles (11%, small vessel disease (12%, multiple vascular pathologies (9%, and hippocampal atrophy (10%. Other significant factors include cerebral amyloid angiopathy (7% and Lewy bodies (3%.Such AR estimates cannot be derived from the living population; rather they estimate the relative contribution of specific pathologies to dementia at death. We found that multiple pathologies determine the overall burden of dementia. The impact of therapy targeted to a specific pathology may be profound when the dementia is relatively "pure," but may be less impressive for the majority with mixed disease, and in terms of the population. These data justify a range of strategies, and combination therapies, to combat the degenerative and vascular determinants of cognitive decline and dementia. Please see later in the article for the Editors' Summary.

  20. Melatonin administration impairs visuo-spatial performance and inhibits neocortical long-term potentiation in rats.

    Science.gov (United States)

    Soto-Moyano, Rubén; Burgos, Héctor; Flores, Francisco; Valladares, Luis; Sierralta, Walter; Fernández, Victor; Pérez, Hernán; Hernández, Paula; Hernández, Alejandro

    2006-10-01

    Melatonin has been shown to inhibit long-term potentiation (LTP) in hippocampal slices of rats. Since LTP may be one of the main mechanisms by which memory traces are encoded and stored in the central nervous system, it is possible that melatonin could modulate cognitive performance by interfering with the cellular and/or molecular mechanisms involved in LTP. We investigated in rats the effects of intraperitoneally-administered melatonin (0.1, 1 and 10 mg/kg), its saline-ethanol solvent, or saline alone, on the acquisition of visuo-spatial memory as well as on the ability of the cerebral cortex to develop LTP in vivo. Visuo-spatial performance was assessed daily in rats, for 10 days, in an 8-arm radial maze, 30 min after they received a single daily dose of melatonin. Visual cortex LTP was determined in sodium pentobarbital anesthetized rats (65 mg/kg i.p.), by potentiating transcallosal evoked responses with a tetanizing train (312 Hz, 500 ms duration) 30 min after administration of a single dose of melatonin. Results showed that melatonin impaired visuo-spatial performance in rats, as revealed by the greater number of errors committed and time spent to solve the task in the radial maze. Melatonin also prevented the induction of neocortical LTP. It is concluded that melatonin, at the doses utilized in this study, could alter some forms of neocortical plasticity involved in short- and long-term visuo-spatial memories in rats.

  1. Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice

    Science.gov (United States)

    Sherman, Maxwell A.; Lee, Shane; Law, Robert; Haegens, Saskia; Thorn, Catherine A.; Hämäläinen, Matti S.; Moore, Christopher I.; Jones, Stephanie R.

    2016-01-01

    Human neocortical 15–29-Hz beta oscillations are strong predictors of perceptual and motor performance. However, the mechanistic origin of beta in vivo is unknown, hindering understanding of its functional role. Combining human magnetoencephalography (MEG), computational modeling, and laminar recordings in animals, we present a new theory that accounts for the origin of spontaneous neocortical beta. In our MEG data, spontaneous beta activity from somatosensory and frontal cortex emerged as noncontinuous beta events typically lasting drive targeting proximal and distal dendrites of pyramidal neurons, where the defining feature of a beta event was a strong distal drive that lasted one beta period (∼50 ms). This beta mechanism rigorously accounted for the beta event profiles; several other mechanisms did not. The spatial location of synaptic drive in the model to supragranular and infragranular layers was critical to the emergence of beta events and led to the prediction that beta events should be associated with a specific laminar current profile. Laminar recordings in somatosensory neocortex from anesthetized mice and awake monkeys supported these predictions, suggesting this beta mechanism is conserved across species and recording modalities. These findings make several predictions about optimal states for perceptual and motor performance and guide causal interventions to modulate beta for optimal function. PMID:27469163

  2. Prdm8 regulates the morphological transition at multipolar phase during neocortical development.

    Directory of Open Access Journals (Sweden)

    Mayuko Inoue

    Full Text Available Here, we found that the PR domain protein Prdm8 serves as a key regulator of the length of the multipolar phase by controlling the timing of morphological transition. We used a mouse line with expression of Prdm8-mVenus reporter and found that Prdm8 is predominantly expressed in the middle and upper intermediate zone during both the late and terminal multipolar phases. Prdm8 expression was almost coincident with Unc5D expression, a marker for the late multipolar phase, although the expression of Unc5D was found to be gradually down-regulated to the point at which mVenus expression was gradually up-regulated. This expression pattern suggests the possible involvement of Prdm8 in the control of the late and terminal multipolar phases, which controls the timing for morphological transition. To test this hypothesis, we performed gain- and loss-of-function analysis of neocortical development by using in utero electroporation. We found that the knockdown of Prdm8 results in premature change from multipolar to bipolar morphology, whereas the overexpression of Prdm8 maintained the multipolar morphology. Additionally, the postnatal analysis showed that the Prdm8 knockdown stimulated the number of early born neurons, and differentiated neurons located more deeply in the neocortex, however, majority of those cells could not acquire molecular features consistent with laminar location. Furthermore, we found the candidate genes that were predominantly utilized in both the late and terminal multipolar phases, and these candidate genes included those encoding for guidance molecules. In addition, we also found that the expression level of these guidance molecules was inhibited by the introduction of the Prdm8 expression vector. These results indicate that the Prdm8-mediated regulation of morphological changes that normally occur during the late and terminal multipolar phases plays an important role in neocortical development.

  3. 76 FR 16807 - Notice of Intent To Collect Fees on Public Land in Tangle Lakes, Alaska, Glennallen Field Office...

    Science.gov (United States)

    2011-03-25

    ... Intent To Collect Fees on Public Land in Tangle Lakes, Alaska, Glennallen Field Office Under the Federal...), the Bureau of Land Management (BLM) Glennallen Field Office will begin to collect fees in 2011 upon... is encouraged to comment. Effective 6 months after the publication of this notice and upon completion...

  4. Role of metal ions in the cognitive decline of Down syndrome

    Directory of Open Access Journals (Sweden)

    Nakisa eMalakooti

    2014-06-01

    Full Text Available Down syndrome (DS, caused by trisomy of whole or part of chromosome 21 is the most common mental impairment. All Down syndrome (DS individuals suffer from cognitive decline and develop Alzheimer’s disease (AD by the age of forty. The appearance of enlarged early endosomes, followed by Amyloid β peptide deposition, the appearance of tau-containing neurofibrillary tangles and basal forebrain cholinergic neuron (BFCN degeneration are the neuropathological characteristics of this disease. In this review we will examine the role of metal ion dyshomeostasis and the genes which may be involved in these processes, and relate these back to the manifestation of age-dependant cognitive decline in DS.

  5. Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam

    International Nuclear Information System (INIS)

    Perl, D.P.; Gajdusek, D.C.; Garruto, R.M.; Yanagihara, R.T.; Gibbs, C.J.

    1982-01-01

    Scanning electron microscopy with energy-dispersive x-ray spectrometry was used to analyze the elemental content of neurofibrillary tangle (NFT)-bearing and NFT-free neurons within the Sommer's sector (H1 region) of the hippocampus in Guamanian Chamorros with amyotrophic lateral sclerosis and parkinsonism-dementia and in neurologically normal controls. Preliminary data indicate prominent accumulation of aluminum within the nuclear region and perikaryal cytoplasm of NFT-bearing hippocampal neurons, regardless of the underlying neurological diagnosis. These findings further extend the association between intraneuronal aluminum and NFT formation and support the hypothesis that environmental factors are related to the neurodegenerative changes seen in the Chamorro population

  6. Alzheimer's neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study.

    Science.gov (United States)

    Riley, Kathryn P; Snowdon, David A; Markesbery, William R

    2002-05-01

    The development of interventions designed to delay the onset of dementia highlights the need to determine the neuropathologic characteristics of individuals whose cognitive function ranges from intact to demented, including those with mild cognitive impairments. We used the Braak method of staging Alzheimer's disease pathology in 130 women ages 76-102 years who were participants in the Nun Study, a longitudinal study of aging and Alzheimer's disease. All participants had complete autopsy data and were free from neuropathologic conditions other than Alzheimer's disease lesions that could affect cognitive function. Findings showed a strong relationship between Braak stage and cognitive state. The presence of memory impairment was associated with more severe Alzheimer's disease pathology and higher incidence of conversion to dementia in the groups classified as having mild or global cognitive impairments. In addition to Braak stage, atrophy of the neocortex was significantly related to the presence of dementia. Our data indicate that Alzheimer's neurofibrillary pathology is one of the neuropathologic substrates of mild cognitive impairments. Additional studies are needed to help explain the variability in neuropathologic findings seen in individuals whose cognitive performance falls between intact function and dementia.

  7. Entropy in the Tangled Nature Model of Evolution

    Directory of Open Access Journals (Sweden)

    Ty N. F. Roach

    2017-04-01

    Full Text Available Applications of entropy principles to evolution and ecology are of tantamount importance given the central role spatiotemporal structuring plays in both evolution and ecological succession. We obtain here a qualitative interpretation of the role of entropy in evolving ecological systems. Our interpretation is supported by mathematical arguments using simulation data generated by the Tangled Nature Model (TNM, a stochastic model of evolving ecologies. We define two types of configurational entropy and study their empirical time dependence obtained from the data. Both entropy measures increase logarithmically with time, while the entropy per individual decreases in time, in parallel with the growth of emergent structures visible from other aspects of the simulation. We discuss the biological relevance of these entropies to describe niche space and functional space of ecosystems, as well as their use in characterizing the number of taxonomic configurations compatible with different niche partitioning and functionality. The TNM serves as an illustrative example of how to calculate and interpret these entropies, which are, however, also relevant to real ecosystems, where they can be used to calculate the number of functional and taxonomic configurations that an ecosystem can realize.

  8. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity.

    Science.gov (United States)

    Adhikari, Bhim M; Sathian, K; Epstein, Charles M; Lamichhane, Bidhan; Dhamala, Mukesh

    2014-05-01

    Oscillatory interactions within functionally specialized but distributed brain regions are believed to be central to perceptual and cognitive functions. Here, using human scalp electroencephalography (EEG) recordings combined with source reconstruction techniques, we study how oscillatory activity functionally organizes different neocortical regions during a tactile discrimination task near the limit of spatial acuity. While undergoing EEG recordings, blindfolded participants felt a linear three-dot array presented electromechanically, under computer control, and reported whether the central dot was offset to the left or right. The average brain response differed significantly for trials with correct and incorrect perceptual responses in the timeframe approximately between 130 and 175ms. During trials with correct responses, source-level peak activity appeared in the left primary somatosensory cortex (SI) at around 45ms, in the right lateral occipital complex (LOC) at 130ms, in the right posterior intraparietal sulcus (pIPS) at 160ms, and finally in the left dorsolateral prefrontal cortex (dlPFC) at 175ms. Spectral interdependency analysis of activity in these nodes showed two distinct distributed networks, a dominantly feedforward network in the beta band (12-30Hz) that included all four nodes and a recurrent network in the gamma band (30-100Hz) that linked SI, pIPS and dlPFC. Measures of network activity in both bands were correlated with the accuracy of task performance. These findings suggest that beta and gamma band oscillatory networks coordinate activity between neocortical regions mediating sensory and cognitive processing to arrive at tactile perceptual decisions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Ising model on tangled chain - 2: Magnetization and susceptibility

    International Nuclear Information System (INIS)

    Mejdani, R.

    1993-05-01

    In the preceding paper we have considered an Ising model defined on tangled chain to study the behaviour of the free energy and entropy, particularly in the zero-field and zero-temperature limit. In this paper, following the main line and basing on some results of the previous work, we shall study in the ''language'' of state configurations the behaviour of the magnetization and the susceptibility for different conditions of the model, to understand better the competition between the ferromagnetic bonds along the chain and the antiferromagnetic additional bonds across the chain. Particularly interesting is the behaviour of the susceptibility in the zero-field and zero-temperature limit. Exact solutions for the magnetization and susceptibility, generated by analytical calculations and iterative algorithms, are described. The additional bonds, introduced as a form of perfectly disorder, indicate a particular effect on the spin correlation. We found that the condition J=-J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. (author). 16 refs, 14 figs

  10. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Silberberg, Gilad; Markram, Henry

    2008-01-01

    Exposure to valproic acid (VPA) during embryogenesis can cause several teratogenic effects, including developmental delays and in particular autism in humans if exposure occurs during the third week of gestation. We examined the postnatal effects of embryonic exposure to VPA on microcircuit...... properties of juvenile rat neocortex using in vitro electrophysiology. We found that a single prenatal injection of VPA on embryonic day 11.5 causes a significant enhancement of the local recurrent connectivity formed by neocortical pyramidal neurons. The study of the biophysical properties...... of these connections revealed weaker excitatory synaptic responses. A marked decrease of the intrinsic excitability of pyramidal neurons was also observed. Furthermore, we demonstrate a diminished number of putative synaptic contacts in connection between layer 5 pyramidal neurons. Local hyperconnectivity may render...

  11. Development of calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured neocortical neurons visualized by cobalt staining

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S

    1998-01-01

    The developmental expression of calcium (Ca2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in cultured neocortical neurons was evaluated by using cobalt uptake, a histochemical method that identifies cells expressing Ca2+-permeable, non-N-methyl-D-aspartate...

  12. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study.

    Science.gov (United States)

    Snowdon, D A; Greiner, L H; Mortimer, J A; Riley, K P; Greiner, P A; Markesbery, W R

    1997-03-12

    To determine the relationship of brain infarction to the clinical expression of Alzheimer disease (AD). Cognitive function and the prevalence of dementia were determined for participants in the Nun Study who later died. At autopsy, lacunar and larger brain infarcts were identified, and senile plaques and neurofibrillary tangles in the neocortex were quantitated. Participants with abundant senile plaques and some neurofibrillary tangles in the neocortex were classified as having met the neuropathologic criteria for AD. Convents in the Midwestern, Eastern, and Southern United States. A total of 102 college-educated women aged 76 to 100 years. Cognitive function assessed by standard tests and dementia and AD assessed by clinical and neuropathologic criteria. Among 61 participants who met the neuropathologic criteria for AD, those with brain infarcts had poorer cognitive function and a higher prevalence of dementia than those without infarcts. Participants with lacunar infarcts in the basal ganglia, thalamus, or deep white matter had an especially high prevalence of dementia, compared with those without infarcts (the odds ratio [OR] for dementia was 20.7, 95% confidence interval [95% CI], 1.5-288.0). Fewer neuropathologic lesions of AD appeared to result in dementia in those with lacunar infarcts in the basal ganglia, thalamus, or deep white matter than in those without infarcts. In contrast, among 41 participants who did not meet the neuropathologic criteria for AD, brain infarcts were only weakly associated with poor cognitive function and dementia. Among all 102 participants, atherosclerosis of the circle of Willis was strongly associated with lacunar and large brain infarcts. These findings suggest that cerebrovascular disease may play an important role in determining the presence and severity of the clinical symptoms of AD.

  13. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    Directory of Open Access Journals (Sweden)

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  14. Radiation-induced late brain injury and the protective effect of traditional Chinese medicine

    International Nuclear Information System (INIS)

    Yi Junlin; Miao Yanjun; Yang Weizhi; Cai Weiming; Liu Yajie

    2004-01-01

    Objective: To investigate whether radiation-induced late injury of the brain can be ameliorated by traditional Chinese Medicine through blocking the primary events. Methods: This trial included five animal groups: sham irradiation, irradiation only, and three treatment groups. The whole brain of BALB/C mouse was irradiated with 22 Gy by using a 6 MV linear accelerator. Step down method was used to evaluate the study and memory abilities. Mouse weight was also recorded every week before and after irradiation. On D90, all mice alive were euthanized and Glee's silver dye method and Bielschousky silver dye method were used to detect the senile plaque and the neurofibrillary tangle. One-Way ANOVA was used to evaluate the differences among the groups in the various aspects of study and memory abilities as well as quality of life. Kaplan-Meier was used to evaluate the survival. Log-rank was used to detect the differences among the survival groups. Results: 1. There was no significant difference in survival among the treatment groups, even though Salvia Miltiorrhiza (SM) was able to improve the quality of life. As to the cognition function, it was shown that whole brain radiation would make a severe cognition damage with the learning and memorizing ability of the irradiated mice being worse than those of the sham irradiation group. The Traditional Chinese Medicine Salvia Miltiorrhiza possesses the role of a protective agent against cognition function damage induced by irradiation. 2. Glee's silver dye and Bielschousky silver dye show much more senile plaque and the neurofibrillary tangle in brain tissue of R group and R + 654-2 group than those in the R + SM group. Conclusions: Salvia Miltiorrhiza is able to protect the mouse from cognition function damage induced by irradiation and improve the quality of life by ameliorating the primary events, though it does not improve the survival

  15. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines

    Directory of Open Access Journals (Sweden)

    C. Dirk Keene

    2016-06-01

    Full Text Available Dozens of transgenic mouse models, generally based on mutations associated with familial Alzheimer's disease (AD, have been developed, in part, for preclinical testing of candidate AD therapies. However, none of these models has successfully predicted the clinical efficacy of drugs for treating AD patients. Therefore, development of more translationally relevant AD mouse models remains a critical unmet need in the field. A concept not previously implemented in AD preclinical drug testing is the use of mouse lines that have been validated for neuropathological features of human AD. Current thinking suggests that amyloid plaque and neurofibrillary tangle deposition is an essential component for accurate modeling of AD. Therefore, the AD translational paradigm would require pathologic Aβ and tau deposition, a disease-relevant distribution of plaques and tangles, and a pattern of disease progression of Aβ and tau isoforms similar to the neuropathological features found in the brains of AD patients. Additional parameters useful to evaluate parallels between AD and animal models would include 1 cerebrospinal fluid (CSF AD biomarker changes with reduced Aβ and increased phospho-tau/tau; 2 structural and functional neuroimaging patterns including MRI hippocampal atrophy, fluorodeoxyglucose (FDG, and amyloid/tau PET alterations in activity and/or patterns of pathologic peptide deposition and distribution; and 3 cognitive impairment with emphasis on spatial learning and memory to distinguish presymptomatic and symptomatic mice at specific ages. A validated AD mouse model for drug testing would likely show tau-related neurofibrillary degeneration following Aβ deposition and demonstrate changes in pathology, CSF analysis, and neuroimaging that mirror human AD. Development of the ideal model would revolutionize the ability to establish the translational value of AD mouse models and serve as a platform for discussions about national phenotyping guidelines

  16. New Features about Tau Function and Dysfunction

    Directory of Open Access Journals (Sweden)

    Miguel Medina

    2016-04-01

    Full Text Available Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders, collectively referred to as tauopathies, the most common of which is Alzheimer’s disease (AD. Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have revealed novel insights into their important role during pathogenesis and provided potential novel therapeutic targets. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, including phosphorylation, glycosylation, acetylation, and truncation, among others, indicating the complexity and variability of factors influencing regulation of tau toxicity, all of which have significant implications for the development of novel therapeutic approaches in various neurodegenerative disorders. A more comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for designing more efficient approaches to tackle tauopathies in the near future.

  17. A comparative study on pathological features of transgenic rat lines expressing either three or four repeat misfolded tau.

    Science.gov (United States)

    Valachova, Bernadeta; Brezovakova, Veronika; Bugos, Ondrej; Jadhav, Santosh; Smolek, Tomas; Novak, Petr; Zilka, Norbert

    2018-08-01

    Human tauopathies represent a heterogeneous group of neurodegenerative disorders characterized by distinct clinical features, typical histopathological structures, and defined ratio(s) of three-repeat and four-repeat tau isoforms within pathological aggregates. How the optional microtubule-binding repeat of tau influences this differentiation of pathologies is understudied. We have previously generated and characterized transgenic rodent models expressing human truncated tau aa151-391 with either three (SHR24) or four microtubule-binding repeats (SHR72). Here, we compare the behavioral and neuropathological hallmarks of these two transgenic lines using a battery of tests for sensorimotor, cognitive, and neurological functions over the age range of 3.5-15 months. Progression of sensorimotor and neurological deficits was similar in both transgenic lines; however, the lifespan of transgenic line SHR72 expressing truncated four-repeat tau was markedly shorter than SHR24. Moreover, the expression of three or four-repeat tau induced distinct neurofibrillary pathology in these lines. Transgenic lines displayed different distribution of tau pathology and different type of neurofibrillary tangles. Our results suggest that three- and four-repeat isoforms of tau may display different modes of action in the diseased brain. © 2018 Wiley Periodicals, Inc.

  18. New Features about Tau Function and Dysfunction

    Science.gov (United States)

    Medina, Miguel; Hernández, Félix; Avila, Jesús

    2016-01-01

    Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders, collectively referred to as tauopathies, the most common of which is Alzheimer’s disease (AD). Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have revealed novel insights into their important role during pathogenesis and provided potential novel therapeutic targets. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, including phosphorylation, glycosylation, acetylation, and truncation, among others, indicating the complexity and variability of factors influencing regulation of tau toxicity, all of which have significant implications for the development of novel therapeutic approaches in various neurodegenerative disorders. A more comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for designing more efficient approaches to tackle tauopathies in the near future. PMID:27104579

  19. A culture-brain link: Negative age stereotypes predict Alzheimer's disease biomarkers.

    Science.gov (United States)

    Levy, Becca R; Ferrucci, Luigi; Zonderman, Alan B; Slade, Martin D; Troncoso, Juan; Resnick, Susan M

    2016-02-01

    Although negative age stereotypes have been found to predict adverse outcomes among older individuals, it was unknown whether the influence of stereotypes extends to brain changes associated with Alzheimer's disease. To consider this possibility, we drew on dementia-free participants, in the Baltimore Longitudinal Study of Aging, whose age stereotypes were assessed decades before yearly magnetic resonance images and brain autopsies were performed. Those holding more-negative age stereotypes earlier in life had significantly steeper hippocampal-volume loss and significantly greater accumulation of neurofibrillary tangles and amyloid plaques, adjusting for relevant covariates. These findings suggest a new pathway to identifying mechanisms and potential interventions related to the pathology of Alzheimer's disease. (c) 2016 APA, all rights reserved).

  20. Novel potential for the management of Alzheimer disease.

    Science.gov (United States)

    Ginter, E; Simko, V; Weinrebova, D; Ladecka, Z

    2015-01-01

    Pathologic characteristics of Alzheimer disease (AD) are β-amyloid (Aβ) plaques, neurofibrillary tangles (NFT) and neurodegeneration. Currently, there is no cure for AD. Cilostazol, a selective inhibitor of type 3 phosphodiesterase, is likely to be a promising agent for AD. In the brain of the experimental animals it significantly reduced the Aβ amyloid plaques. Initial clinical reports on the effect of Cilostazol in AD patients are promising. In mice, stem cells favourably influence the pathogenetic process critical in AD, by reducing deposits of Aβ plaques. Clinical trials of the drug, called Betablock, are already underway in Britain. Successful management and resolution of AD in man will still require further intensive research (Fig. 4, Ref. 11).

  1. A Culture-Brain Link: Negative Age Stereotypes Predict Alzheimer’s-disease Biomarkers

    Science.gov (United States)

    Levy, Becca R.; Ferrucci, Luigi; Zonderman, Alan B.; Slade, Martin D.; Troncoso, Juan; Resnick, Susan M.

    2016-01-01

    Although negative age stereotypes have been found to predict adverse outcomes among older individuals, it was unknown whether the influence of stereotypes extends to brain changes associated with Alzheimer’s disease. To consider this possibility, we drew on the age stereotypes of dementia-free participants in the Baltimore Longitudinal Study of Aging that had been measured decades before yearly MRIs and brain autopsies were performed. Those with more negative age stereotypes earlier in life had significantly steeper hippocampal-volume loss, and significantly greater accumulation of neurofibrillary tangles and amyloid plaques at autopsy, adjusting for relevant covariates. These findings suggest a new pathway to identifying mechanisms and potential interventions related to the neuropathology of Alzheimer’s disease. PMID:26641877

  2. Mild to Moderate Alzheimer Dementia with Insufficient Neuropathological Changes

    Science.gov (United States)

    Serrano-Pozo, Alberto; Qian, Jing; Monsell, Sarah E.; Blacker, Deborah; Gómez-lsla, Teresa; Betensky, Rebecca A.; Growdon, John H.; Johnson, Keith; Frosch, Matthew P.; Sperling, Reisa A.; Hyman, Bradley T.

    2014-01-01

    Recently, ∼16% of participants in an anti-Aβ passive immunotherapy trial for mild-to-moderate Alzheimer disease (AD) had a negative baseline amyloid positron emission tomography (PET) scan. Whether they have AD or are AD clinical phenocopies remains unknown. We examined the 2005-2013 National Alzheimer's Coordinating Center autopsy database and found that ∼14% of autopsied subjects clinically diagnosed with mild-to-moderate probable AD have no or sparse neuritic plaques, which would expectedly yield a negative amyloid PET scan. More than half of these “Aβ-negative” subjects have low neurofibrillary tangle Braak stages. These findings support the implementation of a positive amyloid biomarker as an inclusion criterion in future anti-Aβ drug trials. PMID:24585367

  3. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  4. Metabolomics-based promising candidate biomarkers and pathways in Alzheimer's disease.

    Science.gov (United States)

    Kang, Jian; Lu, Jingli; Zhang, Xiaojian

    2015-05-01

    Pathologically, loss of synapses and neurons, extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) are observed in the brains of patients with Alzheimer's disease (AD). These features are associated with changes Aβ (amyloid β) 40, Aβ42, total tau and phosphorylated tau (p-tau), which are as definitely biomarkers for severe AD state. However, biomarkers for effectively diagnosing AD in the pre-clinical state for directing therapeutic strategies are lacking. Metabolic profiling as a powerful tool to identify new biomarkers is receiving increasing attention in AD. This review will focus on metabolomics-based detection of promising candidate biomarkers and pathways in AD to facilitate the discovery of new medicines and disease pathways.

  5. Closed Loop Brain Model of Neocortical Information Based Exchange

    Directory of Open Access Journals (Sweden)

    James eKozloski

    2016-01-01

    Full Text Available Here we describe an information based exchange' model of brain function that ascribes to neocortex, basal ganglia, and thalamus distinct network functions. The model allows us to analyze whole brain system set point measures, such as the rate and heterogeneity of transitions in striatum and neocortex, in the context of neuromodulation and other perturbations. Our closed-loop model is grounded in neuroanatomical observations, proposing a novel Grand Loop through neocortex, and invokes different forms of plasticity at specific tissue interfaces and their principle cell synapses to achieve these transitions. By implementing a system for maximum information based exchange of action potentials between modeled neocortical areas, we observe changes to these measures in simulation. We hypothesize that similar dynamic set points and modulations exist in the brain's resting state activity, and that different modifications to information based exchange may shift the risk profile of different component tissues, resulting in different neurodegenerative diseases. This model is targeted for further development using IBM's Neural Tissue Simulator, which allows scalable elaboration of networks, tissues, and their neural and synaptic components towards ever greater complexity and biological realism.

  6. Statistical mechanics of neocortical interactions: Path-integral evolution of short-term memory

    Science.gov (United States)

    Ingber, Lester

    1994-05-01

    Previous papers in this series of statistical mechanics of neocortical interactions (SMNI) have detailed a development from the relatively microscopic scales of neurons up to the macroscopic scales as recorded by electroencephalography (EEG), requiring an intermediate mesocolumnar scale to be developed at the scale of minicolumns (~=102 neurons) and macrocolumns (~=105 neurons). Opportunity was taken to view SMNI as sets of statistical constraints, not necessarily describing specific synaptic or neuronal mechanisms, on neuronal interactions, on some aspects of short-term memory (STM), e.g., its capacity, stability, and duration. A recently developed c-language code, pathint, provides a non-Monte Carlo technique for calculating the dynamic evolution of arbitrary-dimension (subject to computer resources) nonlinear Lagrangians, such as derived for the two-variable SMNI problem. Here, pathint is used to explicitly detail the evolution of the SMNI constraints on STM.

  7. Tcf3 represses Wnt-β-catenin signaling and maintains neural stem cell population during neocortical development.

    Directory of Open Access Journals (Sweden)

    Atsushi Kuwahara

    Full Text Available During mouse neocortical development, the Wnt-β-catenin signaling pathway plays essential roles in various phenomena including neuronal differentiation and proliferation of neural precursor cells (NPCs. Production of the appropriate number of neurons without depletion of the NPC population requires precise regulation of the balance between differentiation and maintenance of NPCs. However, the mechanism that suppresses Wnt signaling to prevent premature neuronal differentiation of NPCs is poorly understood. We now show that the HMG box transcription factor Tcf3 (also known as Tcf7l1 contributes to this mechanism. Tcf3 is highly expressed in undifferentiated NPCs in the mouse neocortex, and its expression is reduced in intermediate neuronal progenitors (INPs committed to the neuronal fate. We found Tcf3 to be a repressor of Wnt signaling in neocortical NPCs in a reporter gene assay. Tcf3 bound to the promoter of the proneural bHLH gene Neurogenin1 (Neurog1 and repressed its expression. Consistent with this, Tcf3 repressed neuronal differentiation and increased the self-renewal activity of NPCs. We also found that Wnt signal stimulation reduces the level of Tcf3, and increases those of Tcf1 (also known as Tcf7 and Lef1, positive mediators of Wnt signaling, in NPCs. Together, these results suggest that Tcf3 antagonizes Wnt signaling in NPCs, thereby maintaining their undifferentiated state in the neocortex and that Wnt signaling promotes the transition from Tcf3-mediated repression to Tcf1/Lef1-mediated enhancement of Wnt signaling, constituting a positive feedback loop that facilitates neuronal differentiation.

  8. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... most important voltage dependent calcium channel in all parts of the neuron. After treatment with thapsigargin the increase in cytosolic calcium was halved, indicating that calcium release from thapsigargin sensitive intracellular calcium stores is an important component of the potassium induced rise...

  9. Amnesia in Frontotemporal Dementia with Amyotrophic Lateral Sclerosis, Masquerading Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    A. Yamanami-Irioka

    2011-10-01

    Full Text Available A 68-year-old man with a clinical diagnosis of Alzheimer’s disease (AD later developed amyotrophic lateral sclerosis (ALS, which was confirmed at autopsy at age 72 years. Because neuronal loss and AD-type pathologies (Braak stage II for neurofibrillary tangles were scant, TDP-43-positive intracytoplasmic inclusions in hippocampal dentate granular cells and in neurons in the subiculum and amygdala, even though small in amount, may represent the earliest lesions of ALS-related dementia and could be the cause of dementia in this patient. Although the persistent elevation of creatine kinase from the onset could be a pointer to the presence of motor involvement, more accurate characterization of dementia, which may differentiate ALS-related dementia and AD, is necessary.

  10. Estimating the temporal evolution of Alzheimer's disease pathology with autopsy data.

    Science.gov (United States)

    Royall, Donald R; Palmer, Raymond F

    2012-01-01

    The temporal growth of Alzheimer's disease (AD) neuropathology cannot be easily determined because autopsy data are available only after death. We combined autopsy data from 471 participants in the Honolulu-Asia Aging Study (HAAS) into latent factor measures of neurofibrillary tangle and neuritic plaque counts. These were associated with intercept and slope parameters from a latent growth curve (LGC) model of 9-year change in cognitive test performance in 3244 autopsied and non-autopsied HAAS participants. Change in cognition fully mediated the association between baseline cognitive performance and AD lesions counts. The mediation effect of cognitive change on both AD lesion models effectively dates them within the period of cognitive surveillance. Additional analyses could lead to an improved understanding of lesion propagation in AD.

  11. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer′s disease

    Directory of Open Access Journals (Sweden)

    Madhuri Venigalla

    2015-01-01

    Full Text Available Alzheimer′s disease is a progressive neurodegenerative disorder, characterized by deposition of amyloid beta, neurofibrillary tangles, astrogliosis and microgliosis, leading to neuronal dysfunction and loss in the brain. Current treatments for Alzheimer′s disease primarily focus on enhancement of cholinergic transmission. However, these treatments are only symptomatic, and no disease-modifying drug is available for Alzheimer′s disease patients. This review will provide an overview of the proven antioxidant, anti-inflammatory, anti-amyloidogenic, neuroprotective, and cognition-enhancing effects of curcumin and apigenin and discuss the potential of these compounds for Alzheimer′s disease prevention and treatment. We suggest that these compounds might delay the onset of Alzheimer′s disease or slow down its progression, and they should enter clinical trials as soon as possible.

  12. Study on radioactive labeling of molecular probes for Alzheimer's disease

    International Nuclear Information System (INIS)

    Guo Zhe; Zhang Jinming

    2006-01-01

    Alzheimer's disease (AD) is the most common form of dementia, the pathological features of AD include neuritic plaques composed of beta-amyloid protein, neurofibrillary tangles. Direct imaging of amyloid load in patients with AD in vivo would be useful for the early diagnosis of AD and the development and assessment of new treatment strategies. Different strategies are being used to develop compounds suitable for in vivo imaging of amyloid deposits in human brains. Two compounds, 18 F-FDDNP and 11 C-PIB, both show more binding in the brains of patients with AD than in those of healthy people. Additional compounds will probably be developed that are suitable not only for PET but also for single photon emission CT(SPECT). (authors)

  13. Immune Regulator MCPIP1 Modulates TET Expression during Early Neocortical Development

    Directory of Open Access Journals (Sweden)

    Huihui Jiang

    2016-09-01

    Full Text Available MCPIP1 is a recently identified immune regulator that plays critical roles in preventing immune disorders, and is also present in the brain. Currently an unresolved question remains as to how MCPIP1 performs its non-immune functions in normal brain development. Here, we report that MCPIP1 is abundant in neural progenitor cells (NPCs and newborn neurons during the early stages of neurogenesis. The suppression of MCPIP1 expression impairs normal neuronal differentiation, cell-cycle exit, and concomitant NPC proliferation. MCPIP1 is important for maintenance of the NPC pool. Notably, we demonstrate that MCPIP1 reduces TET (TET1/TET2/TET3 levels and then decreases 5-hydroxymethylcytosine levels. Furthermore, the MCPIP1 interaction with TETs is involved in neurogenesis and in establishing the proper number of NPCs in vivo. Collectively, our findings not only demonstrate that MCPIP1 plays an important role in early cortical neurogenesis but also reveal an unexpected link between neocortical development, immune regulators, and epigenetic modification.

  14. Spectroscopic evidence of hippocampal abnormalities in neocortical epilepsy

    Science.gov (United States)

    Mueller, S. G.; Laxer, K. D.; Cashdollar, N.; Lopez, R. C.; Weiner, M. W.

    2009-01-01

    Lesional neocortical epilepsy (NE) can be associated with hippocampal sclerosis or hippocampal spectroscopic abnormalities without atrophy (dual pathology). In this study, magnetic resonance spectroscopic imaging (MRSI) was used to determine the frequency of hippocampal damage/dysfunction in NE with and without structural lesion. Sixteen patients with NE [seven temporal NE (NE-T), nine extratemporal (NE-ET)] and 16 controls were studied with a 2D MRSI sequence (Repetition time/echo time (TR/TE) = 1800/135 ms) covering both hippocampi. Seven NE patients had MR visible lesions (NE-Les), nine had normal MRI (NE-no). In each hippocampus, 12 voxels were uniformly selected. In controls, mean (± SD) NAA/(Cr + Cho) values for each voxel were calculated and voxels with NAA/(Cr + Cho) ≤ (mean in controls – 2SD in controls) were defined as ‘pathological’ in patients. Eight of 16 NE patients had at least two ‘pathological’ voxel (mean 2.5, range 2–5) in one hippocampus. Four were NE-Les and four NE-no. Three (43%) NE-T patients, had evidence for hippocampal damage/dysfunction and five (56%) had NE-ET. The ipsilateral hippocampus was affected in six of eight NE patients. Evidence for unilateral hippocampal damage/dysfunction was demonstrated in 50% of the NE patients. The type of NE, i.e. NE-Les or NE-no, NE-T or NE-ET, had no influence on the occurrence of hippocampal damage/dysfunction. PMID:16618342

  15. Evaluation of 8-week body weight control program including sea tangle (Laminaria japonica) supplementation in Korean female college students

    OpenAIRE

    You, Jeong Soon; Sung, Min Jung; Chang, Kyung Ja

    2009-01-01

    This study was conducted to evaluate the effects of a body weight control program with supplementation of sea tangle (20 g/day) on 22 female college students. The contents of the program for 8 weeks contained diet therapy, exercise and behavioral modification through nutrition education. Body composition, dietary habit scores, serum lipid profiles, daily nutrient intakes and the quality of life were assessed at the beginning and at the end of the program. Average age of subjects and height we...

  16. The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis.

    Science.gov (United States)

    Leveugle, B; Spik, G; Perl, D P; Bouras, C; Fillit, H M; Hof, P R

    1994-07-04

    Lactotransferrin is a glycoprotein that specifically binds and transports iron. This protein is also believed to transport other metals such as aluminum. Several lines of evidence indicate that iron and aluminum are involved in the pathogenesis of many dementing diseases. In this context, the analysis of the iron-binding protein distribution in the brains of patients affected by neurodegenerative disorders is of particular interest. In the present study, the distribution of lactotransferrin was analyzed by immunohistochemistry in the cerebral cortex from patients presenting with Alzheimer's disease, Down syndrome, amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam, sporadic amyotrophic lateral sclerosis, or Pick's disease. The results show that lactotransferrin accumulates in the characteristic lesions of the different pathologic conditions investigated. For instance, in Alzheimer's disease and Guamanian cases, a subpopulation of neurofibrillary tangles was intensely labeled in the hippocampal formation and inferior temporal cortex. Senile plaques and Pick bodies were also consistently labeled. These staining patterns were comparable to those obtained with antibodies to the microtubule-associated protein tau and the amyloid beta A4 protein, although generally fewer neurofibrillary tangles were positive for lactotransferrin than for tau protein. Neuronal cytoplasmic staining with lactotransferrin antibodies, was observed in a subpopulation of pyramidal neurons in normal aging, and was more pronounced in Alzheimer's disease, Guamanian cases, Pick's disease, and particularly in Down syndrome. Lactotransferrin was also strongly associated with Betz cells and other motoneurons in the primary motor cortex of control, Alzheimer's disease, Down syndrome, Guamanian and Pick's disease cases. These same lactotransferrin-immunoreactive motoneurons were severely affected in the cases with amyotrophic lateral sclerosis. It is possible that in these

  17. Detection of hyperphosphorylated tau protein and α-synuclein in spinal cord of patients with Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Guo YJ

    2016-02-01

    Full Text Available Yanjun Guo,1,2 Luning Wang,2 Mingwei Zhu,2 Honghong Zhang,3 Yazhuo Hu,3 Zhitao Han,3 Jia Liu,4 Weiqin Zhao,1 Dexin Wang11Department of Neurology, Beijing Friendship Hospital, Capital Medical University, 2Department of Geriatric Neurology, PLA General Hospital, 3Institute of Geriatrics, Chinese PLA General Hospital & Chinese PLA Medical Academy, 4Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of ChinaAbstract: The aim of this study was to investigate the neuropathological features of the spinal cord in patients suffering with Alzheimer’s disease (AD. Spinal cord tissue collected from three AD patients and eight controls was selected for the study. Data were collected at T2, T8, T10, L4, and S2 spinal levels. The sections were subjected to hematoxylin and eosin and Gallyas–Braak staining methods and then were immunostained with antibodies such as phosphorylated tau protein (AT8, α-synuclein, Aβ, amyloid precursor protein , ubiquitin, and TDP-43. Pathological changes exhibited by the biomarkers were detected by microscopy. Neurofibrillary tangles (NFTs were detectable in spinal anterior horn motor neurons in two of the three AD patients. AT8-positive axons or axon-like structures and AT8 expression in glial cells were detected in all three AD cases. Hyperphosphorylation of tau protein was detected in spinal anterior horn cells, glial cells, and axons, and its severity was associated with NFTs in the brain tissue. α-Synuclein-positive Lewy bodies and scattered Lewy-like neuritis were detected in the medial horn of the thoracic spinal cord and ventral sacral gray matter, respectively, in one patient who had AD with Lewy bodies. Neither amyloid deposition nor amyloid precursor protein and TDP-43 expression was detected in the spinal cord of AD patients. Spinal cord of AD patients was observed to contain phosphorylated tau protein and α-synuclein immunoreactive structures, which may play a

  18. Corrigendum to “Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain" [Neurosci.Lett. 580 (2014) 12–16] A possible new animal model of autism

    DEFF Research Database (Denmark)

    Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen

    2015-01-01

    The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20 mg/kg or 100 mg/kg) continuously during the last 9......–12 days of pregnancy and during the lactation period until sacrifice on the 23rd postnatal day. Total number of neocortical neurons was estimated using the optical fraction at or and frontal cortical thicknesses were sampled in VPA exposed pups compared with an unexposed control group. We found that pups....... Pups exposed to 100 mg/kg, but not to 20 mg/kg VPA displayed a significant (p brain development by disturbing neocortical organization...

  19. The Neuropathology of Chronic Traumatic Encephalopathy

    Science.gov (United States)

    McKee, Ann C.; Stein, Thor D.; Kiernan, Patrick T.; Alvarez, Victor E.

    2015-01-01

    Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE). Most instances of CTE occur in association with the play of sports, but CTE has also been reported in association with blast injuries and other neurotrauma. Symptoms of CTE include behavioral and mood changes, memory loss, cognitive impairment and dementia. Like many other neurodegenerative diseases, CTE is diagnosed with certainty only by neuropathological examination of brain tissue. CTE is a tauopathy characterized by the deposition of hyperphosphorylated tau (p-tau) protein as neurofibrillary tangles, astrocytic tangles and neurites in striking clusters around small blood vessels of the cortex, typically at the sulcal depths. Severely affected cases show p-tau pathology throughout the brain. Abnormalities in phosphorylated 43 kDa TAR DNA-binding protein are found in most cases of CTE; beta-amyloid is identified in 43%, associated with age. Given the importance of sports participation and physical exercise to physical and psychological health as well as disease resilience, it is critical to identify the genetic risk factors for CTE as well as to understand how other variables, such as stress, age at exposure, gender, substance abuse and other exposures, contribute to the development of CTE. PMID:25904048

  20. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation.

    Science.gov (United States)

    Lemieux, Maxime; Chauvette, Sylvain; Timofeev, Igor

    2015-02-01

    During slow-wave sleep, neurons of the thalamocortical network are engaged in a slow oscillation (<1 Hz), which consists of an alternation between the active and the silent states. Several studies have provided insights on the transition from the silent, which are essentially periods of disfacilitation, to the active states. However, the conditions leading to the synchronous onset of the silent state remain elusive. We hypothesized that a synchronous input to local inhibitory neurons could contribute to the transition to the silent state in the cat suprasylvian gyrus during natural sleep and under ketamine-xylazine anesthesia. After partial and complete deafferentation of the cortex, we found that the silent state onset was more variable among remote sites. We found that the transition to the silent state was preceded by a reduction in excitatory postsynaptic potentials and firing probability in cortical neurons. We tested the impact of chloride-mediated inhibition in the silent-state onset. We uncovered a long-duration (100-300 ms) inhibitory barrage occurring about 250 ms before the silent state onset in 3-6% of neurons during anesthesia and in 12-15% of cases during natural sleep. These inhibitory activities caused a decrease in cortical firing that reduced the excitatory drive in the neocortical network. That chain reaction of disfacilitation ends up on the silent state. Electrical stimuli could trigger a network silent state with a maximal efficacy in deep cortical layers. We conclude that long-range afferents to the neocortex and chloride-mediated inhibition play a role in the initiation of the silent state. Copyright © 2015 the American Physiological Society.

  1. The Role of Inflammatory Mediators in the Pathogenesis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Gholamreza Azizi

    2015-08-01

    Full Text Available Alzheimer’s disease (AD, a neurodegenerative disorder associated with advanced age, is the most common cause of dementia globally. AD is characterised by cognitive dysfunction, deposition of amyloid plaques, neurofibrillary tangles and neuro-inflammation. Inflammation of the brain is a key pathological hallmark of AD. Thus, clinical and immunopathological evidence of AD could be potentially supported by inflammatory mediators, including cytokines, chemokines, the complement system, acute phase proteins and oxidative mediators. In particular, oxidative mediators may actively contribute to the progression of AD and on-going inflammation in the brain. This review provides an overview of the functions and activities of inflammatory mediators in AD. An improved understanding of inflammatory processes and their role in AD is needed to improve therapeutic research aims in the field of AD and similar diseases.

  2. Recent Advances in the Inhibition of p38 MAPK as a Potential Strategy for the Treatment of Alzheimer's Disease.

    Science.gov (United States)

    Lee, Jong Kil; Kim, Nam-Jung

    2017-08-02

    P38 mitogen-activated protein kinase (MAPK) is a crucial target for chronic inflammatory diseases. Alzheimer's disease (AD) is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain, as well as neurodegeneration, and there is no known cure. Recent studies on the underlying biology of AD in cellular and animal models have indicated that p38 MAPK is capable of orchestrating diverse events related to AD, such as tau phosphorylation, neurotoxicity, neuroinflammation and synaptic dysfunction. Thus, the inhibition of p38 MAPK is considered a promising strategy for the treatment of AD. In this review, we summarize recent advances in the targeting of p38 MAPK as a potential strategy for the treatment of AD and envision possibilities of p38 MAPK inhibitors as a fundamental therapeutics for AD.

  3. Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Kanatsu, Kunihiko; Tomita, Taisuke

    2017-01-01

    Alzheimer disease (AD) is a neurodegenerative disease characterized by the extensive deposition of senile plaques and neurofibrillary tangles. Until recently, only the APOE gene had been known as a genetic risk factor for late-onset AD (LOAD), which accounts for more than 95% of all AD cases. However, in addition to this well-established genetic risk factor, genome-wide association studies have identified several single nucleotide polymorphisms as genetic risk factors of LOAD, such as PICALM and BIN1 . In addition, whole genome sequencing and exome sequencing have identified rare variants associated with LOAD, including TREM2 . We review the recent findings related to the molecular mechanisms by which these genetic risk factors contribute to AD, and our perspectives regarding the etiology of AD for the development of therapeutic agents.

  4. Epidemiology of Alzheimer disease.

    Science.gov (United States)

    Mayeux, Richard; Stern, Yaakov

    2012-08-01

    The global prevalence of dementia has been estimated to be as high as 24 million, and is predicted to double every 20 years until at least 2040. As the population worldwide continues to age, the number of individuals at risk will also increase, particularly among the very old. Alzheimer disease is the leading cause of dementia beginning with impaired memory. The neuropathological hallmarks of Alzheimer disease include diffuse and neuritic extracellular amyloid plaques in brain that are frequently surrounded by dystrophic neurites and intraneuronal neurofibrillary tangles. The etiology of Alzheimer disease remains unclear, but it is likely to be the result of both genetic and environmental factors. In this review we discuss the prevalence and incidence rates, the established environmental risk factors, and the protective factors, and briefly review genetic variants predisposing to disease.

  5. Metals and cholesterol: two sides of the same coin in Alzheimer’s disease pathology

    Science.gov (United States)

    Wong, Bruce X.; Hung, Ya Hui; Bush, Ashley I.; Duce, James A.

    2014-01-01

    Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed. PMID:24860500

  6. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease.

    Science.gov (United States)

    Gu, Xue-Mei; Huang, Han-Chang; Jiang, Zhao-Feng

    2012-10-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.

  7. Characteristics of tau oligomers

    Directory of Open Access Journals (Sweden)

    Yan eRen

    2013-07-01

    Full Text Available In Alzheimer disease (AD and other tauopathies, microtubule-associated protein tau becomes hyperphosphorylated, undergoes conformational changes, aggregates, eventually becoming neurofibrillary tangles (NFTs. As accumulating evidence suggests that NFTs themselves may not be toxic, attention is now turning toward the role of intermediate tau oligomers in AD pathophysiology. Sarkosyl extraction is a standard protocol for investigating insoluble tau aggregates in brains. There is a growing consensus that sarkosyl-insoluble tau correlates with the pathological features of tauopathy. While sarkosyl-insoluble tau from tauopathy brains has been well characterized as a pool of filamentous tau, other dimers, multimers, and granules of tau are much less well understood. There are protocols for identifying these tau oligomers. In this mini review, we discuss the characteristics of tau oligomers isolated via different methods and materials.

  8. Four Ways to Get Tangled Up in Russian

    Directory of Open Access Journals (Sweden)

    Maria Nordrum

    2014-11-01

    Full Text Available In this paper I will analyze the four Natural Perfectives of the simplex verb путатьipf ‘tangle up’, namely впутатьpf, спутатьpf, перепутатьpf and запутатьpf. According to Janda et al. (2013:103, “prefix variation” is a phenomenon that applies to 27% of all Russian verbs and is caused by the ability of prefixes to “focus the meanings of a simplex verb in different ways” (op. cit.:162. My question is: Is it possible to predict the choice of prefix when there is prefix variation? And, if yes: How?  My hypothesis is that the choice of prefix largely depends on the construction in which the verb appears and the semantics of its internal argument. Thus, I consider two factors in my analysis: Factor 1 Constructions and Factor 2 Semantics of the Internal Argument. My findings indicate that both factors are vital and, more specifically, that the choice of prefix for this verb to a large extent can be predicted by six tendencies that I will discuss thoroughly. I will argue that these six tendencies are of great relevance to second language learners, like myself, who often find themselves confused at the number of prefixes and, more specifically, Natural Perfectives available for a given verb. The topic of this paper has been born from a desire to gain insight with practical value in second language learning.

  9. Statistical mechanics of neocortical interactions: Stability and duration of the 7±2 rule of short-term-memory capacity

    Science.gov (United States)

    Ingber, Lester

    1985-02-01

    This paper is an essential addendum to a previous paper [L. Ingber, Phys. Rev. A 29, 3346 (1984)]. Calculations are presented here to support the claim made in the previous paper that there exists an approximate one-dimensional solution to the two-dimensional neocortical Fokker-Planck equation. This solution is extremely useful, not only for obtaining a closed algebraic expression for the time of first passage, but also for establishing that minima of the associated path-integral stationary Lagrangian are indeed stable points of the transient dynamic system. Also, a relatively nontechnical summary is given of the basic theory.

  10. Cerebral amyloid-beta protein accumulation with aging in cotton-top tamarins: a model of early Alzheimer's disease?

    Science.gov (United States)

    Lemere, Cynthia A; Oh, Jiwon; Stanish, Heather A; Peng, Ying; Pepivani, Imelda; Fagan, Anne M; Yamaguchi, Haruyasu; Westmoreland, Susan V; Mansfield, Keith G

    2008-04-01

    Alzheimer's disease (AD) is the most common progressive form of dementia in the elderly. Two major neuropathological hallmarks of AD include cerebral deposition of amyloid-beta protein (Abeta) into plaques and blood vessels, and the presence of neurofibrillary tangles in brain. In addition, activated microglia and reactive astrocytes are often associated with plaques and tangles. Numerous other proteins are associated with plaques in human AD brain, including Apo E and ubiquitin. The amyloid precursor protein and its shorter fragment, Abeta, are homologous between humans and non-human primates. Cerebral Abeta deposition has been reported previously for rhesus monkeys, vervets, squirrel monkeys, marmosets, lemurs, cynomologous monkeys, chimpanzees, and orangutans. Here we report, for the first time, age-related neuropathological changes in cotton-top tamarins (CTT, Saguinus oedipus), an endangered non-human primate native to the rainforests of Colombia and Costa Rica. Typical lifespan is 13-14 years of age in the wild and 15-20+ years in captivity. We performed detailed immunohistochemical analyses of Abeta deposition and associated pathogenesis in archived brain sections from 36 tamarins ranging in age from 6-21 years. Abeta plaque deposition was observed in 16 of the 20 oldest tamarins (>12 years). Plaques contained mainly Abeta42, and in the oldest animals, were associated with reactive astrocytes, activated microglia, Apo E, and ubiquitin-positive dystrophic neurites, similar to human plaques. Vascular Abeta was detected in 14 of the 20 aged tamarins; Abeta42 preceded Abeta40 deposition. Phospho-tau labeled dystrophic neurites and tangles, typically present in human AD, were absent in the tamarins. In conclusion, tamarins may represent a model of early AD pathology.

  11. Determination of the phospholipid precursor of anandamide and other N- acylethanolamine phospholipids before and after sodium azide-induced toxicity in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Hansen, H.H.; Schousboe, A.; Hansen, Harald S.

    2000-01-01

    Phospholipase D-mediated hydrolysis of N-acylethanolamine phospholipids (NAPEs) releases anandamide and other N-acylethanolamines, resulting in different actions at cellular targets in the CNS. Recently, we have demonstrated that these N-acyl lipids accumulate in cultured neocortical neurons subj...... method, neuronal NAPE species can be identified and quantified with respect to N-acyl composition, including a trans-isomer of the anandamide precursor. The anandamide precursor is up-regulated to the same extent as other NAPEs upon neuronal injury....

  12. Primary cellular meningeal defects cause neocortical dysplasia and dyslamination

    Science.gov (United States)

    Hecht, Jonathan H.; Siegenthaler, Julie A.; Patterson, Katelin P.; Pleasure, Samuel J.

    2010-01-01

    Objective Cortical malformations are important causes of neurological morbidity, but in many cases their etiology is poorly understood. Mice with Foxc1 mutations have cellular defects in meningeal development. We use hypomorphic and null alleles of Foxc1 to study the effect of meningeal defects on neocortical organization. Methods Embryos with loss of Foxc1 activity were generated using the hypomorphic Foxc1hith allele and the null Foxc1lacZ allele. Immunohistologic analysis was used to assess cerebral basement membrane integrity, marginal zone heterotopia formation, neuronal overmigration, meningeal defects, and changes in basement membrane composition. Dysplasia severity was quantified using two measures. Results Cortical dysplasia resembling cobblestone cortex, with basement membrane breakdown and lamination defects, is seen in Foxc1 mutants. As Foxc1 activity was reduced, abnormalities in basement membrane integrity, heterotopia formation, neuronal overmigration, and meningeal development appeared earlier in gestation and were more severe. Surprisingly, the basement membrane appeared intact at early stages of development in the face of severe deficits in meningeal development. Prominent defects in basement membrane integrity appeared as development proceeded. Molecular analysis of basement membrane laminin subunits demonstrated that loss of the meninges led to changes in basement membrane composition. Interpretation Cortical dysplasia can be caused by cellular defects in the meninges. The meninges are not required for basement membrane establishment but are needed for remodeling as the brain expands. Specific changes in basement membrane composition may contribute to subsequent breakdown. Our study raises the possibility that primary meningeal defects may cortical dysplasia in some cases. PMID:20976766

  13. Oxidative stress in Alzheimer disease: a possibility for prevention.

    Science.gov (United States)

    Bonda, David J; Wang, Xinglong; Perry, George; Nunomura, Akihiko; Tabaton, Massimo; Zhu, Xiongwei; Smith, Mark A

    2010-01-01

    Oxidative stress is at the forefront of Alzheimer disease (AD) research. While its implications in the characteristic neurodegeneration of AD are vast, the most important aspect is that it seems increasingly apparent that oxidative stress is in fact a primary progenitor of the disease, and not merely an epiphenomenon. Moreover, evidence indicates that a long "dormant period" of gradual oxidative damage accumulation precedes and actually leads to the seemingly sudden appearance of clinical and pathological AD symptoms, including amyloid-beta deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. These findings provide important insights into the development of potential treatment regimens and even allude to the possibility of a preventative cure. In this review, we elaborate on the dynamic role of oxidative stress in AD and present corresponding treatment strategies that are currently under investigation. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. New Beginnings in Alzheimer's Disease: The Most Prevalent Tauopathy.

    Science.gov (United States)

    Hernández, Félix; Llorens-Martín, María; Bolós, Marta; Pérez, Mar; Cuadros, Raquel; Pallas-Bazarra, Noemí; Zabala, Juan C; Avila, Jesús

    2018-03-16

    Alzheimer's disease (AD) is characterized by the presence of two aberrant structures: namely senile plaques, composed of amyloid-β peptide (Aβ), and neurofibrillary tangles, composed of tau protein. In this regard, Aβ and tau protein have been widely studied in research efforts aiming to find a therapy for AD. Aβ and tau pathologies do not always overlap. The precursor of Aβ is expressed in peripheral tissues and in the central nervous system (CNS), whereas tau is mainly a neuronal protein. Since AD is a disease of the CNS, it has been proposed that Aβ may initiate the disease process, with tau being the executor. In this review, we will focus on future studies of tau pathology, although we will comment on new beginnings for AD, as other molecules other than Aβ and tau may be involved in the onset of dementia.

  15. Metals and cholesterol: two sides of the same coin in Alzheimer’s disease pathology

    Directory of Open Access Journals (Sweden)

    Bruce Xue Wen Wong

    2014-05-01

    Full Text Available Alzheimer’s disease (AD is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed.

  16. APP transgenic mice for modelling behavioral and psychological symptoms of dementia (BPSD)

    Science.gov (United States)

    Lalonde, R.; Fukuchi, K.; Strazielle, C.

    2012-01-01

    The discovery of gene mutations responsible for autosomal dominant Alzheimer's disease has enabled researchers to reproduce in transgenic mice several hallmarks of this disorder, notably Aβ accumulation, though in most cases without neurofibrillary tangles. Mice expressing mutated and wild-type APP as well as C-terminal fragments of APP exhibit variations in exploratory activity reminiscent of behavioral and psychological symptoms of Alzeimer dementia (BPSD). In particular, open-field, spontaneous alternation, and elevated plus-maze tasks as well as aggression are modified in several APP transgenic mice relative to non-transgenic controls. However, depending on the precise murine models, changes in open-field and elevated plus-maze exploration occur in either direction, either increased or decreased relative to controls. It remains to be determined which neurotransmitter changes are responsible for this variability, in particular with respect to GABA, 5HT, and dopamine. PMID:22373961

  17. Peripheral metabolism of [18F]FDDNP and cerebral uptake of its labelled metabolites

    International Nuclear Information System (INIS)

    Luurtsema, Gert; Schuit, Robert C.; Takkenkamp, Kevin; Lubberink, Mark; Hendrikse, N. Harry; Windhorst, Albert D.; Molthoff, Carla F.M.; Tolboom, Nelleke; Berckel, Bart N.M. van; Lammertsma, Adriaan A.

    2008-01-01

    [ 18 F]FDDNP is a positron emission tomography (PET) tracer for determining amyloid plaques and neurofibrillary tangles in the brain in vivo. In order to quantify binding of this tracer properly, a metabolite-corrected plasma input function is required. The purpose of the present study was to develop a sensitive method for measuring [ 18 F]FDDNP and its radiolabelled metabolites in plasma. The second aim was to assess whether these radiolabelled metabolites enter the brain. In humans, there was extensive metabolism of [ 18 F]FDDNP. After 10 min, more than 80% of plasma radioactivity was identified as polar 18 F-labelled fragments, probably formed from N-dealkylation of [ 18 F]FDDNP. These labelled metabolites were reproduced in vitro using human hepatocytes. PET studies in rats showed that these polar metabolites can penetrate the blood-brain barrier and result in uniform brain uptake

  18. Epidemiology of Alzheimer Disease

    Science.gov (United States)

    Mayeux, Richard; Stern, Yaakov

    2012-01-01

    The global prevalence of dementia has been estimated to be as high as 24 million, and is predicted to double every 20 years until at least 2040. As the population worldwide continues to age, the number of individuals at risk will also increase, particularly among the very old. Alzheimer disease is the leading cause of dementia beginning with impaired memory. The neuropathological hallmarks of Alzheimer disease include diffuse and neuritic extracellular amyloid plaques in brain that are frequently surrounded by dystrophic neurites and intraneuronal neurofibrillary tangles. The etiology of Alzheimer disease remains unclear, but it is likely to be the result of both genetic and environmental factors. In this review we discuss the prevalence and incidence rates, the established environmental risk factors, and the protective factors, and briefly review genetic variants predisposing to disease. PMID:22908189

  19. Evaluation of 8-week body weight control program including sea tangle (Laminaria japonica) supplementation in Korean female college students

    Science.gov (United States)

    You, Jeong Soon; Sung, Min Jung

    2009-01-01

    This study was conducted to evaluate the effects of a body weight control program with supplementation of sea tangle (20 g/day) on 22 female college students. The contents of the program for 8 weeks contained diet therapy, exercise and behavioral modification through nutrition education. Body composition, dietary habit scores, serum lipid profiles, daily nutrient intakes and the quality of life were assessed at the beginning and at the end of the program. Average age of subjects and height were 20.8 years and 161.9 cm, respectively. After 8 weeks, there were significant reductions in body weight, body fat mass, percent body fat, waist-hip ratio and BMI. The dietary habit score such as a balanced diet, regularity of mealtime, overeating, eating while watching TV or using the computer and eating salty food were increased significantly. Serum lipid levels such as total cholesterol level, LDL-cholesterol level and triglyceride level were decreased but not significantly. There were decreases in intake of energy, protein and fat and increases in intakes of dietary fiber, folic acid, calcium and potassium from the beginning to the end of the program. There were significant improvements on subcomponents of quality of life; physical functioning, general-health and vitality. The limitation of this study was the fact that there was no control group, but an overall evaluation suggests the 8-week body weight control program consisting of diet therapy, exercise and behavioral modification with supplementation of sea tangle would be helpful to improve the body composition, dietary habits, daily nutrient intakes and quality of life in Korean female college students. PMID:20098584

  20. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types.

    Science.gov (United States)

    Perry, E K; Smith, C J; Court, J A; Perry, R H

    1990-01-01

    Cholinergic nicotinic and muscarinic receptor binding were measured in post mortem human brain tissue, using low (nM) concentrations of (3H)-nicotine to detect predominately the high affinity nicotinic site and (3H)-N-methylscopolamine in the presence and absence of 3 x 10(-4) M carbachol to measure both the low and high affinity agonist subtypes of the muscarinic receptor group. Consistent with most previous reports, the nicotinic but not muscarinic binding was reduced in the different forms of dementia associated with cortical cholinergic deficits, including Alzheimer's and Parkinson's disease, senile dementia of Lewy body type (SDLT) and Down's syndrome (over 50 years). Analysis of (3H)-nicotine binding displaced by a range of carbachol concentrations (10(-9)-10(-3) M) indicated 2 binding sites for nicotine and that the high affinity rather than low affinity site was reduced in Alzheimer's disease. In all 3 cortical areas investigated (temporal, parietal and occipital) there were increases in the low affinity muscarinic site in Parkinson's disease and SDLT but not Alzheimer's disease or middle-aged Down's syndrome. This observation raised the question of whether the presence of neurofibrillary tangles (evident in the latter but not former 2 disorders) is incompatible with denervation-induced muscarinic supersensitivity in cholinoceptive neurons which include cortical pyramids generally affeted by tangle formation.

  1. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    Science.gov (United States)

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease.

    Science.gov (United States)

    Cisbani, Giulia; Maxan, Alexander; Kordower, Jeffrey H; Planel, Emmanuel; Freeman, Thomas B; Cicchetti, Francesca

    2017-11-01

    Cell replacement has been explored as a therapeutic strategy to repair the brain in patients with Huntington's and Parkinson's disease. Post-mortem evaluations of healthy grafted tissue in such cases have revealed the development of Huntington- or Parkinson-like pathology including mutant huntingtin aggregates and Lewy bodies. An outstanding question remains if tau pathology can also be seen in patients with Huntington's and Parkinson's disease who had received foetal neural allografts. This was addressed by immunohistochemical/immunofluorescent stainings performed on grafted tissue of two Huntington's disease patients, who came to autopsy 9 and 12 years post-transplantation, and two patients with Parkinson's disease who came to autopsy 18 months and 16 years post-transplantation. We show that grafts also contain tau pathology in both types of transplanted patients. In two patients with Huntington's disease, the grafted tissue showed the presence of hyperphosphorylated tau [both AT8 (phospho-tau Ser202 and Thr205) and CP13 (pSer202) immunohistochemical stainings] pathological inclusions, neurofibrillary tangles and neuropil threads. In patients with Parkinson's disease, the grafted tissue was characterized by hyperphosphorylated tau (AT8; immunofluorescent staining) pathological inclusions, neurofibrillary tangles and neuropil threads but only in the patient who came to autopsy 16 years post-transplantation. Abundant tau-related pathology was observed in the cortex and striatum of all cases studied. While the striatum of the grafted Huntington's disease patient revealed an equal amount of 3-repeat and 4-repeat isoforms of tau, the grafted tissue showed elevated 4-repeat isoforms by western blot. This suggests that transplants may have acquired tau pathology from the host brain, although another possibility is that this was due to acceleration of ageing. This finding not only adds to the recent reports that tau pathology is a feature of these neurodegenerative

  3. Neurogenesis and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2006-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disease, characterized in the brain by amyloid plaque deposits and neurofibrillary tangles. It is the most common form of dementia among older people. There is at present no cure for AD, and current treatments consist mainly in drug therapy. Potential therapies for AD involve gene and cellular therapy. The recent confirmation that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS provide new opportunities for cellular therapy in the CNS, particularly for AD, and to better understand brain physiopathology. Hence, researchers have aimed at characterizing neurogenesis in patients with AD. Studies show that neurogenesis is increased in these patients, and in animal models of AD. The effect of drugs used to treat AD on neurogenesis is currently being investigated, to identify whether neurogenesis contributes to their therapeutic activities.

  4. Neurogenesis and Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Philippe Taupin

    2006-01-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disease, characterized in the brain by amyloid plaque deposits and neurofibrillary tangles. It is the most common form of dementia among older people. There is at present no cure for AD, and current treatments consist mainly in drug therapy. Potential therapies for AD involve gene and cellular therapy. The recent confirmation that neurogenesis occurs in the adult brain and neural stem cells (NSCs reside in the adult central nervous system (CNS provide new opportunities for cellular therapy in the CNS, particularly for AD, and to better understand brain physiopathology. Hence, researchers have aimed at characterizing neurogenesis in patients with AD. Studies show that neurogenesis is increased in these patients, and in animal models of AD. The effect of drugs used to treat AD on neurogenesis is currently being investigated, to identify whether neurogenesis contributes to their therapeutic activities.

  5. Neuroprotective effects of Resveratrol in Alzheimer Disease Pathology

    Directory of Open Access Journals (Sweden)

    Shraddha D Rege

    2014-09-01

    Full Text Available Alzheimer’s disease (AD is a chronic neurodegenerative disorder characterized by a progressive loss of cognitive and behavioral abilities. Extracellular senile plaques and intracellular neurofibrillary tangles are hallmarks of AD. Researchers aim to analyze the molecular mechanisms underlying AD pathogenesis; however, the therapeutic options available to treat this disease are inadequate. In the past few years, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol (3, 5, 4’-trihydroxy-trans-stilbene when used with in vitro and in vivo models of AD. The aim of this review is to focus on the neuroprotective and antioxidant effects of resveratrol on AD and its multiple potential mechanisms of action. In addition, because the naturally occurring forms of resveratrol have a very limited half-life in plasma, a description of potential analogues aimed at increasing bioavailability in plasma is also discussed.

  6. The Impact of Cholesterol, DHA, and Sphingolipids on Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Marcus O. W. Grimm

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40–42 amino acid long peptides termed β-amyloid (Aβ. Aβ is produced by sequential proteolytic processing of the amyloid precursor protein (APP. APP processing and Aβ production have been one of the central scopes in AD research in the past. In the last years, lipids and lipid-related issues are more frequently discussed to contribute to the AD pathogenesis. This review summarizes lipid alterations found in AD postmortem brains, AD transgenic mouse models, and the current understanding of how lipids influence the molecular mechanisms leading to AD and Aβ generation, focusing especially on cholesterol, docosahexaenoic acid (DHA, and sphingolipids/glycosphingolipids.

  7. Neuronal Models for Studying Tau Pathology

    Directory of Open Access Journals (Sweden)

    Thorsten Koechling

    2010-01-01

    Full Text Available Alzheimer's disease (AD is the most frequent neurodegenerative disorder leading to dementia in the aged human population. It is characterized by the presence of two main pathological hallmarks in the brain: senile plaques containing -amyloid peptide and neurofibrillary tangles (NFTs, consisting of fibrillar polymers of abnormally phosphorylated tau protein. Both of these histological characteristics of the disease have been simulated in genetically modified animals, which today include numerous mouse, fish, worm, and fly models of AD. The objective of this review is to present some of the main animal models that exist for reproducing symptoms of the disorder and their advantages and shortcomings as suitable models of the pathological processes. Moreover, we will discuss the results and conclusions which have been drawn from the use of these models so far and their contribution to the development of therapeutic applications for AD.

  8. Dysfunction of Protein Quality Control in Parkinsonism–Dementia Complex of Guam

    Directory of Open Access Journals (Sweden)

    Bert M. Verheijen

    2018-03-01

    Full Text Available Guam parkinsonism–dementia complex (G-PDC is an enigmatic neurodegenerative disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically characterized by progressive cognitive impairment and parkinsonism. Neuropathologically, G-PDC is characterized by abundant neurofibrillary tangles, which are composed of hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and neuronal loss. Although both genetic and environmental factors have been implicated, the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological studies have provided new clues about the pathomechanisms involved in G-PDC. For example, deposition of abnormal components of the protein quality control system in brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This opens up promising avenues for new research on G-PDC and could have important implications for the study of other neurodegenerative disorders.

  9. Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease.

    Science.gov (United States)

    Kumar, Kushal; Kumar, Ashwani; Keegan, Richard M; Deshmukh, Rahul

    2018-02-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive deterioration of cognitive functions. The pathological hallmarks are extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles of tau protein. The cognitive deficits seen are thought to be due to synaptic dysfunction and neurochemical deficiencies. Various neurochemical abnormalities have been observed during progressive ageing, and are linked to cognitive abnormalities as seen with the sporadic form of AD. Acetylcholinesterase inhibitors are one of the major therapeutic strategies used for the treatment of AD. During the last decade, various new therapeutic strategies have shown beneficial effects in preclinical studies and under clinical development for the treatment of AD. The present review is aimed at discussing the neurobiology of AD and association of neurochemical abnormalities associated with cognitive deterioration and new therapeutic strategies for the treatment of AD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Ultralow contact angle hysteresis and no-aging effects in superhydrophobic tangled nanofiber structures generated by controlling the pore size of a 99.5% aluminum foil

    Science.gov (United States)

    Lee, Sangmin; Hwang, Woonbong

    2009-03-01

    Superhydrophobic surfaces designed to improve hydrophobicity have high advancing contact angles corresponding to the Cassie state, but these surfaces also exhibit high contact angle hysteresis. We report here a simple and inexpensive method for fabricating superhydrophobic tangled nanofiber structures with ultralow contact angle hysteresis and no-aging degradation, based on a widening process. The resulting nanostructures are suitable for diverse applications including microfluidic devices for biological studies and industrial self-cleaning products for automobiles, ships and houses.

  11. Tangles of the ideal separatrix from low mn perturbation in the DIII-D

    Science.gov (United States)

    Goss, Talisa; Crank, Willie; Ali, Halima; Punjabi, Alkesh

    2010-11-01

    The equilibrium EFIT data for the DIII-D shot 115467 at 3000 ms is used to construct the equilibrium generating function for magnetic field line trajectories in the DIII-D tokamak in natural canonical coordinates [A. Punjabi, and H. Ali, Phys. Plasmas 15, 122502 (2008); A. Punjabi, Nucl. Fusion 49, 115020 (2009)]. The generating function represents the axisymmetric magnetic geometry and the topology of the DIII-D shot very accurately. A symplectic map for field line trajectories in the natural canonical coordinates in the DIII-D is constructed. We call this map the DIII-D map. The natural canonical coordinates can be readily inverted to physical coordinates (R,φ,Z). Low mn magnetic perturbation with mode numbers (m,n)=(1,1)+(1,-1) is added to the generating function of the map. The amplitude for the low mn perturbation is chosen to be 6X10-4, which is the expected value of the amplitude in tokamaks. The forward and backward DIII-D maps with low mn perturbation are used to calculate the tangles of the ideal separatrix from low mn perturbation in the DIII-D. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  12. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2006-01-01

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed

  13. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Energy Technology Data Exchange (ETDEWEB)

    Adesso, Gerardo; Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita degli Studi di Salerno (Italy); CNISM and CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno (Italy); Via S Allende, 84081 Baronissi, SA (Italy)

    2006-01-15

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.

  14. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.

    Science.gov (United States)

    Streit, Wolfgang J; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-10-01

    The role of microglial cells in the pathogenesis of Alzheimer's disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down's syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Abeta) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Abeta does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious

  15. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex

    Science.gov (United States)

    Pirnia, T; Joshi, S H; Leaver, A M; Vasavada, M; Njau, S; Woods, R P; Espinoza, R; Narr, K L

    2016-01-01

    Electroconvulsive therapy (ECT) is a highly effective and rapidly acting treatment for severe depression. To understand the biological bases of therapeutic response, we examined variations in cortical thickness from magnetic resonance imaging (MRI) data in 29 patients scanned at three time points during an ECT treatment index series and in 29 controls at two time points. Changes in thickness across time and with symptom improvement were evaluated at high spatial resolution across the cortex and within discrete cortical regions of interest. Patients showed increased thickness over the course of ECT in the bilateral anterior cingulate cortex (ACC), inferior and superior temporal, parahippocampal, entorhinal and fusiform cortex and in distributed prefrontal areas. No changes across time occurred in controls. In temporal and fusiform regions showing significant ECT effects, thickness differed between patients and controls at baseline and change in thickness related to therapeutic response in patients. In the ACC, these relationships occurred in treatment responders only, and thickness measured soon after treatment initiation predicted the overall ECT response. ECT leads to widespread neuroplasticity in neocortical, limbic and paralimbic regions and changes relate to the extent of antidepressant response. Variations in ACC thickness, which discriminate treatment responders and predict response early in the course of ECT, may represent a biomarker of overall clinical outcome. Because post-mortem studies show focal reductions in glial density and neuronal size in patients with severe depression, ECT-related increases in thickness may be attributable to neuroplastic processes affecting the size and/or density of neurons and glia and their connections. PMID:27271858

  16. Early multidomain intervention to stave off Alzheimer's disease%早期综合干预有助延缓阿尔茨海默症的发生

    Institute of Scientific and Technical Information of China (English)

    赫荣乔

    2016-01-01

    阿尔茨海默症(Alzheimer's disease,AD)的典型病变包括认知异常、脑内amyloid β(Aβ)沉积形成的老年斑(senile plaque)、异常磷酸化Tau蛋白形成的神经纤维缠结(neurofibrillary tangles,NFTs)、胶质细胞激活以及脑萎缩.在近100多年的研究过程中,国内外同行把研究重点集中在AD的临床阶段,追求单一靶点的药物.然而,这些努力尚未在临床治疗上实现重大突破.当前,AD临床前阶段(preclinical phases)的早期病理变化和干预措施研究受到了相当的重视.为了延缓老年痴呆的发生,在强调多靶点药物研发的同时,其他干预方法,包括改善生活习惯、调节饮食、参与社会活动、进行适当的体育锻炼等,也在AD的防治中得以研究与应用.%Alzheimer's disease is an irreversible,progressive brain disorder that slowly destroys memory and thinking skills,and eventually the ability to carry out the simplest tasks.In most people with Alzheimer's symptoms first appear in their mid-60s.The typical lesions of Alzheimer's disease (AD) feature in cognitive impairment,amyloid β(Aβ) deposits (senile plaque),hyperphosphorylation of Tau in neurofibrillary tangles (NTFs),glial cells activation and cerebral atrophy.The plaques and tangles in the brain are considered to be the main features of Alzheimer's disease.Loss of connections between neurons in the brain deteriorates neuronal message transmission between different parts of the brain,and from the brain to muscles and organs in the body.Over one hundred years,a great deal of research has been focused on the dementia of clinical phase,and on single-target drugs to intervene the progression of AD.However,a real breakthrough in the treatment still needs to be made to stave off AD.Currently,to clarify early pathological changes of pre-clinical stage is imperative to understand AD.Although aging,family history and susceptibility genes have been considered to be the most important factors,the rapid

  17. A patient with posterior cortical atrophy possesses a novel mutation in the presenilin 1 gene.

    Directory of Open Access Journals (Sweden)

    Emilia J Sitek

    Full Text Available Posterior cortical atrophy is a dementia syndrome with symptoms of cortical visual dysfunction, associated with amyloid plaques and neurofibrillary tangles predominantly affecting visual association cortex. Most patients diagnosed with posterior cortical atrophy will finally develop a typical Alzheimer's disease. However, there are a variety of neuropathological processes, which could lead towards a clinical presentation of posterior cortical atrophy. Mutations in the presenilin 1 gene, affecting the function of γ-secretase, are the most common genetic cause of familial, early-onset Alzheimer's disease. Here we present a patient with a clinical diagnosis of posterior cortical atrophy who harbors a novel Presenilin 1 mutation (I211M. In silico analysis predicts that the mutation could influence the interaction between presenilin 1 and presenilin1 enhancer-2 protein, a protein partner within the γ-secretase complex. These findings along with published literature support the inclusion of posterior cortical atrophy on the Alzheimer's disease spectrum.

  18. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers.

    Science.gov (United States)

    Reitz, Christiane; Mayeux, Richard

    2014-04-15

    The global prevalence of dementia is as high as 24 million, and has been predicted to quadruple by the year 2050. In the US alone, Alzheimer disease (AD) - the most frequent cause of dementia characterized by a progressive decline in cognitive function in particular the memory domain - causes estimated health-care costs of $ 172 billion per year. Key neuropathological hallmarks of the AD brain are diffuse and neuritic extracellular amyloid plaques - often surrounded by dystrophic neurites - and intracellular neurofibrillary tangles. These pathological changes are frequently accompanied by reactive microgliosis and loss of neurons, white matter and synapses. The etiological mechanisms underlying these neuropathological changes remain unclear, but are probably caused by both environmental and genetic factors. In this review article, we provide an overview of the epidemiology of AD, review the biomarkers that may be used for risk assessment and in diagnosis, and give suggestions for future research. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Age-Related Changes in the Central Nervous System in Selected Domestic Mammals and Primates

    Directory of Open Access Journals (Sweden)

    Maciej Firląg

    2013-04-01

    Full Text Available Aging is a process which operates at many levels of physiological, genetic and molecular organizationand leads inevitably to death [18]. Brain macroscopic changes by MRI investigation during aging were observed in humans and dogs but chimpanzees did not display significant changes. This suggestion led to the statement that brain aging is different in various species. Although human brain changes, e.g. β-amyloid storage, neurofibrillary tangle formation, lipofuscin, are relatively well known, we are still looking for a suitable animal model to study the mechanisms of aging and neurodegenerative diseases. Therefore, this paper presents a comparative analysis of the changes described in the brains of senile dog, horse and gorilla. In addition we present the latest, non-invasive methods that can be applied in the diagnosisof old age in mammals. Our considerations have shown that the best animal model for further studies and observations on aging is the dog. 

  20. Oxidative Stress as an Important Factor in the Pathophysiology of alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Tanise Gemelli,

    2013-06-01

    Full Text Available Oxidative stress has been associated to play a crucial role in the pathogenesis of many diseases, including neurodegenerative diseases. Alzheimer's disease is an age-related neurodegenerative disorder, which is recognized as the most common form of dementia. In this article, the aim was to review the involvement of oxidative stress on Alzheimer's disease. Alzheimer's disease is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid-? peptide and loss of synapses. Moreover, the brain and the nervous system are more prone to oxidative stress and oxidative damage influences the neurodegenerative diseases. However, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in proteins constitute complex intertwined pathologies that lead to neuronal cell death. Mitochondrial mutations on deoxyribonucleic acid and oxidative stress contribute to aging, affecting different cell signaling systems, as well as the connectivity and neuronal cell death may lead to the largest risk factor for neurodegenerative diseases such as Alzheimer's Disease.

  1. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss.

    Science.gov (United States)

    Cohen, Robert M; Rezai-Zadeh, Kavon; Weitz, Tara M; Rentsendorj, Altan; Gate, David; Spivak, Inna; Bholat, Yasmin; Vasilevko, Vitaly; Glabe, Charles G; Breunig, Joshua J; Rakic, Pasko; Davtyan, Hayk; Agadjanyan, Michael G; Kepe, Vladimir; Barrio, Jorge R; Bannykh, Serguei; Szekely, Christine A; Pechnick, Robert N; Town, Terrence

    2013-04-10

    Alzheimer's disease (AD) is hallmarked by amyloid plaques, neurofibrillary tangles, and widespread cortical neuronal loss (Selkoe, 2001). The "amyloid cascade hypothesis" posits that cerebral amyloid sets neurotoxic events into motion that precipitate Alzheimer dementia (Hardy and Allsop, 1991). Yet, faithful recapitulation of all AD features in widely used transgenic (Tg) mice engineered to overproduce Aβ peptides has been elusive. We have developed a Tg rat model (line TgF344-AD) expressing mutant human amyloid precursor protein (APPsw) and presenilin 1 (PS1ΔE9) genes, each independent causes of early-onset familial AD. TgF344-AD rats manifest age-dependent cerebral amyloidosis that precedes tauopathy, gliosis, apoptotic loss of neurons in the cerebral cortex and hippocampus, and cognitive disturbance. These results demonstrate progressive neurodegeneration of the Alzheimer type in these animals. The TgF344-AD rat fills a critical need for a next-generation animal model to enable basic and translational AD research.

  2. Neurodegeneration in Alzheimer Disease: Role of Amyloid Precursor Protein and Presenilin 1 Intracellular Signaling

    Directory of Open Access Journals (Sweden)

    Mario Nizzari

    2012-01-01

    Full Text Available Alzheimer disease (AD is a heterogeneous neurodegenerative disorder characterized by (1 progressive loss of synapses and neurons, (2 intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3 amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP and presenilin 1 and 2 (PS1 and PS2. The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration.

  3. Radiopharmaceuticals for positron emission tomography investigations of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Naagren, Kjell [Odense University Hospital, Department of Nuclear Medicine, PET and Cyclotron Unit, Odense C (Denmark); Halldin, Christer [Karolinska University Hospital Solna, Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Rinne, Juha O. [Turku PET Centre, P.O. Box 52, Turku (Finland)

    2010-08-15

    Alzheimer's disease (AD) is a common degenerative neurological disease that is an increasing medical, economical, and social problem. There is evidence that a long ''asymptomatic'' phase of the disease exists where functional changes in the brain are present, but structural imaging for instance with magnetic resonance imaging remains normal. Positron emission tomography (PET) is one of the tools by which it is possible to explore changes in cerebral blood flow and metabolism and the functioning of different neurotransmitter systems. More recently, investigation of protein aggregations such as amyloid deposits or neurofibrillary tangles containing tau-protein has become possible. The purpose of this paper is to review the current knowledge on various {sup 18}F- and {sup 11}C-labelled PET tracers that could be used to study the pathophysiology of AD, to be used in the early or differential diagnosis or to be used in development of treatment and in monitoring of treatment effects. (orig.)

  4. Effects of apolipoprotein E genotype on cortical neuropathology in senile dementia of the Lewy body and Alzheimer's disease.

    Science.gov (United States)

    Benjamin, R; Leake, A; Ince, P G; Perry, R H; McKeith, I G; Edwardson, J A; Morris, C M

    1995-12-01

    Apolipoprotein E (APO E) genotypes were determined in a UK population of neuropathologically confirmed control cases, and in cases of Lewy body dementia (SDLT) and late onset Alzheimer's disease (AD). APO E epsilon 4 allele frequency was significantly elevated in both SDLT and AD groups with a concomitant reduction in the APO E epsilon 3 allele frequency. The epsilon 2 allele frequency in the AD group was only 25% of the control population, though because of the relatively small sample size this reduction was not significant; the epsilon 2 allele frequency in the SDLT group was normal. No significant association was found between senile plaque density and neurofibrillary tangle density in the neocortex and APO E allele dose in either SDLT or AD. Although the possession of APO E epsilon 4 is associated with an increased risk of developing SDLT and AD, actual APO E genotype does not appear to affect the burden of pathology.

  5. Quantification of beta A4 protein deposition in the medial temporal lobe: a comparison of Alzheimer's disease and senile dementia of the Lewy body type.

    Science.gov (United States)

    Gentleman, S M; Williams, B; Royston, M C; Jagoe, R; Clinton, J; Perry, R H; Ince, P G; Allsop, D; Polak, J M; Roberts, G W

    1992-08-03

    The distribution of beta-amyloid protein (beta A4) was examined in the medial temporal lobes from cases of Alzheimer's disease (AD) (n = 13), senile dementia of Lewy body type (SDLT) (n = 12) and age matched controls (n = 9). Using a previously described image analysis technique the extent of beta A4 pathology was determined in ten distinct anatomical sites within the medial temporal lobe. AD and SDLT cases contained very similar amounts of beta A4 in the areas sampled and both contained significantly more beta A4 than the age matched controls, particularly in the dentate and parahippocampal gyri. The similarity of the beta A4 load in the two conditions is in contrast to reported differences in the number of neurofibrillary tangles which can be observed. It is suggested that AD and SDLT represent a spectrum of pathology which centres around the aberrant processing of the beta A4 precursor protein.

  6. Amyloid plaque imaging in vivo: current achievement and future prospects

    International Nuclear Information System (INIS)

    Nordberg, Agneta

    2008-01-01

    Alzheimer's disease (AD) is a very complex neurodegenerative disorder, the exact cause of which is still not known. The major histopathological features, amyloid plaques and neurofibrillary tangles, already described by Alois Alzheimer, have been the focus in research for decades. Despite a probable whole cascade of events in the brain leading to impairment of cognition, amyloid is still the target for diagnosis and treatment. The rapid development of molecular imaging techniques now allows imaging of amyloid plaques in vivo in Alzheimer patients by PET amyloid ligands such as Pittsburgh compound B (PIB). Studies so far have revealed high 11 C-PIB retention in brain at prodromal stages of AD and a possibility to discriminate AD from other dementia disorders by 11 C-PIB. Ongoing studies are focussing to understand the relationship between brain and CSF amyloid processes and cognitive processes. In vivo imaging of amyloid will be important for early diagnosis and evaluation of new anti-amyloid therapies in AD. (orig.)

  7. Biological markers of Alzheimer?s disease

    Directory of Open Access Journals (Sweden)

    Leonardo Cruz de Souza

    2014-03-01

    Full Text Available The challenges for establishing an early diagnosis of Alzheimer’s disease (AD have created a need for biomarkers that reflect the core pathology of the disease. The cerebrospinal fluid (CSF levels of total Tau (T-tau, phosphorylated Tau (P-Tau and beta-amyloid peptide (Aβ42 reflect, respectively, neurofibrillary tangle and amyloid pathologies and are considered as surrogate markers of AD pathophysiology. The combination of low Aβ42 and high levels of T-tau and P-Tau can accurately identify patients with AD at early stages, even before the development of dementia. The combined analysis of the CSF biomarkers is also helpful for the differential diagnosis between AD and other degenerative dementias. The development of these CSF biomarkers has evolved to a novel diagnostic definition of the disease. The identification of a specific clinical phenotype combined with the in vivo evidence of pathophysiological markers offers the possibility to make a diagnosis of AD before the dementia stage with high specificity.

  8. Identification and analysis of senile plaques using nuclear microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, J P; Roberts, J M; Grime, G W; Watt, F [Nuclear Physics Lab., Oxford (UK); McDonald, B [Dept. of Neuropathology, Radcliffe Infirmary, Oxford (UK) Nuffield Dept. of Pathology, John Radcliffe Hospital, Oxford (UK) MRC Neuroanatomical Unit, Dept. of Pharmacology, Oxford (UK)

    1991-03-01

    The senile plaques and neuro-fibrillary tangles which form part of the pathology of Alzheimer's disease have come under increasing scrutiny over the last decade. In particular, much work has been done investigating their elemental composition. The suggestion that 75-100% of tensile plaques with mature cores contain aluminium and silicon, probably in the form of alumino-silicates, has led to increasing speculation about the role of these elements in the disease. SPM preliminary studies suggest that aluminium and silicon are not present in as great a proportion of senile plaques as presented in the literature. The situation is complicated by the fact that airborn and solubilised salts of aluminium and silicon may be encountered as contamination. They have been found, for example, in granular or crystalline form in the Aristar grade organic laboratory reagents used for staining the tissue, and in the pure pioloform used to back the samples. The latest results from scans of stained and unstained Alzheimer tissue are presented. (orig.).

  9. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wengenack, Thomas M.; Poduslo, Joseph F. [Mayo Clinic, Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience, and Biochemistry/Molecular Biology, Rochester, MN (United States); Jack, Clifford R. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Garwood, Michael [University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN (United States); University of Minnesota Medical School, Department of Radiology, Minneapolis, MN (United States)

    2008-03-15

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  10. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  11. Identification and analysis of senile plaques using nuclear microscopy

    International Nuclear Information System (INIS)

    Landsberg, J.P.; Roberts, J.M.; Grime, G.W.; Watt, F.; McDonald, B.

    1991-01-01

    The senile plaques and neuro-fibrillary tangles which form part of the pathology of Alzheimer's disease have come under increasing scrutiny over the last decade. In particular, much work has been done investigating their elemental composition. The suggestion that 75-100% of tensile plaques with mature cores contain aluminium and silicon, probably in the form of alumino-silicates, has led to increasing speculation about the role of these elements in the disease. SPM preliminary studies suggest that aluminium and silicon are not present in as great a proportion of senile plaques as presented in the literature. The situation is complicated by the fact that airborn and solubilised salts of aluminium and silicon may be encountered as contamination. They have been found, for example, in granular or crystalline form in the Aristar grade organic laboratory reagents used for staining the tissue, and in the pure pioloform used to back the samples. The latest results from scans of stained and unstained Alzheimer tissue are presented. (orig.)

  12. Radiopharmaceuticals for positron emission tomography investigations of Alzheimer's disease

    International Nuclear Information System (INIS)

    Naagren, Kjell; Halldin, Christer; Rinne, Juha O.

    2010-01-01

    Alzheimer's disease (AD) is a common degenerative neurological disease that is an increasing medical, economical, and social problem. There is evidence that a long ''asymptomatic'' phase of the disease exists where functional changes in the brain are present, but structural imaging for instance with magnetic resonance imaging remains normal. Positron emission tomography (PET) is one of the tools by which it is possible to explore changes in cerebral blood flow and metabolism and the functioning of different neurotransmitter systems. More recently, investigation of protein aggregations such as amyloid deposits or neurofibrillary tangles containing tau-protein has become possible. The purpose of this paper is to review the current knowledge on various 18 F- and 11 C-labelled PET tracers that could be used to study the pathophysiology of AD, to be used in the early or differential diagnosis or to be used in development of treatment and in monitoring of treatment effects. (orig.)

  13. Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology

    Science.gov (United States)

    Revett, Timothy J.; Baker, Glen B.; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid β peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid β and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid β production, but also amyloid β can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness. PMID:22894822

  14. Chronic traumatic encephalopathy: The unknown disease.

    Science.gov (United States)

    Martínez-Pérez, R; Paredes, I; Munarriz, P M; Paredes, B; Alén, J F

    2017-04-01

    Chronic traumatic encephalopathy is a neurodegenerative disease produced by accumulated minor traumatic brain injuries; no definitive premortem diagnosis and no treatments are available for chronic traumatic encephalopathy. Risk factors associated with chronic traumatic encephalopathy include playing contact sports, presence of the apolipoprotein E4, and old age. Although it shares certain histopathological findings with Alzheimer disease, chronic traumatic encephalopathy has a more specific presentation (hyperphosphorylated tau protein deposited as neurofibrillary tangles, associated with neuropil threads and sometimes with beta-amyloid plaques). Its clinical presentation is insidious; patients show mild cognitive and emotional symptoms before progressing to parkinsonian motor signs and finally dementia. Results from new experimental diagnostic tools are promising, but these tools are not yet available. The mainstay of managing this disease is prevention and early detection of its first symptoms. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy.

    Science.gov (United States)

    Nash, Kevin R; Lee, Daniel C; Hunt, Jerry B; Morganti, Josh M; Selenica, Maj-Linda; Moran, Peter; Reid, Patrick; Brownlow, Milene; Guang-Yu Yang, Clement; Savalia, Miloni; Gemma, Carmelina; Bickford, Paula C; Gordon, Marcia N; Morgan, David

    2013-06-01

    Alzheimer's disease is characterized by amyloid plaques, neurofibrillary tangles, glial activation, and neurodegeneration. In mouse models, inflammatory activation of microglia accelerates tau pathology. The chemokine fractalkine serves as an endogenous neuronal modulator to quell microglial activation. Experiments with fractalkine receptor null mice suggest that fractalkine signaling diminishes tau pathology, but exacerbates amyloid pathology. Consistent with this outcome, we report here that soluble fractalkine overexpression using adeno-associated viral vectors significantly reduced tau pathology in the rTg4510 mouse model of tau deposition. Furthermore, this treatment reduced microglial activation and appeared to prevent neurodegeneration normally found in this model. However, in contrast to studies with fractalkine receptor null mice, parallel studies in an APP/PS1 model found no effect of increased fractalkine signaling on amyloid deposition. These data argue that agonism at fractalkine receptors might be an excellent target for therapeutic intervention in tauopathies, including those associated with amyloid deposition. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    International Nuclear Information System (INIS)

    Wengenack, Thomas M.; Poduslo, Joseph F.; Jack, Clifford R.; Garwood, Michael

    2008-01-01

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  17. Diabetes Mellitus Induces Alzheimer’s Disease Pathology: Histopathological Evidence from Animal Models

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kimura

    2016-04-01

    Full Text Available Alzheimer’s disease (AD is the major causative disease of dementia and is characterized pathologically by the accumulation of senile plaques (SPs and neurofibrillary tangles (NFTs in the brain. Although genetic studies show that β-amyloid protein (Aβ, the major component of SPs, is the key factor underlying AD pathogenesis, it remains unclear why advanced age often leads to AD. Interestingly, several epidemiological and clinical studies show that type II diabetes mellitus (DM patients are more likely to exhibit increased susceptibility to AD. Moreover, growing evidence suggests that there are several connections between the neuropathology that underlies AD and DM, and there is evidence that the experimental induction of DM can cause cognitive dysfunction, even in rodent animal models. This mini-review summarizes histopathological evidence that DM induces AD pathology in animal models and discusses the possibility that aberrant insulin signaling is a key factor in the induction of AD pathology.

  18. Cell Cycle Deregulation in the Neurons of Alzheimer’s Disease

    Science.gov (United States)

    Moh, Calvin; Kubiak, Jacek Z.; Bajic, Vladan P.; Zhu, Xiongwei; Smith, Mark A.

    2018-01-01

    The cell cycle consists of four main phases: G1, S, G2, and M. Most cells undergo these cycles up to 40–60 times in their life. However, neurons remain in a nondividing, nonreplicating phase, G0. Neurons initiate but do not complete cell division, eventually entering apoptosis. Research has suggested that like cancer, Alzheimer’s disease (AD) involves dysfunction in neuronal cell cycle reentry, leading to the development of the two-hit hypothesis of AD. The first hit is abnormal cell cycle reentry, which typically results in neuronal apoptosis and prevention of AD. However, with the second hit of chronic oxidative damage preventing apoptosis, neurons gain “immortality” analogous to tumor cells. Once both of these hits are activated, AD can develop and produce senile plaques and neurofibrillary tangles throughout brain tissue. In this review, we propose a mechanism for neuronal cell cycle reentry and the development of AD. PMID:21630160

  19. A Patient with Posterior Cortical Atrophy Possesses a Novel Mutation in the Presenilin 1 Gene

    Science.gov (United States)

    Sitek, Emilia J.; Narożańska, Ewa; Pepłońska, Beata; Filipek, Sławomir; Barczak, Anna; Styczyńska, Maria; Mlynarczyk, Krzysztof; Brockhuis, Bogna; Portelius, Erik; Religa, Dorota; Barcikowska, Maria

    2013-01-01

    Posterior cortical atrophy is a dementia syndrome with symptoms of cortical visual dysfunction, associated with amyloid plaques and neurofibrillary tangles predominantly affecting visual association cortex. Most patients diagnosed with posterior cortical atrophy will finally develop a typical Alzheimer's disease. However, there are a variety of neuropathological processes, which could lead towards a clinical presentation of posterior cortical atrophy. Mutations in the presenilin 1 gene, affecting the function of γ-secretase, are the most common genetic cause of familial, early-onset Alzheimer's disease. Here we present a patient with a clinical diagnosis of posterior cortical atrophy who harbors a novel Presenilin 1 mutation (I211M). In silico analysis predicts that the mutation could influence the interaction between presenilin 1 and presenilin1 enhancer-2 protein, a protein partner within the γ-secretase complex. These findings along with published literature support the inclusion of posterior cortical atrophy on the Alzheimer's disease spectrum. PMID:23593396

  20. APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons

    Directory of Open Access Journals (Sweden)

    Steven Moore

    2015-05-01

    Full Text Available Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD. To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.

  1. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    Science.gov (United States)

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-05

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    Science.gov (United States)

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  3. Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees.

    Science.gov (United States)

    Martínez-Aquino, Andrés

    2016-08-01

    Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host-parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a "compass" when "walking" through jungles of tangled phylogenetic trees.

  4. Medial temporal and neocortical contributions to remote memory for semantic narratives: evidence from amnesia.

    Science.gov (United States)

    Verfaellie, Mieke; Bousquet, Kathryn; Keane, Margaret M

    2014-08-01

    Studies of remote memory for semantic facts and concepts suggest that hippocampal lesions lead to a temporally graded impairment that extends no more than ten years prior to the onset of amnesia. Such findings have led to the notion that once consolidated, semantic memories are represented neocortically and are no longer dependent on the hippocampus. Here, we examined the fate of well-established semantic narratives following medial temporal lobe (MTL) lesions. Seven amnesic patients, five with lesions restricted to the MTL and two with lesions extending into lateral temporal cortex (MTL+), were asked to recount fairy tales and bible stories that they rated as familiar. Narratives were scored for number and type of details, number of main thematic elements, and order in which the main thematic elements were recounted. In comparison to controls, patients with MTL lesions produced fewer details, but the number and order of main thematic elements generated was intact. By contrast, patients with MTL+ lesions showed a pervasive impairment, affecting not only the generation of details, but also the generation and ordering of main steps. These findings challenge the notion that, once consolidated, semantic memories are no longer dependent on the hippocampus for retrieval. Possible hippocampal contributions to the retrieval of detailed semantic narratives are discussed. Published by Elsevier Ltd.

  5. POMT1-associated walker-warburg syndrome: a disorder of dendritic development of neocortical neurons.

    Science.gov (United States)

    Judas, M; Sedmak, G; Rados, M; Sarnavka, V; Fumić, K; Willer, T; Gross, C; Hehr, U; Strahl, S; Cuk, M; Barić, I

    2009-02-01

    We have analyzed the morphology and dendritic development of neocortical neurons in a 2.5-month-old infant with Walker-Warburg syndrome homozygotic for a novel POMT1 gene mutation, by Golgi methods. We found that pyramidal neurons frequently displayed abnormal (oblique, horizontal, or inverted) orientation. A novel finding of this study is that members of the same population of pyramidal neurons display different stages of development of their dendritic arborizations: some neurons had poorly developed dendrites and thus resembled pyramidal neurons of the late fetal cortex; for some neurons, the level of differentiation corresponded to that in the newborn cortex; finally, some neurons had quite elaborate dendritic trees as expected for the cortex of 2.5-month-old infant. In addition, apical dendrites of many pyramidal neurons were conspiciously bent to one side, irrespective to the general orientation of the pyramidal neuron. These findings suggest that Walker-Warburg lissencephaly is characterized by two hitherto unnoticed pathogenetic changes in the cerebral cortex: (a) heterochronic decoupling of dendritic maturation within the same neuronal population (with some members significantly lagging behind the normal maturational schedule) and (b) anisotropically distorted shaping of dendritic trees, probably caused by patchy displacement of molecular guidance cues for dendrites in the malformed cortex. Copyright Georg Thieme Verlag KG Stuttgart New York.

  6. Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NeoCortical Simulator

    Directory of Open Access Journals (Sweden)

    Richard P Drewes

    2009-05-01

    Full Text Available Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading ``glue'' tool for managing all sorts of complex programmatictasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS environment in particular. Brainlab is an integrated model building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS (the NeoCortical Simulator.

  7. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe

    Directory of Open Access Journals (Sweden)

    Niall eMcAlinden

    2015-05-01

    Full Text Available Optogenetics has proven to be a revolutionary technology in neuroscience and has advanced continuously over the past decade. However, optical stimulation technologies for in vivo need to be developed to match the advances in genetics and biochemistry that have driven this field. In particular, conventional approaches for in vivo optical illumination have a limitation on the achievable spatio-temporal resolution. Here we utilize a sapphire-based microscale gallium nitride light-emitting diode (µLED probe to activate neocortical neurons in vivo. The probes were designed to contain independently controllable multiple µLEDs, emitting at 450 nm wavelength with an irradiance of up to 2 W/mm2. Monte-Carlo stimulations predicted that optical stimulation using a µLED can modulate neural activity within a localized region. To validate this prediction, we tested this probe in the mouse neocortex that expressed channelrhodopsin-2 (ChR2 and compared the results with optical stimulation through a fiber at the cortical surface. We confirmed that both approaches reliably induced action potentials in cortical neurons and that the µLED probe evoked strong responses in deep neurons. Due to the possibility to integrate many optical stimulation sites onto a single shank, the µLED probe is thus a promising approach to control neurons locally in vivo.

  8. Unsupervised classification of neocortical activity patterns in neonatal and pre-juvenile rodents

    Directory of Open Access Journals (Sweden)

    Nicole eCichon

    2014-05-01

    Full Text Available Flexible communication within the brain, which relies on oscillatory activity, is not confined to adult neuronal networks. Experimental evidence has documented the presence of discontinuous patterns of oscillatory activity already during early development. Their highly variable spatial and time-frequency organization has been related to region specificity. However, it might be equally due to the absence of unitary criteria for classifying the early activity patterns, since they have been mainly characterized by visual inspection. Therefore, robust and unbiased methods for categorizing these discontinuous oscillations are needed for increasingly complex data sets from different labs. Here, we introduce an unsupervised detection and classification algorithm for the discontinuous activity patterns of rodents during early development. For this, firstly time windows with discontinuous oscillations vs. epochs of network silence were identified. In a second step, the major features of detected events were identified and processed by principal component analysis for deciding on their contribution to the classification of different oscillatory patterns. Finally, these patterns were categorized using an unsupervised cluster algorithm. The results were validated on manually characterized neonatal spindle bursts, which ubiquitously entrain neocortical areas of rats and mice, and prelimbic nested gamma spindle bursts. Moreover, the algorithm led to satisfactory results for oscillatory events that, due to increased similarity of their features, were more difficult to classify, e.g. during the pre-juvenile developmental period. Based on a linear classification, the optimal number of features to consider increased with the difficulty of detection. This algorithm allows the comparison of neonatal and pre-juvenile oscillatory patterns in their spatial and temporal organization. It might represent a first step for the unbiased elucidation of activity patterns

  9. Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals.

    Science.gov (United States)

    Sherwood, Chet C; Stimpson, Cheryl D; Butti, Camilla; Bonar, Christopher J; Newton, Alisa L; Allman, John M; Hof, Patrick R

    2009-02-01

    Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II-III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.

  10. Neocortical concentrations of neuropeptides in senile dementia of the Alzheimer and Lewy body type: comparison with Parkinson's disease and severity correlations.

    Science.gov (United States)

    Leake, A; Perry, E K; Perry, R H; Jabeen, S; Fairbairn, A F; McKeith, I G; Ferrier, I N

    1991-02-15

    Corticotropin releasing hormone (CRH), somatostatin (SRIF), and arginine vasopressin (AVP) concentrations were estimated using radioimmunoassay in the temporal and occipital cortices in postmortem brain from patients clinically and neuropathologically diagnosed as senile dementia of the Lewy body type (SDLT), senile dementia of the Alzheimer type (SDAT), and Parkinson's disease (PD) and from neurologically normal controls. The concentration of temporal and occipital neocortical CRH was diminished in both SDAT and SDLT compared to control values, whereas SRIF was reduced only in temporal cortex in both these conditions. In contrast, the concentrations of both CRH and SRIF were unaltered in PD. The concentrations of AVP in SDLT, SDAT, and PD were similar to those found in the control groups. The decrement in SRIF, but not CRH, was found to be correlated with some indices of severity of illness in SDAT; a similar but nonsignificant trend for SRIF was observed in SDLT.

  11. Research progress in animal models and stem cell therapy for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Han F

    2014-12-01

    Full Text Available Fabin Han,1,2 Wei Wang1, Chao Chen1 1Centre for Stem Cells and Regenerative Medicine, 2Department of Neurology, Liaocheng People’s Hospital/The Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People’s Republic of China Abstract: Alzheimer’s disease (AD causes degeneration of brain neurons and leads to memory loss and cognitive impairment. Since current therapeutic strategies cannot cure the disease, stem cell therapy represents a powerful tool for the treatment of AD. We first review the advances in molecular pathogenesis and animal models of AD and then discuss recent clinical studies using small molecules and immunoglobulins to target amyloid-beta plaques for AD therapy. Finally, we discuss stem cell therapy for AD using neural stem cells, olfactory ensheathing cells, embryonic stem cells, and mesenchymal stem cell from bone marrow, umbilical cord, and umbilical cord blood. In particular, patient-specific induced pluripotent stem cells are proposed as a future treatment for AD. Keywords: amyloid-beta plaque, neurofibrillary tangle, neural stem cell, olfactory ensheathing cell, mesenchymal stem cell, induced pluripotent stem cell

  12. Toward the treatment and prevention of Alzheimer's disease: rational strategies and recent progress.

    Science.gov (United States)

    Gandy, Sam; DeKosky, Steven T

    2013-01-01

    Alzheimer's disease (AD) is the major cause of late-life brain failure. In the past 25 years, autosomal dominant forms of AD were found to be primariy attributable to mutations in one of two presenilins, polytopic proteins that contain the catalytic site of the γ-secretase protease that releases the amyloid beta (Aβ) peptide. Some familial AD is also due to mutations in the amyloid precursor protein (APP), but recently a mutation in APP was discovered that reduces Aβ generation and is protective against AD, further implicating amyloid metabolism. Prion-like seeding of amyloid fibrils and neurofibrillary tangles has been invoked to explain the stereotypical spread of AD within the brain. Treatment trials with anti-Aβ antibodies have shown target engagement, if not significant treatment effects. Attention is increasingly focused on presymptomatic intervention, because Aβ mismetabolism begins up to 25 years before symptoms begin. AD trials deriving from new biological information involve extraordinary international collaboration and may hold the best hope for success in the fight against AD.

  13. Impact of Cytokines and Chemokines on Alzheimer's Disease Neuropathological Hallmarks.

    Science.gov (United States)

    Domingues, Catarina; da Cruz E Silva, Odete A B; Henriques, Ana Gabriela

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, neuropathologically characterized by aggregates of β-amyloid peptides, which deposit as senile plaques, and of TAU protein, which forms neurofibrillary tangles. It is now widely accepted that neuroinflammation is implicated in AD pathogenesis. Indeed, inflammatory mediators, such as cytokines and chemokines (chemotactic cytokines) can impact on the Alzheimer´s amyloid precursor protein by affecting its expression levels and amyloidogenic processing and/or β -amyloid aggregation. Additionally, cytokines and chemokines can influence kinases' activities, leading to abnormal TAU phosphorylation. To date there is no cure for AD, but several therapeutic strategies have been directed to prevent neuroinflammation. Anti-inflammatory, but also anti-amyloidogenic compounds, such as flavonoids were shown to favourably modulate some pathological events associated with neurodegeneration. This review focuses on the role of cytokines and chemokines in AD-associated pathologies, and summarizes the potential anti-inflammatory therapeutic approaches aimed at preventing or slowing down disease progression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Alzheimer's disease: is a vaccine possible?

    International Nuclear Information System (INIS)

    Alves, R.P.S.; Yang, M.J.; Batista, M.T.; Ferreira, L.C.S.

    2014-01-01

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility

  15. Influence of Water Quality on Cholesterol-Induced Tau Pathology: Preliminary Data

    Directory of Open Access Journals (Sweden)

    D. Larry Sparks

    2011-01-01

    Full Text Available The studies employed the cholesterol-fed rabbit model of Alzheimer's disease (AD to investigate the relationship between AD-like neurofibrillary tangle (NFT neuropathology and tau protein levels as the main component of NFT. We measured brain and plasma tau levels and semiquantified NFT-like neuropathology in cholesterol-fed rabbits administered drinking water of varying quality (distilled, tap, and distilled+copper compared to animals receiving normal chow and local tap water. Total tau levels in plasma were increased in all cholesterol-fed rabbits compared to animals on normal chow, regardless of quality of water. In contrast, increased tau in brain and increased AT8 immunoreactive NFT-like lesions were greatest in cholesterol-fed rabbits administered distilled water. A substantial decrease in brain tau and incidence and density of AT8 immunoreactive NFT-like lesions occurred in cholesterol-fed rabbits administered copper water, and an even greater decrease was observed in cholesterol-fed animals on local tap water. These studies suggest the possibility that circulating tau could be the source of the tau accumulating in the brain.

  16. PET Imaging of Epigenetic Influences on Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Paul J. Couto

    2015-01-01

    Full Text Available The precise role of environment-gene interactions (epigenetics in the development and progression of Alzheimer’s disease (AD is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD.

  17. [Alzheimer's disease cerebro-spinal fluid biomarkers: A clinical research tool sometimes useful in daily clinical practice of memory clinics for the diagnosis of complex cases].

    Science.gov (United States)

    Magnin, E; Dumurgier, J; Bouaziz-Amar, E; Bombois, S; Wallon, D; Gabelle, A; Lehmann, S; Blanc, F; Bousiges, O; Hannequin, D; Jung, B; Miguet-Alfonsi, C; Quillard, M; Pasquier, F; Peoc'h, K; Laplanche, J-L; Hugon, J; Paquet, C

    2017-04-01

    The role of biomarkers in clinical research was recently highlighted in the new criteria for the diagnosis of Alzheimer's disease. Cerebro-spinal fluid (CSF) biomarkers (total Tau protein, threonine 181 phosphorylated Tau protein and amyloid Aβ1-42 peptide) are associated with cerebral neuropathological lesions observed in Alzheimer's disease (neuronal death, neurofibrillary tangle with abnormal Tau deposits and amyloid plaque). Aβ1-40 amyloid peptide dosage helps to interpret Aβ1-42 results. As suggested in the latest international criteria and the French HAS (Haute Autorité de santé) recommendations, using theses CSF biomarkers should not be systematic but sometimes could be performed to improve confidence about the diagnostic of Alzheimer's disease in young subjects or in complex clinical situations. Future biomarkers actually in development will additionally help in diagnostic process (differential diagnosis) and in prognostic evaluation of neurodegenerative diseases. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  18. A Systems Model of Parkinson's Disease Using Biochemical Systems Theory.

    Science.gov (United States)

    Sasidharakurup, Hemalatha; Melethadathil, Nidheesh; Nair, Bipin; Diwakar, Shyam

    2017-08-01

    Parkinson's disease (PD), a neurodegenerative disorder, affects millions of people and has gained attention because of its clinical roles affecting behaviors related to motor and nonmotor symptoms. Although studies on PD from various aspects are becoming popular, few rely on predictive systems modeling approaches. Using Biochemical Systems Theory (BST), this article attempts to model and characterize dopaminergic cell death and understand pathophysiology of progression of PD. PD pathways were modeled using stochastic differential equations incorporating law of mass action, and initial concentrations for the modeled proteins were obtained from literature. Simulations suggest that dopamine levels were reduced significantly due to an increase in dopaminergic quinones and 3,4-dihydroxyphenylacetaldehyde (DOPAL) relating to imbalances compared to control during PD progression. Associating to clinically observed PD-related cell death, simulations show abnormal parkin and reactive oxygen species levels with an increase in neurofibrillary tangles. While relating molecular mechanistic roles, the BST modeling helps predicting dopaminergic cell death processes involved in the progression of PD and provides a predictive understanding of neuronal dysfunction for translational neuroscience.

  19. Aluminum access to the brain: A role for transferrin and its receptor

    International Nuclear Information System (INIS)

    Roskams, A.J.; Connor, J.R.

    1990-01-01

    The toxicity of aluminum in plant and animal cell biology is well established, although poorly understood. Several recent studies have identified aluminum as a potential, although highly controversial, contributory factor in the pathology of Alzheimer's disease, amyotrophic lateral sclerosis, and dialysis dementia. For example, aluminum has been found in high concentrations in senile plaques and neurofibrillary tangles, which occur in the brains of subjects with Alzheimer's disease. However, a mechanism for the entry of aluminum (Al 3+ ) into the cells of the central nervous system (CNS) has yet to be found. Here the authors describe a possible route of entry for aluminum into the cells of the CNS via the same high-affinity receptor-ligand system that has been postulated for iron (Fe 3 ) aluminum is able to gain access to the central nervous system under normal physiological conditions. Furthermore, these data suggest that the interaction between transferrin and its receptor may function as a general metal ion regulatory system in the CNS, extending beyond its postulated role in iron regulation

  20. Recent Knowledge on Medicinal Plants as Source of Cholinesterase Inhibitors for the Treatment of Dementia.

    Science.gov (United States)

    Tundis, Rosa; Bonesi, Marco; Menichini, Francesco; Loizzo, Monica R

    2016-01-01

    Dementia is becoming a major public health problem worldwide. The most common form of dementia is Alzheimer's disease (AD), characterized by a deficient cholinergic transmission, deposition of amyloid plaques and neurofibrillary tangles, and neuro-inflammation that result in progressive degeneration and/or death of nerve cells and cognitive impairment. At present, AD cannot be prevented or cured, so the symptomatic relief obtainable by the use of acetylcholinesterase (AChE) inhibitors is one of the therapeutic strategies. Accumulated evidence suggests that naturally occurring compounds may potentially improve memory and cognitive function, and prevent neurodegeneration. Even today the search for new neuroprotective agents of natural origin is very active. The neuroprotective effects of medicinal plants covering studies of the last years will be summarized and discussed in this review choosing a family classification with particular emphasis on extracts and isolated compounds as promising new drugs. The search of a multifunctional potential anti-AD agent able to act on different crucial targets, such as galanthamine, quercetin and timosaponin AIII, could be a useful approach to recognizing therapeutics against AD.

  1. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  2. Combination of PKCε Activation and PTP1B Inhibition Effectively Suppresses Aβ-Induced GSK-3β Activation and Tau Phosphorylation.

    Science.gov (United States)

    Kanno, Takeshi; Tsuchiya, Ayako; Tanaka, Akito; Nishizaki, Tomoyuki

    2016-09-01

    Glycogen synthase kinase-3β (GSK-3β) is a key element to phosphorylate tau and form neurofibrillary tangles (NFTs) found in tauopathies including Alzheimer's disease (AD). A current topic for AD therapy is focused upon how to prevent tau phosphorylation. In the present study, PKCε activated Akt and inactivated GSK-3β by directly interacting with each protein. Inhibition of protein tyrosine phosphatase 1B (PTP1B), alternatively, caused an enhancement in the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), allowing activation of Akt through a pathway along an IRS-1/phosphatidylinositol 3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis, to phosphorylate and inactivate GSK-3β. Combination of PKCε activation and PTP1B inhibition more sufficiently activated Akt and inactivated GSK-3β than each independent treatment, to suppress amyloid β (Aβ)-induced tau phosphorylation and ameliorate spatial learning and memory impairment in 5xFAD transgenic mice, an animal model of AD. This may represent an innovative strategy for AD therapy.

  3. A review on cholinesterase inhibitors for Alzheimer's disease.

    Science.gov (United States)

    Anand, Preet; Singh, Baldev

    2013-04-01

    Alzheimer's disease (AD), a progressive neurodegenerative disorder, is characterized by the deficits in the cholinergic system and deposition of beta amyloid (Aβ) in the form of neurofibrillary tangles and amyloid plaques. Since the cholinergic system plays an important role in the regulation of learning and memory processes, it has been targetted for the design of anti-Alzheimer's drugs. Cholinesterase inhibitors enhance cholinergic transmission directly by inhibiting the enzyme acetylcholinesterase (AChE) which hydrolyses acetylcholine. Furthermore, it has been also demonstrated that both acetylcholinesterase and butrylcholinesterase (BuChE) play an important role in Aβ-aggregation during the early stages of senile plaque formation. Therefore, AChE and BuChE inhibition have been documented as critical targets for the effective management of AD by an increase in the availability of acetylcholine in the brain regions and decrease in the Aβ deposition. This review discusses the different classes of cholinesterase inhibitors including tacrine, donepezil, rivastigmine, galantamine, xanthostigmine, para-aminobenzoic acid, coumarin, flavonoid, and pyrrolo-isoxazole analogues developed for the treatment of AD.

  4. Alzheimer's disease: is a vaccine possible?

    Energy Technology Data Exchange (ETDEWEB)

    Alves, R.P.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil); Yang, M.J. [Instituto Butantan, Laboratório de Genética, São Paulo, SP, Brasil, Laboratório de Genética, Instituto Butantan, São Paulo, SP (Brazil); Batista, M.T.; Ferreira, L.C.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility.

  5. Structural and Functional Alterations in Neocortical Circuits after Mild Traumatic Brain Injury

    Science.gov (United States)

    Vascak, Michal

    National concern over traumatic brain injury (TBI) is growing rapidly. Recent focus is on mild TBI (mTBI), which is the most prevalent injury level in both civilian and military demographics. A preeminent sequelae of mTBI is cognitive network disruption. Advanced neuroimaging of mTBI victims supports this premise, revealing alterations in activation and structure-function of excitatory and inhibitory neuronal systems, which are essential for network processing. However, clinical neuroimaging cannot resolve the cellular and molecular substrates underlying such changes. Therefore, to understand the full scope of mTBI-induced alterations it is necessary to study cortical networks on the microscopic level, where neurons form local networks that are the fundamental computational modules supporting cognition. Recently, in a well-controlled animal model of mTBI, we demonstrated in the excitatory pyramidal neuron system, isolated diffuse axonal injury (DAI), in concert with electrophysiological abnormalities in nearby intact (non-DAI) neurons. These findings were consistent with altered axon initial segment (AIS) intrinsic activity functionally associated with structural plasticity, and/or disturbances in extrinsic systems related to parvalbumin (PV)-expressing interneurons that form GABAergic synapses along the pyramidal neuron perisomatic/AIS domains. The AIS and perisomatic GABAergic synapses are domains critical for regulating neuronal activity and E-I balance. In this dissertation, we focus on the neocortical excitatory pyramidal neuron/inhibitory PV+ interneuron local network following mTBI. Our central hypothesis is that mTBI disrupts neuronal network structure and function causing imbalance of excitatory and inhibitory systems. To address this hypothesis we exploited transgenic and cre/lox mouse models of mTBI, employing approaches that couple state-of-the-art bioimaging with electrophysiology to determine the structuralfunctional alterations of excitatory and

  6. beta1 integrin maintains integrity of the embryonic neocortical stem cell niche.

    Directory of Open Access Journals (Sweden)

    Karine Loulier

    2009-08-01

    to the ventricular surface and maintaining the physical integrity of the neocortical niche, with even transient perturbations resulting in long-lasting cortical defects.

  7. The Outwardly Rectifying Current of Layer 5 Neocortical Neurons that was Originally Identified as "Non-Specific Cationic" Is Essentially a Potassium Current.

    Directory of Open Access Journals (Sweden)

    Omer Revah

    Full Text Available In whole-cell patch clamp recordings from layer 5 neocortical neurons, blockade of voltage gated sodium and calcium channels leaves a cesium current that is outward rectifying. This current was originally identified as a "non-specific cationic current", and subsequently it was hypothesized that it is mediated by TRP channels. In order to test this hypothesis, we used fluorescence imaging of intracellular sodium and calcium indicators, and found no evidence to suggest that it is associated with influx of either of these ions to the cell body or dendrites. Moreover, the current is still prominent in neurons from TRPC1-/- and TRPC5-/- mice. The effects on the current of various blocking agents, and especially its sensitivity to intracellular tetraethylammonium, suggest that it is not a non-specific cationic current, but rather that it is generated by cesium-permeable delayed rectifier potassium channels.

  8. Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans.

    Science.gov (United States)

    van Kesteren, Marlieke T R; Fernández, Guillén; Norris, David G; Hermans, Erno J

    2010-04-20

    The hippocampus is thought to promote gradual incorporation of novel information into long-term memory by binding, reactivating, and strengthening distributed cortical-cortical connections. Recent studies implicate a key role in this process for hippocampally driven crosstalk with the (ventro)medial prefrontal cortex (vmPFC), which is proposed to become a central node in such representational networks over time. The existence of a relevant prior associative network, or schema, may moreover facilitate this process. Thus, hippocampal-vmPFC crosstalk may support integration of new memories, particularly in the absence of a relevant prior schema. To address this issue, we used functional magnetic resonance imaging (fMRI) and prior schema manipulation to track hippocampal-vmPFC connectivity during encoding and postencoding rest. We manipulated prior schema knowledge by exposing 30 participants to the first part of a movie that was temporally scrambled for 15 participants. The next day, participants underwent fMRI while encoding the movie's final 15 min in original order and, subsequently, while resting. Schema knowledge and item recognition performance show that prior schema was successfully and selectively manipulated. Intersubject synchronization (ISS) and interregional partial correlation analyses furthermore show that stronger prior schema was associated with more vmPFC ISS and less hippocampal-vmPFC interregional connectivity during encoding. Notably, this connectivity pattern persisted during postencoding rest. These findings suggest that additional crosstalk between hippocampus and vmPFC is required to compensate for difficulty integrating novel information during encoding and provide tentative support for the notion that functionally relevant hippocampal-neocortical crosstalk persists during off-line periods after learning.

  9. [Pathological neocortical findings in patients with medication-resistant medial temporal lobe epilepsy submitted to surgery].

    Science.gov (United States)

    Estupiñán-Díaz, B; Morales-Chacón, L M; Lorigados-Pedre, L; García-Maeso, I; Bender-del Busto, J E; Trápaga-Quincoses, O; Hidalgo-Portal, L; García-Navarro, M E; Sánchez-Coroneaux, A; Orozco-Suárez, S

    The dual pathology consisting of hippocampal sclerosis plus focal cortical dysplasia (FCD) is often reported in patients with medication-resistant medial temporal lobe epilepsy (MTLE). To determine the histopathological changes that take place in the neocortex of patients with medication-resistant MTLE submitted to surgery and to evaluate the relation between the histopathological changes, pathological background and the clinical course of patients who had received surgical treatment. Tissue obtained by en bloc resection from the neocortex of 18 patients with MTLE refractory to medical treatment was processed histologically and a tailored temporal lobectomy was performed with electrocorticography. Dual pathology was diagnosed in 13 patients (72.2%). Imaging studies confirmed the existence of mesial sclerosis of the temporal in 100% of cases and there was no evidence of neocortical lesions. Histologically, 46.15% and 38.46% of the patients were diagnosed as belonging to FCD type 1a and FCD type 1b, respectively. Only one patient presented FCD type 2a. A statistically significant relation was found between the presence of dual pathology and the existence of an early precipitating injury (p = 0.04). One year after surgery, 72.7% (8/11) patients with dual pathology were classified as belonging to Engel class I. In patients with MTLE there are microscopic FCD-type alterations in the neocortex. There is an association between these alterations and the existence of an initial precipitating injury. Complete resection of the epileptogenic area, which is guaranteed by the lobectomy tailored by electrocorticography, allows patients to enjoy a favourable post-surgical progression one year after surgery.

  10. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  11. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    Science.gov (United States)

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  12. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models.

    Directory of Open Access Journals (Sweden)

    Sethu Sankaranarayanan

    Full Text Available In Alzheimer's disease (AD, an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19 led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies.

  13. Loss of nonphosphorylated neurofilament immunoreactivity in temporal cortical areas in Alzheimer's disease.

    Science.gov (United States)

    Thangavel, R; Sahu, S K; Van Hoesen, G W; Zaheer, A

    2009-05-05

    The distribution of immunoreactive neurons with nonphosphorylated neurofilament protein (SMI32) was studied in temporal cortical areas in normal subjects and in patients with Alzheimer's disease (AD). SMI32 immunopositive neurons were localized mainly in cortical layers II, III, V and VI, and were medium to large-sized pyramidal neurons. Patients with AD had prominent degeneration of SMI32 positive neurons in layers III and V of Brodmann areas 38, 36, 35 and 20; in layers II and IV of the entorhinal cortex (Brodmann area 28); and hippocampal neurons. Neurofibrillary tangles (NFTs) were stained with Thioflavin-S and with an antibody (AT8) against hyperphosphorylated tau. The NFT distribution was compared to that of the neuronal cytoskeletal marker SMI32 in these temporal cortical regions. The results showed that the loss of SMI32 immunoreactivity in temporal cortical regions of AD brain is paralleled by an increase in NFTs and AT8 immunoreactivity in neurons. The SMI32 immunoreactivity was drastically reduced in the cortical layers where tangle-bearing neurons are localized. A strong SMI32 immunoreactivity was observed in numerous neurons containing NFTs by double-immunolabeling with SMI32 and AT8. However, few neurons were labeled by AT8 and SMI32. These results suggest that the development of NFTs in some neurons results from some alteration in SMI32 expression, but does not account for all, particularly, early NFT-related changes. Also, there is a clear correlation of NFTs with selective population of pyramidal neurons in the temporal cortical areas and these pyramidal cells are specifically prone to formation of paired helical filaments. Furthermore, these pyramidal neurons might represent a significant portion of the neurons of origin of long corticocortical connection, and consequently contribute to the destruction of memory-related input to the hippocampal formation.

  14. Transplantation of Human Menstrual Blood-Derived Mesenchymal Stem Cells Alleviates Alzheimer’s Disease-Like Pathology in APP/PS1 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Yongjia Zhao

    2018-04-01

    Full Text Available Extracellular β-amyloid (Aβ plaques and neurofibrillary tangles (NFTs are the pathological hallmarks of Alzheimer’s disease (AD. Mesenchymal stem cells (MSCs have shown therapeutic efficacy in many neurodegenerative diseases, including AD. Human menstrual blood-derived stem cells (MenSCs are a novel source of MSCs advantageous for their higher proliferation rate and because they are easy to obtain without ethical concerns. Although MenSCs have exhibited therapeutic efficacy in some diseases, their effects on AD remain elusive. In the present study, we showed that intracerebral transplantation of MenSCs dramatically improved the spatial learning and memory of APP/PS1 mice. In addition, MenSCs significantly ameliorated amyloid plaques and reduced tau hyperphosphorylation in APP/PS1 mice. Remarkably, we also found that intracerebral transplantation of MenSCs markedly increased several Aβ degrading enzymes and modulated a panel of proinflammatory cytokines associated with an altered microglial phenotype, suggesting an Aβ degrading and anti-inflammatory impact of MenSCs in the brains of APP/PS1 mice. In conclusion, these findings suggest that MenSCs are a promising therapeutic candidate for AD.

  15. Brain pathologies in extreme old age.

    Science.gov (United States)

    Neltner, Janna H; Abner, Erin L; Jicha, Gregory A; Schmitt, Frederick A; Patel, Ela; Poon, Leonard W; Marla, Gearing; Green, Robert C; Davey, Adam; Johnson, Mary Ann; Jazwinski, S Michal; Kim, Sangkyu; Davis, Daron; Woodard, John L; Kryscio, Richard J; Van Eldik, Linda J; Nelson, Peter T

    2016-01-01

    With an emphasis on evolving concepts in the field, we evaluated neuropathologic data from very old research volunteers whose brain autopsies were performed at the University of Kentucky Alzheimer's Disease Center, incorporating data from the Georgia Centenarian Study (n = 49 cases included), Nun Study (n = 17), and University of Kentucky Alzheimer's Disease Center (n = 11) cohorts. Average age of death was 102.0 (range: 98-107) years overall. Alzheimer's disease pathology was not universal (62% with "moderate" or "frequent" neuritic amyloid plaque densities), whereas frontotemporal lobar degeneration was absent. By contrast, some hippocampal neurofibrillary tangles (including primary age-related tauopathy) were observed in every case. Lewy body pathology was seen in 16.9% of subjects and hippocampal sclerosis of aging in 20.8%. We describe anatomic distributions of pigment-laden macrophages, expanded Virchow-Robin spaces, and arteriolosclerosis among Georgia Centenarians. Moderate or severe arteriolosclerosis pathology, throughout the brain, was associated with both hippocampal sclerosis of aging pathology and an ABCC9 gene variant. These results provide fresh insights into the complex cerebral multimorbidity, and a novel genetic risk factor, at the far end of the human aging spectrum. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Mathematical model on Alzheimer's disease.

    Science.gov (United States)

    Hao, Wenrui; Friedman, Avner

    2016-11-18

    Alzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of alzheimer's patients in the U.S. will reach 15 million and the cost of caring for them will exceed $ 1 trillion annually. The present paper develops a mathematical model of AD that includes neurons, astrocytes, microglias and peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either failed in clinical trials, or are currently in clinical trials. Based on these simulations it is suggested that combined therapy with TNF- α inhibitor and anti amyloid β could yield significant efficacy in slowing the progression of AD.

  17. Alterations in protein phosphorylation in the amygdala of the 5XFamilial Alzheimer's disease animal model.

    Science.gov (United States)

    Yang, Eun-Jeong; Mahmood, Usman; Kim, Hyunju; Choi, Moonseok; Choi, Yunjung; Lee, Jean-Pyo; Chang, Moon-Jeong; Kim, Hye-Sun

    2017-04-01

    Alzheimer's disease is the most common disease underlying dementia in humans. Two major neuropathological hallmarks of AD are neuritic plaques primarily composed of amyloid beta peptide and neurofibrillary tangles primarily composed of hyperphosphorylated tau. In addition to impaired memory function, AD patients often display neuropsychiatric symptoms and abnormal emotional states such as confusion, delusion, manic/depressive episodes and altered fear status. Brains from AD patients show atrophy of the amygdala which is involved in fear expression and emotional processing as well as hippocampal atrophy. However, which molecular changes are responsible for the altered emotional states observed in AD remains to be elucidated. Here, we observed that the fear response as assessed by evaluating fear memory via a cued fear conditioning test was impaired in 5XFamilial AD (5XFAD) mice, an animal model of AD. Compared to wild-type mice, 5XFAD mice showed changes in the phosphorylation of twelve proteins in the amygdala. Thus, our study provides twelve potential protein targets in the amygdala that may be responsible for the impairment in fear memory in AD. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Sources of extracellular tau and its signaling.

    Science.gov (United States)

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  19. Changes in retinal structure and function of Alzheimer's patients

    Directory of Open Access Journals (Sweden)

    Xi Qin

    2017-10-01

    Full Text Available Alzheimer's disease(AD, a neurodegenerative disease, can result in memory loss,cognitive and behavioral deficits. The pathological hallmarkes are β amyloid plaques and neurofibrillary tangles which lead loss of neurons in brain. As the extension of the central nervous system, retina has a similar tissue anatomy with central nervous system. The β amyloid plaques have also been detected in retina of AD. Furthermore, according to eye examinations of AD patients, we have found the loss of retinal ganglion cells, the attenuation of retinal nerve fiber layer thickness, the smaller changes of macula lutea, the decline of vascular density and so on. And then, there occurs the visual field loss and the decline of contrast sensitivity and so on in AD patients. Thus, the retina has occurred nerve degenerative changes in AD. Meanwhile, there has been proved that the retina nerve degeneration is even earlier than senile plaques formation in brain. In addition,curcumin, a natural and safe fluorescent dye, can be used to label β amyloid plaques in retina. The above suggests that retina can be a window for the early diagnosis of AD.

  20. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Directory of Open Access Journals (Sweden)

    Jackson George R

    2011-06-01

    Full Text Available Abstract Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I, and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.

  1. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Karagiannis, Tom C; Ververis, Katherine

    2012-01-01

    Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  2. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Tom C. Karagiannis

    2012-02-01

    Full Text Available Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  3. Is Apolipoprotein E4 an Important Risk Factor for Dementia in Persons with Down Syndrome?

    Science.gov (United States)

    Rohn, Troy T; McCarty, Katie L; Love, Julia E; Head, Elizabeth

    2014-12-08

    Down syndrome is one of the most common genetic causes of intellectual disability and is characterized by a number of behavioral as well as cognitive symptoms. Triplication of all or part of human chromosome 21 has been considered as the main cause of Down syndrome. Due to the location of the amyloid precursor protein on chromosome 21, many of the neuropathological features of early-onset Alzheimer's disease including senile plaques and neurofibrillary tangles are also present in Down syndrome patients who are either demented or nondemented. Significant advances in medical treatment have increased longevity in people with Down syndrome resulting in an increased population that may be subjected to many of the same risk factors as those with Alzheimer's disease. It is well established that harboring one or both apolipoprotein E4 alleles greatly increases the risk for Alzheimer's disease. However, whether apolipoprotein E4 contributes to an earlier onset of dementia or increased mortality in Down syndrome patients is still a matter of debate. The purpose of this mini review is to provide an updated assessment on apolipoprotein E4 status and risk potential of developing dementia and mortality associated with Down syndrome.

  4. Neurobiological findings associated with high cognitive performance in older adults: a systematic review.

    Science.gov (United States)

    Borelli, Wyllians Vendramini; Schilling, Lucas Porcello; Radaelli, Graciane; Ferreira, Luciana Borges; Pisani, Leonardo; Portuguez, Mirna Wetters; da Costa, Jaderson Costa

    2018-04-18

    ABSTRACTObjectives:to perform a comprehensive literature review of studies on older adults with exceptional cognitive performance. We performed a systematic review using two major databases (MEDLINE and Web of Science) from January 2002 to November 2017. Quantitative analysis included nine of 4,457 studies and revealed that high-performing older adults have global preservation of the cortex, especially the anterior cingulate region, and hippocampal volumes larger than normal agers. Histological analysis of this group also exhibited decreased amyloid burden and neurofibrillary tangles compared to cognitively normal older controls. High performers that maintained memory ability after three years showed reduced amyloid positron emission tomography at baseline compared with high performers that declined. A single study on blood plasma found a set of 12 metabolites predicting memory maintenance of this group. Structural and molecular brain preservation of older adults with high cognitive performance may be associated with brain maintenance. The operationalized definition of high-performing older adults must be carefully addressed using appropriate age cut-off and cognitive evaluation, including memory and non-memory tests. Further studies with a longitudinal approach that include a younger control group are essential.

  5. Interactions of metals and Apolipoprotein E in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    He eXu

    2014-06-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia, which is characterized by the neuropathological accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs. Clinically, patients will endure a gradual erosion of memory and other higher order cognitive functions. Whilst the underlying etiology of the disease remains to be definitively identified, a body of work has developed over the last two decades demonstrating that AD plasma/serum and brain are characterized by a dyshomeostasis in a number of metal ions. Furthermore, these metals (such as zinc, copper and iron play roles in the regulation of the levels AD-related proteins, including the amyloid precursor protein (APP and tau. It is becoming apparent that metals also interact with other proteins, including apolipoprotein E (ApoE. The Apolipoprotein E gene (APOE is critically associated with AD, with APOE4 representing the strongest genetic risk factor for the development of late-onset AD whereas APOE2 appears to have a protective role. In this review we will summarize the evidence supporting a role for metals in the function of Apolipoprotein E (ApoE and its consequent role in the pathogenesis of AD.

  6. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants.

    Science.gov (United States)

    Ayaz, Muhammad; Sadiq, Abdul; Junaid, Muhammad; Ullah, Farhat; Subhan, Fazal; Ahmed, Jawad

    2017-01-01

    The use of essential oils (EOs) and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa , Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD) and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ), neurofibrillary tangles (NFTs), cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness.

  7. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation.

    Science.gov (United States)

    Xu, Peng-Xin; Wang, Shao-Wei; Yu, Xiao-Lin; Su, Ya-Jing; Wang, Teng; Zhou, Wei-Wei; Zhang, He; Wang, Yu-Jiong; Liu, Rui-Tian

    2014-05-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Promoting brain health through exercise and diet in older adults: a physiological perspective

    Science.gov (United States)

    Pialoux, Vincent; Corbett, Dale; Drogos, Lauren; Erickson, Kirk I.; Eskes, Gail A.

    2016-01-01

    Abstract The rise in incidence of age‐related cognitive impairment is a global health concern. Ageing is associated with a number of changes in the brain that, collectively, contribute to the declines in cognitive function observed in older adults. Structurally, the ageing brain atrophies as white and grey matter volumes decrease. Oxidative stress and inflammation promote endothelial dysfunction thereby hampering cerebral perfusion and thus delivery of energy substrates and nutrients. Further, the development of amyloid plaques and neurofibrillary tangles contributes to neuronal loss. Of interest, there are substantial inter‐individual differences in the degree to which these physical and functional changes impact upon cognitive function as we grow older. This review describes how engaging in physical activity and cognitive activities and adhering to a Mediterranean style diet promote ‘brain health’. From a physiological perspective, we discuss the effects of these modifiable lifestyle behaviours on the brain, and how some recent human trials are beginning to show some promise as to the effectiveness of lifestyle behaviours in combating cognitive impairment. Moreover, we propose that these lifestyle behaviours, through numerous mechanisms, serve to increase brain, cerebrovascular and cognitive reserve, thereby preserving and enhancing cognitive function for longer. PMID:27524792

  9. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott

    2017-12-01

    Full Text Available Although cyanobacterial β-N-methylamino-l-alanine (BMAA has been implicated in the development of Alzheimer’s Disease (AD, Parkinson’s Disease (PD and Amyotrophic Lateral Sclerosis (ALS, no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.

  10. Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI

    Directory of Open Access Journals (Sweden)

    Anna E. Blanken

    2017-01-01

    Full Text Available Hippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD and 7 cognitively normal (NC subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ, tau, and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as well as subfield pathology burden measures. As expected, we found significant correlations between hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and subiculum. These results provide further validation for the European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP.

  11. The emerging link between O-GlcNAcylation and neurological disorders.

    Science.gov (United States)

    Ma, Xiaofeng; Li, He; He, Yating; Hao, Junwei

    2017-10-01

    O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is involved in the regulation of many cellular cascades and neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. In the brain, the expression of O-GlcNAcylation is notably heightened, as is that of O-linked N-acetylglucosaminyltransferase (OGT) and β-N-acetylglucosaminidase (OGA), the presence of which is prominent in many regions of neurological importance. Most importantly, O-GlcNAcylation is believed to contribute to the normal functioning of neurons; conversely, its dysregulation participates in the pathogenesis of neurological disorders. In neurodegenerative diseases, O-GlcNAcylation of the brain's key proteins, such as tau and amyloid-β, interacts with their phosphorylation, thereby triggering the formation of neurofibrillary tangles and amyloid plaques. An increase of O-GlcNAcylation by pharmacological intervention prevents neuronal loss. Additionally, O-GlcNAcylation is stress sensitive, and its elevation is cytoprotective. Increased O-GlcNAcylation ameliorated brain damage in victims of both trauma-hemorrhage and stroke. In this review, we summarize the current understanding of O-GlcNAcylation's physiological and pathological roles in the nervous system and provide a foundation for development of a therapeutic strategy for neurological disorders.

  12. L-3-n-Butylphthalide Regulates Proliferation, Migration, and Differentiation of Neural Stem Cell In Vitro and Promotes Neurogenesis in APP/PS1 Mouse Model by Regulating BDNF/TrkB/CREB/Akt Pathway.

    Science.gov (United States)

    Lei, Hui; Zhang, Yu; Huang, Longjian; Xu, Shaofeng; Li, Jiang; Yang, Lichao; Wang, Ling; Xing, Changhong; Wang, Xiaoliang; Peng, Ying

    2018-05-04

    Alzheimer's disease (AD) is characterized by extracellular accumulation of β-amyloid peptides (Aβ) and intracellular neurofibrillary tangles, along with cognitive decline and neurodegeneration. The cognitive deficit is considered to be due to the dysfunction of hippocampal neurogenesis. Although L-3-n-butylphthalide (L-NBP) has been shown beneficial effects in multiple AD animal models, the underlying molecular mechanisms are still elusive. In this study, we investigated the effects of L-NBP on neurogenesis both in vitro and in vivo. L-NBP promoted proliferation and migration of neural stem cells and induced neuronal differentiation in vitro. In APP/PS1 mice, L-NBP induced neurogenesis in the dentate gyrus and improved cognitive functions. In addition, L-NBP significantly increased the expressions of BDNF and NGF, tyrosine phosphorylation of its cognate receptor, and phosphorylation of Akt as well as CREB at Ser133 in the hippocampus of APP/PS1 mice. These results indicated that L-NBP might stimulate the proliferation, migration, and differentiation of hippocampal neural stem cells and reversed cognitive deficits in APP/PS1 mice. BDNF/TrkB/CREB/Akt signaling pathway might be involved.

  13. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity.

    Science.gov (United States)

    Huang, Yunpeng; Wu, Zhihao; Zhou, Bing

    2016-01-01

    tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.

  14. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae.

    Science.gov (United States)

    Jang, Eun Kyeong; Kim, Nam Yeun; Ahn, Hyung Jin; Ji, Geun Eog

    2015-08-01

    To enhance the γ-aminobutyric acid (GABA) content, the optimized fermentation of soybean with added sea tangle extract was evaluated at 30°C and pH 5.0. The medium was first inoculated with Aspergillus oryzae strain FMB S46471 and fermented for 3 days, followed by the subsequent inoculation with Lactobacillus brevis GABA 100. After fermentation for 7 days, the fermented soybean showed approximately 1.9 g/kg GABA and exhibited higher ACE inhibitory activity than the traditional soybean product. Furthermore, several peptides in the fraction containing the highest ACE inhibitory activity were identified. The novel fermented soybean enriched with GABA and ACE inhibitory components has great pharmaceutical and functional food values.

  15. Effect of ultramafic intrusions and associated mineralized rocks on the aqueous geochemistry of the Tangle Lakes Area, Alaska: Chapter C in Studies by the U.S. Geological Survey in Alaska, 2011

    Science.gov (United States)

    Wang, Bronwen; Gough, Larry P.; Wanty, Richard B.; Lee, Gregory K.; Vohden, James; O’Neill, J. Michael; Kerin, L. Jack

    2013-01-01

    Stream water was collected at 30 sites within the Tangle Lakes area of the Delta mineral belt in Alaska. Sampling focused on streams near the ultramafic rocks of the Fish Lake intrusive complex south of Eureka Creek and the Tangle Complex area east of Fourteen Mile Lake, as well as on those within the deformed metasedimentary, metavolcanic, and intrusive rocks of the Specimen Creek drainage and drainages east of Eureka Glacier. Major, minor, and trace elements were analyzed in aqueous samples for this reconnaissance aqueous geochemistry effort. The lithologic differences within the study area are reflected in the major-ion chemistry of the water. The dominant major cation in streams draining mafic and ultramafic rocks is Mg2+; abundant Mg and low Ca in these streams reflect the abundance of Mg-rich minerals in these intrusions. Nickel and Cu are detected in 84 percent and 87 percent of the filtered samples, respectively. Nickel and Cu concentrations ranged from Ni life criteria; however, Cu concentrations exceed the hardness-based criteria for both chronic and acute exposure at some sites. The entire rare earth element (REE) suite is found in samples from the Specimen Creek sites MH5, MH4, and MH6 and, with the exception of Tb and Tm, at site MH14. These samples were all collected within drainages containing or downstream from Tertiary gabbro, diabase, and metagabbro (Trgb) exposures. Chondrite and source rock fractionation profiles for the aqueous samples were light rare earth element depleted, with negative Ce and Eu anomalies, indicating fractionation of the REE during weathering. Fractionation patterns indicate that the REE are primarily in the dissolved, as opposed to colloidal, phase.

  16. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.

    Science.gov (United States)

    Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R

    2015-01-21

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.

  17. Zileuton improves memory deficits, amyloid and tau pathology in a mouse model of Alzheimer's disease with plaques and tangles.

    Directory of Open Access Journals (Sweden)

    Jin Chu

    Full Text Available The 5-lipoxygenase (5LO enzyme is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer's disease (AD, and plays an active role in the development of brain amyloidosis in the APP transgenic mice. In the present paper, we studied the effect of its pharmacological inhibition on the entire AD-like phenotype of a mouse model with plaques and tangles, the 3 × Tg mice. Compared with mice receiving placebo, the group treated with zileuton, a specific 5LO inhibitor, manifested a significant improvement of their memory impairments. The same animals had a significant reduction in Aβ levels and deposition, which was secondary to a down-regulation of the γ-secretase pathway. Additionally, while total tau levels were unchanged for both groups, zileuton-treated mice had a significant reduction in its phosphorylation state and insoluble forms, secondary to a decreased activation of the cdk5 kinase. These data establish a functional role for 5LO in the pathogenesis of the full spectrum of the AD-like phenotype and represent the successful completion of the initial step for the preclinical development of 5LO inhibitors as viable therapeutic agents for AD.

  18. HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons. An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rocío eRuiz

    2016-04-01

    Full Text Available The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and, hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  19. [A surgical case of mesial temporal lobe epilepsy associated with hippocampal sclerosis and traumatic neocortical lesion].

    Science.gov (United States)

    Kitazawa, Yu; Jin, Kazutaka; Iwasaki, Masaki; Suzuki, Hiroyoshi; Tanaka, Fumiaki; Nakasato, Nobukazu

    2017-11-25

    A 26-year-old right-handed woman, with a history of left temporal lobe contusion caused by a fall at the age of 9 months, started to have complex partial seizures with oral automatism at the age of 7 years. The seizures occurred once or twice a month despite combination therapy with several antiepileptic agents. Her history and imaging studies suggested the diagnosis of epilepsy arising from traumatic neocortical temporal lesion. Comprehensive assessment including long-term video EEG monitoring, MRI, FDG-PET, MEG, and neuropsychological evaluation was performed at the age of 26 years. The diagnosis was left mesial temporal lobe epilepsy associated with hippocampal atrophy and traumatic temporal cortical lesion. The patient was readmitted for surgical treatment at the age of 27 years. Intracranial EEG monitoring showed that ictal discharges started in the left hippocampus and spread to the traumatic lesion in the left posterior superior temporal gyrus 10 seconds after the onset. This case could not be classified as dual pathology exactly, because the traumatic left temporal cortical lesion did not show independent epileptogenicity. However, the traumatic lesion was highly likely to be the source of the epileptogenicity, and she had right hemispheric dominance for language and functional deterioration in the whole temporal cortex. Therefore, left amygdalo-hippocampectomy and left temporal lobectomy including the traumatic lesion were performed according to the diagnosis of dual pathology. Subsequently, she remained seizure-free for 3 years. Comprehensive assessment of seizure semiology, neurophysiology, neuroradiology, and neuropsychology is important to determine the optimum therapeutic strategies for drug-resistant epilepsy.

  20. Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe.

    Science.gov (United States)

    Verwilst, Peter; Kim, Hye-Ri; Seo, Jinho; Sohn, Nak-Won; Cha, Seung-Yun; Kim, Yeongmin; Maeng, Sungho; Shin, Jung-Won; Kwak, Jong Hwan; Kang, Chulhun; Kim, Jong Seung

    2017-09-27

    The elucidation of the cause of Alzheimer's disease remains one of the greatest questions in neurodegenerative research. The lack of highly reliable low-cost sensors to study the structural changes in key proteins during the progression of the disease is a contributing factor to this lack of insight. In the current work, we describe the rational design and synthesis of two fluorescent BODIPY-based probes, named Tau 1 and Tau 2. The probes were evaluated on the molecular surface formed by a fibril of the PHF6 ( 306 VQIVYK 311 ) tau fragment using molecular docking studies to provide a potential molecular model to rationalize the selectivity of the new probes as compared to a homologous Aβ-selective probe. The probes were synthesized in a few steps from commercially available starting products and could thus prove to be highly cost-effective. We demonstrated the excellent photophysical properties of the dyes, such as a large Stokes shift and emission in the near-infrared window of the electromagnetic spectrum. The probes demonstrated a high selectivity for self-assembled microtubule-associated protein tau (Tau protein), in both solution and cell-based experiments. Moreover, the administration to an acute murine model of tauopathy clearly revealed the staining of self-assembled hyperphosphorylated tau protein in pathologically relevant hippocampal brain regions. Tau 1 demonstrated efficient blood-brain barrier penetrability and demonstrated a clear selectivity for tau tangles over Aβ plaques, as well as the capacity for in vivo imaging in a transgenic mouse model. The current work could open up avenues for the cost-effective monitoring of the tau protein aggregation state in animal models as well as tissue staining. Furthermore, these fluorophores could serve as the basis for the development of clinically relevant sensors, for example based on PET imaging.

  1. Vibration transmission through sheet webs of hobo spiders (Eratigena agrestis) and tangle webs of western black widow spiders (Latrodectus hesperus).

    Science.gov (United States)

    Vibert, Samantha; Scott, Catherine; Gries, Gerhard

    2016-11-01

    Web-building spiders construct their own vibratory signaling environments. Web architecture should affect signal design, and vice versa, such that vibratory signals are transmitted with a minimum of attenuation and degradation. However, the web is the medium through which a spider senses both vibratory signals from courting males and cues produced by captured prey. Moreover, webs function not only in vibration transmission, but also in defense from predators and the elements. These multiple functions may impose conflicting selection pressures on web design. We investigated vibration transmission efficiency and accuracy through two web types with contrasting architectures: sheet webs of Eratigena agrestis (Agelenidae) and tangle webs of Latrodectus hesperus (Theridiidae). We measured vibration transmission efficiencies by playing frequency sweeps through webs with a piezoelectric vibrator and a loudspeaker, recording the resulting web vibrations at several locations on each web using a laser Doppler vibrometer. Transmission efficiencies through both web types were highly variable, with within-web variation greater than among-web variation. There was little difference in transmission efficiencies of longitudinal and transverse vibrations. The inconsistent transmission of specific frequencies through webs suggests that parameters other than frequency are most important in allowing these spiders to distinguish between vibrations of prey and courting males.

  2. Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship.

    Science.gov (United States)

    Frostig, Ron D; Chen-Bee, Cynthia H; Johnson, Brett A; Jacobs, Nathan S

    2017-07-01

    This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure-function relationship.

  3. Purine-related metabolites and their converting enzymes are altered in frontal, parietal and temporal cortex at early stages of Alzheimer's disease pathology.

    Science.gov (United States)

    Alonso-Andrés, Patricia; Albasanz, José Luis; Ferrer, Isidro; Martín, Mairena

    2018-01-24

    Adenosine, hypoxanthine, xanthine, guanosine and inosine levels were assessed by HPLC, and the activity of related enzymes 5'-nucleotidase (5'-NT), adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) measured in frontal (FC), parietal (PC) and temporal (TC) cortices at different stages of disease progression in Alzheimer's disease (AD) and in age-matched controls. Significantly decreased levels of adenosine, guanosine, hypoxanthine and xanthine, and apparently less inosine, are found in FC from the early stages of AD; PC and TC show an opposing pattern, as adenosine, guanosine and inosine are significantly increased at least at determinate stages of AD whereas hypoxanthine and xanthine levels remain unaltered. 5'-NT is reduced in membranes and cytosol in FC mainly at early stages but not in PC, and only at advanced stages in cytosol in TC. ADA activity is decreased in AD when considered as a whole but increased at early stages in TC. Finally, PNP activity is increased only in TC at early stages. Purine metabolism alterations occur at early stages of AD independently of neurofibrillary tangles and β-amyloid plaques. Alterations are stage dependent and region dependent, the latter showing opposite patterns in FC compared with PC and TC. Adenosine is the most affected of the assessed purines. © 2018 International Society of Neuropathology.

  4. The Innate Immune System in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Allal Boutajangout

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause for dementia in the world. It is characterized by two biochemically distinct types of protein aggregates: amyloid β (Aβ peptide in the forms of parenchymal amyloid plaques and congophilic amyloid angiopathy (CAA and aggregated tau protein in the form of intraneuronal neurofibrillary tangles (NFT. Several risk factors have been discovered that are associated with AD. The most well-known genetic risk factor for late-onset AD is apolipoprotein E4 (ApoE4 (Potter and Wisniewski (2012, and Verghese et al. (2011. Recently, it has been reported by two groups independently that a rare functional variant (R47H of TREM2 is associated with the late-onset risk of AD. TREM2 is expressed on myeloid cells including microglia, macrophages, and dendritic cells, as well as osteoclasts. Microglia are a major part of the innate immune system in the CNS and are also involved in stimulating adaptive immunity. Microglia express several Toll-like receptors (TLRs and are the resident macrophages of the central nervous system (CNS. In this review, we will focus on the recent advances regarding the role of TREM2, as well as the effects of TLRs 4 and 9 on AD.

  5. p62 modulates Akt activity via association with PKCζ in neuronal survival and differentiation

    International Nuclear Information System (INIS)

    Joung, Insil; Kim, Hak Jae; Kwon, Yunhee Kim

    2005-01-01

    p62 is a ubiquitously expressed phosphoprotein that interacts with a number of signaling molecules and a major component of neurofibrillary tangles in the brain of Alzheimer's disease patients. It has been implicated in important cellular functions such as cell proliferation and anti-apoptotic pathways. In this study, we have addressed the potential role of p62 during neuronal differentiation and survival using HiB5, a rat neuronal progenitor cell. We generated a recombinant adenovirus encoding T7-epitope tagged p62 to reliably transfer p62 cDNA into the neuronal cells. The results show that an overexpression of p62 led not only to neuronal differentiation, but also to decreased cell death induced by serum withdrawal in HiB5 cells. In this process p62-dependent Akt phosphorylation occurred via the release of Akt from PKCζ by association of p62 and PKCζ, which is known as a negative regulator of Akt activation. These findings indicate that p62 facilitates cell survival through novel signaling cascades that result in Akt activation. Furthermore, we found that p62 expression was induced during neuronal differentiation. Taken together, the data suggest p62 is a regulator of neuronal cell survival and differentiation

  6. APOε2 and education in cognitively normal older subjects with high levels of AD pathology at autopsy: findings from the Nun Study.

    Science.gov (United States)

    Iacono, Diego; Zandi, Peter; Gross, Myron; Markesbery, William R; Pletnikova, Olga; Rudow, Gay; Troncoso, Juan C

    2015-06-10

    Asymptomatic Alzheimer's disease (ASYMAD) subjects are individuals characterized by preserved cognition before death despite substantial AD pathology at autopsy. ASYMAD subjects show comparable levels of AD pathology, i.e. β-amyloid neuritic plaques (Aβ-NP) and tau-neurofibrillary tangles (NFT), to those observed in mild cognitive impairment (MCI) and some definite AD cases. Previous clinicopathologic studies on ASYMAD subjects have shown specific phenomena of hypertrophy in the cell bodies, nuclei, and nucleoli of hippocampal pyramidal neurons and other cerebral areas. Since it is well established that the allele APOε4 is a major genetic risk factor for AD, we examined whether specific alleles of APOE could be associated with the different clinical outcomes between ASYMAD and MCI subjects despite equivalent AD pathology. A total of 523 brains from the Nun Study were screened for this investigation. The results showed higher APOε2 frequency (p < 0.001) in ASYMAD (19.2%) vs. MCI (0%) and vs. AD (4.7%). Furthermore, higher education in ASYMAD vs. MCI and AD (p < 0.05) was found. These novel autopsy-verified findings support the hypothesis of the beneficial effect of APOε2 and education, both which seem to act as contributing factors in delaying or forestalling the clinical manifestations of AD despite consistent levels of AD pathology.

  7. Melatonin in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Jian-Zhi Wang

    2013-07-01

    Full Text Available Alzheimer’s disease (AD, an age-related neurodegenerative disorder with progressive cognition deficit, is characterized by extracellular senile plaques (SP of aggregated β-amyloid (Aβ and intracellular neurofibrillary tangles, mainly containing the hyperphosphorylated microtubule-associated protein tau. Multiple factors contribute to the etiology of AD in terms of initiation and progression. Melatonin is an endogenously produced hormone in the brain and decreases during aging and in patients with AD. Data from clinical trials indicate that melatonin supplementation improves sleep, ameliorates sundowning and slows down the progression of cognitive impairment in AD patients. Melatonin efficiently protects neuronal cells from Aβ-mediated toxicity via antioxidant and anti-amyloid properties. It not only inhibits Aβ generation, but also arrests the formation of amyloid fibrils by a structure-dependent interaction with Aβ. Our studies have demonstrated that melatonin efficiently attenuates Alzheimer-like tau hyperphosphorylation. Although the exact mechanism is still not fully understood, a direct regulatory influence of melatonin on the activities of protein kinases and protein phosphatases is proposed. Additionally, melatonin also plays a role in protecting the cholinergic system and in anti-inflammation. The aim of this review is to stimulate interest in melatonin as a potentially useful agent in the prevention and treatment of AD.

  8. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Muhammad Ayaz

    2017-05-01

    Full Text Available The use of essential oils (EOs and their components is known since long in traditional medicine and aromatherapy for the management of various diseases, and is further increased in the recent times. The neuroprotective and anti-aging potentials of EOs and their possible mechanism of actions were evaluated by numerous researchers around the globe. Several clinically important EOs and their components from Nigella sativa, Acorus gramineus, Lavandula angustifolia, Eucalyptus globulus, Mentha piperita, Rosmarinus officinalis, Jasminum sambac, Piper nigrum and so many other plants are reported for neuroprotective effects. This review article was aimed to summarize the current finding on EOs tested against neurodegenerative disorders like Alzheimer disease (AD and dementia. The effects of EOs on pathological targets of AD and dementia including amyloid deposition (Aβ, neurofibrillary tangles (NFTs, cholinergic hypofunction, oxidative stress and glutamatergic abnormalities were focused. Furthermore, effects of EOs on other neurological disorders including anxiety, depression, cognitive hypofunction epilepsy and convulsions were also evaluated in detail. In conclusion, EOs were effective on several pathological targets and have improved cognitive performance in animal models and human subjects. Thus, EOs can be developed as multi-potent agents against neurological disorders with better efficacy, safety and cost effectiveness.

  9. Alzheimer's Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System

    Directory of Open Access Journals (Sweden)

    Chris Carter

    2011-01-01

    Full Text Available Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction.

  10. Natural products as promising drug candidates for the treatment of Alzheimer's disease: molecular mechanism aspect.

    Science.gov (United States)

    Ansari, Niloufar; Khodagholi, Fariba

    2013-07-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder to date, with no curative or preventive therapy. Histopathological hallmarks of AD include deposition of β-amyloid plaques and formation of neurofibrillary tangles. Extent studies on pathology of the disease have made important discoveries regarding mechanism of disease and potential therapeutic targets. Many cellular changes including oxidative stress, disruption of Ca2+ homeostasis, inflammation, metabolic disturbances, and accumulation of unfolded/misfolded proteins can lead to programmed cell death in AD. Despite intensive research, only five approved drugs are available for the management of AD. Hence, there is a need to look at alternative therapies. Use of natural products and culinary herbs in medicine has gained popularity in recent years. Several natural substances with neuroprotective effects have been widely studied. Most of these compounds have remarkable antioxidant properties and act mainly by scavenging free radical species. Some of them increase cell survival and improve cognition by directly affecting amyloidogenesis and programmed cell death pathways. Further studies on these natural products and their mechanism of action, parallel with the use of novel pharmaceutical drug design and delivery techniques, enable us to offer an addition to conventional medicine. This review discussed some natural products with potential neuroprotective properties against Aβ with respect to their mechanism of action.

  11. Early stages of Alzheimer's disease are alarming signs in injury deaths caused by traffic accidents in elderly people (≥60 years of age): A neuropathological study.

    Science.gov (United States)

    Wijesinghe, Printha; Gorrie, Catherine; Shankar, S K; Chickabasaviah, Yasha T; Amaratunga, Dhammika; Hulathduwa, Sanjayah; Kumara, K Sunil; Samarasinghe, Kamani; Suh, Yoo-Hun; Steinbusch, H W M; De Silva, K Ranil D

    2017-01-01

    There is little information available in the literature concerning the contribution of dementia in injury deaths in elderly people (≥60 years). This study was intended to investigate the extent of dementia-related pathologies in the brains of elderly people who died in traffic accidents or by suicide and to compare our findings with age- and sex-matched natural deaths in an elderly population. Autopsy-derived human brain samples from nine injury death victims (5 suicide and 4 traffic accidents) and nine age- and sex-matched natural death victims were screened for neurodegenerative and cerebrovascular pathologies using histopathological and immunohistochemical techniques. For the analysis, Statistical Package for the Social Sciences (SPSS) version 16.0 was used. There was a greater likelihood for Alzheimer's disease (AD)-related changes in the elders who succumbed to traffic accidents (1 out of 4) compared to age- and sex-matched suicides (0 out of 5) or natural deaths (0 out of 9) as assessed by the National Institute on Aging - Alzheimer's Association guidelines. Actual burden of both neurofibrillary tangles (NFTs) and (SPs) was comparatively higher in the brains of traffic accidents, and the mean NFT counts were significantly higher in the region of entorhinal cortex ( P traffic accidents in elderly people whereas suicidal brain neuropathologies resembled natural deaths.

  12. Expression of Nrf2 in neurodegenerative diseases.

    Science.gov (United States)

    Ramsey, Chenere P; Glass, Charles A; Montgomery, Marshall B; Lindl, Kathryn A; Ritson, Gillian P; Chia, Luis A; Hamilton, Ronald L; Chu, Charleen T; Jordan-Sciutto, Kelly L

    2007-01-01

    In response to oxidative stress, the nuclear factor E2-related factor 2 (Nrf2) transcription factor translocates from the cytoplasm into the nucleus and transactivates expression of genes with antioxidant activity. Despite this cellular mechanism, oxidative damage is abundant in Alzheimer and Parkinson disease (AD and PD). To investigate mechanisms by which Nrf2 activity may be aberrant or insufficient in neurodegenerative conditions, we assessed Nrf2 localization in affected brain regions of AD, Lewy body variant of AD (LBVAD), and PD. By immunohistochemistry, Nrf2 is expressed in both the nucleus and the cytoplasm of neurons in normal hippocampi with predominant expression in the nucleus. In AD and LBVAD, Nrf2 was predominantly cytoplasmic in hippocampal neurons and was not a major component of beta amyloid plaques or neurofibrillary tangles. By immunoblotting, we observed a significant decrease in nuclear Nrf2 levels in AD cases. In contrast, Nrf2 was strongly nuclear in PD nigral neurons but cytoplasmic in substantia nigra of normal, AD, and LBVAD cases. These findings suggest that Nrf2-mediated transcription is not induced in neurons in AD despite the presence of oxidative stress. In PD, nuclear localization of Nrf2 is strongly induced, but this response may be insufficient to protect neurons from degeneration.

  13. Preferential Selectivity of Inhibitors with Human Tau Protein Kinase Gsk3 Elucidates Their Potential Roles for Off-Target Alzheimer’s Therapy

    Directory of Open Access Journals (Sweden)

    Jagadeesh Kumar Dasappa

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder characterized by the accumulation of amyloid beta peptides (A and neurofibrillary tangles (NFTs. The abnormal phosphorylation of tau leads to the formation of NFTs produced by the action of tau kinases, resulting in the loss of neurons and synapse, leading to dementia. Hence, tau kinases have become potential drug target candidates for small molecule inhibitors. With an aim to explore the identification of a common inhibitor, this investigation was undertaken towards analyzing all 10 tau kinases which are implicated in phosphorylation of AD. A set of 7 inhibitors with varied scaffolds were collected from the Protein Data Bank (PDB. The analysis, involving multiple sequence alignment, 3D structural alignment, catalytic active site overlap, and docking studies, has enabled elucidation of the pharmacophoric patterns for the class of 7 inhibitors. Our results divulge that tau protein kinases share a specific set of conserved structural elements for the binding of inhibitors and ATP, respectively. The scaffold of 3-aminopyrrolidine (inhibitor 6 exhibits high preferential affinity with GSK3. Surprisingly, the PDB does not contain the structural details of GSK3 with this specific inhibitor. Thus, our investigations provide vital clues towards design of novel off-target drugs for Alzheimer’s.

  14. Role of berberine in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Cai Z

    2016-10-01

    Full Text Available Zhiyou Cai,1,* Chuanling Wang,1,* Wenming Yang2 1Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, 2Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China *These authors contributed equally to this work Abstract: Berberine, an important protoberberine isoquinoline alkaloid, has several pharmacological activities, including antimicrobial, glucose- and cholesterol-lowering, antitumoral, and immunomodulatory properties. Substantial studies suggest that berberine may be beneficial to Alzheimer’s disease (AD by limiting the pathogenesis of extracellular amyloid plaques and intracellular neurofibrillary tangles. Increasing evidence has indicated that berberine exerts a protective role in atherosclerosis related to lipid- and glucose-lowering properties, implicating that berberine has the potential to inhibit these risk factors for AD. This review also attempts to discuss the pharmacological basis through which berberine may retard oxidative stress and neuroinflammation to exhibit its protective role in AD. Accordingly, berberine might be considered a potential therapeutic approach to prevent or delay the process of AD. However, more detailed investigations along with a safety assessment of berberine are warranted to clarify the role of berberine in limiting these risk factors and AD-related pathologies. Keywords: berberine, amyloid, tau, oxidative stress, neuroinflammation, risk factors

  15. A review study on medicinal plants used in the treatment of learning and memory impairments

    Institute of Scientific and Technical Information of China (English)

    Nahid Jivad; Zahra Rabiei

    2014-01-01

    Alzheimer's disease (AD) is a progressive brain disorder that gradually impairs the person's memory and ability to learn, reasoning, judgment, communication and daily activities. AD is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles, and the degeneration of the cholinergic basal forebrain. During the progression of AD patients may produce changes in personality and behavior, such as anxiety, paranoia, confusion, hallucinations and also to experience delusions and fantasies. The first neurotransmitter defect discovered in AD involved acetylcholine as cholinergic function is required for short-term memory. Oxidative stress may underlie the progressive neurodegeneration characteristic of AD. Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen. The neurodegenerative process in AD may involveβ amyloid toxicity. Neurotoxicity of β amyloid appears to involve oxidative stress. Currently, there is no cure for this disease but in new treatments, reveals a new horizon on the biology of this disease. This paper reviews the effects of a number of commonly used types of herbal medicines for the treatment of AD. The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.

  16. A review study on medicinal plants used in the treatment of learning and memory impairments

    Institute of Scientific and Technical Information of China (English)

    Nahid; Jivad; Zahra; Rabiei

    2014-01-01

    Alzheimer′s disease(AD) is a progressive brain disorder thai gradual!) impairs the person’s memory and ability to learn,reasoning.judgment,communication and daily activities.All is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles,and the degeneration of the cholinergic basal forebrain.During the progression of AD patients may produce changes in personality and behavior,such as anxiety,paranoia,confusion,hallucinations and also to experience delusions and lanlasies.The first neurotransmitter defect discovered in Al) involved acetylcholine as cholinergic function is required for short—term memory.Oxidative stress may underlie the progressive neurodegeneration characteristic of AD.Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen.The neurodegenerative process in AD may involveβ amyloid toxicity.Neurotoxicity of β amyloid appears to involve oxidative stress.Currently,there is no cure for this disease but in new treatments,reveals a new horizon on the biology of this disease.This paper reviews the effects of a number of commonly used types of herbal medicines for the Irealment of AD.The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.

  17. Pediatric respiratory and systemic effects of chronic air pollution exposure: nose, lung, heart, and brain pathology.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William

    2007-01-01

    Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.

  18. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  19. Dissection of functional lncRNAs in Alzheimer's disease by construction and analysis of lncRNA-mRNA networks based on competitive endogenous RNAs.

    Science.gov (United States)

    Wang, Lian-Kun; Chen, Xiao-Feng; He, Dan-Dan; Li, You; Fu, Jin

    2017-04-08

    Alzheimer's disease (AD) is a neurodegenerative disorder that is the most common cause of dementia in the elderly, and intracellular neurofibrillary tangles (NFTs) are one of the pathological features of AD. Recent studies have suggested long noncoding RNAs (lncRNAs) play important roles in AD. Competing endogenous RNAs (ceRNAs) is a mechanism that has recently been proposed, in which lncRNAs compete for common miRNA-binding sites with mRNAs. However, the roles of lncRNAs and ceRNA in AD NFTs is limited. In this study, we constructed a global triple network based on ceRNA theory, then an AD NFT lncRNA-mRNA network (NFTLMN) was generated. By analyzing the NFTLMN, three lncRNAs (AP000265.1, KB-1460A1.5 and RP11-145M9.4), which are highly related with AD NFTs were identified. To further explore the cross-talk between mRNAs and lncRNAs, a clustering module analysis was performed on the NFTLMN and two AD NFT related modules were identified. Our study provides a better understanding of the molecular basis of AD NFTs and may offer novel treatment strategies for AD. Copyright © 2016. Published by Elsevier Inc.

  20. The Impact of Vitamin E and Other Fat-Soluble Vitamins on Alzheimer´s Disease

    Directory of Open Access Journals (Sweden)

    Marcus O. W. Grimm

    2016-10-01

    Full Text Available Alzheimer’s disease (AD is the most common cause of dementia in the elderly population, currently affecting 46 million people worldwide. Histopathologically, the disease is characterized by the occurrence of extracellular amyloid plaques composed of aggregated amyloid-β (Aβ peptides and intracellular neurofibrillary tangles containing the microtubule-associated protein tau. Aβ peptides are derived from the sequential processing of the amyloid precursor protein (APP by enzymes called secretases, which are strongly influenced by the lipid environment. Several vitamins have been reported to be reduced in the plasma/serum of AD-affected individuals indicating they have an impact on AD pathogenesis. In this review we focus on vitamin E and the other lipophilic vitamins A, D, and K, and summarize the current knowledge about their status in AD patients, their impact on cognitive functions and AD risk, as well as their influence on the molecular mechanisms of AD. The vitamins might affect the generation and clearance of Aβ both by direct effects and indirectly by altering the cellular lipid homeostasis. Additionally, vitamins A, D, E, and K are reported to influence further mechanisms discussed to be involved in AD pathogenesis, e.g., Aβ-aggregation, Aβ-induced neurotoxicity, oxidative stress, and inflammatory processes, as summarized in this article.

  1. Proximate Mediators of Microvascular Dysfunction at the Blood-Brain Barrier: Neuroinflammatory Pathways to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Barry W. Festoff

    2017-01-01

    Full Text Available Current projections are that by 2050 the numbers of people aged 65 and older with Alzheimer’s disease (AD in the US may increase threefold while dementia is projected to double every 20 years reaching ~115 million by 2050. AD is clinically characterized by progressive dementia and neuropathologically by neuronal and synapse loss, accumulation of amyloid plaques, and neurofibrillary tangles (NFTs in specific brain regions. The preclinical or presymptomatic stage of AD-related brain changes may begin over 20 years before symptoms occur, making development of noninvasive biomarkers essential. Distinct from neuroimaging and cerebrospinal fluid biomarkers, plasma or serum biomarkers can be analyzed to assess (i the presence/absence of AD, (ii the risk of developing AD, (iii the progression of AD, or (iv AD response to treatment. No unifying theory fully explains the neurodegenerative brain lesions but neuroinflammation (a lethal stressor for healthy neurons is universally present. Current consensus is that the earlier the diagnosis, the better the chance to develop treatments that influence disease progression. In this article we provide a detailed review and analysis of the role of the blood-brain barrier (BBB and damage-associated molecular patterns (DAMPs as well as coagulation molecules in the onset and progression of these neurodegenerative disorders.

  2. Different Populations of Human Locus Ceruleus Neurons Contain Heavy Metals or Hyperphosphorylated Tau: Implications for Amyloid-β and Tau Pathology in Alzheimer's Disease.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2015-01-01

    A marked loss of locus ceruleus (LC) neurons is a striking pathological feature of Alzheimer's disease (AD). LC neurons are particularly prone to taking up circulating toxicants such as heavy metals, and hyperphosphorylated tau (tau(HYP)) appears early in these neurons. In an attempt to find out if both heavy metals and tau(HYP) could be damaging LC neurons, we looked in the LC neurons of 21 sporadic AD patients and 43 non-demented controls for the heavy metals mercury, bismuth, and silver using autometallography, and for tau(HYP) using AT8 immunostaining. Heavy metals or tau(HYP) were usually seen in separate LC neurons, and rarely co-existed within the same neuron. The number of heavy metal-containing LC neurons did not correlate with the number containing tau(HYP). Heavy metals therefore appear to occupy a mostly different population of LC neurons to those containing tau(HYP), indicating that the LC in AD is vulnerable to two different assaults. Reduced brain noradrenaline from LC damage is linked to amyloid-β deposition, and tau(HYP) in the LC may seed neurofibrillary tangles in other neurons. A model is described, incorporating the present findings, that proposes that the LC plays a part in both the amyloid-β and tau pathologies of AD.

  3. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease.

    LENUS (Irish Health Repository)

    Colgan, N

    2015-10-23

    Increased hyperphosphorylated tau and the formation of intracellular neurofibrillary tangles are associated with the loss of neurons and cognitive decline in Alzheimer\\'s disease, and related neurodegenerative conditions. We applied two diffusion models, diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to in vivo diffusion magnetic resonance images (dMRI) of a mouse model of human tauopathy (rTg4510) at 8.5months of age. In grey matter regions with the highest degree of tau burden, microstructural indices provided by both NODDI and DTI discriminated the rTg4510 (TG) animals from wild type (WT) controls; however only the neurite density index (NDI) (the volume fraction that comprises axons or dendrites) from the NODDI model correlated with the histological measurements of the levels of hyperphosphorylated tau protein. Reductions in diffusion directionality were observed when implementing both models in the white matter region of the corpus callosum, with lower fractional anisotropy (DTI) and higher orientation dispersion (NODDI) observed in the TG animals. In comparison to DTI, histological measures of tau pathology were more closely correlated with NODDI parameters in this region. This in vivo dMRI study demonstrates that NODDI identifies potential tissue sources contributing to DTI indices and NODDI may provide greater specificity to pathology in Alzheimer\\'s disease.

  4. Epigenetics: A novel therapeutic approach for the treatment of Alzheimer’s disease

    Science.gov (United States)

    Adwan, Lina; Zawia, Nasser H.

    2013-01-01

    Alzheimer’s disease (AD) is the most common type of dementia in the elderly. It is characterized by the deposition of two forms of aggregates within the brain, the amyloid β plaques and tau neurofibrillary tangles. Currently, no disease-modifying agent is approved for the treatment of AD. Approved pharmacotherapies target the peripheral symptoms but they do not prevent or slow down the progression of the disease. Although several disease-modifying immunotherapeutic agents are in clinical development, many have failed due to lack of efficacy or serious adverse events. Epigenetic changes including DNA methylation and histone modifications are involved in learning and memory and have been recently highlighted for holding promise as potential targets for AD therapeutics. Dynamic and latent epigenetic alterations are incorporated in AD pathological pathways and present valuable reversible targets for AD and other neurological disorders. The approval of epigenetic drugs for cancer treatment has opened the door for the development of epigenetic drugs for other disorders including neurodegenerative diseases. In particular, methyl donors and histone deacetylase inhibitors are being investigated for possible therapeutic effects to rescue memory and cognitive decline found in such disorders. This review explores the area of epigenetics for potential AD interventions and presents the most recent findings in this field. PMID:23562602

  5. Role of the extended MAPT haplotype in the worsening of psychotic symptoms and treatment response in Alzheimer disease.

    Science.gov (United States)

    Creese, Byron; Corbett, Anne; Jones, Emma; Fox, Chris; Ballard, Clive

    2014-12-01

    There is evidence that neurofibrillary tangle (NFT) burden is associated with psychotic symptoms in Alzheimer disease (AD). However, it is not clear whether this association is direct or mediated through the increased cognitive impairment associated with NFTs. We sought to determine whether the extended MAPT haplotype was associated with the worsening of delusions and hallucinations in a combined cohort of 95 patients who participated in 2 clinical trials of treatment with memantine. After controlling for baseline dementia severity, exposure to memantine, and antipsychotics, analysis shows that carriers of at least one H2 allele had a 5.4-fold (P = .03) increased risk of worsening hallucinations. There was some evidence of association with worsening delusions but only in analysis by allele. These results are the first to indicate that the H2 allele of the extended MAPT haplotype negatively affects the course of psychotic symptoms in AD independently of disease severity. It will be important for future research to examine MAPT transcription in people with AD with and without psychotic symptoms to understand the exact mechanisms underlying these findings. Copyright © 2014 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  6. Immunotherapy for the treatment of Alzheimer's disease: amyloid-β or tau, which is the right target?

    Directory of Open Access Journals (Sweden)

    Castillo-Carranza DL

    2013-12-01

    Full Text Available Diana L Castillo-Carranza,1,2 Marcos J Guerrero-Muñoz,1,2 Rakez Kayed1–31Mitchell Center for Neurodegenerative Diseases, 2Departments of Neurology, Neuroscience, and Cell Biology, 3Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USAAbstract: Alzheimer's disease (AD is characterized by the presence of amyloid plaques composed mainly of amyloid-β (Aβ protein. Overproduction or slow clearance of Aβ initiates a cascade of pathologic events that may lead to formation of neurofibrillary tangles, neuronal cell death, and dementia. Although immunotherapy in animal models has been demonstrated to be successful at removing plaques or prefibrillar forms of Aβ, clinical trials have yielded disappointing results. The lack of substantial cognitive improvement obtained by targeting Aβ raises the question of whether or not this is the correct target. Another important pathologic process in the AD brain is tau aggregation, which seems to become independent once initiated. Recent studies targeting tau in AD mouse models have displayed evidence of cognitive improvement, providing a novel therapeutic approach for the treatment of AD. In this review, we describe new advances in immunotherapy targeting Aβ peptide and tau protein, as well as future directions.Keywords: immunotherapy, Alzheimer's disease, β-amyloid, tau

  7. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein.

    Science.gov (United States)

    Pype, Stefan; Moechars, Dieder; Dillen, Lieve; Mercken, Marc

    2003-02-01

    Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.

  8. The Abnormal Functional Connectivity between the Hypothalamus and the Temporal Gyrus Underlying Depression in Alzheimer's Disease Patients.

    Science.gov (United States)

    Liu, Xiaozheng; Chen, Wei; Tu, Yunhai; Hou, Hongtao; Huang, Xiaoyan; Chen, Xingli; Guo, Zhongwei; Bai, Guanghui; Chen, Wei

    2018-01-01

    Hypothalamic communication with the rest of the brain is critical for accomplishing a wide variety of physiological and psychological functions, including the maintenance of neuroendocrine circadian rhythms and the management of affective processes. Evidence has shown that major depressive disorder (MDD) patients exhibit increased functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Neurofibrillary tangles are also found in the hypothalamus of Alzheimer's disease (AD) patients, and AD patients exhibit abnormal changes in the HPA. However, little is known of how the hypothalamus interacts with other brain regions in AD patients with depression (D-AD). Functional connectivity (FC) analysis explores the connectivity between brain regions that share functional properties. Here, we used resting-state (rs) magnetic resonance imaging (MRI) technology and the FC method to measure hypothalamic connectivity across the whole brain in 22 D-AD patients and 21 non-depressed AD patients (nD-AD). Our results showed that D-AD patients had reduced FC among the hypothalamus, the right middle temporal gyrus (MTG) and the right superior temporal gyrus (STG) compared with the FC of nD-AD patients, suggesting that the abnormal FC between the hypothalamus and the temporal lobe may play a key role in the pathophysiology of depression in AD patients.

  9. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kyrtsos, Christina Rose; Baras, John S

    2015-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.

  10. Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease

    International Nuclear Information System (INIS)

    van Duinen, S.G.; Castano, E.M.; Prelli, F.; Bots, G.T.A.B.; Luyendijk, W.; Frangione, B.

    1987-01-01

    Hereditary cerebral hemorrhage with amyloidosis in Dutch patients is an autosomal dominant form of vascular amyloidosis restricted to the leptomeninges and cerebral cortex. Clinically the disease is characterized by cerebral hemorrhages leading to an early death. Immunohistochemical studies of five patients revealed that the vascular amyloid deposits reacted intensely with an antiserum raised against a synthetic peptide homologous to the Alzheimer disease-related β-protein. Silver stain-positive, senile plaque-like structures were also labeled by the antiserum, yet these lesions lacked the dense amyloid cores present in typical plaques of Alzheimer disease. No neurofibrillary tangles were present. Amyloid fibrils were purified from the leptomeningeal vessels of one patient who clinically had no signs of dementia. The protein had a molecular weight of ∼ 4000 and its partial amino acid sequence to position 21 showed homology to the β-protein of Alzheimer disease and Down syndrome. These results suggest that hereditary cerebral hemorrhage with amyloidosis of Dutch origin is pathogenetically related to Alzheimer disease and support the concept that the initial amyloid deposition in this disorder occurs in the vessel walls before damaging the brain parenchyma. Thus, deposition of β-protein in brain tissue seems to be related to a spectrum of diseases involving vascular syndromes, progressive dementia, or both

  11. A Comparative Analysis of Structural Brain MRI in the Diagnosis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Jason Appel

    2009-01-01

    Full Text Available Dementia is a debilitating and life-altering disease which leads to both memory impairment and decline of normal executive functioning. While causes of dementia are numerous and varied, the leading cause among patients 60 years and older is Alzheimer’s disease. The gold standard for Alzheimer’s diagnosis remains histological identification of amyloid plaques and neurofibrillary tangles within the medial temporal lobe, more specifically the entorhinal cortex and hippocampus. Although no definitive cure for Alzheimer's disease currently exists, there are treatments targeted at preserving cognition and memory while delaying continued loss of function. Alzheimer's disease exists along a spectrum of cognitive decline and is often preceded by Mild Cognitive Impairment (MCI. Patients with MCI demonstrate memory loss and cognitive impairment while still continuing normal activities of daily living, and are considered to be at increased risk for developing Alzheimer's Dementia. Identifying patients with prodromal states of Alzheimer's dementia such as MCI may allow initiation of appropriate treatment planning and delay of cognitive decline. Therefore, the need for a non-invasive early biomarker for the detection of Alzheimer's disease has never been greater. Multiple neuroimaging methods utilizing visual rating scales, volumetric measurements, and automated methods have been developed to identify, quantify, and track anatomic sequelae of Alzheimer’s Disease.

  12. GSK-3β and Memory Formation

    Directory of Open Access Journals (Sweden)

    Akihiko eTakashima

    2012-04-01

    Full Text Available In Alzheimer’s disease (AD, tau hyperphosphorylation and neurofibrillary tangle (NFT formation are strongly associated with dementia. Memory impairment is a characteristic, early symptom of AD. Glycogen synthase kinase 3 β (GSK-3β, which is activated in response to amyloid β (Aβ formation, and the normal process of aging, hyperphosphorylates tau present in the NFTs. Furthermore, activation of GSK-3β inhibits synaptic long-term potentiation (LTP through tau. It is therefore likely, that activation of GSK-3β is responsible for the memory problems seen in both advanced age, and AD. Indeed, inhibition of GSK-3 by lithium halts the progression of symptoms in patients with mild cognitive impairment (MCI. However, long-term treatment of lithium increases the risk of dementia in old age, in bipolar patients. To understand the role of GSK-3β in brain function, we analyzed memory formation in GSK-3β heterozygote, knockout mice. Results indicate that these mice show impaired memory reconsolidation. It would seem that activation of GSK-3β is required for memory maintenance, with a higher requirement as animals age, and the volume of memory increases. This in turn causes exaggerated activation of GSK-3β, leading to memory problems, and the formation of NFTs.

  13. Identification of nuclear τ isoforms in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Loomis, P.A.; Howard, T.H.; Castleberry, R.P.; Binder, L.I.

    1990-01-01

    The τ proteins have been reported only in association with microtubules and with ribosomes in situ, in the normal central nervous system. In addition, τ has been shown to be an integral component of paired helical filaments, the principal constituent of the neurofibrillary tangles found in brains of patients with Alzheimer's disease and of most aged individuals with Down syndrome (trisomy 21). The authors report here the localization of the well-characterized Tau-1 monoclonal antibody to the nucleolar organizer regions of the acrocentric chromosomes and to their interphase counterpart, the fibrillar component of the nucleolus, in human neuroblastoma cells. Similar localization to the nucleolar organizer regions was also observed in other human cell lines and in one monkey kidney cell line but was not seen in non-primate species. Immunochemically, they further demonstrated the existence of the entire τ molecule in the isolated nuclei of neuroblastoma cells. Nuclear τ proteins, like the τ proteins of the paired helical filaments, cannot be extracted in standard SDS-containing electrophoresis sample buffer but require pretreatment with formic acid prior to immunoblot analysis. This work indicates that τ may function in processes not directly associated with microtubules and that highly insoluble complexes of τ may also play a role in normal cellular physiology

  14. Dementia in a retired world boxing champion: case report and literature review.

    Science.gov (United States)

    Nowak, L A; Smith, G G; Reyes, P F

    2009-01-01

    Dementia in retired boxers, also referred to as "dementia pugilistica" (DP), is usually attributed to repeated concussive and subconcussive blows to the head. We report the case of a former world boxing champion whose progressive cognitive decline could be ascribed to DP, cerebral infarcts and Wernicke-Korsakoff syndrome. This case demonstrates that dementia in retired boxers may be caused and/or exacerbated by etiologic factors other than DP. We correlated the clinical features with the histochemical and immunohistochemical changes observed on autopsy brain material from a retired boxer, reviewed the literature on boxing-related dementia, and compared our findings with previous reports on DP. Neuropathologic examination revealed numerous neurofibrillary tangles (NFTs), rare neuritic plaques (NPs), multiple cerebral infarcts, fenestrated septum pellucidum, atrophic and gliotic mamillary bodies, and pale substantia nigra and locus ceruleus. Our neuropathologic data confirmed the notion that dementia in retired boxers could be due to several factors such as DP, multiple cerebral infarcts and Wernicke-Korsakoff syndrome. Our findings illustrate the need to comprehensively examine former boxers with dementia as well as carefully evaluate the neuropathologic changes that may cause or contribute to the patient's cognitive and behavioral symptoms. Such an approach is crucial in order to provide prompt and more definitive therapies.

  15. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Chan-Wha, E-mail: cwkim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The

  16. The role of biological sciences in understanding the genesis and a new therapeutic approach to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Eugenia Tęgowska

    2011-01-01

    Full Text Available The paper contrasts the historical view on causal factors in Alzheimer’s disease (AD with the modern concept of the symptoms’ origin. Biological sciences dealing with cell structure and physiology enabled comprehension of the role of mitochondrial defects in the processes of formation of neurofibrillary tangles and β-amyloid, which in turn gives hope for developing a new, more effective therapeutic strategy for AD. It has been established that although mitochondria constantly generate free radicals, from which they are protected by their own defensive systems, in some situations these systems become deregulated, which leads to free radical-based mitochondrial defects. This causes an energetic deficit in neurons and a further increase in the free radical pool. As a result, due to compensation processes, formation of tangles and/or acceleration of β-amyloid production takes place. The nature of these processes is initially a protective one, due to their anti-oxidative action, but as the amount of the formations increases, their beneficial effect wanes. They become a storage place for substances enhancing free radical processes, which makes them toxic themselves. It is such an approach to the primary causal factor for AD which lies at the roots of the new view on AD therapy, suggesting the use of methylene blue-based drugs, laser or intranasally applied insulin. A necessary condition, however, for these methods’ effectiveness is definitely an earlier diagnosis of the disease. Although there are numerous diagnostic methods for AD, their low specificity and high price, often accompanied by a considerable level of patient discomfort, make them unsuitable for early, prodromal screening. In this matter a promising method may be provided using an olfactory test, which is an inexpensive and non-invasive method and thus suitable for screening, although as a test of low specificity, it should be combined with other methods. Introducing new methods

  17. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer’s disease

    International Nuclear Information System (INIS)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung; Kim, Chan-Wha

    2013-01-01

    Highlights: ► A transgenic mouse model expressing NSE-htau23 was used. ► 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. ► Differentially expressed spots in different stages of AD were identified. ► GSTP1 and CAII were downregulated with the progression of AD. ► SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer’s disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study of up- and down-regulation of proteins during the progression of AD helps to explain the mechanisms associated with neuronal

  18. Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy.

    Science.gov (United States)

    Neubauer, Florian B; Sederberg, Audrey; MacLean, Jason N

    2014-01-01

    During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.

  19. Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames

    International Nuclear Information System (INIS)

    Khan, Salman; Khan, Niaz Ali; Khan, M.K.

    2014-01-01

    The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scalar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for π-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of scalar fields is slower than for Dirac fields. (general)

  20. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons.

    Science.gov (United States)

    Battefeld, Arne; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-03-05

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these K(v)7 channels and the functional impact of colocalization with Na(v) channels remain poorly understood. Here, we quantitatively examined K(v)7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. K(v)7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ~12 (proximal) to 150 pS μm(-2) (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by K(v)7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (~15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic K(v)7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal K(v)7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains K(v)7.2/7.3 channels were found to increase Na(v) channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, K(v)7 clustering near axonal Na(v) channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential.

  1. Microscopic mild focal cortical dysplasia in temporal lobe dual pathology: an electrocorticography study.

    Science.gov (United States)

    Morales Chacón, L; Estupiñán, B; Lorigados Pedre, L; Trápaga Quincoses, O; García Maeso, I; Sanchez, A; Bender del Busto, J; Garcia, M E; Baez Martin, M; Zaldivar, M; Gómez, A; Orozco, S; Rocha Arrieta, L

    2009-10-01

    Associations between electrophysiological and histological findings might provide an insight into the epileptogenicity of mild focal cortical dysplasia (FCD) in patients with temporal lobe epilepsy (TLE) and a dual pathology. A total of 22 patients with pharmacoresistant TLE were included in the study, 16 of them with histologically confirmed hippocampal sclerosis (HS) associated with neocortical temporal mild Palmini Type-I FCD subtypes and 6 with HS. Intraoperative electrocorticography (ECoG) recordings were analysed for epileptiform discharge frequency and morphology. Associations between histological, and electrocorticography pattern findings in these patients were analysed. Electroclinical outcomes in these patients were also evaluated. Neocortical areas with mild Palmini Type-I FCD showed a significantly higher spike frequency (SF) recorded in the inferior temporal gyrus than those neocortical areas in patients with HS. There was a tendency to higher spike frequency and lower amplitude in neocortical areas with histopathologic subtype IB FCD in relation with IA during intraoperative ECoG. Post-SF excision and amplitude were significantly lower during neocortical post-excision intraoperative ECoG than during neocortical pre-excision recording. There was no difference found in the clinical outcome between patients with and without FCD. Intraoperative electrocorticographic interictal spike frequency recorded in the neocortical inferior temporal gyrus may help to characterize the histopathologic subtypes of mild Palmini Type-I FCD in patients with temporal lobe epilepsy (TLE) and a dual pathology. Our data support the epileptogenicity of neocortical mild FCD in TLE and assessments of ECoG patterns are relevant to determine the extent of the resection in these patients which can influence the electroclinical outcome.

  2. Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson's case.

    Science.gov (United States)

    Marquié, Marta; Verwer, Eline E; Meltzer, Avery C; Kim, Sally Ji Who; Agüero, Cinthya; Gonzalez, Jose; Makaretz, Sara J; Siao Tick Chong, Michael; Ramanan, Prianca; Amaral, Ana C; Normandin, Marc D; Vanderburg, Charles R; Gomperts, Stephen N; Johnson, Keith A; Frosch, Matthew P; Gómez-Isla, Teresa

    2017-10-19

    [F-18]-AV-1451 is a novel positron emission tomography (PET) tracer with high affinity to neurofibrillary tau pathology in Alzheimer's disease (AD). PET studies have shown increased tracer retention in patients clinically diagnosed with dementia of AD type and mild cognitive impairment in regions that are known to contain tau lesions. In vivo uptake has also consistently been observed in midbrain, basal ganglia and choroid plexus in elderly individuals regardless of their clinical diagnosis, including clinically normal whose brains are not expected to harbor tau pathology in those areas. We and others have shown that [F-18]-AV-1451 exhibits off-target binding to neuromelanin, melanin and blood products on postmortem material; and this is important for the correct interpretation of PET images. In the present study, we further investigated [F-18]-AV-1451 off-target binding in the first autopsy-confirmed Parkinson's disease (PD) subject who underwent antemortem PET imaging. The PET scan showed elevated [F-18]-AV-1451 retention predominantly in inferior temporal cortex, basal ganglia, midbrain and choroid plexus. Neuropathologic examination confirmed the PD diagnosis. Phosphor screen and high resolution autoradiography failed to show detectable [F-18]-AV-1451 binding in multiple brain regions examined with the exception of neuromelanin-containing neurons in the substantia nigra, leptomeningeal melanocytes adjacent to ventricles and midbrain, and microhemorrhages in the occipital cortex (all reflecting off-target binding), in addition to incidental age-related neurofibrillary tangles in the entorhinal cortex. Additional legacy postmortem brain samples containing basal ganglia, choroid plexus, and parenchymal hemorrhages from 20 subjects with various neuropathologic diagnoses were also included in the autoradiography experiments to better understand what [F-18]-AV-1451 in vivo positivity in those regions means. No detectable [F-18]-AV-1451 autoradiographic binding was

  3. Modulation of Gamma-Secretase for the Treatment of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Barbara Tate

    2012-01-01

    Full Text Available The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD—formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline—are triggered by Aβ peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al., 2005. Since γ-secretase is critical for Aβ production, many in the biopharmaceutical community focused on γ-secretase as a target for therapeutic approaches for Alzheimer's disease. However, pharmacological approaches to control γ-secretase activity are challenging because the enzyme has multiple, physiologically critical protein substrates. To lower amyloidogenic Aβ peptides without affecting other γ-secretase substrates, the epsilon (ε cleavage that is essential for the activity of many substrates must be preserved. Small molecule modulators of γ-secretase activity have been discovered that spare the ε cleavage of APP and other substrates while decreasing the production of Aβ42. Multiple chemical classes of γ-secretase modulators have been identified which differ in the pattern of Aβ peptides produced. Ideally, modulators will allow the ε cleavage of all substrates while shifting APP cleavage from Aβ42 and other highly amyloidogenic Aβ peptides to shorter and less neurotoxic forms of the peptides without altering the total Aβ pool. Here, we compare chemically distinct modulators for effects on APP processing and in vivo activity.

  4. Microarray analysis on human neuroblastoma cells exposed to aluminum, β(1-42-amyloid or the β(1-42-amyloid aluminum complex.

    Directory of Open Access Journals (Sweden)

    Valentina Gatta

    Full Text Available BACKGROUND: A typical pathological feature of Alzheimer's disease (AD is the appearance in the brain of senile plaques made up of β-amyloid (Aβ and neurofibrillary tangles. AD is also associated with an abnormal accumulation of some metal ions, and we have recently shown that one of these, aluminum (Al, plays a relevant role in affecting Aβ aggregation and neurotoxicity. METHODOLOGY: In this study, employing a microarray analysis of 35,129 genes, we investigated the effects induced by the exposure to the Aβ(1-42-Al (Aβ-Al complex on the gene expression profile of the neuronal-like cell line, SH-SY5Y. PRINCIPAL FINDINGS: The microarray assay indicated that, compared to Aβ or Al alone, exposure to Aβ-Al complex produced selective changes in gene expression. Some of the genes selectively over or underexpressed are directly related to AD. A further evaluation performed with Ingenuity Pathway analysis revealed that these genes are nodes of networks and pathways that are involved in the modulation of Ca(2+ homeostasis as well as in the regulation of glutamatergic transmission and synaptic plasticity. CONCLUSIONS AND SIGNIFICANCE: Aβ-Al appears to be largely involved in the molecular machinery that regulates neuronal as well as synaptic dysfunction and loss. Aβ-Al seems critical in modulating key AD-related pathways such as glutamatergic transmission, Ca(2+ homeostasis, oxidative stress, inflammation, and neuronal apoptosis.

  5. MELATONIN: POTENTIAL UTILITY FOR IMPROVING PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Russel J REITER; Fatih GULTEKIN; Luis J FLORES; Ma Pilar TERRON; Dun-Xian TAN

    2006-04-01

    Full Text Available This review summarizes the beneficial actions of melatonin in various experimental conditions/diseases and identifies where the use of melatonin may be helpful in improving public health. The nightly use of melatonin supplements by humans often improves their sleep and helps correct the circadian dyssynchronization associated with “jet lag”. Additionally, melatonin has been found effective in curtailing the growth of a variety of experimental cancers. Mechanistically, this is achieved by melatonin’s ability to limit fatty acid uptake, especially linoleic acid, by tumor cells. Fatty acids are growth factors for many tumors. Additionally, melatonin inhibits the elevated telomerase activity of tumor cells thus making them more fragile and vulnerable to chemotherapies. Melatonin also may inhibit angiogenesis in tumors by suppressing endothelin-1 production and the indole interferes with the stimulatory action of steroids on hormone-responsive tumors. As an ubiquitously-acting antioxidant, melatonin reduces cardiac damage during ischemia/reperfusion (I/R injury (heart attack and during I/R to the brain (stroke. Melatonin also limits the toxicity of amyloid  peptide and of neurofibrillary tangles, two of the cardinal signs of Alzheimer’s disease. Collectively, these data suggest supplementation with melatonin, whose endogenous levels decrease with age, may improve the quality of life in the aged and, as a consequence, be beneficial for public health generally. [TAF Prev Med Bull 2006; 5(2.000: 131-158

  6. A review study on medicinal plants used in the treatment of learning and memory impairments

    Directory of Open Access Journals (Sweden)

    Nahid Jivad

    2014-10-01

    Full Text Available Alzheimer's disease (AD is a progressive brain disorder that gradually impairs the person's memory and ability to learn, reasoning, judgment, communication and daily activities. AD is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles, and the degeneration of the cholinergic basal forebrain. During the progression of AD patients may produce changes in personality and behavior, such as anxiety, paranoia, confusion, hallucinations and also to experience delusions and fantasies. The first neurotransmitter defect discovered in AD involved acetylcholine as cholinergic function is required for short-term memory. Oxidative stress may underlie the progressive neurodegeneration characteristic of AD. Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen. The neurodegenerative process in AD may involve β amyloid toxicity. Neurotoxicity of β amyloid appears to involve oxidative stress. Currently, there is no cure for this disease but in new treatments, reveals a new horizon on the biology of this disease. This paper reviews the effects of a number of commonly used types of herbal medicines for the treatment of AD. The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.

  7. Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer's disease.

    Science.gov (United States)

    Hiremathad, Asha; Keri, Rangappa S; Esteves, A Raquel; Cardoso, Sandra M; Chaves, Sílvia; Santos, M Amélia

    2018-03-25

    Alzheimer's disease (AD) is a severe age-dependent neurodegenerative disorder affecting millions of people, with no cure so far. The current treatments only achieve some temporary amelioration of the cognition symptoms. The main characteristics of the patient brains include the accumulation of amyloid plaques and neurofibrillary tangles (outside and inside the neurons) but also cholinergic deficit, increased oxidative stress and dyshomeostasis of transition metal ions. Considering the multi-factorial nature of AD, we report herein the development of a novel series of potential multi-target directed drugs which, besides the capacity to recover the cholinergic neurons, can also target other AD hallmarks. The novel series of tacrine-hydroxyphenylbenzimidazole (TAC-BIM) hybrid molecules has been designed, synthesized and studied for their multiple biological activities. These agents showed improved AChE inhibitory activity (IC 50 in nanomolar range), as compared with the single drug tacrine (TAC), and also a high inhibition of self-induced- and Cu-induced-Aβ aggregation (up to 75%). They also present moderate radical scavenging activity and metal chelating ability. In addition, neuroprotective studies revealed that all these tested compounds are able to inhibit the neurotoxicity induced by Aβ and Fe/AscH(-) in neuronal cells. Hence, for this set of hybrids, structure-activity relationships are discussed and finally it is highlighted their real promising interest as potential anti-AD drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons: the incipit of the Alzheimer′s disease story?

    Directory of Open Access Journals (Sweden)

    Viviana Triaca

    2016-01-01

    Full Text Available The current idea behind brain pathology is that disease is initiated by mild disturbances of common physiological processes. Overtime, the disruption of the neuronal homeostasis will determine irreversible degeneration and neuronal apoptosis. This could be also true in the case of nerve growth factor (NGF alterations in sporadic Alzheimer′s disease (AD, an age-related pathology characterized by cholinergic loss, amyloid plaques and neurofibrillary tangles. In fact, the pathway activated by NGF, a key neurotrophin for the metabolism of basal forebrain cholinergic neurons (BFCN, is one of the first homeostatic systems affected in prodromal AD. NGF signaling dysfunctions have been thought for decades to occur in AD late stages, as a mere consequence of amyloid-driven disruption of the retrograde axonal transport of neurotrophins to BFCN. Nowadays, a wealth of knowledge is potentially opening a new scenario: NGF signaling impairment occurs at the onset of AD and correlates better than amyloid load with cognitive decline. The recent acceleration in the characterization of anatomical, functional and molecular profiles of early AD is aimed at maximizing the efficacy of existing treatments and setting novel therapies. Accordingly, the elucidation of the molecular events underlying APP metabolism regulation by the NGF pathway in the septo-hippocampal system is crucial for the identification of new target molecules to slow and eventually halt mild cognitive impairment (MCI and its progression toward AD.

  9. Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in transgenic mouse models of frontotemporal lobar degeneration and Alzheimer's disease.

    Science.gov (United States)

    Ho, Shuk Wai; Tsui, Yuk Tung Chanel; Wong, Ting Ting; Cheung, Stanley Kwok-Kuen; Goggins, William B; Yi, Lau Ming; Cheng, Kwok Kin; Baum, Larry

    2013-12-17

    Alzheimer's disease (AD), the most common dementia, is characterized by potentially neurotoxic aggregation of Aβ peptide and tau protein, and their deposition as amyloid plaques and neurofibrillary tangles (NFTs). Tau aggregation also occurs in other common neurodegenerative diseases. Frontotemporal dementia (FTD) can be caused by tau mutations that increase the susceptibility of tau to hyperphosphorylation and aggregation, which may cause neuronal dysfunction and deposition of NFTs. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is a potent inhibitor of heat shock protein 90 (Hsp90), a cytosolic chaperone implicated in the proper folding and functions of a repertoire of client proteins. 17-AAG binds to Hsp90 and enhances degradation of Hsp90 client protein. We sought to determine whether 17-AAG can reduce Aβ and tau pathology in the brains of AD and FTD model mice expressing Aβ or P301L mutant tau, respectively. Mice were randomized to receive 25, 5, or 0 mg/kg 17-AAG thrice weekly from age eight to 11 months. Analysis was performed by rotarod test on motor function, on the area occupied by plaques in hippocampus or NFTs in medulla tissue sections, and on mortality. A high dose of 17-AAG tended to decrease NFTs in male mice (p = 0.08). Further studies are required to confirm the effect of 17-AAG in diseases of tau aggregation.

  10. Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in transgenic mouse models of frontotemporal lobar degeneration and Alzheimer’s disease

    Science.gov (United States)

    2013-01-01

    Alzheimer’s disease (AD), the most common dementia, is characterized by potentially neurotoxic aggregation of Aβ peptide and tau protein, and their deposition as amyloid plaques and neurofibrillary tangles (NFTs). Tau aggregation also occurs in other common neurodegenerative diseases. Frontotemporal dementia (FTD) can be caused by tau mutations that increase the susceptibility of tau to hyperphosphorylation and aggregation, which may cause neuronal dysfunction and deposition of NFTs. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is a potent inhibitor of heat shock protein 90 (Hsp90), a cytosolic chaperone implicated in the proper folding and functions of a repertoire of client proteins. 17-AAG binds to Hsp90 and enhances degradation of Hsp90 client protein. We sought to determine whether 17-AAG can reduce Aβ and tau pathology in the brains of AD and FTD model mice expressing Aβ or P301L mutant tau, respectively. Mice were randomized to receive 25, 5, or 0 mg/kg 17-AAG thrice weekly from age eight to 11 months. Analysis was performed by rotarod test on motor function, on the area occupied by plaques in hippocampus or NFTs in medulla tissue sections, and on mortality. A high dose of 17-AAG tended to decrease NFTs in male mice (p = 0.08). Further studies are required to confirm the effect of 17-AAG in diseases of tau aggregation. PMID:24344631

  11. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    Science.gov (United States)

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  12. Doubly Phosphorylated Peptide Vaccines to Protect Transgenic P301S Mice against Alzheimer’s Disease Like Tau Aggregation

    Directory of Open Access Journals (Sweden)

    Monique Richter

    2014-07-01

    Full Text Available Intracellular neurofibrillary tangles and extracellular senile plaques are potential targets for active and passive immunotherapies. In this study we used the transgenic mouse model P301S for active immunizations with peptide vaccines composed of a double phosphorylated tau neoepitope (pSer202/pThr205, pThr212/pSer214, pThr231/pSer235 and an immunomodulatory T cell epitope from the tetanus toxin or tuberculosis antigen Ag85B. Importantly, the designed vaccine combining Alzheimer’s disease (AD specific B cell epitopes with foreign (bacterial T cell epitopes induced fast immune responses with high IgG1 titers after prophylactic immunization that subsequently decreased over the observation period. The effectiveness of the immunization was surveyed by evaluating the animal behavior, as well as the pathology in the brain by biochemical and histochemical techniques. Immunized mice clearly lived longer with reduced paralysis than placebo-treated mice. Additionally, they performed significantly better in rotarod and beam walk tests at the age of 20 weeks, indicating that the disease development was slowed down. Forty-eight weeks old vaccinated mice passed the beam walk test significantly better than control animals, which together with the increased survival rates undoubtedly prove the treatment effect. In conclusion, the data provide strong evidence that active immune therapies can reduce toxic effects of deposits formed in AD.

  13. Dementia After Moderate-Severe Traumatic Brain Injury: Coexistence of Multiple Proteinopathies.

    Science.gov (United States)

    Kenney, Kimbra; Iacono, Diego; Edlow, Brian L; Katz, Douglas I; Diaz-Arrastia, Ramon; Dams-O'Connor, Kristen; Daneshvar, Daniel H; Stevens, Allison; Moreau, Allison L; Tirrell, Lee S; Varjabedian, Ani; Yendiki, Anastasia; van der Kouwe, Andre; Mareyam, Azma; McNab, Jennifer A; Gordon, Wayne A; Fischl, Bruce; McKee, Ann C; Perl, Daniel P

    2018-01-01

    We report the clinical, neuroimaging, and neuropathologic characteristics of 2 patients who developed early onset dementia after a moderate-severe traumatic brain injury (TBI). Neuropathological evaluation revealed abundant β-amyloid neuritic and cored plaques, diffuse β-amyloid plaques, and frequent hyperphosphorylated-tau neurofibrillary tangles (NFT) involving much of the cortex, including insula and mammillary bodies in both cases. Case 1 additionally showed NFTs in both the superficial and deep cortical layers, occasional perivascular and depth-of-sulci NFTs, and parietal white matter rarefaction, which corresponded with decreased parietal fiber tracts observed on ex vivo MRI. Case 2 additionally showed NFT predominance in the superficial layers of the cortex, hypothalamus and brainstem, diffuse Lewy bodies in the cortex, amygdala and brainstem, and intraneuronal TDP-43 inclusions. The neuropathologic diagnoses were atypical Alzheimer disease (AD) with features of chronic traumatic encephalopathy and white matter loss (Case 1), and atypical AD, dementia with Lewy bodies and coexistent TDP-43 pathology (Case 2). These findings support an epidemiological association between TBI and dementia and further characterize the variety of misfolded proteins that may accumulate after TBI. Analyses with comprehensive clinical, imaging, genetic, and neuropathological data are required to characterize the full clinicopathological spectrum associated with dementias occurring after moderate-severe TBI. 2017 American Association of Neuropathologists, Inc. This work is written by US Government employees and is in the public domain in the US.

  14. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer's Disease Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Christina Rose Kyrtsos

    Full Text Available Alzheimer's disease (AD is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ deposition and the presence of neurofibrillary tangles (NFTs within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.

  15. Disease-modifying drugs in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ghezzi L

    2013-12-01

    Full Text Available Laura Ghezzi, Elio Scarpini, Daniela Galimberti Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy Abstract: Alzheimer's disease (AD is an age-dependent neurodegenerative disorder and the most common cause of dementia. The early stages of AD are characterized by short-term memory loss. Once the disease progresses, patients experience difficulties in sense of direction, oral communication, calculation, ability to learn, and cognitive thinking. The median duration of the disease is 10 years. The pathology is characterized by deposition of amyloid beta peptide (so-called senile plaques and tau protein in the form of neurofibrillary tangles. Currently, two classes of drugs are licensed by the European Medicines Agency for the treatment of AD, ie, acetylcholinesterase inhibitors for mild to moderate AD, and memantine, an N-methyl-D-aspartate receptor antagonist, for moderate and severe AD. Treatment with acetylcholinesterase inhibitors or memantine aims at slowing progression and controlling symptoms, whereas drugs under development are intended to modify the pathologic steps leading to AD. Herein, we review the clinical features, pharmacologic properties, and cost-effectiveness of the available acetylcholinesterase inhibitors and memantine, and focus on disease-modifying drugs aiming to interfere with the amyloid beta peptide, including vaccination, passive immunization, and tau deposition. Keywords: Alzheimer's disease, acetylcholinesterase inhibitors, memantine, disease-modifying drugs, diagnosis, treatment

  16. Brain inflammation and Alzheimer's-like pathology in individuals exposed to severe air pollution.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Reed, William; Maronpot, Robert R; Henríquez-Roldán, Carlos; Delgado-Chavez, Ricardo; Calderón-Garcidueñas, Ana; Dragustinovis, Irma; Franco-Lira, Maricela; Aragón-Flores, Mariana; Solt, Anna C; Altenburg, Michael; Torres-Jardón, Ricardo; Swenberg, James A

    2004-01-01

    Air pollution is a complex mixture of gases (e.g., ozone), particulate matter, and organic compounds present in outdoor and indoor air. Dogs exposed to severe air pollution exhibit chronic inflammation and acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by pollutants. We investigated whether residency in cities with high levels of air pollution is associated with human brain inflammation. Expression of cyclooxygenase-2 (COX2), an inflammatory mediator, and accumulation of the 42-amino acid form of beta-amyloid (Abeta42), a cause of neuronal dysfunction, were measured in autopsy brain tissues of cognitively and neurologically intact lifelong residents of cities having low (n:9) or high (n:10) levels of air pollution. Genomic DNA apurinic/apyrimidinic sites, nuclear factor-kappaB activation and apolipoprotein E genotype were also evaluated. Residents of cities with severe air pollution had significantly higher COX2 expression in frontal cortex and hippocampus and greater neuronal and astrocytic accumulation of Abeta42 compared to residents in low air pollution cities. Increased COX2 expression and Abeta42 accumulation were also observed in the olfactory bulb. These findings suggest that exposure to severe air pollution is associated with brain inflammation and Abeta42 accumulation, two causes of neuronal dysfunction that precede the appearance of neuritic plaques and neurofibrillary tangles, hallmarks of Alzheimer's disease.

  17. Neuroprotective, Anti-Amyloidogenic and Neurotrophic Effects of Apigenin in an Alzheimer’s Disease Mouse Model

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2013-08-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder characterized by extracellular senile plaques and intracellular neurofibrillary tangles in the brain. Amyloid-β peptides (Aβ are considered to play a critical role in the onset and progression of AD. Apigenin (4',5,7-trihydroxyflavone is a pharmacologically active agent. Even though some evidence suggests that it has potential neuroprotective effects, no preexisting study has reported any therapeutic effects of apigenin in AD models. In the present study, we examined the effects of apigenin on cognitive function in APP/PS1 double transgenic AD mice and explored its mechanism(s of action. Three-month oral treatment with apigenin rescued learning deficits and relieved memory retention in APP/PS1 mice. Apigenin also showed effects affecting APP processing and preventing Aβ burden due to the down-regulation of BACE1 and β-CTF levels, the relief of Aβ deposition, and the decrease of insoluble Aβ levels. Moreover, apigenin exhibited superoxide anion scavenging effects and improved antioxidative enzyme activity of superoxide dismutase and glutathione peroxidase. In addition, apigenin restored neurotrophic ERK/CREB/BDNF pathway in the cerebral cortex. In conclusion, apigenin may ameliorate AD-associated learning and memory impairment through relieving Aβ burden, suppressing amyloidogenic process, inhibiting oxidative stress, and restoring ERK/CREB/BDNF pathway. Therefore, apigenin appears to represent an alternative medication for the prevention and/or therapy of AD.

  18. Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease.

    Science.gov (United States)

    Joo, Illsung L; Lai, Aaron Y; Bazzigaluppi, Paolo; Koletar, Margaret M; Dorr, Adrienne; Brown, Mary E; Thomason, Lynsie A M; Sled, John G; McLaurin, JoAnne; Stefanovic, Bojana

    2017-04-12

    Alzheimer's disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans.

  19. Early neurovascular dysfunction in a transgenic rat model of Alzheimer’s disease

    Science.gov (United States)

    Joo, Illsung L.; Lai, Aaron Y.; Bazzigaluppi, Paolo; Koletar, Margaret M.; Dorr, Adrienne; Brown, Mary E.; Thomason, Lynsie A. M.; Sled, John G.; McLaurin, JoAnne; Stefanovic, Bojana

    2017-01-01

    Alzheimer’s disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans. PMID:28401931

  20. The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer’s Disease

    Science.gov (United States)

    Giorgi, Filippo S.; Ryskalin, Larisa; Ruffoli, Riccardo; Biagioni, Francesca; Limanaqi, Fiona; Ferrucci, Michela; Busceti, Carla L.; Bonuccelli, Ubaldo; Fornai, Francesco

    2017-01-01

    Alzheimer’s Disease (AD) features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs), respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC), which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE) and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable. PMID:28974926

  1. The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer's Disease.

    Science.gov (United States)

    Giorgi, Filippo S; Ryskalin, Larisa; Ruffoli, Riccardo; Biagioni, Francesca; Limanaqi, Fiona; Ferrucci, Michela; Busceti, Carla L; Bonuccelli, Ubaldo; Fornai, Francesco

    2017-01-01

    Alzheimer's Disease (AD) features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs), respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC), which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE) and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable.

  2. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    C. Cheignon

    2018-04-01

    Full Text Available Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer’s disease (AD, an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS when bound to the amyloid-β (Aβ. The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …. This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level. Keywords: Oxidative stress, Amyloid beta peptide, Metal-ions, Reactive oxygen species, Oxidative damages

  3. Elevated Angiopoietin-1 Serum Levels in Patients with Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Brigitte Schreitmüller

    2012-01-01

    Full Text Available Background. Alzheimer's disease (AD is the most common cause of dementia in the elderly. AD is characterized by the accumulation of amyloid plaques and neurofibrillary tangles and by massive neuronal loss in the brain. There is epidemiologic and pathologic evidence that AD is associated with vascular risk factors and vascular diseases, contributing to cerebral hypoperfusion with consecutive stimulation of angiogenesis and upregulation of proangiogenic factors such as Angiopoietin-1 (Ang-1. Methods. In the present study, we measured Ang-1 serum levels in 42 patients with AD, 20 patients with mild cognitive impairment (MCI, and in 40 healthy elderly controls by ELISA. Results. We found significantly increased Ang-1 serum levels in patients with AD compared to control subjects (P=0.003. There was no significant difference between MCI patients and healthy controls (P=0.553 or between AD and MCI patients (P=0.054. The degree of cognitive impairment as measured by the mini-mental status examination (MMSE score was significantly correlated with the Ang-1 serum levels in all patients and healthy controls. Conclusions. We found significantly increased Ang-1 serum levels in AD patients. We could also show an association between Ang-1 serum levels and the cognitive status in all patients and healthy controls. Thus, serum Ang-1 could be a potential candidate for a biomarker panel for AD diagnosis.

  4. JNK signaling pathway regulates sorbitol-induced Tau proteolysis and apoptosis in SH-SY5Y cells by targeting caspase-3.

    Science.gov (United States)

    Olivera Santa-Catalina, Marta; Caballero Bermejo, Montaña; Argent, Ricardo; Alonso, Juan C; Centeno, Francisco; Lorenzo, María J

    2017-12-15

    Growing evidence suggests that Diabetes Mellitus increases the risk of developing Alzheimer's disease. It is well known that hyperglycemia, a key feature of Diabetes Mellitus, may induce plasma osmolarity disturbances. Both hyperglycemia and hyperosmolarity promote the altered post-translational regulation of microtubule-associated protein Tau. Interestingly, abnormal hyperphosphorylation and cleavage of Tau have been proven to lead to the genesis of filamentous structures referred to as neurofibrillary tangles, the main pathological hallmark of Alzheimer's disease. We have previously described that hyperosmotic stress induced by sorbitol promotes Tau proteolysis and apoptosis in SH-SY5Y cells via caspase-3 activation. In order to gain insights into the regulatory mechanisms of such processes, in this work we explored the intracellular signaling pathways that regulate these events. We found that sorbitol treatment significantly enhanced the activation of conventional families of MAPK in SH-SY5Y cells. Tau proteolysis was completely prevented by JNK inhibition but not affected by either ERK1/2 or p38 MAPK blockade. Moreover, inhibition of JNK, but not ERK1/2 or p38 MAPK, efficiently prevented sorbitol-induced apoptosis and caspase-3 activation. In summary, we provide evidence that JNK signaling pathway is an upstream regulator of hyperosmotic stress-induced Tau cleavage and apoptosis in SH-SY5Y through the control of caspase-3 activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Application of PIXE in medical study. Environmental minerals and neurodegenerative disorders

    International Nuclear Information System (INIS)

    Yoshida, S.

    1999-01-01

    Comparative study on amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PDC) in the Kii Peninsula of Japan and Guam was conducted to evaluate the participatory role of environmental minerals in the pathogenesis of the above neurodegenerative diseases, using particle-induced x-ray emission (PIXE) spectrometry and morphometric-statistical analysis. A significantly high content of Al in the hippocampus and spinal cord or Kii and Guamanian ALS/PD cases was found with a positive correlation for Fe and Cu, and a negative correlation for Zn. The numbers of hippocampal neurons in Guamanian PDC, Alzheimer's disease, and Parkinson's disease were significantly decreased with a high Al content. Al content significantly and positively correlated with the number of Alzheimer's neurofibrillary tangles (NFTs) in the hippocampus of ALS cases and controls in both foci, especially in Guamanian cases. The slope of best linear regression of Guamanian cases was markedly steeper than that of Japanese cases (p < 0,001), Morin staining for Al showed green fluorescence on the nucleolus, cytoplasm, and NFT in the hippocampus of Kii ALS cases. These findings suggest that Guamanian and Kii people have a predisposition to develop ALS/PDC precipitated by their geological/geochemical environmental status, i.e., a prolonged low intake or Ca and Mg together with excess exposure to Al and other environmental minerals. (author)

  6. The Blood Brain Barrier and its Role in Alzheimer's Therapy: An Overview.

    Science.gov (United States)

    Jakki, Satya Lavanya; Senthil, V; Yasam, Venkata Ramesh; Chandrasekar, M J N; Vijayaraghavan, C

    2018-01-01

    Alzheimer's disease (AD) is the most frequent age related neurodegenerative disorder. It represents 70% of all dementia. Millions of people have been affected by AD worldwide. It is a complex illness characterized pathologically by accumulation of protein aggregates of amyloid and neurofibrillary tangles containing hyperphosphorylated neuronal tau protein. AD requires drugs that can circumvent the blood-brain barrier (BBB) which is not a simple physical barrier between blood and brain, but acts as an iron curtain, allowing only selective molecules to enter the brain. Unfortunately, this dynamic barrier restricts transport of drugs to the brain; due to which, currently very few drugs are available for AD treatment. The present review focuses mainly on strategies used for administration of drug to the CNS by-passing BBB for the treatment of AD. Many studies have proved to be effective in overcoming BBB and targeting drugs to CNS by using different strategies. Here we have discussed some of the most important drug permeability and drug targeting approaches. In conclusion, concentrating solely in development of drug discovery programs is not enough but it is important to maintain balance between the drug discovery and drug delivery systems that are more specific and effective in targeting CNS of AD patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. MRI parcellation of ex vivo medial temporal lobe.

    Science.gov (United States)

    Augustinack, Jean C; Magnain, Caroline; Reuter, Martin; van der Kouwe, André J W; Boas, David; Fischl, Bruce

    2014-06-01

    Recent advancements in radio frequency coils, field strength and sophisticated pulse sequences have propelled modern brain mapping and have made validation to biological standards - histology and pathology - possible. The medial temporal lobe has long been established as a pivotal brain region for connectivity, function and unique structure in the human brain, and reveals disconnection in mild Alzheimer's disease. Specific brain mapping of mesocortical areas affected with neurofibrillary tangle pathology early in disease progression provides not only an accurate description for location of these areas but also supplies spherical coordinates that allow comparison between other ex vivo cases and larger in vivo datasets. We have identified several cytoarchitectonic features in the medial temporal lobe with high resolution ex vivo MRI, including gray matter structures such as the entorhinal layer II 'islands', perirhinal layer II-III columns, presubicular 'clouds', granule cell layer of the dentate gyrus as well as lamina of the hippocampus. Localization of Brodmann areas 28 and 35 (entorhinal and perirhinal, respectively) demonstrates MRI based area boundaries validated with multiple methods and histological stains. Based on our findings, both myelin and Nissl staining relate to contrast in ex vivo MRI. Precise brain mapping serves to create modern atlases for cortical areas, allowing accurate localization with important applications to detecting early disease processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Extracellular Monomeric and Aggregated Tau Efficiently Enter Human Neurons through Overlapping but Distinct Pathways

    Directory of Open Access Journals (Sweden)

    Lewis D. Evans

    2018-03-01

    Full Text Available Summary: In Alzheimer’s disease, neurofibrillary tangle pathology appears to spread along neuronal connections, proposed to be mediated by the release and uptake of abnormal, disease-specific forms of microtubule-binding protein tau MAPT. It is currently unclear whether transfer of tau between neurons is a toxic gain-of-function process in dementia or reflects a constitutive biological process. We report two entry mechanisms for monomeric tau to human neurons: a rapid dynamin-dependent phase typical of endocytosis and a second, slower actin-dependent phase of macropinocytosis. Aggregated tau entry is independent of actin polymerization and largely dynamin dependent, consistent with endocytosis and distinct from macropinocytosis, the major route for aggregated tau entry reported for non-neuronal cells. Anti-tau antibodies abrogate monomeric tau entry into neurons, but less efficiently in the case of aggregated tau, where internalized tau carries antibody with it into neurons. These data suggest that tau entry to human neurons is a physiological process and not a disease-specific phenomenon. : In contrast with predictions that transfer of the microtubule-associated protein tau between neurons is a toxic gain-of-function process in dementia, Evans et al. show that healthy human neurons efficiently take up both normal and aggregated tau, by distinct but overlapping uptake mechanisms. Keywords: Alzheimer’s disease, frontotemporal dementia, Tau, MAPT, iPSC, endocytosis, human neurons, intracellular transport

  9. Clinical and pathological study on 10 cases of cerebral lobe hemorrhage related with cerebral amyloid angiopathy

    Directory of Open Access Journals (Sweden)

    Xiao-qi LI

    2015-07-01

    Full Text Available Objective To summarize the clinical data and pathological features of 10 cases of cerebral lobar hemorrhage related with cerebral amyloid angiopathy (CAA diagnosed pathologically, thereby to improve the knowledge and diagnosis of the disease. Methods The clinical data of 10 cases of cerebral lobar hemorrhage related with CAA, collected in the General Hospital of Shenyang Command from 1983 up to now, were retrospectively analyzed, and the clinical and neuropathological features of these cases were summarized. Results Of the 10 patients, 2 suffered from single lobar hemorrhage and 8 multiple lobar hemorrhage, all of them were confirmed pathologically to have ruptured into the subarachnoid space. Pathological examination revealed microaneurysm in 2 cases, "double barrel" change in 4 cases, multiple arteriolar clusters in 5 cases, obliterative onion-liked intima change in 4 cases, and fibrinoid necrosis of vessel wall in 7 cases. In addition, neurofibrillary tangles were found in 8 cases, and senile plaque was observed in 5 cases. Conclusions Cerebral lobar hemorrhage related with CAA is mainly located in the parietal, temporal and occipital lobes, readily breaking into the subarachnoid space, and it is often multiple and recurrent. The CAA associated microvasculopathy was found frequently in the autopsy sample of CAA related cerebral lobar hemorrhage, and it may contribute to the pathogenesis of cerebral hemorrhage. DOI: 10.11855/j.issn.0577-7402.2015.07.04

  10. Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction?

    Science.gov (United States)

    Peric, Aleksandar; Annaert, Wim

    2015-03-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. This brain neuropathology is characterized by a progressive synaptic dysfunction and neuronal loss, which lead to decline in memory and other cognitive functions. Histopathologically, AD manifests via synaptic abnormalities, neuronal degeneration as well as the deposition of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. While the exact pathogenic contribution of these two AD hallmarks and their abundant constituents [aggregation-prone amyloid β (Aβ) peptide species and hyperphosphorylated tau protein, respectively] remain debated, a growing body of evidence suggests that their development may be paralleled or even preceded by the alterations/dysfunctions in the endolysosomal and the autophagic system. In AD-affected neurons, abnormalities in these cellular pathways are readily observed already at early stages of disease development, and even though many studies agree that defective lysosomal degradation may relate to or even underlie some of these deficits, specific upstream molecular defects are still deliberated. In this review we summarize various pathogenic events that may lead to these cellular abnormalities, in light of our current understanding of molecular mechanisms that govern AD progression. In addition, we also highlight the increasing evidence supporting mutual functional dependence of the endolysosomal trafficking and autophagy, in particular focusing on those molecules and processes which may be of significance to AD.

  11. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats.

    Science.gov (United States)

    Hrnkova, Miroslava; Zilka, Norbert; Minichova, Zuzana; Koson, Peter; Novak, Michal

    2007-01-26

    Human truncated tau protein is an active constituent of the neurofibrillary degeneration in sporadic Alzheimer's disease. We have shown that modified tau protein, when expressed as a transgene in rats, induced AD characteristic tau cascade consisting of tau hyperphosphorylation, formation of argyrophilic tangles and sarcosyl-insoluble tau complexes. These pathological changes led to the functional impairment characterized by a variety of neurobehavioural symptoms. In the present study we have focused on the behavioural alterations induced by transgenic expression of human truncated tau. Transgenic rats underwent a battery of behavioural tests involving cognitive- and sensorimotor-dependent tasks accompanied with neurological assessment at the age of 4.5, 6 and 9 months. Behavioural examination of these rats showed altered spatial navigation in Morris water maze resulting in less time spent in target quadrant (popen field was not influenced by transgene expression. However beam walking test revealed that transgenic rats developed progressive sensorimotor disturbances related to the age of tested animals. The disturbances were most pronounced at the age of 9 months (p<0.01). Neurological alterations indicating impaired reflex responses were other added features of behavioural phenotype of this novel transgenic rat. These results allow us to suggest that neurodegeneration, caused by the non-mutated human truncated tau derived from sporadic human AD, result in the neuronal dysfunction consequently leading to the progressive neurobehavioural impairment.

  12. Perspective Insights into Disease Progression, Diagnostics, and Therapeutic Approaches in Alzheimer's Disease: A Judicious Update

    Directory of Open Access Journals (Sweden)

    Arif Tasleem Jan

    2017-11-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized by the progressive accumulation of β-amyloid fibrils and abnormal tau proteins in and outside of neurons. Representing a common form of dementia, aggravation of AD with age increases the morbidity rate among the elderly. Although, mutations in the ApoE4 act as potent risk factors for sporadic AD, familial AD arises through malfunctioning of APP, PSEN-1, and−2 genes. AD progresses through accumulation of amyloid plaques (Aβ and neurofibrillary tangles (NFTs in brain, which interfere with neuronal communication. Cellular stress that arises through mitochondrial dysfunction, endoplasmic reticulum malfunction, and autophagy contributes significantly to the pathogenesis of AD. With high accuracy in disease diagnostics, Aβ deposition and phosphorylated tau (p-tau are useful core biomarkers in the cerebrospinal fluid (CSF of AD patients. Although five drugs are approved for treatment in AD, their failures in achieving complete disease cure has shifted studies toward a series of molecules capable of acting against Aβ and p-tau. Failure of biologics or compounds to cross the blood-brain barrier (BBB in most cases advocates development of an efficient drug delivery system. Though liposomes and polymeric nanoparticles are widely adopted for drug delivery modules, their use in delivering drugs across the BBB has been overtaken by exosomes, owing to their promising results in reducing disease progression.

  13. Application of PIXE in medical study. Environmental minerals and neurodegenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S. [Department of Neurology, Wakayama Medical College, Wakayama (Japan)

    1999-07-01

    Comparative study on amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PDC) in the Kii Peninsula of Japan and Guam was conducted to evaluate the participatory role of environmental minerals in the pathogenesis of the above neurodegenerative diseases, using particle-induced x-ray emission (PIXE) spectrometry and morphometric-statistical analysis. A significantly high content of Al in the hippocampus and spinal cord or Kii and Guamanian ALS/PD cases was found with a positive correlation for Fe and Cu, and a negative correlation for Zn. The numbers of hippocampal neurons in Guamanian PDC, Alzheimer's disease, and Parkinson's disease were significantly decreased with a high Al content. Al content significantly and positively correlated with the number of Alzheimer's neurofibrillary tangles (NFTs) in the hippocampus of ALS cases and controls in both foci, especially in Guamanian cases. The slope of best linear regression of Guamanian cases was markedly steeper than that of Japanese cases (p < 0,001), Morin staining for Al showed green fluorescence on the nucleolus, cytoplasm, and NFT in the hippocampus of Kii ALS cases. These findings suggest that Guamanian and Kii people have a predisposition to develop ALS/PDC precipitated by their geological/geochemical environmental status, i.e., a prolonged low intake or Ca and Mg together with excess exposure to Al and other environmental minerals. (author)

  14. Autophagy and Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Md. Sahab Uddin

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is the most common cause of progressive dementia in the elderly. It is characterized by a progressive and irreversible loss of cognitive abilities and formation of senile plaques, composed mainly of amyloid β (Aβ, and neurofibrillary tangles (NFTs, composed of tau protein, in the hippocampus and cortex of afflicted humans. In brains of AD patients the metabolism of Aβ is dysregulated, which leads to the accumulation and aggregation of Aβ. Metabolism of Aβ and tau proteins is crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and recycled into energy. Thus, dysfunction of autophagy is suggested to lead to the accretion of noxious proteins in the AD brain. In the present review, we describe the process of autophagy and its importance in AD. Additionally, we discuss mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN1, and UCHL1. We also present pharmacological agents acting via modulation of autophagy that may show promise in AD therapy. This review updates our knowledge on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD.

  15. Modeling the Role of the Glymphatic Pathway and Cerebral Blood Vessel Properties in Alzheimer’s Disease Pathogenesis

    Science.gov (United States)

    Kyrtsos, Christina Rose; Baras, John S.

    2015-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain. PMID:26448331

  16. The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Filippo S. Giorgi

    2017-09-01

    Full Text Available Alzheimer’s Disease (AD features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs, respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC, which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable.

  17. Effect of Sea Tangle ( and Charcoal Supplementation as Alternatives to Antibiotics on Growth Performance and Meat Quality of Ducks

    Directory of Open Access Journals (Sweden)

    M. M. Islam

    2014-02-01

    Full Text Available A total of 150 growing ducks were assigned to five dietary treatments to study the effect of sea tangle and charcoal (STC supplementation on growth performance and meat characteristics in a completely randomized design. There were six replicates and five ducklings in each replication. The five dietary treatments were control, antibiotic, and 0.1%, 0.5%, and 1% STC supplemented diets. No significant differences were found on ADG, ADFI, and gain:feed among treatments in different weeks. The overall (0 to 3 weeks ADFI decreased in antibiotic treatment (p<0.05 whereas the gain:feed increased significantly upon 1.0% STC supplementation compared to control (p<0.05. No significant variation was found in meat chemical composition except crude fat content which was high in 1.0% STC dietary group (p<0.05. Meat cholesterol was reduced in 0.1% STC group (p<0.05 compared to other dose levels while serum cholesterol was unaffected. High density lipoprotein (HDL content was high in 1.0% STC (p<0.05 and low density lipoprotein (LDL was low in 0.1% and 1.0% STC dietary groups (p = 0.06. No significant effect was found on the thiobarbituric acid reactive substances (TBARS of fresh meat, whereas the TBARS value of meat preserved for 1 week was reduced significantly in STC dietary groups (p<0.05. The 0.1% STC dietary group showed an increased myristic acid (p = 0.07 content whereas, the content of eicosapentaenoic (EPA and docosahexaenoic (DHA acids increased in STC supplementation than antibiotic group (p<0.05. An increased concentration of omega-3 fatty acids and a reduced ratio of n-6/n-3 PUFA ratio was found upon 1.0% STC supplementation compared to antibiotic dietary group (p<0.05. Therefore, 1.0% STC dietary supplementation can be used as alternatives to antibiotics in duck production.

  18. Volumetric MRI for evaluation of regional pattern and progression of neocortical degeneration in Alzheimer's disease; MR-Volumetrie zur Darstellung von Verteilung und zeitlicher Abfolge neokortikaler Degeneration bei Morbus Alzheimer

    Energy Technology Data Exchange (ETDEWEB)

    Leinsinger, G. [Institut fuer Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Institut fuer Klinische Radiologie, LMU Muenchen, Ziemssenstrasse 1, 80336, Muenchen (Germany); Teipel, S.; Pruessner, J.; Hampel, H. [Klinik fuer Psychiatrie, Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Wismueller, A.; Born, C.; Meindl, T.; Flatz, W.; Schoenberg, S.; Reiser, M. [Institut fuer Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany)

    2003-07-01

    Volumetric analysis of the corpus callosum and hippocampus using MRI in Alzheimer's disease (AD) to evaluate the regional pattern and progression of neocortical neurodegeneration. In subsequent studies we investigated patients with AD and healthy controls. Volumetry was based on MRI-data from a sagittal 3D T1w-gradient echo sequence. The corpus callosum (CC) was measured in a midsagittal slice, and subdivided into 5 subregions. Volumetry of the hippocampus/amygdala-formation (HAF) was performed by segmentation in coronary reoriented slices. In AD patients we found a significant atrophy in the rostrum und splenium of CC. The atrophy was correlated with the severity of dementia, but no correlation was found with the load of white matter lesions. In comparison with {sup 18}FDG-PET, we found a significant correlation of regional CC-atrophy with the regional decline of cortical glucose metabolism. A ROC-analysis demonstrated no significant differences in the diagostic accuracy of HAF volumetry and regional CC volumetry of the splenium (region C5) even in mild stages of dementia. Regional atrophy of CC can be used as a marker of neocortical degeneration even in early stages of dementia in AD. (orig.) [German] Volumetrische Analyse des Corpus callosum und Hippokampus mittels MRT bei der Alzheimer-Erkrankung (AD), mit dem Ziel die regionale Verteilung und Progression der neokortikalen relativ zur allokortikalen Neurodegeneration zu erfassen. In mehreren Studienabschnitten wurden Patienten mit AD und gesunde Kontrollen untersucht. Als Grundlage fuer die Volumetrie diente eine sagittale 3D-T1w-Gradientenechosequenz. Die Vermessung des Corpus callosum (CC) erfolgte in der mittsagittalen Schicht, wobei 5 Subregionen definiert wurden. Die Volumetrie des Hippokampus-Amygdala-Komplexes (HAK) wurde durch Segmentierung an koronar reorientierten Schichten durchgefuehrt. Bei Patienten mit AD fand sich eine signifikante Atrophie in Rostrum und Splenium des CC. Dabei zeigte sich

  19. Association of Plasma Neurofilament Light Chain with Neocortical Amyloid-β Load and Cognitive Performance in Cognitively Normal Elderly Participants.

    Science.gov (United States)

    Chatterjee, Pratishtha; Goozee, Kathryn; Sohrabi, Hamid R; Shen, Kaikai; Shah, Tejal; Asih, Prita R; Dave, Preeti; ManYan, Candice; Taddei, Kevin; Chung, Roger; Zetterberg, Henrik; Blennow, Kaj; Martins, Ralph N

    2018-01-01

    The disruption of neurofilament, an axonal cytoskeletal protein, in neurodegenerative conditions may result in neuronal damage and its release into the cerebrospinal fluid and blood. In Alzheimer's disease (AD), neurofilament light chain (NFL), a neurofilament subunit, is elevated in the cerebrospinal fluid and blood. Investigate the association of plasma NFL with preclinical-AD features, such as high neocortical amyloid-β load (NAL) and subjective memory complaints, and cognitive performance in cognitively normal older adults. Plasma NFL concentrations were measured employing the single molecule array platform in participants from the Kerr Anglican Retirement Village Initiative in Ageing Health cohort, aged 65- 90 years. Participants underwent a battery of neuropsychological testing to evaluate cognitive performance and were categorized as low NAL (NAL-, n = 65) and high NAL (NAL+, n = 35) assessed via PET, and further stratified into subjective memory complainers (SMC; nNAL- = 51, nNAL+ = 25) and non-SMC (nNAL- = 14, nNAL+ = 10) based on the Memory Assessment Clinic- Questionnaire. Plasma NFL inversely correlated with cognitive performance. No significant difference in NFL was observed between NAL+ and NAL- participants; however, within APOEɛ4 non-carriers, higher NAL was observed in individuals with NFL concentrations within quartiles 3 and 4 (versus quartile 1). Additionally, within the NAL+ participants, SMC had a trend of higher NFL compared to non-SMC. Plasma NFL is inversely associated with cognitive performance in elderly individuals. While plasma NFL may not reflect NAL in individuals with normal global cognition, the current observations indicate that onset of axonal injury, reflected by increased plasma NFL, within the preclinical phase of AD may contribute to the pathogenesis of AD.

  20. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity.

    Science.gov (United States)

    Fame, Ryann M; MacDonald, Jessica L; Dunwoodie, Sally L; Takahashi, Emi; Macklis, Jeffrey D

    2016-06-15

    The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within

  1. Outcome of intracranial electroencephalography monitoring and surgery in magnetic resonance imaging-negative temporal lobe epilepsy.

    Science.gov (United States)

    Lee, Ricky W; Hoogs, Marietta M; Burkholder, David B; Trenerry, Max R; Drazkowski, Joseph F; Shih, Jerry J; Doll, Karey E; Tatum, William O; Cascino, Gregory D; Marsh, W Richard; Wirrell, Elaine C; Worrell, Gregory A; So, Elson L

    2014-07-01

    We evaluated the outcomes of intracranial electroencephalography (iEEG) recording and subsequent resective surgery in patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE). Thirty-two patients were identified from the Mayo Clinic Epilepsy Surgery Database (Arizona, Florida, and Minnesota). Eight (25.0%) had chronic iEEG monitoring that recorded neocortical temporal seizure onsets; 12 (37.5%) had mesial temporal seizure onsets; 5 (15.6%) had independent neocortical and mesial temporal seizure onsets; and 7 (21.9%) had simultaneous neocortical and mesial seizure onsets. Neocortical temporal lobe seizure semiology was the only factor significantly associated with neocortical temporal seizure onsets on iEEG. Only 33.3% of patients who underwent lateral temporal neocorticectomy had an Engel class 1 outcome, whereas 76.5% of patients with iEEG-guided anterior temporal lobectomy that included the amygdala and the hippocampus had an Engel class 1 outcome. Limitations in cohort size precluded statistical analysis of neuropsychological test data. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Utah optrode array customization using stereotactic brain atlases and 3-D CAD modeling for optogenetic neocortical interrogation in small rodents and nonhuman primates.

    Science.gov (United States)

    Boutte, Ronald W; Merlin, Sam; Yona, Guy; Griffiths, Brandon; Angelucci, Alessandra; Kahn, Itamar; Shoham, Shy; Blair, Steve

    2017-10-01

    As the optogenetic field expands, the need for precise targeting of neocortical circuits only grows more crucial. This work demonstrates a technique for using Solidworks ® computer-aided design (CAD) and readily available stereotactic brain atlases to create a three-dimensional (3-D) model of the dorsal region of area visual cortex 4 (V4D) of the macaque monkey ( Macaca fascicularis ) visual cortex. The 3-D CAD model of the brain was used to customize an [Formula: see text] Utah optrode array (UOA) after it was determined that a high-density ([Formula: see text]) UOA caused extensive damage to marmoset ( Callithrix jacchus ) primary visual cortex as assessed by electrophysiological recording of spiking activity through a 1.5-mm-diameter through glass via. The [Formula: see text] UOA was customized for optrode length ([Formula: see text]), optrode width ([Formula: see text]), optrode pitch ([Formula: see text]), backplane thickness ([Formula: see text]), and overall form factor ([Formula: see text]). Two [Formula: see text] UOAs were inserted into layer VI of macaque V4D cortices with minimal damage as assessed in fixed tissue cytochrome oxidase staining in nonrecoverable surgeries. Additionally, two [Formula: see text] arrays were implanted in mice ( Mus musculus ) motor cortices, providing early evidence for long-term tolerability (over 6 months), and for the ability to integrate the UOA with a Holobundle light delivery system toward patterned optogenetic stimulation of cortical networks.

  3. Mapping to mouse chromosome 3 of the gene encoding latexin (Lxn) expressed in neocortical neurons in a region-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ming-hao; Uratani, Yoshihiko; Arimatsu, Yasuyoshi [Mitsubishi Kasei Institute of Life Sciences, Tokyo (Japan)

    1997-02-01

    Latexin was first found as a 29-kDa antigen expressed in a subset of neurons in infragranular layers of lateral, but not dorsal, neocortical areas in the rat using a monoclonal antibody PC3.1. It was found that the vast majority of latexin-expressing neurons in both layers V and VI within the lateral neocortex were generated concurrently at Embryonic Day 15, demonstrating a strict correlation between the molecular identity of neurons and the time of their generation. Since neurons expressing latexin are located in the restricted part of the neocortex, latexin has been used as a useful molecular marker to elucidate the mechanism underlying cortical regional specification. The latexin cDNA isolated from a cDNA library of the rat cerebral cortex encodes a protein composed of 223-amino-acid residues containing two potential Ca{sup 2+}/calmodulin-dependent protein kinase sites and one cGMP-dependent protein kinase phosphorylation site. The absence of any signal peptide or potential transmembrane domain is consistent with the apparent cytosolic localization of latexin in the rat brain. The transcripts of latexin were expressed in not only neutral but also nonneural tissues (e.g., lung, spleen, kidney, heart, and digestive tracts). Recently, it has been demonstrated that latexin purified from the rat brain has inhibitory activity against carboxypeptidase A1, carboxypeptidase A2, and mast cell carboxypeptidase A, with less carboxypeptidase B-inhibiting activity. The amino acid sequence deduced from the rat latexin cDNA has no strict homology to any sequences so far known. Genomic Southern blot analysis using a cDNA probe of rat latexin suggested that the gene encoding latexin in the rat has homologues in other mammalian species and in the chicken, but not in the nematode, fly, or frog. 9 refs., 1 fig.

  4. Stable iodine contents in human milk related to dietary algae consumption

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Sumiya, Misako; Ohmomo, Yoichiro

    1983-01-01

    Studies were carried out to investigate iodine contents in human milk with relation to dietary algae consumption by nursing women and to estimate stable iodine intake by breast-fed babies. The iodine contents in human milk collected from the Tokai-mura area showed a fairly wide variation ranging from 80 to 7,000 μg/l, though the highest frequency was around 150 μg/l. It was observed that high contents were closely related to the intake of tangle (Konbu), Laminariaceae, specifically tangle stock and/or tangle shavings (Tororokonbu) as soup. The temporal increase was followed by the rapid decrease when the mothers stopped taking the tangle stock and/or tangle shavings soup. It was observed that water-extractability of iodine from tangle was much higher than that from the other algae, and the water-extractable iodine was absorbable to the human body. (author)

  5. Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at ≤ 40 years of age.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Gónzalez-Maciel, Angélica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Mukherjee, Partha S; Kulesza, Randy J; Torres-Jardón, Ricardo; Ávila-Ramírez, José; Villarreal-Ríos, Rodolfo

    2018-07-01

    Exposures to fine particulate matter (PM 2.5 ) and ozone (O 3 ) above USEPA standards are associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) residents have life time exposures to PM 2.5 and O 3 above USEPA standards. We investigated AD intra and extracellular protein aggregates and ultrastructural neurovascular pathology in 203 MMC residents age 25.36 ± 9.23 y. Immunohistochemical methods were used to identify AT8 hyperphosphorilated tau (Htau) and 4G8 (amyloid β 17-24). Primary outcomes: staging of Htau and amyloid, per decade and cumulative PM 2.5 (CPM 2.5 ) above standard. Apolipoprotein E allele 4 (APOE4), age and cause of death were secondary outcomes. Subcortical pretangle stage b was identified in an 11month old baby. Cortical tau pre-tangles, neurofibrillary tangles (NFT) Stages I-II, amyloid phases 1-2, Htau in substantia nigrae, auditory, oculomotor, trigeminal and autonomic systems were identified by the 2nd decade. Progression to NFT stages III-V was present in 24.8% of 30-40 y old subjects. APOE4 carriers have 4.92 times higher suicide odds (p = 0.0006), and 23.6 times higher odds of NFT V (p < 0.0001) v APOE4 non-carriers having similar CPM 2.5 exposure and age. Age (p = 0.0062) and CPM 2.5 (p = 0.0178) were significant for developing NFT V. Combustion-derived nanoparticles were associated with early and progressive damage to the neurovascular unit. Alzheimer's disease starting in the brainstem of young children and affecting 99.5% of young urbanites is a serious health crisis. Air pollution control should be prioritised. Childhood relentless Htau makes a fundamental target for neuroprotective interventions and the first two decades are critical. We recommend the concept of preclinical AD be revised and emphasize the need to define paediatric environmental, nutritional, metabolic and genetic risk factor interactions of paramount importance to prevent AD. AD evolving from childhood is threating the

  6. Pseudoholomorphic quilts and Khovanov homology

    DEFF Research Database (Denmark)

    Rezazadegan, Reza

    We further study the Seidel-Smith invariant of links and tangle. We associate homomorphisms to elementary cobordisms between tangles and equip the invariant assigned to an $(m,n)$-tangle with an $(H^m,H^n)$-bimodule structure. We also obtain an exact triangle for the Seidel-Smith invariant simila...

  7. Two forms for 3-uniform states of eight-qubits

    Science.gov (United States)

    Zha, Xinwei; Da, Zhang; Ahmed, Irfan; Zhang, Yanpeng

    2018-05-01

    In this paper, we study the relations between average bipartite entanglement and the n-tangle of eight-qubits. We have derived two forms for 3-uniform states of eight-qubits. One form has the n-tangle equal to zero; the other form has the n-tangle equal to unity.

  8. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Patricia F Kao

    2010-10-01

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  9. The Nun study: clinically silent AD, neuronal hypertrophy, and linguistic skills in early life.

    Science.gov (United States)

    Iacono, D; Markesbery, W R; Gross, M; Pletnikova, O; Rudow, G; Zandi, P; Troncoso, J C

    2009-09-01

    It is common to find substantial Alzheimer disease (AD) lesions, i.e., neuritic beta-amyloid plaques and neurofibrillary tangles, in the autopsied brains of elderly subjects with normal cognition assessed shortly before death. We have termed this status asymptomatic AD (ASYMAD). We assessed the morphologic substrate of ASYMAD compared to mild cognitive impairment (MCI) in subjects from the Nun Study. In addition, possible correlations between linguistic abilities in early life and the presence of AD pathology with and without clinical manifestations in late life were considered. Design-based stereology was used to measure the volumes of neuronal cell bodies, nuclei, and nucleoli in the CA1 region of hippocampus (CA1). Four groups of subjects were compared: ASYMAD (n = 10), MCI (n = 5), AD (n = 10), and age-matched controls (n = 13). Linguistic ability assessed in early life was compared among all groups. A significant hypertrophy of the cell bodies (+44.9%), nuclei (+59.7%), and nucleoli (+80.2%) in the CA1 neurons was found in ASYMAD compared with MCI. Similar differences were observed with controls. Furthermore, significant higher idea density scores in early life were observed in controls and ASYMAD group compared to MCI and AD groups. 1) Neuronal hypertrophy may constitute an early cellular response to Alzheimer disease (AD) pathology or reflect compensatory mechanisms that prevent cognitive impairment despite substantial AD lesions; 2) higher idea density scores in early life are associated with intact cognition in late life despite the presence of AD lesions.

  10. Role of Vitamin E in the Treatment of Alzheimer’s Disease: Evidence from Animal Models

    Directory of Open Access Journals (Sweden)

    Agnese Gugliandolo

    2017-11-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder representing the major cause of dementia. It is characterized by memory loss, and cognitive and behavioral decline. In particular, the hallmarks of the pathology are amyloid-β (Aβ plaques and neurofibrillary tangles (NFTs, formed by aggregated hyperphosphorylated tau protein. Oxidative stress plays a main role in AD, and it is involved in initiation and progression of AD. It is well known that Aβ induced oxidative stress, promoting reactive oxygen species (ROS production and consequently lipid peroxidation, protein oxidation, tau hyperphosphorylation, results in toxic effects on synapses and neurons. In turn, oxidative stress can increase Aβ production. For these reasons, the administration of an antioxidant therapy in AD patients was suggested. The term vitamin E includes different fat-soluble compounds, divided into tocopherols and tocotrienols, that possess antioxidant action. α-Tocopherol is the most studied, but some studies suggested that tocotrienols may have different health promoting capacities. In this review, we focused our attention on the effects of vitamin E supplementation in AD animal models and AD patients or older population. Experimental models showed that vitamin E supplementation, by decreasing oxidative stress, may be a good strategy to improve cognitive and memory deficits. Furthermore, the combination of vitamin E with other antioxidant or anti-inflammatory compounds may increase its efficacy. However, even if some trials have evidenced some benefits, the effects of vitamin E in AD patients are still under debate.

  11. Role of Vitamin E in the Treatment of Alzheimer's Disease: Evidence from Animal Models.

    Science.gov (United States)

    Gugliandolo, Agnese; Bramanti, Placido; Mazzon, Emanuela

    2017-11-23

    Alzheimer's disease (AD) is a neurodegenerative disorder representing the major cause of dementia. It is characterized by memory loss, and cognitive and behavioral decline. In particular, the hallmarks of the pathology are amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), formed by aggregated hyperphosphorylated tau protein. Oxidative stress plays a main role in AD, and it is involved in initiation and progression of AD. It is well known that Aβ induced oxidative stress, promoting reactive oxygen species (ROS) production and consequently lipid peroxidation, protein oxidation, tau hyperphosphorylation, results in toxic effects on synapses and neurons. In turn, oxidative stress can increase Aβ production. For these reasons, the administration of an antioxidant therapy in AD patients was suggested. The term vitamin E includes different fat-soluble compounds, divided into tocopherols and tocotrienols, that possess antioxidant action. α-Tocopherol is the most studied, but some studies suggested that tocotrienols may have different health promoting capacities. In this review, we focused our attention on the effects of vitamin E supplementation in AD animal models and AD patients or older population. Experimental models showed that vitamin E supplementation, by decreasing oxidative stress, may be a good strategy to improve cognitive and memory deficits. Furthermore, the combination of vitamin E with other antioxidant or anti-inflammatory compounds may increase its efficacy. However, even if some trials have evidenced some benefits, the effects of vitamin E in AD patients are still under debate.

  12. Omega-3 fatty acids and dementia

    Science.gov (United States)

    Cole, Greg M.; Ma, Qiu-Lan; Frautschy, Sally A.

    2014-01-01

    More than a dozen epidemiological studies have reported that reduced levels or intake of omega-3 fatty acids or fish consumption is associated with increased risk for age-related cognitive decline or dementia such as Alzheimer's disease (AD). Increased dietary consumption or blood levels of docosahexaenoic acid (DHA) appear protective for AD and other dementia in multiple epidemiological studies; however, three studies suggest that the ApoE4 genotype limits protection. DHA is broadly neuroprotective via multiple mechanisms that include neuroprotective DHA metabolites, reduced arachidonic acid metabolites, and increased trophic factors or downstream trophic signal transduction. DHA is also protective against several risk factors for dementia including head trauma, diabetes, and cardiovascular disease. DHA is specifically protective against AD via additional mechanisms: It limits the production and accumulation of the amyloid β peptide toxin that is widely believed to drive the disease; and it also suppresses several signal transduction pathways induced by Aβ, including two major kinases that phosphorylate the microtubule associated protein tau and promote neurofibrillary tangle pathology. Based on the epidemiological and basic research data, expert panels have recommended the need for clinical trials with omega-3 fatty acids, notably DHA, for the prevention or treatment of age-related cognitive decline—with a focus on the most prevalent cause, AD. Clinical trials are underway to prevent and treat AD. Results to-date suggest that DHA may be more effective if it is begun early or used in conjunction with antioxidants. PMID:19523795

  13. Altered Machinery of Protein Synthesis in Alzheimer's: From the Nucleolus to the Ribosome.

    Science.gov (United States)

    Hernández-Ortega, Karina; Garcia-Esparcia, Paula; Gil, Laura; Lucas, José J; Ferrer, Isidre

    2016-09-01

    Ribosomes and protein synthesis have been reported to be altered in the cerebral cortex at advanced stages of Alzheimer's disease (AD). Modifications in the hippocampus with disease progression have not been assessed. Sixty-seven cases including middle-aged (MA) and AD stages I-VI were analyzed. Nucleolar chaperones nucleolin, nucleophosmin and nucleoplasmin 3, and upstream binding transcription factor RNA polymerase I gene (UBTF) mRNAs are abnormally regulated and their protein levels reduced in AD. Histone modifications dimethylated histone H3K9 (H3K9me2) and acetylated histone H3K12 (H3K12ac) are decreased in CA1. Nuclear tau declines in CA1 and dentate gyrus (DG), and practically disappears in neurons with neurofibrillary tangles. Subunit 28 ribosomal RNA (28S rRNA) expression is altered in CA1 and DG in AD. Several genes encoding ribosomal proteins are abnormally regulated and protein levels of translation initiation factors eIF2α, eIF3η and eIF5, and elongation factor eEF2, are altered in the CA1 region in AD. These findings show alterations in the protein synthesis machinery in AD involving the nucleolus, nucleus and ribosomes in the hippocampus in AD some of them starting at first stages (I-II) preceding neuron loss. These changes may lie behind reduced numbers of dendritic branches and reduced synapses of CA1 and DG neurons which cause hippocampal atrophy. © 2015 International Society of Neuropathology.

  14. Ovariectomy increases the age-induced hyperphosphorylation of Tau at hippocampal CA1.

    Science.gov (United States)

    Picazo, O; Espinosa-Raya, J; Briones-Aranda, A; Cerbón, M

    2016-11-01

    One of the main hallmarks of Alzheimer's disease includes the neurofibrillary tangles formation produced by hyperphosphorylation of the Tau protein, whose expression is putatively regulated by the ovarian hormones estradiol and progesterone. Hippocampus is a brain region that participates in many functions related to learning and memory; in addition, it is abundant in both estradiol and progesterone receptors. In this study, we explore the expression of Tau hyperphosphorylation at hippocampus and the performance of rats in an autoshaping learning task at 5, 10 and 15 months after the ovaries removal. In these animals, ovariectomy was performed at 3 months of age. These data were compared with those derived from intact rats at 8, 13 and 18 months old. A clear decrease in the number of conditioned responses of both intact and ovariectomized rats in the autoshaping learning task was observed. The interaction of both factors confirms that, in this test, learning varies depending on aging and the presence or absence of ovaries. A progressive increase in hippocampal Tau phosphorylation at Ser-396 was observed in either intact or ovariectomized rats. Interestingly, an interaction between the analyzed factors shows that such hyperphosphorylation was potentiated by the absence of ovaries. These results emphasize the importance of aging and the lack of ovarian hormones for an associative learning test and for the expression of one of the most important hallmarks of Alzheimer's disease.

  15. The Implication of the Brain Insulin Receptor in Late Onset Alzheimer’s Disease Dementia

    Directory of Open Access Journals (Sweden)

    Jaume Folch

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is progressive neurodegenerative disorder characterized by brain accumulation of the amyloid β peptide (Aβ, which form senile plaques, neurofibrillary tangles (NFT and, eventually, neurodegeneration and cognitive impairment. Interestingly, epidemiological studies have described a relationship between type 2 diabetes mellitus (T2DM and this pathology, being one of the risk factors for the development of AD pathogenesis. Information as it is, it would point out that, impairment in insulin signalling and glucose metabolism, in central as well as peripheral systems, would be one of the reasons for the cognitive decline. Brain insulin resistance, also known as Type 3 diabetes, leads to the increase of Aβ production and TAU phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, and cognitive impairment, which are all hallmarks of AD. Moreover, given the complexity of interlocking mechanisms found in late onset AD (LOAD pathogenesis, more data is being obtained. Recent evidence showed that Aβ42 generated in the brain would impact negatively on the hypothalamus, accelerating the “peripheral” symptomatology of AD. In this situation, Aβ42 production would induce hypothalamic dysfunction that would favour peripheral hyperglycaemia due to down regulation of the liver insulin receptor. The objective of this review is to discuss the existing evidence supporting the concept that brain insulin resistance and altered glucose metabolism play an important role in pathogenesis of LOAD. Furthermore, we discuss AD treatment approaches targeting insulin signalling using anti-diabetic drugs and mTOR inhibitors.

  16. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline

    Science.gov (United States)

    Talbot, Konrad; Wang, Hoau-Yan; Kazi, Hala; Han, Li-Ying; Bakshi, Kalindi P.; Stucky, Andres; Fuino, Robert L.; Kawaguchi, Krista R.; Samoyedny, Andrew J.; Wilson, Robert S.; Arvanitakis, Zoe; Schneider, Julie A.; Wolf, Bryan A.; Bennett, David A.; Trojanowski, John Q.; Arnold, Steven E.

    2012-01-01

    While a potential causal factor in Alzheimer’s disease (AD), brain insulin resistance has not been demonstrated directly in that disorder. We provide such a demonstration here by showing that the hippocampal formation (HF) and, to a lesser degree, the cerebellar cortex in AD cases without diabetes exhibit markedly reduced responses to insulin signaling in the IR→IRS-1→PI3K signaling pathway with greatly reduced responses to IGF-1 in the IGF-1R→IRS-2→PI3K signaling pathway. Reduced insulin responses were maximal at the level of IRS-1 and were consistently associated with basal elevations in IRS-1 phosphorylated at serine 616 (IRS-1 pS616) and IRS-1 pS636/639. In the HF, these candidate biomarkers of brain insulin resistance increased commonly and progressively from normal cases to mild cognitively impaired cases to AD cases regardless of diabetes or APOE ε4 status. Levels of IRS-1 pS616 and IRS-1 pS636/639 and their activated kinases correlated positively with those of oligomeric Aβ plaques and were negatively associated with episodic and working memory, even after adjusting for Aβ plaques, neurofibrillary tangles, and APOE ε4. Brain insulin resistance thus appears to be an early and common feature of AD, a phenomenon accompanied by IGF-1 resistance and closely associated with IRS-1 dysfunction potentially triggered by Aβ oligomers and yet promoting cognitive decline independent of classic AD pathology. PMID:22476197

  17. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain.

    Science.gov (United States)

    Butterfield, D Allan; Di Domenico, Fabio; Barone, Eugenio

    2014-09-01

    Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological data show that the incidence of AD increases with age and doubles every 5 years after 65 years of age. From a neuropathological point of view, amyloid-β-peptide (Aβ) leads to senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles and synapse loss, are the principal pathological hallmarks of AD. Aβ is associated with the formation of reactive oxygen (ROS) and nitrogen (RNS) species, and induces calcium-dependent excitotoxicity, impairment of cellular respiration, and alteration of synaptic functions associated with learning and memory. Oxidative stress was found to be associated with type 2 diabetes mellitus (T2DM), which (i) represents another prevalent disease associated with obesity and often aging, and (ii) is considered to be a risk factor for AD development. T2DM is characterized by high blood glucose levels resulting from increased hepatic glucose production, impaired insulin production and peripheral insulin resistance, which close resemble to the brain insulin resistance observed in AD patients. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of insulin resistance and vice versa. This review article provides molecular aspects and the pharmacological approaches from both preclinical and clinical data interpreted from the point of view of oxidative stress with the aim of highlighting progresses in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice

    Directory of Open Access Journals (Sweden)

    Yan-Hui Zhang

    2018-04-01

    Full Text Available Alzheimer's disease (AD is the most common neurodegenerative disease and is characterized by neurofibrillary tangles (NFTs composed of Tau protein. α-Lipoic acid (LA has been found to stabilize the cognitive function of AD patients, and animal study findings have confirmed its anti-amyloidogenic properties. However, the underlying mechanisms remain unclear, especially with respect to the ability of LA to control Tau pathology and neuronal damage. Here, we found that LA supplementation effectively inhibited the hyperphosphorylation of Tau at several AD-related sites, accompanied by reduced cognitive decline in P301S Tau transgenic mice. Furthermore, we found that LA not only inhibited the activity of calpain1, which has been associated with tauopathy development and neurodegeneration via modulating the activity of several kinases, but also significantly decreased the calcium content of brain tissue in LA-treated mice. Next, we screened for various modes of neural cell death in the brain tissue of LA-treated mice. We found that caspase-dependent apoptosis was potently inhibited, whereas autophagy did not show significant changes after LA supplementation. Interestingly, Tau-induced iron overload, lipid peroxidation, and inflammation, which are involved in ferroptosis, were significantly blocked by LA administration. These results provide compelling evidence that LA plays a role in inhibiting Tau hyperphosphorylation and neuronal loss, including ferroptosis, through several pathways, suggesting that LA may be a potential therapy for tauopathies. Keywords: Tau, α-Lipoic acid, Oxidative stress, Ferroptosis, Alzheimer's disease

  19. Human tau increases amyloid β plaque size but not amyloid β-mediated synapse loss in a novel mouse model of Alzheimer's disease.

    Science.gov (United States)

    Jackson, Rosemary J; Rudinskiy, Nikita; Herrmann, Abigail G; Croft, Shaun; Kim, JeeSoo Monica; Petrova, Veselina; Ramos-Rodriguez, Juan Jose; Pitstick, Rose; Wegmann, Susanne; Garcia-Alloza, Monica; Carlson, George A; Hyman, Bradley T; Spires-Jones, Tara L

    2016-12-01

    Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aβ) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aβ. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aβ and tau in synapse loss remain to be determined. In this study, we generated a novel transgenic mouse line, the APP/PS1/rTg21221 line, by crossing APP/PS1 mice, which develop Aβ-plaques and synapse loss, with rTg21221 mice, which overexpress wild-type human tau. When compared to the APP/PS1 mice without human tau, the cross-sectional area of ThioS+ dense core plaques was increased by ~50%. Along with increased plaque size, we observed an increase in plaque-associated dystrophic neurites containing misfolded tau, but there was no exacerbation of neurite curvature or local neuron loss around plaques. Array tomography analysis similarly revealed no worsening of synapse loss around plaques, and no change in the accumulation of Aβ at synapses. Together, these results indicate that adding human wild-type tau exacerbates plaque pathology and neurite deformation but does not exacerbate plaque-associated synapse loss. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model.

    Science.gov (United States)

    Kim, YoungDoo; Choi, Hyunwoo; Lee, WonJae; Park, Hyejin; Kam, Tae-In; Hong, Se-Hoon; Nah, Jihoon; Jung, Sunmin; Shin, Bora; Lee, Huikyong; Choi, Tae-Yong; Choo, Hyosun; Kim, Kyung-Keun; Choi, Se-Young; Kayed, Rakez; Jung, Yong-Keun

    2016-03-01

    In neurodegenerative diseases like AD, tau forms neurofibrillary tangles, composed of tau protein. In the AD brain, activated caspases cleave tau at the 421th Asp, generating a caspase-cleaved form of tau, TauC3. Although TauC3 is known to assemble rapidly into filaments in vitro, a role of TauC3 in vivo remains unclear. Here, we generated a transgenic mouse expressing human TauC3 using a neuron-specific promoter. In this mouse, we found that human TauC3 was expressed in the hippocampus and cortex. Interestingly, TauC3 mice showed drastic learning and spatial memory deficits and reduced synaptic density at a young age (2-3months). Notably, tau oligomers as well as tau aggregates were found in TauC3 mice showing memory deficits. Further, i.p. or i.c.v. injection with methylene blue or Congo red, inhibitors of tau aggregation in vitro, and i.p. injection with rapamycin significantly reduced the amounts of tau oligomers in the hippocampus, rescued spine density, and attenuated memory impairment in TauC3 mice. Together, these results suggest that TauC3 facilitates early memory impairment in transgenic mice accompanied with tau oligomer formation, providing insight into the role of TauC3 in the AD pathogenesis associated with tau oligomers and a useful AD model to test drug candidates. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Inflammatory Process in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    MARCO ANTONIO eMERAZ RIOS

    2013-08-01

    Full Text Available Alzheimer Disease (AD is a neurodegenerative disorder and the most common form of dementia. Histopathologically is characterized by the presence of two major hallmarks, the intracellular neurofibrillary tangles (NFTs and extracellular neuritic plaques (NPs surrounded by activated astrocytes and microglia. NFTs consist of paired helical filaments of truncated tau protein that is abnormally hyperphosphorylated. The main component in the NP is the amyloid-β peptide (Aβ, a small fragment of 40-42 amino acids with a molecular weight of 4kD. It has been proposed that the amyloid aggregates and microglia activation are able to favor the neurodegenerative process observed in AD patients. However, the role of inflammation in AD is controversial, because in early stages the inflammation could have a beneficial role in the pathology, since it has been thought that the microglia and astrocytes activated could be involved in Aβ clearance. Nevertheless the chronic activation of the microglia has been related with an increase of Aβ and possibly with tau phosphorylation. Studies in AD brains have shown an upregulation of complement molecules, pro-inflammatory cytokines, acute phase reactants and other inflammatory mediators that could contribute with the neurodegenerative process. Clinical trials and animal models with nonsteroidal anti-inflammatory drugs (NSAIDs indicate that these drugs may decrease the risk of developing AD and apparently reduce Aβ deposition. Finally, further studies are needed to determine whether treatment with anti-inflammatory strategies, may decrease the neurodegenerative process that affects these patients.

  2. Pharmacotherapy Of Alzheimer′s Disease

    Directory of Open Access Journals (Sweden)

    Migalni Jasdeep

    2001-01-01

    Full Text Available Alzheimer′s disease is characterized by degeneration of various structures in the brain, with development of amyloid plaques and neurofibrillary tangles. Deficiencies of acetylcholine and other neurotransmitters also occur. Pharmacological treatment of the disease generally seeks to correct the histopathology, the biochemical derangements or their defects. The incidence of the disease is increasing worldwide. About 35% of people develop Alzheimer’s disease by age 75, and the percentage rises with age. By age 85, almost half of all people get the ailment. Reliable estimates of prevalence of Alzheimer′s disease in Indian subcontinent are not available as yet, however anecdotal data suggest a pattern consistent with worldwide trends. Physicians should be able to competently diagnose evaluate and initiate treatment in most patients with Alzheimer′s dementia. Hence, it is imperative that neurologists familiarize themselves with the pharmacological treatments of this challenging illness. The authors attempt to given an overview of the various current pharmacologic treatments available for the disease. Contemporary treatment of the memory disturbance in Alzheimer′s disease is to boost declining cholinergic function, which is characteristic of this disease. Therefore, the mainstay of current treatment is to use acetylcholinesterase inhibitors. The authors discuss the available acetylcholinesterase inhibitors and how they can be distinguished from each other on the basis of secondary pharmacologic properties. The article also discusses use of some other non-conventional and investigational drugs used for the treatment of Alzheimer′s disease.

  3. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    Science.gov (United States)

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Comprehensive Quantitative Profiling of Tau and Phosphorylated Tau Peptides in Cerebrospinal Fluid by Mass Spectrometry Provides New Biomarker Candidates.

    Science.gov (United States)

    Russell, Claire L; Mitra, Vikram; Hansson, Karl; Blennow, Kaj; Gobom, Johan; Zetterberg, Henrik; Hiltunen, Mikko; Ward, Malcolm; Pike, Ian

    2017-01-01

    Aberrant tau phosphorylation is a hallmark in Alzheimer's disease (AD), believed to promote formation of paired helical filaments, the main constituent of neurofibrillary tangles in the brain. While cerebrospinal fluid (CSF) levels of total tau and tau phosphorylated at threonine residue 181 (pThr181) are established core biomarkers for AD, the value of alternative phosphorylation sites, which may have more direct relevance to pathology, for early diagnosis is not yet known, largely due to their low levels in CSF and lack of standardized detection methods. To overcome sensitivity limitations for analysis of phosphorylated tau in CSF, we have applied an innovative mass spectrometry (MS) workflow, TMTcalibratortrademark, to enrich and enhance the detection of phosphoproteome components of AD brain tissue in CSF, and enable the quantitation of these analytes. We aimed to identify which tau species present in the AD brain are also detectable in CSF and which, if any, are differentially regulated with disease. Over 75% coverage of full-length (2N4R) tau was detected in the CSF with 47 phosphopeptides covering 31 different phosphorylation sites. Of these, 11 phosphopeptides were upregulated by at least 40%, along with an overall increase in tau levels in the CSF of AD patients relative to controls. Use of the TMTcalibratortrademark workflow dramatically improved our ability to detect tau-derived peptides that are directly related to human AD pathology. Further validation of regulated tau peptides as early biomarkers of AD is warranted and is currently being undertaken.

  5. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  6. Imaging β-amyloid fibrils in Alzheimer's disease: a critical analysis through simulation of amyloid fibril polymerization

    International Nuclear Information System (INIS)

    Shoghi-Jadid, Kooresh; Barrio, Jorge R.; Kepe, Vladimir; Wu, H.-M.; Small, Gary W.; Phelps, Michael E.; Huang, S.-C.

    2005-01-01

    The polymerization of β-amyloid (Aβ) peptides into fibrillary plaques is implicated, in part, in the pathogenesis of Alzheimer's disease. Aβ molecular imaging probes (Aβ-MIPs) have been introduced in an effort to quantify amyloid burden or load, in subjects afflicted with AD by invoking the classic PET receptor model for the quantitation of neuronal receptor density. In this communication, we explore conceptual differences between imaging the density of amyloid fibril polymers and neuronal receptors. We formulate a mathematical model for the polymerization of Aβ with parameters that are mapped to biological modulators of fibrillogenesis and introduce a universal measure for amyloid load to accommodate various interactions of Aβ-MIPs with fibrils. Subsequently, we hypothesize four Aβ-MIPs and utilize the fibrillogenesis model to simulate PET tissue time activity curves (TACs). Given the unique nature of polymer growth and resulting PET TAC, the four probes report differing amyloid burdens for a given brain pathology, thus complicating the interpretation of PET images. In addition, we introduce the notion of an MIP's resolution, apparent maximal binding site concentration, optimal kinetic topology and its resolving power in characterizing the pathological progression of AD and the effectiveness of drug therapy. The concepts introduced in this work call for a new paradigm that goes beyond the classic parameters B max and K D to include binding characteristics to polymeric peptide aggregates such as amyloid fibrils, neurofibrillary tangles and prions

  7. The Developing, Aging Neocortex: How genetics and epigenetics influence early developmental patterning and age-related change.

    Directory of Open Access Journals (Sweden)

    Kelly J. Huffman

    2012-10-01

    Full Text Available A hallmark of mammalian development is the generation of functional subdivisions within the nervous system. In humans, this regionalization creates a complex system that regulates behavior, cognition, memory and emotion. During development, specification of neocortical tissue that leads to functional sensory and motor regions results from an interplay between cortically intrinsic, molecular processes, such as gene expression, and extrinsic processes regulated by sensory input. Cortical specification in mice occurs pre- and perinatally, when gene expression is robust and various anatomical distinctions are observed alongside an emergence of physiological function. After patterning, gene expression continues to shift and axonal connections mature into an adult form. The function of adult cortical gene expression may be to maintain neocortical subdivisions that were established during early patterning. As some changes in neocortical gene expression have been observed past early development into late adulthood, gene expression may also play a role in the altered neocortical function observed in age-related cognitive decline and brain dysfunction. This review provides a discussion of how neocortical gene expression and specific patterns of neocortical sensori-motor axonal connections develop and change throughout the lifespan of the animal. We posit that a role of neocortical gene expression in neocortex is to regulate plasticity mechanisms that impact critical periods for sensory and motor plasticity in aging. We describe results from several studies in aging brain that detail changes in gene expression that may relate to microstructural changes observed in brain anatomy. We discuss the role of altered glucocorticoid signaling in age-related cognitive and functional decline, as well as how aging in the brain may result from immune system activation. We describe how caloric restriction or reduction of oxidative stress may ameliorate effects of aging

  8. Tangling with telecomes

    CSIR Research Space (South Africa)

    Roux, S

    2011-07-01

    Full Text Available At the CSIR’s National Laser Centre, a team of researchers is pursuing Free Space Quantum Communication: transmitting optical signals by using the quantum properties of laser light. The aim is to provide secure and safe ways of communication using...

  9. Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging.

    Science.gov (United States)

    Maass, Anne; Lockhart, Samuel N; Harrison, Theresa M; Bell, Rachel K; Mellinger, Taylor; Swinnerton, Kaitlin; Baker, Suzanne L; Rabinovici, Gil D; Jagust, William J

    2018-01-17

    The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [ 18 F]AV-1451 and [ 11 C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how in vivo tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults ( n = 83; age, 77 ± 6 years; 58% female). Stepwise regressions identified tau in MTL regions known to be affected in old age as the best predictor of episodic-memory performance independent of Aβ status. There was no interactive effect of MTL tau with Aβ on memory. Higher MTL tau was related to higher age in the subjects without evidence of Aβ. Among temporal lobe subregions, episodic memory was most strongly related to tau-tracer uptake in the parahippocampal gyrus, particularly the posterior entorhinal cortex, which in our parcellation includes the transentorhinal cortex. In subjects with longitudinal MRI and cognitive data ( n = 57), entorhinal atrophy mirrored patterns of tau pathology and their relationship with memory decline. Our data are consistent with neuropathological studies and further suggest that entorhinal tau pathology underlies memory decline in old age even without Aβ. SIGNIFICANCE STATEMENT Tau tangles and β-amyloid (Aβ) plaques are key lesions in Alzheimer's disease (AD) but both pathologies also occur in cognitively normal older people. Neuropathological data indicate that tau tangles in the medial temporal lobe (MTL) underlie episodic-memory impairments in AD dementia. However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship

  10. The role of the ventromedial prefrontal cortex in memory consolidation

    NARCIS (Netherlands)

    Nieuwenhuis, I.L.C.; Takashima, A.

    2011-01-01

    System-level memory consolidation theory posits that the hippocampus initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has

  11. Choroba Alzheimera – rola badań immunohistochemicznych w diagnostyce choroby = Alzheimer's disease - the role of immunohistochemistry in the diagnosis of disease

    Directory of Open Access Journals (Sweden)

    Beata Cichacz-Kwiatkowska

    2016-02-01

    Authors’ Contribution: A Study Design B Data Collection C Statistical Analysis D Manuscript Preparation E Funds Collection   Słowa kluczowe: badania immunohistochemiczne, choroba Alzheimera, wewnątrzkomórkowe zwyrodnienia włókienkowe typu Alzheimera, białkowe prekursor amyloidu.   Key words: immunohistochemistry, Alzheimer's disease, neurofibrillary tangles, amyloid precursor protein.   Glosariusz: Choroba Alzheimera – najczęstsza postać otępienia, nieuleczalna i postępująca choroba neurodegeneracyjna, po raz pierwszy opisana w 1906 przez Alois Alzheimer [1]   Glossary:  Alzheimer's disease (AD, also known as Alzheimer disease, the most common form of dementia, progressive neurodegenerative disease, first described by Alois Alzheimer in 1906 [1]   Streszczenie Choroba Alzheimera jest przewlekłą i postępującą chorobą neurodegeneracyjną, będącą zarazem najczęstszą przyczyną zespołu otępiennego. Skutki tej choroby dotykają zarówno samego pacjenta i jego otoczenie, przybierając wymiar zarówno społeczny jak i ekonomiczny. Częstość występowania otępienia towarzyszącego chorobie Alzheimera podwaja się co 4,5 roku u osób po 65. roku życia. U podłoża tego schorzenia leży zróżnicowana grupa zaburzeń związanych ze starzeniem się organizmu oraz interakcjami genetycznymi i środowiskowymi. Procesy neurodegeneracyjne obserwowane w przebiegu choroby Alzheimera prowadzą do upośledzenia morfologicznego i fizjologicznego neuronów oraz w konsekwencji ich śmierci. Doprowadza to bezpośrednio do upośledzenia kontroli poznawczej. W zmienionej patologicznie tkance nerwowej chorych stwierdzono obecność nieprawidłowych struktur, takich jak blaszki amyloidowe i zwyrodnienia włókienkowe (splątki neurofibrylarne. Sformułowano wiele hipotez starających się wyjaśnić procesy prowadzące do neurodegeneracji, najczęściej wymieniana jest teoria kaskady amyloidowej. Metody immunohistochemiczne pozwalają na wykrycie

  12. What Does Neuroscience and Cognitive Psychology Tell Us about Multiple Intelligence

    Science.gov (United States)

    Bauer, Richard H.

    2009-01-01

    Studies that have used noninvasive brain imaging techniques to record neocortical activity while individuals were performing cognitive intelligence tests (traditional intelligence) and social intelligence tests were reviewed. In cognitive intelligence tests 16 neocortical areas were active, whereas in social intelligence 10 areas were active.…

  13. Evidence for holistic episodic recollection via hippocampal pattern completion.

    Science.gov (United States)

    Horner, Aidan J; Bisby, James A; Bush, Daniel; Lin, Wen-Jing; Burgess, Neil

    2015-07-02

    Recollection is thought to be the hallmark of episodic memory. Here we provide evidence that the hippocampus binds together the diverse elements forming an event, allowing holistic recollection via pattern completion of all elements. Participants learn complex 'events' from multiple overlapping pairs of elements, and are tested on all pairwise associations. At encoding, element 'types' (locations, people and objects/animals) produce activation in distinct neocortical regions, while hippocampal activity predicts memory performance for all within-event pairs. When retrieving a pairwise association, neocortical activity corresponding to all event elements is reinstated, including those incidental to the task. Participant's degree of incidental reinstatement correlates with their hippocampal activity. Our results suggest that event elements, represented in distinct neocortical regions, are bound into coherent 'event engrams' in the hippocampus that enable episodic recollection--the re-experiencing or holistic retrieval of all aspects of an event--via a process of hippocampal pattern completion and neocortical reinstatement.

  14. Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder.

    Science.gov (United States)

    Antunes, Gabriela; Faria da Silva, Samuel F; Simoes de Souza, Fabio M

    2018-06-01

    Mirror neurons fire action potentials both when the agent performs a certain behavior and watches someone performing a similar action. Here, we present an original mirror neuron model based on the spike-timing-dependent plasticity (STDP) between two morpho-electrical models of neocortical pyramidal neurons. Both neurons fired spontaneously with basal firing rate that follows a Poisson distribution, and the STDP between them was modeled by the triplet algorithm. Our simulation results demonstrated that STDP is sufficient for the rise of mirror neuron function between the pairs of neocortical neurons. This is a proof of concept that pairs of neocortical neurons associating sensory inputs to motor outputs could operate like mirror neurons. In addition, we used the mirror neuron model to investigate whether channelopathies associated with autism spectrum disorder could impair the modeled mirror function. Our simulation results showed that impaired hyperpolarization-activated cationic currents (Ih) affected the mirror function between the pairs of neocortical neurons coupled by STDP.

  15. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer?s disease

    OpenAIRE

    Streit, Wolfgang J.; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-01-01

    The role of microglial cells in the pathogenesis of Alzheimer’s disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of d...

  16. Tangent map intermittency as an approximate analysis of intermittency in a high dimensional fully stochastic dynamical system: The Tangled Nature model.

    Science.gov (United States)

    Diaz-Ruelas, Alvaro; Jeldtoft Jensen, Henrik; Piovani, Duccio; Robledo, Alberto

    2016-12-01

    It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low

  17. An inconspicuous, conspicuous new species of Asian pipesnake, genus Cylindrophis (Reptilia: Squamata: Cylindrophiidae), from the south coast of Jawa Tengah, Java, Indonesia, and an overview of the tangled taxonomic history of C. ruffus (Laurenti, 1768).

    Science.gov (United States)

    Kieckbusch, Max; Mecke, Sven; Hartmann, Lukas; Ehrmantraut, Lisa; O'shea, Mark; Kaiser, Hinrich

    2016-03-20

    We describe a new species of Cylindrophis currently known only from Grabag, Purworejo Regency, Jawa Tengah Pro-vince (Central Java), Java, Indonesia. Cylindrophis subocularis sp. nov. can be distinguished from all congeners by the presence of a single, eponymous subocular scale between the 3rd and 4th or 4th and 5th supralabial, preventing contact between the 4th or 5th supralabial and the orbit, and by having the prefrontal in narrow contact with or separated from the orbit. We preface our description with a detailed account of the tangled taxonomic history of the similar and putatively wide-ranging species C. ruffus, which leads us to (1) remove the name Scytale scheuchzeri from the synonymy of C. ruffus, (2) list the taxon C. rufa var. javanica as species inquirenda, and (3) synonymize C. mirzae with C. ruffus. We provide additional evidence to confirm that the type locality of C. ruffus is Java. Cylindrophis subocularis sp. nov. is the second species of Asian pipesnake from Java.

  18. Transient behavior of superfluid turbulence in a large channel

    International Nuclear Information System (INIS)

    Schwarz, K.W.; Rozen, J.R.

    1991-01-01

    The transient behavior of superfluid turbulence is studied theoretically and experimentally with the aim of understanding the disagreement between vortex-tangle theory and past measurements of free vortex-tangle decay in superfluid 4 He. Scaling theory is extended and large-scale simulations based on the reconnecting-vortex model are carried out. These imply that the Vinen equation should be a reasonable approximation even for rather large transients, and predict definite values for the Vinen parameters. Direct measurements of the vortex-tangle response to a sudden change in the driving velocity are seen to be in reasonable agreement with these predictions. It is found, however, that when the vortex tangle is allowed to decay farther toward zero, it eventually crosses over into a state of anomalously slow decay, which appears to be that observed in previous experiments. We argue that this regime should be interpreted in terms of a coupled-turbulence state in which random superfluid and normal-fluid motion interacts with the vortex tangle, the whole system decaying self-consistently at a rate controlled by the normal-fluid viscosity. Several additional qualitative observations which may be relevant to the question of how the vortex tangle is initiated are also reported

  19. 3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish".

    Science.gov (United States)

    Choi, Se Hoon; Kim, Young Hye; Quinti, Luisa; Tanzi, Rudolph E; Kim, Doo Yeon

    2016-12-09

    Alzheimer's disease (AD) transgenic mice have been used as a standard AD model for basic mechanistic studies and drug discovery. These mouse models showed symbolic AD pathologies including β-amyloid (Aβ) plaques, gliosis and memory deficits but failed to fully recapitulate AD pathogenic cascades including robust phospho tau (p-tau) accumulation, clear neurofibrillary tangles (NFTs) and neurodegeneration, solely driven by familial AD (FAD) mutation(s). Recent advances in human stem cell and three-dimensional (3D) culture technologies made it possible to generate novel 3D neural cell culture models that recapitulate AD pathologies including robust Aβ deposition and Aβ-driven NFT-like tau pathology. These new 3D human cell culture models of AD hold a promise for a novel platform that can be used for mechanism studies in human brain-like environment and high-throughput drug screening (HTS). In this review, we will summarize the current progress in recapitulating AD pathogenic cascades in human neural cell culture models using AD patient-derived induced pluripotent stem cells (iPSCs) or genetically modified human stem cell lines. We will also explain how new 3D culture technologies were applied to accelerate Aβ and p-tau pathologies in human neural cell cultures, as compared the standard two-dimensional (2D) culture conditions. Finally, we will discuss a potential impact of the human 3D human neural cell culture models on the AD drug-development process. These revolutionary 3D culture models of AD will contribute to accelerate the discovery of novel AD drugs.

  20. Linguistic ability in early life and the neuropathology of Alzheimer's disease and cerebrovascular disease. Findings from the Nun Study.

    Science.gov (United States)

    Snowdon, D A; Greiner, L H; Markesbery, W R

    2000-04-01

    Findings from the Nun Study indicate that low linguistic ability in early life has a strong association with dementia and premature death in late life. In the present study, we investigated the relationship of linguistic ability in early life to the neuropathology of Alzheimer's disease and cerebrovascular disease. The analyses were done on a subset of 74 participants in the Nun Study for whom we had handwritten autobiographies completed some time between the ages of 19 and 37 (mean = 23 years). An average of 62 years after writing the autobiographies, when the participants were 78 to 97 years old, they died and their brains were removed for our neuropathologic studies. Linguistic ability in early life was measured by the idea (proposition) density of the autobiographies, i.e., a standard measure of the content of ideas in text samples. Idea density scores from early life had strong inverse correlations with the severity of Alzheimer's disease pathology in the neocortex: Correlations between idea density scores and neurofibrillary tangle counts were -0.59 for the frontal lobe, -0.48 for the temporal lobe, and -0.49 for the parietal lobe (all p values < 0.0001). Idea density scores were unrelated to the severity of atherosclerosis of the major arteries at the base of the brain and to the presence of lacunar and large brain infarcts. Low linguistic ability in early life may reflect suboptimal neurological and cognitive development, which might increase susceptibility to the development of Alzheimer's disease pathology in late life.

  1. Evaluation of color preference in zebrafish for learning and memory.

    Science.gov (United States)

    Avdesh, Avdesh; Martin-Iverson, Mathew T; Mondal, Alinda; Chen, Mengqi; Askraba, Sreten; Morgan, Newman; Lardelli, Michael; Groth, David M; Verdile, Giuseppe; Martins, Ralph N

    2012-01-01

    There is growing interest in using zebrafish (Danio rerio) as a model of neurodegenerative disorders such as Alzheimer's disease. A zebrafish model of tauopathies has recently been developed and characterized in terms of presence of the pathological hallmarks (i.e., neurofibrillary tangles and cell death). However, it is also necessary to validate these models for function by assessing learning and memory. The majority of tools to assess memory and learning in animal models involve visual stimuli, including color preference. The color preference of zebrafish has received little attention. To validate zebrafish as a model for color-associated-learning and memory, it is necessary to evaluate its natural preferences or any pre-existing biases towards specific colors. In the present study, we have used four different colors (red, yellow, green, and blue) to test natural color preferences of the zebrafish using two procedures: Place preference and T-maze. Results from both experiments indicate a strong aversion toward blue color relative to all other colors (red, yellow, and green) when tested in combinations. No preferences or biases were found among reds, yellows, and greens in the place preference procedure. However, red and green were equally preferred and both were preferred over yellow by zebrafish in the T-maze procedure. The results from the present study show a strong aversion towards blue color compared to red, green, and yellow, with yellow being less preferred relative to red and green. The findings from this study may underpin any further designing of color-based learning and memory paradigms or experiments involving aversion, anxiety, or fear in the zebrafish.

  2. [Aβ immunotherapy for Alzheimer's disease].

    Science.gov (United States)

    Sakai, Kenji; Yamada, Masahito

    2013-04-01

    Alzheimer's disease (AD) is one of the neurodegenerative diseases characterized by the deposition of amyloid-β-protein (Aβ) as senile plaques in the brain parenchyma and phosphorylated-tau accumulation as neurofibrillary tangles in the neurons. Although details of the disease pathomechanisms remain unclear, Aβ likely acts as a key protein for AD initiation and progression, followed by abnormal tau phosphorylation and neuronal death (amyloid-cascade hypothesis). According to this hypothesis, Aβ immunization therapies are created to eliminate Aβ from the brain, and to prevent the neurons from damage by these pathogenic proteins. There are two methods for Aβ immunotherapies: active and passive immunization. Previous studies have shown Aβ removal and improved cognitive function in animal models of AD. Clinical trials on various drugs, including AN1792, bapineuzumab, and solanezumab, have been carried out; however, all trials have failed to demonstrate apparent clinical benefits. On the contrary, side effects emerged, such as meningoencephalitis, vasogenic edema, which are currently called amyloid related imaging abnormalities (ARIA)-E and microhemorrhage (ARIA-H). In neuropathological studies of immunized cases, Aβ was removed from the brain parenchyma and phosphorylated-tau was reduced in the neuronal processes. Moreover, deterioration of the cerebral amyloid angiopathy (CAA) and an increase of microhemorrhages and microinfarcts were described. Aβ is cleared from the brain mainly via the lymphatic drainage pathway. ARIA could stem from severe CAA due to dysfunction of the drainage pathway after immunotherapy. Aβ immunization has a potential of cure for AD patients, although the above-described problems must be overcome before applying this therapy in clinical treatment.

  3. Multi-Scale Model of Galactic Cosmic Ray Effects on the Hippocampus

    Science.gov (United States)

    Cucinotta, Francis

    An important concern for risk assessment from galactic cosmic ray (GCR) exposures is impacts to the central nervous systems including changes in cognition, and associations with increased risk of Alzheimer’s disease (AD). AD, which affects about 50 percent of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages, and the small number of epidemiology studies that have considered the possibility have not identified an association with low dose radiation. However, experimental studies in transgenic mice suggest the possibility exits. We discuss modeling approaches to consider mechanisms whereby GCR would accelerate the occurrence of AD to earlier ages. Biomarkers of AD include Amyloid beta plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyper-phosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dendritic spine loss, and neuronal cell loss through apoptosis. GCR may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuro-inflammation. Cell types considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3 beta and neuro-inflammation, and considered approaches to develop computer simulations of GCR induced cell interactions and their relationships to Amyloid beta plaques and NFTs. Comparison of model results to experimental data for the age specific development of plaques in transgenic mice and predictions of space radiation effects will be discussed.

  4. Alzheimer’s disease models and functional genomics - How many needles are there in the haystack?

    Directory of Open Access Journals (Sweden)

    Jurgen eGotz

    2012-08-01

    Full Text Available Alzheimer's disease (AD and frontotemporal lobar degeneration (FTLD are complex human brain disorders that affect an increasing number of people worldwide. With the identification first of the proteins that aggregate in AD and FTLD brains and subsequently of pathogenic gene mutations that cause their formation in the familial cases, the foundation was laid for the generation of animal models. These recapitulate essential aspects of the human conditions; expression of mutant forms of the amyloid-β protein-encoding APP gene in mice reproduces amyloid-β (Aβ plaque formation in AD, while that of mutant forms of the tau-encoding MAPT gene reproduces tau-containing neurofibrillary tangle formation, a lesion that is also prevalent in FTLD-Tau. The mouse models have been complemented by those in lower species such as C. elegans or Drosophila, highlighting the crucial role for Aβ and tau in human neurodegenerative disease. In this review, we will introduce selected AD/FTLD models and discuss how they were instrumental, by identifying deregulated mRNAs, miRNAs and proteins, in dissecting pathogenic mechanisms in neurodegenerative disease. We will discuss some recent examples, which includes miRNA species that are specifically deregulated by Aβ, mitochondrial proteins that are targets of both Aβ and tau, and the nuclear splicing factor SFPQ that accumulates in the cytoplasm in a tau-dependent manner. These examples illustrate how a functional genomics approach followed by a careful validation in experimental models and human tissue leads to a deeper understanding of the pathogenesis of AD and FTLD and ultimately, may help in finding a cure.

  5. Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology.

    Science.gov (United States)

    Kamat, Pradip K; Kalani, Anuradha; Rai, Shivika; Tota, Santosh Kumar; Kumar, Ashok; Ahmad, Abdullah S

    2016-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that is remarkably characterized by pathological hallmarks which include amyloid plaques, neurofibrillary tangles, neuronal loss, and progressive cognitive loss. Several well-known genetic mutations which are being used for the development of a transgenic model of AD lead to an early onset familial AD (fAD)-like condition. However, these settings are only reasons for a small percentage of the total AD cases. The large majorities of AD cases are considered as a sporadic in origin and are less influenced by a single mutation of a gene. The etiology of sporadic Alzheimer's disease (sAD) remains unclear, but numerous risk factors have been identified that increase the chance of developing AD. Among these risk factors are insulin desensitization/resistance state, oxidative stress, neuroinflammation, synapse dysfunction, tau hyperphosphorylation, and deposition of Aβ in the brain. Subsequently, these risk factors lead to development of sAD. However, the underlying molecular mechanism is not so clear. Streptozotocin (STZ) produces similar characteristic pathology of sAD such as altered glucose metabolism, insulin signaling, synaptic dysfunction, protein kinases such as protein kinase B/C, glycogen synthase-3β (GSK-3β) activation, tau hyperphosphorylation, Aβ deposition, and neuronal apoptosis. Further, STZ also leads to inhibition of Akt/PKB, insulin receptor (IR) signaling molecule, and insulin resistance in brain. These alterations mediated by STZ can be used to explore the underlying molecular and pathophysiological mechanism of AD (especially sAD) and their therapeutic intervention for drug development against AD pathology.

  6. Early-stage attenuation of phase-amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer's disease.

    Science.gov (United States)

    Bazzigaluppi, Paolo; Beckett, Tina L; Koletar, Margaret M; Lai, Aaron Y; Joo, Illsung L; Brown, Mary E; Carlen, Peter L; McLaurin, JoAnne; Stefanovic, Bojana

    2018-03-01

    Alzheimer's disease (AD) is pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration. Preclinical studies on neuronal impairments associated with progressive amyloidosis have demonstrated some Aβ-dependent neuronal dysfunction including modulation of gamma-aminobutyric acid-ergic signaling. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broad repertoire of AD-like pathologies to investigate the neuronal network functioning using simultaneous intracranial recordings from the hippocampus (HPC) and the medial prefrontal cortex (mPFC), followed by pathological analyses of gamma-aminobutyric acid (GABA A ) receptor subunits α1 , α5, and δ, and glutamic acid decarboxylases (GAD65 and GAD67). Concomitant to amyloid deposition and tau hyperphosphorylation, low-gamma band power was strongly attenuated in the HPC and mPFC of TgF344-AD rats in comparison to those in non-transgenic littermates. In addition, the phase-amplitude coupling of the neuronal networks in both areas was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude in TgF344-AD animals. Finally, the gamma coherence between HPC and mPFC was attenuated as well. These results demonstrate significant neuronal network dysfunction at an early stage of AD-like pathology. This network dysfunction precedes the onset of cognitive deficits and is likely driven by Aβ and tau pathologies. This article is part of the Special Issue "Vascular Dementia". © 2017 Her Majesty the Queen in Right of Canada Journal of Neurochemistry © 2017 International Society for Neurochemistry.

  7. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice.

    Directory of Open Access Journals (Sweden)

    Anna Fiorentini

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular β-amyloid (Aβ plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD. METHODOLOGY/PRINCIPAL FINDINGS: The double transgenic (Tg CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein, aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3β and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium's ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines as brain Aβ deposition and pathology increases. CONCLUSIONS: Lithium, when given on time, stimulates neurogenesis and counteracts AD-like pathology.

  8. Progressive supranuclear palsy presenting as primary lateral sclerosis but lacking parkinsonism, gaze palsy, aphasia, or dementia.

    Science.gov (United States)

    Nagao, Shigeto; Yokota, Osamu; Nanba, Reiko; Takata, Hiroshi; Haraguchi, Takashi; Ishizu, Hideki; Ikeda, Chikako; Takeda, Naoya; Oshima, Etsuko; Sakane, Katsuaki; Terada, Seishi; Ihara, Yuetsu; Uchitomi, Yosuke

    2012-12-15

    We report an autopsy case of progressive supranuclear palsy (PSP) that clinically showed only slowly progressive and symmetric upper motor neuron syndrome over a disease course of 12 years. A female patient initially exhibited dysarthria at the age of 65, followed by gait disturbance and dysphagia. Neurological examination at age 67 disclosed pseudobulbar palsy, spastic gait, hyperreflexia, and presence of bilateral Hoffmann and Babinski signs. However, muscle atrophy, weakness, evidence of denervation on electromyography, vertical gaze palsy, parkinsonism, gait freezing, aphasia, speech apraxia, or dementia was not noted throughout the course. She was clinically diagnosed as having motor neuron disease consistent with so-called primary lateral sclerosis. Pathological examination disclosed histopathological features of PSP, including argyrophilic and tau-positive tufted astrocytes, neurofibrillary tangles, coiled bodies, and thread-like processes in the motor cortex and superior frontal gyrus, and to a lesser degree, in the basal ganglia and brain stem nuclei. In addition, severe fibrillary gliosis was noted in the precentral gyrus and corticospinal tract, being consistent with upper motor neuron syndrome observed in this case. No TAR-DNA binding protein 43-positive lesion, FUS pathology, Bunina body, or Lewy body-like hyaline inclusion was noted in the motor cortex or lower motor neurons. These findings suggest that when tau pathology is prominent in the motor cortex but is minimal in the basal ganglia and brain stem nuclei, a PSP case can lack all classic clinical features of PSP and show only slowly progressive upper motor syndrome, consistent with clinical picture of primary lateral sclerosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. PPARγ agonist pioglitazone improves cerebellar dysfunction at pre-Aβ deposition stage in APPswe/PS1dE9 Alzheimer's disease model mice

    Energy Technology Data Exchange (ETDEWEB)

    Toba, Junya; Nikkuni, Miyu [Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan (Japan); Ishizeki, Masato [Laboratory for Neurophysiology, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan (Japan); Yoshii, Aya; Watamura, Naoto [Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan (Japan); Inoue, Takafumi [Laboratory for Neurophysiology, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan (Japan); Ohshima, Toshio, E-mail: ohshima@waseda.jp [Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan (Japan)

    2016-05-13

    Alzheimer's disease (AD) is one of the best known neurodegenerative diseases; it causes dementia and its pathological features include accumulation of amyloid β (Aβ) and neurofibrillary tangles (NFTs) in the brain. Elevated Cdk5 activity and CRMP2 phosphorylation have been reported in the brains of AD model mice at the early stage of the disease, but the significance thereof in human AD remains unelucidated. We have recently reported that Aβ accumulation in the cerebellum of AD model APPswe/PS1dE9 (APP/PS1) mice, and cerebellar dysfunctions, such as impairment of motor coordination ability and long-term depression (LTD) induction, at the pre-Aβ accumulation stage. In the present study, we found increased phosphorylation levels of CRMP2 as well as increased p35 protein levels in the cerebellum of APP/PS1 mice. Interestingly, we show that pioglitazone, an agonist of peroxisome proliferator-activated receptor γ, normalized the p35 protein and CRMP2 phosphorylation levels in the cerebellum. Impaired motor coordination ability and LTD in APP/PS1 mice were ameliorated by pioglitazone treatment at the pre-Aβ accumulation stage. These results suggest a correlation between CRMP2 phosphorylation and AD pathophysiology, and indicate the effectiveness of pioglitazone treatment at the pre-Aβ accumulation stage in AD model mice. -- Highlights: •Phosphorylation level of CRMP2 increased in the cerebellum of APP/PS1 mice. •p35 protein levels increased in the cerebellum of APP/PS1 mice. •Pioglitazone treatment improved cerebellar dysfunction of APP/PS1 mice.

  10. PPARγ agonist pioglitazone improves cerebellar dysfunction at pre-Aβ deposition stage in APPswe/PS1dE9 Alzheimer's disease model mice

    International Nuclear Information System (INIS)

    Toba, Junya; Nikkuni, Miyu; Ishizeki, Masato; Yoshii, Aya; Watamura, Naoto; Inoue, Takafumi; Ohshima, Toshio

    2016-01-01

    Alzheimer's disease (AD) is one of the best known neurodegenerative diseases; it causes dementia and its pathological features include accumulation of amyloid β (Aβ) and neurofibrillary tangles (NFTs) in the brain. Elevated Cdk5 activity and CRMP2 phosphorylation have been reported in the brains of AD model mice at the early stage of the disease, but the significance thereof in human AD remains unelucidated. We have recently reported that Aβ accumulation in the cerebellum of AD model APPswe/PS1dE9 (APP/PS1) mice, and cerebellar dysfunctions, such as impairment of motor coordination ability and long-term depression (LTD) induction, at the pre-Aβ accumulation stage. In the present study, we found increased phosphorylation levels of CRMP2 as well as increased p35 protein levels in the cerebellum of APP/PS1 mice. Interestingly, we show that pioglitazone, an agonist of peroxisome proliferator-activated receptor γ, normalized the p35 protein and CRMP2 phosphorylation levels in the cerebellum. Impaired motor coordination ability and LTD in APP/PS1 mice were ameliorated by pioglitazone treatment at the pre-Aβ accumulation stage. These results suggest a correlation between CRMP2 phosphorylation and AD pathophysiology, and indicate the effectiveness of pioglitazone treatment at the pre-Aβ accumulation stage in AD model mice. -- Highlights: •Phosphorylation level of CRMP2 increased in the cerebellum of APP/PS1 mice. •p35 protein levels increased in the cerebellum of APP/PS1 mice. •Pioglitazone treatment improved cerebellar dysfunction of APP/PS1 mice.

  11. Measurement of fluorescent probes concentration ratio in the cerebrospinal fluid for early detection of Alzheimer's disease

    Science.gov (United States)

    Harbater, Osnat; Gannot, Israel

    2014-03-01

    The pathogenic process of Alzheimer's Disease (AD), characterized by amyloid plaques and neurofibrillary tangles in the brain, begins years before the clinical diagnosis. Here, we suggest a novel method which may detect AD up to nine years earlier than current exams, minimally invasive, with minimal risk, pain and side effects. The method is based on previous reports which relate the concentrations of biomarkers in the Cerebrospinal Fluid (CSF) (Aβ and Tau proteins) to the future development of AD in mild cognitive impairment patients. Our method, which uses fluorescence measurements of the relative concentrations of the CSF biomarkers, replaces the lumbar puncture process required for CSF drawing. The process uses a miniature needle coupled trough an optical fiber to a laser source and a detector. The laser radiation excites fluorescent probes which were prior injected and bond to the CSF biomarkers. Using the ratio between the fluorescence intensities emitted from the two biomarkers, which is correlated to their concentration ratio, the patient's risk of developing AD is estimated. A theoretical model was developed and validated using Monte Carlo simulations, demonstrating the relation between fluorescence emission and biomarker concentration. The method was tested using multi-layered tissue phantoms simulating the epidural fat, the CSF in the sub-arachnoid space and the bone. These phantoms were prepared with different scattering and absorption coefficients, thicknesses and fluorescence concentrations in order to simulate variations in human anatomy and in the needle location. The theoretical and in-vitro results are compared and the method's accuracy is discussed.

  12. Evaluating Alzheimer's disease progression using rate of regional hippocampal atrophy.

    Directory of Open Access Journals (Sweden)

    Edit Frankó

    Full Text Available Alzheimer's disease (AD is characterized by neurofibrillary tangle and neuropil thread deposition, which ultimately results in neuronal loss. A large number of magnetic resonance imaging studies have reported a smaller hippocampus in AD patients as compared to healthy elderlies. Even though this difference is often interpreted as atrophy, it is only an indirect measurement. A more direct way of measuring the atrophy is to use repeated MRIs within the same individual. Even though several groups have used this appropriate approach, the pattern of hippocampal atrophy still remains unclear and difficult to relate to underlying pathophysiology. Here, in this longitudinal study, we aimed to map hippocampal atrophy rates in patients with AD, mild cognitive impairment (MCI and elderly controls. Data consisted of two MRI scans for each subject. The symmetric deformation field between the first and the second MRI was computed and mapped onto the three-dimensional hippocampal surface. The pattern of atrophy rate was similar in all three groups, but the rate was significantly higher in patients with AD than in control subjects. We also found higher atrophy rates in progressive MCI patients as compared to stable MCI, particularly in the antero-lateral portion of the right hippocampus. Importantly, the regions showing the highest atrophy rate correspond to those that were described to have the highest burden of tau deposition. Our results show that local hippocampal atrophy rate is a reliable biomarker of disease stage and progression and could also be considered as a method to objectively evaluate treatment effects.

  13. Dysfunction of G Protein-Coupled Receptor Kinases in Alzheimer’'s Disease

    Directory of Open Access Journals (Sweden)

    William Z. Suo

    2010-01-01

    Full Text Available Although mutations and variations of several genes have been identified to be involved in Alzheimer's disease (AD, the efforts towards understanding the pathogenic mechanisms of the disease still have a long journey to go. One such effort is to identify the signal transduction deficits, for which previous studies have suggested that the central problems appear to be at the interface between G proteins and their coupled receptors. G protein-coupled receptor kinases (GRKs are a small family of serine/threonine protein kinases primarily acting at the “receptor-G protein interface””. Recent studies have indicated the possible involvement of GRK, primarily GRK2 and GRK5, dysfunction in the pathogenesis of AD. It seems that mild, soluble, β-amyloid accumulation can lead to a reduced membrane (functional and an elevated cytosolic GRK2/5. The increased cytosolic GRK2 appears to be colocalized with damaged mitochondria and neurofibrillary tangles. Moreover, the total levels of GRK2, not only in the brain, but also in peripheral blood samples, are increased in a manner inversely correlated with the patient's cognitive levels. The deficiency of GRK5, on the other hand, impairs presynaptic M2 autoreceptor desensitization, which leads to a reduced acetylcholine release, axonal/synaptic degenerative changes, and associated amnestic, mild cognitive impairment. It also promotes an evil cycle to further increase Beta-amyloid accumulation and exaggerates brain inflammation, possibly even the basal forebrain cholinergic degeneration. Therefore, continuous efforts in this direction are necessary before translating the knowledge to any therapeutic strategies.

  14. Beneficial effects of a pyrroloquinolinequinone-containing dietary formulation on motor deficiency, cognitive decline and mitochondrial dysfunction in a mouse model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Darrell Sawmiller

    2017-04-01

    Full Text Available Alzheimer’s disease (AD, a progressive neurodegenerative disorder, is linked to oxidative stress, altered amyloid precursor protein (APP proteolysis, tau hyperphosphorylation and the accumulation of amyloid-β (Aβ plaques and neurofibrillary tangles (NFT. A growing body of evidence suggests that mitochondrial dysfunction can be a key promoter of all of these pathologies and predicts that restoration of mitochondrial function might be a potential therapeutic strategy for AD. Therefore, in the present study, we tested the beneficial effect of a nutraceutical formulation Nutrastem II (Nutra II, containing NT020 (a mitochondrial restorative and antioxidant proprietary formulation and pyrroloquinolinequinone (PQQ, a stimulator of mitochondria biogenesis in 5XFAD transgenic mice. Animals were fed Nutra II for 12 weeks, starting at 3 months of age, after which behavioral and neuropathological endpoints were determined. The data from behavioral test batteries clearly revealed that dietary supplementation of Nutra II effectively ameliorated the motor deficiency and cognitive impairment of 5XFAD mice. In addition, Nutra II also protected mitochondrial function in 5XFAD mice brain, as evidenced by declined ROS levels and membrane hyperpolarization, together with elevated ATP levels and respiratory states. Interestingly, while Nutra II treatment only slightly reduced soluble Aβ42 levels, this formulation significantly impacted tau metabolism, as shown by reduced total and phosphorylated tau levels of 5XFAD mouse brain. Taken together, these preclinical findings confirm that mitochondrial function may be a key treatment target for AD and that Nutra II should be further investigated as a potential candidate for AD therapy.

  15. A review on Alzheimer's disease pathophysiology and its management: an update.

    Science.gov (United States)

    Kumar, Anil; Singh, Arti; Ekavali

    2015-04-01

    Alzheimer's disease acknowledged as progressive multifarious neurodegenerative disorder, is the leading cause of dementia in late adult life. Pathologically it is characterized by intracellular neurofibrillary tangles and extracellular amyloidal protein deposits contributing to senile plaques. Over the last two decades, advances in the field of pathogenesis have inspired the researchers for the investigation of novel pharmacological therapeutics centered more towards the pathophysiological events of the disease. Currently available treatments i.e. acetylcholinesterase inhibitors (rivastigmine, galantamine, donepezil) and N-methyl d-aspartate receptor antagonist (memantine) contribute minimal impact on the disease and target late aspects of the disease. These drugs decelerate the progression of the disease, provide symptomatic relief but fail to achieve a definite cure. While the neuropathological features of Alzheimer's disease are recognized but the intricacies of the mechanism have not been clearly defined. This lack of understanding regarding the pathogenic process may be the likely reason for the non-availability of effective treatment which can prevent onset and progression of the disease. Owing to the important progress in the field of pathophysiology in the last couple of years, new therapeutic targets are available that should render the underlying disease process to be tackled directly. In this review, authors will discusses the different aspects of pathophysiological mechanisms behind Alzheimer's disease and its management through conventional drug therapy, including modern investigational therapeutic strategies, recently completed and ongoing. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Combinatorial treatment of tart cherry extract and essential fatty acids reduces cognitive impairments and inflammation in the mu-p75 saporin-induced mouse model of Alzheimer's disease.

    Science.gov (United States)

    Matchynski, Jessica J; Lowrance, Steven A; Pappas, Colleen; Rossignol, Julien; Puckett, Nicole; Sandstrom, Michael; Dunbar, Gary L

    2013-04-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than five million Americans and is characterized by a progressive loss of memory, loss of cholinergic neurons in the basal forebrain, formation of amyloid plaques and neurofibrillary tangles, and an increase in oxidative stress. Recent studies indicate that dietary supplements of antioxidants and omega-3 and omega-6 fatty acids may reduce the cognitive deficits in AD patients. The current study tested a combinatorial treatment of antioxidants from tart cherry extract and essential fatty acids from Nordic fish and emu oils for reducing cognitive deficits in the mu-p75 saporin (SAP)-induced mouse model of AD. Mice were given daily gavage treatments of Cerise(®) Total-Body-Rhythm™ (TBR; containing tart cherry extract, Nordic fish oil, and refined emu oil) or vehicle (methylcellulose) for 2 weeks before intracerebroventricular injections of the cholinergic toxin, mu-p75 SAP, or phosphate-buffered saline. The TBR treatments continued for an additional 17 days, when the mice were tested on a battery of cognitive and motor tasks. Results indicate that TBR decreased the SAP-induced cognitive deficits assessed by the object-recognition, place-recognition, and Morris-water-maze tasks. Histological examination of the brain tissue indicated that TBR protected against SAP-induced inflammatory response and loss of cholinergic neurons in the area around the medial septum. These findings indicate that TBR has the potential to serve as an adjunctive treatment which may help reduce the severity of cognitive deficits in disorders involving cholinergic deficits, such as AD.

  17. Ashwagandha (Withania somnifera reverses β-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND.

    Directory of Open Access Journals (Sweden)

    Kesava Rao Venkata Kurapati

    Full Text Available Alzheimer's disease (AD is characterized by progressive dysfunction of memory and higher cognitive functions with abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical and limbic brain regions. At present no curative treatment is available, and research focuses on drugs for slowing disease progression or providing prophylaxis. Withania somnifera (WS also known as 'ashwagandha' is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is a paucity of data on the potential neuroprotective effects of W.somnifera against β-Amyloid (1-42-induced neuropathogenesis. In the present study, we have tested the neuroprotective effects of methanol:Chloroform (3:1 extract of ashwagandha against β-amyloid induced toxicity and HIV-1Ba-L (clade B infection using a human neuronal SK-N-MC cell line. Our results showed that β-amyloid induced cytotoxic effects in SK-N-MC cells as shown by decreased cell growth when tested individually. Also, confocal microscopic analysis showed decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC cells compared to uninfected cells. However, when ashwagandha was added to β-amyloid treated and HIV-1 infected samples, the toxic effects were neutralized. Further, the MTT cell viability assays and the peroxisome proliferator-activated receptor-γ (PPARγ levels supported these observations indicating the neuroprotective effect of WS root extract against β-amyloid and HIV-1Ba-L (clade B induced neuro-pathogenesis.

  18. Developing Disease-Modifying Treatments in Alzheimer's Disease - A Perspective from Roche and Genentech.

    Science.gov (United States)

    Doody, R

    2017-01-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disease for which no preventative or disease-modifying treatments currently exist. Pathological hallmarks include amyloid plaques and neurofibrillary tangles composed of hyper-phosphorylated tau protein. Evidence suggests that both pathologies are self-propagating once established. However, the lag time between neuropathological changes in the brain and the onset of even subtle clinical symptomatology means that patients are often diagnosed late when pathology, and neurodegeneration secondary to these changes, may have been established for several years. Complex pathological pathways associated with susceptibility to AD and changes that occur downstream of the neuropathologic process further contribute to the challenging endeavour of developing novel disease-modifying therapy. Recognising this complexity, effective management of AD must include reliable screening and early diagnosis in combination with effective therapeutic management of the pathological processes. Roche and Genentech are committed to addressing these unmet needs through developing a comprehensive portfolio of diagnostics and novel therapies. Beginning with the most scientifically supported targets, this approach includes two targeted amyloid-β monoclonal antibody therapies, crenezumab and gantenerumab, and an anti-tau monoclonal antibody, RO7105705, as well as a robust biomarker platform to aid in the early identification of people at risk or in the early stages of AD. Identification and implementation of diagnostic tools will support the enrolment of patients into clinical trials; furthermore, these tools should also support evaluation of the clinical efficacy and safety profile of the novel therapeutic agents tested in these trials. This review discusses the therapeutic agents currently under clinical development.

  19. Computer-Aided Drug Design Applied to Marine Drug Discovery: Meridianins as Alzheimer's Disease Therapeutic Agents.

    Science.gov (United States)

    Llorach-Pares, Laura; Nonell-Canals, Alfons; Sanchez-Martinez, Melchor; Avila, Conxita

    2017-11-27

    Computer-aided drug discovery/design (CADD) techniques allow the identification of natural products that are capable of modulating protein functions in pathogenesis-related pathways, constituting one of the most promising lines followed in drug discovery. In this paper, we computationally evaluated and reported the inhibitory activity found in meridianins A-G, a group of marine indole alkaloids isolated from the marine tunicate Aplidium , against various protein kinases involved in Alzheimer's disease (AD), a neurodegenerative pathology characterized by the presence of neurofibrillary tangles (NFT). Balance splitting between tau kinase and phosphate activities caused tau hyperphosphorylation and, thereby, its aggregation and NTF formation. Inhibition of specific kinases involved in its phosphorylation pathway could be one of the key strategies to reverse tau hyperphosphorylation and would represent an approach to develop drugs to palliate AD symptoms. Meridianins bind to the adenosine triphosphate (ATP) binding site of certain protein kinases, acting as ATP competitive inhibitors. These compounds show very promising scaffolds to design new drugs against AD, which could act over tau protein kinases Glycogen synthetase kinase-3 Beta (GSK3β) and Casein kinase 1 delta (CK1δ, CK1D or KC1D), and dual specificity kinases as dual specificity tyrosine phosphorylation regulated kinase 1 (DYRK1A) and cdc2-like kinases (CLK1). This work is aimed to highlight the role of CADD techniques in marine drug discovery and to provide precise information regarding the binding mode and strength of meridianins against several protein kinases that could help in the future development of anti-AD drugs.

  20. Inhibition of Inflammation Mediated Through the Tumor Necrosis Factor α Biochemical Pathway Can Lead to Favorable Outcomes in Alzheimer Disease.

    Science.gov (United States)

    Shamim, Daniah; Laskowski, Michael

    2017-01-01

    Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents.

  1. Treatment of Alzheimer disease.

    Science.gov (United States)

    Winslow, Bradford T; Onysko, Mary K; Stob, Christian M; Hazlewood, Kathleen A

    2011-06-15

    Alzheimer disease is the most common form of dementia, affecting nearly one-half [corrected] of Americans older than 85 years. It is characterized by progressive memory loss and cognitive decline. Amyloid plaque accumulation, neurofibrillary tau tangles, and depletion of acetylcholine are among the pathologic manifestations of Alzheimer disease. Although there are no proven modalities for preventing Alzheimer disease, hypertension treatment, omega-3 fatty acid supplementation, physical activity, and cognitive engagement demonstrate modest potential. Acetylcholinesterase inhibitors are first-line medications for the treatment of Alzheimer disease, and are associated with mild improvements in cognitive function, behavior, and activities of daily living; however, the clinical relevance of these effects is unclear. The most common adverse effects of acetylcholinesterase inhibitors are nausea, vomiting, diarrhea, dizziness, confusion, and cardiac arrhythmias. Short-term use of the N-methyl-D-aspartate receptor antagonist memantine can modestly improve measures of cognition, behavior, and activities of daily living in patients with moderate to severe Alzheimer disease. Memantine can also be used in combination with acetylcholinesterase inhibitors. Memantine is generally well tolerated, but whether its benefits produce clinically meaningful improvement is controversial. Although N-methyl-D-aspartate receptor antagonists and acetylcholinesterase inhibitors can slow the progression of Alzheimer disease, no pharmacologic agents can reverse the progression. Atypical antipsychotics can improve some behavioral symptoms, but have been associated with increased mortality rates in older patients with dementia. There is conflicting evidence about the benefit of selegiline, testosterone, and ginkgo for the treatment of Alzheimer disease. There is no evidence supporting the beneficial effects of vitamin E, estrogen, or nonsteroidal anti-inflammatory drug therapy.

  2. Advances in Raman spectroscopy for the diagnosis of Alzheimer's disease

    Science.gov (United States)

    Sudworth, Caroline D.; Archer, John K. J.; Black, Richard A.; Mann, David

    2006-02-01

    Within the next 50 years Alzheimer's disease is expected to affect 100 million people worldwide. The progressive decline in the mental health of the patient is caused by severe brain atrophy generated by the breakdown and aggregation of proteins, resulting in β-amyloid plaques and neurofibrillary tangles. The greatest challenge to Alzheimer's disease lies in the pursuit of an early and definitive diagnosis, in order that suitable treatment can be administered. At the present time, definitive diagnosis is restricted to post-mortem examination. Alzheimer's disease also remains without a long-term cure. This research demonstrates the potential role of Raman spectroscopy, combined with principle components analysis (PCA), as a diagnostic method. Analyses of ethically approved ex vivo post-mortem brain tissues (originating from frontal and occipital lobes) from control (3 normal elderly subjects and 3 Huntingdon's disease subjects) and Alzheimer's disease (12 subjects) brain sections, and a further set of 12 blinded samples are presented. Spectra originating from these tissues are highly reproducible, and initial results indicate a vital difference in protein content and conformation, relating to the abnormally high levels of aggregated proteins in the diseased tissues. Further examination of these spectra using PCA allows for the separation of control from diseased tissues. The validation of the PCA models using blinded samples also displays promise for the identification of Alzheimer's disease, in conjunction with secondary information regarding other brain diseases and dementias. These results provide a route for Raman spectroscopy as a possible non-invasive, non-destructive tool for the early diagnosis of Alzheimer's disease.

  3. Neuropathology of mild cognitive impairment (MCI)

    International Nuclear Information System (INIS)

    Murayama, Shigeo; Saito, Yuko

    2007-01-01

    Described are retrospective pathological studies on mild cognitive impairment (MCI) of brain specimens in the brain bank of authors' institute and current clinical studies of outpatients for screening of MCI based on those pathological findings. The study projects, aided by Ministry of Health, Labour and Welfare (MHLW) from 2003 and from 2007, have aimed to develop the optimal way for prophylaxis of dementia. In the former autopsy, about 10% of the elderly dead registered in the institute are found to have pathological changes of the clinical dementia rating 0.5, in whom the early Alzheimer disease (AD), Lewy body dementia, argentaffin granular disease and neurofibrillary tangle dominant disease are involved in a similar ratio to each other. Clinically, new patients with memory complaint are first screened by neurological tests involving CT, and then those with suspicious dementia undergo the second screening (2-day hospitalization) involving MRI with VSRAD (Voxel-based Specific Regional Analysis System for AD), ECD single photon emission computed tomography (SPECT) with eZis (easy Z-score imaging system), myocardial scintigraphy with homovanillic acid (HVA)/m-iodobenzylguanidine (MIBG), and if necessary, PET with fluorodeoxyglucose (FDG), PIB (Pittsburgh Compound B, an amyloid prove) and/or 11 C-CFT and 11 C-raclopride. Further, new patients with suspicious Parkinson disease undergo the screening (3-day) of various tests involving MRI with voxel-based morphometry and VSRAD, cerebral blood flow ECD SPECT with eZis and MIBG myocardial scintigraphy. It is concluded that AD is the most important subject in MCI and systemic diseases can also affect the cognitive ability as well. (R.T.)

  4. Genetics of Progressive Supranuclear Palsy

    Directory of Open Access Journals (Sweden)

    Sun Young Im

    2015-09-01

    Full Text Available Progressive supranuclear palsy (PSP is a neurodegenerative syndrome that is clinically characterized by progressive postural instability, supranuclear gaze palsy, parkinsonism and cognitive decline. Pathologically, diagnosis of PSP is based on characteristic features, such as neurofibrillary tangles, neutrophil threads, tau-positive astrocytes and their processes in basal ganglia and brainstem, and the accumulation of 4 repeat tau protein. PSP is generally recognized as a sporadic disorder; however, understanding of genetic background of PSP has been expanding rapidly. Here we review relevant publications to outline the genetics of PSP. Although only small number of familial PSP cases have been reported, the recognition of familial PSP has been increasing. In some familial cases of clinically probable PSP, PSP pathologies were confirmed based on NINDS neuropathological diagnostic criteria. Several mutations in MAPT, the gene that causes a form of familial frontotemporal lobar degeneration with tauopathy, have been identified in both sporadic and familial PSP cases. The H1 haplotype of MAPT is a risk haplotype for PSP, and within H1, a sub-haplotype (H1c is associated with PSP. A recent genome-wide association study on autopsyproven PSP revealed additional PSP risk alleles in STX6 and EIF2AK3. Several heredodegenerative parkinsonian disorders are referred to as PSP-look-alikes because their clinical phenotype, but not their pathology, mimics PSP. Due to the fast development of genomics and bioinformatics, more genetic factors related to PSP are expected to be discovered. Undoubtedly, these studies will provide a better understanding of the pathogenesis of PSP and clues for developing therapeutic strategies.

  5. Tau-Induced Ca2+/Calmodulin-Dependent Protein Kinase-IV Activation Aggravates Nuclear Tau Hyperphosphorylation.

    Science.gov (United States)

    Wei, Yu-Ping; Ye, Jin-Wang; Wang, Xiong; Zhu, Li-Ping; Hu, Qing-Hua; Wang, Qun; Ke, Dan; Tian, Qing; Wang, Jian-Zhi

    2018-04-01

    Hyperphosphorylated tau is the major protein component of neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). However, the mechanism underlying tau hyperphosphorylation is not fully understood. Here, we demonstrated that exogenously expressed wild-type human tau40 was detectable in the phosphorylated form at multiple AD-associated sites in cytoplasmic and nuclear fractions from HEK293 cells. Among these sites, tau phosphorylated at Thr205 and Ser214 was almost exclusively found in the nuclear fraction at the conditions used in the present study. With the intracellular tau accumulation, the Ca 2+ concentration was significantly increased in both cytoplasmic and nuclear fractions. Further studies using site-specific mutagenesis and pharmacological treatment demonstrated that phosphorylation of tau at Thr205 increased nuclear Ca 2+ concentration with a simultaneous increase in the phosphorylation of Ca 2+ /calmodulin-dependent protein kinase IV (CaMKIV) at Ser196. On the other hand, phosphorylation of tau at Ser214 did not significantly change the nuclear Ca 2+ /CaMKIV signaling. Finally, expressing calmodulin-binding protein-4 that disrupts formation of the Ca 2+ /calmodulin complex abolished the okadaic acid-induced tau hyperphosphorylation in the nuclear fraction. We conclude that the intracellular accumulation of phosphorylated tau, as detected in the brains of AD patients, can trigger nuclear Ca 2+ /CaMKIV signaling, which in turn aggravates tau hyperphosphorylation. Our findings provide new insights for tauopathies: hyperphosphorylation of intracellular tau and an increased Ca 2+ concentration may induce a self-perpetuating harmful loop to promote neurodegeneration.

  6. Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolism.

    Science.gov (United States)

    Butterfield, D Allan; Lange, Miranda L Bader

    2009-11-01

    Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified alpha-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, alpha-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.

  7. African ancestry protects against Alzheimer's disease-related neuropathology.

    Science.gov (United States)

    Schlesinger, D; Grinberg, L T; Alba, J G; Naslavsky, M S; Licinio, L; Farfel, J M; Suemoto, C K; de Lucena Ferretti, R E; Leite, R E P; de Andrade, M P; dos Santos, A C F; Brentani, H; Pasqualucci, C A; Nitrini, R; Jacob-Filho, W; Zatz, M

    2013-01-01

    Previous studies in dementia epidemiology have reported higher Alzheimer's disease rates in African-Americans when compared with White Americans. To determine whether genetically determined African ancestry is associated with neuropathological changes commonly associated with dementia, we analyzed a population-based brain bank in the highly admixed city of São Paulo, Brazil. African ancestry was estimated through the use of previously described ancestry-informative markers. Risk of presence of neuritic plaques, neurofibrillary tangles, small vessel disease, brain infarcts and Lewy bodies in subjects with significant African ancestry versus those without was determined. Results were adjusted for multiple environmental risk factors, demographic variables and apolipoprotein E genotype. African ancestry was inversely correlated with neuritic plaques (P=0.03). Subjects with significant African ancestry (n=112, 55.4%) showed lower prevalence of neuritic plaques in the univariate analysis (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.55-0.95, P=0.01) and when adjusted for age, sex, APOE genotype and environmental risk factors (OR 0.43, 95% CI 0.21-0.89, P=0.02). There were no significant differences for the presence of other neuropathological alterations. We show for the first time, using genetically determined ancestry, that African ancestry may be highly protective of Alzheimer's disease neuropathology, functioning through either genetic variants or unknown environmental factors. Epidemiological studies correlating African-American race/ethnicity with increased Alzheimer's disease rates should not be interpreted as surrogates of genetic ancestry or considered to represent African-derived populations from the developing nations such as Brazil.

  8. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections.

    Science.gov (United States)

    Tai, Xin You; Koepp, Matthias; Duncan, John S; Fox, Nick; Thompson, Pamela; Baxendale, Sallie; Liu, Joan Y W; Reeves, Cheryl; Michalak, Zuzanna; Thom, Maria

    2016-09-01

    SEE BERNASCONI DOI101093/AWW202 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer's disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer's disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer's disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of the hippocampus and

  9. Diversity, distribution and floral specificity of tangle-veined flies (Diptera: Nemestrinidae in north west Patagonia, Argentina Diversidad, distribución y especificidad floral de nemestrínidos (Diptera en el noroeste de la Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    MARIANO DEVOTO

    2006-03-01

    Full Text Available Tangle-veined flies (Nemestrinidae constitute a primitive and rather widespread family among Diptera. The genus Trichophthalma occurs in Australia and South America and is the only one in the family with a typically Gondwanian, disjoint distribution. The ecology and distribution of most southern South American species of this genus remains virtually unknown. We studied the diversity, distribution and flower specificity of flower-visiting species of the genus Trichophthalma in the temperate forests of southern South America in ten sites along an east-west rainfall gradient (37-40°S on the eastern slope of the Andes. We recorded nine species of Trichophthalma, which showed an overlapped distribution along the gradient and different degrees of floral specificity. Three species are reported for Argentina for the first time and three are first recorded as flower visitors to the local flora. Our results show that while in southern Africa tangle-veined flies are engaged in highly specialized pollination interactions with long-tubed species, the Trichophthalma spp. of Patagonia share their flowers with a diverse and rather unspecialized visitor fauna among which several species of flies, bees and birds are presentLos nemestrínidos constituyen una familia de Dípteros primitiva y de amplia distribución. El género Trichophthalma se encuentra en Australia y Sudamérica y es el único en la familia con una distribución disjunta típicamente gondwánica. La ecología y distribución de la mayoría de las especies sudamericanas permanecen virtualmente desconocidas. Estudiamos la diversidad, distribución y especificidad floral de las especies del género Trichophthalma de los bosques templados del sur de Sudamérica en diez sitios ubicados a lo largo de un gradiente de precipitación este-oeste (37-40°S sobre la vertiente occidental de los Andes. Registramos nueve especies de Trichophthalma, las cuales mostraron una distribución superpuesta a lo largo

  10. Nonlocality and Multipartite Entanglement in Asymptotically Flat Space-Times

    International Nuclear Information System (INIS)

    Moradi, Shahpoor; Amiri, Firouz

    2016-01-01

    We study the Bell's inequality and multipartite entanglement generation for initially maximally entangled states of free Dirac field in a non inertial frame and asymptotically flat Robertson–Walker space-time. For two qubit case, we show that the Bell's inequality always is violated as measured by the accelerated observers which are in the causally connected regions. On the other hand, for those observers in the causally disconnected regions inequality is not violated for any values of acceleration. The generated three qubit state from two qubit state due to acceleration of one parties has a zero 3-tangle. For a three qubit state, the inequality violated for measurements done by both causally connected and disconnected observers. Initially GHZ state with non zero 3-tangle, in accelerated frame, transformed to a four qubit state with vanishing 4-tangle value. On the other hand, for a W-state with zero 3-tangle, in non inertial frame, transformed to a four qubit state with a non-zero 4-tangle acceleration dependent. In an expanding space-time with asymptotically flat regions, for an initially maximally entangled state, the maximum value of violation of Bell's inequality in the far past decreased in the far future due to cosmological particle creation. For some initially maximally entangled states, the generated four qubit state due to expansion of space-time, has non vanishing 4-tangle. (paper)

  11. Hippocampal and neocortical metabolite ratio in patients with complex partial seizure: short TE and long TE techniques using single voxel proton MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin Il; Kim, Dong Ik; Lee, Byung In; Lee, Seung Ik; Yoon, Pyeong Ho [Medical College, Yonsei University, Seoul (Korea, Republic of)

    2000-08-01

    To compare hippocampal and neocortical metabolite ratios using single-voxel proton MR spectroscopy with different echo times in patients with complex partial seizure. Using a GE Signa 1.5T scanner with STEAM and PRESS sequences, automated single voxel proton MRS was used to determine metabolite ratio differences in the hippocampus and neocortex of nine complex partial seizure patients (mesial temporal sclerosis (n=3D5), status epilepticus (n=3D1), tumor (n=3D1), cortical dysplasia (n=3D1), occipital lobe epilepsy (n=3D1)). A total of 20 examinations were performed in the region of the hippocampus (n=3D17), temporal neocortex (n=3D1), and parieto-occipital gray matter (n=3D1). Voxel size range was 5.2-17.4 cm{sup 3}. The calculated creatine (Cr) peak was employed as an internal reference and the relative ratio of N-acetylaspartate (NAA) and choline (Cho) was calculated for both short and long echo times using an automated PROBE/SV (GE Medical Systems) package. Each NAA/Cho ratio obtained using both PRESS and STEAM techniques was compared by means of statistical analysis (paired Student t-test). Using PRESS (long TE, 272 ms), NAA/Cho ratios were successfully calculated in 16 of 20 examinations; in four this was not possible due to noise levels of the Cr and Cho peaks. Using STEAM (short TE, 30 ms) NAA/Cho ratios were successfully calculated in 19 of 20 examinations; in one, the Cho peak could not be measured. Using PRESS and STEAM, mean and standard deviations for the NAA/Cho ratio were 1.22{+-}0.50 and 1.16{+-}0.36, respectively. There were no statistically significant differences in this ratio between the short and long TE method (p less than 0.01). In complex partial seizure patients, no significant metabolite differences were found between short and long echo times of single voxel proton MR spectroscopy. The metabolite ratio at different echo times can be reliably obtained using this simplified and automated PROBE/SV quantitation method. (author)

  12. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Diedrichs, Jens

    2012-01-01

    Newly acquired declarative memory traces are believed to be reactivated during NonREM sleep to promote their hippocampo-neocortical transfer for long-term storage. Yet it remains a major challenge to unravel the underlying neuronal mechanisms. Using simultaneous electroencephalography (EEG......-coupled reactivation of brain regions representing the specific task stimuli was traced during subsequent NonREM sleep with EEG-informed fMRI. Relative to the control task, learning face-scene associations triggered a stronger combined activation of neocortical and hippocampal regions during subsequent sleep. Notably......) and functional magnetic resonance imaging (fMRI) recordings in humans, we show that sleep spindles play a key role in the reactivation of memory-related neocortical representations. On separate days, participants either learned face-scene associations or performed a visuomotor control task. Spindle...

  13. Injection of Aβ1-40 into hippocampus induced cognitive lesion associated with neuronal apoptosis and multiple gene expressions in the tree shrew.

    Science.gov (United States)

    Lin, Na; Xiong, Liu-Lin; Zhang, Rong-Ping; Zheng, Hong; Wang, Lei; Qian, Zhong-Yi; Zhang, Piao; Chen, Zhi-Wei; Gao, Fa-Bao; Wang, Ting-Hua

    2016-05-01

    Alzheimer's disease (AD) can incur significant health care costs to the patient, their families, and society; furthermore, effective treatments are limited, as the mechanisms of AD are not fully understood. This study utilized twelve adult male tree shrews (TS), which were randomly divided into PBS and amyloidbetapeptide1-40 (Aβ1-40) groups. AD model was established via an intracerebroventricular (icv) injection of Aβ1-40 after being incubated for 4 days at 37 °C. Behavioral, pathophysiological and molecular changes were evaluated by hippocampal-dependent tasks, magnetic resonance imaging (MRI), silver staining, hematoxylin-eosin (HE) staining, TUNEL assay and gene sequencing, respectively. At 4 weeks post-injection, as compared with the PBS group, in Aβ1-40 injected animals: cognitive impairments happened, and the hippocampus had atrophied indicated by MRI findings; meanwhile, HE staining showed the cells of the CA3 and DG were significantly thinner and smaller. The average number of cells in the DG, but not the CA3, was also significantly reduced; furthermore, silver staining revealed neurotic plaques and neurofibrillary tangles (NFTs) in the hippocampi; TUNEL assay showed many cells exhibited apoptosis, which was associated with downregulated BCL-2/BCL-XL-associated death promoter (Bad), inhibitor of apoptosis protein (IAP), Cytochrome c (CytC) and upregulated tumor necrosis factor receptor 1 (TNF-R1); lastly, gene sequencing reported a total of 924 mobilized genes, among which 13 of the downregulated and 19 of the upregulated genes were common to the AD pathway. The present study not only established AD models in TS, but also reported on the underlying mechanism involved in neuronal apoptosis associated with multiple gene expression.

  14. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro.

    Science.gov (United States)

    Nobuhara, Chloe K; DeVos, Sarah L; Commins, Caitlin; Wegmann, Susanne; Moore, Benjamin D; Roe, Allyson D; Costantino, Isabel; Frosch, Matthew P; Pitstick, Rose; Carlson, George A; Hock, Christoph; Nitsch, Roger M; Montrasio, Fabio; Grimm, Jan; Cheung, Anne E; Dunah, Anthone W; Wittmann, Marion; Bussiere, Thierry; Weinreb, Paul H; Hyman, Bradley T; Takeda, Shuko

    2017-06-01

    The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Paola eGamba

    2015-06-01

    Full Text Available Alzheimer’s disease (AD, the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid β peptides and neurofibrillary tangles within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism.The brain’s high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier. The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death.This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.

  16. Bariatric surgery may reduce the risk of Alzheimer's diseases through GLP-1 mediated neuroprotective effects.

    Science.gov (United States)

    Keshava, Hari B; Mowla, Ashkan; Heinberg, Leslie J; Schauer, Philip R; Brethauer, Stacy A; Aminian, Ali

    2017-07-01

    Obesity and diabetes are associated with deficits in multiple neurocognitive domains and increased risk for dementia. Over the last two decades, there has been a significant increase in bariatric and metabolic surgery worldwide, driven by rising intertwined pandemics of obesity and diabetes, along with improvement in surgical techniques. Patients undergoing bariatric surgery achieve a significant decrease in their excess weight and a multitude of sequela associated with obesity, diabetes, and metabolic syndrome. Glucagon-like peptide 1 (GLP-1) is an intestinal peptide that has been implicated as one of the weight loss-independent mechanisms in how bariatric surgery affects type 2 diabetes. GLP-1 improves insulin secretion, inhibits apoptosis and induce pancreatic islet neogenesis, promotes satiety, and can regulate heart rate and blood pressure. Moreover, numerous studies have demonstrated potential neuroprotective and neurotrophic effects of GLP-1. Increased GLP-1 activity has been shown to increase cortical activity, promote neuronal growth, and inhibit neuronal degeneration. Specifically, in experimental studies on Alzheimer's disease, GLP-1 decreases amyloid deposition and neurofibrillary tangles. Furthermore, recent studies have also suggested that GLP-1 based therapies, new class of antidiabetic drugs, have favorable effects on neurodegenerative disorders such as Alzheimer's disease. We present a hypothesis that bariatric surgery can help delay or even prevent the onset of Alzheimer's disease in long-term by increasing the levels of GLP-1. This hypothesis has a potential for many studies from basic science projects to large population studies to fully understand the neurological and cognitive consequences of bariatric surgery and associated rise in GLP-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.

    Science.gov (United States)

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L; Kanekiyo, Takahisa; Bu, Guojun

    2015-04-08

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. Copyright © 2015 the authors 0270-6474/15/355851-09$15.00/0.

  18. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin

    Science.gov (United States)

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-02-01

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H+ through the polymersome membrane was 5.659 × 10-26 cm2 s-1, while that of liposomes was 1.017 × 10-24 cm2 s-1. The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  19. Dental X-ray exposure and Alzheimer's disease: a hypothetical etiological association.

    Science.gov (United States)

    Rodgers, Caroline C

    2011-07-01

    Despite the fact that Alzheimer's disease was identified more than 100 years ago, its cause remains elusive. Although the chance of developing Alzheimer's disease increases with age, it is not a natural consequence of aging. This article proposes that dental X-rays can damage microglia telomeres - the structures at the end of chromosomes that determine how many times cells divide before they die - causing them to age prematurely. Degenerated microglia lose their neuroprotective properties, resulting in the formation of neurofibrillary tau tangles and consequently, the neuronal death that causes Alzheimer's dementia. The hypothesis that Alzheimer's is caused specifically by microglia telomere damage would explain the delay of one decade or longer between the presence of Alzheimer's brain pathology and symptoms; telomere damage would not cause any change in microglial function, it would just reset the countdown clock so that senescence and apoptosis occurred earlier than they would have without the environmental insult. Once microglia telomere damage causes premature aging and death, the adjacent neurons are deprived of the physical support, maintenance and nourishment they require to survive. This sequence of events would explain why therapies and vaccines that eliminate amyloid plaques have been unsuccessful in stopping dementia. Regardless of whether clearing plaques is beneficial or harmful - which remains a subject of debate - it does not address the failing microglia population. If microglia telomere damage is causing Alzheimer's disease, self-donated bone marrow or dental pulp stem cell transplants could give rise to new microglia populations that would maintain neuronal health while the original resident microglia population died. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Absence of chronic traumatic encephalopathy in retired football players with multiple concussions and neurological symptomatology

    Science.gov (United States)

    Hazrati, Lili-Naz; Tartaglia, Maria C.; Diamandis, Phedias; Davis, Karen D.; Green, Robin E.; Wennberg, Richard; Wong, Janice C.; Ezerins, Leo; Tator, Charles H.

    2013-01-01

    Background: Chronic traumatic encephalopathy (CTE) is the term coined for the neurodegenerative disease often suspected in athletes with histories of repeated concussion and progressive dementia. Histologically, CTE is defined as a tauopathy with a distribution of tau-positive neurofibrillary tangles (NFTs) that is distinct from other tauopathies, and usually shows an absence of beta-amyloid deposits, in contrast to Alzheimer's disease (AD). Although the connection between repeated concussions and CTE-type neurodegeneration has been recently proposed, this causal relationship has not yet been firmly established. Also, the prevalence of CTE among athletes with multiple concussions is unknown. Methods: We performed a consecutive case series brain autopsy study on six retired professional football players from the Canadian Football League (CFL) with histories of multiple concussions and significant neurological decline. Results: All participants had progressive neurocognitive decline prior to death; however, only 3 cases had post-mortem neuropathological findings consistent with CTE. The other 3 participants had pathological diagnoses of AD, amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Moreover, the CTE cases showed co-morbid pathology of cancer, vascular disease, and AD. Discussion: Our case studies highlight that not all athletes with history of repeated concussions and neurological symptomology present neuropathological changes of CTE. These preliminary findings support the need for further research into the link between concussion and CTE as well as the need to expand the research to other possible causes of taupathy in athletes. They point to a critical need for prospective studies with good sampling methods to allow us to understand the relationship between multiple concussions and the development of CTE. PMID:23745112

  1. Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer's disease and other tauopathies.

    Science.gov (United States)

    Reynolds, Matthew R; Reyes, Juan F; Fu, Yifan; Bigio, Eileen H; Guillozet-Bongaarts, Angela L; Berry, Robert W; Binder, Lester I

    2006-10-18

    The neurodegenerative tauopathies are a clinically diverse group of diseases typified by the pathological self-assembly of the microtubule-associated tau protein. Although tau nitration is believed to influence the pathogenesis of these diseases, the precise residues modified, and the resulting effects on tau function, remain enigmatic. Previously, we demonstrated that nitration at residue Tyr29 markedly inhibits the ability of tau to self-associate and stabilize the microtubule lattice (Reynolds et al., 2005b, 2006). Here, we report the first monoclonal antibody to detect nitration in a protein-specific and site-selective manner. This reagent, termed Tau-nY29, recognizes tau only when nitrated at residue Tyr29. It does not cross-react with wild-type tau, tau mutants singly nitrated at Tyr18, Tyr197, and Tyr394, or other proteins known to be nitrated in neurodegenerative diseases. By Western blot analysis, Tau-nY29 detects soluble tau and paired helical filament tau from severely affected Alzheimer's brain but fails to recognize tau from normal aged brain. This observation suggests that nitration at Tyr29 is a disease-related event that may alter the intrinsic ability of tau to self-polymerize. In Alzheimer's brain, Tau-nY29 labels the fibrillar triad of tau lesions, including neurofibrillary tangles, neuritic plaques, and, to a lesser extent, neuropil threads. Intriguingly, although Tau-nY29 stains both the neuronal and glial tau pathology of Pick disease, it detects only the neuronal pathology in corticobasal degeneration and progressive supranuclear palsy without labeling the predominant glial pathology. Collectively, our findings provide the first direct evidence that site-specific tau nitration is linked to the progression of the neurodegenerative tauopathies.

  2. Peripheral post-ischemic vascular repair is impaired in a murine model of Alzheimer's disease.

    Science.gov (United States)

    Merkulova-Rainon, Tatyana; Mantsounga, Chris S; Broquères-You, Dong; Pinto, Cristina; Vilar, José; Cifuentes, Diana; Bonnin, Philippe; Kubis, Nathalie; Henrion, Daniel; Silvestre, Jean-Sébastien; Lévy, Bernard I

    2018-03-07

    The pathophysiology of sporadic Alzheimer's disease (AD) remains uncertain. Along with brain amyloid-β (Aβ) deposits and neurofibrillary tangles, cerebrovascular dysfunction is increasingly recognized as fundamental to the pathogenesis of AD. Using an experimental model of limb ischemia in transgenic APPPS1 mice, a model of AD (AD mice), we showed that microvascular impairment also extends to the peripheral vasculature in AD. At D70 following femoral ligation, we evidenced a significant decrease in cutaneous blood flow (- 29%, P < 0.001), collateral recruitment (- 24%, P < 0.001), capillary density (- 22%; P < 0.01) and arteriole density (- 28%; P < 0.05) in hind limbs of AD mice compared to control WT littermates. The reactivity of large arteries was not affected in AD mice, as confirmed by unaltered size, and vasoactive responses to pharmacological stimuli of the femoral artery. We identified blood as the only source of Aβ in the hind limb; thus, circulating Aβ is likely responsible for the impairment of peripheral vasculature repair mechanisms. The levels of the majority of pro-angiogenic mediators were not significantly modified in AD mice compared to WT mice, except for TGF-β1 and PlGF-2, both of which are involved in vessel stabilization and decreased in AD mice (P = 0.025 and 0.019, respectively). Importantly, endothelin-1 levels were significantly increased, while those of nitric oxide were decreased in the hind limb of AD mice (P < 0.05). Our results suggest that vascular dysfunction is a systemic disorder in AD mice. Assessment of peripheral vascular function may therefore provide additional tools for early diagnosis and management of AD.

  3. Alzheimer's disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-β peptide injection in rats.

    Directory of Open Access Journals (Sweden)

    Charleine Zussy

    Full Text Available Alzheimer's disease (AD is a neurodegenerative pathology associated with aging characterized by the presence of senile plaques and neurofibrillary tangles that finally result in synaptic and neuronal loss. The major component of senile plaques is an amyloid-β protein (Aβ. Recently, we characterized the effects of a single intracerebroventricular (icv injection of Aβ fragment (25-35 oligomers (oAβ(25-35 for up to 3 weeks in rats and established a clear parallel with numerous relevant signs of AD. To clarify the long-term effects of oAβ(25-35 and its potential role in the pathogenesis of AD, we determined its physiological, behavioral, biochemical and morphological impacts 6 weeks after injection in rats. oAβ(25-35 was still present in the brain after 6 weeks. oAβ(25-35 injection did not affect general activity and temperature rhythms after 6 weeks, but decreased body weight, induced short- and long-term memory impairments, increased corticosterone plasma levels, brain oxidative (lipid peroxidation, mitochondrial (caspase-9 levels and reticulum stress (caspase-12 levels, astroglial and microglial activation. It provoked cholinergic neuron loss and decreased brain-derived neurotrophic factor levels. It induced cell loss in the hippocampic CA subdivisions and decreased hippocampic neurogenesis. Moreover, oAβ(25-35 injection resulted in increased APP expression, Aβ(1-42 generation, and increased Tau phosphorylation. In conclusion, this in vivo study evidenced that the soluble oligomeric forms of short fragments of Aβ, endogenously identified in AD patient brains, not only provoked long-lasting pathological alterations comparable to the human disease, but may also directly contribute to the progressive increase in amyloid load and Tau pathology, involved in the AD physiopathology.

  4. Biomarkers, ketone bodies, and the prevention of Alzheimer's disease.

    Science.gov (United States)

    VanItallie, Theodore B

    2015-03-01

    Sporadic Alzheimer's disease (spAD) has three successive phases: preclinical, mild cognitive impairment, and dementia. Individuals in the preclinical phase are cognitively normal. Diagnosis of preclinical spAD requires evidence of pathologic brain changes provided by established biomarkers. Histopathologic features of spAD include (i) extra-cellular cerebral amyloid plaques and intracellular neurofibrillary tangles that embody hyperphosphorylated tau; and (ii) neuronal and synaptic loss. Amyloid-PET brain scans conducted during spAD's preclinical phase have disclosed abnormal accumulations of amyloid-beta (Aβ) in cognitively normal, high-risk individuals. However, this measure correlates poorly with changes in cognitive status. In contrast, MRI measures of brain atrophy consistently parallel cognitive deterioration. By the time dementia appears, amyloid deposition has already slowed or ceased. When a new treatment offers promise of arresting or delaying progression of preclinical spAD, its effectiveness must be inferred from intervention-correlated changes in biomarkers. Herein, differing tenets of the amyloid cascade hypothesis (ACH) and the mitochondrial cascade hypothesis (MCH) are compared. Adoption of the ACH suggests therapeutic research continue to focus on aspects of the amyloid pathways. Adoption of the MCH suggests research emphasis be placed on restoration and stabilization of mitochondrial function. Ketone ester (KE)-induced elevation of plasma ketone body (KB) levels improves mitochondrial metabolism and prevents or delays progression of AD-like pathologic changes in several AD animal models. Thus, as a first step, it is imperative to determine whether KE-caused hyperketonemia can bring about favorable changes in biomarkers of AD pathology in individuals who are in an early stage of AD's preclinical phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Amyloid PET in neurodegenerative diseases with dementia.

    Science.gov (United States)

    Camacho, V; Gómez-Grande, A; Sopena, P; García-Solís, D; Gómez Río, M; Lorenzo, C; Rubí, S; Arbizu, J

    2018-05-15

    Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive decline and memory loss, and is the most common form of dementia. Amyloid plaques with neurofibrillary tangles are a neuropathological hallmark of AD that produces synaptic dysfunction and culminates later in neuronal loss. Amyloid PET is a useful, available and non-invasive technique that provides in vivo information about the cortical amyloid burden. In the latest revised criteria for the diagnosis of AD biomarkers were defined and integrated: pathological and diagnostic biomarkers (increased retention on fibrillar amyloid PET or decreased Aβ 1-42 and increased T-Tau or P-Tau in CSF) and neurodegeneration or topographical biomarkers (temporoparietal hypometabolism on 18 F-FDG PET and temporal atrophy on MRI). Recently specific recommendations have been created as a consensus statement on the appropriate use of the imaging biomarkers, including amyloid PET: early-onset cognitive impairment/dementia, atypical forms of AD, mild cognitive impairment with early age of onset, and to differentiate between AD and other neurodegenerative diseases that occur with dementia. Amyloid PET is also contributing to the development of new therapies for AD, as well as in research studies for the study of other neurodegenerative diseases that occur with dementia where the deposition of Aβ amyloid is involved in its pathogenesis. In this paper, we review some general concepts and study the use of amyloid PET in depth and its relationship with neurodegenerative diseases and other diagnostic techniques. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Could Alzheimer's Disease Originate in the Periphery and If So How So?

    Science.gov (United States)

    Morris, Gerwyn; Berk, Michael; Maes, Michael; Puri, Basant K

    2018-04-29

    The classical amyloid cascade model for Alzheimer's disease (AD) has been challenged by several findings. Here, an alternative molecular neurobiological model is proposed. It is shown that the presence of the APOE ε4 allele, altered miRNA expression and epigenetic dysregulation in the promoter region and exon 1 of TREM2, as well as ANK1 hypermethylation and altered levels of histone post-translational methylation leading to increased transcription of TNFA, could variously explain increased levels of peripheral and central inflammation found in AD. In particular, as a result of increased activity of triggering receptor expressed on myeloid cells 2 (TREM-2), the presence of the apolipoprotein E4 (ApoE4) isoform, and changes in ANK1 expression, with subsequent changes in miR-486 leading to altered levels of protein kinase B (Akt), mechanistic (previously mammalian) target of rapamycin (mTOR) and signal transducer and activator of transcription 3 (STAT3), all of which play major roles in microglial activation, proliferation and survival, there is activation of microglia, leading to the subsequent (further) production of cytokines, chemokines, nitric oxide, prostaglandins, reactive oxygen species, inducible nitric oxide synthase and cyclooxygenase-2, and other mediators of inflammation and neurotoxicity. These changes are associated with the development of amyloid and tau pathology, mitochondrial dysfunction (including impaired activity of the electron transport chain, depleted basal mitochondrial potential and oxidative damage to key tricarboxylic acid enzymes), synaptic dysfunction, altered glycogen synthase kinase-3 (GSK-3) activity, mTOR activation, impairment of autophagy, compromised ubiquitin-proteasome system, iron dyshomeostasis, changes in APP translation, amyloid plaque formation, tau hyperphosphorylation and neurofibrillary tangle formation.

  7. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel

    Science.gov (United States)

    2014-01-01

    Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that occurs in association with repetitive traumatic brain injury experienced in sport and military service. In most instances, the clinical symptoms of the disease begin after a long period of latency ranging from several years to several decades. The initial symptoms are typically insidious, consisting of irritability, impulsivity, aggression, depression, short-term memory loss and heightened suicidality. The symptoms progress slowly over decades to include cognitive deficits and dementia. The pathology of CTE is characterized by the accumulation of phosphorylated tau protein in neurons and astrocytes in a pattern that is unique from other tauopathies, including Alzheimer’s disease. The hyperphosphorylated tau abnormalities begin focally, as perivascular neurofibrillary tangles and neurites at the depths of the cerebral sulci, and then spread to involve superficial layers of adjacent cortex before becoming a widespread degeneration affecting medial temporal lobe structures, diencephalon and brainstem. Most instances of CTE (>85% of cases) show abnormal accumulations of phosphorylated 43 kDa TAR DNA binding protein that are partially colocalized with phosphorylated tau protein. As CTE is characterized pathologically by frontal and temporal lobe atrophy, by abnormal deposits of phosphorylated tau and by 43 kDa TAR DNA binding protein and is associated clinically with behavioral and personality changes, as well as cognitive impairments, CTE is increasingly categorized as an acquired frontotemporal lobar degeneration. Currently, some of the greatest challenges are that CTE cannot be diagnosed during life and the incidence and prevalence of the disorder remain uncertain. Furthermore, the contribution of age, gender, genetics, stress, alcohol and substance abuse to the development of CTE remains to be determined. PMID:24423082

  8. Regional cerebral blood flow patterns in extremely elderly patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Hirao, Kentaro; Hanyu, Haruo; Kanetaka, Hidekazu; Shimizu, Soichiro; Sato, Tomohiko; Iwamoto, Toshihiko

    2008-01-01

    Clinical and pathologic features in Alzheimer's disease (AD) patients differ depending on the age of onset. The aim of our study was to compare the regional cerebral blood flow (rCBF) patterns of younger, elderly, and extremely elderly patients with AD with that of controls to characterize the rCBF patterns in extremely elderly patients with AD. Single photon emission CT (SPECT) was performed in 113 patients with probable AD, including 34 younger (<70 years), 41 elderly (70-84 years), and 38 extremely elderly (≥85 years) patients divided according to age at examination. The SPECT data were analyzed using three-dimensional stereotactic surface projection (3D-SSP). No significant differences regarding gender, duration of disease, education, and Mini-Mental State Examination score were found among the groups. As compared with controls, younger and elderly AD demonstrated significant reduction of rCBF in the temporo-parietal areas, posterior cingulate cortices and precunei, which is considered to be a characteristic rCBF pattern in AD. On the other hand, the extremely elderly AD group demonstrated significant reduction of rCBF in the frontal and medial temporal areas, in addition to the temporo-parietal areas, posterior cingulate cortices and precunei, but the reductions were milder than in those in younger and elderly AD groups. The extremely elderly patients with AD showed atypical rCBF patterns in AD compared to younger and elderly patients with AD. Our data suggest that pathological features in extremely elderly AD may be different from those in younger and elderly AD and that diseases different from AD, such as senile dementia of the neurofibrillary tangle type may be clinically diagnosed as extremely elderly AD. (author)

  9. Senile dementia of Lewy body type and Alzheimer type are biochemically distinct in terms of paired helical filaments and hyperphosphorylated tau protein.

    Science.gov (United States)

    Harrington, C R; Perry, R H; Perry, E K; Hurt, J; McKeith, I G; Roth, M; Wischik, C M

    1994-01-01

    We have used biochemical assays to examine cingulate and occipital cortices from age-matched cases of Alzheimer's disease (AD; n = 12), senile dementia of the Lewy body type (SDLT; n = 13), Parkinson's disease (PD; 5 non-demented cases and 7 cognitively impaired cases) and controls (n = 11) for paired helical filaments (PHFs), phosphorylated and normal tau protein and beta/A4-protein. Whereas cingulate cortex is characterised by relatively high densities of cortical Lewy bodies in the SDLT cases and lower numbers in PD, these inclusion bodies were absent in the cingulate cortex from AD and control cases. Protease-resistant PHFs and hyperphosphorylated tau protein were found in AD and, at low levels, in a minority of SDLT cases. Qualitatively, both of these preparations were indistinguishable in SDLT from those found in AD but levels of both parameters in SDLT were less than 5% of those in AD. SDLT, PD and control groups did not differ from each other in terms of the quantity of protease-resistant PHFs or the level of hyperphosphorylated tau. Furthermore, PHF accumulation did not distinguish between PD cases with or without dementia. The levels of normal tau protein did not differ between the four groups. beta/A4 protein levels did not distinguish between PD and control groups, between AD and SDLT groups, or between SDLT and control groups for either cingulate or occipital cortices. Thus extensive accumulation of PHFs in either neurofibrillary tangles or dystrophic neurites is not a feature of either SDLT or PD. Our findings provide molecular support for the neuropathological and clinical separation of SDLT as a form of dementia that is distinct from AD.

  10. The central role of AMP-kinase and energy homeostasis impairment in Alzheimer's disease: a multifactor network analysis.

    Science.gov (United States)

    Caberlotto, Laura; Lauria, Mario; Nguyen, Thanh-Phuong; Scotti, Marco

    2013-01-01

    Alzheimer's disease is the most common cause of dementia worldwide, affecting the elderly population. It is characterized by the hallmark pathology of amyloid-β deposition, neurofibrillary tangle formation, and extensive neuronal degeneration in the brain. Wealth of data related to Alzheimer's disease has been generated to date, nevertheless, the molecular mechanism underlying the etiology and pathophysiology of the disease is still unknown. Here we described a method for the combined analysis of multiple types of genome-wide data aimed at revealing convergent evidence interest that would not be captured by a standard molecular approach. Lists of Alzheimer-related genes (seed genes) were obtained from different sets of data on gene expression, SNPs, and molecular targets of drugs. Network analysis was applied for identifying the regions of the human protein-protein interaction network showing a significant enrichment in seed genes, and ultimately, in genes associated to Alzheimer's disease, due to the cumulative effect of different combinations of the starting data sets. The functional properties of these enriched modules were characterized, effectively considering the role of both Alzheimer-related seed genes and genes that closely interact with them. This approach allowed us to present evidence in favor of one of the competing theories about AD underlying processes, specifically evidence supporting a predominant role of metabolism-associated biological process terms, including autophagy, insulin and fatty acid metabolic processes in Alzheimer, with a focus on AMP-activated protein kinase. This central regulator of cellular energy homeostasis regulates a series of brain functions altered in Alzheimer's disease and could link genetic perturbation with neuronal transmission and energy regulation, representing a potential candidate to be targeted by therapy.

  11. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  12. Reduced Number of Pigmented Neurons in the Substantia Nigra of Dystonia Patients? Findings from Extensive Neuropathologic, Immunohistochemistry, and Quantitative Analyses

    Directory of Open Access Journals (Sweden)

    Diego Iacono

    2015-05-01

    Full Text Available Background: Dystonias (Dys represent the third most common movement disorder after essential tremor (ET and Parkinson's disease (PD. While some pathogenetic mechanisms and genetic causes of Dys have been identified, little is known about their neuropathologic features. Previous neuropathologic studies have reported generically defined neuronal loss in various cerebral regions of Dys brains, mostly in the basal ganglia (BG, and specifically in the substantia nigra (SN. Enlarged pigmented neurons in the SN of Dys patients with and without specific genetic mutations (e.g., GAG deletions in DYT1 dystonia have also been described. Whether or not Dys brains are associated with decreased numbers or other morphometric changes of specific neuronal types is unknown and has never been addressed with quantitative methodologies. Methods: Quantitative immunohistochemistry protocols were used to estimate neuronal counts and volumes of nigral pigmented neurons in 13 SN of Dys patients and 13 SN of age‐matched control subjects (C. Results: We observed a significant reduction (∼20% of pigmented neurons in the SN of Dys compared to C (p<0.01. Neither significant volumetric changes nor evident neurodegenerative signs were observed in the remaining pool of nigral pigmented neurons in Dys brains. These novel quantitative findings were confirmed after exclusion of possible co‐occurring SN pathologies including Lewy pathology, tau‐neurofibrillary tangles, β‐amyloid deposits, ubiquitin (ubiq, and phosphorylated‐TAR DNA‐binding protein 43 (pTDP43‐positive inclusions. Discussion: A reduced number of nigral pigmented neurons in the absence of evident neurodegenerative signs in Dys brains could indicate previously unconsidered pathogenetic mechanisms of Dys such as neurodevelopmental defects in the SN.

  13. Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer's disease mice.

    Science.gov (United States)

    Perusini, Jennifer N; Cajigas, Stephanie A; Cohensedgh, Omid; Lim, Sean C; Pavlova, Ina P; Donaldson, Zoe R; Denny, Christine A

    2017-10-01

    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. APPswe/PS1dE9 (APP/PS1) mice have been developed as an AD model and are characterized by plaque formation at 4-6 months of age. Here, we sought to better understand AD-related cognitive decline by characterizing various types of memory. In order to better understand how memory declines with AD, APP/PS1 mice were bred with ArcCreER T2 mice. In this line, neural ensembles activated during memory encoding can be indelibly tagged and directly compared with neural ensembles activated during memory retrieval (i.e., memory traces/engrams). We first administered a battery of tests examining depressive- and anxiety-like behaviors, as well as spatial, social, and cognitive memory to APP/PS1 × ArcCreER T2 × channelrhodopsin (ChR2)-enhanced yellow fluorescent protein (EYFP) mice. Dentate gyrus (DG) neural ensembles were then optogenetically stimulated in these mice to improve memory impairment. AD mice had the most extensive differences in fear memory, as assessed by contextual fear conditioning (CFC), which was accompanied by impaired DG memory traces. Optogenetic stimulation of DG neural ensembles representing a CFC memory increased memory retrieval in the appropriate context in AD mice when compared with control (Ctrl) mice. Moreover, optogenetic stimulation facilitated reactivation of the neural ensembles that were previously activated during memory encoding. These data suggest that activating previously learned DG memory traces can rescue cognitive impairments and point to DG manipulation as a potential target to treat memory loss commonly seen in AD. © 2017 Wiley Periodicals, Inc.

  14. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer's disease.

    Science.gov (United States)

    Goozee, K G; Shah, T M; Sohrabi, H R; Rainey-Smith, S R; Brown, B; Verdile, G; Martins, R N

    2016-02-14

    Curcumin derived from turmeric is well documented for its anti-carcinogenic, antioxidant and anti-inflammatory properties. Recent studies show that curcumin also possesses neuroprotective and cognitive-enhancing properties that may help delay or prevent neurodegenerative diseases, including Alzheimer's disease (AD). Currently, clinical diagnosis of AD is onerous, and it is primarily based on the exclusion of other causes of dementia. In addition, phase III clinical trials of potential treatments have mostly failed, leaving disease-modifying interventions elusive. AD can be characterised neuropathologically by the deposition of extracellular β amyloid (Aβ) plaques and intracellular accumulation of tau-containing neurofibrillary tangles. Disruptions in Aβ metabolism/clearance contribute to AD pathogenesis. In vitro studies have shown that Aβ metabolism is altered by curcumin, and animal studies report that curcumin may influence brain function and the development of dementia, because of its antioxidant and anti-inflammatory properties, as well as its ability to influence Aβ metabolism. However, clinical studies of curcumin have revealed limited effects to date, most likely because of curcumin's relatively low solubility and bioavailability, and because of selection of cohorts with diagnosed AD, in whom there is already major neuropathology. However, the fresh approach of targeting early AD pathology (by treating healthy, pre-clinical and mild cognitive impairment-stage cohorts) combined with new curcumin formulations that increase bioavailability is renewing optimism concerning curcumin-based therapy. The aim of this paper is to review the current evidence supporting an association between curcumin and modulation of AD pathology, including in vitro and in vivo studies. We also review the use of curcumin in emerging retinal imaging technology, as a fluorochrome for AD diagnostics.

  15. Potential of the Antibody Against cis-Phosphorylated Tau in the Early Diagnosis, Treatment, and Prevention of Alzheimer Disease and Brain Injury.

    Science.gov (United States)

    Lu, Kun Ping; Kondo, Asami; Albayram, Onder; Herbert, Megan K; Liu, Hekun; Zhou, Xiao Zhen

    2016-11-01

    Alzheimer disease (AD) and chronic traumatic encephalopathy (CTE) share a common neuropathologic signature-neurofibrillary tangles made of phosphorylated tau-but do not have the same pathogenesis or symptoms. Although whether traumatic brain injury (TBI) could cause AD has not been established, CTE is shown to be associated with TBI. Until recently, whether and how TBI leads to tau-mediated neurodegeneration was unknown. The unique prolyl isomerase Pin1 protects against the development of tau-mediated neurodegeneration in AD by converting the phosphorylated Thr231-Pro motif in tau (ptau) from the pathogenic cis conformation to the physiologic trans conformation, thereby restoring ptau function. The recent development of antibodies able to distinguish and eliminate both conformations specifically has led to the discovery of cis-ptau as a precursor of tau-induced pathologic change and an early driver of neurodegeneration that directly links TBI to CTE and possibly to AD. Within hours of TBI in mice or neuronal stress in vitro, neurons prominently produce cis-ptau, which causes and spreads cis-ptau pathologic changes, termed cistauosis. Cistauosis eventually leads to widespread tau-mediated neurodegeneration and brain atrophy. Cistauosis is effectively blocked by the cis-ptau antibody, which targets intracellular cis-ptau for proteasome-mediated degradation and prevents extracellular cis-ptau from spreading to other neurons. Treating TBI mice with cis-ptau antibody not only blocks early cistauosis but also prevents development and spreading of tau-mediated neurodegeneration and brain atrophy and restores brain histopathologic features and functional outcomes. Thus, cistauosis is a common early disease mechanism for AD, TBI, and CTE, and cis-ptau and its antibody may be useful for early diagnosis, treatment, and prevention of these devastating diseases.

  16. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis.

    Science.gov (United States)

    Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer

    2014-06-20

    Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Absence of chronic traumatic encephalopathy in retired football players with multiple concussions and neurological symptomatology

    Directory of Open Access Journals (Sweden)

    Lili-Naz eHazrati

    2013-05-01

    Full Text Available Background: Chronic traumatic encephalopathy (CTE is the term coined for the neurodegenerative disease often suspected in athletes with histories of repeated concussion and progressive dementia. Histologically, CTE is defined as a tauopathy with a distribution of tau-positive neurofibrillary tangles that is distinct from other tauopathies, and usually shows an absence of beta-amyloid deposits, in contrast to Alzheimer’s disease. Although the connection between repeated concussions and CTE-type neurodegeneration has been recently proposed, this causal relationship has not yet been firmly established. Also, the prevalence of CTE among athletes with multiple concussions is unknown. Methods: We performed a consecutive case series brain autopsy study on six retired professional football players from the Canadian Football League with histories of multiple concussions and significant neurological decline. Results: All participants had progressive neurocognitive decline prior to death; however, only 3 cases had post-mortem neuropathological findings consistent with CTE. The other 3 participants had pathological diagnoses of Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s disease. Moreover, the CTE cases showed co-morbid pathology of cancer, vascular disease and Alzheimer’s disease. Discussion: Our case studies highlight that not all athletes with history of repeated concussions and neurological symptomalogy present neuropathological changes of CTE. These preliminary findings support the need for further research into the link between concussion and CTE as well as the need to expand the research to other possible causes of taupathy in athletes. They point to a critical need for prospective studies with good sampling methods to allow us to understand the relationship between multiple concussions and the development of CTE.

  18. Anti-inflammatory impact of minocycline in a mouse model of tauopathy

    Directory of Open Access Journals (Sweden)

    Claire J Garwood

    2010-10-01

    Full Text Available Alzheimer’s disease (AD is characterised by the extracellular deposition of β-amyloid in senile plaques, the intraneuronal accumulation of hyperphosphorylated tau aggregates as neurofibrillary tangles, and progressive neuronal loss leading to the onset of dementia. Increasing evidence suggests that neuroinflammatory processes contribute to the progression of AD. Minocycline is a semi-synthetic tetracycline derivative commonly used in the treatment of acne. Many studies have revealed that minocycline also has potent anti-inflammatory actions that are neuroprotective in rodent models of Huntington’s disease, Parkinson’s disease and motor neuron disease. Recently, we demonstrated that minocycline reduces the development of abnormal tau species in the htau mouse model of Alzheimer’s disease. We have now extended these findings by examining the impact of minocycline on inflammatory processes in htau mice. Immunohistochemical analysis revealed that minocycline treatment resulted in fewer activated astrocytes in several cortical regions of htau mice, but did not affect astrocytosis in the hippocampus. We found htau mice have significantly elevated amounts of several cortical pro-inflammatory cytokines. In addition, we find that minocycline treatment significantly reduced the amounts of several inflammatory factors, including monocyte chemoattractant proteins 1 and 5, interleukins -6 and -10, eotaxin, and I-309. Furthermore, the reduced amounts of these cytokines significantly correlated with the amount of tau phosphorylated at Ser396/404 in the cortex of htau mice. These results may reveal new cytokine targets of minocycline that could be associated with its inhibition of tau pathology development in vivo. It is possible that further investigation of the role of these cytokines in neurodegenerative processes may identify novel therapeutic targets for Alzheimer’s disease and related disorders.

  19. Adult dementia: history, biopsy, pathology.

    Science.gov (United States)

    Torack, R M

    1979-05-01

    The historical events in the evolution of Alzheimer's disease are reviewed, including the initial description by Alois Alzheimer and the subsequent controversy regarding the nosological specificity of this entity. The similarity of senile dementia and Alzheimer's disease is emphasized. The basis for the modern concept of Alzheimer's disease as premature or accelerated aging is included in the review. The pathological correlates of the major categories of adult dementia have been described. The traditional criteria of neurofibrillary tangles and senile plaques have been re-evaluated using the current insight into these changes afforded by electron microscopy and biochemistry. The significance of amyloid has been described because it occurs within the senile plaque and also as the essential component of congophilic angiopathy. The new information regarding neuronal cell counts and the loss of choline acetyltransferase has been evaluated in terms of an indication of a pathogenic mechanism of Alzheimer's disease. The current understanding of normal pressure hydrocephalus, Creutzfeldt-Jakob disease, and multi-infarct dementia has been described. Brain biopsy in dementia has been described as having diagnostic, research, pathogenic, and prognostic value. The precautions involving the performance and handling of the biopsy have been stressed, particularly because these procedures involve conditions of possible slow virus etiology. The polemic for Alzheimer's disease as aging or slow virus infection has been summarized. At this time a consideration seems justified that Alzheimer's disease is an age-related, slow virus disease due to a hitherto unknown immune defect. Aging as an etiological agent must be clarified before Alzheimer's disease, in any form, can be considered to be an inevitable consequence of longevity.

  20. Amylin and its Analogs: A Friend or Foe for the Treatment of Alzheimer’s Disease?

    Directory of Open Access Journals (Sweden)

    Wei Qiao (Wendy eQiu

    2014-07-01

    Full Text Available Amylin, a gut-brain axis hormone, and amyloid-beta peptides (Aβ, a major component of the Alzheimer’s disease (AD brain, share several features, including similar β-sheet secondary structures, binding to the same receptor and being degraded by the same protease, insulin degrading enzyme (IDE. However, while amylin readily crosses the blood brain barrier (BBB and mediates several activities including improving glucose metabolism, relaxing cerebrovascular structure, modulating inflammatory reaction and perhaps enhancing neural regeneration, Aβ has no known physiological functions. Thus, abundant Aβ in the AD brain could block or interfere with the binding of amylin to its receptor and hinder its functions. Recent studies using AD animal models demonstrate that amylin and its analog reduce the AD pathology in the brain and improve cognitive impairment in AD. Given that, in addition to amyloid plaques and neurofibrillary tangles, perturbed cerebral glucose metabolism and cerebrovascular damage are the hallmarks of the AD brain, we propose that giving exogenous amylin type peptides have the potential to become a new avenue for the diagnosis and therapeutic of AD. Although amylin’s property of self-aggregation may be a limitation to developing it as a therapeutic for AD, its clinical analog, pramlintide containing 3 amino acid differences from amylin, does not aggregate like human amylin, but more potently mediates amylin’s activities in the brain. Pramlintide is an effective drug for diabetes with a favorable profile of safety. Thus a randomized, double-blind, placebo-controlled clinical trial should be conducted to examine the efficacy of pramlintide for AD. This review summarizes the knowledge and findings on amylin type peptides and discuss pros and cons for their potential for AD.