WorldWideScience

Sample records for neocortical interneurons identifies

  1. Classification of neocortical interneurons using affinity propagation

    Directory of Open Access Journals (Sweden)

    Roberto eSantana

    2013-12-01

    Full Text Available In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. Neuronal classification has been a difficult problem because it is unclear what a neuronal cell class actually is and what are the best characteristics are to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological or molecular characteristics, when applied to selected datasets, have provided quantitative and unbiased identification of distinct neuronal subtypes. However, better and more robust classification methods are needed for increasingly complex and larger datasets. We explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. In fact, using a combined anatomical/physiological dataset, our algorithm differentiated parvalbumin from somatostatin interneurons in 49 out of 50 cases. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  2. Classification of neocortical interneurons using affinity propagation

    Science.gov (United States)

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  3. Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    E. Rossignol

    2011-01-01

    Full Text Available A dysfunction of cortical and limbic GABAergic circuits has been postulated to contribute to multiple neurodevelopmental disorders in humans, including schizophrenia, autism, and epilepsy. In the current paper, I summarize the characteristics that underlie the great diversity of cortical GABAergic interneurons and explore how the multiple roles of these cells in developing and mature circuits might contribute to the aforementioned disorders. Furthermore, I review the tightly controlled genetic cascades that determine the fate of cortical interneurons and summarize how the dysfunction of genes important for the generation, specification, maturation, and function of cortical interneurons might contribute to these disorders.

  4. Evidence That the Laminar Fate of LGE/CGE-Derived Neocortical Interneurons Is Dependent on Their Progenitor Domains.

    Science.gov (United States)

    Torigoe, Makio; Yamauchi, Kenta; Kimura, Toshiya; Uemura, Yo; Murakami, Fujio

    2016-02-10

    Neocortical interneurons show tremendous diversity in terms of their neurochemical marker expressions, morphology, electrophysiological properties, and laminar fate. Allocation of interneurons to their appropriate regions and layers in the neocortex is thought to play important roles for the emergence of higher functions of the neocortex. Neocortical interneurons mainly originate from the medial ganglionic eminence (MGE) and the caudal ganglionic eminence (CGE). The diversity and the laminar fate of MGE-derived interneurons depend on the location of their birth and birthdate, respectively. However, this relationship does not hold for CGE-derived interneurons. Here, using the method of in utero electroporation, which causes arbitrary occurrence of labeled progenitor domains, we tracked all descendants of the lateral ganglionic eminence (LGE)/CGE progenitors in mice. We provide evidence that neocortical interneurons with distinct laminar fate originate from distinct progenitor domains within the LGE/CGE. We find layer I interneurons are predominantly labeled in a set of animals, whereas other upper layer neurons are predominantly labeled in another set. We also find distinct subcortical structures labeled between the two sets. Further, interneurons labeled in layer I show distinct neurochemical properties from those in other layers. Together, these results suggest that the laminar fate of LGE/CGE-derived interneurons depends on their spatial origin. Diverse types of neocortical interneurons have distinct laminar fate, neurochemical marker expression, morphology, and electrophysiological properties. Although the specifications and laminar fate of medial ganglionic eminence-derived neocortical interneurons depend on their location of embryonic origin and birthdate, no similar causality of lateral/caudal ganglionic eminence (LGE/CGE)-derived neocortical interneurons is known. Here, we performed in utero electroporation on mouse LGE/CGE and found two groups of animals

  5. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs

    Directory of Open Access Journals (Sweden)

    Matt Q. Clark

    2016-07-01

    Full Text Available Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons are used in all these behaviors, but the identity (or even existence of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines—chosen for sparse neuronal expression—to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°. A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program.

  6. Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: Separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons

    Directory of Open Access Journals (Sweden)

    Dorea Vierling-Claassen

    2010-11-01

    Full Text Available Selective optogenetic drive of fast spiking interneurons (FS leads to enhanced local field potential (LFP power across the traditional gamma frequency band (20-80Hz; Cardin et al., 2009. In contrast, drive to regular-spiking pyramidal cells (RS enhances power at lower frequencies, with a peak at 8 Hz. The first result is consistent with previous computational studies emphasizing the role of FS and the time constant of GABAA synaptic inhibition in gamma rhythmicity. However, the same theoretical models do not typically predict low-frequency LFP enhancement with RS drive. To develop hypotheses as to how the same network can support these contrasting behaviors, we constructed a biophysically principled network model of primary somatosensory neocortex containing FS, RS and low-threshold-spiking (LTS interneurons. Cells were modeled with detailed cell anatomy and physiology, multiple dendritic compartments, and included active somatic and dendritic ionic currents. Consistent with prior studies, the model demonstrated gamma resonance during FS drive, dependent on the time-constant of GABAA inhibition induced by synchronous FS activity. Lower frequency enhancement during RS drive was replicated only on inclusion of an inhibitory LTS population, whose activation was critically dependent on RS synchrony and evoked longer-lasting inhibition. Our results predict that differential recruitment of FS and LTS inhibitory populations is essential to the observed cortical dynamics and may provide a means for amplifying the natural expression of distinct oscillations in normal cortical processing.

  7. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion

    Directory of Open Access Journals (Sweden)

    Kathrin eHoppenrath

    2016-03-01

    Full Text Available Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV fast-spiking interneurons (FSIs, evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs of FSIs start to grow around postnatal day 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo – in vitro whole-cell patch clamp recordings from pre-labelled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28 and older animals (PD40-62. Slices of verum iTBS-treated rats further showed higher rates of spontaneous EPSCs. Based on these and previous findings we conclude that FSIs are particularly sensitive to theta-burst stimulation during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.

  8. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion.

    Science.gov (United States)

    Hoppenrath, Kathrin; Härtig, Wolfgang; Funke, Klaus

    2016-01-01

    Modulation of human cortical excitability by repetitive transcranial magnetic stimulation (rTMS) appears to be in part related to changed activity of inhibitory systems. Our own studies showed that intermittent theta-burst stimulation (iTBS) applied via rTMS to rat cortex primarily affects the parvalbumin-expressing (PV) fast-spiking interneurons (FSIs), evident via a strongly reduced PV expression. We further found the iTBS effect on PV to be age-dependent since no reduction in PV could be induced before the perineuronal nets (PNNs) of FSIs start to grow around postnatal day (PD) 30. To elucidate possible iTBS-induced changes in the electrical properties of FSIs and cortical network activity during cortical critical period, we performed ex vivo-in vitro whole-cell patch clamp recordings from pre-labeled FSIs in the current study. FSIs of verum iTBS-treated rats displayed a higher excitability than sham-treated controls at PD29-38, evident as higher rates of induced action potential firing at low current injections (100-200 pA) and a more depolarized resting membrane potential. This effect was absent in younger (PD26-28) and older animals (PD40-62). Slices of verum iTBS-treated rats further showed higher rates of spontaneous excitatory postsynaptic currents (sEPSCs). Based on these and previous findings we conclude that FSIs are particularly sensitive to TBS during early cortical development, when FSIs show an activity-driven step of maturation which is paralleled by intense growth of the PNNs and subsequent closure of the cortical critical period. Although to be proven further, rTMS may be a possible early intervention to compensate for hypo-activity related mal-development of cortical neuronal circuits.

  9. Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons

    Science.gov (United States)

    Dougherty, Kimberly J.; Shevtsova, Natalia A.

    2015-01-01

    Abstract The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor–extensor and left–right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of spinal interneurons, including V0 (V0D and V0V subtypes), V1, V2a, V2b, V3, and Shox2, among others. The possible functional roles of these interneurons can be suggested from changes in the locomotor pattern generated in mutant mice lacking particular neuron types. Computational modeling of spinal circuits may complement these studies by bringing together data from different experimental studies and proposing the possible connectivity of these interneurons that may define rhythm generation, flexor–extensor interactions on each side of the cord, and commissural interactions between left and right circuits. This review focuses on the analysis of potential architectures of spinal circuits that can reproduce recent results and suggest common explanations for a series of experimental data on genetically identified spinal interneurons, including the consequences of their genetic ablation, and provides important insights into the organization of the spinal CPG and neural control of locomotion. PMID:26478909

  10. Galanin-immunoreactivity identifies a distinct population of inhibitory interneurons in laminae I-III of the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Watanabe Masahiko

    2011-05-01

    Full Text Available Abstract Background Inhibitory interneurons constitute 30-40% of neurons in laminae I-III and have an important anti-nociceptive role. However, because of the difficulty in classifying them we know little about their organisation. Previous studies have identified 3 non-overlapping groups of inhibitory interneuron, which contain neuropeptide Y (NPY, neuronal nitric oxide synthase (nNOS or parvalbumin, and have shown that these differ in postsynaptic targets. Some inhibitory interneurons contain galanin and the first aim of this study was to determine whether these form a different population from those containing NPY, nNOS or parvalbumin. We also estimated the proportion of neurons and GABAergic axons that contain galanin in laminae I-III. Results Galanin cells were concentrated in laminae I-IIo, with few in laminae IIi-III. Galanin showed minimal co-localisation with NPY, nNOS or parvalbumin in laminae I-II, but most galanin-containing cells in lamina III were nNOS-positive. Galanin cells constituted ~7%, 3% and 2% of all neurons in laminae I, II and III, and we estimate that this corresponds to 26%, 10% and 5% of the GABAergic neurons in these laminae. However, galanin was only found in ~6% of GABAergic boutons in laminae I-IIo, and ~1% of those in laminae IIi-III. Conclusions These results show that galanin, NPY, nNOS and parvalbumin can be used to define four distinct neurochemical populations of inhibitory interneurons. Together with results of a recent study, they suggest that the galanin and NPY populations account for around half of the inhibitory interneurons in lamina I and a quarter of those in lamina II.

  11. Activation of two forms of locomotion by a previously identified trigger interneuron for swimming in the medicinal leech.

    Science.gov (United States)

    Brodfuehrer, Peter D; McCormick, Kathryn; Tapyrik, Lauren; Albano, Alfonso M; Graybeal, Carolyn

    2008-03-01

    Higher-order projection interneurons that function in more than one behavior have been identified in a number of preparations. In this study, we document that stimulation of cell Tr1, a previously identified trigger interneuron for swimming in the medicinal leech, can also elicit the motor program for crawling in isolated nerve cords. We also show that motor choice is independent of the firing frequency of Tr1 and amount of spiking activity recorded extracellularly at three locations along the ventral nerve cord prior to Tr1 stimulation. On the other hand, during Tr1 stimulation there is a significant difference in the amount of activity elicited in the ventral nerve cord that correlates with the motor program activated. On average, Tr1 stimulation trials that lead to crawling elicit greater amounts of activity than in trials that lead to swimming.

  12. Effects of active conductance distribution over dendrites on the synaptic integration in an identified nonspiking interneuron.

    Directory of Open Access Journals (Sweden)

    Akira Takashima

    Full Text Available The synaptic integration in individual central neuron is critically affected by how active conductances are distributed over dendrites. It has been well known that the dendrites of central neurons are richly endowed with voltage- and ligand-regulated ion conductances. Nonspiking interneurons (NSIs, almost exclusively characteristic to arthropod central nervous systems, do not generate action potentials and hence lack voltage-regulated sodium channels, yet having a variety of voltage-regulated potassium conductances on their dendritic membrane including the one similar to the delayed-rectifier type potassium conductance. It remains unknown, however, how the active conductances are distributed over dendrites and how the synaptic integration is affected by those conductances in NSIs and other invertebrate neurons where the cell body is not included in the signal pathway from input synapses to output sites. In the present study, we quantitatively investigated the functional significance of active conductance distribution pattern in the spatio-temporal spread of synaptic potentials over dendrites of an identified NSI in the crayfish central nervous system by computer simulation. We systematically changed the distribution pattern of active conductances in the neuron's multicompartment model and examined how the synaptic potential waveform was affected by each distribution pattern. It was revealed that specific patterns of nonuniform distribution of potassium conductances were consistent, while other patterns were not, with the waveform of compound synaptic potentials recorded physiologically in the major input-output pathway of the cell, suggesting that the possibility of nonuniform distribution of potassium conductances over the dendrite cannot be excluded as well as the possibility of uniform distribution. Local synaptic circuits involving input and output synapses on the same branch or on the same side were found to be potentially affected under

  13. Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system.

    Science.gov (United States)

    Theunissen, F; Roddey, J C; Stufflebeam, S; Clague, H; Miller, J P

    1996-04-01

    1. The stimulus/response properties of four identified primary sensory interneurons in the cricket cercal sensory system were studied using electrophysiological techniques. These four cells are thought to represent a functionally discrete subunit of the cercal system: they are the only cells that encode information about stimulus direction to higher centers for low intensity stimuli. Previous studies characterized the quantity of information encoded by these cells about the direction of air currents in the horizontal plane. In the experiments reported here, we characterized the quantity and quality of information encoded in the cells' elicited responses about the dynamics of air current waveforms presented at their optimal stimulus directions. The total sample set included 22 cells. 2. This characterization was achieved by determining the cells' frequency sensitivities and encoding accuracy using the methods of stochastic systems analysis and information theory. The specific approach used for the analysis was the "stimulus reconstruction" technique in which a functional expansion was derived to transform the observed spike train responses into the optimal estimate (i.e., "reconstruction") of the actual stimulus. A novel derivation of the crucial equations is presented. The reverse approach is compared with the more traditional forward analysis, in which an expansion is derived that transforms the stimulus to a prediction of the spike train response. Important aspects of the application of these analytical approaches are considered. 3. All four interneurons were found to have identical frequency tuning, as assessed by the accuracy with which different frequency components of stimulus waveforms could be reconstructed with a linear expansion. The interneurons encoded significant information about stimulus frequencies between 5 and 80 Hz, which peak sensitivities at approximately 15 Hz. 4. All four interneurons were found to have identical stimulus/response latencies

  14. Resection of individually identified high-rate high-frequency oscillations region is associated with favorable outcome in neocortical epilepsy

    Czech Academy of Sciences Publication Activity Database

    Cho, J.R.; Koo, D.L.; Joo, E.Y.; Seo, D.W.; Hong, S.-Ch.; Jiruška, Přemysl; Hong, S.B.

    2014-01-01

    Roč. 55, č. 11 (2014), s. 1872-1883 ISSN 0013-9580 R&D Projects: GA MZd(CZ) NT14489 Institutional support: RVO:67985823 Keywords : epilepsy surgery * high-frequency oscillations * neocortical epilepsy Subject RIV: FH - Neurology Impact factor: 4.571, year: 2014

  15. Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron

    Directory of Open Access Journals (Sweden)

    Kit D. Longden

    2010-11-01

    Full Text Available Flying generates predictably different patterns of optic flow compared with other locomotor states. A sensorimotor system tuned to rapid responses and a high bandwidth of optic flow would help the animal to avoid wasting energy through imprecise motor action. However, neural processing that covers a higher input bandwidth itself comes at higher energetic costs which would be a poor investment when the animal was not flying. How does the blowfly adjust the dynamic range of its optic flow-processing neurons to the locomotor state? Octopamine (OA is a biogenic amine central to the initiation and maintenance of flight in insects. We used an OA agonist chlordimeform (CDM to simulate the widespread OA release during flight and recorded the effects on the temporal frequency coding of the H2 cell. This cell is a visual interneuron known to be involved in flight stabilization reflexes. The application of CDM resulted in i an increase in the cell's spontaneous activity, expanding the inhibitory signalling range ii an initial response gain to moving gratings (20 – 60 ms post-stimulus that depended on the temporal frequency of the grating and iii a reduction in the rate and magnitude of motion adaptation that was also temporal frequency-dependent. To our knowledge, this is the first demonstration that the application of a neuromodulator can induce velocity-dependent alterations in the gain of a wide-field optic flow-processing neuron. The observed changes in the cell’s response properties resulted in a 33% increase of the cell’s information rate when encoding random changes in temporal frequency of the stimulus. The increased signalling range and more rapid, longer lasting responses employed more spikes to encode each bit, and so consumed a greater amount of energy. It appears that for the fly investing more energy in sensory processing during flight is more efficient than wasting energy on under-performing motor control.

  16. Neocortical layer 6, a review

    Directory of Open Access Journals (Sweden)

    Alex M Thomson

    2010-03-01

    Full Text Available This review attempts to summarise some of the major areas of neocortical research as it pertains to layer 6. After a brief summary of the development of this intriguing layer, the major pyramidal cell classes to be found in layer 6 are described and compared. The connections made and received by these different classes of neurones are then discussed and the possible functions of these connections, with particular reference to the shaping of responses in visual cortex and thalamus. Inhibition in layer 6 is discussed where appropriate, but not in great detail. Many types of interneurones are to be found in each cortical layer and layer 6 is no exception, but the functions of each type remain to be elucidated.

  17. The Outwardly Rectifying Current of Layer 5 Neocortical Neurons that was Originally Identified as "Non-Specific Cationic" Is Essentially a Potassium Current.

    Directory of Open Access Journals (Sweden)

    Omer Revah

    Full Text Available In whole-cell patch clamp recordings from layer 5 neocortical neurons, blockade of voltage gated sodium and calcium channels leaves a cesium current that is outward rectifying. This current was originally identified as a "non-specific cationic current", and subsequently it was hypothesized that it is mediated by TRP channels. In order to test this hypothesis, we used fluorescence imaging of intracellular sodium and calcium indicators, and found no evidence to suggest that it is associated with influx of either of these ions to the cell body or dendrites. Moreover, the current is still prominent in neurons from TRPC1-/- and TRPC5-/- mice. The effects on the current of various blocking agents, and especially its sensitivity to intracellular tetraethylammonium, suggest that it is not a non-specific cationic current, but rather that it is generated by cesium-permeable delayed rectifier potassium channels.

  18. NMDAR hypofunction and somatostatin-expressing GABAergic interneurons and receptors: A newly identified correlation and its effects in schizophrenia

    Directory of Open Access Journals (Sweden)

    Fatemah Alherz

    2017-06-01

    Full Text Available This review investigates the association between N-methyl-d-Aspartate receptor (NMDAR hypofunction and somatostatin-expressing GABAergic interneurons (SST+ and how it contributes to the cognitive deficits observed in schizophrenia (SZ. This is based on evidence that NMDAR antagonists caused symptoms resembling SZ in healthy individuals. NMDAR hypofunction in GABAergic interneurons results in the modulation of the cortical network oscillation, particularly in the gamma range (30–80 Hz. These gamma-band oscillation (GBO abnormalities were found to lead to the cognitive deficits observed in the disorder. Postmortem mRNA studies have shown that SST decreased more significantly than any other biomarker in schizophrenic subjects. The functional role of Somatostatin (SST in the aetiology of SZ can be studied through its receptors. Genetic knockout studies in animal models in Huntington's disease (HD have shown that a specific SST receptor, SSTR2, is increased along with the increased NMDAR activity, with opposing patterns observed in SZ. A direct correlation between SSTR and NMDAR is hence inferred in this review with the hope of finding a potential new therapeutic target for the treatment of SZ and related neurological conditions.

  19. Neocortical Temporal Lobe Epilepsy

    Science.gov (United States)

    Bercovici, Eduard; Kumar, Balagobal Santosh; Mirsattari, Seyed M.

    2012-01-01

    Complex partial seizures (CPSs) can present with various semiologies, while mesial temporal lobe epilepsy (mTLE) is a well-recognized cause of CPS, neocortical temporal lobe epilepsy (nTLE) albeit being less common is increasingly recognized as separate disease entity. Differentiating the two remains a challenge for epileptologists as many symptoms overlap due to reciprocal connections between the neocortical and the mesial temporal regions. Various studies have attempted to correctly localize the seizure focus in nTLE as patients with this disorder may benefit from surgery. While earlier work predicted poor outcomes in this population, recent work challenges those ideas yielding good outcomes in part due to better localization using improved anatomical and functional techniques. This paper provides a comprehensive review of the diagnostic workup, particularly the application of recent advances in electroencephalography and functional brain imaging, in neocortical temporal lobe epilepsy. PMID:22953057

  20. Distinct Translaminar Glutamatergic Circuits to GABAergic Interneurons in the Neonatal Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Rongkang Deng

    2017-05-01

    Full Text Available GABAergic activity is important in neocortical development and plasticity. Because the maturation of GABAergic interneurons is regulated by neural activity, the source of excitatory inputs to GABAergic interneurons plays a key role in development. We show, by laser-scanning photostimulation, that layer 4 and layer 5 GABAergic interneurons in the auditory cortex in neonatal mice (interneurons showed two spatial patterns of translaminar connection: inputs originating predominantly from supragranular or from supragranular and infragranular layers, including the subplate, which relays early thalamocortical activity. Sensory deprivation altered the development of translaminar inputs. Thus, distinct translaminar circuits to GABAergic interneurons exist throughout development, and the maturation of excitatory synapses is input-specific. Glutamatergic signaling from subplate and intracortical sources likely plays a role in the maturation of GABAergic interneurons.

  1. Activity-dependent myelination of parvalbumin interneurons mediated by axonal morphological plasticity.

    Science.gov (United States)

    Stedehouder, J; Brizee, D; Shpak, G; Kushner, S A

    2018-03-05

    Axonal myelination of neocortical pyramidal neurons is dynamically modulated by neuronal activity. Recent studies have shown that a substantial proportion of neocortical myelin content is contributed by fast-spiking, parvalbumin (PV)-positive interneurons. However, it remains unknown whether the myelination of PV + interneurons is also modulated by intrinsic activity. Here, we utilized cell-type specific Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in adult male and female mice to activate a sparse population of medial prefrontal cortex PV + interneurons. Using single-cell axonal reconstructions, we find that DREADD-stimulated PV + interneurons exhibit a nearly two-fold increase in total length of myelination, predominantly mediated by a parallel increase of axonal arborization and number of internodes. In contrast, the distribution of axonal inter-branch segment distance and myelin internode length were not significantly altered. Topographical analysis revealed that myelination of DREADD-stimulated cells extended to higher axonal branch orders, while retaining a similar inter-branch distance threshold for myelination. Together, our results demonstrate that chemogenetically-induced neuronal activity increases the myelination of neocortical PV + interneurons mediated at least in part by an elaboration of their axonal morphology. SIGNIFICANCE STATEMENT Myelination is the wrapping of an axon in order to optimize conduction velocity in an energy-efficient manner. Previous studies have shown that myelination of neocortical pyramidal neurons is experience and activity-dependent. We now show that activity-dependent myelin plasticity in the adult neocortex extends to parvalbumin-expressing fast-spiking interneurons. Specifically, chemogenetic stimulation of parvalbumin interneurons in the medial prefrontal cortex significantly enhanced axonal myelination, which was paralleled by an increase in axonal arborization. This suggests that activity

  2. A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex

    Directory of Open Access Journals (Sweden)

    Mary Ann Raghanti

    2010-02-01

    Full Text Available Neocortical columns are functional and morphological units whose architecture may have been under selective evolutionary pressure in different mammalian lineages in response to encephalization and specializations of cognitive abilities. Inhibitory interneurons make a substantial contribution to the morphology and distribution of minicolumns within the cortex. In this context, we review differences in minicolumns and GABAergic interneurons among species and discuss possible implications for signaling among and within minicolumns. Furthermore, we discuss how abnormalities of both minicolumn disposition and inhibitory interneurons might be associated with neuropathological processes, such as Alzheimer’s disease, autism, and schizophrenia. Specifically, we will explore the possibility that phylogenetic variability in calcium-binding protein-expressing interneuron subtypes is directly related to differences in minicolumn morphology among species and might contribute to neuropathological susceptibility in humans.

  3. Neocortical calretinin neurons in primates: increase in proportion and microcircuitry structure

    Directory of Open Access Journals (Sweden)

    Domagoj eDžaja

    2014-09-01

    Full Text Available In this mini review we first point at the expansion of associative cortical areas in primates as well as at the intrinsic changes in the structure of the cortical column. There is a huge increase in proportion of glutamatergic cortical projecting neurons located in the upper cortical layers (II/III. In addition, inside this group a novel class of associative neurons becomes recognized that is important for both, inter-areal and intra-areal columnar integration. By overviewing the literature data we found that there might be also a 50% increase in proportion of neocortical GABAergic neurons between primates and rodents, principally reflecting a 4 to 5 fold increase in proportion of calretinin interneurons. In primates calretinin interneurons might represent 15% of the total neuron number in the upper layers of high order associative areas. Evaluating data about functional properties of their connectivity we hypothesize that an exponential increase in proportion of calretinin interneurons might lead to supra-linear growth in memory capacity of the associative neocortical network. An open question is do we have some new calretinin interneuron subtypes which might substantially change micro-circuitry structure of the primate cerebral cortex.

  4. TRPC1 Channels Are Expressed in Pyramidal Neurons and in a Subset of Somatostatin Interneurons in the Rat Neocortex

    Directory of Open Access Journals (Sweden)

    Juan R. Martinez-Galan

    2018-02-01

    Full Text Available Disturbances in calcium homeostasis due to canonical transient receptor potential (TRPC and/or store-operated calcium (SOC channels can play a key role in a large number of brain disorders. TRPC channels are plasma membrane cation channels included in the transient receptor potential (TRP superfamily. The most widely distributed member of the TRPC subfamily in the brain is TRPC1, which is frequently linked to group I metabotropic glutamate receptors (mGluRs and to the components of SOC channels. Proposing TRPC/SOC channels as a therapeutic target in neurological diseases previously requires a detailed knowledge of the distribution of such molecules in the brain. The aim of our study was to analyze the neuroanatomical distribution of TRPC1 in the rat neocortex. By double- and triple-labeling and confocal microscopy, we tested the presence of TRPC1 by using a series of specific neurochemical markers. TRPC1 was abundant in SMI 32-positive pyramidal neurons, and in some glutamic acid decarboxylase 67 (GAD67 interneurons, but was lacking in glial fibrillary acidic protein (GFAP-positive glial cells. In neurons it colocalized with postsynaptic marker MAP2 in cell bodies and apical dendritic trunks and it was virtually absent in synaptophysin-immunoreactive terminals. By using a panel of antibodies to classify interneurons, we identified the GABAergic interneurons that contained TRPC1. TRPC1 was lacking in basket and chandelier parvalbumin (PVALB cells, and a very low percentage of calretinin (CALR or calbindin (CALB interneurons expressed TRPC1. Moreover, 63% of somatostatin (SST expressing-cells and 37% of reelin-positive cells expressed TRPC1. All the SST/TRPC1 double-labeled cells, many of which were presumptive Martinotti cells (MC, were positive for reelin. The presence of TRPC1 in the somata and apical dendritic trunks of neocortical pyramidal cells suggests a role for this channel in sensory processing and synaptic plasticity. Conversely in SST

  5. Inhibitory Interneurons of The Human Neocortex after Clinical Death

    Directory of Open Access Journals (Sweden)

    V. A. Akulinin

    2016-01-01

    Full Text Available Objective: to analyze the human neocortex interneurons (areas 4, 10, 17 and 21 by Brodmann after cardiac arrest (clinical death.Materials and methods. The main group included patients (n=7, men who survived 7—10 days and 70—90 days after cardiac arrest and later died due to heart failure. The control group (n=4, men included individuals after sudden fatal accidents. The morphometric and histological analysis of 420 neocortical fields (Nissl#staining,calbindin D28k, neuropeptide Y was performed using light and confocal microscopy.Results. We verified all main types of interneurons (Basket, Martinotti, and neurogliaform interneurons in neocortex based on the morphology of their bodies and dendritic processes in both groups. The number of calbindin- and NPY-positive neurons in the neocortex was similar in the control and in the postoperative period.However, calbindin- and NPY-immunopositive structure fields including neuronal cell bodies and their dendrites were significantly more represented in neocortex of patients from the main group. Maximum increase in common square in the relative areas of calbindin-immunopositive structures was observed 90 days after ischemia. The squares of NPY#immunopositive fields became larger seven days after resuscitation and remained increased on 90th day post-resuscitation.Conclusion. Our findings demonstrate an increase of calbindin and NPY expression in human neocortex after clinical death, which can be explained by a compensatory  eaction of undamaged inhibitory cortical interneurons directed to protectbrain from ischemia.

  6. Increased neuronal synchrony prepares mesial temporal networks for seizures of neocortical origin.

    Science.gov (United States)

    Misra, Amrit; Long, Xianda; Sperling, Michael R; Sharan, Ashwini D; Moxon, Karen A

    2018-03-01

    To gain understanding of the neuronal mechanisms underlying regional seizure spread, the impact of regional synchrony between seizure focus and downstream networks on neuronal activity during the transition to seizure in those downstream networks was assessed. Seven patients undergoing diagnostic intracranial electroencephalographic studies for surgical resection of epileptogenic regions were implanted with subdural clinical electrodes into the cortex (site of seizure initiation) and mesial temporal lobe (MTL) structures (downstream) as well as microwires into MTL. Neural activity was recorded (24/7) in parallel with the clinical intracranial electroencephalogram recordings for the duration of the patient's diagnostic stay. Changes in (1) regional synchrony (ie, coherence) between the presumptive neocortical seizure focus and MTL, (2) local synchrony between MTL neurons and their local field potential, and (3) neuronal firing rates within MTL in the time leading up to seizure were examined to study the mechanisms underlying seizure spread. In seizures of neocortical origin, an increase in regional synchrony preceded the spread of seizures into MTL (predominantly hippocampal). Within frequencies similar to those of regional synchrony, MTL networks showed an increase in unit-field coherence and a decrease in neuronal firing rate, specifically for inhibitory interneuron populations but not pyramidal cell populations. These results suggest a mechanism of spreading seizures whereby the seizure focus first synchronizes local field potentials in downstream networks to the seizure activity. This change in local field coherence modifies the activity of interneuron populations in these downstream networks, which leads to the attenuation of interneuronal firing rate, effectively shutting down local interneuron populations prior to the spread of seizure. Therefore, regional synchrony may influence the failure of downstream interneurons to prevent the spread of the seizures

  7. Subtype-specific reduction of olfactory bulb interneurons in Pax6 heterozygous mutant mice.

    Science.gov (United States)

    Haba, Hasumi; Nomura, Tadashi; Suto, Fumikazu; Osumi, Noriko

    2009-09-01

    Interneurons in the olfactory bulb (OB) play essential roles in the processing of olfactory information. They are classified into several subpopulations by the expression of different neurochemical markers. Here we focused on a transcription factor Pax6, and examined its expression and function in distinct subtypes of OB interneurons. We identified Pax6 expression in specific subtypes of interneurons in the external plexiform layer (EPL). The number of these interneuron subtypes was dramatically decreased in Pax6 heterozygous mutant mice. These results indicate that Pax6 is required for differentiation and/or maintenance of EPL interneurons in the adult mouse OB.

  8. GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Inada

    Full Text Available Cortical GABAergic interneurons originate from ganglionic eminences and tangentially migrate into the cortical plate at early developmental stages. To elucidate the characteristics of this migration of GABAergic interneurons in living animals, we established an experimental design specialized for in vivo time-lapse imaging of the neocortex of neonate mice with two-photon laser-scanning microscopy. In vesicular GABA/glycine transporter (VGAT-Venus transgenic mice from birth (P0 through P3, we observed multidirectional tangential migration of genetically-defined GABAergic interneurons in the neocortical marginal zone. The properties of this migration, such as the motility rate (distance/hr, the direction moved, and the proportion of migrating neurons to stationary neurons, did not change through P0 to P3, although the density of GABAergic neurons at the marginal zone decreased with age. Thus, the characteristics of the tangential motility of individual GABAergic neurons remained constant in development. Pharmacological block of GABA(A receptors and of the Na⁺-K⁺-Cl⁻ cotransporters, and chelating intracellular Ca²⁺, all significantly reduced the motility rate in vivo. The motility rate and GABA content within the cortex of neonatal VGAT-Venus transgenic mice were significantly greater than those of GAD67-GFP knock-in mice, suggesting that extracellular GABA concentration could facilitate the multidirectional tangential migration. Indeed, diazepam applied to GAD67-GFP mice increased the motility rate substantially. In an in vitro neocortical slice preparation, we confirmed that GABA induced a NKCC sensitive depolarization of GABAergic interneurons in VGAT-Venus mice at P0-P3. Thus, activation of GABA(AR by ambient GABA depolarizes GABAergic interneurons, leading to an acceleration of their multidirectional motility in vivo.

  9. Locomotor Rhythm Generation Linked to the Output of Spinal Shox2 Excitatory Interneurons

    DEFF Research Database (Denmark)

    Dougherty, Kimberly J.; Zagoraiou, Laskaro; Satoh, Daisuke

    2013-01-01

    Locomotion is controlled by spinal networks that generate rhythm and coordinate left-right and flexor-extensor patterning. Defined populations of spinal interneurons have been linked to patterning circuits; however, neurons comprising the rhythm-generating kernel have remained elusive. Here, we...... identify an ipsilaterally projecting excitatory interneuron population, marked by the expression of Shox2 that overlaps partially with V2a interneurons. Optogenetic silencing or blocking synaptic output of Shox2 interneurons (INs) in transgenic mice perturbed rhythm without an effect on pattern generation...

  10. Developmental programming of cortial interneurons

    NARCIS (Netherlands)

    Welagen, J.

    2011-01-01

    AIM OF THE STUDY: The majority of interneurons originate from the MGE, including PV, SST and NPY expressing subgroups. Although the MGE has been defined as the region of origin for these subgroups, three important questions are still open. First, it was unclear if a spatial or temporal distribution

  11. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males......, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  12. Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association.

    Science.gov (United States)

    Lee, Junuk; Finkelstein, Joel; Choi, Jung Yoon; Witten, Ilana B

    2016-06-01

    Despite the fact that cholinergic interneurons are a key cell type within the nucleus accumbens, a relationship between synaptic plasticity and the in vivo activity of cholinergic interneurons remains to be established. Here, we identify a three-way link between the activity of cholinergic interneurons, synaptic plasticity, and learning in mice undergoing the extinction of a cocaine-context association. We found that activity of cholinergic interneurons regulates extinction learning for a cocaine-context association and generates a sustained reduction in glutamatergic presynaptic strength onto medium spiny neurons. Interestingly, activation of cholinergic interneurons does not support reinforcement learning or plasticity by itself, suggesting that these neurons have a modulatory rather than a reinforcing function. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons

    Directory of Open Access Journals (Sweden)

    Giorgia Bartolini

    2017-01-01

    Full Text Available Neural circuits in the cerebral cortex consist of excitatory pyramidal cells and inhibitory interneurons. These two main classes of cortical neurons follow largely different genetic programs, yet they assemble into highly specialized circuits during development following a very precise choreography. Previous studies have shown that signals produced by pyramidal cells influence the migration of cortical interneurons, but the molecular nature of these factors has remained elusive. Here, we identified Neuregulin 3 (Nrg3 as a chemoattractive factor expressed by developing pyramidal cells that guides the allocation of cortical interneurons in the developing cortical plate. Gain- and loss-of-function approaches reveal that Nrg3 modulates the migration of interneurons into the cortical plate in a process that is dependent on the tyrosine kinase receptor ErbB4. Perturbation of Nrg3 signaling in conditional mutants leads to abnormal lamination of cortical interneurons. Nrg3 is therefore a critical mediator in the assembly of cortical inhibitory circuits.

  14. POSTNATAL PHENOTYPE AND LOCALIZATION OF SPINAL CORD V1 DERIVED INTERNEURONS

    Science.gov (United States)

    Alvarez, Francisco J.; Jonas, Philip C.; Sapir, Tamar; Hartley, Robert; Berrocal, Maria C.; Geiman, Eric J.; Todd, Andrew J.; Goulding, Martyn

    2010-01-01

    Developmental studies identified four classes (V0, V1, V2, V3) of embryonic interneurons in the ventral spinal cord. Very little however is known about their adult phenotypes. In order to further characterize interneuron cell types in the adult, the location, neurotransmitter phenotype, calcium-buffering protein expression and axon distributions of V1-derived neurons in the mouse spinal cord was determined. In the mature (P20 and older) spinal cord, most V1-derived neurons are located in lateral LVII and in LIX, few in medial LVII and none in LVIII. Approximately 40% express calbindin and/or parvalbumin, while few express calretinin. Of seven groups of ventral interneurons identified according to calcium-buffering protein expression, two groups (1 and 4) correspond with V1-derived neurons. Group 1 are Renshaw cells and intensely express calbindin and coexpress parvalbumin and calretinin. They represent 9% of the V1 population. Group 4 express only parvalbumin and represent 27% of V1-derived neurons. V1-derived group 4 neurons receive contacts from primary sensory afferents and are therefore proprioceptive interneurons and the most ventral neurons in this group receive convergent calbindin-IR Renshaw cell inputs. This subgroup resembles Ia inhibitory interneurons (IaINs) and represents 13% of V1-derived neurons. Adult V1-interneuron axons target LIX and LVII and some enter the deep dorsal horn. V1-axons do not cross the midline. V1 derived axonal varicosities were mostly (>80%) glycinergic and a third were GABAergic. None were glutamatergic or cholinergic. In summary, V1 interneurons develop into ipsilaterally projecting, inhibitory interneurons that include Renshaw cells, Ia inhibitory interneurons and other unidentified proprioceptive interneurons. PMID:16255029

  15. A subset of interneurons required for Drosophila larval locomotion.

    Science.gov (United States)

    Yoshikawa, Shingo; Long, Hong; Thomas, John B

    2016-01-01

    Efforts to define the neural circuits generating locomotor behavior have produced an initial understanding of some of the components within the spinal cord, as well as a basic understanding of several invertebrate motor pattern generators. However, how these circuits are assembled during development is poorly understood. We are defining the neural circuit that generates larval locomotion in the genetically tractable fruit fly Drosophila melanogaster to study locomotor circuit development. Forward larval locomotion involves a stereotyped posterior-to-anterior segmental translocation of body wall muscle contraction and is generated by a relatively small number of identified muscles, motor and sensory neurons, plus an unknown number of the ~270 bilaterally-paired interneurons per segment of the 1st instar larva. To begin identifying the relevant interneurons, we have conditionally inactivated synaptic transmission of interneuron subsets and assayed for the effects on locomotion. From this screen we have identified a subset of 25 interneurons per hemisegment, called the lateral locomotor neurons (LLNs), that are required for locomotion. Both inactivation and constitutive activation of the LLNs disrupt locomotion, indicating that patterned output of the LLNs is required. By expressing a calcium indicator in the LLNs, we found that they display a posterior-to-anterior wave of activity within the CNS corresponding to the segmental translocation of the muscle contraction wave. Identification of the LLNs represents the first step toward elucidating the circuit generating larval locomotion. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Extended Interneuronal Network of the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Gergely G. Szabo

    2017-08-01

    Full Text Available Local interneurons control principal cells within individual brain areas, but anecdotal observations indicate that interneuronal axons sometimes extend beyond strict anatomical boundaries. Here, we use the case of the dentate gyrus (DG to show that boundary-crossing interneurons with cell bodies in CA3 and CA1 constitute a numerically significant and diverse population that relays patterns of activity generated within the CA regions back to granule cells. These results reveal the existence of a sophisticated retrograde GABAergic circuit that fundamentally extends the canonical interneuronal network.

  17. Neocortical Development in Brain of Young Children

    DEFF Research Database (Denmark)

    Kjaer, Majken; Fabricius, Katrine; Sigaard, Rasmus Krarup

    2017-01-01

    The early postnatal development of neuron and glia numbers is poorly documented in human brain. Therefore we estimated using design-based stereological methods the regional volumes of neocortex and the numbers of neocortical neurons and glial cells for 10 children (4 girls and 6 boys), ranging from...... neonate to 3 years of age. The 10 infants had a mean of 20.7 × 109 neocortical neurons (range 18.0-24.8 × 109) estimated with a coefficient of variation (CV) = 0.11; this range is similar to adult neuron numbers. The glia populations were 10.5 × 109 oligodendrocytes (range 5.0-16.0 × 109; CV = 0.40); 5...

  18. CLASP2 Links Reelin to the Cytoskeleton during Neocortical Development.

    Science.gov (United States)

    Dillon, Gregory M; Tyler, William A; Omuro, Kerilyn C; Kambouris, John; Tyminski, Camila; Henry, Shawna; Haydar, Tarik F; Beffert, Uwe; Ho, Angela

    2017-03-22

    The Reelin signaling pathway plays a crucial role in regulating neocortical development. However, little is known about how Reelin controls the cytoskeleton during neuronal migration. Here, we identify CLASP2 as a key cytoskeletal effector in the Reelin signaling pathway. We demonstrate that CLASP2 has distinct roles during neocortical development regulating neuron production and controlling neuron migration, polarity, and morphogenesis. We found downregulation of CLASP2 in migrating neurons leads to mislocalized cells in deeper cortical layers, abnormal positioning of the centrosome-Golgi complex, and aberrant length/orientation of the leading process. We discovered that Reelin regulates several phosphorylation sites within the positively charged serine/arginine-rich region that constitute consensus GSK3β phosphorylation motifs of CLASP2. Furthermore, phosphorylation of CLASP2 regulates its interaction with the Reelin adaptor Dab1 and this association is required for CLASP2 effects on neurite extension and motility. Together, our data reveal that CLASP2 is an essential Reelin effector orchestrating cytoskeleton dynamics during brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals

    DEFF Research Database (Denmark)

    Butt, Simon J.B.; Kiehn, Ole

    2003-01-01

    Local neuronal networks that are responsible for walking are poorly characterized in mammals. Using an innovative approach to identify interneuron inputs onto motorneuron populations in a neonatal rodent spinal cord preparation, we have investigated the network responsible for left......-right coordination of the hindlimbs. We demonstrate how commissural interneurons (CINs), whose axons traverse the midline to innervate contralateral neurons, are organized such that distinct flexor and extensor centers in the rostral lumbar spinal cord define activity in both flexor and extensor caudal motor pools....... In addition, the nature of some connections are reconfigured on switching from rest to locomotion via a mechanism that might be associated with synaptic plasticity in the spinal cord. These results from identified pattern-generating interneurons demonstrate how interneuron populations create an effective...

  20. Topographic hub maps of the human structural neocortical network

    NARCIS (Netherlands)

    Nijhuis, E.H.J.; van Cappellen van Walsum, Anne-Marie; Norris, David Gordon

    2013-01-01

    Hubs within the neocortical structural network determined by graph theoretical analysis play a crucial role in brain function. We mapped neocortical hubs topographically, using a sample population of 63 young adults. Subjects were imaged with high resolution structural and diffusion weighted

  1. Topographic hub maps of the human structural neocortical network.

    NARCIS (Netherlands)

    Nijhuis, E.H.J.; Cappellen van Walsum, A.M. van; Norris, D.G.

    2013-01-01

    Hubs within the neocortical structural network determined by graph theoretical analysis play a crucial role in brain function. We mapped neocortical hubs topographically, using a sample population of 63 young adults. Subjects were imaged with high resolution structural and diffusion weighted

  2. In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition.

    Science.gov (United States)

    Mateo, Celine; Avermann, Michael; Gentet, Luc J; Zhang, Feng; Deisseroth, Karl; Petersen, Carl C H

    2011-10-11

    Synaptic interactions between excitatory and inhibitory neocortical neurons are important for mammalian sensory perception. Synaptic transmission between identified neurons within neocortical microcircuits has mainly been studied in brain slice preparations in vitro. Here, we investigate brain-state-dependent neocortical synaptic interactions in vivo by combining the specificity of optogenetic stimulation with the precision of whole-cell recordings from postsynaptic excitatory glutamatergic neurons and GFP-labeled inhibitory GABAergic neurons targeted through two-photon microscopy. Channelrhodopsin-2 (ChR2) stimulation of excitatory layer 2/3 barrel cortex neurons evoked larger and faster depolarizing postsynaptic potentials and more synaptically driven action potentials in fast-spiking (FS) GABAergic neurons compared to both non-fast-spiking (NFS) GABAergic neurons and postsynaptic excitatory pyramidal neurons located within the same neocortical microcircuit. The number of action potentials evoked in ChR2-expressing neurons showed low trial-to-trial variability, but postsynaptic responses varied strongly with near-linear dependence upon spontaneously driven changes in prestimulus membrane potential. Postsynaptic responses in excitatory neurons had reversal potentials, which were hyperpolarized relative to action potential threshold and were therefore inhibitory. Reversal potentials measured in postsynaptic GABAergic neurons were close to action potential threshold. Postsynaptic inhibitory neurons preferentially fired synaptically driven action potentials from spontaneously depolarized network states, with stronger state-dependent modulation in NFS GABAergic neurons compared to FS GABAergic neurons. Inhibitory neurons appear to dominate neocortical microcircuit function, receiving stronger local excitatory synaptic input and firing more action potentials compared to excitatory neurons. In mouse layer 2/3 barrel cortex, we propose that strong state

  3. Neocortical neuronal morphology in the newborn giraffe (Giraffa camelopardalis tippelskirchi) and African elephant (Loxodonta africana).

    Science.gov (United States)

    Jacobs, Bob; Lee, Laura; Schall, Matthew; Raghanti, Mary Ann; Lewandowski, Albert H; Kottwitz, Jack J; Roberts, John F; Hof, Patrick R; Sherwood, Chet C

    2016-02-01

    Although neocortical neuronal morphology has been documented in the adult giraffe (Giraffa camelopardalis tippelskirchi) and African elephant (Loxodonta africana), no research has explored the cortical architecture in newborns of these species. To this end, the current study examined the morphology of neurons from several cortical areas in the newborn giraffe and elephant. After cortical neurons were stained with a modified Golgi technique (N = 153), dendritic branching and spine distributions were analyzed by using computer-assisted morphometry. The results showed that newborn elephant neurons were considerably larger in terms of all dendritic and spine measures than newborn giraffe neurons. Qualitatively, neurons in the newborns appeared morphologically comparable to those in their adult counterparts. Neurons in the newborn elephant differed considerably from those observed in other placental mammals, including the giraffe, particularly with regard to the morphology of spiny projection neurons. Projection neurons were observed in both species, with a much larger variety in the elephant (e.g., flattened pyramidal, nonpyramidal multipolar, and inverted pyramidal neurons). Although local circuit neurons (i.e., interneurons, neurogliaform, Cajal-Retzius neurons) resembled those observed in other eutherian mammals, these were usually spiny, which contrasts with their adult, aspiny equivalents. Newborn projection neurons were smaller than the adult equivalents in both species, but newborn interneurons were approximately the same size as their adult counterparts. Cortical neuromorphology in the newborn giraffe is thus generally consistent with what has been observed in other cetartiodactyls, whereas newborn and adult elephant morphology appears to deviate substantially from what is commonly observed in other placental mammals. © 2015 Wiley Periodicals, Inc.

  4. Interneuron progenitor transplantation to treat CNS dysfunction

    Directory of Open Access Journals (Sweden)

    Muhammad O Chohan

    2016-08-01

    Full Text Available Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field.

  5. Layer Specific Development of Neocortical Pyramidal to Fast Spiking Cells Synapses.

    Directory of Open Access Journals (Sweden)

    Olga eVoinova

    2016-01-01

    Full Text Available All cortical neurons are engaged in inhibitory feedback loops which ensure excitation-inhibition balance and are key elements for the development of coherent network activity. The resulting network patterns are strongly dependent on the strength and dynamic properties of these excitatory-inhibitory loops which show pronounced regional and developmental diversity. We therefore compared the properties and postnatal maturation of two different synapses between rat neocortical pyramidal cells (layer 2/3 and layer 5, respectively and fast spiking (FS interneurons in the corresponding layer. At P14, both synapses showed synaptic depression upon repetitive activation. Synaptic release properties between layer 2/3 pyramidal cells and FS cells were stable from P14 to P28. In contrast, layer 5 pyramidal to FS cell connections showed a significant increase in paired pulse ratio by P28. Presynaptic calcium dynamics did also change at these synapses, including the sensitivity to exogenously loaded calcium buffers and expression of presynaptic calcium channels subtypes. These results underline the large variety of properties at different, yet similar, synapses in the neocortex. They also suggest that postnatal maturation of the brain goes along with increasing differences between synaptically driven network activity in layer 5 and layer 2/3.

  6. A Method to Culture GABAergic Interneurons Derived from the Medial Ganglionic Eminence

    Science.gov (United States)

    Franchi, Sira A.; Macco, Romina; Astro, Veronica; Tonoli, Diletta; Savino, Elisa; Valtorta, Flavia; Sala, Kristyna; Botta, Martina; de Curtis, Ivan

    2018-01-01

    Understanding the mechanisms guiding interneuron development is a central aspect of the current research on cortical/hippocampal interneurons, which is highly relevant to brain function and pathology. In this methodological study we have addressed the setup of protocols for the reproducible culture of dissociated cells from murine medial ganglionic eminences (MGEs), to provide a culture system for the analysis of interneurons in vitro. This study includes the detailed protocols for the preparation of the dissociated cells, and for their culture on optimal substrates for cell migration or differentiation. These cultures enriched in interneurons may allow the investigation of the migratory behavior of interneuron precursors and their differentiation in vitro, up to the formation of morphologically identifiable GABAergic synapses. Live imaging of MGE–derived cells plated on proper substrates shows that they are useful to study the migratory behavior of the precursors, as well as the behavior of growth cones during the development of neurites. Most MGE-derived precursors develop into polarized GABAergic interneurons as determined by axonal, dendritic, and GABAergic markers. We present also a comparison of cells from WT and mutant mice as a proof of principle for the use of these cultures for the analysis of the migration and differentiation of GABAergic cells with different genetic backgrounds. The culture enriched in interneurons described here represents a useful experimental system to examine in a relatively easy and fast way the morpho-functional properties of these cells under physiological or pathological conditions, providing a powerful tool to complement the studies in vivo. PMID:29358905

  7. TTX-Resistant NMDA Receptor-Mediated Membrane Potential Oscillations in Neonatal Mouse Hb9 Interneurons

    Science.gov (United States)

    Masino, Mark A.; Abbinanti, Matthew D.; Eian, John; Harris-Warrick, Ronald M.

    2012-01-01

    Conditional neuronal membrane potential oscillations have been identified as a potential mechanism to help support or generate rhythmogenesis in neural circuits. A genetically identified population of ventromedial interneurons, called Hb9, in the mouse spinal cord has been shown to generate TTX-resistant membrane potential oscillations in the presence of NMDA, serotonin and dopamine, but these oscillatory properties are not well characterized. Hb9 interneurons are rhythmically active during fictive locomotor-like behavior. In this study, we report that exogenous N-Methyl-D-Aspartic acid (NMDA) application is sufficient to produce membrane potential oscillations in Hb9 interneurons. In contrast, exogenous serotonin and dopamine application, alone or in combination, are not sufficient. The properties of NMDA-induced oscillations vary among the Hb9 interneuron population; their frequency and amplitude increase with increasing NMDA concentration. NMDA does not modulate the T-type calcium current (ICa(T)), which is thought to be important in generating locomotor-like activity, in Hb9 neurons. These results suggest that NMDA receptor activation is sufficient for the generation of TTX-resistant NMDA-induced membrane potential oscillations in Hb9 interneurons. PMID:23094101

  8. Serotonin inhibits low-threshold spike interneurons in the striatum

    Science.gov (United States)

    Cains, Sarah; Blomeley, Craig P; Bracci, Enrico

    2012-01-01

    Low-threshold spike interneurons (LTSIs) are important elements of the striatal architecture and the only known source of nitric oxide in this nucleus, but their rarity has so far prevented systematic studies. Here, we used transgenic mice in which green fluorescent protein is expressed under control of the neuropeptide Y (NPY) promoter and striatal NPY-expressing LTSIs can be easily identified, to investigate the effects of serotonin on these neurons. In sharp contrast with its excitatory action on other striatal interneurons, serotonin (30 μm) strongly inhibited LTSIs, reducing or abolishing their spontaneous firing activity and causing membrane hyperpolarisations. These hyperpolarisations persisted in the presence of tetrodotoxin, were mimicked by 5-HT2C receptor agonists and reversed by 5-HT2C antagonists. Voltage-clamp slow-ramp experiments showed that serotonin caused a strong increase in an outward current activated by depolarisations that was blocked by the specific M current blocker XE 991. In current-clamp experiments, XE 991 per se caused membrane depolarisations in LTSIs and subsequent application of serotonin (in the presence of XE 991) failed to affect these neurons. We concluded that serotonin strongly inhibits striatal LTSIs acting through postsynaptic 5-HT2C receptors and increasing an M type current. PMID:22495583

  9. Retinal interneuron survival requires non-cell-autonomous Atrx activity.

    Science.gov (United States)

    Lagali, Pamela S; Medina, Chantal F; Zhao, Brandon Y H; Yan, Keqin; Baker, Adam N; Coupland, Stuart G; Tsilfidis, Catherine; Wallace, Valerie A; Picketts, David J

    2016-11-01

    ATRX is a chromatin remodeling protein that is mutated in several intellectual disability disorders including alpha-thalassemia/mental retardation, X-linked (ATR-X) syndrome. We previously reported the prevalence of ophthalmological defects in ATR-X syndrome patients, and accordingly we find morphological and functional visual abnormalities in a mouse model harboring a mutation occurring in ATR-X patients. The visual system abnormalities observed in these mice parallels the Atrx-null retinal phenotype characterized by interneuron defects and selective loss of amacrine and horizontal cells. The mechanisms that underlie selective neuronal vulnerability and neurodegeneration in the central nervous system upon Atrx mutation or deletion are unknown. To interrogate the cellular specificity of Atrx for its retinal neuroprotective functions, we employed a combination of temporal and lineage-restricted conditional ablation strategies to generate five different conditional knockout mouse models, and subsequently identified a non-cell-autonomous requirement for Atrx in bipolar cells for inhibitory interneuron survival in the retina. Atrx-deficient retinal bipolar cells exhibit functional, structural and molecular alterations consistent with impairments in neuronal activity and connectivity. Gene expression changes in the Atrx-null retina indicate defective synaptic structure and neuronal circuitry, suggest excitotoxic mechanisms of neurodegeneration, and demonstrate that common targets of ATRX in the forebrain and retina may contribute to similar neuropathological processes underlying cognitive impairment and visual dysfunction in ATR-X syndrome.

  10. Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals.

    Science.gov (United States)

    Sherwood, Chet C; Stimpson, Cheryl D; Butti, Camilla; Bonar, Christopher J; Newton, Alisa L; Allman, John M; Hof, Patrick R

    2009-02-01

    Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II-III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.

  11. Synapsin function in GABA-ergic interneurons is required for short-term olfactory habituation.

    Science.gov (United States)

    Sadanandappa, Madhumala K; Blanco Redondo, Beatriz; Michels, Birgit; Rodrigues, Veronica; Gerber, Bertram; VijayRaghavan, K; Buchner, Erich; Ramaswami, Mani

    2013-10-16

    In Drosophila, short-term (STH) and long-term habituation (LTH) of olfactory avoidance behavior are believed to arise from the selective potentiation of GABAergic synapses between multiglomerular local circuit interneurons (LNs) and projection neurons in the antennal lobe. However, the underlying mechanisms remain poorly understood. Here, we show that synapsin (syn) function is necessary for STH and that syn(97)-null mutant defects in STH can be rescued by syn(+) cDNA expression solely in the LN1 subset of GABAergic local interneurons. As synapsin is a synaptic vesicle-clustering phosphoprotein, these observations identify a presynaptic mechanism for STH as well as the inhibitory interneurons in which this mechanism is deployed. Serine residues 6 and/or 533, potential kinase target sites of synapsin, are necessary for synapsin function suggesting that synapsin phosphorylation is essential for STH. Consistently, biochemical analyses using a phospho-synapsin-specific antiserum show that synapsin is a target of Ca(2+) calmodulin-dependent kinase II (CaMKII) phosphorylation in vivo. Additional behavioral and genetic observations demonstrate that CaMKII function is necessary in LNs for STH. Together, these data support a model in which CaMKII-mediated synapsin phosphorylation in LNs induces synaptic vesicle mobilization and thereby presynaptic facilitation of GABA release that underlies olfactory STH. Finally, the striking observation that LTH occurs normally in syn(97) mutants indicates that signaling pathways for STH and LTH diverge upstream of synapsin function in GABAergic interneurons.

  12. Immunohistochemical visualization of mouse interneuron subtypes

    DEFF Research Database (Denmark)

    Jensen, Simon Mølgaard; Ulrichsen, Maj; Boggild, Simon

    2014-01-01

    of the hippocampus where they have previously been described. Additionally, the antibodies were also tested on sections from mouse spinal cord with similar criteria for specificity of the antibodies. Using the antibodies with a high rating on pAbmAbs, stainings with high signal-to-noise ratios and location......The activity of excitatory neurons is controlled by a small, but highly diverse population of inhibitory interneurons. These cells show a high level of physiological, morphological and neurochemical heterogeneity, and play highly specific roles in neuronal circuits. In the mammalian hippocampus...

  13. Colocalization of allatotropin and tachykinin-related peptides with classical transmitters in physiologically distinct subtypes of olfactory local interneurons in the cockroach (Periplaneta americana).

    Science.gov (United States)

    Fusca, Debora; Schachtner, Joachim; Kloppenburg, Peter

    2015-07-01

    In the insect antennal lobe different types of local interneurons mediate complex excitatory and inhibitory interactions between the glomerular pathways to structure the spatiotemporal representation of odors. Mass spectrometric and immunohistochemical studies have shown that in local interneurons classical neurotransmitters are likely to colocalize with a variety of substances that can potentially act as cotransmitters or neuromodulators. In the antennal lobe of the cockroach Periplaneta americana, gamma-aminobutyric acid (GABA) has been identified as the potential inhibitory transmitter of spiking type I local interneurons, whereas acetylcholine is most likely the excitatory transmitter of nonspiking type IIa1 local interneurons. This study used whole-cell patch clamp recordings combined with single-cell labeling and immunohistochemistry to test if the GABAergic type I local interneurons and the cholinergic type IIa1 local interneurons express allatotropin and tachykinin-related neuropeptides (TKRPs). These are two of the most abundant types of peptides in the insect antennal lobe. GABA-like and choline acetyltransferase (ChAT)-like immunoreactivity were used as markers for GABAergic and cholinergic neurons, respectively. About 50% of the GABA-like immunoreactive (-lir) spiking type I local interneurons were allatotropin-lir, and ∼ 40% of these neurons were TKRP-lir. About 20% of nonspiking ChAT-lir type IIa1 local interneurons were TKRP-lir. Our results suggest that in subpopulations of GABAergic and cholinergic local interneurons, allatotropin and TKRPs might act as cotransmitters or neuromodulators. To unequivocally assign neurotransmitters, cotransmitters, and neuromodulators to identified classes of antennal lobe neurons is an important step to deepen our understanding of information processing in the insect olfactory system. © 2015 Wiley Periodicals, Inc.

  14. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    Science.gov (United States)

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main

  15. NR2 subunits and NMDA receptors on lamina II inhibitory and excitatory interneurons of the mouse dorsal horn

    Directory of Open Access Journals (Sweden)

    MacDermott Amy B

    2010-05-01

    Full Text Available Abstract Background NMDA receptors expressed by spinal cord neurons in the superficial dorsal horn are involved in the development of chronic pain associated with inflammation and nerve injury. The superficial dorsal horn has a complex and still poorly understood circuitry that is mainly populated by inhibitory and excitatory interneurons. Little is known about how NMDA receptor subunit composition, and therefore pharmacology and voltage dependence, varies with neuronal cell type. NMDA receptors are typically composed of two NR1 subunits and two of four NR2 subunits, NR2A-2D. We took advantage of the differences in Mg2+ sensitivity of the NMDA receptor subtypes together with subtype preferring antagonists to identify the NR2 subunit composition of NMDA receptors expressed on lamina II inhibitory and excitatory interneurons. To distinguish between excitatory and inhibitory interneurons, we used transgenic mice expressing enhanced green fluorescent protein driven by the GAD67 promoter. Results Analysis of conductance ratio and selective antagonists showed that lamina II GABAergic interneurons express both the NR2A/B containing Mg2+ sensitive receptors and the NR2C/D containing NMDA receptors with less Mg2+ sensitivity. In contrast, excitatory lamina II interneurons express primarily NR2A/B containing receptors. Despite this clear difference in NMDA receptor subunit expression in the two neuronal populations, focally stimulated synaptic input is mediated exclusively by NR2A and 2B containing receptors in both neuronal populations. Conclusions Stronger expression of NMDA receptors with NR2C/D subunits by inhibitory interneurons compared to excitatory interneurons may provide a mechanism to selectively increase activity of inhibitory neurons during intense excitatory drive that can provide inhibitory feedback.

  16. Cortical interneuron dysfunction in epilepsy associated with autism spectrum disorders.

    Science.gov (United States)

    Jacob, John

    2016-02-01

    Autism and epilepsy are two associated disorders that are highly prevalent, share common developmental origins, and demonstrate substantial heritability. In this review, cross-disciplinary data in a rapidly evolving field that bridges neurology and psychiatry are synthesized to identify shared biologic mechanisms. The relationship between these debilitating, lifelong conditions is examined at the clinical, genetic, and neurophysiologic levels in humans and in animal models. Scopus and PubMed searches were used to identify relevant literature. Clinical observations have prompted speculation about the interdependence of autism and epilepsy, but causal relationships have proved difficult to determine. Despite their heritability, the genetic basis of autism spectrum disorder (ASD) and epilepsy has remained largely elusive until the advent of next-generation sequencing. This approach has revealed that mutations that are either causal or confer an increased disease risk are found in numerous different genes, any one of which accounts for only a small percentage of cases. Conversely, even cases with identical clinical phenotypes can be genetically heterogeneous. Candidate gene identification has facilitated the development of mouse genetic models, which in parallel with human studies have implicated shared brain regions and circuits that mediate disease expression. Diverse genetic causes of ASD and epilepsy converge on cortical interneuron circuits as one important mediator of both disorders. Cortical interneurons are among the most diverse cell types in the brain and their unique chemical and electrical coupling exert a powerful inhibitory influence on excitatory neurons via the release of the neurotransmitter, γ-aminobutyric acid (GABA). These multifaceted approaches have validated theories derived from the field of developmental neurobiology, which propose that the neurologic and neuropsychiatric manifestations are caused by an altered ratio of excitation to

  17. Meningeal defects alter the tangential migration of cortical interneurons in Foxc1hith/hith mice

    Directory of Open Access Journals (Sweden)

    Zarbalis Konstantinos

    2012-01-01

    Full Text Available Abstract Background Tangential migration presents the primary mode of migration of cortical interneurons translocating into the cerebral cortex from subpallial domains. This migration takes place in multiple streams with the most superficial one located in the cortical marginal zone. While a number of forebrain-expressed molecules regulating this process have emerged, it remains unclear to what extent structures outside the brain, like the forebrain meninges, are involved. Results We studied a unique Foxc1 hypomorph mouse model (Foxc1hith/hith with meningeal defects and impaired tangential migration of cortical interneurons. We identified a territorial correlation between meningeal defects and disruption of interneuron migration along the adjacent marginal zone in these animals, suggesting that impaired meningeal integrity might be the primary cause for the observed migration defects. Moreover, we postulate that the meningeal factor regulating tangential migration that is affected in homozygote mutants is the chemokine Cxcl12. In addition, by using chromatin immunoprecipitation analysis, we provide evidence that the Cxcl12 gene is a direct transcriptional target of Foxc1 in the meninges. Further, we observe migration defects of a lesser degree in Cajal-Retzius cells migrating within the cortical marginal zone, indicating a less important role for Cxcl12 in their migration. Finally, the developmental migration defects observed in Foxc1hith/hith mutants do not lead to obvious differences in interneuron distribution in the adult if compared to control animals. Conclusions Our results suggest a critical role for the forebrain meninges to promote during development the tangential migration of cortical interneurons along the cortical marginal zone and Cxcl12 as the factor responsible for this property.

  18. Activation of frontal neocortical areas by vocal production in marmosets

    Directory of Open Access Journals (Sweden)

    Cristiano S Simões

    2010-09-01

    Full Text Available Primates often rely on vocal communication to mediate social interactions. Although much is known about the acoustic structure of primate vocalizations and the social context in which they are usually uttered, our knowledge about the neocortical control of audio-vocal interactions in primates is still incipient, being mostly derived from lesion studies in squirrel monkeys and macaques. To map the neocortical areas related to vocal control in a New World primate species, the common marmoset, we employed a method previously used with success in other vertebrate species: Analysis of the expression of the immediate-early gene Egr-1 in freely behaving animals. The neocortical distribution of Egr-1 immunoreactive cells in three marmosets that were exposed to the playback of conspecific vocalizations and vocalized spontaneously (H/V group was compared to data from three other marmosets that also heard the playback but did not vocalize (H/n group. The anterior cingulate cortex, the dorsomedial prefrontal cortex and the ventrolateral prefrontal cortex presented a higher number of Egr-1 immunoreactive cells in the H/V group than in H/n animals. Our results provide direct evidence that the ventrolateral prefrontal cortex, the region that comprises Broca's area in humans and has been associated with auditory processing of species-specific vocalizations and orofacial control in macaques, is engaged during vocal output in marmosets. Altogether, our results support the notion that the network of neocortical areas related to vocal communication in marmosets is quite similar to that of Old world primates. The vocal production role played by these areas and their importance for the evolution of speech in primates are discussed.

  19. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval.

    Directory of Open Access Journals (Sweden)

    Yaisa Andrews-Zwilling

    Full Text Available Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD, the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear.We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0--a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity.Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.

  20. Graphene Oxide Dysregulates Neuroligin/NLG-1-Mediated Molecular Signaling in Interneurons in Caenorhabditis elegans

    Science.gov (United States)

    Chen, He; Li, Huirong; Wang, Dayong

    2017-01-01

    Graphene oxide (GO) can be potentially used in many medical and industrial fields. Using assay system of Caenorhabditis elegans, we identified the NLG-1/Neuroligin-mediated neuronal signaling dysregulated by GO exposure. In nematodes, GO exposure significantly decreased the expression of NLG-1, a postsynaptic cell adhesion protein. Loss-of-function mutation of nlg-1 gene resulted in a susceptible property of nematodes to GO toxicity. Rescue experiments suggested that NLG-1 could act in AIY interneurons to regulate the response to GO exposure. In the AIY interneurons, PKC-1, a serine/threonine protein kinase C (PKC) protein, was identified as the downstream target for NLG-1 in the regulation of response to GO exposure. LIN-45, a Raf protein in ERK signaling pathway, was further identified as the downstream target for PKC-1 in the regulation of response to GO exposure. Therefore, GO may dysregulate NLG-1-mediated molecular signaling in the interneurons, and a neuronal signaling cascade of NLG-1-PKC-1-LIN-45 was raised to be required for the control of response to GO exposure. More importantly, intestinal RNAi knockdown of daf-16 gene encoding a FOXO transcriptional factor in insulin signaling pathway suppressed the resistant property of nematodes overexpressing NLG-1 to GO toxicity, suggesting the possible link between neuronal NLG-1 signaling and intestinal insulin signaling in the regulation of response to GO exposure.

  1. Neonatal NMDA receptor blockade disrupts spike timing and glutamatergic synapses in fast spiking interneurons in a NMDA receptor hypofunction model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Kevin S Jones

    Full Text Available The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI is considered a primary contributor to the pathophysiology of schizophrenia (SZ, but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model.

  2. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas.

    Science.gov (United States)

    Jobst, Barbara C; Kapur, Ritu; Barkley, Gregory L; Bazil, Carl W; Berg, Michel J; Bergey, Gregory K; Boggs, Jane G; Cash, Sydney S; Cole, Andrew J; Duchowny, Michael S; Duckrow, Robert B; Edwards, Jonathan C; Eisenschenk, Stephan; Fessler, A James; Fountain, Nathan B; Geller, Eric B; Goldman, Alica M; Goodman, Robert R; Gross, Robert E; Gwinn, Ryder P; Heck, Christianne; Herekar, Aamr A; Hirsch, Lawrence J; King-Stephens, David; Labar, Douglas R; Marsh, W R; Meador, Kimford J; Miller, Ian; Mizrahi, Eli M; Murro, Anthony M; Nair, Dileep R; Noe, Katherine H; Olejniczak, Piotr W; Park, Yong D; Rutecki, Paul; Salanova, Vicenta; Sheth, Raj D; Skidmore, Christopher; Smith, Michael C; Spencer, David C; Srinivasan, Shraddha; Tatum, William; Van Ness, Paul; Vossler, David G; Wharen, Robert E; Worrell, Gregory A; Yoshor, Daniel; Zimmerman, Richard S; Skarpaas, Tara L; Morrell, Martha J

    2017-06-01

    Evaluate the seizure-reduction response and safety of brain-responsive stimulation in adults with medically intractable partial-onset seizures of neocortical origin. Patients with partial seizures of neocortical origin were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. Additional analyses considered safety and seizure reduction according to lobe and functional area (e.g., eloquent cortex) of seizure onset. There were 126 patients with seizures of neocortical onset. The average follow-up was 6.1 implant years. The median percent seizure reduction was 70% in patients with frontal and parietal seizure onsets, 58% in those with temporal neocortical onsets, and 51% in those with multilobar onsets (last observation carried forward [LOCF] analysis). Twenty-six percent of patients experienced at least one seizure-free period of 6 months or longer and 14% experienced at least one seizure-free period of 1 year or longer. Patients with lesions on magnetic resonance imaging (MRI; 77% reduction, LOCF) and those with normal MRI findings (45% reduction, LOCF) benefitted, although the treatment response was more robust in patients with an MRI lesion (p = 0.02, generalized estimating equation [GEE]). There were no differences in the seizure reduction in patients with and without prior epilepsy surgery or vagus nerve stimulation. Stimulation parameters used for treatment did not cause acute or chronic neurologic deficits, even in eloquent cortical areas. The rates of infection (0.017 per patient implant year) and perioperative hemorrhage (0.8%) were not greater than with other neurostimulation devices. Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable

  3. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2015-11-01

    Full Text Available Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

  4. Response characteristics of vibration-sensitive interneurons related to Johnston's organ in the honeybee, Apis mellifera.

    Science.gov (United States)

    Ai, Hiroyuki; Rybak, Jürgen; Menzel, Randolf; Itoh, Tsunao

    2009-07-10

    Honeybees detect airborne vibration by means of Johnston's organ (JO), located in the pedicel of each antenna. In this study we identified two types of vibration-sensitive interneurons with arborizations in the primary sensory area of the JO, namely, the dorsal lobe-interneuron 1 (DL-Int-1) and dorsal lobe-interneuron 2 (DL-Int-2) using intracellular recordings combined with intracellular staining. For visualizing overlapping areas between the JO sensory terminals and the branches of these identified interneurons, the three-dimensional images of the individual neurons were registered into the standard atlas of the honeybee brain (Brandt et al. [2005] J Comp Neurol 492:1-19). Both DL-Int-1 and DL-Int-2 overlapped with the central terminal area of receptor neurons of the JO in the DL. For DL-Int-1 an on-off phasic excitation was elicited by vibrational stimuli applied to the JO when the spontaneous spike frequency was low, whereas tonic inhibition was induced when it was high. Moreover, current injection into a DL-Int-1 led to changes of the response pattern from on-off phasic excitation to tonic inhibition, in response to the vibratory stimulation. Although the vibration usually induced on-off phasic excitation in DL-Int-1, vibration applied immediately after odor stimulation induced tonic inhibition in it. DL-Int-2 responded to vibration stimuli applied to the JO by a tonic burst and were most sensitive to 265 Hz vibration, which is coincident with the strongest frequency of airborne vibrations arising during the waggle dance. These results suggest that DL-Int-1 and DL-Int-2 are related to coding of the duration of the vibration as sensed by the JO. Copyright 2009 Wiley-Liss, Inc.

  5. Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors.

    Science.gov (United States)

    Hedrick, Tristan; Waters, Jack

    2015-04-01

    The neuromodulator acetylcholine (ACh) shapes neocortical function during sensory perception, motor control, arousal, attention, learning, and memory. Here we investigate the mechanisms by which ACh affects neocortical pyramidal neurons in adult mice. Stimulation of cholinergic axons activated muscarinic and nicotinic ACh receptors on pyramidal neurons in all cortical layers and in multiple cortical areas. Nicotinic receptor activation evoked short-latency, depolarizing postsynaptic potentials (PSPs) in many pyramidal neurons. Nicotinic receptor-mediated PSPs promoted spiking of pyramidal neurons. The duration of the increase in spiking was membrane potential dependent, with nicotinic receptor activation triggering persistent spiking lasting many seconds in neurons close to threshold. Persistent spiking was blocked by intracellular BAPTA, indicating that nicotinic ACh receptor activation evoked persistent spiking via a long-lasting calcium-activated depolarizing current. We compared nicotinic PSPs in primary motor cortex (M1), prefrontal cortex (PFC), and visual cortex. The laminar pattern of nicotinic excitation was not uniform but was broadly similar across areas, with stronger modulation in deep than superficial layers. Superimposed on this broad pattern were local differences, with nicotinic PSPs being particularly large and common in layer 5 of M1 but not layer 5 of PFC or primary visual cortex (V1). Hence, in addition to modulating the excitability of pyramidal neurons in all layers via muscarinic receptors, synaptically released ACh preferentially increases the activity of deep-layer neocortical pyramidal neurons via nicotinic receptors, thereby adding laminar selectivity to the widespread enhancement of excitability mediated by muscarinic ACh receptors. Copyright © 2015 the American Physiological Society.

  6. Is attentional blink a byproduct of neocortical attractors?

    Directory of Open Access Journals (Sweden)

    David N Silverstein

    2011-05-01

    Full Text Available This study proposes a computational model for attentional blink or blink of the mind, a phenomenon where a human subject misses perception of a later expected visual pattern as two expected visual patterns are presented less than 500 ms apart. A neocortical patch modeled as an attractor network is stimulated with a sequence of 14 patterns 100 ms apart, two of which are expected targets. Patterns that become active attractors are considered recognized. A neocortical patch is represented as a square matrix of hypercolumns, each containing a set of minicolumns with synaptic connections within and across both minicolumns and hypercolumns. Each minicolumn consists of locally connected layer 2/3 pyramidal cells with interacting basket cells and layer 4 pyramidal cells for input stimulation. All neurons are implemented using the Hodgkin-Huxley multi-compartmental cell formalism and include calcium dynamics, and they interact via saturating and depressing AMPA / NMDA and GABAA synapses. Stored patterns are encoded with global connectivity of minicolumns across hypercolumns and active patterns compete as the result of lateral inhibition in the network. Stored patterns were stimulated over time intervals to create attractor interference measurable with synthetic spike traces. This setup corresponds with item presentations in human visual attentional blink studies. Stored target patterns were depolarized while distractor patterns where hyperpolarized to represent expectation of items in working memory. Additionally, studies on the inhibitory effect of benzodiazopines on attentional blink in human subjects were compared with neocortical simulations where the GABAA receptor conductance and decay time were increased. Simulations showed increases in the attentional blink duration, agreeing with observations in human studies.

  7. Neocortical Neuronal Loss in Patients with Multiple System Atrophy

    DEFF Research Database (Denmark)

    Salvesen, Lisette; Winge, Kristian; Brudek, Tomasz

    2017-01-01

    To determine the extent of neocortical involvement in multiple system atrophy (MSA), we used design-based stereological methods to estimate the total numbers of neurons, oligodendrocytes, astrocytes, and microglia in the frontal, parietal, temporal, and occipital cortex of brains from 11 patients...... with MSA and 11 age- and gender-matched control subjects. The stereological data were supported by cell marker expression analyses in tissue samples from the prefrontal cortex. We found significantly fewer neurons in the frontal and parietal cortex of MSA brains compared with control brains. Significantly...

  8. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy.

    Science.gov (United States)

    De Stasi, Angela Michela; Farisello, Pasqualina; Marcon, Iacopo; Cavallari, Stefano; Forli, Angelo; Vecchia, Dania; Losi, Gabriele; Mantegazza, Massimo; Panzeri, Stefano; Carmignoto, Giorgio; Bacci, Alberto; Fellin, Tommaso

    2016-04-01

    Severe myoclonic epilepsy of infancy (SMEI) is associated with loss of function of the SCN1A gene encoding the NaV1.1 sodium channel isoform. Previous studies in Scn1a(-/+) mice during the pre-epileptic period reported selective reduction in interneuron excitability and proposed this as the main pathological mechanism underlying SMEI. Yet, the functional consequences of this interneuronal dysfunction at the circuit level in vivo are unknown. Here, we investigated whether Scn1a(-/+) mice showed alterations in cortical network function. We found that various forms of spontaneous network activity were similar in Scn1a(-/+) during the pre-epileptic period compared with wild-type (WT) in vivo. Importantly, in brain slices from Scn1a(-/+) mice, the excitability of parvalbumin (PV) and somatostatin (SST) interneurons was reduced, epileptiform activity propagated more rapidly, and complex synaptic changes were observed. However, in vivo, optogenetic reduction of firing in PV or SST cells in WT mice modified ongoing network activities, and juxtasomal recordings from identified PV and SST interneurons showed unaffected interneuronal firing during spontaneous cortical dynamics in Scn1a(-/+) compared with WT. These results demonstrate that interneuronal hypoexcitability is not observed in Scn1a(-/+) mice during spontaneous activities in vivo and suggest that additional mechanisms may contribute to homeostatic rearrangements and the pathogenesis of SMEI. © The Author 2016. Published by Oxford University Press.

  9. Striatal cholinergic interneuron regulation and circuit effects

    Directory of Open Access Journals (Sweden)

    Sean Austin Lim

    2014-10-01

    Full Text Available The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh. Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI, which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.

  10. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns.

    Science.gov (United States)

    Jia, Yan; Parker, David

    2016-01-01

    The output of a neuronal network depends on the organization and functional properties of its component cells and synapses. While the characterization of synaptic properties has lagged cellular analyses, a potentially important aspect in rhythmically active networks is how network synapses affect, and are in turn affected by, network activity. This could lead to a potential circular interaction where short-term activity-dependent synaptic plasticity is both influenced by and influences the network output. The analysis of synaptic plasticity in the lamprey locomotor network was extended here to characterize the short-term plasticity of connections between network interneurons and to try and address its potential network role. Paired recordings from identified interneurons in quiescent networks showed synapse-specific synaptic properties and plasticity that supported the presence of two hemisegmental groups that could influence bursting: depression in an excitatory interneuron group, and facilitation in an inhibitory feedback circuit. The influence of activity-dependent synaptic plasticity on network activity was investigated experimentally by changing Ringer Ca(2+) levels, and in a simple computer model. A potential caveat of the experimental analyses was that changes in Ringer Ca(2+) (and compensatory adjustments in Mg(2+) in some cases) could alter several other cellular and synaptic properties. Several of these properties were tested, and while there was some variability, these were not usually significantly affected by the Ringer changes. The experimental analyses suggested that depression of excitatory inputs had the strongest influence on the patterning of network activity. The simulation supported a role for this effect, and also suggested that the inhibitory facilitating group could modulate the influence of the excitatory synaptic depression. Short-term activity-dependent synaptic plasticity has not generally been considered in spinal cord models. These

  11. A multi-resource data integration approach: Identification of candidate genes regulating cell proliferation during neocortical development

    Directory of Open Access Journals (Sweden)

    Cynthia M Vied

    2014-08-01

    Full Text Available Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2 with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5. We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ at 8-9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2 and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100's, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.

  12. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    Science.gov (United States)

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  13. Revisiting the enigmatic cortical calretinin-expressing interneurons

    Directory of Open Access Journals (Sweden)

    Bruno eCauli

    2014-06-01

    Full Text Available Cortical calretinin (CR-expressing interneurons represent a heterogeneous subpopulation of about 10-30% of GABAergic interneurons, which altogether total ca. 12-20% of all cortical neurons. In the rodent neocortex, CR cells display different somatodendritic morphologies ranging from bipolar to multipolar but the bipolar cells and their variations dominate. They are also diverse at the molecular level as they were shown to express numerous neuropeptides in different combinations including vasoactive intestinal polypeptide (VIP, cholecystokinin (CCK, neurokinin B (NKB corticotrophin releasing factor (CRF, enkephalin (Enk but also neuropeptide Y (NPY and somatostatin (SOM to a lesser extent. CR-expressing interneurons exhibit different firing behaviors such as adapting, bursting or irregular. They mainly originate from the caudal ganglionic eminence (CGE but a subpopulation also derives from the dorsal part of the medial ganglionic eminence (MGE. Cortical GABAergic CR-expressing interneurons can be divided in two main populations: VIP-bipolar interneurons deriving from the CGE and SOM-Martinotti-like interneurons originating in the dorsal MGE. Although bipolar cells account for the majority of CR-expressing interneurons, the roles they play in cortical neuronal circuits and in the more general metabolic physiology of the brain remain elusive and enigmatic. The aim of this review is, firstly, to provide a comprehensive view of the morphological, molecular and electrophysiological features defining this cell type. We will, secondly, also summarize what is known about their place in the cortical circuit, their modulation by subcortical afferents and the functional roles they might play in neuronal processing and energy metabolism.

  14. Cholinergic interneurons are differentially distributed in the human striatum.

    Science.gov (United States)

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2007-11-14

    The striatum (caudate nucleus, CN, and putamen, Put) is a group of subcortical nuclei involved in planning and executing voluntary movements as well as in cognitive processes. Its neuronal composition includes projection neurons, which connect the striatum with other structures, and interneurons, whose main roles are maintaining the striatal organization and the regulation of the projection neurons. The unique electrophysiological and functional properties of the cholinergic interneurons give them a crucial modulating function on the overall striatal response. This study was carried out using stereological methods to examine the volume and density (cells/mm(3)) of these interneurons, as visualized by choline acetyltransferase (ChAT) immunoreactivity, in the following territories of the CN and Put of nine normal human brains: 1) precommissural head; 2) postcommissural head; 3) body; 4) gyrus and 5) tail of the CN; 6) precommissural and 7) postcommissural Put. The distribution of ChAT interneurons was analyzed with respect to the topographical, functional and chemical territories of the dorsal striatum. The CN was more densely populated by cholinergic neurons than the Put, and their density increased along the anteroposterior axis of the striatum with the CN body having the highest neuronal density. The associative territory of the dorsal striatum was by far the most densely populated. The striosomes of the CN precommissural head and the postcommissural Put contained the greatest number of ChAT-ir interneurons. The intrastriosomal ChAT-ir neurons were abundant on the periphery of the striosomes throughout the striatum. All these data reveal that cholinergic interneurons are differentially distributed in the distinct topographical and functional territories of the human dorsal striatum, as well as in its chemical compartments. This heterogeneity may indicate that the posterior aspects of the CN require a special integration of information by interneurons

  15. Identification of DVA interneuron regulatory sequences in Caenorhabditis elegans.

    Science.gov (United States)

    Puckett Robinson, Carmie; Schwarz, Erich M; Sternberg, Paul W

    2013-01-01

    The identity of each neuron is determined by the expression of a distinct group of genes comprising its terminal gene battery. The regulatory sequences that control the expression of such terminal gene batteries in individual neurons is largely unknown. The existence of a complete genome sequence for C. elegans and draft genomes of other nematodes let us use comparative genomics to identify regulatory sequences directing expression in the DVA interneuron. Using phylogenetic comparisons of multiple Caenorhabditis species, we identified conserved non-coding sequences in 3 of 10 genes (fax-1, nmr-1, and twk-16) that direct expression of reporter transgenes in DVA and other neurons. The conserved region and flanking sequences in an 85-bp intronic region of the twk-16 gene directs highly restricted expression in DVA. Mutagenesis of this 85 bp region shows that it has at least four regions. The central 53 bp region contains a 29 bp region that represses expression and a 24 bp region that drives broad neuronal expression. Two short flanking regions restrict expression of the twk-16 gene to DVA. A shared GA-rich motif was identified in three of these genes but had opposite effects on expression when mutated in the nmr-1 and twk-16 DVA regulatory elements. We identified by multi-species conservation regulatory regions within three genes that direct expression in the DVA neuron. We identified four contiguous regions of sequence of the twk-16 gene enhancer with positive and negative effects on expression, which combined to restrict expression to the DVA neuron. For this neuron a single binding site may thus not achieve sufficient specificity for cell specific expression. One of the positive elements, an 8-bp sequence required for expression was identified in silico by sequence comparisons of seven nematode species, demonstrating the potential resolution of expanded multi-species phylogenetic comparisons.

  16. Responses of Withdrawal Interneurons to Serotonin Applications in Naïve and Learned Snails Are Different

    Directory of Open Access Journals (Sweden)

    Tatiana K. Bogodvid

    2017-12-01

    Full Text Available Long-term changes in membrane potential after associative training were described previously in identified premotor interneurons for withdrawal of the terrestrial snail Helix. Serotonin was shown to be a major transmitter involved in triggering the long-term changes in mollusks. In the present study we compared the changes in electrophysiological characteristics of identifiable premotor interneurons for withdrawal in response to bath applications of serotonin (5-HT or serotonin precursor 5-hydroxytryptophan (5-HTP in preparations from naïve, neurotoxin-injected or associatively trained snails. It was found that 5-HT or 5-HTP applications caused a significant decrease of membrane potential in premotor interneurons of naïve snails, associatively trained snails and snails with impaired serotonergic system by injection of a selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT 1 week before the experiments. Applications of 5-HT or 5-HTP did not cause significant changes in the action potential (AP threshold potential of these neurons in naïve snails. Conversely, applications of 5-HT or 5-HTP to the premotor interneurons of previously trained or 5,7-DHT-injected snails caused a significant increase in the firing threshold potential in spite of a depolarizing shift of the resting membrane potential. Results demonstrate that responsiveness of premotor interneurons to extracellularly applied 5-HT or 5-HTP changes for days after the associative training or serotonin depletion. Similarity of the effects in trained and 5,7-DHT-injected animals may be due to massive release of serotonin elicited by 5,7-DHT injection. Our results suggest that serotonin release due to aversive conditionining or elicited by the neurotoxin administration triggers similar changes in resting membrane potential and AP threshold in response to bath applications of 5-HT or its precursor 5-HTP.

  17. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  18. Emx1 Is Required for Neocortical Area Patterning.

    Directory of Open Access Journals (Sweden)

    Adam M Stocker

    Full Text Available Establishing appropriate area patterning in the neocortex is a critical developmental event, and transcription factors whose expression is graded across the developing neural axes have been implicated in this process. While previous reports suggested that the transcription factor Emx1 does not contribute to neocortical area patterning, those studies were performed at perinatal ages prior to the emergence of primary areas. We therefore examined two different Emx1 deletion mouse lines once primary areas possess mature features. Following the deletion of Emx1, the frontal and motor areas were expanded while the primary visual area was reduced, and overall the areas shifted posterio-medially. This patterning phenotype was consistent between the two Emx1 deletion strategies. The present study demonstrates that Emx1 is an area patterning transcription factor and is required for the specification of the primary visual area.

  19. Organization of projection-specific interneurons in the spinal cord of the red-eared turtle

    DEFF Research Database (Denmark)

    Nissen, Ulla Vig; Moldovan, Mihai; Hounsgaard, Jørn

    2008-01-01

    Using differential retrograde axonal tracing, we identified motoneurons (MNs) and projection-specific interneuron (IN) classes in lumbar segment D9 of the adult red-eared turtle spinal cord. We characterized the distribution of these neurons in the transverse plane, and estimated their numbers...... zone. Within the IIN and CIN populations, aINs and dINs overlap extensively. The adIINs and adCINs make up only a small fraction of the total number of INs and are scattered throughout much of the respective IIN and CIN domains. The proportions of IINs and CINs are about equal, as are the proportions...

  20. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate.

    Science.gov (United States)

    Petros, Timothy J; Bultje, Ronald S; Ross, M Elizabeth; Fishell, Gord; Anderson, Stewart A

    2015-11-10

    Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Interneurons in the Honeybee Primary Auditory Center Responding to Waggle Dance-Like Vibration Pulses.

    Science.gov (United States)

    Ai, Hiroyuki; Kai, Kazuki; Kumaraswamy, Ajayrama; Ikeno, Hidetoshi; Wachtler, Thomas

    2017-11-01

    Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee ( Apis mellifera ). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee. SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication. Copyright © 2017 the authors 0270-6474/17/3710624-12$15.00/0.

  2. Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Hofmann, Gabrielle; Balgooyen, Laura; Mattis, Joanna; Deisseroth, Karl; Buckmaster, Paul S

    2016-06-01

    In patients with temporal lobe epilepsy, seizures usually start in the hippocampus, and dentate granule cells are hyperexcitable. Somatostatin interneurons are a major subpopulation of inhibitory neurons in the dentate gyrus, and many are lost in patients and animal models. However, surviving somatostatin interneurons sprout axon collaterals and form new synapses, so the net effect on granule cell inhibition remains unclear. The present study uses optogenetics to activate hilar somatostatin interneurons and measure the inhibitory effect on dentate gyrus perforant path-evoked local field potential responses in a mouse model of temporal lobe epilepsy. In controls, light activation of hilar somatostatin interneurons inhibited evoked responses up to 40%. Epileptic pilocarpine-treated mice exhibited loss of hilar somatostatin interneurons and less light-induced inhibition of evoked responses. These findings suggest that severe epilepsy-related loss of hilar somatostatin interneurons can overwhelm the surviving interneurons' capacity to compensate by sprouting axon collaterals. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  3. Drosophila Ovipositor Extension in Mating Behavior and Egg Deposition Involves Distinct Sets of Brain Interneurons

    Science.gov (United States)

    Kimura, Ken-ichi; Sato, Chiaki; Koganezawa, Masayuki; Yamamoto, Daisuke

    2015-01-01

    Oviposition is a female-specific behavior that directly affects fecundity, and therefore fitness. If a fertilized female encounters another male that she has evaluated to be of better quality than her previous mate, it would be beneficial for her to remate with this male rather than depositing her eggs. Females who decided not to remate exhibited rejection behavior toward a courting male and engaged in oviposition. Although recent studies of Drosophila melanogaster identified sensory neurons and putative second-order ascending interneurons that mediate uterine afferents affecting female reproductive behavior, little is known about the brain circuitry that selectively activates rejection versus oviposition behaviors. We identified the sexually dimorphic pC2l and female-specific pMN2 neurons, two distinct classes of doublesex (dsx)-expressing neurons that can initiate ovipositor extension associated with rejection and oviposition behavior, respectively. pC2l interneurons, which induce ovipositor extrusion for rejection in females, have homologues that control courtship behavior in males. Activation of these two classes of neurons appears to be mutually exclusive and each governs hierarchical control of the motor program in the VNC either for rejection or oviposition, contributing centrally to the switching on or off of the alternative motor programs. PMID:25955600

  4. Action of tachykinins in the hippocampus: facilitation of inhibitory drive to GABAergic interneurons.

    Science.gov (United States)

    Ogier, R; Wrobel, L J; Raggenbass, M

    2008-10-15

    By acting on neurokinin 1 (NK1) receptors, neuropeptides of the tachykinin family can powerfully excite rat hippocampal GABAergic interneurons located in the CA1 region and by this way indirectly inhibit CA1 pyramidal neurons. In addition to contact pyramidal neurons, however, GABAergic hippocampal interneurons can also innervate other interneurons. We thus asked whether activation of tachykinin-sensitive interneurons could indirectly inhibit other interneurons. The study was performed in hippocampal slices of young adult rats. Synaptic events were recorded using the whole-cell patch clamp technique. We found that substance P enhanced GABAergic inhibitory postsynaptic currents in a majority of the interneurons tested. Miniature, action potential-independent inhibitory postsynaptic currents were unaffected by substance P, as were evoked inhibitory synaptic currents. This suggests that the peptide acted at the somatodendritic membrane of interneurons, rather than at their axon terminals. The effect of substance P was mimicked by a selective NK1 receptor agonist, but not by neurokinin 2 (NK2) or neurokinin 3 (NK3) receptor agonists, and was suppressed by a NK1 selective receptor antagonist. In contrast to substance P, oxytocin, another peptide capable of activating hippocampal interneurons, had no effect on the inhibitory synaptic drive onto interneurons. We conclude that tachykinins, by acting on NK1 receptors, can influence the hippocampal activity by indirectly inhibiting both pyramidal neurons and GABAergic interneurons. Depending on the precise balance between these effects, tachykinins may either activate or depress hippocampal network activity.

  5. ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons.

    Science.gov (United States)

    May, Melanie; Hwang, Kyu-Seok; Miles, Judith; Williams, Charlie; Niranjan, Tejasvi; Kahler, Stephen G; Chiurazzi, Pietro; Steindl, Katharina; Van Der Spek, Peter J; Swagemakers, Sigrid; Mueller, Jennifer; Stefl, Shannon; Alexov, Emil; Ryu, Jeong-Im; Choi, Jung-Hwa; Kim, Hyun-Taek; Tarpey, Patrick; Neri, Giovanni; Holloway, Lynda; Skinner, Cindy; Stevenson, Roger E; Dorsky, Richard I; Wang, Tao; Schwartz, Charles E; Kim, Cheol-Hee

    2015-09-01

    Miles-Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits. © The Author 2015. Published by Oxford University Press.

  6. Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex

    Directory of Open Access Journals (Sweden)

    Myrto Denaxa

    2018-02-01

    Full Text Available Cortical networks are composed of excitatory projection neurons and inhibitory interneurons. Finding the right balance between the two is important for controlling overall cortical excitation and network dynamics. However, it is unclear how the correct number of cortical interneurons (CIs is established in the mammalian forebrain. CIs are generated in excess from basal forebrain progenitors, and their final numbers are adjusted via an intrinsically determined program of apoptosis that takes place during an early postnatal window. Here, we provide evidence that the extent of CI apoptosis during this critical period is plastic and cell-type specific and can be reduced in a cell-autonomous manner by acute increases in neuronal activity. We propose that the physiological state of the emerging neural network controls the activity levels of local CIs to modulate their numbers in a homeostatic manner.

  7. Re-emergence of striatal cholinergic interneurons in movement disorders.

    Science.gov (United States)

    Pisani, Antonio; Bernardi, Giorgio; Ding, Jun; Surmeier, D James

    2007-10-01

    Twenty years ago, striatal cholinergic neurons were central figures in models of basal ganglia function. But since then, they have receded in importance. Recent studies are likely to lead to their re-emergence in our thinking. Cholinergic interneurons have been implicated as key players in the induction of synaptic plasticity and motor learning, as well as in motor dysfunction. In Parkinson's disease and dystonia, diminished striatal dopaminergic signalling leads to increased release of acetylcholine by interneurons, distorting network function and inducing structural changes that undoubtedly contribute to the symptoms. By contrast, in Huntington's disease and progressive supranuclear palsy, there is a fall in striatal cholinergic markers. This review gives an overview of these recent experimental and clinical studies, placing them within the context of the pathogenesis of movement disorders.

  8. Immune Regulator MCPIP1 Modulates TET Expression during Early Neocortical Development

    Directory of Open Access Journals (Sweden)

    Huihui Jiang

    2016-09-01

    Full Text Available MCPIP1 is a recently identified immune regulator that plays critical roles in preventing immune disorders, and is also present in the brain. Currently an unresolved question remains as to how MCPIP1 performs its non-immune functions in normal brain development. Here, we report that MCPIP1 is abundant in neural progenitor cells (NPCs and newborn neurons during the early stages of neurogenesis. The suppression of MCPIP1 expression impairs normal neuronal differentiation, cell-cycle exit, and concomitant NPC proliferation. MCPIP1 is important for maintenance of the NPC pool. Notably, we demonstrate that MCPIP1 reduces TET (TET1/TET2/TET3 levels and then decreases 5-hydroxymethylcytosine levels. Furthermore, the MCPIP1 interaction with TETs is involved in neurogenesis and in establishing the proper number of NPCs in vivo. Collectively, our findings not only demonstrate that MCPIP1 plays an important role in early cortical neurogenesis but also reveal an unexpected link between neocortical development, immune regulators, and epigenetic modification.

  9. A Subtype of Inhibitory Interneuron with Intrinsic Persistent Activity in Human and Monkey Neocortex

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-03-01

    Full Text Available A critical step in understanding the neural basis of human cognitive functions is to identify neuronal types in the neocortex. In this study, we performed whole-cell recording from human cortical slices and found a distinct subpopulation of neurons with intrinsic persistent activity that could be triggered by single action potentials (APs but terminated by bursts of APs. This persistent activity was associated with a depolarizing plateau potential induced by the activation of a persistent Na+ current. Single-cell RT-PCR revealed that these neurons were inhibitory interneurons. This type of neuron was found in different cortical regions, including temporal, frontal, occipital, and parietal cortices in human and also in frontal and temporal lobes of nonhuman primate but not in rat cortical tissues, suggesting that it could be unique to primates. The characteristic persistent activity in these inhibitory interneurons may contribute to the regulation of pyramidal cell activity and participate in cortical processing.

  10. High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons.

    Directory of Open Access Journals (Sweden)

    Vicente Reyes-Puerta

    2015-06-01

    Full Text Available The manner in which populations of inhibitory (INH and excitatory (EXC neocortical neurons collectively encode stimulus-related information is a fundamental, yet still unresolved question. Here we address this question by simultaneously recording with large-scale multi-electrode arrays (of up to 128 channels the activity of cell ensembles (of up to 74 neurons distributed along all layers of 3-4 neighboring cortical columns in the anesthetized adult rat somatosensory barrel cortex in vivo. Using two different whisker stimulus modalities (location and frequency we show that individual INH neurons--classified as such according to their distinct extracellular spike waveforms--discriminate better between restricted sets of stimuli (≤6 stimulus classes than EXC neurons in granular and infra-granular layers. We also demonstrate that ensembles of INH cells jointly provide as much information about such stimuli as comparable ensembles containing the ~20% most informative EXC neurons, however presenting less information redundancy - a result which was consistent when applying both theoretical information measurements and linear discriminant analysis classifiers. These results suggest that a consortium of INH neurons dominates the information conveyed to the neocortical network, thereby efficiently processing incoming sensory activity. This conclusion extends our view on the role of the inhibitory system to orchestrate cortical activity.

  11. Digital photography and 3D MRI-based multimodal imaging for individualized planning of resective neocortical epilepsy surgery.

    Science.gov (United States)

    Wellmer, Jörg; von Oertzen, Joachim; Schaller, Carlo; Urbach, Horst; König, Roy; Widman, Guido; Van Roost, Dirk; Elger, Christian E

    2002-12-01

    Invasive presurgical work up of pharmacoresistant epilepsies presumes integration of multiple diagnostic modalities into a comprehensive picture of seizure onset and eloquent brain areas. During resection, reliable transfer of evaluation results to the patient's individual anatomy must be made. We investigated the value of digital photography-based grid localization in combination with preoperative three-dimensional (3D) magnetic resonance imaging (MRI) for clinical routine. Digital photographs of the exposed cortex were taken before and after grid placement. Location of electrode contacts on the cortex was identified and schematically indicated on native cortex prints. Accordingly, transfer of contact positions to a 3D MRI brain-surface rendering was carried out manually by using the rendering software. Results of the electrophysiologic evaluation were transferred to either electrode contact reproduction and co-registered with imaging-based techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and functional MRI (fMRI). Digital photography allows precise and highly realistic documentation of electrode contact positions on the individual neocortical surface. Lesions underneath grids can be highlighted by semitransparent MRI surface rendering, and lobar boundaries can be identified. Because of integrating electrode contact positions into the postprocessed 3D MRI data set, imaging-based techniques can be codisplayed with the results of the electrophysiologic evaluation. Comparison with CT/MRI co-registration showed good accuracy of the method. However, grids not sewn to the dura at implantation can become subject to significant displacement. Digital photography in combination with preimplantation 3D MRI allows the generation of reliable tailored resection plans in neocortical epilepsy surgery. The method enhances surgical safety and confidence.

  12. The enhancer landscape during early neocortical development reveals patterns of dense regulation and co-option.

    Directory of Open Access Journals (Sweden)

    Aaron M Wenger

    2013-08-01

    Full Text Available Genetic studies have identified a core set of transcription factors and target genes that control the development of the neocortex, the region of the human brain responsible for higher cognition. The specific regulatory interactions between these factors, many key upstream and downstream genes, and the enhancers that mediate all these interactions remain mostly uncharacterized. We perform p300 ChIP-seq to identify over 6,600 candidate enhancers active in the dorsal cerebral wall of embryonic day 14.5 (E14.5 mice. Over 95% of the peaks we measure are conserved to human. Eight of ten (80% candidates tested using mouse transgenesis drive activity in restricted laminar patterns within the neocortex. GREAT based computational analysis reveals highly significant correlation with genes expressed at E14.5 in key areas for neocortex development, and allows the grouping of enhancers by known biological functions and pathways for further studies. We find that multiple genes are flanked by dozens of candidate enhancers each, including well-known key neocortical genes as well as suspected and novel genes. Nearly a quarter of our candidate enhancers are conserved well beyond mammals. Human and zebrafish regions orthologous to our candidate enhancers are shown to most often function in other aspects of central nervous system development. Finally, we find strong evidence that specific interspersed repeat families have contributed potentially key developmental enhancers via co-option. Our analysis expands the methodologies available for extracting the richness of information found in genome-wide functional maps.

  13. Distribution of GABAergic interneurons and dopaminergic cells in the functional territories of the human striatum.

    Science.gov (United States)

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2012-01-01

    The afferent projections of the striatum (caudate nucleus and putamen) are segregated in three territories: associative, sensorimotor and limbic. Striatal interneurons are in part responsible for the integration of these different types of information. Among them, GABAergic interneurons are the most abundant, and can be sorted in three populations according to their content in the calcium binding proteins calretinin (CR), parvalbumin (PV) and calbindin (CB). Conversely, striatal dopaminergic cells (whose role as interneurons is still unclear) are scarce. This study aims to analyze the interneuron distribution in the striatal functional territories, as well as their organization regarding to the striosomal compartment. We used immunohistochemical methods to visualize CR, PV, CB and tyrosine hydroxylase (TH) positive striatal neurons. The interneuronal distribution was assessed by stereological methods applied to every striatal functional territory. Considering the four cell groups altogether, their density was higher in the associative (2120±91 cells/mm(3)) than in the sensorimotor (959±47 cells/mm(3)) or limbic (633±119 cells/mm(3)) territories. CB- and TH-immunoreactive(-ir) cells were distributed rather homogeneously in the three striatal territories. However, the density of CR and PV interneurons were more abundant in the associative and sensorimotor striatum, respectively. Regarding to their compartmental organization, CR-ir interneurons were frequently found in the border between compartments in the associative and sensorimotor territories, and CB-ir interneurons abounded at the striosome/matrix border in the sensorimotor domain. The present study demonstrates that the architecture of the human striatum in terms of its interneuron composition varies in its three functional territories. Furthermore, our data highlight the importance of CR-ir striatal interneurons in the integration of associative information, and the selective role of PV-ir interneurons in

  14. Encoding of tactile stimuli by mechanoreceptors and interneurons of the medicinal leech

    Directory of Open Access Journals (Sweden)

    Jutta Kretzberg

    2016-10-01

    Full Text Available For many animals processing of tactile information is a crucial task in behavioral contexts like exploration, foraging and stimulus avoidance. The leech, having infrequent access to food, developed an energy efficient reaction to tactile stimuli, avoiding unnecessary muscle movements: The local bend behavior moves only a small part of the body wall away from an object touching the skin, while the rest of the animal remains stationary. Amazingly, the precision of this localized behavioral response is similar to the spatial discrimination threshold of the human fingertip, although the leech skin is innervated by an order of magnitude fewer mechanoreceptors and each midbody ganglion contains only 400 individually identified neurons in total. Prior studies suggested that this behavior is controlled by a three-layered feed-forward network, consisting of four mechanoreceptors (P cells, approximately 20 interneurons and 10 individually characterized motor neurons, all of which encode tactile stimulus location by overlapping, symmetrical tuning curves. Additionally, encoding of mechanical force was attributed to three types of mechanoreceptors reacting to distinct intensity ranges: T cells for touch, P cells for pressure and N cells for strong, noxious skin stimulation. In this study, we provide evidences that tactile stimulus encoding in the leech is more complex than previously thought. Combined electrophysiological, anatomical and voltage sensitive dye approaches indicate that P and T cells both play a major role in tactile information processing resulting in local bending. Our results indicate that tactile encoding neither relies on distinct force intensity ranges of different cell types, nor location encoding is restricted to spike count tuning. Instead, we propose that P and T cells form a mixed type population, which simultaneously employs temporal response features and spike counts for multiplexed encoding of touch location and force intensity

  15. Statistical mechanics of neocortical interactions: Constraints on 40-Hz models of short-term memory

    Science.gov (United States)

    Ingber, Lester

    1995-10-01

    Calculations presented in L. Ingber and P.L. Nunez, Phys. Rev. E 51, 5074 (1995) detailed the evolution of short-term memory in the neocortex, supporting the empirical 7+/-2 rule of constraints on the capacity of neocortical processing. These results are given further support when other recent models of 40-Hz subcycles of low-frequency oscillations are considered.

  16. Experience-Dependent Regulation of Presynaptic NMDARs Enhances Neurotransmitter Release at Neocortical Synapses

    Science.gov (United States)

    Urban-Ciecko, Joanna; Wen, Jing A.; Parekh, Puja K.; Barth, Alison L.

    2015-01-01

    Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs)…

  17. Elevated potassium prevents neuronal death but inhibits network formation in neocortical cultures

    NARCIS (Netherlands)

    Baker, R. E.; Ruijter, J. M.; Bingmann, D.

    1991-01-01

    Chronic depolarization is inimical to neuronal growth and synaptogenesis so that spontaneous action potential generation appears to be required for the normal cytomorphological maturation of neocortical networks. The efficacy of 25 mM K in suppressing spontaneous bioelectric activity was monitored

  18. Locally Applied Valproate Enhances Survival in Rats after Neocortical Treatment with Tetanus Toxin and Cobalt Chloride

    Directory of Open Access Journals (Sweden)

    Dirk-Matthias Altenmüller

    2013-01-01

    Full Text Available Purpose. In neocortical epilepsies not satisfactorily responsive to systemic antiepileptic drug therapy, local application of antiepileptic agents onto the epileptic focus may enhance treatment efficacy and tolerability. We describe the effects of focally applied valproate (VPA in a newly emerging rat model of neocortical epilepsy induced by tetanus toxin (TeT plus cobalt chloride (CoCl2. Methods. In rats, VPA ( or sodium chloride (NaCl ( containing polycaprolactone (PCL implants were applied onto the right motor cortex treated before with a triple injection of 75 ng TeT plus 15 mg CoCl2. Video-EEG monitoring was performed with intracortical depth electrodes. Results. All rats randomized to the NaCl group died within one week after surgery. In contrast, the rats treated with local VPA survived significantly longer (. In both groups, witnessed deaths occurred in the context of seizures. At least of the rats surviving the first postoperative day developed neocortical epilepsy with recurrent spontaneous seizures. Conclusions. The novel TeT/CoCl2 approach targets at a new model of neocortical epilepsy in rats and allows the investigation of local epilepsy therapy strategies. In this vehicle-controlled study, local application of VPA significantly enhanced survival in rats, possibly by focal antiepileptic or antiepileptogenic mechanisms.

  19. Reduced cell number in the neocortical part of the human fetal brain in Down syndrome

    DEFF Research Database (Denmark)

    Larsen, K.B.; Laursen, H.; Graem, N.

    2008-01-01

    Mental retardation is seen in all individuals with Down syndrome (DS) and different brain abnormalities are reported. The aim of this study was to investigate if mental retardation at least in part is a result of a lower cell number in the neocortical part of the human fetal forebrain. We therefore...

  20. Electrophysiological and morphological characterization of propriospinal interneurons in the thoracic spinal cord

    DEFF Research Database (Denmark)

    Saywell, S A; Ford, T W; Meehan, Claire Francesca

    2011-01-01

    Propriospinal interneurons in the thoracic spinal cord have vital roles not only in controlling respiratory and trunk muscles, but also in providing possible substrates for recovery from spinal cord injury. Intracellular recordings were made from such interneurons in anesthetized cats under neuro...

  1. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons

    Science.gov (United States)

    Nakajima, Miho; Görlich, Andreas; Heintz, Nathaniel

    2014-01-01

    SUMMARY Human imaging studies have revealed that intranasal administration of the “prosocial” hormone oxytocin (OT) activates the frontal cortex, and that this action of OT correlates with enhanced brain function in autism. Here we report the discovery of a population of somatostatin (Sst) positive, regular spiking interneurons that express the oxytocin receptor (OxtrINs). Silencing of OxtrINs in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice specifically during the sexually receptive phase of the estrous cycle. This sociosexual deficit was also present in mice in which the Oxtr gene was conditionally deleted from the mPFC, and in control mice infused with an Oxtr antagonist. Our data demonstrate a gender, cell type and state specific role for OT/Oxtr signaling in the mPFC, and identify a latent cortical circuit element that may modulate other complex social behaviors in response to OT. PMID:25303526

  2. Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation

    Directory of Open Access Journals (Sweden)

    Gaelle M Friocourt

    2011-12-01

    Full Text Available Mutations in the homeobox transcription factor ARX have been found to be responsible for a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of intellectual disabilities without apparent brain abnormalities, but with associated features of dystonia and epilepsy. Arx expression is mainly restricted to populations of GABA-containing neurons. Studies of the effects of ARX loss of function, either in humans or mutant mice, revealed varying defects, suggesting multiple roles of this gene in brain patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. However, to date, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters bound by Arx in transfected neuroblastoma N2a cells and mouse embryonic brain. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration and/or differentiation, we compare here our data to previously published studies searching for genes enriched or down-regulated in cortical interneurons between E13.5 and E15.5. We thus identified 14 Arx-target genes enriched (Cxcr7, Meis1, Ppap2a, Slc12a5, Ets2, Phlda1, Zif268, Igf1, Lmo3, Sema6, Lgi1, Alk, Tgfb3, Napb and 5 genes specifically down-regulated (Hmgn3, Lmo1, Ebf3, Rasgef1b and Slit2 in cortical migrating neurons. In this review, we present these genes and discuss how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy.

  3. Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.

    Science.gov (United States)

    Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2016-10-01

    The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.

  4. Somatostatin-expressing inhibitory interneurons in cortical circuits

    Directory of Open Access Journals (Sweden)

    Iryna Yavorska

    2016-09-01

    Full Text Available Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons.

  5. Functional α7β2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2012-12-01

    Full Text Available Abstract Background β-amyloid (Aβ accumulation is described as a hallmark of Alzheimer’s disease (AD. Aβ perturbs a number of synaptic components including nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs, which are abundantly expressed in the hippocampus and found on GABAergic interneurons. We have previously demonstrated the existence of a novel, heteromeric α7β2-nAChR in basal forebrain cholinergic neurons that exhibits high sensitivity to acute Aβ exposure. To extend our previous work, we evaluated the expression and pharmacology of α7β2-nAChRs in hippocampal interneurons and their sensitivity to Aβ. Results GABAergic interneurons in the CA1 subregion of the hippocampus expressed functional α7β2-nAChRs, which were characterized by relatively slow whole-cell current kinetics, pharmacological sensitivity to dihydro-β-erythroidine (DHβE, a nAChR β2* subunit selective blocker, and α7 and β2 subunit interaction using immunoprecipitation assay. In addition, α7β2-nAChRs were sensitive to 1 nM oligomeric Aβ. Similar effects were observed in identified hippocampal interneurons prepared from GFP-GAD mice. Conclusion These findings suggest that Aβ modulation of cholinergic signaling in hippocampal GABAergic interneurons via α7β2-nAChRs could be an early and critical event in Aβ-induced functional abnormalities of hippocampal function, which may be relevant to learning and memory deficits in AD.

  6. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation.

    Science.gov (United States)

    Hedrich, Ulrike B S; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz; Mantegazza, Massimo; Lerche, Holger

    2014-11-05

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. Copyright © 2014 the authors 0270-6474/14/3414874-16$15.00/0.

  7. Accumbens nNOS Interneurons Regulate Cocaine Relapse.

    Science.gov (United States)

    Smith, Alexander C W; Scofield, Michael D; Heinsbroek, Jasper A; Gipson, Cassandra D; Neuhofer, Daniela; Roberts-Wolfe, Doug J; Spencer, Sade; Garcia-Keller, Constanza; Stankeviciute, Neringa M; Smith, Rachel J; Allen, Nicholas P; Lorang, Melissa R; Griffin, William C; Boger, Heather A; Kalivas, Peter W

    2017-01-25

    Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced relapse is correlated with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses on medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) and requires spillover of glutamate from prefrontal cortical afferents. We used a rodent self-administration/reinstatement model of relapse to show that cue-induced t-SP and reinstated cocaine seeking result from glutamate spillover, initiating a metabotropic glutamate receptor 5 (mGluR5)-dependent increase in nitric oxide (NO) production. Pharmacological stimulation of mGluR5 in NAcore recapitulated cue-induced reinstatement in the absence of drug-associated cues. Using NO-sensitive electrodes, mGluR5 activation by glutamate was shown to stimulate NO production that depended on activation of neuronal nitric oxide synthase (nNOS). nNOS is expressed in ∼1% of NAcore neurons. Using a transgene strategy to express and stimulate designer receptors that mimicked mGluR5 signaling through Gq in nNOS interneurons, we recapitulated cue-induced reinstatement in the absence of cues. Conversely, using a transgenic caspase strategy, the intensity of cue-induced reinstatement was correlated with the extent of selective elimination of nNOS interneurons. The induction of t-SP during cued reinstatement depends on activating matrix metalloproteinases (MMPs) and selective chemogenetic stimulation of nNOS interneurons recapitulated MMP activation and t-SP induction (increase in AMPA currents in MSNs). These data demonstrate critical involvement of a sparse population of nNOS-expressing interneurons in cue-induced cocaine seeking, revealing a bottleneck in brain processing of drug-associated cues where therapeutic interventions could be effective in treating drug addiction. Relapse to cocaine use in a rat model is associated with transient increases in synaptic strength at prefrontal cortex synapses in the nucleus

  8. Differential antiepileptic effects of the organic calcium antagonists verapamil and flunarizine in neurons of organotypic neocortical explants from newborn rats

    NARCIS (Netherlands)

    Bingmann, D; Speckmann, E J; Baker, R E; Ruijter, J; de Jong, B. M.

    1988-01-01

    Effects of the organic calcium antagonists verapamil and flunarizine on pentylenetetrazol induced paroxysmal depolarizations were tested in organotypic neocortical explants taken from neonatal rats. In these in vitro experiments the papaverin derivative verapamil depressed, and finally abolished,

  9. Development of calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured neocortical neurons visualized by cobalt staining

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S

    1998-01-01

    The developmental expression of calcium (Ca2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in cultured neocortical neurons was evaluated by using cobalt uptake, a histochemical method that identifies cells expressing Ca2+-permeable, non-N-methyl......The developmental expression of calcium (Ca2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in cultured neocortical neurons was evaluated by using cobalt uptake, a histochemical method that identifies cells expressing Ca2+-permeable, non......-N-methyl-D-aspartate (non-NMDA) receptors. At a concentration of 500 microM, AMPA was found to stimulate cobalt uptake only late in development, resulting in staining of 2.7%+/-0.3% of the neurons maintained in culture for 12 days in vitro (DIV). When AMPA receptor desensitization was blocked with 50 microM cyclothiazide......, the developmental profile of cobalt uptake mediated by 25 microM AMPA changed dramatically. The cobalt staining now appeared in young cultures (5 DIV), and the percentage of stained cells increased from 3.4%+/-0.2% at 5 DIV to 21.7%+/-1.6% at 12 DIV. The effect of 200 microM kainate was similar to that seen with 25...

  10. Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition

    Directory of Open Access Journals (Sweden)

    Megan S. Wyeth

    2017-08-01

    Full Text Available Although Netos are considered auxiliary subunits critical for kainate receptor (KAR function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1-, and parvalbumin (PV-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediated inhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.

  11. Different correlation patterns of cholinergic and GABAergic interneurons with striatal projection neurons

    Directory of Open Access Journals (Sweden)

    Avital eAdler

    2013-09-01

    Full Text Available The striatum is populated by a single projection neuron group, the medium spiny neurons (MSNs, and several groups of interneurons. Two of the electrophysiologically well-characterized striatal interneuron groups are the tonically active neurons (TANs, which are presumably cholinergic interneurons, and the fast spiking interneurons (FSIs, presumably parvalbumin (PV expressing GABAergic interneurons. To better understand striatal processing it is thus crucial to define the functional relationship between MSNs and these interneurons in the awake and behaving animal. We used multiple electrodes and standard physiological methods to simultaneously record MSN spiking activity and the activity of TANs or FSIs from monkeys engaged in a classical conditioning paradigm. All three cell populations were highly responsive to the behavioral task. However, they displayed different average response profiles and a different degree of response synchronization (signal correlation. TANs displayed the most transient and synchronized response, MSNs the most diverse and sustained response and FSIs were in between on both parameters. We did not find evidence for direct monosynaptic connectivity between the MSNs and either the TANs or the FSIs. However, while the cross correlation histograms of TAN to MSN pairs were flat, those of FSI to MSN displayed positive asymmetrical broad peaks. The FSI-MSN correlogram profile implies that the spikes of MSNs follow those of FSIs and both are driven by a common, most likely cortical, input. Thus, the two populations of striatal interneurons are probably driven by different afferents and play complementary functional roles in the physiology of the striatal microcircuit.

  12. Differential expression of parvalbumin interneurons in neonatal phencyclidine treated rats and socially isolated rats

    DEFF Research Database (Denmark)

    Kaalund, Sanne Simone; Riise, Jesper; Broberg, Brian

    2013-01-01

    fractionator, we counted neurons, PV(+) interneurons, and glial cells in the medial prefrontal cortex (mPFC) and hippocampus (HPC). In addition, we quantified the mRNA level of parvalbumin in the mPFC. There was a statistically significant reduction in the number of PV(+) interneurons (p = 0.021) and glial...... cells (p = 0.024) in the mPFC of neonatal phencyclidine rats. We observed no alterations in the total number of neurons, hippocampal PV(+) interneurons, parvalbumin mRNA expression or volume of the mPFC or HPC in the two models. Thus, as the total number of neurons remains unchanged following...

  13. Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity

    OpenAIRE

    L. Ingber

    1984-01-01

    A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules o...

  14. Precisely timed signal transmission in neocortical networks with reliable intermediate-range projections

    Directory of Open Access Journals (Sweden)

    Martin P Nawrot

    2009-02-01

    Full Text Available The mammalian neocortex has a remarkable ability to precisely reproduce behavioral sequences or to reliably retrieve stored information. In contrast, spiking activity in behaving animals shows a considerable trial-to-trial variability and temporal irregularity. The signal propagation and processing underlying these conflicting observations is based on fundamental neurophysiological processes like synaptic transmission, signal integration within single cells, and spike formation. Each of these steps in the neuronal signaling chain has been studied separately to a great extend, but it has been difficult to judge how they interact and sum up in active sub-networks of neocortical cells. In the present study, we experimentally assessed the precision and reliability of small neocortical networks consisting of trans-columnar, intermediate-range projections (200 – 1000 µm on a millisecond time-scale. Employing photo-uncaging of glutamate in acute slices, we activated a number of distant pre-synaptic cells in a spatiotemporally precisely controlled manner, while monitoring the resulting membrane potential fluctuations of a post-synaptic cell. We found that signal integration in this part of the network is highly reliable and temporally precise. As numerical simulations showed, the residual membrane potential variability can be attributed to amplitude variability in synaptic transmission and may significantly contribute to trial-to-trial output variability of a rate signal. However, it does not impair the temporal accuracy of signal integration. We conclude that signals from intermediate-range projections onto neocortical neurons are propagated and integrated in a highly reliable and precise manner, and may serve as a substrate for temporally precise signal transmission in neocortical networks.

  15. Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory.

    Science.gov (United States)

    McClelland, James L

    2013-11-01

    The complementary learning systems theory of the roles of hippocampus and neocortex (McClelland, McNaughton, & O'Reilly, 1995) holds that the rapid integration of arbitrary new information into neocortical structures is avoided to prevent catastrophic interference with structured knowledge representations stored in synaptic connections among neocortical neurons. Recent studies (Tse et al., 2007, 2011) showed that neocortical circuits can rapidly acquire new associations that are consistent with prior knowledge. The findings challenge the complementary learning systems theory as previously presented. However, new simulations extending those reported in McClelland et al. (1995) show that new information that is consistent with knowledge previously acquired by a putatively cortexlike artificial neural network can be learned rapidly and without interfering with existing knowledge; it is when inconsistent new knowledge is acquired quickly that catastrophic interference ensues. Several important features of the findings of Tse et al. (2007, 2011) are captured in these simulations, indicating that the neural network model used in McClelland et al. has characteristics in common with neocortical learning mechanisms. An additional simulation generalizes beyond the network model previously used, showing how the rate of change of cortical connections can depend on prior knowledge in an arguably more biologically plausible network architecture. In sum, the findings of Tse et al. are fully consistent with the idea that hippocampus and neocortex are complementary learning systems. Taken together, these findings and the simulations reported here advance our knowledge by bringing out the role of consistency of new experience with existing knowledge and demonstrating that the rate of change of connections in real and artificial neural networks can be strongly prior-knowledge dependent. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Statistical mechanics of neocortical interactions: High resolution path-integral calculation of short-term memory

    OpenAIRE

    Ingber, Lester; Nunez, Paul

    2000-01-01

    We present high-resolution path-integral calculations of a previously developed model of short-term memory in neocortex. These calculations, made possible with supercomputer resources, supplant similar calculations made in L. Ingber, Phys. Rev. E 49, 4652 (1994), and support coarser estimates made in L. Ingber, Phys. Rev. A 29, 3346 (1984). We also present a current experimental context for the relevance of these calculations using the approach of statistical mechanics of neocortical interact...

  17. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord.

    Science.gov (United States)

    Griener, Anna; Zhang, Wei; Kao, Henry; Haque, Farhia; Gosgnach, Simon

    2017-10-24

    The locomotor central pattern generator is a neural network located in the ventral aspect of the caudal spinal cord that underlies stepping in mammals. While many genetically defined interneurons that are thought to comprise this neural network have been identified and characterized, the dI6 cells- which express the transcription factors WT1 and/or DMRT3- are one population that settle in this region, are active during locomotion, whose function is poorly understood. These cells were originally hypothesized to be commissural premotor interneurons, however evidence in support of this is sparse. Here we characterize this population of cells using the TgDbx1 Cre ;R26 EFP ;Dbx1 LacZ transgenic mouse line, which has been shown to be an effective marker of dI6 interneurons. We show dI6 cells to be abundant in laminae VII and VIII along the entire spinal cord and provide evidence that subtypes outside the WT1/DMRT3 expressing dI6 cells may exist. Retrograde tracing experiments indicate that the majority of dI6 cells project descending axons, and some make monosynaptic or disynaptic contacts onto motoneurons on either side of the spinal cord. Analysis of their activity during non-resetting deletions, which occur during bouts of fictive locomotion, suggests that these cells are involved in both locomotor rhythm generation and pattern formation. This study provides a thorough characterization of the dI6 cells labeled in the TgDbx1 Cre ;R26 EFP ;Dbx1 LacZ transgenic mouse, and supports previous work suggesting that these cells play multiple roles during locomotor activity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Fibroblast growth factor 8 organizes the neocortical area map and regulates sensory map topography.

    Science.gov (United States)

    Assimacopoulos, Stavroula; Kao, Tina; Issa, Naoum P; Grove, Elizabeth A

    2012-05-23

    The concept of an "organizer" is basic to embryology. An organizer is a portion of the embryo producing signals that lead to the creation of a patterned mature structure from an embryonic primordium. Fibroblast growth factor 8 (FGF8) is a morphogen that disperses from a rostromedial source in the neocortical primordium (NP), forms a rostral-to-caudal (R/C) gradient, and regulates embryonic and neonatal R/C patterns of gene expression in neocortex. Whether FGF8 also has organizer activity that generates the postnatal neocortical area map is uncertain. To test this possibility, new sources of FGF8 were introduced into the mouse NP with in utero microelectroporation at embryonic day 10.5, close to the estimated peak of area patterning. Results differed depending on the position of ectopic FGF8. Ectopic FGF8 in the caudalmost NP could duplicate somatosensory cortex (S1) and primary visual cortex (V1). FGF8 delivered to the midlateral NP generated a sulcus separating rostral and caudal portions of the NP, in effect creating duplicate NPs. In the caudal NP, ectopic FGF8 induced a second, inclusive area map, containing frontal cortex, S1, V1, and primary auditory areas. Moreover, duplicate S1 showed plasticity to sensory deprivation, and duplicate V1 responded to visual stimuli. Our findings implicate FGF8 as an organizer signal, and its source in the rostromedial telencephalon as an organizer of the neocortical area map.

  19. Humans and great apes share increased neocortical neuropeptide Y innervation compared to other haplorhine primates

    Directory of Open Access Journals (Sweden)

    Mary Ann eRaghanti

    2014-02-01

    Full Text Available Neuropeptide Y (NPY plays a role in a variety of basic physiological functions and has also been implicated in regulating cognition, including learning and memory. A decrease in neocortical NPY has been reported for Alzheimer’s disease, schizophrenia, bipolar disorder, and depression, potentially contributing to associated cognitive deficits. The goal of the present analysis was to examine variation in neocortical NPY-immunoreactive axon and varicosity density among haplorhine primates (monkeys, apes, and humans. Stereologic methods were used to measure the ratios of NPY-expressing axon length density to total neuron density (ALv/Nv and NPY-immunoreactive varicosity density to neuron density (Vv/Nv, as well as the mean varicosity spacing in neocortical areas 10, 24, 44, and 22 (Tpt of humans, African great apes, New World monkeys, and Old World monkeys. Humans and great apes showed increased cortical NPY innervation relative to monkey species for ALv/Nv and Vv/Nv. Furthermore, humans and great apes displayed a conserved pattern of varicosity spacing across cortical areas and layers, with no differences between cortical layers or among cortical areas. These phylogenetic differences may be related to shared life history variables and may reflect specific cognitive abilities.

  20. The Performance of Ictal Brain SPECT Localizing for Epileptogenic Zone in Neocortical Epilepsy

    International Nuclear Information System (INIS)

    Kim, Eun Sik; Lee, Dong Soo; Hyun, In Young; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Lee, Sang Kun; Chang, Kee Hyun

    1995-01-01

    The epileptogenic zones should be localized precisely before surgical resection of these zones in intractable epilepsy. The localization is more difficult in patients with neocortical epilepsy than in patients with temporal lobe epilepsy. This study aimed at evaluation of the usefulness of ictal brain perfusion SPECT for the localization of epileptogenic zones in neocortical epilepsy. We compared the performance of ictal SPECT with MRI referring to ictal scalp electroencephalography (sEEG). Ictal 99m Tc-HMPAO SPECT were done in twenty-one patients. Ictal EEG were also obtained during video monitoring. MRI were reviewed. According to the ictal sEEG and semiology, 8 patients were frontal lobe epilepsy, 7 patients were lateral temporal lobe epilepsy, 2 patients were parietal lobe epilepsy, and 4 patients were occipital lobe epilepsy. Ictal SPECT showed hyperperfusion in 14 patients(67%) in the zones which were suspected to be epileptogenic according to ictal EEG and semiology. MRI found morphologic abnormalities in 9 patients(43%). Among the 12 patients, in whom no epileptogenic zones were revealed by MR1, ictal SPECT found zones of hyperperfusion concordant with ictal sEEG in 9 patients(75%). However, no zones of hyperperfusion were found in 4 among 9 patients who were found to have cerebromalacia, abnormal calcification and migration anomaly in MRI. We thought that ictal SPECT was useful for localization of epileptogenic zones in neocortical epilepsy and especially in patients with negative findings in MRI.

  1. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions.

    Science.gov (United States)

    Luhmann, Heiko J; Sinning, Anne; Yang, Jenq-Wei; Reyes-Puerta, Vicente; Stüttgen, Maik C; Kirischuk, Sergei; Kilb, Werner

    2016-01-01

    Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.

  2. The Performance of Ictal Brain SPECT Localizing for Epileptogenic Zone in Neocortical Epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Sik; Lee, Dong Soo; Hyun, In Young; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Lee, Sang Kun; Chang, Kee Hyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1995-09-15

    The epileptogenic zones should be localized precisely before surgical resection of these zones in intractable epilepsy. The localization is more difficult in patients with neocortical epilepsy than in patients with temporal lobe epilepsy. This study aimed at evaluation of the usefulness of ictal brain perfusion SPECT for the localization of epileptogenic zones in neocortical epilepsy. We compared the performance of ictal SPECT with MRI referring to ictal scalp electroencephalography (sEEG). Ictal {sup 99m}Tc-HMPAO SPECT were done in twenty-one patients. Ictal EEG were also obtained during video monitoring. MRI were reviewed. According to the ictal sEEG and semiology, 8 patients were frontal lobe epilepsy, 7 patients were lateral temporal lobe epilepsy, 2 patients were parietal lobe epilepsy, and 4 patients were occipital lobe epilepsy. Ictal SPECT showed hyperperfusion in 14 patients(67%) in the zones which were suspected to be epileptogenic according to ictal EEG and semiology. MRI found morphologic abnormalities in 9 patients(43%). Among the 12 patients, in whom no epileptogenic zones were revealed by MR1, ictal SPECT found zones of hyperperfusion concordant with ictal sEEG in 9 patients(75%). However, no zones of hyperperfusion were found in 4 among 9 patients who were found to have cerebromalacia, abnormal calcification and migration anomaly in MRI. We thought that ictal SPECT was useful for localization of epileptogenic zones in neocortical epilepsy and especially in patients with negative findings in MRI.

  3. Impairments in Motor Neurons, Interneurons and Astrocytes Contribute to Hyperexcitability in ALS: Underlying Mechanisms and Paths to Therapy.

    Science.gov (United States)

    Do-Ha, Dzung; Buskila, Yossi; Ooi, Lezanne

    2018-02-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of motor neurons leading to progressive paralysis and death. Using transcranial magnetic stimulation (TMS) and nerve excitability tests, several clinical studies have identified that cortical and peripheral hyperexcitability are among the earliest pathologies observed in ALS patients. The changes in the electrophysiological properties of motor neurons have been identified in both sporadic and familial ALS patients, despite the diverse etiology of the disease. The mechanisms behind the change in neuronal signalling are not well understood, though current findings implicate intrinsic changes in motor neurons and dysfunction of cells critical in regulating motor neuronal excitability, such as astrocytes and interneurons. Alterations in ion channel expression and/or function in motor neurons has been associated with changes in cortical and peripheral nerve excitability. In addition to these intrinsic changes in motor neurons, inhibitory signalling through GABAergic interneurons is also impaired in ALS, likely contributing to increased neuronal excitability. Astrocytes have also recently been implicated in increasing neuronal excitability in ALS by failing to adequately regulate glutamate levels and extracellular K + concentration at the synaptic cleft. As hyperexcitability is a common and early feature of ALS, it offers a therapeutic and diagnostic target. Thus, understanding the underlying pathways and mechanisms leading to hyperexcitability in ALS offers crucial insight for future development of ALS treatments.

  4. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia

    NARCIS (Netherlands)

    Stedehouder, J.; S.A. Kushner (Steven)

    2017-01-01

    textabstractSchizophrenia is a debilitating psychiatric disorder characterized by positive, negative and cognitive symptoms. Despite more than a century of research, the neurobiological mechanism underlying schizophrenia remains elusive. White matter abnormalities and interneuron dysfunction are the

  5. Diversity in the neuronal machine: order and variability in interneuronal microcircuits

    National Research Council Canada - National Science Library

    Soltesz, Ivan

    2006-01-01

    ... Disorders 42 3: Order in Diversity: From Phenomenology to Function 45 Diversity at Multiple Levels of Neuronal Organization 45 Linnean Order in Diversity: A Modern Compendium of Interneuronal Spe...

  6. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia

    Science.gov (United States)

    Stedehouder, J; Kushner, S A

    2017-01-01

    Schizophrenia is a debilitating psychiatric disorder characterized by positive, negative and cognitive symptoms. Despite more than a century of research, the neurobiological mechanism underlying schizophrenia remains elusive. White matter abnormalities and interneuron dysfunction are the most widely replicated cellular neuropathological alterations in patients with schizophrenia. However, a unifying model incorporating these findings has not yet been established. Here, we propose that myelination of fast-spiking parvalbumin (PV) interneurons could be an important locus of pathophysiological convergence in schizophrenia. Myelination of interneurons has been demonstrated across a wide diversity of brain regions and appears highly specific for the PV interneuron subclass. Given the critical influence of fast-spiking PV interneurons for mediating oscillations in the gamma frequency range (~30–120 Hz), PV myelination is well positioned to optimize action potential fidelity and metabolic homeostasis. We discuss this hypothesis with consideration of data from human postmortem studies, in vivo brain imaging and electrophysiology, and molecular genetics, as well as fundamental and translational studies in rodent models. Together, the parvalbumin interneuron myelination hypothesis provides a falsifiable model for guiding future studies of schizophrenia pathophysiology. PMID:27646261

  7. Distinct roles of SOM and VIP interneurons during cortical Up states

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-07-01

    Full Text Available During cortical network activity, recurrent synaptic excitation among pyramidal neurons is approximately balanced by synaptic inhibition, which is provided by a vast diversity of inhibitory interneurons. The relative contributions of different interneuron subtypes to inhibitory tone during cortical network activity is not well understood. We previously showed that many of the major interneuron subtypes in mouse barrel cortex are highly active during Up states (Neske et al., 2015; while fast-spiking (FS, parvalbumin (PV-positive cells were the most active interneuron subtype, many non-fast-spiking (NFS, PV-negative interneurons were as active or more active than neighboring pyramidal cells. This suggests that the NFS cells could play a role in maintaining or modulating Up states. Here, using optogenetic techniques, we further dissected the functional roles during Up states of two major NFS, PV-negative interneuron subtypes: somatostatin (SOM-positive cells and vasoactive intestinal peptide (VIP-positive cells. We found that while pyramidal cell excitability during Up states significantly increased when SOM cells were optogenetically silenced, VIP cells did not influence pyramidal cell excitability either upon optogenetic silencing or activation. VIP cells failed to contribute to Up states despite their ability to inhibit SOM cells strongly. We suggest that the contribution of VIP cells to the excitability of pyramidal cells may vary with cortical state.

  8. Compulsive Social Behavior Emerges after Selective Ablation of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Martos, Yanina V; Braz, Barbara Y; Beccaria, Juan P; Murer, M Gustavo; Belforte, Juan E

    2017-03-15

    The mechanisms underlying social dysfunction in neuropsychiatric conditions such as obsessive-compulsive disorder and Tourette syndrome remain uncertain. However, it is known that dysfunctions in basal ganglia, including a reduced number of striatal cholinergic interneurons (SCIN), are involved in their pathophysiology. To explore the role of SCIN in relation to perseverative behaviors, we characterized a new transgenic mouse model in which inducible ablation of SCIN is achieved with high efficiency in a cell-type- and region-specific manner. Mice were subjected to extensive behavioral testing, including assessment of social behaviors, and corticostriatal functional connectivity was evaluated in vivo Selective SCIN ablation leads to altered social interactions together with exacerbated spontaneously emitted repetitive behaviors. Lesioned mice showed normal motor coordination, balance, and general locomotion. Interestingly, only environmentally driven, but not self-directed, repetitive behaviors were exacerbated in lesioned mice. Remarkably, in mice with SCIN ablation, the normal pattern of social exploration was replayed continuously. The emerging pattern of social interactions is highly predictable and invariant across time. In vivo electrophysiological recordings indicate that SCIN ablation results in an increase of the functional connectivity between different cortical areas and the motor, but not associative, region of the striatum. Our results identify a role of SCIN in suppressing perseverative behaviors, including socially related ones. In sum, SCIN ablation in mice leads to exacerbated ritualistic-like behaviors that affect social performance, providing a link between SCIN dysfunction and the social impairments present in psychiatric disorders. SIGNIFICANCE STATEMENT We sought to uncover the impact of striatal cholinergic interneuron (SCIN) degeneration on perseverative behaviors related to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). We

  9. Aberrant Epigenetic Gene Regulation in GABAergic Interneuron Subpopulations in the Hippocampal Dentate Gyrus of Mouse Offspring Following Developmental Exposure to Hexachlorophene.

    Science.gov (United States)

    Watanabe, Yousuke; Abe, Hajime; Nakajima, Kota; Ideta-Otsuka, Maky; Igarashi, Katsuhide; Woo, Gye-Hyeong; Yoshida, Toshinori; Shibutani, Makoto

    2018-05-01

    Maternal hexachlorophene (HCP) exposure causes transient disruption of hippocampal neurogenesis in mouse offspring. We examined epigenetically hypermethylated and downregulated genes related to this HCP-induced disrupted neurogenesis. Mated female mice were dietary exposed to 0 or 100 ppm HCP from gestational day 6 to postnatal day (PND) 21 on weaning. The hippocampal dentate gyrus of male offspring was subjected to methyl-capture sequencing and real-time reverse transcription-polymerase chain reaction analyses on PND 21. Validation analyses on methylation identified three genes, Dlx4, Dmrt1, and Plcb4, showing promoter-region hypermethylation. Immunohistochemically, DLX4+, DMRT1+, and PLCB4+ cells in the dentate hilus co-expressed GAD67, a γ-aminobutyric acid (GABA)ergic neuron marker. HCP decreased all of three subpopulations as well as GAD67+ cells on PND 21. PLCB4+ cells also co-expressed the metabotropic glutamate receptor, GRM1. HCP also decreased transcript level of synaptic plasticity-related genes in the dentate gyrus and immunoreactive granule cells for synaptic plasticity-related ARC. On PND 77, all immunohistochemical cellular density changes were reversed, whereas the transcript expression of the synaptic plasticity-related genes fluctuated. Thus, HCP-exposed offspring transiently reduced the number of GABAergic interneurons. Among them, subpopulations expressing DLX4, DMRT1, or PLCB4 were transiently reduced in number through an epigenetic mechanism. Considering the role of the Dlx gene family in GABAergic interneuron migration and differentiation, the decreased number of DLX4+ cells may be responsible for reducing those GABAergic interneurons regulating neurogenesis. The effect on granule cell synaptic plasticity was sustained until the adult stage, and reduced GABAergic interneurons active in GRM1-PLCB4 signaling may be responsible for the suppression on weaning.

  10. Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy.

    Science.gov (United States)

    Maisano, Xu; Litvina, Elizabeth; Tagliatela, Stephanie; Aaron, Gloster B; Grabel, Laura B; Naegele, Janice R

    2012-01-04

    Cell therapies for neurological disorders require an extensive knowledge of disease-associated neuropathology and procedures for generating neurons for transplantation. In many patients with severe acquired temporal lobe epilepsy (TLE), the dentate gyrus exhibits sclerosis and GABAergic interneuron degeneration. Mounting evidence suggests that therapeutic benefits can be obtained by transplanting fetal GABAergic progenitors into the dentate gyrus in rodents with TLE, but the scarcity of human fetal cells limits applicability in patient populations. In contrast, virtually limitless quantities of neural progenitors can be obtained from embryonic stem (ES) cells. ES cell-based therapies for neurological repair in TLE require evidence that the transplanted neurons integrate functionally and replace cell types that degenerate. To address these issues, we transplanted mouse ES cell-derived neural progenitors (ESNPs) with ventral forebrain identities into the hilus of the dentate gyrus of mice with TLE and evaluated graft differentiation, mossy fiber sprouting, cellular morphology, and electrophysiological properties of the transplanted neurons. In addition, we compared electrophysiological properties of the transplanted neurons with endogenous hilar interneurons in mice without TLE. The majority of transplanted ESNPs differentiated into GABAergic interneuron subtypes expressing calcium-binding proteins parvalbumin, calbindin, or calretinin. Global suppression of mossy fiber sprouting was not observed; however, ESNP-derived neurons formed dense axonal arborizations in the inner molecular layer and throughout the hilus. Whole-cell hippocampal slice electrophysiological recordings and morphological analyses of the transplanted neurons identified five basic types; most with strong after-hyperpolarizations and smooth or sparsely spiny dendritic morphologies resembling endogenous hippocampal interneurons. Moreover, intracellular recordings of spontaneous EPSCs indicated that

  11. Parvalbumin fast-spiking interneurons are selectively altered by paediatric traumatic brain injury.

    Science.gov (United States)

    Nichols, Joshua; Bjorklund, George Reed; Newbern, Jason; Anderson, Trent

    2018-04-01

    Traumatic brain injury (TBI) in children remains a leading cause of death and disability and it remains poorly understood why children have worse outcomes and longer recover times. TBI has shown to alter cortical excitability and inhibitory drive onto excitatory neurons, yet few studies have directly examined changes to cortical interneurons. This is addressed in the present study using a clinically relevant model of severe TBI (controlled cortical impact) in interneuron cell type specific Cre-dependent mice. Mice subjected to controlled cortical impact exhibit specific loss of parvalbumin (PV) but not somatostatin immunoreactivity and cell density in the peri-injury zone. PV interneurons are primarily of a fast-spiking (FS) phenotype that persisted in the peri-injury zone but received less frequent inhibitory and stronger excitatory post-synaptic currents. The targeted loss of PV-FS interneurons appears to be distinct from previous reports in adult mice suggesting that TBI-induced pathophysiology is dependent on the age at time of impact. Paediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Traditionally, ongoing neurodevelopment and neuroplasticity have been considered to confer children with an advantage following TBI. However, recent findings indicate that the paediatric brain may be more sensitive to brain injury. Inhibitory interneurons are essential for proper cortical function and are implicated in the pathophysiology of TBI, yet few studies have directly investigated TBI-induced changes to interneurons themselves. Accordingly, in the present study, we examine how inhibitory neurons are altered following controlled cortical impact (CCI) in juvenile mice with targeted Cre-dependent fluorescence labelling of interneurons (Vgat:Cre/Ai9 and PV:Cre/Ai6). Although CCI failed to alter the number of excitatory neurons or somatostatin-expressing interneurons in the peri-injury zone, it significantly decreased the density of

  12. NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

    Directory of Open Access Journals (Sweden)

    Marta Perez-Rando

    2017-06-01

    Full Text Available N-methyl-D-aspartate receptors (NMDARs are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to adult mice which constitutively express enhanced green fluorescent protein (EGFP in these cells. We have behaviorally tested the animals, confirming effects of the drug on locomotion and anxiety-related behaviors. NMDARs were expressed in the somata and dendritic spines of somatostatin-expressing interneurons. Twenty-four hours after the injection, the density of spines did not vary, but we found a significant increase in the density of their en passant boutons (EPB. We have also used entorhino-hippocampal organotypic cultures to study these interneurons in real-time. There was a rapid decrease in the apparition rate of spines after MK-801 administration, which persisted for 24 h and returned to basal levels afterwards. A similar reversible decrease was detected in spine density. Our results show that both spines and axons of interneurons can undergo remodeling and highlight NMDARs as regulators of this plasticity. These results are specially relevant given the importance of all these players on hippocampal physiology and the etiopathology of certain psychiatric disorders.

  13. Bio-physically plausible visualization of highly scattering fluorescent neocortical models for in silico experimentation

    KAUST Repository

    Abdellah, Marwan

    2017-02-15

    Background We present a visualization pipeline capable of accurate rendering of highly scattering fluorescent neocortical neuronal models. The pipeline is mainly developed to serve the computational neurobiology community. It allows the scientists to visualize the results of their virtual experiments that are performed in computer simulations, or in silico. The impact of the presented pipeline opens novel avenues for assisting the neuroscientists to build biologically accurate models of the brain. These models result from computer simulations of physical experiments that use fluorescence imaging to understand the structural and functional aspects of the brain. Due to the limited capabilities of the current visualization workflows to handle fluorescent volumetric datasets, we propose a physically-based optical model that can accurately simulate light interaction with fluorescent-tagged scattering media based on the basic principles of geometric optics and Monte Carlo path tracing. We also develop an automated and efficient framework for generating dense fluorescent tissue blocks from a neocortical column model that is composed of approximately 31000 neurons. Results Our pipeline is used to visualize a virtual fluorescent tissue block of 50 μm3 that is reconstructed from the somatosensory cortex of juvenile rat. The fluorescence optical model is qualitatively analyzed and validated against experimental emission spectra of different fluorescent dyes from the Alexa Fluor family. Conclusion We discussed a scientific visualization pipeline for creating images of synthetic neocortical neuronal models that are tagged virtually with fluorescent labels on a physically-plausible basis. The pipeline is applied to analyze and validate simulation data generated from neuroscientific in silico experiments.

  14. Ictal SPECT in neocortical epilepsies: clinical usefulness and factors affecting the pattern of hyperperfusion

    International Nuclear Information System (INIS)

    Lee, Sang Kun; Lee, Seo-Young; Yun, Chang-Ho; Lee, Ho-Young; Lee, Jae-Sung; Lee, Dong-Soo

    2006-01-01

    The aims of this analysis were to: (1) determine the value of ictal SPECT in the localization of neocortical epileptogenic foci, (2) evaluate the relationships between the results of ictal SPECT and other potential affecting factors, and (3) compare traditional visual analysis and the subtraction method. We retrospectively analyzed 81 consecutive patients with neocortical epilepsy who underwent epilepsy surgery and achieved a favourable surgical outcome, including 36 patients with normal MRI. Side-by-side visual analysis and subtraction images were classified as correctly localizing,correctly lateralizing, or non-localizing/non-lateralizing images according to the resected lobe. Side-by-side visual analysis and subtraction SPECT correctly localized the epileptogenic lobe in 58.9% and 63.0% of patients, respectively. The two methods were complementary and the diagnostic sensitivity of ictal SPECT using the two methods was 79.0%. Ictal SPECT using the visual method correctly localized the epileptogenic lobe more frequently in patients with a localizing pattern of ictal scalp EEG at the time of radioligand injection. When using subtraction images, an injection delay of less than 20 s after seizure onset was significantly correlated with correct localization. The subtraction method was superior to the visual method for localizing frontal lobe epilepsy (FLE) and parietal lobe epilepsy (PLE), and in patients with non-localizing/non-lateralizing EEG at onset. Ictal SPECT analyses using visual and subtraction methods are useful and complementary for the localization of the epileptogenic foci of neocortical epilepsy. Early radioligand injection and ictal EEG patterns are related to ictal SPECT localization. The subtraction method may be more useful in some epileptic syndromes. (orig.)

  15. Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity

    Science.gov (United States)

    Ingber, Lester

    1984-06-01

    A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules of human short-term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic interactions.

  16. Identification of Early RET+ Deep Dorsal Spinal Cord Interneurons in Gating Pain

    Science.gov (United States)

    Cui, Lian; Miao, Xuerong; Liang, Lingli; Abdus-Saboor, Ishmail; Olson, William; Fleming, Michael S; Ma, Minghong; Tao, Yuan-Xiang; Luo, Wenqin

    2016-01-01

    The gate control theory (GCT) of pain proposes that pain- and touch-sensing neurons antagonize each other through spinal cord dorsal horn (DH) gating neurons. However, the exact neural circuits underlying the GCT remain largely elusive. Here, we identified a new population of deep layer DH (dDH) inhibitory interneurons that express the receptor tyrosine kinase Ret neonatally. These early RET+ dDH neurons receive excitatory as well as polysynaptic inhibitory inputs from touch- and/or pain-sensing afferents. In addition, they negatively regulate DH pain and touch pathways through both pre- and postsynaptic inhibition. Finally, specific ablation of early RET+ dDH neurons increases basal and chronic pain, whereas their acute activation reduces basal pain perception and relieves inflammatory and neuropathic pain. Taken together, our findings uncover a novel spinal circuit that mediates crosstalk between touch and pain pathways and suggest that some early RET+ dDH neurons could function as pain “gating” neurons. PMID:27545714

  17. Anatomical Correlates of Local, Translaminar, and Transcolumnar Inhibition by Layer 6 GABAergic Interneurons in Somatosensory Cortex.

    Science.gov (United States)

    Arzt, Marlene; Sakmann, Bert; Meyer, Hanno S

    2017-07-18

    In the vibrissal area of rodent somatosensory cortex, information on whisker stimulation is processed by neuronal networks in a corresponding cortical column. To understand how sensory stimuli are represented in a column, it is essential to identify cell types constituting these networks. Layer 6 (L6) comprises 25% of all neurons in a column. In rats, 430 of these are inhibitory interneurons (INs). Little is known about the axon projection of L6 INs with reference to columnar and laminar organization. We quantified axonal projections of L6 INs (n = 68) with reference to columns and layers in somatosensory cortex of rats. We found distinct projection types differentially targeting layers of a cortical column. The majority of L6 INs did not show a column-specific innervation, densely projecting to neighboring columns as well as the home column. However, a small fraction targeted granular and supragranular layers, where axon projections were confined to the home column. We also quantified putative innervation of pyramidal cells as a functional correlate of axonal distribution. Electrophysiological properties were not correlated to axon projection. The quantitative data on axonal projections and electrophysiological properties of L6 INs can guide future studies investigating cortical processing of sensory information at the single cell level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila

    Science.gov (United States)

    Hoopfer, Eric D; Jung, Yonil; Inagaki, Hidehiko K; Rubin, Gerald M; Anderson, David J

    2015-01-01

    How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner. DOI: http://dx.doi.org/10.7554/eLife.11346.001 PMID:26714106

  19. Mechanisms of Pyrethroid Insecticide-Induced Stimulation of Calcium Influx in Neocortical Neurons

    Science.gov (United States)

    Cao, Zhengyu; Shafer, Timothy J.

    2011-01-01

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated calcium channels. Therefore, the present study compared the ability of 11 structurally diverse pyrethroids to evoke Ca2+ influx in primary cultures of mouse neocortical neurons. Nine pyrethroids (tefluthrin, deltamethrin, λ-cyhalothrin, β-cyfluthrin, esfenvalerate, S-bioallethrin, fenpropathrin, cypermethrin, and bifenthrin) produced concentration-dependent elevations in intracellular calcium concentration ([Ca2+]i) in neocortical neurons. Permethrin and resmethrin were without effect on [Ca2+]i. These pyrethroids displayed a range of efficacies on Ca2+ influx; however, the EC50 values for active pyrethroids all were within one order of magnitude. Tetrodotoxin blocked increases in [Ca2+]i caused by all nine active pyrethroids, indicating that the effects depended on VGSC activation. The pathways for deltamethrin- and tefluthrin-induced Ca2+ influx include N-methyl-d-aspartic acid receptors, L-type Ca2+ channels, and reverse mode of operation of the Na+/Ca2+ exchanger inasmuch as antagonists of these sites blocked deltamethrin-induced Ca2+ influx. These data demonstrate that pyrethroids stimulate Ca2+ entry into neurons subsequent to their actions on VGSCs. PMID:20881019

  20. The Sub-Regional Functional Organization of Neocortical Irritative Epileptic Networks in Pediatric Epilepsy

    Directory of Open Access Journals (Sweden)

    Radek Janca

    2018-03-01

    Full Text Available Between seizures, irritative network generates frequent brief synchronous activity, which manifests on the EEG as interictal epileptiform discharges (IEDs. Recent insights into the mechanism of IEDs at the microscopic level have demonstrated a high variance in the recruitment of neuronal populations generating IEDs and a high variability in the trajectories through which IEDs propagate across the brain. These phenomena represent one of the major constraints for precise characterization of network organization and for the utilization of IEDs during presurgical evaluations. We have developed a new approach to dissect human neocortical irritative networks and quantify their properties. We have demonstrated that irritative network has modular nature and it is composed of multiple independent sub-regions, each with specific IED propagation trajectories and differing in the extent of IED activity generated. The global activity of the irritative network is determined by long-term and circadian fluctuations in sub-region spatiotemporal properties. Also, the most active sub-region co-localizes with the seizure onset zone in 12/14 cases. This study demonstrates that principles of recruitment variability and propagation are conserved at the macroscopic level and that they determine irritative network properties in humans. Functional stratification of the irritative network increases the diagnostic yield of intracranial investigations with the potential to improve the outcomes of surgical treatment of neocortical epilepsy.

  1. Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity.

    Science.gov (United States)

    Wolansky, Trish; Clement, Elizabeth A; Peters, Steven R; Palczak, Michael A; Dickson, Clayton T

    2006-06-07

    State-dependent EEG in the hippocampus (HPC) has traditionally been divided into two activity patterns: theta, a large-amplitude, regular oscillation with a bandwidth of 3-12 Hz, and large-amplitude irregular activity (LIA), a less regular signal with broadband characteristics. Both of these activity patterns have been linked to the memory functions subserved by the HPC. Here we describe, using extracellular field recording techniques in naturally sleeping and urethane-anesthetized rats, a novel state present during deactivated stages of sleep and anesthesia that is characterized by a prominent large-amplitude and slow frequency (sink-source alternations in stratum lacunosum-moleculare of CA1. This, along with correlated slow oscillatory field and multiunit activity in superficial entorhinal cortex suggests that the hippocampal SO may be coordinated with slow neocortical activity through input arriving via the temporo-ammonic pathway. This novel state may present a favorable milieu for synchronization-dependent synaptic plasticity within and between hippocampal and neocortical ensembles.

  2. Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator

    DEFF Research Database (Denmark)

    Butt, S. J B; Harris-Warrick, Ronald M.; Kiehn, Ole

    2002-01-01

    a heterogenous population with neurons that fired in all phases of the locomotor cycle and exhibited varying degrees of rhythmicity, from strongly rhythmic to nonrhythmic. Among the rhythmic, putative CPG dCINs were populations that fired inphase with the ipsilateral or with the contralateral L2 locomotorlike...... activity. There was a high degree of organization in the dorsoventral location of rhythmic dCINs, with neurons in-phase with the ipsilateral L2 activity located more ventrally. Spikes of rhythmically active dCINs were superimposed on membrane oscillations that were generated predominantly by synaptic input...

  3. New insights into the classification and nomenclature of cortical GABAergic interneurons

    Science.gov (United States)

    DeFelipe, Javier; López-Cruz, Pedro L.; Benavides-Piccione, Ruth; Bielza, Concha; Larrañaga, Pedro; Anderson, Stewart; Burkhalter, Andreas; Cauli, Bruno; Fairén, Alfonso; Feldmeyer, Dirk; Fishell, Gord; Fitzpatrick, David; Freund, Tamás F.; González-Burgos, Guillermo; Hestrin, Shaul; Hill, Sean; Hof, Patrick R.; Huang, Josh; Jones, Edward G.; Kawaguchi, Yasuo; Kisvárday, Zoltán; Kubota, Yoshiyuki; Lewis, David A.; Marín, Oscar; Markram, Henry; McBain, Chris J.; Meyer, Hanno S.; Monyer, Hannah; Nelson, Sacha B.; Rockland, Kathleen; Rossier, Jean; Rubenstein, John L. R.; Rudy, Bernardo; Scanziani, Massimo; Shepherd, Gordon M.; Sherwood, Chet C.; Staiger, Jochen F.; Tamás, Gábor; Thomson, Alex; Wang, Yun; Yuste, Rafael; Ascoli, Giorgio A.

    2013-01-01

    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts’ assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus. PMID:23385869

  4. Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior.

    Science.gov (United States)

    O'Hare, Justin K; Li, Haofang; Kim, Namsoo; Gaidis, Erin; Ade, Kristen; Beck, Jeff; Yin, Henry; Calakos, Nicole

    2017-09-05

    Habit formation is a behavioral adaptation that automates routine actions. Habitual behavior correlates with broad reconfigurations of dorsolateral striatal (DLS) circuit properties that increase gain and shift pathway timing. The mechanism(s) for these circuit adaptations are unknown and could be responsible for habitual behavior. Here we find that a single class of interneuron, fast-spiking interneurons (FSIs), modulates all of these habit-predictive properties. Consistent with a role in habits, FSIs are more excitable in habitual mice compared to goal-directed and acute chemogenetic inhibition of FSIs in DLS prevents the expression of habitual lever pressing. In vivo recordings further reveal a previously unappreciated selective modulation of SPNs based on their firing patterns; FSIs inhibit most SPNs but paradoxically promote the activity of a subset displaying high fractions of gamma-frequency spiking. These results establish a microcircuit mechanism for habits and provide a new example of how interneurons mediate experience-dependent behavior.

  5. Interneuron Deficit Associates Attenuated Network Synchronization to Mismatch of Energy Supply and Demand in Aging Mouse Brains

    DEFF Research Database (Denmark)

    Jessen, Sanne Barsballe; Mathiesen, Claus; Lind, Barbara Lykke

    2017-01-01

    Higher cognitive functions depend critically on synchronized network activity in the gamma range (30-100 Hz), which results from activity of fast-spiking parvalbumin-positive (PV) interneurons. Here, we examined synaptic activity in the gamma band in relation to PV interneuron activity, stimulati...... and CMRO2 responses may contribute to increased frailty and risk of cognitive decline in aged brains....

  6. Age-Related Uptake of Heavy Metals in Human Spinal Interneurons.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2016-01-01

    Toxic heavy metals have been implicated in the loss of spinal motoneurons in amyotrophic lateral sclerosis/motor neuron disease (ALS/MND). Motoneuron loss in the spinal anterior horn is severe in ALS/MND at the time of death, making this tissue unsuitable for examination. We therefore examined spinal cords of people without muscle weakness to look for any presence of heavy metals that could make these neurons susceptible to damage. Spinal cord samples from 50 individuals aged 1-95 y who had no clinical or histopathological evidence of spinal motoneuron loss were studied. Seven μm formalin-fixed paraffin-embedded sections were stained for heavy metals with silver nitrate autometallography (AMGHM) which detects intracellular mercury, silver or bismuth. Neurons in the spinal cord were classified as interneurons or α-motoneurons based on their site and cell body diameter. Spinal interneurons containing heavy metals were present in 8 of 24 people (33%) aged 61-95 y, but not at younger ages. These AMGHM interneurons were most numerous in the lumbar spinal cord, with moderate numbers in the caudal cervical cord, few in the rostral cervical cord, and almost none in the thoracic cord. All people with AMGHM interneurons had occasional AMGHM staining in α-motoneurons as well. In one man AMGHM staining was present in addition in dorsomedial nucleus and sensory neurons. In conclusion, heavy metals are present in many spinal interneurons, and in a few α-motoneurons, in a large proportion of older people. Damage to inhibitory interneurons from toxic metals in later life could result in excitotoxic injury to motoneurons and may underlie motoneuron injury or loss in conditions such as ALS/MND, multiple sclerosis, sarcopenia and calf fasciculations.

  7. MGE-derived nNOS+ interneurons promote fear acquisition in nNOS-/- mice.

    Science.gov (United States)

    Zhang, Lin; Yuan, Hong-Jin; Cao, Bo; Kong, Cheng-Cheng; Yuan, Fang; Li, Jun; Ni, Huan-Yu; Wu, Hai-Yin; Chang, Lei; Liu, Yan; Luo, Chun-Xia

    2017-12-02

    Neuronal nitric oxide synthase (nNOS) 1 , mainly responsible for NO release in central nervous system (CNS) 2 , plays a significant role in multiple physiological functions. However, the function of nNOS + interneurons in fear learning has not been much explored. Here we focused on the medial ganglionic eminences (MGE) 3 -derived nNOS + interneurons in fear learning. To determine the origin of nNOS + interneurons, we cultured neurons in vitro from MGE, cortex, lateral ganglionic eminence (LGE) 4 , caudal ganglionic eminences (CGE) 5 and preoptic area (POA) 6 . The results showed that MGE contained the most abundant precursors of nNOS + interneurons. Moreover, donor cells from E12.5 embryos demonstrated the highest positive rate of nNOS + interneurons compared with other embryonic periods (E11.5, E12, E13, E13.5 and E14). Additionally, these cells from E12.5 embryos showed long axonal and abundant dendritic arbors after 10 days culture, indicating the capability to disperse and integrate in host neural circuits after transplantation. To investigate the role of MGE-derived nNOS + interneurons in fear learning, donor MGE cells were transplanted into dentate gyrus (DG) 7 of nNOS knock-out (nNOS -/- ) or wild-type mice. Results showed that the transplantation of MGE cells promoted the acquisition of nNOS -/- but not the wild-type mice, suggesting the importance of nNOS + neurons in fear acquisition. Moreover, we transplanted MGE cells from nNOS -/- mice or wild-type mice into DG of the nNOS -/- mice and found that only MGE cells from wild-type mice but not the nNOS -/- mice rescued the deficit in acquisition of the nNOS -/- mice, further confirming the positive role of nNOS + neurons in fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Age-Related Uptake of Heavy Metals in Human Spinal Interneurons.

    Directory of Open Access Journals (Sweden)

    Roger Pamphlett

    Full Text Available Toxic heavy metals have been implicated in the loss of spinal motoneurons in amyotrophic lateral sclerosis/motor neuron disease (ALS/MND. Motoneuron loss in the spinal anterior horn is severe in ALS/MND at the time of death, making this tissue unsuitable for examination. We therefore examined spinal cords of people without muscle weakness to look for any presence of heavy metals that could make these neurons susceptible to damage. Spinal cord samples from 50 individuals aged 1-95 y who had no clinical or histopathological evidence of spinal motoneuron loss were studied. Seven μm formalin-fixed paraffin-embedded sections were stained for heavy metals with silver nitrate autometallography (AMGHM which detects intracellular mercury, silver or bismuth. Neurons in the spinal cord were classified as interneurons or α-motoneurons based on their site and cell body diameter. Spinal interneurons containing heavy metals were present in 8 of 24 people (33% aged 61-95 y, but not at younger ages. These AMGHM interneurons were most numerous in the lumbar spinal cord, with moderate numbers in the caudal cervical cord, few in the rostral cervical cord, and almost none in the thoracic cord. All people with AMGHM interneurons had occasional AMGHM staining in α-motoneurons as well. In one man AMGHM staining was present in addition in dorsomedial nucleus and sensory neurons. In conclusion, heavy metals are present in many spinal interneurons, and in a few α-motoneurons, in a large proportion of older people. Damage to inhibitory interneurons from toxic metals in later life could result in excitotoxic injury to motoneurons and may underlie motoneuron injury or loss in conditions such as ALS/MND, multiple sclerosis, sarcopenia and calf fasciculations.

  9. Compromised Survival of Cerebellar Molecular Layer Interneurons Lacking GDNF Receptors GFRα1 or RET Impairs Normal Cerebellar Motor Learning

    Directory of Open Access Journals (Sweden)

    Maria Christina Sergaki

    2017-06-01

    Full Text Available The role of neurotrophic factors as endogenous survival proteins for brain neurons remains contentious. In the cerebellum, the signals controlling survival of molecular layer interneurons (MLIs are unknown, and direct evidence for the requirement of a full complement of MLIs for normal cerebellar function and motor learning has been lacking. Here, we show that Purkinje cells (PCs, the target of MLIs, express the neurotrophic factor GDNF during MLI development and survival of MLIs depends on GDNF receptors GFRα1 and RET. Conditional mutant mice lacking either receptor lose a quarter of their MLIs, resulting in compromised synaptic inhibition of PCs, increased PC firing frequency, and abnormal acquisition of eyeblink conditioning and vestibulo-ocular reflex performance, but not overall motor activity or coordination. These results identify an endogenous survival mechanism for MLIs and reveal the unexpected vulnerability and selective requirement of MLIs in the control of cerebellar-dependent motor learning.

  10. Structural-functional connectivity deficits of neocortical circuits in the Fmr1 (-/y) mouse model of autism

    NARCIS (Netherlands)

    Haberl, M.G.; Zerbi, V.; Veltien, A.A.; Ginger, M.; Heerschap, A.; Frick, A.

    2015-01-01

    Fragile X syndrome (FXS), the most common inherited form of intellectual disability disorder and a frequent cause of autism spectrum disorder (ASD), is characterized by a high prevalence of sensory symptoms. Perturbations in the anatomical connectivity of neocortical circuits resulting in their

  11. Image registration of ex-vivo MRI to sparsely sectioned histology of hippocampal and neocortical temporal lobe specimens.

    Science.gov (United States)

    Goubran, Maged; Crukley, Cathie; de Ribaupierre, Sandrine; Peters, Terence M; Khan, Ali R

    2013-12-01

    Intractable or drug-resistant epilepsy occurs in up to 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Recent magnetic resonance imaging (MRI) sequences and analysis techniques have the potential to detect abnormalities not identified with diagnostic MRI protocols. Prospective studies involving pre-operative imaging and collection of surgically-resected tissue provide a unique opportunity for verification and tuning of these image analysis techniques, since direct comparison can be made against histopathology, and can lead to better prediction of surgical outcomes and potentially less invasive procedures. To carry out MRI and histology comparison, spatial correspondence between the MR images and the histology images must be found. Towards this goal, a novel pipeline is presented here for bringing ex-vivo MRI of surgically-resected temporal lobe specimens and digital histology into spatial correspondence. The sparsely-sectioned histology images represent a challenge for 3D reconstruction which we address with a combined 3D and 2D registration algorithm that alternates between slice-based and volume-based registration with the ex-vivo MRI. We evaluated our registration method on specimens resected from patients undergoing anterior temporal lobectomy (N=7) and found our method to have a mean target registration error of 0.76±0.66 and 0.98±0.60 mm for hippocampal and neocortical specimens respectively. This work allows for the spatially-local comparison of histology with post-operative MRI and paves the way for eventual correlation with pre-operative MRI image analysis techniques. © 2013.

  12. Sparing of descending axons rescues interneuron plasticity in the lumbar cord to allow adaptive learning after thoracic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Christopher Nelson Hansen

    2016-03-01

    Full Text Available This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the lumbar enlargement after a thoracic spinal cord injury (SCI. Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX. This suggests that spared axons direct adaptive changes in below-level neuronal networks of the lumbar cord. In response to spared fibers, we postulate that lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated lumbar cord after complete TX or incomplete contusion (SCI. To measure functional plasticity in the lumbar cord, we used an established instrumental learning paradigm. In this paradigm, neural circuits within isolated lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on lumbar learning and plasticity early (7 days or late (42 days after midthoracic SCI in a rodent model. Early after SCI or TX at 7d, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between

  13. Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation

    Science.gov (United States)

    Ognjanovski, Nicolette; Schaeffer, Samantha; Wu, Jiaxing; Mofakham, Sima; Maruyama, Daniel; Zochowski, Michal; Aton, Sara J.

    2017-04-01

    Activity in hippocampal area CA1 is essential for consolidating episodic memories, but it is unclear how CA1 activity patterns drive memory formation. We find that in the hours following single-trial contextual fear conditioning (CFC), fast-spiking interneurons (which typically express parvalbumin (PV)) show greater firing coherence with CA1 network oscillations. Post-CFC inhibition of PV+ interneurons blocks fear memory consolidation. This effect is associated with loss of two network changes associated with normal consolidation: (1) augmented sleep-associated delta (0.5-4 Hz), theta (4-12 Hz) and ripple (150-250 Hz) oscillations; and (2) stabilization of CA1 neurons' functional connectivity patterns. Rhythmic activation of PV+ interneurons increases CA1 network coherence and leads to a sustained increase in the strength and stability of functional connections between neurons. Our results suggest that immediately following learning, PV+ interneurons drive CA1 oscillations and reactivation of CA1 ensembles, which directly promotes network plasticity and long-term memory formation.

  14. The Onecut Transcription Factors Regulate Differentiation and Distribution of Dorsal Interneurons during Spinal Cord Development

    Directory of Open Access Journals (Sweden)

    Karolina U. Kabayiza

    2017-05-01

    Full Text Available During embryonic development, the dorsal spinal cord generates numerous interneuron populations eventually involved in motor circuits or in sensory networks that integrate and transmit sensory inputs from the periphery. The molecular mechanisms that regulate the specification of these multiple dorsal neuronal populations have been extensively characterized. In contrast, the factors that contribute to their diversification into smaller specialized subsets and those that control the specific distribution of each population in the developing spinal cord remain unknown. Here, we demonstrate that the Onecut transcription factors, namely Hepatocyte Nuclear Factor-6 (HNF-6 (or OC-1, OC-2 and OC-3, regulate the diversification and the distribution of spinal dorsal interneuron (dINs. Onecut proteins are dynamically and differentially distributed in spinal dINs during differentiation and migration. Analyzes of mutant embryos devoid of Onecut factors in the developing spinal cord evidenced a requirement in Onecut proteins for proper production of a specific subset of dI5 interneurons. In addition, the distribution of dI3, dI5 and dI6 interneuron populations was altered. Hence, Onecut transcription factors control genetic programs that contribute to the regulation of spinal dIN diversification and distribution during embryonic development.

  15. GABAERGIC MODULATION OF STRIATAL CHOLINERGIC INTERNEURONS - AN IN-VIVO MICRODIALYSIS STUDY

    NARCIS (Netherlands)

    DEBOER, P; WESTERINK, BHC

    Striatal cholinergic interneurons have been shown to receive input from striatal gamma-aminobutyric acid (GABA)-containing cell elements. GABA is known to act on two different types of receptors, the GABA(A) and the GABA(B) receptor. Using in vivo microdialysis, we have studied the effect of

  16. Functional organization of locomotor interneurons in the ventral lumbar spinal cord of the newborn rat.

    Directory of Open Access Journals (Sweden)

    Myriam Antri

    Full Text Available Although the mammalian locomotor CPG has been localized to the lumbar spinal cord, the functional-anatomical organization of flexor and extensor interneurons has not been characterized. Here, we tested the hypothesis that flexor and extensor interneuronal networks for walking are physically segregated in the lumbar spinal cord. For this purpose, we performed optical recordings and lesion experiments from a horizontally sectioned lumbar spinal cord isolated from neonate rats. This ventral hemi spinal cord preparation produces well-organized fictive locomotion when superfused with 5-HT/NMDA. The dorsal surface of the preparation was visualized using the Ca(2+ indicator fluo-4 AM, while simultaneously monitoring motor output at ventral roots L2 and L5. Using calcium imaging, we provided a general mapping view of the interneurons that maintained a stable phase relationship with motor output. We showed that the dorsal surface of L1 segment contains a higher density of locomotor rhythmic cells than the other segments. Moreover, L1 segment lesioning induced the most important changes in the locomotor activity in comparison with lesions at the T13 or L2 segments. However, no lesions led to selective disruption of either flexor or extensor output. In addition, this study found no evidence of functional parcellation of locomotor interneurons into flexor and extensor pools at the dorsal-ventral midline of the lumbar spinal cord of the rat.

  17. Statistical mechanics of neocortical interactions: Path-integral evolution of short-term memory

    Science.gov (United States)

    Ingber, Lester

    1994-05-01

    Previous papers in this series of statistical mechanics of neocortical interactions (SMNI) have detailed a development from the relatively microscopic scales of neurons up to the macroscopic scales as recorded by electroencephalography (EEG), requiring an intermediate mesocolumnar scale to be developed at the scale of minicolumns (~=102 neurons) and macrocolumns (~=105 neurons). Opportunity was taken to view SMNI as sets of statistical constraints, not necessarily describing specific synaptic or neuronal mechanisms, on neuronal interactions, on some aspects of short-term memory (STM), e.g., its capacity, stability, and duration. A recently developed c-language code, pathint, provides a non-Monte Carlo technique for calculating the dynamic evolution of arbitrary-dimension (subject to computer resources) nonlinear Lagrangians, such as derived for the two-variable SMNI problem. Here, pathint is used to explicitly detail the evolution of the SMNI constraints on STM.

  18. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice.

    Science.gov (United States)

    Zhang, Yu; Bonnan, Audrey; Bony, Guillaume; Ferezou, Isabelle; Pietropaolo, Susanna; Ginger, Melanie; Sans, Nathalie; Rossier, Jean; Oostra, Ben; LeMasson, Gwen; Frick, Andreas

    2014-12-01

    Hypersensitivity in response to sensory stimuli and neocortical hyperexcitability are prominent features of Fragile X Syndrome (FXS) and autism spectrum disorders, but little is known about the dendritic mechanisms underlying these phenomena. We found that the primary somatosensory neocortex (S1) was hyperexcited in response to tactile sensory stimulation in Fmr1(-/y) mice. This correlated with neuronal and dendritic hyperexcitability of S1 pyramidal neurons, which affect all major aspects of neuronal computation, from the integration of synaptic input to the generation of action potential output. Using dendritic electrophysiological recordings, calcium imaging, pharmacology, biochemistry and a computer model, we found that this defect was, at least in part, attributable to the reduction and dysfunction of dendritic h- and BKCa channels. We pharmacologically rescued several core hyperexcitability phenomena by targeting BKCa channels. Our results provide strong evidence pointing to the utility of BKCa channel openers for the treatment of the sensory hypersensitivity aspects of FXS.

  19. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... using the fluorescent calcium chelator fura-2. The types of calcium channels present at the synaptic terminal were determined by the inhibitory action of calcium channel blockers on potassium-induced [3H]GABA release in the same cell preparation. L-, N-, P-, Q- and R-/T-type voltage dependent calcium...

  20. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid.

    Science.gov (United States)

    Rinaldi, Tania; Silberberg, Gilad; Markram, Henry

    2008-04-01

    Exposure to valproic acid (VPA) during embryogenesis can cause several teratogenic effects, including developmental delays and in particular autism in humans if exposure occurs during the third week of gestation. We examined the postnatal effects of embryonic exposure to VPA on microcircuit properties of juvenile rat neocortex using in vitro electrophysiology. We found that a single prenatal injection of VPA on embryonic day 11.5 causes a significant enhancement of the local recurrent connectivity formed by neocortical pyramidal neurons. The study of the biophysical properties of these connections revealed weaker excitatory synaptic responses. A marked decrease of the intrinsic excitability of pyramidal neurons was also observed. Furthermore, we demonstrate a diminished number of putative synaptic contacts in connection between layer 5 pyramidal neurons. Local hyperconnectivity may render cortical modules more sensitive to stimulation and once activated, more autonomous, isolated, and more difficult to command. This could underlie some of the core symptoms observed in humans prenatally exposed to valproic acid.

  1. Closed-loop response properties of a visual interneuron involved in fly optomotor control

    Directory of Open Access Journals (Sweden)

    Naveed eEjaz

    2013-03-01

    Full Text Available Due to methodological limitations neural function is mostly studied under open-loop conditions. Normally, however, nervous systems operate in closed-loop where sensory input is processed to generate behavioural outputs, which again change the sensory input. Here, we investigate the closed-loop responses of an identified visual interneuron, the blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze control. Those behaviours may be triggered by attitude changes during flight in turbulent air. The fly analyses the resulting retinal image shifts and performs compensatory body and head rotations to regain its default attitude. We developed a fly-robot interface to study H1-cell responses in a 1 degree-of-freedom image stabilization task. Image shifts, induced by externally forced rotations, modulate the cell’s spike rate that controls counter rotations of a mobile robot to minimize relative motion between the robot and its visual surroundings. A feedback controller closed the loop between neural activity and the rotation of the robot. Under these conditions we found the following H1-cell response properties: (i the peak spike rate decreases when the mean image velocity is increased, (ii the relationship between spike rate and image velocity depends on the standard deviation of the image velocities suggesting adaptive scaling of the cell’s signalling range, and (iii the cell’s gain decreases linearly with increasing image accelerations.Our results reveal a remarkable qualitative similarity between the response dynamics of the H1-cell under closed-loop conditions with those obtained in previous open-loop experiments. Finally, we show that the adaptive scaling of the H1-cell’s responses, while maximizing information on image velocity, decreases the cell’s sensitivity to image accelerations. Understanding such trade-offs in biological vision systems may advance the design of smart vision sensors for autonomous

  2. Fluctuating inhibitory inputs promote reliable spiking at theta frequencies in hippocampal interneurons

    Directory of Open Access Journals (Sweden)

    Duluxan eSritharan

    2012-05-01

    Full Text Available Theta frequency (4-12 Hz rhythms in the hippocampus play important roles in learning and memory. CA1 interneurons located at the stratum lacunosum-moleculare and radiatum junction (LM/RAD are thought to contribute to hippocampal theta population activities by rhythmically pacing pyramidal cells with inhibitory postsynaptic potentials. This implies that LM/RAD cells need to fire reliably at theta frequencies in vivo. To determine whether this could occur, we use biophysically-based LM/RAD model cells and apply different cholinergic and synaptic inputs to simulate in vivo-like network environments. We assess spike reliabilities and spiking frequencies, identifying biophysical properties and network conditions that best promote reliable theta spiking. We find that synaptic background activities that feature large inhibitory, but not excitatory, fluctuations are essential. This suggests that strong inhibitory input to these cells is vital for them to be able to contribute to population theta activities. Furthermore, we find that Type I-like oscillator models produced by augmented persistent sodium currents (INap or diminished A type potassium currents (IA enhance reliable spiking at lower theta frequencies. These Type I-like models are also the most responsive to large inhibitory fluctuations and can fire more reliably under such conditions. In previous work, we showed that INap and IA are largely responsible for establishing LM/RAD cells’ subthreshold activities. Taken together with this study, we see that while both these currents are important for subthreshold theta fluctuations and reliable theta spiking, they contribute in different ways – INap to reliable theta spiking and subthreshold activity generation, and IA to subthreshold activities at theta frequencies. This suggests that linking subthreshold and suprathreshold activities should be done with consideration of both in vivo contexts and biophysical specifics.

  3. T196. CALRETININ INTERNEURON DENSITY IN THE CAUDATE NUCLEUS IS LOWER IN SCHIZOPHRENIA

    Science.gov (United States)

    Adorjan, Istvan; Sun, Bin; Feher, Virginia; Tyler, Teadora; Damo-Csorba, Bori; Pour, Benedek; Veres, Daniel; Ansorge, Olaf; Chance, Steven Andrew; Szele, Francis

    2018-01-01

    Abstract Background The excitatory/inhibitory imbalance theory is widely accepted in the pathology of autism spectrum disorder. Recent results suggest its relevance in the aetiology of schizophrenia as well (Jardri 2016, Yang 2017, Gao and Penzes 2015). In order to discover the possibly altered neuronal composition in schizophrenia numerous studies have been focussing mainly on different cortical regions such as the ventromedial prefrontal cortex and dorsolateral prefrontal cortex. In particular, various interneuronal populations have been found altered.2 However, relatively little is known about the neuroanatomical changes of subcortical structures, such as the caudate nucleus, in the pathology of schizophrenia. Methods Therefore, we examined the immunohistochemical distribution of calretinin (CR) and NPY-immunopositive neurons in the caudate nucleus and the dorsolateral prefrontal cortex. The state of microglial activation was controlled by the detection of Iba1 and TMEM119. In order to corroborate our results obtained by immunohistochemistry (IHC) qPCR analyses were also conducted. Results The present study provides evidence for the altered interneuronal composition of caudate nucleus in schizophrenia without signs of microglial activation. There were small, medium and large CR-immunopositive (CR-ip) interneurons detected in the caudate nucleus. There was a 32% decrease in the density of all CR-ip interneurons (p=0.020, statistical power=0.747) that was driven by the loss of the small CR-ip interneurons (p=0.017, statistical power=0.777) while the densities of the medium and large CR-ip and NPY-ip interneurons were not significantly altered (p=0.078, p=0.436, p=0.125, respectively). Our experiments were also extended to the dorsolateral prefrontal cortex (medial frontal gyrus and superior frontal gyrus) where no significant changes were seen by IHC. However, qPCR analyses revealed a trend of decreased CR mRNA levels in schizophrenia (p=0.061, statistical power=0

  4. MHC-I promotes apoptosis of GABAergic interneurons in the spinal dorsal horn and contributes to cancer induced bone pain.

    Science.gov (United States)

    Fu, Qiaochu; Shi, Dai; Zhou, Yaqun; Zheng, Hua; Xiang, Hongbing; Tian, Xuebi; Gao, Feng; Manyande, Anne; Cao, Fei; Tian, Yuke; Ye, Dawei

    2016-12-01

    Cancer induced bone pain (CIBP) remains one of the most intractable clinical problems due to poor understanding of its underlying mechanisms. Recent studies demonstrate the decline of inhibitory interneurons, especially GABAergic interneurons in the spinal cord, can evoke generation of chronic pain. It has also been reported that neuronal MHC-I expression renders neurons vulnerable to cytotoxic CD8 + T cells and finally lead to neurons apoptosis in a variety neurological disorders. However, whether MHC-I could induce the apoptosis of GABAergic interneurons in spinal cord and contribute to the development of CIBP remains unknown. In this study, we investigated roles of MHC-I and underlying mechanisms in CIBP on a rat model. Our results showed that increased MHC-I expression on GABAergic interneurons could deplete GABAergic interneurons by inducing their apoptosis in the spinal dorsal horn of tumor-bearing rats. Pretreatment of MHC-I RNAi-lentivirus could prevent the apoptosis of GABAergic interneurons and therefore alleviated mechanical allodynia induced by tumor cells intratibial injection. Additionally, we also found that CD8 + T cells were colocalized with MHC-I and GABAergic neurons and presented a significant and persistent increase in the spinal cord of tumor-bearing rats. Taken together, these findings indicated that MHC-I could evoke CIBP by promoting apoptosis of GABAergic interneurons in the dorsal horn, and this apoptosis was closely related to local CD8 + T cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dendritic orientation and branching distinguish a class of multifunctional turtle spinal interneurons

    Directory of Open Access Journals (Sweden)

    Jonathan R. Holmes

    2014-11-01

    Full Text Available Spinal interneurons can integrate diverse propriospinal and supraspinal inputs that trigger or modulate locomotion and other limb movements. These synaptic inputs can occur on distal dendrites and yet must remain effective at the soma. Active dendritic conductances may amplify distal dendritic inputs, but appear to play a minimal role during scratching, at least. Another possibility is that spinal interneurons that integrate inputs on distal dendrites have unusually simple dendritic trees that effectively funnel current to the soma. We previously described a class of spinal interneurons, called transverse interneurons (or T neurons, in adult turtles. T neurons were defined as having dendrites that extend further in the transverse plane than rostrocaudally and a soma that extends further mediolaterally than rostrocaudally. T neurons are multifunctional, as they were activated during both swimming and scratching motor patterns. T neurons had higher peak firing rates and larger membrane potential oscillations during scratching than scratch-activated interneurons with different dendritic morphologies (non-T neurons. These characteristics make T neurons good candidates to play an important role in integrating diverse inputs and generating or relaying rhythmic motor patterns.Here, we quantitatively investigated additional dendritic morphological characteristics of T neurons as compared to non-T neurons. We found that T neurons have less total dendritic length, a greater proportion of dendritic length in primary dendrites, and dendrites that are oriented more mediolaterally. Thus, T neuron dendritic trees extend far mediolaterally, yet are unusually simple, which may help channel synaptic current from distal dendrites in the lateral and ventral funiculi to the soma. In combination with T neuron physiological properties, these dendritic properties may help integrate supraspinal and propriospinal inputs and generate and/or modulate rhythmic limb

  6. Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model.

    Science.gov (United States)

    Khan, Archie A; Shekh-Ahmad, Tawfeeq; Khalil, Ayatakin; Walker, Matthew C; Ali, Afia B

    2018-03-25

    A non-psychoactive phytocannabinoid, cannabidiol (CBD), shows promising results as an effective potential antiepileptic drug in some forms of refractory epilepsy. In an attempt to understand the mechanisms by which CBD exerts its anti-seizure effects, we investigated the effects of CBD at synaptic connections, and the intrinsic membrane properties of hippocampal CA1 pyramidal cells and two major inhibitory interneurons: fast spiking, parvalbumin -expressing (PV) and adapting, cholecystokinin-expressing (CCK) interneurons. We also investigated whether in vivo treatment with CBD altered the fate of CCK and PV interneurons using immunohistochemistry. Electrophysiological intracellular whole-cell recordings combined with neuroanatomy were performed in acute brain slices of rat temporal lobe epilepsy (in vivo kainic acid-induced) and in vitro (Mg 2+ -free-induced) epileptic seizure models. For immunohistochemistry experiments, CBD was administered in vivo (100 mg kg -1 ) at zero time and 90 minutes post status epilepticus (SE) induced with kainic acid. Bath-application of CBD (10 μM), dampened excitability at unitary synapses between pyramidal cells, but enhanced inhibitory synaptic potentials elicited by fast spiking and adapting interneurons at postsynaptic pyramidal cells. Furthermore, CBD restored impaired membrane excitability of PV, CCK, and pyramidal cells in a cell type-specific manner. These neuroprotective effects of CBD were corroborated by immunohistochemistry experiments that revealed a significant reduction of atrophy and death of PV- and CCK-expressing interneurons after CBD treatment. In conclusion, our data suggest CBD restores excitability and morphological impairment in epileptic models to pre-epilepsy control levels through multiple mechanisms to restore normal network function. This article is protected by copyright. All rights reserved.

  7. Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington's disease.

    Science.gov (United States)

    Cicchetti, F; Prensa, L; Wu, Y; Parent, A

    2000-11-01

    This paper reviews the major anatomical and chemical features of the various types of interneurons in the human striatum, as detected by immunostaining procedures applied to postmortem tissue from normal individuals and patients with Huntington's disease (HD). The human striatum harbors a highly pleomorphic population of aspiny interneurons that stain for either a calcium-binding protein (calretinin, parvalbumin or calbindin D-28k), choline acetyltransferase (ChAT) or NADPH-diaphorase, or various combinations thereof. Neurons that express calretinin (CR), including multitudinous medium and a smaller number of large neurons, are by far the most abundant interneurons in the human striatum. The medium CR+ neurons do not colocalize with any of the known chemical markers of striatal neurons, except perhaps GABA, and are selectively spared in HD. Most large CR+ interneurons display ChAT immunoreactivity and also express substance P receptors. The medium and large CR+ neurons are enriched with glutamate receptor subunit GluR2 and GluR4, respectively. This difference in AMPA GluR subunit expression may account for the relative resistance of medium CR+ neurons to glutamate-mediated excitotoxicity that may be involved in HD. The various striatal chemical markers display a highly heterogeneous distribution pattern in human. In addition to the classic striosomes/matrix compartmentalization, the striosomal compartment itself is composed of a core and a peripheral region, each subdivided by distinct subsets of striatal interneurons. A proper knowledge of all these features that appear unique to humans should greatly help our understanding of the organization of the human striatum in both health and disease states.

  8. Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via alpha4 beta2* nicotinic receptor activation

    Directory of Open Access Journals (Sweden)

    L. Andrew Bell

    2015-04-01

    Full Text Available Acetylcholine (ACh release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the activation of nicotinic receptors and the potential downstream effects this may have on hippocampal CA1 network function. ACh was optogenetically released in mouse hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated viral mediated transfection. The actions of optogenetically released ACh were assessed on both pyramidal neurons and different interneuron subtypes via whole cell patch clamp methods. Vasoactive intestinal peptide (VIP-expressing interneurons that selectively innervate other interneurons (VIP/IS were excited by ACh through the activation of nicotinic receptors containing alpah4 and beta2 subunits (alpha4 beta2*. ACh release onto VIP/IS was presynaptically inhibited by M2 muscarinic autoreceptors. ACh release produced spontaneous inhibitory postsynaptic current (sIPSC barrages blocked by dihydro-beta-erythroidine in interneurons but not pyramidal neurons. Optogenetic suppression of VIP interneurons did not inhibit these sIPSC barrages suggesting other interneuron-selective interneurons were also excited by 42* nicotinic receptor activation. In contrast, interneurons that innervate pyramidal neuron perisomatic regions were not activated by ACh release onto nicotinic receptors. Therefore, we propose ACh release in CA1 facilitates disinhibition through activation of 42* nicotinic receptors on interneuron-selective interneurons whereas interneurons that innervate pyramidal neurons are less affected by nicotinic receptor activation.

  9. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development

    Directory of Open Access Journals (Sweden)

    Eric eLewitus

    2013-08-01

    Full Text Available There is a basic rule to mammalian neocortical expansion: as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly and presence (gyrencephaly of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- versus connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons towards the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.

  10. Predictive values of F-18-FDG PET and ictal SPECT to find epileptogenic zones in cryptogenic neocortical epilepsies

    International Nuclear Information System (INIS)

    Lee, D. S.; Lee, S. K.; Jeong, Z. K.; Kim, H. Z.; Lee, M. C.; Ko, C. S.

    1997-01-01

    Though cumulated reported sensitivity were 33% (F-18-FDG PET) and 81%(ictal SPECT) in neocortical epilepsy, positive predictive values rather than sensitivity should be referred if we wish to know the reliability of positive findings to predict epileptogenic zones. In cryptogenic neocortical epilepsy which did not have structural lesions on MR, we tried to find performance of F-18-FDG PET and ictal SPECT to find epileptogenic zones. In 77 patients who had no lesion on MR and who were suspected to have neocortical epilepsy on video monitored EEG, ictal SPECT were done in 44 patients and F-18-FDG PET were done in 70 patients. Invasive study and operation was done in 24 patients. The most hyper perfused area or prominently hypometabolic area was suspected to be epileptogenic on ictal SPECT or F-18-FDG PET, respectively. We could find zones of ictal hyperperfusion in 34/44(78%) patients. Positive predictive values of ictal hyperperfusion were 58%, 60%, and 12.5% in frontal lobes (n=12), lateral temporal lobes (20), and parietal lobes (8). We could find hypometabolic areas in 50/70(76%) patients. Positive predictive values of hypometabolism were 78%, 71%, 33%, and 25% in frontal lobes (9), lateral temporal lobes (28), parietal lobes (3) and occipital lobes (4). Among 24 patients who were operated, 17 patients were followed up more than 7 months (15 ± 5). Thirteen patients improved (10 : Engel class I or II, 2: 90% reduction, 1: 75% reduction but multifocal). Five among 11 PET studies were correct, 3 among 10 SPECT studies, and 6 among 11 PET/SPECT studies (55%) were correct for localization. In conclusion, three fourths of patients gave positive results to localized epileptogenic zones in cryptogenic neocortical epilepsy, and predictive values of ictal hyperperfusion or interictal hypometabolism were highest in frontal or lateral temporal lobes if these lobes were found to be culprit though rapid ictal propagation of cortical hyperperfusion confounded the exact

  11. A defined network of fast-spiking interneurons in orbitofrontal cortex: responses to behavioral contingencies and ketamine administration

    Directory of Open Access Journals (Sweden)

    Michael C Quirk

    2009-11-01

    Full Text Available Orbitofrontal cortex (OFC is a region of prefrontal cortex implicated in the motivational control of behavior and in related abnormalities seen in psychosis and depression. It has been hypothesized that a critical mechanism in these disorders is the dysfunction of GABAergic interneurons that normally regulate prefrontal information processing. Here, we studied a subclass of interneurons isolated in rat OFC using extracellular waveform and spike train analysis. During performance of a goal-directed behavioral task, the firing of this class of putative fast-spiking (FS interneurons showed robust temporal correlations indicative of a functionally coherent network. FS cell activity also co-varied with behavioral response latency, a key indicator of motivational state. Systemic administration of ketamine, a drug that can mimic psychosis, preferentially inhibited this cell class. Together, these results support the idea that OFC-FS interneurons form a critical link in the regulation of motivation by prefrontal circuits during normal and abnormal brain and behavioral states.

  12. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity

    Directory of Open Access Journals (Sweden)

    Phillip Larimer

    2016-08-01

    Full Text Available The maturation of inhibitory GABAergic cortical circuits regulates experience-dependent plasticity. We recently showed that the heterochronic transplantation of parvalbumin (PV or somatostatin (SST interneurons from the medial ganglionic eminence (MGE reactivates ocular dominance plasticity (ODP in the postnatal mouse visual cortex. Might other types of interneurons similarly induce cortical plasticity? Here, we establish that caudal ganglionic eminence (CGE-derived interneurons, when transplanted into the visual cortex of neonatal mice, migrate extensively in the host brain and acquire laminar distribution, marker expression, electrophysiological properties, and visual response properties like those of host CGE interneurons. Although transplants from the anatomical CGE do induce ODP, we found that this plasticity reactivation is mediated by a small fraction of MGE-derived cells contained in the transplant. These findings demonstrate that transplanted CGE cells can successfully engraft into the postnatal mouse brain and confirm the unique role of MGE lineage neurons in the induction of ODP.

  13. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions

    DEFF Research Database (Denmark)

    Hervig, Mona E; Thomsen, Morten S; Kalló, Imre

    2016-01-01

    and subcortical areas, but whether such induction occurs in specific populations of GABAergic interneuron subtypes still remains to be established. We performed an immunohistochemical analysis of the PCP-induced c-Fos-immunoreactivity (IR) in parvalbumin (PV) and calbindin (CB) interneuron subtypes in the cortex...... and thalamus of rats. A single dose of PCP (10mg/kg, s.c.) significantly increased total number of c-Fos-IR in: (1) the prelimbic, infralimbic, anterior cingulate, ventrolateral orbital, motor, somatosensory and retrosplenial cortices as well as the nucleus accumbens (NAc), field CA1 of the hippocampus (CA1......) field of hippocampus and mediodorsal thalamus (MD); (2) PV-IR cells in the ventrolateral orbitofrontal and retrosplenial cortices and CA1 field of hippocampus; and (3) CB-IR cells in the motor cortex. Overall, our data indicate that PCP activates a wide range of cortical and subcortical brain regions...

  14. skn-1 is required for interneuron sensory integration and foraging behavior in Caenorhabditis elegans.

    Science.gov (United States)

    Wilson, Mark A; Iser, Wendy B; Son, Tae Gen; Logie, Anne; Cabral-Costa, Joao V; Mattson, Mark P; Camandola, Simonetta

    2017-01-01

    Nrf2/skn-1, a transcription factor known to mediate adaptive responses of cells to stress, also regulates energy metabolism in response to changes in nutrient availability. The ability to locate food sources depends upon chemosensation. Here we show that Nrf2/skn-1 is expressed in olfactory interneurons, and is required for proper integration of multiple food-related sensory cues in Caenorhabditis elegans. Compared to wild type worms, skn-1 mutants fail to perceive that food density is limiting, and display altered chemo- and thermotactic responses. These behavioral deficits are associated with aberrant AIY interneuron morphology and migration in skn-1 mutants. Both skn-1-dependent AIY autonomous and non-autonomous mechanisms regulate the neural circuitry underlying multisensory integration of environmental cues related to energy acquisition.

  15. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity.

    Science.gov (United States)

    Bezaire, Marianne J; Soltesz, Ivan

    2013-09-01

    In this work, through a detailed literature review, data-mining, and extensive calculations, we provide a current, quantitative estimate of the cellular and synaptic constituents of the CA1 region of the rat hippocampus. Beyond estimating the cell numbers of GABAergic interneuron types, we calculate their convergence onto CA1 pyramidal cells and compare it with the known input synapses on CA1 pyramidal cells. The convergence calculation and comparison are also made for excitatory inputs to CA1 pyramidal cells. In addition, we provide a summary of the excitatory and inhibitory convergence onto interneurons. The quantitative knowledge base assembled and synthesized here forms the basis for data-driven, large-scale computational modeling efforts. Additionally, this work highlights specific instances where the available data are incomplete, which should inspire targeted experimental projects toward a more complete quantification of the CA1 neurons and their connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  16. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse

    DEFF Research Database (Denmark)

    Caldeira, Vanessa; Dougherty, Kimberly J.; Borgius, Lotta

    2017-01-01

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we...... than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion....... use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype...

  17. Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2011-03-01

    Full Text Available Abstract Background Sleep homeostasis is characterized by a positive correlation between sleep length and intensity with the duration of the prior waking period. A causal role for brain-derived neurotrophic factor (BDNF in sleep homeostasis has been suggested, but the underlying mechanisms remain unclear. Cortistatin, a neuropeptide expressed primarily in a subset of cortical GABAergic interneurons, is another molecule implicated in sleep homeostasis. Results We confirmed that sleep deprivation leads to an increase in cortical cortistatin mRNA expression. Disruption of activity-dependent BDNF expression in a genetically modified mouse line impairs both baseline levels of cortistatin mRNA as well as its levels following sleep deprivation. Disruption of activity-dependent BDNF also leads to a decrease in sleep time during the active (dark phase. Conclusion Our studies suggest that regulation of cortistatin-expressing interneurons by activity-dependent BDNF expression may contribute to regulation of sleep behavior.

  18. The many tunes of perisomatic targeting interneurons in the hippocampal network

    Directory of Open Access Journals (Sweden)

    Tommas J Ellender

    2010-07-01

    Full Text Available The axonal targets of perisomatic targeting interneurons make them ideally suited to synchronise excitatory neurons. As such they have been implicated in rhythm generation of network activity in many brain regions including the hippocampus. However, several recent publications indicate that their roles extend beyond that of rhythm generation. Firstly, it has been shown that, in addition to rhythm generation, GABAergic perisomatic inhibition also serves as a current generator contributing significantly to hippocampal oscillatory EEG signals. Furthermore, GABAergic interneurons have a hitherto unexpected role in the initiation of hippocampal population bursts, both in the developing and adult hippocampus. In this review, we describe these new observations in detail and discuss the implications they have for our understanding of the mechanisms underlying physiological and pathological hippocampal network activities. This review is part of the Frontiers in Cellular Neuroscience's special topic entitled GABA signalling in health and disease based on the meeting at the CNCR Amsterdam.

  19. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    Science.gov (United States)

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  20. Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact

    Directory of Open Access Journals (Sweden)

    Andreas eKlaus

    2011-07-01

    Full Text Available In the striatal microcircuit, fast-spiking (FS interneurons have an important role in mediating inhibition onto neighboring medium spiny (MS projection neurons. In this study, we combined computational modeling with in vitro and in vivo electrophysiological measurements to investigate FS cells in terms of their discharge properties and their synaptic efficacies onto MS neurons. In vivo firing of striatal FS interneurons is characterized by a high firing variability. It is not known, however, if this variability results from the input that FS cells receive, or if it is promoted by the stuttering spike behavior of these neurons. Both our model and measurements in vitro show that FS neurons that exhibit random stuttering discharge in response to steady depolarization, do not show the typical stuttering behavior when they receive fluctuating input. Importantly, our model predicts that electrically coupled FS cells show substantial spike synchronization only when they are in the stuttering regime. Therefore, together with the lack of synchronized firing of striatal FS interneurons that has been reported in vivo, these results suggest that neighboring FS neurons are not in the stuttering regime simultaneously and that in vivo FS firing variability is more likely determined by the input fluctuations. Furthermore, the variability in FS firing is translated to variability in the postsynaptic amplitudes in MS neurons due to the strong synaptic depression of the FS-to-MS synapse. Our results support the idea that these synapses operate over a wide range from strongly depressed to almost fully recovered. The strong inhibitory effects that FS cells can impose on their postsynaptic targets, and the fact that the FS-to-MS synapse model showed substantial depression over extended periods of time might indicate the importance of cooperative effects of multiple presynaptic FS interneurons and the precise orchestration of their activity.

  1. COUP-TFI controls activity-dependent tyrosine hydroxylase expression in adult dopaminergic olfactory bulb interneurons.

    Science.gov (United States)

    Bovetti, Serena; Bonzano, Sara; Garzotto, Donatella; Giannelli, Serena Gea; Iannielli, Angelo; Armentano, Maria; Studer, Michèle; De Marchis, Silvia

    2013-12-01

    COUP-TFI is an orphan nuclear receptor acting as a strong transcriptional regulator in different aspects of forebrain embryonic development. In this study, we investigated COUP-TFI expression and function in the mouse olfactory bulb (OB), a highly plastic telencephalic region in which continuous integration of newly generated inhibitory interneurons occurs throughout life. OB interneurons belong to different populations that originate from distinct progenitor lineages. Here, we show that COUP-TFI is highly expressed in tyrosine hydroxylase (TH)-positive dopaminergic interneurons in the adult OB glomerular layer (GL). We found that odour deprivation, which is known to downregulate TH expression in the OB, also downregulates COUP-TFI in dopaminergic cells, indicating a possible correlation between TH- and COUP-TFI-activity-dependent action. Moreover, we demonstrate that conditional inactivation of COUP-TFI in the EMX1 lineage results in a significant reduction of both TH and ZIF268 expression in the GL. Finally, lentiviral vector-mediated COUP-TFI deletion in adult-generated interneurons confirmed that COUP-TFI acts cell-autonomously in the control of TH and ZIF268 expression. These data indicate that COUP-TFI regulates TH expression in OB cells through an activity-dependent mechanism involving ZIF268 induction and strongly argue for a maintenance rather than establishment function of COUP-TFI in dopaminergic commitment. Our study reveals a previously unknown role for COUP-TFI in the adult brain as a key regulator in the control of sensory-dependent plasticity in olfactory dopaminergic neurons.

  2. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro.

    Science.gov (United States)

    Hájos, Norbert; Pálhalmi, János; Mann, Edward O; Németh, Beáta; Paulsen, Ole; Freund, Tamas F

    2004-10-13

    Gamma frequency (30-100 Hz) network oscillations occur in the intact hippocampus during awake, attentive behavior. Here, we explored the underlying cellular mechanisms in an in vitro model of persistent gamma-frequency oscillations, induced by bath application of 20 microm carbachol in submerged hippocampal slices at 30 +/- 1 degrees C. Current-source density analysis of the field oscillation revealed a prominent alternating sink-source pair in the perisomatic and apical dendritic regions of CA3. To elucidate the active events generating these extracellular dipoles, we examined the firing properties of distinct neuron types. Visually guided unit recordings were obtained from individual CA3 neurons followed by intracellular labeling for anatomical identification. Pyramidal cells fired at 2.82 +/- 0.7 Hz, close to the negative peak of the oscillation (0.03 +/- 0.65 msec), and often in conjunction with a negative spike-like component of the field potential. In contrast, all phase-coupled interneurons fired after this negative peak. Perisomatic inhibitory interneurons fired at high frequency (18.1 +/- 2.7 Hz), shortly after the negative peak (1.97 +/- 0.95 msec) and were strongly phase-coupled. Dendritic inhibitory interneurons fired at lower frequency (8.4 +/- 2.4 Hz) and with less fidelity and a longer delay after the negative peak (4.3 +/- 1.1 msec), whereas interneurons with cell body in the stratum radiatum often showed no phase relationship with the field oscillation. The phase and spike time data of individual neurons, together with the current-source density analysis, support a synaptic feedback model of gamma oscillations primarily involving pyramidal cells and inhibitory cells targeting their perisomatic region.

  3. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity.

    Science.gov (United States)

    Fame, Ryann M; MacDonald, Jessica L; Dunwoodie, Sally L; Takahashi, Emi; Macklis, Jeffrey D

    2016-06-15

    The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within

  4. Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons.

    Science.gov (United States)

    Okada, Kana; Nishizawa, Kayo; Fukabori, Ryoji; Kai, Nobuyuki; Shiota, Akira; Ueda, Masatsugu; Tsutsui, Yuji; Sakata, Shogo; Matsushita, Natsuki; Kobayashi, Kazuto

    2014-05-06

    Behavioural flexibility is mediated through the neural circuitry linking the prefrontal cortex and basal ganglia. Here we conduct selective elimination of striatal cholinergic interneurons in transgenic rats by immunotoxin-mediated cell targeting. Elimination of cholinergic interneurons from the dorsomedial striatum (DMS), but not from the dorsolateral striatum, results in enhanced reversal and extinction learning, sparing the acquisition of place discrimination. This enhancement is prevented by infusion of a non-selective muscarinic acetylcholine receptor agonist into the DMS either in the acquisition, reversal or extinction phase. In addition, gene-specific silencing of M4 muscarinic receptor by lentiviral expression of short hairpin RNA (shRNA) mimics the place reversal learning promoted by cholinergic elimination, whereas shRNA-mediated gene silencing of M1 muscarinic receptor shows the normal performance of reversal learning. Our data indicate that DMS cholinergic interneurons inhibit behavioural flexibility, mainly through the M4 muscarinic receptor, suggesting that this role is engaged to the stabilization of acquired reward contingency and the suppression of response switch to changed contingency.

  5. Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior.

    Science.gov (United States)

    Jung, Eui-Man; Moffat, Jeffrey Jay; Liu, Jinxu; Dravid, Shashank Manohar; Gurumurthy, Channabasavaiah Basavaraju; Kim, Woo-Yang

    2017-12-01

    Haploinsufficiency of the AT-rich interactive domain 1B (ARID1B) gene causes autism spectrum disorder and intellectual disability; however, the neurobiological basis for this is unknown. Here we generated Arid1b-knockout mice and examined heterozygotes to model human patients. Arid1b-heterozygous mice showed a decreased number of cortical GABAergic interneurons and reduced proliferation of interneuron progenitors in the ganglionic eminence. Arid1b haploinsufficiency also led to an imbalance between excitatory and inhibitory synapses in the cerebral cortex. Furthermore, we found that Arid1b haploinsufficiency suppressed histone H3 lysine 9 acetylation (H3K9ac) overall and particularly reduced H3K9ac of the Pvalb promoter, resulting in decreased transcription. Arid1b-heterozygous mice exhibited abnormal cognitive and social behaviors, which were rescued by treatment with a positive allosteric GABA A receptor modulator. Our results demonstrate a critical role for Arid1b in interneuron development and behavior and provide insight into the pathogenesis of autism spectrum disorder and intellectual disability.

  6. Cortical GABAergic Interneurons in Cross-Modal Plasticity following Early Blindness

    Directory of Open Access Journals (Sweden)

    Sébastien Desgent

    2012-01-01

    Full Text Available Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field.

  7. GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain.

    Science.gov (United States)

    Losi, Gabriele; Mariotti, Letizia; Carmignoto, Giorgio

    2014-10-19

    GABAergic interneurons represent a minority of all cortical neurons and yet they efficiently control neural network activities in all brain areas. In parallel, glial cell astrocytes exert a broad control of brain tissue homeostasis and metabolism, modulate synaptic transmission and contribute to brain information processing in a dynamic interaction with neurons that is finely regulated in time and space. As most studies have focused on glutamatergic neurons and excitatory transmission, our knowledge of functional interactions between GABAergic interneurons and astrocytes is largely defective. Here, we critically discuss the currently available literature that hints at a potential relevance of this specific signalling in brain function. Astrocytes can respond to GABA through different mechanisms that include GABA receptors and transporters. GABA-activated astrocytes can, in turn, modulate local neuronal activity by releasing gliotransmitters including glutamate and ATP. In addition, astrocyte activation by different signals can modulate GABAergic neurotransmission. Full clarification of the reciprocal signalling between different GABAergic interneurons and astrocytes will improve our understanding of brain network complexity and has the potential to unveil novel therapeutic strategies for brain disorders. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    Science.gov (United States)

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Analogous mechanism regulating formation of neocortical basal radial glia and cerebellar Bergmann glia.

    Science.gov (United States)

    Heng, Xin; Guo, Qiuxia; Leung, Alan W; Li, James Yh

    2017-05-10

    Neocortical basal radial glia (bRG) and cerebellar Bergmann glia (BG) are basal progenitors derived from ventricular apical radial glia (aRG) that selectively lose their apical processes. bRG and BG have been implicated in the expansion and folding of the cerebrum and cerebellum, respectively. Here, we analyzed the molecular characteristics and development of bRG and BG. Transcriptomic comparison revealed striking similarity of the molecular features of bRG and BG. We found that heightened ERK signaling activity in aRG is tightly linked to the temporal formation and the relative abundance of bRG in human and mouse cortices. Forced activation of an FGF-ERK-ETV axis that is crucial to BG induction specifically induced bRG with canonical human bRG features in mice. Therefore, our data point to a common mechanism of bRG and BG generation, bearing implications to the role for these basal progenitors in the evolution of cortical folding of the cerebrum and cerebellum.

  10. Murine neocortical histogenesis is perturbed by prenatal exposure to low doses of Bisphenol A.

    Science.gov (United States)

    Nakamura, Keiko; Itoh, Kyoko; Yaoi, Takeshi; Fujiwara, Yasuhiro; Sugimoto, Tohru; Fushiki, Shinji

    2006-11-01

    Bisphenol A (BPA) has been shown to disrupt thyroid hormone function. We therefore studied whether prenatal exposure to low-doses of BPA affects the morphology and the expression of some genes related to brain development in the murine fetal neocortex. Pregnant mice were injected subcutaneously with 20 microg/kg of BPA daily from embryonic day 0 (E0). Control animals received vehicle alone. For evaluating cell proliferation, neuronal differentiation and migration, bromodeoxyuridine (BrdU) was injected intraperitoneally into pregnant mice with various regimens and the brains were processed for immunohistochemistry. The total RNA was extracted from the embryonic telencephalon at various embryonic stages. The BrdU-labeled cells examined 1 hour after BrdU injection showed no differences between the BPA-treated and control groups (n = 10, each), which indicated that the proliferation of precursor cells was not affected. The BrdU-labeled cells, analysed 2 days after BrdU injection, were decreased in the ventricular zone of BPA-treated mice at E14.5 and E16.5, whereas they were increased in the cortical plate at E14.5 as compared with those in control mice (n = 10, each). Furthermore, the expression of Math3, Ngn2, Hes1, LICAM, and THRalpha was significantly upregulated at E14.5 in the BPA-treated group. These results suggested that BPA might disrupt normal neocortical development by accelerating neuronal differentiation/migration. Copyright 2006 Wiley-Liss, Inc.

  11. Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons

    Directory of Open Access Journals (Sweden)

    Zhengyu Cao

    2015-02-01

    Full Text Available The frequent occurrence of Moorea producens (formerly Lyngbya majuscula blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidium gracile. We examined the influence of hoiamide A on neurite outgrowth in neocortical neurons and found that it suppressed neurite outgrowth with an IC50 value of 4.89 nM. Further study demonstrated that hoiamide A stimulated lactic acid dehydrogenase (LDH efflux, nuclear condensation and caspase-3 activity with EC50 values of 3.66, 2.55 and 4.33 nM, respectively. These data indicated that hoiamide A triggered a unique neuronal death profile that involves both necrotic and apoptotic mechanisms. The similar potencies and similar time-response relationships between LDH efflux and caspase-3 activation/nuclear condensation suggested that both necrosis and apoptosis may derive from interaction with a common molecular target. The broad-spectrum caspase inhibitor, Z-VAD-FMK completely inhibited hoiamide A-induced neurotoxicity. Additionally, hoiamide A stimulated JNK phosphorylation, and a JNK inhibitor attenuated hoiamide A-induced neurotoxicity. Collectively, these data demonstrate that hoiamide A-induced neuronal death requires both JNK and caspase signaling pathways. The potent neurotoxicity and unique neuronal cell death profile of hoiamide A represents a novel neurotoxic chemotype from marine cyanobacteria.

  12. Maternal-fetal unit interactions and eutherian neocortical development and evolution

    Science.gov (United States)

    Montiel, Juan F.; Kaune, Heidy; Maliqueo, Manuel

    2013-01-01

    The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal–fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by “non-classical” endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict. PMID:23882189

  13. Loss of Interneuron-Derived Collagen XIX Leads to a Reduction in Perineuronal Nets in the Mammalian Telencephalon.

    Science.gov (United States)

    Su, Jianmin; Cole, James; Fox, Michael A

    2017-02-01

    Perineuronal nets (PNNs) are lattice-like supramolecular assemblies of extracellular glycoproteins that surround subsets of neuronal cell bodies in the mammalian telencephalon. PNNs emerge at the end of the critical period of brain development, limit neuronal plasticity in the adult brain, and are lost in a variety of complex brain disorders diseases, including schizophrenia. The link between PNNs and schizophrenia led us to question whether neuronally expressed extracellular matrix (ECM) molecules associated with schizophrenia contribute to the assembly of these specialized supramolecular ECM assemblies. We focused on collagen XIX-a minor, nonfibrillar collagen expressed by subsets of telencephalic interneurons. Genetic alterations in the region encoding collagen XIX have been associated with familial schizophrenia, and loss of this collagen in mice results in altered inhibitory synapses, seizures, and the acquisition of schizophrenia-related behaviors. Here, we demonstrate that loss of collagen XIX also results in a reduction of telencephalic PNNs. Loss of PNNs was accompanied with reduced levels of aggrecan (Acan), a major component of PNNs. Despite reduced levels of PNN constituents in collagen XIX-deficient mice ( col19a1 - / - ), we failed to detect reduced expression of genes encoding these ECM molecules. Instead, we discovered a widespread upregulation of extracellular proteases capable of cleaving Acan and other PNN constituents in col19a1 - / - brains. Taken together, these results suggest a mechanism by which the loss of collagen XIX speeds PNN degradation and they identify a novel mechanism by which the loss of collagen XIX may contribute to complex brain disorders.

  14. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons

    Directory of Open Access Journals (Sweden)

    Sei-ichi Yoshihara

    2014-08-01

    Full Text Available Sensory experience regulates the development of various brain structures, including the cortex, hippocampus, and olfactory bulb (OB. Little is known about how sensory experience regulates the dendritic spine development of OB interneurons, such as granule cells (GCs, although it is well studied in mitral/tufted cells. Here, we identify a transcription factor, Npas4, which is expressed in OB GCs immediately after sensory input and is required for dendritic spine formation. Npas4 overexpression in OB GCs increases dendritic spine density, even under sensory deprivation, and rescues reduction of dendrite spine density in the Npas4 knockout OB. Furthermore, loss of Npas4 upregulates expression of the E3-ubiquitin ligase Mdm2, which ubiquitinates a microtubule-associated protein Dcx. This leads to reduction in the dendritic spine density of OB GCs. Together, these findings suggest that Npas4 regulates Mdm2 expression to ubiquitinate and degrade Dcx during dendritic spine development in newborn OB GCs after sensory experience.

  15. Neocortical neuronal morphology in the Siberian Tiger (Panthera tigris altaica) and the clouded leopard (Neofelis nebulosa).

    Science.gov (United States)

    Johnson, Cameron B; Schall, Matthew; Tennison, Mackenzie E; Garcia, Madeleine E; Shea-Shumsky, Noah B; Raghanti, Mary Ann; Lewandowski, Albert H; Bertelsen, Mads F; Waller, Leona C; Walsh, Timothy; Roberts, John F; Hof, Patrick R; Sherwood, Chet C; Manger, Paul R; Jacobs, Bob

    2016-12-01

    Despite extensive investigations of the neocortex in the domestic cat, little is known about neuronal morphology in larger felids. To this end, the present study characterized and quantified the somatodendritic morphology of neocortical neurons in prefrontal, motor, and visual cortices of the Siberian tiger (Panthera tigris altaica) and clouded leopard (Neofelis nebulosa). After neurons were stained with a modified Golgi technique (N = 194), dendritic branching and spine distributions were analyzed using computer-assisted morphometry. Qualitatively, aspiny and spiny neurons in both species appeared morphologically similar to those observed in the domestic cat. Although the morphology of spiny neurons was diverse, with the presence of extraverted, inverted, horizontal, and multiapical pyramidal neurons, the most common variant was the typical pyramidal neuron. Gigantopyramidal neurons in the motor cortex were extremely large, confirming the observation of Brodmann ([1909] Vergleichende Lokalisationlehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig, Germany: J.A. Barth), who found large somata for these neurons in carnivores in general, and felids in particular. Quantitatively, a MARSplines analysis of dendritic measures differentiated typical pyramidal neurons between the Siberian tiger and the clouded leopard with 93% accuracy. In general, the dendrites of typical pyramidal neurons were more complex in the tiger than in the leopards. Moreover, dendritic measures in tiger pyramidal neurons were disproportionally large relative to body/brain size insofar as they were nearly as extensive as those observed in much larger mammals (e.g., African elephant). Comparison of neuronal morphology in a more diverse collection of larger felids may elucidate the comparative context for the relatively large size of the pyramidal neurons observed in the present study. J. Comp. Neurol. 524:3641-3665, 2016. © 2016 Wiley Periodicals, Inc.

  16. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.

    Science.gov (United States)

    Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R

    2015-01-21

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.

  17. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex

    Science.gov (United States)

    Pirnia, T; Joshi, S H; Leaver, A M; Vasavada, M; Njau, S; Woods, R P; Espinoza, R; Narr, K L

    2016-01-01

    Electroconvulsive therapy (ECT) is a highly effective and rapidly acting treatment for severe depression. To understand the biological bases of therapeutic response, we examined variations in cortical thickness from magnetic resonance imaging (MRI) data in 29 patients scanned at three time points during an ECT treatment index series and in 29 controls at two time points. Changes in thickness across time and with symptom improvement were evaluated at high spatial resolution across the cortex and within discrete cortical regions of interest. Patients showed increased thickness over the course of ECT in the bilateral anterior cingulate cortex (ACC), inferior and superior temporal, parahippocampal, entorhinal and fusiform cortex and in distributed prefrontal areas. No changes across time occurred in controls. In temporal and fusiform regions showing significant ECT effects, thickness differed between patients and controls at baseline and change in thickness related to therapeutic response in patients. In the ACC, these relationships occurred in treatment responders only, and thickness measured soon after treatment initiation predicted the overall ECT response. ECT leads to widespread neuroplasticity in neocortical, limbic and paralimbic regions and changes relate to the extent of antidepressant response. Variations in ACC thickness, which discriminate treatment responders and predict response early in the course of ECT, may represent a biomarker of overall clinical outcome. Because post-mortem studies show focal reductions in glial density and neuronal size in patients with severe depression, ECT-related increases in thickness may be attributable to neuroplastic processes affecting the size and/or density of neurons and glia and their connections. PMID:27271858

  18. Vigabatrin therapy implicates neocortical high frequency oscillations in an animal model of infantile spasms.

    Science.gov (United States)

    Frost, James D; Le, John T; Lee, Chong L; Ballester-Rosado, Carlos; Hrachovy, Richard A; Swann, John W

    2015-10-01

    Abnormal high frequency oscillations (HFOs) in EEG recordings are thought to be reflections of mechanisms responsible for focal seizure generation in the temporal lobe and neocortex. HFOs have also been recorded in patients and animal models of infantile spasms. If HFOs are important contributors to infantile spasms then anticonvulsant drugs that suppress these seizures should decrease the occurrence of HFOs. In experiments reported here, we used long-term video/EEG recordings with digital sampling rates capable of capturing HFOs. We tested the effectiveness of vigabatrin (VGB) in the TTX animal model of infantile spasms. VGB was found to be quite effective in suppressing spasms. In 3 of 5 animals, spasms ceased after a daily two week treatment. In the other 2 rats, spasm frequency dramatically decreased but gradually increased following treatment cessation. In all animals, hypsarrhythmia was abolished by the last treatment day. As VGB suppressed the frequency of spasms, there was a decrease in the intensity of the behavioral spasms and the duration of the ictal EEG event. Analysis showed that there was a burst of high frequency activity at ictal onset, followed by a later burst of HFOs. VGB was found to selectively suppress the late HFOs of ictal complexes. VGB also suppressed abnormal HFOs recorded during the interictal periods. Thus VGB was found to be effective in suppressing both the generation of spasms and hypsarrhythmia in the TTX model. Vigabatrin also appears to preferentially suppress the generation of abnormal HFOs, thus implicating neocortical HFOs in the infantile spasms disease state. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Neocortical axon arbors trade-off material and conduction delay conservation.

    Directory of Open Access Journals (Sweden)

    Julian M L Budd

    2010-03-01

    Full Text Available The brain contains a complex network of axons rapidly communicating information between billions of synaptically connected neurons. The morphology of individual axons, therefore, defines the course of information flow within the brain. More than a century ago, Ramón y Cajal proposed that conservation laws to save material (wire length and limit conduction delay regulate the design of individual axon arbors in cerebral cortex. Yet the spatial and temporal communication costs of single neocortical axons remain undefined. Here, using reconstructions of in vivo labelled excitatory spiny cell and inhibitory basket cell intracortical axons combined with a variety of graph optimization algorithms, we empirically investigated Cajal's conservation laws in cerebral cortex for whole three-dimensional (3D axon arbors, to our knowledge the first study of its kind. We found intracortical axons were significantly longer than optimal. The temporal cost of cortical axons was also suboptimal though far superior to wire-minimized arbors. We discovered that cortical axon branching appears to promote a low temporal dispersion of axonal latencies and a tight relationship between cortical distance and axonal latency. In addition, inhibitory basket cell axonal latencies may occur within a much narrower temporal window than excitatory spiny cell axons, which may help boost signal detection. Thus, to optimize neuronal network communication we find that a modest excess of axonal wire is traded-off to enhance arbor temporal economy and precision. Our results offer insight into the principles of brain organization and communication in and development of grey matter, where temporal precision is a crucial prerequisite for coincidence detection, synchronization and rapid network oscillations.

  20. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Lydia eOuellet

    2014-06-01

    Full Text Available In both humans and rodents, decline in cognitive function is a hallmark of the aging process, the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern detection and other large-scale population dynamics, but they have also been linked to mechanisms mediating plasticity and learning, making them a prime candidate for study and modelling of modifications to cortical communication pathways in neurodegenerative diseases. Using the rat primary auditory cortex (A1 as a model, we probed the known markers of GABAergic interneurons with immunohistological methods, using antibodies against gamma aminobutyric acid (GABA, parvalbumin (PV, somatostatin (SOM, calretinin (CR, vasoactive intestinal peptide (VIP, choline acetyltransferase (ChAT, neuropeptide Y (NPY and cholecystokinin (CCK to document the changes observed in interneuron populations across the rat’s lifespan. This analysis provided strong evidence that several but not all GABAergic neurons were affected by the aging process, showing most dramatic changes in expression of parvalbumin (PV and somatostatin (SOM expression. With this evidence, we show how understanding these trajectories of cell counts may be factored into a simple model to quantify changes in inhibitory signalling across the course of life, which may be applied as a framework for creating more advanced simulations of interneuronal implication in normal cerebral processing, normal aging, or pathological processes.

  1. Statistical mechanics of neocortical interactions: Stability and duration of the 7±2 rule of short-term-memory capacity

    Science.gov (United States)

    Ingber, Lester

    1985-02-01

    This paper is an essential addendum to a previous paper [L. Ingber, Phys. Rev. A 29, 3346 (1984)]. Calculations are presented here to support the claim made in the previous paper that there exists an approximate one-dimensional solution to the two-dimensional neocortical Fokker-Planck equation. This solution is extremely useful, not only for obtaining a closed algebraic expression for the time of first passage, but also for establishing that minima of the associated path-integral stationary Lagrangian are indeed stable points of the transient dynamic system. Also, a relatively nontechnical summary is given of the basic theory.

  2. Patterns of hippocampal-neocortical interactions in the retrieval of episodic autobiographical memories across the entire life-span of aged adults

    Science.gov (United States)

    Viard, Armelle; Lebreton, Karine; Chételat, Gaël; Desgranges, Béatrice; Landeau, Brigitte; Young, Alan; De La Sayette, Vincent; Eustache, Francis; Piolino, Pascale

    2010-01-01

    We previously demonstrated that Episodic Autobiographical Memories (EAMs) rely on a network of brain regions comprising the medial temporal lobe (MTL) and distributed neocortical regions regardless of their remoteness. The findings supported the model of memory consolidation which proposes a permanent role of MTL during EAM retrieval (Multiple-Trace Theory or MTT) rather than a temporary role (standard model). Our present aim was to expand the results by examining the interactions between the MTL and neocortical regions (or MTL-neocortical links) during EAM retrieval with varying retention intervals. We used an experimental paradigm specially designed to engage aged participants in the recollection of EAMs, extracted from five different time-periods, covering their whole life-span, in order to examine correlations between activation in the MTL and neocortical regions. The nature of the memories was checked at debriefing by means of behavioral measures to control the degree of episodicity and properties of memories. Targeted correlational analyses carried out on the MTL, frontal, lateral temporal and posterior regions revealed strong links between the MTL and neocortex during the retrieval of both recent and remote EAMs, challenging the standard model of memory consolidation and supporting MTT instead. Further confirmation was given by results showing that activation in the left and right hippocampi significantly correlated during the retrieval of both recent and remote memories. Correlations among extra-MTL neocortical regions also emerged for all time-periods, confirming the critical role of the prefrontal, temporal (lateral temporal cortex and temporal pole), precuneus and posterior cingulate regions in EAM retrieval. Overall, this paper emphasizes the role of a bilateral network of MTL and neocortical areas whose activation correlate during the recollection of rich phenomenological recent and remote EAMs. PMID:19338022

  3. Active action potential propagation but not initiation in thalamic interneuron dendrites

    Science.gov (United States)

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  4. Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Stracke, C.P.; Schoth, F.; Moeller-Hartmann, W.; Krings, T. [University Hospital of the University of Technology, Departments of Neuroradiology and Diagnostic Radiology, Aachen (Germany); Pettersson, L.G. [University of Goeteborg, Department of Physiology, Goeteborg (Sweden)

    2005-02-01

    The purpose of this study was to investigate if functional activity with spinal cord somatosensory stimulation can be visualized using BOLD fMRI. We investigated nine healthy volunteers using a somatosensory stimulus generator. The stimuli were applied in three different runs at the first, third, and fifth finger tip of the right hand, respectively, corresponding to dermatomes c6, c7, and c8. The stimuli gave an increase of BOLD signal (activation) in three different locations of the spinal cord and brain stem. First, activations could be seen in the spinal segment corresponding to the stimulated dermatome in seven out of nine volunteers for c6 stimulation, two out of eight for c7, and three out of eight for c8. These activations were located close to the posterior margin of the spinal cord, presumably reflecting synaptic transmission to dorsal horn interneurons. Second, activation in the medulla oblongata was evident in four subjects, most likely corresponding to the location of the nucleus cuneatus. The third location of activation, which was the strongest and most reliable observed was inside the spinal cord in the c3 and c4 segments. Activation at these spinal levels was almost invariably observed independently of the dermatome stimulated (9/9 for c6, 8/8 for c7, and 7/8 for c8 stimulation). These activations may pertain to an interneuronal system at this spinal level. The results are discussed in relation to neurophysiological studies on cervical spinal interneuronal pathways in animals and humans. (orig.)

  5. HCN Channel Modulation of Synaptic Integration in GABAergic Interneurons in Malformed Rat Neocortex

    Directory of Open Access Journals (Sweden)

    John J. Hablitz

    2017-04-01

    Full Text Available Cortical malformations are often associated with pharmaco-resistant epilepsy. Alterations in hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN channels have been shown to contribute to malformation associated hyperexcitability. We have recently demonstrated that expression of HCN channels and Ih current amplitudes are reduced in layer (L 5 pyramidal neurons of rats with freeze lesion induced malformations. These changes were associated with an increased EPSP temporal summation. Here, we examine the effects of HCN channel inhibition on synaptic responses in fast spiking, presumptive basket cells and accommodating, presumptive Martinotti, GABAergic interneurons in slices from freeze lesioned animals. In control animals, fast spiking cells showed small sag responses which were reduced by the HCN channel antagonist ZD7288. Fast spiking cells in lesioned animals showed absent or reduced sag responses. The amplitude of single evoked EPSPs in fast spiking cells in the control group was not affected by HCN channel inhibition with ZD7288. EPSP ratios during short stimulus trains at 25 Hz were not significantly different between control and lesion groups. ZD7288 produced an increase in EPSP ratios in the control but not lesion groups. Under voltage clamp conditions, ZD7288 did not affect EPSC ratios. In the control group, accommodating interneurons showed robust sag responses which were significantly reduced by ZD7288. HCN channel inhibition increased EPSP ratios and area in controls but not the lesioned group. The results indicate that HCN channels differentially modulate EPSPs in different classes of GABAergic interneurons and that this control is reduced in malformed rat neocortex.

  6. Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T

    International Nuclear Information System (INIS)

    Stracke, C.P.; Schoth, F.; Moeller-Hartmann, W.; Krings, T.; Pettersson, L.G.

    2005-01-01

    The purpose of this study was to investigate if functional activity with spinal cord somatosensory stimulation can be visualized using BOLD fMRI. We investigated nine healthy volunteers using a somatosensory stimulus generator. The stimuli were applied in three different runs at the first, third, and fifth finger tip of the right hand, respectively, corresponding to dermatomes c6, c7, and c8. The stimuli gave an increase of BOLD signal (activation) in three different locations of the spinal cord and brain stem. First, activations could be seen in the spinal segment corresponding to the stimulated dermatome in seven out of nine volunteers for c6 stimulation, two out of eight for c7, and three out of eight for c8. These activations were located close to the posterior margin of the spinal cord, presumably reflecting synaptic transmission to dorsal horn interneurons. Second, activation in the medulla oblongata was evident in four subjects, most likely corresponding to the location of the nucleus cuneatus. The third location of activation, which was the strongest and most reliable observed was inside the spinal cord in the c3 and c4 segments. Activation at these spinal levels was almost invariably observed independently of the dermatome stimulated (9/9 for c6, 8/8 for c7, and 7/8 for c8 stimulation). These activations may pertain to an interneuronal system at this spinal level. The results are discussed in relation to neurophysiological studies on cervical spinal interneuronal pathways in animals and humans. (orig.)

  7. Synaptic polarity of the command interneurons for Caenorhabditis Elegans directional motion

    Directory of Open Access Journals (Sweden)

    Franciszek Maria Rakowski

    2014-03-01

    Full Text Available The command interneuron circuit for Caenorhabditis Elegans locomotion has been known for a long time [1,2]. However, synaptic polarities of these interneurons, and thus, the circuit functioning is largely unknown. Additionally, nematode command neurons express both glutamate-gated chloride channels and glutamate-gated cation channels, which causes that each synapse, even when belonging to the same neuron, might be either inhibitory or excitatory. We use an experimental behavioral data set: eighteen different neural ablations were performed and times spent in the forward and reverse motions were registered. Therefore one can consider eighteen different command neuron network structures where each one as a whole, controls the behavior of the nematode, and results with one of the eighteen different behavioral patterns. In order to decipher the particular polarities of each neuron we have constructed a theoretical (interneuron network model, in which neural activities are represented by a set of differential equations and searched all possible synaptic polarity combinations in the circuit to find the best match to the timing data [3,4]. Here, we present the extension of this model, where we explicitly incorporate calcium concentration dynamics as the regulatory factor and detailed connectivity diagram based on the transmission type of each synapse. Since the parameter space spanned by the morphological and regulatory factors is huge, we have applied an evolutionary strategy for finding the parameters of the mathematical model, for which the theoretical results and the experimental data fit the best. The overall model output consists of the averaged values: neuron activities, calcium concentration levels, input signal (the upstream neurons activity pattern and of the resolved detailed connectivity diagram. The deciphered list of the types of synapses states that most of the synapses, including strongest connections, e.g. ASH ->

  8. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats

    DEFF Research Database (Denmark)

    Birinyi, András; Viszokay, Kornél; Wéber, Ildikó

    2003-01-01

    dextran amine (BDA) into the lateral motor column to retrogradely label commissural interneurons that may have direct projections to motor neurons. Stained neurons were recovered in the ventromedial areas of the contralateral gray matter in substantial numbers. In the second experiment BDA was injected...... into the ventromedial gray matter on one side of the lumbar spinal cord, whereas motor neurons were simultaneously labeled on the opposite side by applying biocytin onto the ventral roots. BDA injections into the ventromedial gray matter labeled a strong axon bundle that arose from the site of injection, crossed...

  9. Effect of age on neocortical brain cells in 90+ year old human females--a cell counting study

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Jacobsen, Jette Stub; Pakkenberg, Bente

    2013-01-01

    An increasing number of people are living past the age of 100 years, but little is known about what differentiates centenarians from the rest of the population. In this study, brains from female subjects in 3 different age groups, 65-75 years (n = 8), 76-85 years (n = 8), and 94-105 years (n = 7...... by a significant difference in the total number of neocortical oligodendrocytes that differed significantly between the youngest (27.5 × 10(9)) and oldest (18.1. × 10(9), p = 0.006) age groups. In conclusion, very old individuals have brain neuron numbers comparable with younger individuals, which may...... = 0.22) in the second group, and 16.32 × 10(9) (CV = 0.24) in the oldest group. However, there was a significant difference in the total number of neocortical glial cells between the youngest (41.0 × 10(9)) and oldest (29.0 × 10(9)) age groups (p = 0.013). The significance was probably driven...

  10. Longitudinal accrual of neocortical amyloid burden is associated with microstructural changes of the fornix in cognitively normal adults.

    Science.gov (United States)

    Song, Zhuang; Farrell, Michelle E; Chen, Xi; Park, Denise C

    2018-03-06

    The fornix and parahippocampal cingulum are 2 major limbic tracts in the core memory network of the hippocampus. Although these fiber tracts are known to degrade with Alzheimer's disease (AD), little is known about their vulnerability in the asymptomatic phase of AD. In this longitudinal study of cognitively normal adults, we assessed amyloid-beta (Aβ) plaques using positron emission tomography and white matter microstructure using diffusion tensor imaging. We found that an increase of neocortical Aβ burden over time was associated with an increase of radial diffusivity in the fornix but not in the parahippocampal cingulum. The effect of increasing neocortical Aβ burden on the fornix remained significant after controlling for baseline measures, head motion, global brain atrophy, regional Aβ burden in the hippocampus, or microstructural changes in the global white matter. In addition, microstructural changes in the fornix were not associated with decline of episodic memory or other cognitive abilities. Our findings suggest that microstructural changes in the fornix may be an early sign in the asymptomatic phase of AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Representation of the body in the lateral striatum of the freely moving rat: Fast Spiking Interneurons respond to stimulation of individual body parts.

    Science.gov (United States)

    Kulik, Julianna M; Pawlak, Anthony P; Kalkat, Manraj; Coffey, Kevin R; West, Mark O

    2017-02-15

    Numerous studies have shown that certain types of striatal interneurons play a crucial role in selection and regulation of striatal output. Striatal Fast-Spiking Interneurons (FSIs) are parvalbumin positive, GABAergic interneurons that constitute less than 1% of the total striatal population. It is becoming increasingly evident that these sparsely distributed neurons exert a strong inhibitory effect on Medium Spiny projection Neurons (MSNs). MSNs in lateral striatum receive direct synaptic input from regions of cortex representing discrete body parts, and show phasic increases in activity during touch or movement of specific body parts. In the present study, we sought to determine whether lateral striatal FSIs identified by their electrophysiological properties, i.e., short-duration spike and fast firing rate (FR), display body part sensitivity similar to that exhibited by MSNs. During video recorded somatosensorimotor exams, each individual body part was stimulated and responses of single neurons were observed and quantified. Individual FSIs displayed patterns of activity related selectively to stimulation of a discrete body part. Most patterns of activity were similar to those exhibited by typical MSNs, but some phasic decreases were observed. These results serve as evidence that some striatal FSIs process information related to discrete body parts and participate in sensorimotor processing by striatal networks that contribute to motor output. Parvalbumin positive, striatal FSIs are hypothesized to play an important role in behavior by inhibiting MSNs. We asked a fundamental question regarding information processed during behavior by FSIs: whether FSIs, which preferentially occupy the sensorimotor portion of the striatum, process activity of discrete body parts. Our finding that they do, in a selective manner similar to MSNs, begins to reveal the types of phasic signals that FSI feed forward to projection neurons during striatal processing of cortical input

  12. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse.

    Science.gov (United States)

    Caldeira, Vanessa; Dougherty, Kimberly J; Borgius, Lotta; Kiehn, Ole

    2017-01-27

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2 Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.

  13. Balanced plasticity and stability of the electrical properties of a molluscan modulatory interneuron after classical conditioning: a computational study

    Directory of Open Access Journals (Sweden)

    Dimitris Vavoulis

    2010-05-01

    Full Text Available The Cerebral Giant Cells (CGCs are a pair of identified modulatory interneurons in the Central Nervous System of the pond snail Lymnaea stagnalis with an important role in the expression of both unconditioned and conditioned feeding behavior. Following single-trial food-reward classical conditioning, the membrane potential of the CGCs becomes persistently depolarized. This depolarization contributes to the conditioned response by facilitating sensory cell to command neuron synapses, which results in the activation of the feeding network by the conditioned stimulus. Despite the depolarization of the membrane potential, which enables the CGGs to play a key role in learning-induced network plasticity, there is no persistent change in the tonic firing rate or shape of the action potentials, allowing these neurons to retain their normal network function in feeding. In order to understand the ionic mechanisms of this novel combination of plasticity and stability of intrinsic electrical properties, we first constructed and validated a Hodgkin-Huxley-type model of the CGCs. We then used this model to elucidate how learning-induced changes in a somal persistent sodium and a delayed rectifier potassium current lead to a persistent depolarization of the CGCs whilst maintaining their firing rate. Including in the model an additional increase in the conductance of a high-voltage-activated calcium current allowed the spike amplitude and spike duration also to be maintained after conditioning. We conclude therefore that a balanced increase in three identified conductances is sufficient to explain the electrophysiological changes found in the CGCs after classical conditioning.

  14. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production.

    Science.gov (United States)

    Kaneta, Hiroo; Ukai, Wataru; Tsujino, Hanako; Furuse, Kengo; Kigawa, Yoshiyasu; Tayama, Masaya; Ishii, Takao; Hashimoto, Eri; Kawanishi, Chiaki

    2017-09-01

    Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Calretinin and parvalbumin immunoreactive interneurons in the retrosplenial cortex of the rat brain: Qualitative and quantitative analyses

    Czech Academy of Sciences Publication Activity Database

    Salaj, M.; Druga, Rastislav; Cerman, J.; Kubová, Hana; Barinka, F.

    2015-01-01

    Roč. 1627, Nov 19 (2015), s. 201-215 ISSN 0006-8993 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : retrosplenial cortex * calretinin * parvalbumin * interneurons * calcium-binding proteins * perirhinal cortex Subject RIV: FH - Neurology Impact factor: 2.561, year: 2015

  16. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.

    Directory of Open Access Journals (Sweden)

    Yu-Bin Huang

    Full Text Available Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.

  17. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injur...

  18. Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements

    NARCIS (Netherlands)

    Kern, R.; Hateren, J.H. van; Egelhaaf, M.

    2006-01-01

    Flying blowflies shift their gaze by saccadic turns of body and head, keeping their gaze basically fixed between saccades. For the head, this results in almost pure translational optic flow between saccades, enabling visual interneurons in the fly motion pathway to extract information about

  19. Synaptic Changes in AMPA Receptor Subunit Expression in Cortical Parvalbumin Interneurons in the Stargazer Model of Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Nadia K. Adotevi

    2017-12-01

    Full Text Available Feedforward inhibition is essential to prevent run away excitation within the brain. Recent evidence suggests that a loss of feed-forward inhibition in the corticothalamocortical circuitry may underlie some absence seizures. However, it is unclear if this aberration is specifically linked to loss of synaptic excitation onto local fast-spiking parvalbumin-containing (PV+ inhibitory interneurons, which are responsible for mediating feedforward inhibition within cortical networks. We recently reported a global tissue loss of AMPA receptors (AMPARs, and a specific mistrafficking of these AMPARs in PV+ interneurons in the stargazer somatosensory cortex. The current study was aimed at investigating if cellular changes in AMPAR expression were translated into deficits in receptors at specific synapses in the feedforward inhibitory microcircuit. Using western blot immunolabeling on biochemically isolated synaptic fractions, we demonstrate a loss of AMPAR GluA1–4 subunits in the somatosensory cortex of stargazers compared to non-epileptic control mice. Furthermore, using double post-embedding immunogold-cytochemistry, we show a loss of GluA1–4-AMPARs at excitatory synapses onto cortical PV+ interneurons. Altogether, these data indicate a loss of synaptic AMPAR-mediated excitation of cortical PV+ inhibitory neurons. As the cortex is considered the site of initiation of spike wave discharges (SWDs within the corticothalamocortical circuitry, loss of AMPARs at cortical PV+ interneurons likely impairs feed-forward inhibitory output, and contributes to the generation of SWDs and absence seizures in stargazers.

  20. Co-expression of VAL- and TMT-opsins uncovers ancient photosensory interneurons and motorneurons in the vertebrate brain.

    Directory of Open Access Journals (Sweden)

    Ruth M Fischer

    Full Text Available The functional principle of the vertebrate brain is often paralleled to a computer: information collected by dedicated devices is processed and integrated by interneuron circuits and leads to output. However, inter- and motorneurons present in today's vertebrate brains are thought to derive from neurons that combined sensory, integration, and motor function. Consistently, sensory inter-motorneurons have been found in the simple nerve nets of cnidarians, animals at the base of the evolutionary lineage. We show that light-sensory motorneurons and light-sensory interneurons are also present in the brains of vertebrates, challenging the paradigm that information processing and output circuitry in the central brain is shielded from direct environmental influences. We investigated two groups of nonvisual photopigments, VAL- and TMT-Opsins, in zebrafish and medaka fish; two teleost species from distinct habitats separated by over 300 million years of evolution. TMT-Opsin subclasses are specifically expressed not only in hypothalamic and thalamic deep brain photoreceptors, but also in interneurons and motorneurons with no known photoreceptive function, such as the typeXIV interneurons of the fish optic tectum. We further show that TMT-Opsins and Encephalopsin render neuronal cells light-sensitive. TMT-Opsins preferentially respond to blue light relative to rhodopsin, with subclass-specific response kinetics. We discovered that tmt-opsins co-express with val-opsins, known green light receptors, in distinct inter- and motorneurons. Finally, we show by electrophysiological recordings on isolated adult tectal slices that interneurons in the position of typeXIV neurons respond to light. Our work supports "sensory-inter-motorneurons" as ancient units for brain evolution. It also reveals that vertebrate inter- and motorneurons are endowed with an evolutionarily ancient, complex light-sensory ability that could be used to detect changes in ambient light spectra

  1. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  2. Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat

    DEFF Research Database (Denmark)

    Stokke, Mathis Frøshaug; Nissen, Ulla Vig; Glover, Joel C.

    2002-01-01

    We have studied the axonal projection patterns of commissural interneurons (CINs) in the neonatal rat spinal cord. Some CINs are integral components of the neuronal networks in the vertebrate spinal cord that generate locomotor activity. By using differential retrograde labeling protocols...... with fluorescent dextran amines, we show that CINs with ascending axons (ascending CINs, or aCINs) and CINs with descending axons (descending CINs, or dCINs) constitute largely different populations. We show that aCINs and dCINs occupy partially overlapping domains in the transverse plane. The aCINs are located...... and a half segment rostrally or caudally and are present in roughly equal numbers. We also demonstrate the presence of a third, smaller population of CINs whose axons bifurcate to project for at least one and a half segment both rostrally and caudally (adCINs). The adCINs are located predominantly among...

  3. Septal innervation regulates the function of alpha7 nicotinic receptors in CA1 hippocampal interneurons.

    Science.gov (United States)

    Thinschmidt, Jeffrey S; Frazier, Charles J; King, Michael A; Meyer, Edwin M; Papke, Roger L

    2005-10-01

    The hippocampus receives substantial input from the medial septum/diagonal band of broca (MS/DB) via the fibria-fornix (FF). Projections from the MS/DB innervate hippocampal interneurons that express alpha7 nicotinic receptors and regulate excitation in principal cell populations. In the present report we used stereotaxic surgery, whole-cell patch clamping, and immunohistochemical techniques to evaluate the effects of FF and MS/DB lesions on alpha7 nicotinic receptors in stratum radiatum interneurons. Focal somatic application of ACh (1 mM) evoked methyllycaconitine (MLA)-sensitive currents that were markedly reduced following aspirative lesions of the FF. Reductions in current amplitudes were prevented or restored to levels not significantly different from controls following in vivo treatment with the alpha7-selective agonist GTS-21, and GTS-21 treatment did not change current amplitudes measured in tissue from unlesioned animals. MS/DB injections of the selective cholinergic neurotoxin 192 IgG-saporin did not affect alpha7 receptor currents, although MS/DB ChAT and hippocampal AChE immunolabeling were significantly reduced. In contrast, kainic acid lesions of the MS/DB, potentially more selective for GABAergic projection neurons, produced significant reductions in current amplitudes. These findings are the first to show functional changes in alpha7 receptors following hippocampal denervation and suggest that MS/DB hippocampal innervation regulates functional aspects of hippocampal alpha7 receptors. The results confirm hippocampal alpha7 nicotinic receptors as viable therapeutic targets in diseases that involve degradation of the septohippocampal pathway and may indicate that GABAergic MS/DB hippocampal input plays a more substantial role in the regulation of alpha7 nicotinic receptor function than MS/DB hippocampal cholinergic input.

  4. A cholinergic modulatory interneuron in the feeding system of the snail, Lymnaea.

    Science.gov (United States)

    Yeoman, M S; Parish, D C; Benjamin, P R

    1993-07-01

    1. Pharmacological and physiological methods were used to examine the role of acetylcholine (ACh) in modulation of the Lymnaea feeding central pattern generator (CPG) by the slow oscillator (SO) interneuron. 2. Extracts of dissected SO cell bodies inhibited spontaneous ventricular contractions of the clam Mya arenaria, indicating the presence of ACh. These effects were blocked by the specific antagonist benzoquinonium chloride (10(-7) M). 3. Isolated SO cells grown in culture synthesized ACh from tritiated choline. 4. High [K+] saline induced release of synthesized ACh from cultured SO cells into the medium. 5. The specific ACh antagonist phenyltrimethylammonium (10(-4) M) blocked both excitatory, biphasic (inhibitory-excitatory) and inhibitory monosynaptic connections from the SO to feeding CPG interneurons and motor neurons. Less specific cholinergic antagonists blocked either excitatory (hexamethonium, 10(-4) M) or both excitatory and inhibitory connections (d-tubo-curarine, 10(-4) M). 6. The synaptic responses of the SO could be mimicked by brief (20 ms) pressure-pulsed application of ACh onto the cell bodies of the postsynaptic cells in high-Mg2+ saline. In normal saline, ACh elicited bursts of spikes in the N1 cells, indicating that a fictive feeding pattern had been induced in the CPG. This mimics the main mechanism by which the SO activates the CPG, which is by exciting the N1s. 7. The frequency of SO-induced fictive feeding rhythm was reduced by bath application of hexamethonium chloride to the buccal ganglia. This reduced the amplitude of the SO-->N1 excitatory synaptic response (30% of controls) and is probably the main mechanism for the reduction in the frequency of the rhythm. 8. The evidence suggests that ACh is the main neurochemical involved in allowing the SO to initiate and control the frequency of the Lymnaea feeding CPG.

  5. Pauses in Striatal Cholinergic Interneurons: What is Revealed by Their Common Themes and Variations?

    Directory of Open Access Journals (Sweden)

    Yan-Feng Zhang

    2017-10-01

    Full Text Available Striatal cholinergic interneurons, the so-called tonically active neurons (TANs, pause their firing in response to sensory cues and rewards during classical conditioning and instrumental tasks. The respective pause responses observed can demonstrate many commonalities, such as constant latency and duration, synchronous occurrence in a population of cells, and coincidence with phasic activities of midbrain dopamine neurons (DANs that signal reward predictions and errors. Pauses can however also show divergent properties. Pause latencies and durations can differ in a given TAN between appetitive vs. aversive outcomes in classical conditioning, initial excitation can be present or absent, and a second pause can variably follow a rebound. Despite more than 20 years of study, the functions of these pause responses are still elusive. Our understanding of pause function is hindered by an incomplete understanding of how pauses are generated. In this mini-review article, we compare pause types, as well as current key hypotheses for inputs underlying pauses that include dopamine-induced inhibition through D2-receptors, a GABA input from ventral tegmental area, and a prolonged afterhyperpolarization induced by excitatory input from the cortex or from the thalamus. We review how each of these mechanisms alone explains some but not all aspects of pause responses. These mechanisms might need to operate in specific but variable sets of sequences to generate a full range of pause responses. Alternatively, these mechanisms might operate in conjunction with an underlying control mechanism within cholinergic interneurons which could potentially provide a framework to generate the common themes and variations seen amongst pause responses.

  6. Neocortical-hippocampal dynamics of working memory in healthy and diseased brain states based on functional connectivity

    Directory of Open Access Journals (Sweden)

    Pablo eCampo

    2012-03-01

    Full Text Available Working memory is the ability to transiently maintain and manipulate internal representations beyond its external availability to the senses. This process is thought to support high level cognitive abilities and been shown to be strongly predictive of individual intelligence and reasoning abilities. While early models of working memory have relied on a modular perspective of brain functioning, more recent evidence suggests that cognitive functions emerge from the interactions of multiple brain regions to generate large-scale networks. Here we will review the current research on functional connectivity of working memory processes to highlight the critical role played by neural interactions in healthy and pathological brain states. Recent findings demonstrate that working memory abilities are not determined solely by local brain activity, but also rely on the functional coupling of neocortical-hippocampal regions to support working memory processes. Although the hippocampus has long been held to be important for long-term declarative memory, recent evidence suggests that the hippocampus may also be necessary to coordinate disparate cortical regions supporting the periodic reactivation of internal representations in working memory. Furthermore, recent brain imaging studies using connectivity measures, have shown that changes in cortico-limbic interactions can be useful to characterize working memory impairments observed in different neuropathological conditions. Recent advances in electrophysiological and neuroimaging techniques to model network activity has led to important insights into how neocortical and hippocampal regions support working memory processes and how disruptions along this network can lead to the memory impairments commonly reported in many neuropathological populations.

  7. Data on characterizing the gene expression patterns of neuronal ceroid lipofuscinosis genes: CLN1, CLN2, CLN3, CLN5 and their association to interneuron and neurotransmission markers: Parvalbumin and Somatostatin

    Directory of Open Access Journals (Sweden)

    Helena M. Minye

    2016-09-01

    Full Text Available The article contains raw and analyzed data related to the research article “Neuronal ceroid lipofuscinosis genes, CLN2, CLN3, CLN5 are spatially and temporally co-expressed in a developing mouse brain” (Fabritius et al., 2014 [1]. The processed data gives an understanding of the development of the cell types that are mostly affected by defective function of CLN proteins, timing of expression of CLN1, CLN2, CLN3 and CLN5 genes in a murine model. The data shows relationship between the expression pattern of these genes during neural development. Immunohistochemistry was used to identify known interneuronal markers for neurotransmission and cell proliferation: parvalbumin, somatostatin subpopulations of interneurons. Non-radioactive in-situ hybridization detected CLN5 mRNA in the hippocampus. Throughout the development strong expression of CLN genes were identified in the germinal epithelium and in ventricle regions, cortex, hippocampus, and cerebellum. This provides supportive evidence that CLN1, CLN2, CLN3 and CLN5 genes may be involved in synaptic pruning.

  8. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation.

    Science.gov (United States)

    Tong, Leslie M; Djukic, Biljana; Arnold, Christine; Gillespie, Anna K; Yoon, Seo Yeon; Wang, Max M; Zhang, Olivia; Knoferle, Johanna; Rubenstein, John L R; Alvarez-Buylla, Arturo; Huang, Yadong

    2014-07-16

    Excitatory and inhibitory balance of neuronal network activity is essential for normal brain function and may be of particular importance to memory. Apolipoprotein (apo) E4 and amyloid-β (Aβ) peptides, two major players in Alzheimer's disease (AD), cause inhibitory interneuron impairments and aberrant neuronal activity in the hippocampal dentate gyrus in AD-related mouse models and humans, leading to learning and memory deficits. To determine whether replacing the lost or impaired interneurons rescues neuronal signaling and behavioral deficits, we transplanted embryonic interneuron progenitors into the hippocampal hilus of aged apoE4 knock-in mice without or with Aβ accumulation. In both conditions, the transplanted cells developed into mature interneurons, functionally integrated into the hippocampal circuitry, and restored normal learning and memory. Thus, restricted hilar transplantation of inhibitory interneurons restores normal cognitive function in two widely used AD-related mouse models, highlighting the importance of interneuron impairments in AD pathogenesis and the potential of cell replacement therapy for AD. More broadly, it demonstrates that excitatory and inhibitory balance are crucial for learning and memory, and suggests an avenue for investigating the processes of learning and memory and their alterations in healthy aging and diseases. Copyright © 2014 the authors 0270-6474/14/349506-10$15.00/0.

  9. Stuttering interneurons generate fast and robust inhibition onto projection neurons with low capacity of short term modulation in mouse lateral amygdala.

    Directory of Open Access Journals (Sweden)

    Chen Song

    Full Text Available The stuttering interneurons (STi represent one minor subset of interneuron population and exhibit characteristic stuttering firing upon depolarization current injection. While it has been long held that the GABAergic inhibitory transmission largely varies with the subtype identity of presynaptic interneurons, whether such a rule also applies to STi is largely unknown. Here, by paired recording of interneuron and their neighboring projection neuron in lateral amygdala, we found that relative to the fast spiking and late spiking interneurons, the STi-evoked unitary postsynaptic currents onto the projection neurons had markedly larger amplitude, shorter onset latency and faster rising and decay kinetics. The quantal content and the number of vesicles in the readily releasable pool were also larger in synapses made by STi versus other interneurons. Moreover, the short-term plasticity, as reflected by the paired pulse depression and depolarization-induced suppression of inhibition, was the least prominent in the output synapses of STi. Thus, the fast and robust inhibition together with its low capacity of short term modulation may suggest an important role for STi in preventing the overexcitation of the projection neurons and thus gating the information traffic in amygdala.

  10. Subacute ischemic stroke is associated with focal 11C PiB positron emission tomography retention but not with global neocortical Aβ deposition.

    Science.gov (United States)

    Ly, John V; Rowe, Christopher C; Villemagne, Victor L; Zavala, Jorge A; Ma, Henry; Sahathevan, Ramesh; O'Keefe, Graeme; Gong, Sylvia J; Gunawan, Rico; Churilov, Leonid; Saunder, Tim; Ackerman, Uwe; Tochon-Danguy, Henri; Donnan, Geoffrey A

    2012-05-01

    Conflicting evidence exists as to whether focal cerebral ischemia contributes to cerebral amyloid deposition. We aimed to look at Aβ deposits, detected by N-methyl-2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (PiB) positron emission tomography, in patients with recent ischemic stroke. Specifically, we hypothesized that patients with recent ischemic stroke have higher local and neocortical PiB positron emission tomography retention and that this may be associated with major vascular risk factors. Ischemic stroke patients were studied using PiB positron emission tomography within 30 days and compared to age-matched controls. Distribution volume ratio maps were created using Logan graphical analysis with the cerebellar cortex as a reference. Among the 21 ischemic stroke patients (median age, 76 years; interquartile range, 68-77), the ipsilateral peri-infarct region PiB retention was higher compared to the contralateral mirror region, with a PiB distribution volume ratio difference of 0.29 (95% CI, 0.2-0.44; P=0.001) at median 10 (interquartile range, 7-14) days after stroke. Two patients also had higher PiB retention within the infarct compared to the contralateral side. There was no difference in the neocortical PiB retention elsewhere in the brain among ischemic stroke patients compared with 22 age-matched normal controls (P=0.22). Among the risk factors in the ischemic stroke patients, diabetes was associated with a higher neocortical PiB retention (Spearman Rho=0.48; 95% CI, 0.28-0.72). PiB retention was higher in the peri-infarct region among patients with recent ischemic stroke. This did not translate into a higher global neocortical PiB retention except possibly in patients with diabetes. The cause of the focal PiB retention is uncertain and requires further investigation.

  11. Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles

    Directory of Open Access Journals (Sweden)

    Ari Berkowitz

    2010-06-01

    Full Text Available The hindbrain and spinal cord can produce multiple forms of locomotion, escape, and withdrawal behaviors and (in limbed vertebrates site-specific scratching. Until recently, the prevailing view was that the same classes of CNS neurons generate multiple kinds of movements, either through reconfiguration of a single, shared network or through an increase in the number of neurons recruited within each class. The mechanisms involved in selecting and generating different motor patterns have recently been explored in detail in some non-mammalian, vertebrate model systems. Work on the hatchling Xenopus tadpole, the larval zebrafish, and the adult turtle has now revealed that distinct kinds of motor patterns are actually selected and generated by combinations of multifunctional and specialized spinal interneurons. Multifunctional interneurons may form a core, multipurpose circuit that generates elements of coordinated motor output utilized in multiple behaviors, such as left-right alternation. But, in addition, specialized spinal interneurons including separate glutamatergic and glycinergic classes are selectively activated during specific patterns: escape-withdrawal, swimming and struggling in tadpoles and zebrafish, and limb withdrawal and scratching in turtles. These specialized neurons can contribute by changing the way central pattern generator (CPG activity is initiated and by altering CPG composition and operation. The combined use of multifunctional and specialized neurons is now established as a principle of organization across a range of vertebrates. Future research may reveal common patterns of multifunctionality and specialization among interneurons controlling diverse movements and whether similar mechanisms exist in higher-order brain circuits that select among a wider array of complex movements.

  12. Immunohistochemical visualization of mouse interneuron subtypes [v1; ref status: indexed, http://f1000r.es/4em

    Directory of Open Access Journals (Sweden)

    Simon Molgaard

    2014-10-01

    Full Text Available The activity of excitatory neurons is controlled by a small, but highly diverse population of inhibitory interneurons. These cells show a high level of physiological, morphological and neurochemical heterogeneity, and play highly specific roles in neuronal circuits. In the mammalian hippocampus, these are divided into 21 different subtypes of GABAergic interneurons based on their expression of different markers, morphology and their electrophysiological properties. Ideally, all can be marked using an antibody directed against the inhibitory neurotransmitter GABA, but parvalbumin, calbindin, somatostatin, and calretinin are also commonly used as markers to narrow down the specific interneuron subtype. Here, we describe a journey to find the necessary immunological reagents for studying GABAergic interneurons of the mouse hippocampus. Based on web searches there are several hundreds of different antibodies on the market directed against these four markers. Searches in the literature databases allowed us to narrow it down to a subset of antibodies most commonly used in publications. However, in our hands the most cited ones did not work for immunofluorescence stainings of formaldehyde fixed tissue sections and cultured hippocampal neurons, and we had to immunostain our way through thirteen different commercial antibodies before finally finding a suitable antibody for each of the four markers. The antibodies were evaluated based on signal-to-noise ratios as well as if positive cells were found in layers of the hippocampus where they have previously been described. Additionally, the antibodies were also tested on sections from mouse spinal cord with similar criteria for specificity of the antibodies. Using the antibodies with a high rating on pAbmAbs, stainings with high signal-to-noise ratios and location of the immunostained cells in accordance with the literature could be obtained, making these antibodies suitable choices for studying the

  13. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.

    Science.gov (United States)

    Funk, Chadd M; Peelman, Kayla; Bellesi, Michele; Marshall, William; Cirelli, Chiara; Tononi, Giulio

    2017-09-20

    During non-rapid eye-movement (NREM) sleep, cortical and thalamic neurons oscillate every second or so between ON periods, characterized by membrane depolarization and wake-like tonic firing, and OFF periods, characterized by membrane hyperpolarization and neuronal silence. Cortical slow waves, the hallmark of NREM sleep, reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer I and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving male mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation during ON periods of NREM sleep triggers long OFF periods. Next, we show that chemogenetic activation of SOM+ cells increases slow-wave activity (SWA), slope of individual slow waves, and NREM sleep duration; whereas their chemogenetic inhibition decreases SWA and slow-wave incidence without changing time spent in NREM sleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing, triggers short OFF periods in NREM sleep, and increases NREM sleep duration. Thus SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated. SIGNIFICANCE STATEMENT Cortical slow waves are a defining feature of non-rapid eye-movement (NREM) sleep and are thought to be important for many of its restorative benefits. Yet, the mechanism by which cortical neurons abruptly and synchronously cease firing, the

  14. Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Amber Kerkhofs

    2018-03-01

    Full Text Available Adenosine A2A receptors (A2AR are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC. To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.

  15. Postsynaptic GABABRs Inhibit L-Type Calcium Channels and Abolish Long-Term Potentiation in Hippocampal Somatostatin Interneurons

    Directory of Open Access Journals (Sweden)

    Sam A. Booker

    2018-01-01

    Full Text Available Summary: Inhibition provided by local GABAergic interneurons (INs activates ionotropic GABAA and metabotropic GABAB receptors (GABABRs. Despite GABABRs representing a major source of inhibition, little is known of their function in distinct IN subtypes. Here, we show that, while the archetypal dendritic-inhibitory somatostatin-expressing INs (SOM-INs possess high levels of GABABR on their somato-dendritic surface, they fail to produce significant postsynaptic inhibitory currents. Instead, GABABRs selectively inhibit dendritic CaV1.2 (L-type Ca2+ channels on SOM-IN dendrites, leading to reduced calcium influx and loss of long-term potentiation at excitatory input synapses onto these INs. These data provide a mechanism by which GABABRs can contribute to disinhibition and control the efficacy of extrinsic inputs to hippocampal networks. : Booker et al. show that GABAB receptors are highly expressed on somatostatin interneuron dendrites. Rather than activating Kir3 channels, they preferentially co-cluster with, and negatively couple to, L-type calcium channels inhibiting long-term potentiation at excitatory inputs. Keywords: GABAergic interneurons, feedback inhibition, GABAB receptors, dendrites, Cav1.2 channels, synaptic plasticity, hippocampus, electron microscopy, whole-cell recording, multi-photon imaging

  16. Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization.

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    Full Text Available In this paper, modeling of the coupling medium between two neurons, the effects of the model parameters on the synchronization of those neurons, and compensation of coupling strength deficiency in synchronization are studied. Our study exploits the inter-neuronal coupling medium and investigates its intrinsic properties in order to get insight into neuronal-information transmittance and, there from, brain-information processing. A novel electrical model of the coupling medium that represents a well-known RLC circuit attributable to the coupling medium's intrinsic resistive, inductive, and capacitive properties is derived. Surprisingly, the integration of such properties reveals the existence of a natural three-term control strategy, referred to in the literature as the proportional integral derivative (PID controller, which can be responsible for synchronization between two neurons. Consequently, brain-information processing can rely on a large number of PID controllers based on the coupling medium properties responsible for the coherent behavior of neurons in a neural network. Herein, the effects of the coupling model (or natural PID controller parameters are studied and, further, a supervisory mechanism is proposed that follows a learning and adaptation policy based on the particle swarm optimization algorithm for compensation of the coupling strength deficiency.

  17. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation

    Directory of Open Access Journals (Sweden)

    Sonia eDuchemin

    2012-08-01

    Full Text Available Following the discovery of the vasorelaxant properties of nitric oxide (NO by Furchgott and Ignarro, the finding by Bredt and coll. of a constitutively expressed NO synthase in neurons (nNOS led to the presumption that neuronal NO may control cerebrovascular functions. Consequently, numerous studies have sought to determine whether neuraly-derived NO is involved in the regulation of cerebral blood flow. Anatomically, axons, dendrites or somata of NO neurons have been found to contact the basement membrane of blood vessels or perivascular astrocytes in all segments of the cortical microcirculation. Functionally, various experimental approaches support a role of neuronal NO in the maintenance of resting cerebral blood flow as well as in the vascular response to neuronal activity. Since decades, it has been assumed that neuronal NO simply diffuses to the local blood vessels and produce vasodilation through a cGMP-PKG dependent mechanism. However, NO is not the sole mediator of vasodilation in the cerebral microcirculation and is known to interact with a myriad of signaling pathways also involved in vascular control. In addition, cerebrovascular regulation is the result of a complex orchestration between all components of the neurovascular unit (i.e. neuronal, glial and vascular cells also known to produce NO. In this review article, the role of NO interneuron in the regulation of cortical microcirculation will be discussed in the context of the neurovascular unit.

  18. Cholinergic Interneurons Amplify Corticostriatal Synaptic Responses in the Q175 Model of Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Asami Tanimura

    2016-12-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder characterized by deficits in movement control that are widely viewed as stemming from pathophysiological changes in the striatum. Giant, aspiny cholinergic interneurons (ChIs are key elements in the striatal circuitry controlling movement, but whether their physiological properties are intact in the HD brain is unclear. To address this issue, the synaptic properties of ChIs were examined using optogenetic approaches in the Q175 mouse model of HD. In ex vivo brain slices, synaptic facilitation at thalamostriatal synapses onto ChIs was reduced in Q175 mice. The alteration in thalamostriatal transmission was paralleled by an increased response to optogenetic stimulation of cortical axons, enabling these inputs to more readily induce burst-pause patterns of activity in ChIs. This adaptation was dependent upon amplification of cortically evoked responses by a post-synaptic upregulation of voltage-dependent Na+ channels. This upregulation also led to an increased ability of somatic spikes to invade ChI dendrites. However, there was not an alteration in the basal pacemaking rate of ChIs, possibly due to increased availability of Kv4 channels. Thus, there is a functional ‘re-wiring’ of the striatal networks in Q175 mice, which results in greater cortical control of phasic ChI activity, which is widely thought to shape the impact of salient stimuli on striatal action selection.

  19. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  20. Serotonin enhances excitability and gamma frequency temporal integration in mouse prefrontal fast-spiking interneurons.

    Science.gov (United States)

    Athilingam, Jegath C; Ben-Shalom, Roy; Keeshen, Caroline M; Sohal, Vikaas S; Bender, Kevin J

    2017-12-05

    The medial prefrontal cortex plays a key role in higher order cognitive functions like decision making and social cognition. These complex behaviors emerge from the coordinated firing of prefrontal neurons. Fast-spiking interneurons (FSIs) control the timing of excitatory neuron firing via somatic inhibition and generate gamma (30-100 Hz) oscillations. Therefore, factors that regulate how FSIs respond to gamma-frequency input could affect both prefrontal circuit activity and behavior. Here, we show that serotonin (5HT), which is known to regulate gamma power, acts via 5HT2A receptors to suppress an inward-rectifying potassium conductance in FSIs. This leads to depolarization, increased input resistance, enhanced spiking, and slowed decay of excitatory post-synaptic potentials (EPSPs). Notably, we found that slowed EPSP decay preferentially enhanced temporal summation and firing elicited by gamma frequency inputs. These findings show how changes in passive membrane properties can affect not only neuronal excitability but also the temporal filtering of synaptic inputs.

  1. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining

    Directory of Open Access Journals (Sweden)

    Yuri Gonchar

    2008-03-01

    Full Text Available The majority of cortical interneurons use GABA (gamma amino butyric acid as inhibitory neurotransmitter. GABAergic neurons are morphologically, connectionally, electrically and chemically heterogeneous. In rat cerebral cortex three distinct groups of GABAergic interneurons have been identifi ed by the expression of parvalbumin (PV, calretinin (CR and somatostatin (SOM. Recent studies in mouse cerebral cortex have revealed a different organization in which the CR and SOM populations are partially overlapping. Because CR and SOM neurons derive from different progenitors located in different embryonic structures, the coexpression of CR + SOM suggests that the chemical differentiation of interneurons is regulated postmitotically. Here, we have taken an important fi rst step towards understanding this process by triple immunostaining mouse visual cortex with a panel of antibodies, which has been used extensively for classifying developing interneurons. We have found at least 13 distinct groups of GABAergic neurons which include PV, CR, SOM, CCK (cholecystokinin, CR + SOM, CR + NPY (neuropeptide Y, CR + VIP (vasointestinal polypeptide, SOM + NPY, SOM + VIP, VIP + ChAT (choline acetyltransferase, CCK + NPY, CR + SOM + NPY and CR + SOM + VIP expressing cells. Triple immunostaining with PV, CR and SOM antibodies during postnatal development further showed that PV is never colocalized with CR and SOM. Importantly, expression of SOM and CR + SOM developed after the percentage of CR cells that do not express SOM has reached the mature level, suggesting that the chemical differentiation of SOM and CR + SOM neurons is a postnatal event, which may be controlled by transcriptional regulation.

  2. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe

    Directory of Open Access Journals (Sweden)

    Niall eMcAlinden

    2015-05-01

    Full Text Available Optogenetics has proven to be a revolutionary technology in neuroscience and has advanced continuously over the past decade. However, optical stimulation technologies for in vivo need to be developed to match the advances in genetics and biochemistry that have driven this field. In particular, conventional approaches for in vivo optical illumination have a limitation on the achievable spatio-temporal resolution. Here we utilize a sapphire-based microscale gallium nitride light-emitting diode (µLED probe to activate neocortical neurons in vivo. The probes were designed to contain independently controllable multiple µLEDs, emitting at 450 nm wavelength with an irradiance of up to 2 W/mm2. Monte-Carlo stimulations predicted that optical stimulation using a µLED can modulate neural activity within a localized region. To validate this prediction, we tested this probe in the mouse neocortex that expressed channelrhodopsin-2 (ChR2 and compared the results with optical stimulation through a fiber at the cortical surface. We confirmed that both approaches reliably induced action potentials in cortical neurons and that the µLED probe evoked strong responses in deep neurons. Due to the possibility to integrate many optical stimulation sites onto a single shank, the µLED probe is thus a promising approach to control neurons locally in vivo.

  3. A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    2011-09-01

    Full Text Available GABAergic interneurons (INs in the dorsal lateral geniculate nucleus (dLGN shape the information flow from retina to cortex, presumably by controlling the number of visually evoked spikes in geniculate thalamocortical (TC neurons, and refining their receptive field. The INs exhibit a rich variety of firing patterns: Depolarizing current injections to the soma may induce tonic firing, periodic bursting or an initial burst followed by tonic spiking, sometimes with prominent spike-time adaptation. When released from hyperpolarization, some INs elicit rebound bursts, while others return more passively to the resting potential. A full mechanistic understanding that explains the function of the dLGN on the basis of neuronal morphology, physiology and circuitry is currently lacking. One way to approach such an understanding is by developing a detailed mathematical model of the involved cells and their interactions. Limitations of the previous models for the INs of the dLGN region prevent an accurate representation of the conceptual framework needed to understand the computational properties of this region. We here present a detailed compartmental model of INs using, for the first time, a morphological reconstruction and a set of active dendritic conductances constrained by experimental somatic recordings from INs under several different current-clamp conditions. The model makes a number of experimentally testable predictions about the role of specific mechanisms for the firing properties observed in these neurons. In addition to accounting for the significant features of all experimental traces, it quantitatively reproduces the experimental recordings of the action-potential- firing frequency as a function of injected current. We show how and why relative differences in conductance values, rather than differences in ion channel composition, could account for the distinct differences between the responses observed in two different neurons, suggesting

  4. Dichotomous Effects of Mu Opioid Receptor Activation on Striatal Low-Threshold Spike Interneurons

    Directory of Open Access Journals (Sweden)

    Rasha Elghaba

    2017-12-01

    Full Text Available Striatal low-threshold spike interneurons (LTSIs are tonically active neurons that express GABA and nitric oxide synthase and are involved in information processing as well as neurovascular coupling. While mu opioid receptors (MORs and their ligand encephalin are prominent in the striatum, their action on LTSIs has not been investigated. We addressed this issue carrying out whole-cell recordings in transgenic mice in which the NPY-expressing neurons are marked with green fluorescent protein (GFP. The MOR agonist (D-Ala(2, N-MePhe(4, Gly-ol-enkephalin (DAMGO produced dual effects on subpopulations of LTSIs. DAMGO caused inhibitory effects, accompanied by decreases of spontaneous firing, in 62% of LTSIs, while depolarizing effects (accompanied by an increase in spontaneous firing were observed in 23% of LTSIs tested. The dual effects of DAMGO persisted in the presence of tetrodotoxin (TTX, a sodium channel blocker or in the presence of the nicotinic acetylcholine receptor antagonist mecamylamine. However, in the presence of either the GABAA receptor antagonist picrotoxin or the muscarinic cholinergic receptor antagonist atropine, DAMGO only elicited inhibitory effects on LTSIs. Furthermore, we found that DAMGO decreased the amplitude and frequency of spontaneous GABAergic events. Unexpectedly, these effects of DAMGO on spontaneous GABAergic events disappeared after blocking of the muscarinic and nicotinic cholinergic blockers, showing that GABA inputs to LTSIs are not directly modulated by presynaptic MORs. These finding suggest that activation of MORs affect LTSIs both directly and indirectly, through modulation of GABAergic and cholinergic tones. The complex balance between direct and indirect effects determines the net effect of DAMGO on LTSIs.

  5. Memory-guided sensory comparisons in the prefrontal cortex: contribution of putative pyramidal cells and interneurons.

    Science.gov (United States)

    Hussar, Cory R; Pasternak, Tatiana

    2012-02-22

    Comparing two stimuli that occur at different times demands the coordination of bottom-up and top-down processes. It has been hypothesized that the dorsolateral prefrontal (PFC) cortex, the likely source of top-down cortical influences, plays a key role in such tasks, contributing to both maintenance and sensory comparisons. We examined this hypothesis by recording from the PFC of monkeys comparing directions of two moving stimuli, S1 and S2, separated by a memory delay. We determined the contribution of the two principal cell types to these processes by classifying neurons into broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative local interneurons. During the delay, BS cells were more likely to exhibit anticipatory modulation and represent the remembered direction. While this representation was transient, appearing at different times in different neurons, it weakened when direction was not task relevant, suggesting its utility. During S2, both putative cell types showed comparison-related activity modulations. These modulations were of two types, each carried by different neurons, which either preferred trials with stimuli moving in the same direction or trials with stimuli of different directions. These comparison effects were strongly correlated with choice, suggesting their role in circuitry underlying decision making. These results provide the first demonstration of distinct contributions made by principal cell types to memory-guided perceptual decisions. During sensory stimulation both cell types represent behaviorally relevant stimulus features contributing to comparison and decision-related activity. However in the absence of sensory stimulation, putative pyramidal cells dominated, carrying information about the elapsed time and the preceding direction.

  6. A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes.

    Science.gov (United States)

    Lacoste, Alix M B; Schoppik, David; Robson, Drew N; Haesemeyer, Martin; Portugues, Ruben; Li, Jennifer M; Randlett, Owen; Wee, Caroline L; Engert, Florian; Schier, Alexander F

    2015-06-01

    The Mauthner cell (M-cell) is a command-like neuron in teleost fish whose firing in response to aversive stimuli is correlated with short-latency escapes [1-3]. M-cells have been proposed as evolutionary ancestors of startle response neurons of the mammalian reticular formation [4], and studies of this circuit have uncovered important principles in neurobiology that generalize to more complex vertebrate models [3]. The main excitatory input was thought to originate from multisensory afferents synapsing directly onto the M-cell dendrites [3]. Here, we describe an additional, convergent pathway that is essential for the M-cell-mediated startle behavior in larval zebrafish. It is composed of excitatory interneurons called spiral fiber neurons, which project to the M-cell axon hillock. By in vivo calcium imaging, we found that spiral fiber neurons are active in response to aversive stimuli capable of eliciting escapes. Like M-cell ablations, bilateral ablations of spiral fiber neurons largely eliminate short-latency escapes. Unilateral spiral fiber neuron ablations shift the directionality of escapes and indicate that spiral fiber neurons excite the M-cell in a lateralized manner. Their optogenetic activation increases the probability of short-latency escapes, supporting the notion that spiral fiber neurons help activate M-cell-mediated startle behavior. These results reveal that spiral fiber neurons are essential for the function of the M-cell in response to sensory cues and suggest that convergent excitatory inputs that differ in their input location and timing ensure reliable activation of the M-cell, a feedforward excitatory motif that may extend to other neural circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

    Directory of Open Access Journals (Sweden)

    Tomohiko eTakei

    2013-04-01

    Full Text Available Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL and functional linkage (FL of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6–T1, with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs of rectified EMGs were compiled for 456 neuron–muscle pairs; 63 pairs showed significant post-spike effects (i.e., SL. Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL. Importantly, a greater proportion of the neuron–muscle pairs with SL showed FL (43/63 pairs, 68% compared with the pairs without SL (203/393, 52%, and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20 or FL without SL (!SL∩FL, n = 203, and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

  8. Propensity for Bistability of Bursting and Silence in the Leech Heart Interneuron

    Directory of Open Access Journals (Sweden)

    Tatiana Dashevskiy

    2018-02-01

    Full Text Available The coexistence of neuronal activity regimes has been reported under normal and pathological conditions. Such multistability could enhance the flexibility of the nervous system and has many implications for motor control, memory, and decision making. Multistability is commonly promoted by neuromodulation targeting specific membrane ionic currents. Here, we investigated how modulation of different ionic currents could affect the neuronal propensity for bistability. We considered a leech heart interneuron model. It exhibits bistability of bursting and silence in a narrow range of the leak current parameters, conductance (gleak and reversal potential (Eleak. We assessed the propensity for bistability of the model by using bifurcation diagrams. On the diagram (gleak, Eleak, we mapped bursting and silent regimes. For the canonical value of Eleak we determined the range of gleak which supported the bistability. We use this range as an index of propensity for bistability. We investigated how this index was affected by alterations of ionic currents. We systematically changed their conductances, one at a time, and built corresponding bifurcation diagrams in parameter planes of the maximal conductance of a given current and the leak conductance. We found that conductance of only one current substantially affected the index of propensity; the increase of the maximal conductance of the hyperpolarization-activated cationic current increased the propensity index. The second conductance with the strongest effect was the conductance of the low-threshold fast Ca2+ current; its reduction increased the propensity index although the effect was about two times smaller in magnitude. Analyzing the model with both changes applied simultaneously, we found that the diagram (gleak, Eleak showed a progressively expanded area of bistability of bursting and silence.

  9. Morphological features, distribution and compartmental organization of the nicotinamide adenine dinucleotide phosphate reduced-diaphorase interneurons in the human striatum.

    Science.gov (United States)

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2005-08-29

    Striatal nicotinamide adenine dinucleotide phosphate reduced-diaphorase (NADPH-d)-positive (+) cells are one of the major classes of striatal interneurons. The present study analyzes their somatodendritic morphology, distribution pattern, and compartmental organization in the caudate nucleus (CN) and putamen (Put) of nine normal human brains. The following striatal territories are examined: 1) the precommissural head of the CN; 2) the postcommissural head of the CN; 3) the body of the CN; 4) the gyrus of the CN; 5) the tail of the CN; 6) the precommissural Put; and 7) the postcommissural Put. Three morphologically distinct types of NADPH-d+ neurons were found in each of these territories. The two most common NADPH-d+ neurons displayed an ovoid or triangular perikaryon from which several thick primary dendrites emerged, although much less numerous, bipolar-shaped NADPH-d+ cells were also observed. The highest density of NADPH-d+ neurons was found in the gyrus of the CN, followed by the body of the CN, tail of the CN, postcommissural head of the CN, postcommissural Put, precommissural head of the CN, and precommissural Put. The matrix was the striatal compartment with the densest NADPH-d+ neuronal population. Some of these cells also occurred in the center and peripheral regions of the striosomes located in the head of the CN and in the Put. In the body and gyrus of the CN, the striosomes were largely devoid of these striatal interneurons. Knowledge of the density and distribution of these interneurons should advance our understanding of the organization of the normal human striatum and help to evaluate the effects of neurodegenerative processes on cell density. (c) 2005 Wiley-Liss, Inc.

  10. Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: implications for autism and epilepsy.

    Science.gov (United States)

    Gant, John C; Thibault, Oliver; Blalock, Eric M; Yang, Jun; Bachstetter, Adam; Kotick, James; Schauwecker, Paula E; Hauser, Kurt F; Smith, George M; Mervis, Ron; Li, YanFang; Barnes, Gregory N

    2009-04-01

    Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas. NPN2 signaling may intimately direct the apposition of presynaptic and postsynaptic locations, facilitating the development and maturity of hippocampal synaptic function. To further understand the role of NPN2 signaling in central nevous system (CNS) plasticity, structural and functional alterations were assessed in NPN2 deficient mice. In NPN2 deficient mice, we measured seizure susceptibility after kainic acid or pentylenetetrazol, neuronal excitability and synaptic throughput in slice preparations, principal and interneuron cell counts with immunocytochemical protocols, synaptosomal protein levels with immunoblots, and dendritic morphology with Golgi-staining. NPN2 deficient mice had shorter seizure latencies, increased vulnerability to seizure-related death, were more likely to develop spontaneous recurrent seizure activity after chemical challenge, and had an increased slope on input/output curves. Principal cell counts were unchanged, but GABA, parvalbumin, and neuropeptide Y interneuron cell counts were significantly reduced. Synaptosomal NPN2 protein levels and total number of GABAergic synapses were decreased in a gene dose-dependent fashion. CA1 pyramidal cells showed reduced dendritic length and complexity, as well as an increased number of dendritic spines. These data suggest the novel hypothesis that the Sema 3F signaling system's role in appropriate placement of subsets of hippocampal interneurons has critical downstream consequences for hippocampal function, resulting in a more seizure susceptible phenotype.

  11. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  12. Ca2+ -Mediated Plateau Potentials in a Subpopulation of Interneurons in the Ventral Horn of the Turtle Spinal Cord

    DEFF Research Database (Denmark)

    Hounsgaard, J.; Kjaerulff, O.

    1992-01-01

    The response properties of interneurons in the ventral horn were studied in transverse slices of segments D8 to S2 from the turtle spinal cord, using the current clamp technique. In about half of the neurons the response properties were dominated by their ability to generate plateau potentials...... root and occasionally from the contralateral root. The plateau potential was insensitive to tetrodotoxin but blocked by nifedipine and by replacing Ca2+ with Co2+ in the medium. It is concluded that the response properties of neurons in the ventral horn outside the motor nucleus have differentiated...

  13. [Structural and functional reorganization of the interneuronal contacts of the cerebral cortex after a single convulsive paroxysm].

    Science.gov (United States)

    Savchenko, Iu N; Ereniev, S I; Semchenko, V V; Stepanov, S S

    1987-01-01

    Using the technique of contrasting the cerebral tissue with phosphotungstic acid, the authors studied the structural and functional status of interneuronal contacts of the molecular layer of the sensomotor cortex in the brain of Krushinsky-Molodkina rats following convulsive sound stimulation and the subsequent audiogenic convulsive paroxysm. Marked reduction in the general number of synapses 4 h after the attack was attended by transformation of some flat functionally mature contacts into concave ones, which reflects the activation of the synaptic pool. The relative levels of concave and flat mature contacts returned to the initial level 8 to 24 h later.

  14. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

    DEFF Research Database (Denmark)

    Garrido, Jesús A.; Luque, Niceto R.; Tolu, Silvia

    2016-01-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly...... understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses...... representations of information in excitatory neuron populations falling under their control....

  15. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons.

    Science.gov (United States)

    Battefeld, Arne; Tran, Baouyen T; Gavrilis, Jason; Cooper, Edward C; Kole, Maarten H P

    2014-03-05

    Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these K(v)7 channels and the functional impact of colocalization with Na(v) channels remain poorly understood. Here, we quantitatively examined K(v)7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. K(v)7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ~12 (proximal) to 150 pS μm(-2) (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by K(v)7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (~15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic K(v)7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal K(v)7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains K(v)7.2/7.3 channels were found to increase Na(v) channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, K(v)7 clustering near axonal Na(v) channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential.

  16. Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain. A possible new animal model of autism.

    Science.gov (United States)

    Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen; Nyengaard, Jens R; Møller, Arne

    2014-09-19

    The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20mg/kg or 100mg/kg) continuously during the last 9-12 days of pregnancy and during the lactation period until sacrifice on the 23rd postnatal day. Total number of neocortical neurons was estimated using the optical fractionator and frontal cortical thicknesses were sampled in VPA exposed pups compared with an unexposed control group. We found that pups exposed to 20mg/kg and 100mg/kg doses of VPA had statistically significant higher total number of neurons in neocortex by 15.8% and 12.3%, respectively (p<0.05) compared to controls amounting to 15.5×10(6) neocortical neurons (p<0.01). There was no statistical difference between the two VPA groups. Pups exposed to100mg/kg, but not to 20mg/kg VPA displayed a significant (p<0.05) broader (7.5%) of frontal cortical thickness compared to controls. Our results support the hypothesis that fetal exposure of VPA may interfere with normal brain development by disturbing neocortical organization, resulting in overgrowth of frontal lobes and increased neuronal cell numbers. The results indirectly suggest that prenatal VPA may contribute as a causative factor in the brain developmental disturbances equivalent to those seen in human autism spectrum disorders. We therefore suggest that this version of the VPA model may provide a translational model of autism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/- mice

    DEFF Research Database (Denmark)

    von Schoubye, Nadia Lybøl; Frederiksen, Kristen; Kristiansen, Uffe

    2018-01-01

    Mental disorders such as schizophrenia are associated with impaired firing properties of fast spiking inhibitory interneurons (FSINs) causing reduced task-evoked gamma-oscillation in prefrontal cortex. The voltage-gated sodium channel NaV1.1 is highly expressed in PV-positive interneurons, but only...... facilitated the sodium current mediated by NaV1.1 expressed in HEK cells by shifting its activation to more negative values, decreasing its inactivation kinetics and promoting a persistent inward current. In a slice preparation from the brain of adult mice, Lu AE98134 promoted the excitability of fast spiking...... interneurons by decreasing the threshold for action potentials. We then tested if Lu AE98134 could normalize the altered firing properties of FSINs in Dlx5/6+/- mutant mice. FSINs of this model for schizophrenia are characterized by broader action potentials and higher spike threshold. We found...

  18. Characterization of voltage-gated Ca(2+ conductances in layer 5 neocortical pyramidal neurons from rats.

    Directory of Open Access Journals (Sweden)

    Mara Almog

    Full Text Available Neuronal voltage-gated Ca(2+ channels are involved in electrical signalling and in converting these signals into cytoplasmic calcium changes. One important function of voltage-gated Ca(2+ channels is generating regenerative dendritic Ca(2+ spikes. However, the Ca(2+ dependent mechanisms used to create these spikes are only partially understood. To start investigating this mechanism, we set out to kinetically and pharmacologically identify the sub-types of somatic voltage-gated Ca(2+ channels in pyramidal neurons from layer 5 of rat somatosensory cortex, using the nucleated configuration of the patch-clamp technique. The activation kinetics of the total Ba(2+ current revealed conductance activation only at medium and high voltages suggesting that T-type calcium channels were not present in the patches. Steady-state inactivation protocols in combination with pharmacology revealed the expression of R-type channels. Furthermore, pharmacological experiments identified 5 voltage-gated Ca(2+ channel sub-types - L-, N-, R- and P/Q-type. Finally, the activation of the Ca(2+ conductances was examined using physiologically derived voltage-clamp protocols including a calcium spike protocol and a mock back-propagating action potential (mBPAP protocol. These experiments enable us to suggest the possible contribution of the five Ca(2+ channel sub-types to Ca(2+ current flow during activation under physiological conditions.

  19. Random walk behavior of migrating cortical interneurons in the marginal zone: time-lapse analysis in flat-mount cortex.

    Science.gov (United States)

    Tanaka, Daisuke H; Yanagida, Mitsutoshi; Zhu, Yan; Mikami, Sakae; Nagasawa, Takashi; Miyazaki, Jun-ichi; Yanagawa, Yuchio; Obata, Kunihiko; Murakami, Fujio

    2009-02-04

    Migrating neurons are thought to travel from their origin near the ventricle to distant territories along stereotypical pathways by detecting environmental cues in the extracellular milieu. Here, we report a novel mode of neuronal migration that challenges this view. We performed long-term, time-lapse imaging of medial ganglionic eminence (MGE)-derived cortical interneurons tangentially migrating in the marginal zone (MZ) in flat-mount cortices. We find that they exhibit a diverse range of behaviors in terms of the rate and direction of migration. Curiously, a predominant population of these neurons repeatedly changes its direction of migration in an unpredictable manner. Trajectories of migration vary from one neuron to another. The migration of individual cells lasts for long periods, sometimes up to 2 d. Theoretical analyses reveal that these behaviors can be modeled by a random walk. Furthermore, MZ cells migrate from the cortical subventricular zone to the cortical plate, transiently accumulating in the MZ. These results suggest that MGE-derived cortical interneurons, once arriving at the MZ, are released from regulation by guidance cues and initiate random walk movement, which potentially contributes to their dispersion throughout the cortex.

  20. Environmental enrichment as a therapeutic avenue for anxiety in aged Wistar rats: Effect on cat odor exposition and GABAergic interneurons.

    Science.gov (United States)

    Sampedro-Piquero, P; Castilla-Ortega, E; Zancada-Menendez, C; Santín, L J; Begega, A

    2016-08-25

    The use of more ethological animal models to study the neurobiology of anxiety has increased in recent years. We assessed the effect of an environmental enrichment (EE) protocol (24h/day over a period of two months) on anxiety-related behaviors when aged Wistar rats (21months old) were confronted with cat odor stimuli. Owing to the relationship between GABAergic interneurons and the anxiety-related neuronal network, we examined changes in the expression of Parvalbumin (PV) and 67kDa form of glutamic acid decarboxylase (GAD-67) immunoreactive cells in different brain regions involved in stress response. Behavioral results revealed that enriched rats traveled further and made more grooming behaviors during the habituation session. In the cat odor session, they traveled longer distances and they showed more active interaction with the odor stimuli and less time in freezing behavior. Zone analysis revealed that the enriched group spent more time in the intermediate zone according to the proximity of the predator odor. Regarding the neurobiological data, the EE increased the expression of PV-positive cells in some medial prefrontal regions (cingulate (Cg) and prelimbic (PL) cortices), whereas the GAD-67 expression in the basolateral amygdala was reduced in the enriched group. Our results suggest that EE is able to reduce anxiety-like behaviors in aged animals even when ethologically relevant stimuli are used. Moreover, GABAergic interneurons could be involved in mediating this resilient behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. The PKA-C3 catalytic subunit is required in two pairs of interneurons for successful mating of Drosophila.

    Science.gov (United States)

    Cassar, Marlène; Sunderhaus, Elizabeth; Wentzell, Jill S; Kuntz, Sara; Strauss, Roland; Kretzschmar, Doris

    2018-02-06

    Protein kinase A (PKA) has been shown to play a role in a plethora of cellular processes ranging from development to memory formation. Its activity is mediated by the catalytic subunits whereby many species express several paralogs. Drosophila encodes three catalytic subunits (PKA-C1-3) and whereas PKA-C1 has been well studied, the functions of the other two subunits were unknown. PKA-C3 is the orthologue of mammalian PRKX/Pkare and they are structurally more closely related to each other than to other catalytic subunits within their species. PRKX is expressed in the nervous system in mice but its function is also unknown. We now show that the loss of PKA-C3 in Drosophila causes copulation defects, though the flies are active and show no defects in other courtship behaviours. This phenotype is specifically due to the loss of PKA-C3 because PKA-C1 cannot replace PKA-C3. PKA-C3 is expressed in two pairs of interneurons that send projections to the ventro-lateral protocerebrum and the mushroom bodies and that synapse onto motor neurons in the ventral nerve cord. Rescue experiments show that expression of PKA-C3 in these interneurons is sufficient for copulation, suggesting a role in relaying information from the sensory system to motor neurons to initiate copulation.

  2. Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sciamanna

    Full Text Available DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear.We characterized the alterations in D2 dopamine receptor (D2R signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT. An abnormal excitatory response to the D2R agonist quinpirole was recorded at postnatal day 14, consisting of a membrane depolarization coupled to an increase in spiking frequency, and persisted unchanged at 3 and 9 months in hMT mice, compared to mice expressing wild-type human torsinA and non-transgenic mice. This response was blocked by the D2R antagonist sulpiride and depended upon G-proteins, as it was prevented by intrapipette GDP-β-S. Patch-clamp recordings from dissociated interneurons revealed a significant increase in the Cav2.2-mediated current fraction at all ages examined. Consistently, chelation of intracellular calcium abolished the paradoxical response to quinpirole. Finally, no gross morphological changes were observed during development.These results suggest that an imbalanced striatal dopaminergic/cholinergic signaling occurs early in DYT1 dystonia and persists along development, representing a susceptibility factor for symptom generation.

  3. TRPV1 in GABAergic interneurons mediates neuropathic mechanical allodynia and disinhibition of the nociceptive circuitry in the spinal cord.

    Science.gov (United States)

    Kim, Yong Ho; Back, Seung Keun; Davies, Alexander J; Jeong, Heejin; Jo, Hyun Jung; Chung, Geehoon; Na, Heung Sik; Bae, Yong Chul; Kim, Sang Jeong; Kim, Joong Soo; Jung, Sung Jun; Oh, Seog Bae

    2012-05-24

    Neuropathic pain and allodynia may arise from sensitization of central circuits. We report a mechanism of disinhibition-based central sensitization resulting from long-term depression (LTD) of GABAergic interneurons as a consequence of TRPV1 activation in the spinal cord. Intrathecal administration of TRPV1 agonists led to mechanical allodynia that was not dependent on peripheral TRPV1 neurons. TRPV1 was functionally expressed in GABAergic spinal interneurons and activation of spinal TRPV1 resulted in LTD of excitatory inputs and a reduction of inhibitory signaling to spinothalamic tract (STT) projection neurons. Mechanical hypersensitivity after peripheral nerve injury was attenuated in TRPV1(-/-) mice but not in mice lacking TRPV1-expressing peripheral neurons. Mechanical pain was reversed by a spinally applied TRPV1 antagonist while avoiding the hyperthermic side effect of systemic treatment. Our results demonstrate that spinal TRPV1 plays a critical role as a synaptic regulator and suggest the utility of central nervous system-specific TRPV1 antagonists for treating neuropathic pain. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Temporal processing of vibratory communication signals at the level of ascending interneurons in Nezara viridula (Hemiptera: Pentatomidae).

    Science.gov (United States)

    Zorović, Maja

    2011-01-01

    During mating, males and females of N. viridula (Heteroptera: Pentatomidae) produce sex- and species-specific calling and courtship substrate-borne vibratory signals, grouped into songs. Recognition and localization of these signals are fundamental for successful mating. The recognition is mainly based on the temporal pattern, i.e. the amplitude modulation, while the frequency spectrum of the signals usually only plays a minor role. We examined the temporal selectivity for vibratory signals in four types of ascending vibratory interneurons in N. viridula. Using intracellular recording and labelling technique, we analyzed the neurons' responses to 30 pulse duration/interval duration (PD/ID) combinations. Two response arrays were created for each neuron type, showing the intensity of the responses either as time-averaged spike counts or as peak instantaneous spike rates. The mean spike rate response arrays showed preference of the neurons for short PDs (below 600 ms) and no selectivity towards interval duration; while the peak spike rate response arrays exhibited either short PD/long ID selectivity or no selectivity at all. The long PD/short ID combinations elicited the weakest responses in all neurons tested. No response arrays showed the receiver preference for either constant period or duty cycle. The vibratory song pattern selectivity matched the PD of N. viridula male vibratory signals, thus pointing to temporal filtering for the conspecific vibratory signals already at level of the ascending interneurons. In some neurons the responses elicited by the vibratory stimuli were followed by distinct, regular oscillations of the membrane potential. The distance between the oscillation peaks matched the temporal structure of the male calling song, indicating a possible resonance based mechanism for signal recognition.

  5. Differential alterations of kainate receptor subunits in inhibitory interneurons in the anterior cingulate cortex in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Woo, Tsung-Ung W; Shrestha, Kevin; Amstrong, Christopher; Minns, Martin M; Walsh, John P; Benes, Francine M

    2007-11-01

    The aim of this study was to examine whether glutamatergic inputs onto GABA interneurons via the kainate receptor in the anterior cingulate cortex may be altered in schizophrenia and bipolar disorder. Hence, in a cohort of 60 post-mortem human brains from schizophrenia, bipolar disorder, and normal control subjects, we simultaneously labeled the mRNA for the GluR5 or GluR6 subunit of the kainate receptor with [(35)S] and the mRNA for the 67 kD isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD)(67) with digoxigenin using an immunoperoxidase method. The density of the GAD(67) mRNA-containing neurons that co-expressed GluR5 mRNA was decreased by 43% and 40% in layer 2 of the anterior cingulate cortex in schizophrenia and bipolar disorder, respectively. In contrast, the density of the GAD(67) mRNA-containing cells that expressed GluR6 mRNA was unaltered in either condition. Furthermore, the amount of GluR5 or GluR6 mRNA in the GAD(67) mRNA-expressing cells that contained a detectable level of these transcripts was also unchanged. Finally, the density of cells that did not contain GAD(67) mRNA, which presumably included all pyramidal neurons, but expressed the mRNA for the GluR5 or GluR6 subunit was not altered. Thus, glutamatergic modulation of inhibitory interneurons, but not pyramidal neurons, via kainate receptors containing the GluR5 subunit appears to be selectively altered in the anterior cingulate cortex in schizophrenia and bipolar disorder.

  6. Population-specific regulation of Chmp2b by Lbx1 during onset of synaptogenesis in lateral association interneurons.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Chmp2b is closely related to Vps2, a key component of the yeast protein complex that creates the intralumenal vesicles of multivesicular bodies. Dominant negative mutations in Chmp2b cause autophagosome accumulation and neurodegenerative disease. Loss of Chmp2b causes failure of dendritic spine maturation in cultured neurons. The homeobox gene Lbx1 plays an essential role in specifying postmitotic dorsal interneuron populations during late pattern formation in the neural tube. We have discovered that Chmp2b is one of the most highly regulated cell-autonomous targets of Lbx1 in the embryonic mouse neural tube. Chmp2b was expressed and depended on Lbx1 in only two of the five nascent, Lbx1-expressing, postmitotic, dorsal interneuron populations. It was also expressed in neural tube cell populations that lacked Lbx1 protein. The observed population-specific expression of Chmp2b indicated that only certain population-specific combinations of sequence specific transcription factors allow Chmp2b expression. The cell populations that expressed Chmp2b corresponded, in time and location, to neurons that make the first synapses of the spinal cord. Chmp2b protein was transported into neurites within the motor- and association-neuropils, where the first synapses are known to form between E11.5 and E12.5 in mouse neural tubes. Selective, developmentally-specified gene expression of Chmp2b may therefore be used to endow particular neuronal populations with the ability to mature dendritic spines. Such a mechanism could explain how mammalian embryos reproducibly establish the disynaptic cutaneous reflex only between particular cell populations.

  7. Temporal processing of vibratory communication signals at the level of ascending interneurons in Nezara viridula (Hemiptera: Pentatomidae.

    Directory of Open Access Journals (Sweden)

    Maja Zorović

    Full Text Available During mating, males and females of N. viridula (Heteroptera: Pentatomidae produce sex- and species-specific calling and courtship substrate-borne vibratory signals, grouped into songs. Recognition and localization of these signals are fundamental for successful mating. The recognition is mainly based on the temporal pattern, i.e. the amplitude modulation, while the frequency spectrum of the signals usually only plays a minor role. We examined the temporal selectivity for vibratory signals in four types of ascending vibratory interneurons in N. viridula. Using intracellular recording and labelling technique, we analyzed the neurons' responses to 30 pulse duration/interval duration (PD/ID combinations. Two response arrays were created for each neuron type, showing the intensity of the responses either as time-averaged spike counts or as peak instantaneous spike rates. The mean spike rate response arrays showed preference of the neurons for short PDs (below 600 ms and no selectivity towards interval duration; while the peak spike rate response arrays exhibited either short PD/long ID selectivity or no selectivity at all. The long PD/short ID combinations elicited the weakest responses in all neurons tested. No response arrays showed the receiver preference for either constant period or duty cycle. The vibratory song pattern selectivity matched the PD of N. viridula male vibratory signals, thus pointing to temporal filtering for the conspecific vibratory signals already at level of the ascending interneurons. In some neurons the responses elicited by the vibratory stimuli were followed by distinct, regular oscillations of the membrane potential. The distance between the oscillation peaks matched the temporal structure of the male calling song, indicating a possible resonance based mechanism for signal recognition.

  8. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.

    Directory of Open Access Journals (Sweden)

    Miriam Matamales

    Full Text Available Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17% aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the

  9. Chaotic Neocortical Dynamics

    Science.gov (United States)

    Freeman, Walter J.

    2013-01-01

    The first step of the sensory systems is to construct the meaning of the information they receive from the senses. They do this by generating random noise and then filtering the noise with adaptive filters. We simulate the operation with the solutions of matrices of ordinary differential equations that predict subcritical Hopf bifurcations between point and limit cycle attractors. The second step is integration of the outputs from the several sensory systems into a multisensory percept, called a gestalt, which in the third step is consolidated and stored as knowledge. Simulation of the second step requires use of landscapes of nonconvergent chaotic attractors. This is not deterministic chaos, which is much too brittle owing to the infinite sensitivity to initial conditions. It is a hybrid form we call stochastic chaos, which is stabilized by additive noise modeled on noise sources in the sensory systems. Thus bifurcation and chaos theory provides tools for succinct empirical models of cortical dynamics performing the most basic cognitive operations: generalization, abstraction, and categorization in constructing knowledge. The descriptions are in a form that is suitable for more advanced modeling using analog VLSI, neuropercolation from random graph theory, non-equilibrium dissipative thermodynamics, and macroscopic many-body physics. This review concludes with a summary of the applications of stochastic chaos in pattern classification and some prescriptions for neurobiologists on what to look for in large-scale anatomical formations.

  10. Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NeoCortical Simulator

    Directory of Open Access Journals (Sweden)

    Richard P Drewes

    2009-05-01

    Full Text Available Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading ``glue'' tool for managing all sorts of complex programmatictasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS environment in particular. Brainlab is an integrated model building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS (the NeoCortical Simulator.

  11. Brainlab: A Python Toolkit to Aid in the Design, Simulation, and Analysis of Spiking Neural Networks with the NeoCortical Simulator.

    Science.gov (United States)

    Drewes, Rich; Zou, Quan; Goodman, Philip H

    2009-01-01

    Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.

  12. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  13. Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons.

    Science.gov (United States)

    Kubota, Shinji; Uehara, Kazumasa; Morishita, Takuya; Hirano, Masato; Funase, Kozo

    2014-02-01

    We investigated the extent to which the corticospinal inputs delivered to Ia inhibitory interneurons influence the strength of disynaptic reciprocal Ia inhibition. Seventeen healthy subjects participated in this study. The degree of reciprocal Ia inhibition was determined via short-latency (condition-test interval: 1-3ms) suppression of Sol H-reflex by conditioning stimulation of common peroneal nerve. The effect of corticospinal descending inputs on Ia inhibitory interneurons was assessed by evaluating the conditioning effect of transcranial magnetic stimulation (TMS) on the Sol H-reflex. Then, we determined the relationship between the degree of reciprocal Ia inhibition and the conditioning effect of TMS on the Sol H-reflex. We found that the degree of reciprocal Ia inhibition and the extent of change in the amplitude of the TMS-conditioned H-reflex, which was measured from short latency facilitation to inhibition, displayed a strong correlation (r=0.76, pIa inhibition is affected by the corticospinal descending inputs delivered to Ia inhibitory interneurons, which might explain the inter-individual variations in reciprocal Ia inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    Science.gov (United States)

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming.

    Science.gov (United States)

    Xu, M; Li, L; Pittenger, C

    2016-06-02

    Tic disorders, including Tourette syndrome (TS), are thought to involve pathology of cortico-basal ganglia loops, but their pathology is not well understood. Post-mortem studies have shown a reduced number of several populations of striatal interneurons, including the parvalbumin-expressing fast-spiking interneurons (FSIs), in individuals with severe, refractory TS. We tested the causal role of this interneuronal deficit by recapitulating it in an otherwise normal adult mouse using a combination transgenic-viral cell ablation approach. FSIs were reduced bilaterally by ∼40%, paralleling the deficit found post-mortem. This did not produce spontaneous stereotypies or tic-like movements, but there was increased stereotypic grooming after acute stress in two validated paradigms. Stereotypy after amphetamine, in contrast, was not elevated. FSI ablation also led to increased anxiety-like behavior in the elevated plus maze, but not to alterations in motor learning on the rotorod or to alterations in prepulse inhibition, a measure of sensorimotor gating. These findings indicate that a striatal FSI deficit can produce stress-triggered repetitive movements and anxiety. These repetitive movements may recapitulate aspects of the pathophysiology of tic disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Accuracy of arterial spin labeling magnetic resonance imaging (MRI) perfusion in detecting the epileptogenic zone in patients with drug-resistant neocortical epilepsy: comparison with electrophysiological data, structural MRI, SISCOM and FDG-PET.

    Science.gov (United States)

    Sierra-Marcos, A; Carreño, M; Setoain, X; López-Rueda, A; Aparicio, J; Donaire, A; Bargalló, N

    2016-01-01

    Locating the epileptogenic zone (EZ) in patients with neocortical epilepsy presents major challenges. Our aim was to assess the accuracy of arterial spin labeling (ASL), an emerging non-invasive magnetic resonance imaging (MRI) perfusion technique, to locate the EZ in patients with drug-resistant neocortical epilepsy. Twenty-five consecutive patients with neocortical epilepsy referred to our epilepsy unit for pre-surgical evaluation underwent a standardized assessment including video-electroencephalography (EEG) monitoring, structural MRI, subtraction ictal single-photon emission computed tomography co-registered to MRI (SISCOM) and fluorodeoxyglucose positron emission tomography (FDG-PET) studies. An ASL sequence was included in the MRI studies. Areas of hypoperfusion or hyperperfusion on ASL were classified into 15 anatomic-functional cortical regions; these regional cerebral blood flow maps were compared with the EZ determined by the other tests and the strength of concordance was assessed with the kappa coefficient. Of the 25 patients [16 (64%) women; mean age 32.4 (±13.8) years], 18 (72%) had lesions on structural MRI. ASL abnormalities were seen in 15 (60%) patients (nine hypoperfusion, six hyperperfusion). ASL had a very good concordance with FDG-PET (k = 0.84), a good concordance with structural MRI (k = 0.76), a moderate concordance with video-EEG monitoring (k = 0.53) and a fair concordance with SISCOM (k = 0.28). Arterial spin labeling might help to confirm the location and extent of the EZ in the pre-surgical workup of patients with drug-resistant neocortical epilepsy. © 2015 EAN.

  17. Transplanted Human Stem Cell-Derived Interneuron Precursors Mitigate Mouse Bladder Dysfunction and Central Neuropathic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Fandel, Thomas M; Trivedi, Alpa; Nicholas, Cory R; Zhang, Haoqian; Chen, Jiadong; Martinez, Aida F; Noble-Haeusslein, Linda J; Kriegstein, Arnold R

    2016-10-06

    Neuropathic pain and bladder dysfunction represent significant quality-of-life issues for many spinal cord injury patients. Loss of GABAergic tone in the injured spinal cord may contribute to the emergence of these symptoms. Previous studies have shown that transplantation of rodent inhibitory interneuron precursors from the medial ganglionic eminence (MGE) enhances GABAergic signaling in the brain and spinal cord. Here we look at whether transplanted MGE-like cells derived from human embryonic stem cells (hESC-MGEs) can mitigate the pathological effects of spinal cord injury. We find that 6 months after transplantation into injured mouse spinal cords, hESC-MGEs differentiate into GABAergic neuron subtypes and receive synaptic inputs, suggesting functional integration into host spinal cord. Moreover, the transplanted animals show improved bladder function and mitigation of pain-related symptoms. Our results therefore suggest that this approach may be a valuable strategy for ameliorating the adverse effects of spinal cord injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    Directory of Open Access Journals (Sweden)

    Casie Lindsly

    Full Text Available Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs. We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  19. Following Spinal Cord Injury Transected Reticulospinal Tract Axons Develop New Collateral Inputs to Spinal Interneurons in Parallel with Locomotor Recovery

    Directory of Open Access Journals (Sweden)

    Zacnicte May

    2017-01-01

    Full Text Available The reticulospinal tract (RtST descends from the reticular formation and terminates in the spinal cord. The RtST drives the initiation of locomotion and postural control. RtST axons form new contacts with propriospinal interneurons (PrINs after incomplete spinal cord injury (SCI; however, it is unclear if injured or uninjured axons make these connections. We completely transected all traced RtST axons in rats using a staggered model, where a hemisection SCI at vertebra T10 is followed by a contralateral hemisection at vertebra T7. In one group of the animals, the T7 SCI was performed 2 weeks after the T10 SCI (delayed; dSTAG, and in another group, the T10 and T7 SCIs were concomitant (cSTAG. dSTAG animals had significantly more RtST-PrIN contacts in the grey matter compared to cSTAG animals (p<0.05. These results were accompanied by enhanced locomotor recovery with dSTAG animals significantly outperforming cSTAG animals (BBB test; p<0.05. This difference suggests that activity in neuronal networks below the first SCI may contribute to enhanced recovery, because dSTAG rats recovered locomotor ability before the second hemisection. In conclusion, our findings support the hypothesis that the injured RtST forms new connections and is a key player in the recovery of locomotion post-SCI.

  20. [Interneuronal relationships in the basolateral amygdala of cats trained for choice in the quality of food reinforcement].

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakian, E E; Partev, A Z

    1997-01-01

    The alimentary instrumental conditioned bar-pressing reflex was elaborated in cats by the method of "active choice" of either short-delayed reinforcement with bread-meat mixture of delayed more valuable reinforcement with meat. The animals differed in behavior strategy: some animals preferred bar-pressing with the long delay (the so-called "self-control" group), other animals pressed the bar with short delay (the so-called "impulsive" group). The multiunit activity in the basolateral amygdala was recorded with chronically implanted nichrome microelectrodes. The interactions between the spike trains of the neighbouring neurons selected from the multiunit activity were evaluated by means of statistical crosscorrelation analysis. It was shown that the number of correlations between the discharges of neurons was significantly higher in the "impulsive" cats. In both groups the number of cross-correlations was maximal in cases of a difficult choice, i.e., during the omission of the conditioned bar-pressing response. In "impulsive" cats the number of interneuronal correlations was highest with the latencies in the range of 0-30 msec. We suggest that the basolateral amygdala is involved in the system of structures which determine the individual-typological characteristics of animals.

  1. Repeated Blockade of NMDA Receptors during Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Jitao eLi

    2016-03-01

    Full Text Available Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg, a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV-, calbindin (CB- and calretinin (CR-positive neurons in mPFC were analyzed at either 24 hours or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.

  2. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): intracellular evaluation.

    Science.gov (United States)

    Navia, Benjamin; Stout, John; Atkins, Gordon

    2003-03-01

    The L3 auditory interneuron in female Acheta domesticus, produces two different responses to the male calling song: an immediate response and a prolonged response. The prolonged response exhibited spiking activity and a correlated prolonged depolarization, both of which are clearly seen in intracellular recordings. The morphology revealed by intracellular staining was clearly the L3 neuron. The amplitude of the prolonged depolarization associated with the prolonged response increased with increases in sound intensity, resulting in increased spiking rates. Both depolarization and sound presentation increased the spiking rate and the slope of pre-potentials (thus leading to spiking threshold more quickly). Injecting hyperpolarizing current had the expected opposite effect. The effects of positive current injection and sound presentation were additive, resulting in spiking rates that were approximately double the rates in response to sound alone. Short postsynaptic potentials (PSPs), whose duration ranged from 15-60 ms, which may lead to action potentials were also observed in all recordings and summated with the prolonged depolarization, increasing the probability of spiking. Copyright 2003 Wiley-Liss, Inc.

  3. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Nomura, Toshihiro; Musial, Timothy F; Marshall, John J; Zhu, Yiwen; Remmers, Christine L; Xu, Jian; Nicholson, Daniel A; Contractor, Anis

    2017-11-22

    Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS. SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS ( Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin

  4. The subcellular distribution of T-type Ca2+ channels in interneurons of the lateral geniculate nucleus.

    Science.gov (United States)

    Allken, Vaneeda; Chepkoech, Joy-Loi; Einevoll, Gaute T; Halnes, Geir

    2014-01-01

    Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca(2+)-spikes and possibly by backpropagating action potentials. Ca(2+)-spikes in INs are predominantly mediated by T-type Ca(2+)-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.

  5. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo

    Directory of Open Access Journals (Sweden)

    Albert Miklos Barth

    2014-08-01

    Full Text Available GABAA receptors containing δ subunits (δ-GABAARs are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS, and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs, and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30-120 Hz, a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV+INs. The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd-/-, and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS or premenstrual

  6. Information Transmission in Cercal Giant Interneurons Is Unaffected by Axonal Conduction Noise

    Science.gov (United States)

    Miller, John P.

    2012-01-01

    What are the fundamental constraints on the precision and accuracy with which nervous systems can process information? One constraint must reflect the intrinsic “noisiness” of the mechanisms that transmit information between nerve cells. Most neurons transmit information through the probabilistic generation and propagation of spikes along axons, and recent modeling studies suggest that noise from spike propagation might pose a significant constraint on the rate at which information could be transmitted between neurons. However, the magnitude and functional significance of this noise source in actual cells remains poorly understood. We measured variability in conduction time along the axons of identified neurons in the cercal sensory system of the cricket Acheta domesticus, and used information theory to calculate the effects of this variability on sensory coding. We found that the variability in spike propagation speed is not large enough to constrain the accuracy of neural encoding in this system. PMID:22253900

  7. Information transmission in cercal giant interneurons is unaffected by axonal conduction noise.

    Directory of Open Access Journals (Sweden)

    Zane N Aldworth

    Full Text Available What are the fundamental constraints on the precision and accuracy with which nervous systems can process information? One constraint must reflect the intrinsic "noisiness" of the mechanisms that transmit information between nerve cells. Most neurons transmit information through the probabilistic generation and propagation of spikes along axons, and recent modeling studies suggest that noise from spike propagation might pose a significant constraint on the rate at which information could be transmitted between neurons. However, the magnitude and functional significance of this noise source in actual cells remains poorly understood. We measured variability in conduction time along the axons of identified neurons in the cercal sensory system of the cricket Acheta domesticus, and used information theory to calculate the effects of this variability on sensory coding. We found that the variability in spike propagation speed is not large enough to constrain the accuracy of neural encoding in this system.

  8. Identifying sarcopenia.

    Science.gov (United States)

    Abellan van Kan, Gabor; Houles, Mathieu; Vellas, Bruno

    2012-09-01

    The present review describes and discusses the currently available definitions for sarcopenia from consensus studies. Different sarcopenia definitions have been proposed in these last years. Six main approaches to an operative definition of sarcopenia have been identified. Although the first definitions were solely based on the assessment of the amount of muscle mass, current definitions seem to consistently recognize a bi-dimensional nature of sarcopenia. So, these approaches imply the need of simultaneously assessing both age-related quantitative (i.e. amount of muscle mass) and qualitative (i.e. muscle strength and function) declines of skeletal muscle. Although current consensus exists about a bi-dimensional nature, the proposed approaches to measure sarcopenia are characterized by methodological differences. The majority of the operative definitions proposes to assess muscle mass as an index of appendicular muscle mass divided by squared height (evaluated by dual energy X-ray absorptiometry), assess strength using hand-held dynamometers, and assess function by evaluating gait speed at habitual pace over a short distance. Nevertheless, the clinically relevant thresholds and how to combine the three aspects in an operative definition in order to identify sarcopenia are heterogeneous. A main drawback is that supportive empirical data are missing for these conceptual definitions regarding the risk-assessment of different clinically significant adverse outcomes.

  9. Afferent drive of medial prefrontal cortex by hippocampus and amygdala is altered in MAM-treated rats: evidence for interneuron dysfunction.

    Science.gov (United States)

    Esmaeili, Behnaz; Grace, Anthony A

    2013-09-01

    Evidence indicates that the prefrontal cortex and its regulation by afferent inputs are disrupted in schizophrenia. Using a validated rat model of schizophrenia based on prenatal administration of the mitotoxin methyl azoxymethanol acetate (MAM), we examined the convergent projections from the ventral hippocampus (vHipp) and the basolateral amygdala (BLA) in the medial prefrontal cortex (mPFC). In vivo extracellular recordings were done in anesthetized rats to assess how prior stimulation of the BLA or vHipp input to the mPFC affected mPFC responses to subsequent stimulation of these regions. The interstimulus interval (ISI) of the BLA and vHipp pulse stimulation was varied randomly between 0 and 130 ms, and the probability of evoked spike response in the mPFC measured. We found that BLA input increased vHipp-evoked spike probability at ISIs 40-130 ms, but decreased spike probability at ISIs 10-20 ms. This would be consistent with activation of inhibitory interneurons at shorter ISIs by BLA stimulation. In contrast, in MAM-treated rats BLA stimulation increased vHipp-evoked spike probability in mPFC at all ISIs tested. Given that interneurons are driven primarily by N-methyl-D-aspartate (NMDA) channel activation, the effects of the NMDA channel blocker, phencyclidine (PCP), were tested. PCP was found to completely attenuate the inhibitory effect of BLA input on vHipp-evoked responses in mPFC at shorter ISIs, causing the response in control rats treated with PCP to resemble that observed in the MAM rat. In contrast to the effects of BLA stimulation on vHipp-mPFC-evoked responses, there was no inhibitory period when examining the effects of vHipp stimulation on BLA-mPFC-evoked responses in control rats, but in MAM-treated rats there was a significant inhibition at short intervals. Thus, both affective input arising from the BLA and context-dependent input from the vHipp exert a modulatory effect on mPFC neural activity in response to these inputs. Whereas the

  10. Time organization of frontal-motor cortex interneuron interactions in the cat neocortex in conditions of different levels of food motivation.

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakyan, E E

    1997-01-01

    Studies were carried out in conscious cats with recording of multicellular activity in moderate hunger and after 24-h food deprivation. Cross-correlation analysis was used to assess statistical interneuron interactions between closely-located neurons in the frontal and sensorimotor regions of the neocortex (local networks), and between the cells of these regions (distributed networks). One-day food deprivation increased the number of interactions formed within both local and distributed neuron networks. Increases in intercortical connections between the frontal and motor regions was seen at all time intervals studied (0-100 msec), though the most significant changes occurred at time intervals of up to 30 msec.

  11. cAMP-dependent protein kinase inhibits α7 nicotinic receptor activity in layer 1 cortical interneurons through activation of D1/D5 dopamine receptors.

    Science.gov (United States)

    Komal, Pragya; Estakhr, Jasem; Kamran, Melad; Renda, Anthony; Nashmi, Raad

    2015-08-15

    Protein kinases can modify the function of many proteins including ion channels. However, the role of protein kinase A in modifying nicotinic receptors in the CNS has never been investigated. We showed through whole-cell recordings of layer 1 prefrontal cortical interneurons that α7 nicotinic responses are negatively modulated by protein kinase A. Furthermore, we show that stimulation of dopamine receptors can similarly attenuate α7 nicotinic responses through the activation of protein kinase A. These results suggest how the interaction of the cholinergic and dopaminergic systems may influence neuronal excitability in the brain. Phosphorylation of ion channels, including nicotinic acetylcholine receptors (nAChRs), by protein kinases plays a key role in the modification of synaptic transmission and neuronal excitability. α7 nAChRs are the second most prevalent nAChR subtype in the CNS following α4β2. Serine 365 in the M3-M4 cytoplasmic loop of the α7 nAChR is a phosphorylation site for protein kinase A (PKA). D1/D5 dopamine receptors signal through the adenylate cyclase-PKA pathway and play a key role in working memory and attention in the prefrontal cortex. Thus, we examined whether the dopaminergic system, mediated through PKA, functionally interacts with the α7-dependent cholinergic neurotransmission. In layer 1 interneurons of mouse prefrontal cortex, α7 nicotinic currents were decreased upon stimulation with 8-Br-cAMP, a PKA activator. In HEK 293T cells, dominant negative PKA abolished 8-Br-cAMP's effect of diminishing α7 nicotinic currents, while a constitutively active PKA catalytic subunit decreased α7 currents. In brain slices, the PKA inhibitor KT-5720 nullified 8-Br-cAMP's effect of attenuating α7 nicotinic responses, while applying a PKA catalytic subunit in the pipette solution decreased α7 currents. 8-Br-cAMP stimulation reduced surface expression of α7 nAChRs, but there was no change in single-channel conductance. The D1/D5 dopamine

  12. Neuregulin repellent signaling via ErbB4 restricts GABAergic interneurons to migratory paths from ganglionic eminence to cortical destinations

    Directory of Open Access Journals (Sweden)

    Li Hao

    2012-02-01

    Full Text Available Abstract Background Cortical GABAergic interneurons (INs are generated in the medial ganglionic eminence (MGE and migrate tangentially into cortex. Because most, if not all, migrating MGE-derived INs express the neuregulin (NRG receptor, ErbB4, we investigated influences of Nrg1 isoforms and Nrg3 on IN migration through ventral telencephalon (vTel and within cortex. Results During IN migration, NRG expression domains and distributions of ErbB4-expressing, MGE-derived INs are complementary with minimal overlap, both in vTel and cortex. In wild-type mice, within fields of NRG expression, these INs are focused at positions of low or absent NRG expression. However, in ErbB4-/- HER4heart mutant mice in which INs lack ErbB4, these complementary patterns are degraded with considerable overlap evident between IN distribution and NRG expression domains. These findings suggest that NRGs are repellents for migrating ErbB4-expressing INs, a function supported by in vitro and in vivo experiments. First, in collagen co-cultures, MGE-derived cells preferentially migrate away from a source of secreted NRGs. Second, cells migrating from wild-type MGE explants on living forebrain slices from wild-type embryonic mice tend to avoid endogenous NRG expression domains, whereas this avoidance behavior is not exhibited by ErbB4-deficient cells migrating from MGE explants and instead they have a radial pattern with a more uniform distribution. Third, ectopic NRG expression in the IN migration pathway produced by in utero electroporation blocks IN migration and results in cortex distal to the blockade being largely devoid of INs. Finally, fewer INs reach cortex in ErbB4 mutants, indicating that NRG-ErbB4 signaling is required for directing IN migration from the MGE to cortex. Conclusions Our results show that NRGs act as repellents for migrating ErbB4-expressing, MGE-derived GABAergic INs and that the patterned expression of NRGs funnels INs as they migrate from the MGE

  13. Postsynaptic FMRP promotes the pruning of cell-to-cell connections among pyramidal neurons in the L5A neocortical network.

    Science.gov (United States)

    Patel, Ankur B; Loerwald, Kristofer W; Huber, Kimberly M; Gibson, Jay R

    2014-02-26

    Pruning of structural synapses occurs with development and learning. A deficit in pruning of cortical excitatory synapses and the resulting hyperconnectivity is hypothesized to underlie the etiology of fragile X syndrome (FXS) and related autistic disorders. However, clear evidence for pruning in neocortex and its impairment in FXS remains elusive. Using simultaneous recordings of pyramidal neurons in the layer 5A neocortical network of the wild-type (WT) mouse to observe cell-to-cell connections in isolation, we demonstrate here a specific form of "connection pruning." Connection frequency among pyramidal neurons decreases between the third and fifth postnatal weeks, indicating a period of connection pruning. Over the same interval in the FXS model mouse, the Fmr1 knock-out (KO), connection frequency does not decrease. Therefore, connection frequency in the fifth week is higher in the Fmr1 KO compared with WT, indicating a state of hyperconnectivity. These alterations are due to postsynaptic deletion of Fmr1. At early ages (2 weeks), postsynaptic Fmr1 promoted the maturation of cell-to-cell connections, but not their number. These findings indicate that impaired connection pruning at later ages, and not an excess of connection formation, underlies the hyperconnectivity in the Fmr1 KO mouse. FMRP did not appear to regulate synapses individually, but instead regulated cell-to-cell connectivity in which groups of synapses mediating a single cell-to-cell connection are uniformly removed, retained, and matured. Although we do not link connection pruning directly to the pruning of structurally defined synapses, this study nevertheless provides an important model system for studying altered pruning in FXS.

  14. Mapping to mouse chromosome 3 of the gene encoding latexin (Lxn) expressed in neocortical neurons in a region-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ming-hao; Uratani, Yoshihiko; Arimatsu, Yasuyoshi [Mitsubishi Kasei Institute of Life Sciences, Tokyo (Japan)

    1997-02-01

    Latexin was first found as a 29-kDa antigen expressed in a subset of neurons in infragranular layers of lateral, but not dorsal, neocortical areas in the rat using a monoclonal antibody PC3.1. It was found that the vast majority of latexin-expressing neurons in both layers V and VI within the lateral neocortex were generated concurrently at Embryonic Day 15, demonstrating a strict correlation between the molecular identity of neurons and the time of their generation. Since neurons expressing latexin are located in the restricted part of the neocortex, latexin has been used as a useful molecular marker to elucidate the mechanism underlying cortical regional specification. The latexin cDNA isolated from a cDNA library of the rat cerebral cortex encodes a protein composed of 223-amino-acid residues containing two potential Ca{sup 2+}/calmodulin-dependent protein kinase sites and one cGMP-dependent protein kinase phosphorylation site. The absence of any signal peptide or potential transmembrane domain is consistent with the apparent cytosolic localization of latexin in the rat brain. The transcripts of latexin were expressed in not only neutral but also nonneural tissues (e.g., lung, spleen, kidney, heart, and digestive tracts). Recently, it has been demonstrated that latexin purified from the rat brain has inhibitory activity against carboxypeptidase A1, carboxypeptidase A2, and mast cell carboxypeptidase A, with less carboxypeptidase B-inhibiting activity. The amino acid sequence deduced from the rat latexin cDNA has no strict homology to any sequences so far known. Genomic Southern blot analysis using a cDNA probe of rat latexin suggested that the gene encoding latexin in the rat has homologues in other mammalian species and in the chicken, but not in the nematode, fly, or frog. 9 refs., 1 fig.

  15. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency.

    Science.gov (United States)

    Bronsert, Michael; Bingol, Hilary; Atkins, Gordon; Stout, John

    2003-03-01

    L3, an auditory interneuron in the prothoracic ganglion of female crickets (Acheta domesticus) exhibited two kinds of responses to models of the male's calling song (CS): a previously described, phasically encoded immediate response; a more tonically encoded prolonged response. The onset of the prolonged response required 3-8 sec of stimulation to reach its maximum spiking rate and 6-20 sec to decay once the calling song ceased. It did not encode the syllables of the chirp. The prolonged response was sharply selective for the 4-5 kHz carrier frequency of the male's calling songs and its threshold tuning matched the threshold tuning of phonotaxis, while the immediate response of the same neuron was broadly tuned to a wide range of carrier frequencies. The thresholds for the prolonged response covaried with the changing phonotactic thresholds of 2- and 5-day-old females. Treatment of females with juvenile hormone reduced the thresholds for both phonotaxis and the prolonged response by equivalent amounts. Of the 3 types of responses to CSs provided by the ascending L1 and L3 auditory interneurons, the threshold for L3's prolonged response, on average, best matched the same females phonotactic threshold. The prolonged response was stimulated by inputs from both ears while L3's immediate response was driven only from its axon-ipsilateral ear. The prolonged response was not selective for either the CS's syllable period or chirp rate. Copyright 2003 Wiley-Liss, Inc.

  16. NOX2 Mediated-Parvalbumin Interneuron Loss Might Contribute to Anxiety-Like and Enhanced Fear Learning Behavior in a Rat Model of Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Liu, Fang-Fang; Yang, Lin-Dong; Sun, Xiao-Ru; Zhang, Hui; Pan, Wei; Wang, Xing-Ming; Yang, Jian-Jun; Ji, Mu-Huo; Yuan, Hong-Mei

    2016-12-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, yet the precise mechanisms underlying PTSD remains largely to be determined. Using an animal model of PTSD induced by a single prolonged stress (SPS), we assessed the role of hippocampal nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and parvalbumin (PV) interneurons in the development of PTSD symptoms. In the present study, behavioral tests were performed by the open field (day 13 after SPS) and fear conditioning tests (days 13 and 14 after SPS). For the interventional study, rats were chronically treated with a NADPH oxidase inhibitor apocynin either by early or delayed administration. The levels of tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, malondialdehyde, superoxide dismutase, NOX2, 4-hydroxynonenal, and PV in the hippocampus were measured at the indicated time points. In the present study, we showed that SPS rats displayed anxiety-like and enhanced fear learning behavior, which was accompanied by the increased expressions of malondialdehyde, IL-6, NOX2, 4-hydroxynonenal, and decreased PV expression. Notably, early but not delayed treatment with apocynin reversed all these abnormalities after SPS. In conclusion, our results provided evidence that NOX2 activation in the hippocampus, at least in part, contributes to oxidative stress and neuroinflammation, which further results in PV interneuron loss and consequent PTSD symptoms in a rat model of PTSD induced by SPS.

  17. Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall

    Science.gov (United States)

    Takahashi, T.; Goto, T.; Miyama, S.; Nowakowski, R. S.; Caviness, V. S. Jr

    1999-01-01

    Neurons destined for each region of the neocortex are known to arise approximately in an "inside-to-outside" sequence from a pseudostratified ventricular epithelium (PVE). This sequence is initiated rostrolaterally and propagates caudomedially. Moreover, independently of location in the PVE, the neuronogenetic sequence in mouse is divisible into 11 cell cycles that occur over a 6 d period. Here we use a novel "birth hour" method that identifies small cohorts of neurons born during a single 2 hr period, i.e., 10-20% of a single cell cycle, which corresponds to approximately 1.5% of the 6 d neuronogenetic period. This method shows that neurons arising with the same cycle of the 11 cycle sequence in mouse have common laminar fates even if they arise from widely separated positions on the PVE (neurons of fields 1 and 40) and therefore arise at different embryonic times. Even at this high level of temporal resolution, simultaneously arising cells occupy more than one cortical layer, and there is substantial overlap in the distributions of cells arising with successive cycles. We demonstrate additionally that the laminar representation of cells arising with a given cycle is little if at all modified over the early postnatal interval of histogenetic cell death. We infer from these findings that cell cycle is a neuronogenetic counting mechanism and that this counting mechanism is integral to subsequent processes that determine cortical laminar fate.

  18. Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population

    International Nuclear Information System (INIS)

    Chun, J.J.; Shatz, C.J.

    1989-01-01

    The postnatal fate of the first-generated neurons of the cat cerebral cortex was examined. These neurons can be identified uniquely by 3H-thymidine exposure during the week preceding the neurogenesis of cortical layer 6. Previous studies in which 3H-thymidine birthdating at embryonic day 27 (E27) was combined with immunohistochemistry have shown that these neurons are present in large numbers during fetal and early postnatal life within the subplate (future white matter), that they are immunoreactive for the neuron-specific protein MAP2 and for the putative neurotransmitters GABA, NPY, SRIF, and CCK. Here, the same techniques were used to follow the postnatal location and disappearance of the early generated subplate neuron population. At birth (P0), subplate neurons showing immunoreactivity for GABA, NPY, SRIF, or CCK are present in large numbers and at high density within the white matter throughout the neocortex, and the entire population can be observed as a dense MAP2-immunoreactive band situated beneath cortical layer 6. Between P0 and P401 (adulthood), the MAP2-immunostained band disappears so that comparatively few MAP2-immunoreactive neurons remain within the white matter. There is a corresponding decrease in the number and density of neurons stained with antibodies against neurotransmitters. In each instance, these neurons could be double-labeled by the administration of 3H-thymidine at E27, indicating that they are the remnants of the early generated subplate neuron population. The major period of decrease occurs during the first 4 postnatal weeks, and adult values are attained by 5 months. Within the white matter of the lateral gyrus (visual cortex), the density of immunostained neurons decreases dramatically: MAP2, 82%, SRIF, 81%, and NPY, 96%

  19. Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties.

    Directory of Open Access Journals (Sweden)

    Etay Hay

    2011-07-01

    Full Text Available The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na(+-spiking behavior as well as key dendritic active properties, including Ca(2+ spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+ spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.

  20. The opposite effects of nandrolone decanoate and exercise on anxiety levels in rats may involve alterations in hippocampal parvalbumin-positive interneurons.

    Directory of Open Access Journals (Sweden)

    Dragica Selakovic

    Full Text Available The aim of this study was to evaluate the behavioral effects of chronic (six weeks nandrolone decanoate (ND, 20 mg/kg, s.c., weekly in single dose administration (in order to mimic heavy human abuse, and exercise (swimming protocol of 60 minutes a day, five days in a row/two days break, applied alone and simultaneously with ND, in male rats (n = 40. Also, we evaluated the effects of those protocols on hippocampal parvalbumin (PV content and the possible connection between the alterations in certain parts of hippocampal GABAergic system and behavioral patterns. Both ND and exercise protocols induced increase in testosterone, dihydrotestosterone and estradiol blood levels. Our results confirmed anxiogenic effects of ND observed in open field (OF test (decrease in the locomotor activity, as well as in frequency and cumulative duration in the centre zone and in elevated plus maze (EPM test (decrease in frequency and cumulative duration in open arms, and total exploratory activity, that were accompanied with a mild decrease in the number of PV interneurons in hippocampus. Chronic exercise protocol induced significant increase in hippocampal PV neurons (dentate gyrus and CA1 region, followed by anxiolytic-like behavioral changes, observed in both OF and EPM (increase in all estimated parameters, and in evoked beam-walking test (increase in time to cross the beam, compared to ND treated animals. The applied dose of ND was sufficient to attenuate beneficial effects of exercise in rats by means of decreased exercise-induced anxiolytic effect, as well as to reverse exercise-induced augmentation in number of PV immunoreactive neurons in hippocampus. Our results implicate the possibility that alterations in hippocampal PV interneurons (i.e. GABAergic system may be involved in modulation of anxiety level induced by ND abuse and/or extended exercise protocols.

  1. Synaptic Conductance Estimates of the Connection Between Local Inhibitor Interneurons and Pyramidal Neurons in Layer 2/3 of a Cortical Column

    Science.gov (United States)

    Hoffmann, Jochen H.O.; Meyer, H. S.; Schmitt, Arno C.; Straehle, Jakob; Weitbrecht, Trinh; Sakmann, Bert; Helmstaedter, Moritz

    2015-01-01

    Stimulation of a principal whisker yields sparse action potential (AP) spiking in layer 2/3 (L2/3) pyramidal neurons in a cortical column of rat barrel cortex. The low AP rates in pyramidal neurons could be explained by activation of interneurons in L2/3 providing inhibition onto L2/3 pyramidal neurons. L2/3 interneurons classified as local inhibitors based on their axonal projection in the same column were reported to receive strong excitatory input from spiny neurons in L4, which are also the main source of the excitatory input to L2/3 pyramidal neurons. Here, we investigated the remaining synaptic connection in this intracolumnar microcircuit. We found strong and reliable inhibitory synaptic transmission between intracolumnar L2/3 local-inhibitor-to-L2/3 pyramidal neuron pairs [inhibitory postsynaptic potential (IPSP) amplitude −0.88 ± 0.67 mV]. On average, 6.2 ± 2 synaptic contacts were made by L2/3 local inhibitors onto L2/3 pyramidal neurons at 107 ± 64 µm path distance from the pyramidal neuron soma, thus overlapping with the distribution of synaptic contacts from L4 spiny neurons onto L2/3 pyramidal neurons (67 ± 34 µm). Finally, using compartmental simulations, we determined the synaptic conductance per synaptic contact to be 0.77 ± 0.4 nS. We conclude that the synaptic circuit from L4 to L2/3 can provide efficient shunting inhibition that is temporally and spatially aligned with the excitatory input from L4 to L2/3. PMID:25761638

  2. Identifying crucial parameter correlations maintaining bursting activity.

    Directory of Open Access Journals (Sweden)

    Anca Doloc-Mihu

    2014-06-01

    Full Text Available Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA to each of these four groups. PCA identified a set of three maximal conductances (leak current, [Formula: see text]Leak; a persistent K current, [Formula: see text]K2; and of a persistent Na+ current, [Formula: see text]P that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of [Formula: see text]Leak, [Formula: see text]K2, and [Formula: see text]P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained.

  3. Similar distribution changes of GABAergic interneuron subpopulations in contrast to the different impact on neurogenesis between developmental and adult-stage hypothyroidism in the hippocampal dentate gyrus in rats.

    Science.gov (United States)

    Shiraki, Ayako; Akane, Hirotoshi; Ohishi, Takumi; Wang, Liyun; Morita, Reiko; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-10-01

    Hypothyroidism affects neurogenesis. The present study was performed to clarify the sensitivity of neurogenesis-related cellular responses in the hippocampal dentate gyrus between developmental and adult-stage hypothyroidism. An exposure study of methimazole (MMI) as an anti-thyroid agent at 0, 50, 200 ppm in the drinking water was performed using pregnant rats from gestation day 10 to postnatal day (PND) 21 (developmental hypothyroidism) and adult male rats by setting an identical exposure period from PND 46 through to PND 77 (adult-stage hypothyroidism). Offspring with developmental hypothyroidism were killed at PND 21 or PND 77, and animals with adult-stage hypothyroidism were killed at PND 77. Proliferation and apoptosis were unchanged in the dentate subgranular zone by either developmental or adult-stage hypothyroidism. With regard to precursor granule cells, a sustained reduction of paired box 6-positive stem or early progenitor cells and a transient reduction of doublecortin-positive late-stage progenitor cells were observed after developmental hypothyroidism with MMI at 50 and 200 ppm. These cells were unchanged by adult-stage hypothyroidism. With regard to γ-aminobutyric acid (GABA) ergic interneuron subpopulations in the dentate hilus, the number of parvalbumin-positive cells was decreased and the number of calretinin-positive cells was increased after both developmental and adult-stage hypothyroidism with MMI at 50 and 200 ppm. Fluctuations in GABAergic interneuron numbers with developmental hypothyroidism continued through to PND 77 with 200 ppm MMI. Considering the roles of GABAergic interneuron subpopulations in neurogenesis and neuronal differentiation, subpopulation changes in GABAergic interneurons by hypothyroidism may be the signature of aberrant neurogenesis even at the adult stage.

  4. Amelioration of oxidative stress-induced phenotype loss of parvalbumin interneurons might contribute to the beneficial effects of environmental enrichment in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    Sun, Xiao R; Zhang, Hui; Zhao, Hong T; Ji, Mu H; Li, Hui H; Wu, Jing; Li, Kuan Y; Yang, Jian J

    2016-10-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, which is characterized by anxiety- and depression-like behaviors and cognitive impairment. However, the underlying mechanisms remain elusive. Parvalbumin (PV) interneurons that are susceptible to oxidative stress are a subset of inhibitory GABAergic neurons regulating the excitability of pyramidal neurons, while dysfunction of PV interneurons is casually linked to many mental disorders including PTSD. We therefore hypothesized that environmental enrichment (EE), a method of enhanced cognitive, sensory and motor stimulation, can reverse the behavioral impairments by normalizing PV interneurons in a rat model of PTSD induced by inescapable foot shocks (IFS). Behavioral changes were determined by the open field, elevated plus maze, fear conditioning, and Morris water maze tests. The levels of nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), NOX4, PV, glutamic acid decarboxylase 67 (GAD-67), and 8-hydroxy-2-deoxyguanosine (8-OH-dG) in the hippocampus and prefrontal cortex were determined. Our results showed that in this PTSD model, rats displayed the anxiety-like behavior, enhanced fear learning behavior, and hippocampus- dependent spatial memory deficit, which were accompanied by the up-regulation of NOX2, 8-OH-dG, and down-regulation of PV and GAD-67. Notably, EE reversed all these abnormalities. These results suggest that restoration of PV interneurons by inhibiting oxidative stress in the hippocampus and prefrontal cortex might represent a mechanism through which EE reverses the behavioral impairments in a rat model of PTSD induced by IFS. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Hippocampal cholinergic interneurons visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    Directory of Open Access Journals (Sweden)

    Feng eYi

    2015-03-01

    Full Text Available Release of acetylcholine (ACh in the hippocampus (HC occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlapping with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-Rosa and ChAT-tauGFP mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.

  6. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex.

    Science.gov (United States)

    Aracri, Patrizia; Banfi, Daniele; Pasini, Maria Enrica; Amadeo, Alida; Becchetti, Andrea

    2015-05-01

    We studied the effect of hypocretin 1 (orexin A) in the frontal area 2 (Fr2) of the murine neocortex, implicated in the motivation-dependent goal-directed tasks. In layer V, hypocretin stimulated the spontaneous excitatory postsynaptic currents (EPSCs) on fast-spiking (FS) interneurons. The effect was accompanied by increased frequency of miniature EPSCs, indicating that hypocretin can target the glutamatergic terminals. Moreover, hypocretin stimulated the spontaneous inhibitory postsynaptic currents (IPSCs) on pyramidal neurons, with no effect on miniature IPSCs. This action was prevented by blocking 1) the ionotropic glutamatergic receptors; 2) the hypocretin receptor type 1 (HCRTR-1), with SB-334867. Finally, hypocretin increased the firing frequency in FS cells, and the effect was blocked when the ionotropic glutamate transmission was inhibited. Immunolocalization confirmed that HCRTR-1 is highly expressed in Fr2, particularly in layer V-VI. Conspicuous labeling was observed in pyramidal neuron somata and in VGLUT1+ glutamatergic terminals, but not in VGLUT2+ fibers (mainly thalamocortical afferents). The expression of HCRTR-1 in GABAergic structures was scarce. We conclude that 1) hypocretin regulates glutamate release in Fr2; 2) the effect presents a presynaptic component; 3) the peptide control of FS cells is indirect, and probably mediated by the regulation of glutamatergic input onto these cells. © The Author 2013. Published by Oxford University Press.

  7. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey

    Science.gov (United States)

    Good, P. F.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de No (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.

  8. Volumetric MRI for evaluation of regional pattern and progression of neocortical degeneration in Alzheimer's disease; MR-Volumetrie zur Darstellung von Verteilung und zeitlicher Abfolge neokortikaler Degeneration bei Morbus Alzheimer

    Energy Technology Data Exchange (ETDEWEB)

    Leinsinger, G. [Institut fuer Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Institut fuer Klinische Radiologie, LMU Muenchen, Ziemssenstrasse 1, 80336, Muenchen (Germany); Teipel, S.; Pruessner, J.; Hampel, H. [Klinik fuer Psychiatrie, Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Wismueller, A.; Born, C.; Meindl, T.; Flatz, W.; Schoenberg, S.; Reiser, M. [Institut fuer Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany)

    2003-07-01

    Volumetric analysis of the corpus callosum and hippocampus using MRI in Alzheimer's disease (AD) to evaluate the regional pattern and progression of neocortical neurodegeneration. In subsequent studies we investigated patients with AD and healthy controls. Volumetry was based on MRI-data from a sagittal 3D T1w-gradient echo sequence. The corpus callosum (CC) was measured in a midsagittal slice, and subdivided into 5 subregions. Volumetry of the hippocampus/amygdala-formation (HAF) was performed by segmentation in coronary reoriented slices. In AD patients we found a significant atrophy in the rostrum und splenium of CC. The atrophy was correlated with the severity of dementia, but no correlation was found with the load of white matter lesions. In comparison with {sup 18}FDG-PET, we found a significant correlation of regional CC-atrophy with the regional decline of cortical glucose metabolism. A ROC-analysis demonstrated no significant differences in the diagostic accuracy of HAF volumetry and regional CC volumetry of the splenium (region C5) even in mild stages of dementia. Regional atrophy of CC can be used as a marker of neocortical degeneration even in early stages of dementia in AD. (orig.) [German] Volumetrische Analyse des Corpus callosum und Hippokampus mittels MRT bei der Alzheimer-Erkrankung (AD), mit dem Ziel die regionale Verteilung und Progression der neokortikalen relativ zur allokortikalen Neurodegeneration zu erfassen. In mehreren Studienabschnitten wurden Patienten mit AD und gesunde Kontrollen untersucht. Als Grundlage fuer die Volumetrie diente eine sagittale 3D-T1w-Gradientenechosequenz. Die Vermessung des Corpus callosum (CC) erfolgte in der mittsagittalen Schicht, wobei 5 Subregionen definiert wurden. Die Volumetrie des Hippokampus-Amygdala-Komplexes (HAK) wurde durch Segmentierung an koronar reorientierten Schichten durchgefuehrt. Bei Patienten mit AD fand sich eine signifikante Atrophie in Rostrum und Splenium des CC. Dabei zeigte sich

  9. NPR-9, a Galanin-Like G-Protein Coupled Receptor, and GLR-1 Regulate Interneuronal Circuitry Underlying Multisensory Integration of Environmental Cues in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jason C Campbell

    2016-05-01

    Full Text Available C. elegans inhabit environments that require detection of diverse stimuli to modulate locomotion in order to avoid unfavourable conditions. In a mammalian context, a failure to appropriately integrate environmental signals can lead to Parkinson's, Alzheimer's, and epilepsy. Provided that the circuitry underlying mammalian sensory integration can be prohibitively complex, we analyzed nematode behavioral responses in differing environmental contexts to evaluate the regulation of context dependent circuit reconfiguration and sensorimotor control. Our work has added to the complexity of a known parallel circuit, mediated by interneurons AVA and AIB, that integrates sensory cues and is responsible for the initiation of backwards locomotion. Our analysis of the galanin-like G-protein coupled receptor NPR-9 in C. elegans revealed that upregulation of galanin signaling impedes the integration of sensory evoked neuronal signals. Although the expression pattern of npr-9 is limited to AIB, upregulation of the receptor appears to impede AIB and AVA circuits to broadly prevent backwards locomotion, i.e. reversals, suggesting that these two pathways functionally interact. Galanin signaling similarly plays a broadly inhibitory role in mammalian models. Moreover, our identification of a mutant, which rarely initiates backwards movement, allowed us to interrogate locomotory mechanisms underlying chemotaxis. In support of the pirouette model of chemotaxis, organisms that did not exhibit reversal behavior were unable to navigate towards an attractant peak. We also assessed ionotropic glutamate receptor GLR-1 cell-specifically within AIB and determined that GLR-1 fine-tunes AIB activity to modify locomotion following reversal events. Our research highlights that signal integration underlying the initiation and fine-tuning of backwards locomotion is AIB and NPR-9 dependent, and has demonstrated the suitability of C. elegans for analysis of multisensory integration

  10. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis

    Directory of Open Access Journals (Sweden)

    David Ladrón de Guevara-Miranda

    2017-03-01

    Full Text Available Cocaine addiction disorder is notably aggravated by concomitant cognitive and emotional pathology that impedes recovery. We studied whether a persistent cognitive/emotional dysregulation in mice withdrawn from cocaine holds a neurobiological correlate within the hippocampus, a limbic region with a key role in anxiety and memory but that has been scarcely investigated in cocaine addiction research. Mice were submitted to a chronic cocaine (20 mg/kg/day for 12 days or vehicle treatment followed by 44 drug-free days. Some mice were then assessed on a battery of emotional (elevated plus-maze, light/dark box, open field, forced swimming and cognitive (object and place recognition memory, cocaine-induced conditioned place preference, continuous spontaneous alternation behavioral tests, while other mice remained in their home cage. Relevant hippocampal features [basal c-Fos activity, GABA+, parvalbumin (PV+ and neuropeptide Y (NPY+ interneurons and adult neurogenesis (cell proliferation and immature neurons] were immunohistochemically assessed 73 days after the chronic cocaine or vehicle protocol. The cocaine-withdrawn mice showed no remarkable exploratory or emotional alterations but were consistently impaired in all the cognitive tasks. All the cocaine-withdrawn groups, independent of whether they were submitted to behavioral assessment or not, showed enhanced basal c-Fos expression and an increased number of GABA+ cells in the dentate gyrus. Moreover, the cocaine-withdrawn mice previously submitted to behavioral training displayed a blunted experience-dependent regulation of PV+ and NPY+ neurons in the dentate gyrus, and neurogenesis in the hippocampus. Results highlight the importance of hippocampal neuroplasticity for the ingrained cognitive deficits present during chronic cocaine withdrawal.

  11. TOR signaling pathway and autophagy are involved in the regulation of circadian rhythms in behavior and plasticity of L2 interneurons in the brain of Drosophila melanogaster.

    Science.gov (United States)

    Kijak, Ewelina; Pyza, Elżbieta

    2017-01-01

    Drosophila melanogaster is a common model used to study circadian rhythms in behavior and circadian clocks. However, numerous circadian rhythms have also been detected in non-clock neurons, especially in the first optic neuropil (lamina) of the fly's visual system. Such rhythms have been observed in the number of synapses and in the structure of interneurons, which exhibit changes in size and shape in a circadian manner. Although the patterns of these changes are known, the mechanism remains unclear. In the present study, we investigated the role of the TOR signaling pathway and autophagy in regulating circadian rhythms based on the behavior and structural plasticity of the lamina L2 monopolar cell dendritic trees. In addition, we examined the cyclic expression of the TOR signaling pathway (Tor, Pi3K class 1, Akt1) and autophagy (Atg5 and Atg7) genes in the fly's brain. We observed that Tor, Atg5 and Atg7 exhibit rhythmic expressions in the brain of wild-type flies in day/night conditions (LD 12:12) that are abolished in per01 clock mutants. The silencing of Tor in per expressing cells shortens a period of the locomotor activity rhythm of flies. In addition, silencing of the Tor and Atg5 genes in L2 cells disrupts the circadian plasticity of the L2 cell dendritic trees measured in the distal lamina. In turn, silencing of the Atg7 gene in L2 cells changes the pattern of this rhythm. Our results indicate that the TOR signaling pathway and autophagy are involved in the regulation of circadian rhythms in the behavior and plasticity of neurons in the brain of adult flies.

  12. Dendritic distributions of Ih channels in experimentally-derived multi-compartment models of oriens-lacunosum/moleculare (O-LM hippocampal interneurons

    Directory of Open Access Journals (Sweden)

    Vladislav eSekulic

    2015-02-01

    Full Text Available The O-LM cell type mediates feedback inhibition onto hippocampal pyramidal cells and gates information flow in the CA1. Its functions depend on the presence of voltage-gated channels (VGCs, which affect its integrative properties and response to synaptic input. Given the challenges associated with determining densities and distributions of VGCs on interneuron dendrites, we take advantage of computational modeling to consider different possibilities. In this work, we focus on hyperpolarization-activated channels (h-channels in O-LM cells. While h-channels are known to be present in O-LM cells, it is unknown whether they are present on their dendrites. In previous work, we used ensemble modeling techniques with experimental data to obtain insights into potentially important conductance balances. We found that the best O-LM models that included uniformly distributed h-channels in the dendrites could not fully capture the sag response. This led us to examine activation kinetics and non-uniform distributions of h-channels in the present work. In tuning our models, we found that different kinetics and non-uniform distributions could better reproduce experimental O-LM cell responses. In contrast to CA1 pyramidal cells where higher conductance densities of h-channels occur in more distal dendrites, decreasing conductance densities of h-channels away from the soma were observed in O-LM models. Via an illustrative scenario, we showed that having dendritic h-channels clearly speeds up back-propagating action potentials in O-LM cells, unlike when h-channels are present only in the soma. Although the present results were morphology-dependent, our work shows that it should be possible to determine the distributions and characteristics of O-LM cells with recordings and morphologies from the same cell. We hypothesize that h-channels are distributed in O-LM cell dendrites and endow them with particular synaptic integration properties that shape information flow

  13. Thoughts on identifiers

    CERN Document Server

    CERN. Geneva

    2005-01-01

    As business processes and information transactions have become an inextricably intertwined with the Web, the importance of assignment, registration, discovery, and maintenance of identifiers has increased. In spite of this, integrated frameworks for managing identifiers have been slow to emerge. Instead, identification systems arise (quite naturally) from immediate business needs without consideration for how they fit into larger information architectures. In addition, many legacy identifier systems further complicate the landscape, making it difficult for content managers to select and deploy identifier systems that meet both the business case and long term information management objectives. This presentation will outline a model for evaluating identifier applications and the functional requirements of the systems necessary to support them. The model is based on a layered analysis of the characteristics of identifier systems, including: * Functional characteristics * Technology * Policy * Business * Social T...

  14. Identifiability in stochastic models

    CERN Document Server

    1992-01-01

    The problem of identifiability is basic to all statistical methods and data analysis, occurring in such diverse areas as Reliability Theory, Survival Analysis, and Econometrics, where stochastic modeling is widely used. Mathematics dealing with identifiability per se is closely related to the so-called branch of ""characterization problems"" in Probability Theory. This book brings together relevant material on identifiability as it occurs in these diverse fields.

  15. Determination of the phospholipid precursor of anandamide and other N- acylethanolamine phospholipids before and after sodium azide-induced toxicity in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Hansen, H.H.; Schousboe, A.; Hansen, Harald S.

    2000-01-01

    subjected to sodium azide-induced cell injury. We here extend the information on the NAPE response, reporting on the composition of N-acyl species of NAPE, employing a new methodological approach of HPLC-coupled electrospray ionization mass spectrometry. Exposure to sodium azide (5 mM) increased the total...... method, neuronal NAPE species can be identified and quantified with respect to N-acyl composition, including a trans-isomer of the anandamide precursor. The anandamide precursor is up-regulated to the same extent as other NAPEs upon neuronal injury....

  16. Local Optogenetic Induction of Fast (20-40 Hz Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity

    Directory of Open Access Journals (Sweden)

    Julien eDine

    2016-04-01

    Full Text Available The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2 expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz field potential oscillations in hippocampal area CA1 in vitro (at 25°C and in vivo (i.e., slightly anaesthetized NEX-Cre-ChR2 mice. As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.

  17. Identifying Knowledge and Communication

    Directory of Open Access Journals (Sweden)

    Eduardo Coutinho Lourenço de Lima

    2006-12-01

    Full Text Available In this paper, I discuss how the principle of identifying knowledge which Strawson advances in ‘Singular Terms and Predication’ (1961, and in ‘Identifying Reference and Truth-Values’ (1964 turns out to constrain communication. The principle states that a speaker’s use of a referring expression should invoke identifying knowledge on the part of the hearer, if the hearer is to understand what the speaker is saying, and also that, in so referring, speakers are attentive to hearers’ epistemic states. In contrasting it with Russell’s Principle (Evans 1982, as well as with the principle of identifying descriptions (Donnellan 1970, I try to show that the principle of identifying knowledge, ultimately a condition for understanding, makes sense only in a situation of conversation. This allows me to conclude that the cooperative feature of communication (Grice 1975 and reference (Clark andWilkes-Gibbs 1986 holds also at the understanding level. Finally, I discuss where Strawson’s views seem to be unsatisfactory, and suggest how they might be improved.

  18. Visual motion imagery neurofeedback based on the hMT+/V5 complex: evidence for a feedback-specific neural circuit involving neocortical and cerebellar regions

    Science.gov (United States)

    Banca, Paula; Sousa, Teresa; Catarina Duarte, Isabel; Castelo-Branco, Miguel

    2015-12-01

    Objective. Current approaches in neurofeedback/brain-computer interface research often focus on identifying, on a subject-by-subject basis, the neural regions that are best suited for self-driven modulation. It is known that the hMT+/V5 complex, an early visual cortical region, is recruited during explicit and implicit motion imagery, in addition to real motion perception. This study tests the feasibility of training healthy volunteers to regulate the level of activation in their hMT+/V5 complex using real-time fMRI neurofeedback and visual motion imagery strategies. Approach. We functionally localized the hMT+/V5 complex to further use as a target region for neurofeedback. An uniform strategy based on motion imagery was used to guide subjects to neuromodulate hMT+/V5. Main results. We found that 15/20 participants achieved successful neurofeedback. This modulation led to the recruitment of a specific network as further assessed by psychophysiological interaction analysis. This specific circuit, including hMT+/V5, putative V6 and medial cerebellum was activated for successful neurofeedback runs. The putamen and anterior insula were recruited for both successful and non-successful runs. Significance. Our findings indicate that hMT+/V5 is a region that can be modulated by focused imagery and that a specific cortico-cerebellar circuit is recruited during visual motion imagery leading to successful neurofeedback. These findings contribute to the debate on the relative potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the clinical application of neurofeedback paradigms. This novel circuit might be a good target for future neurofeedback approaches that aim, for example, the training of focused attention in disorders such as ADHD.

  19. Identifying learning styles.

    Science.gov (United States)

    Hughes, Grace

    2016-12-14

    What was the nature of the CPD activity, practice-related feedback and/or event and/or experience in your practice? The article explored different learning styles and outlined some of the models that can be used to identify them. It discussed the limitations of these models, indicating that although they can be helpful in identifying a student's preferred learning style, this is not 'fixed' and might change over time. Learning is also influenced by other factors, such as culture and age.

  20. spatially identifying vulnerable areas

    African Journals Online (AJOL)

    System (SMDSS) to identify factors that make forest and game reserves vulnerable to rampant human induced ... Commission Act, 1999 (Act 571); and Wildlife Resources (Amendment) (Declaration of Game Reserves). Regulations, 1976 ..... A dynamic simulation model of land-use changes in Sudano-sahelian countries of ...

  1. Identifying and Managing Risk.

    Science.gov (United States)

    Abraham, Janice M.

    1999-01-01

    The role of the college or university chief financial officer in institutional risk management is (1) to identify risk (physical, casualty, fiscal, business, reputational, workplace safety, legal liability, employment practices, general liability), (2) to develop a campus plan to reduce and control risk, (3) to transfer risk, and (4) to track and…

  2. Global Microbial Identifier

    DEFF Research Database (Denmark)

    Wielinga, Peter; Hendriksen, Rene S.; Aarestrup, Frank Møller

    2017-01-01

    -source systems. There is therefore an obvious need to develop a global system of whole microbial genome databases to aggregate, share, mine and use microbiological genomic data, to address global public health and clinical challenges, and most importantly to identify and diagnose infectious diseases. The global...... of microorganisms, for the identification of relevant genes and for the comparison of genomes to detect outbreaks and emerging pathogens. To harness the full potential of WGS, a shared global database of genomes linked to relevant metadata and the necessary software tools needs to be generated, hence the global...... microbial identifier (GMI) initiative. This tool will ideally be used in amongst others in the diagnosis of infectious diseases in humans and animals, in the identification of microorganisms in food and environment, and to track and trace microbial agents in all arenas globally. This will require...

  3. Identifying anterior segment crystals.

    OpenAIRE

    Hurley, I W; Brooks, A M; Reinehr, D P; Grant, G B; Gillies, W E

    1991-01-01

    A series of 22 patients with crystals in the anterior segment of the eye was examined by specular microscopy. Of 10 patients with hypermature cataract and hyperrefringent bodies in the anterior chamber cholesterol crystals were identified in four patients and in six of the 10 in whom aspirate was obtained cholesterol crystals were demonstrated in three, two of these having shown crystals on specular microscopy. In 10 patients with intracorneal crystalline deposits, cholesterol crystals were f...

  4. Encrypting personal identifiers.

    OpenAIRE

    Meux, E

    1994-01-01

    STUDY SETTING. A statewide patient discharge database contained only one unique identifier: the social security number (SSN). A method was developed to transform (encrypt) the SSN so that it could be made publicly available, for purposes of linking discharge records, without revealing the SSN itself. The method of encrypting the SSN into a Record Linkage Number (RLN) is described. PRINCIPAL FINDINGS. The same RLN will always result from the same SSN; it is highly improbable that the same RLN ...

  5. On identified predictive control

    Science.gov (United States)

    Bialasiewicz, Jan T.

    1993-01-01

    Self-tuning control algorithms are potential successors to manually tuned PID controllers traditionally used in process control applications. A very attractive design method for self-tuning controllers, which has been developed over recent years, is the long-range predictive control (LRPC). The success of LRPC is due to its effectiveness with plants of unknown order and dead-time which may be simultaneously nonminimum phase and unstable or have multiple lightly damped poles (as in the case of flexible structures or flexible robot arms). LRPC is a receding horizon strategy and can be, in general terms, summarized as follows. Using assumed long-range (or multi-step) cost function the optimal control law is found in terms of unknown parameters of the predictor model of the process, current input-output sequence, and future reference signal sequence. The common approach is to assume that the input-output process model is known or separately identified and then to find the parameters of the predictor model. Once these are known, the optimal control law determines control signal at the current time t which is applied at the process input and the whole procedure is repeated at the next time instant. Most of the recent research in this field is apparently centered around the LRPC formulation developed by Clarke et al., known as generalized predictive control (GPC). GPC uses ARIMAX/CARIMA model of the process in its input-output formulation. In this paper, the GPC formulation is used but the process predictor model is derived from the state space formulation of the ARIMAX model and is directly identified over the receding horizon, i.e., using current input-output sequence. The underlying technique in the design of identified predictive control (IPC) algorithm is the identification algorithm of observer/Kalman filter Markov parameters developed by Juang et al. at NASA Langley Research Center and successfully applied to identification of flexible structures.

  6. Identifying phenomenal consciousness.

    Science.gov (United States)

    Schier, Elizabeth

    2009-03-01

    This paper examines the possibility of finding evidence that phenomenal consciousness is independent of access. The suggestion reviewed is that we should look for isomorphisms between phenomenal and neural activation spaces. It is argued that the fact that phenomenal spaces are mapped via verbal report is no problem for this methodology. The fact that activation and phenomenal space are mapped via different means does not mean that they cannot be identified. The paper finishes by examining how data addressing this theoretical question could be obtained.

  7. Random Cell Identifiers Assignment

    Directory of Open Access Journals (Sweden)

    Robert Bestak

    2012-01-01

    Full Text Available Despite integration of advanced functions that enable Femto Access Points (FAPs to be deployed in a plug-and-play manner, the femtocell concept still cause several opened issues to be resolved. One of them represents an assignment of Physical Cell Identifiers (PCIs to FAPs. This paper analyses a random based assignment algorithm in LTE systems operating in diverse femtocell scenarios. The performance of the algorithm is evaluated by comparing the number of confusions for various femtocell densities, PCI ranges and knowledge of vicinity. Simulation results show that better knowledge of vicinity can significantly reduce the number of confusions events.

  8. Neocortical connectivity during episodic memory formation.

    Science.gov (United States)

    Summerfield, Christopher; Greene, Matthew; Wager, Tor; Egner, Tobias; Hirsch, Joy; Mangels, Jennifer

    2006-05-01

    During the formation of new episodic memories, a rich array of perceptual information is bound together for long-term storage. However, the brain mechanisms by which sensory representations (such as colors, objects, or individuals) are selected for episodic encoding are currently unknown. We describe a functional magnetic resonance imaging experiment in which participants encoded the association between two classes of visual stimuli that elicit selective responses in the extrastriate visual cortex (faces and houses). Using connectivity analyses, we show that correlation in the hemodynamic signal between face- and place-sensitive voxels and the left dorsolateral prefrontal cortex is a reliable predictor of successful face-house binding. These data support the view that during episodic encoding, "top-down" control signals originating in the prefrontal cortex help determine which perceptual information is fated to be bound into the new episodic memory trace.

  9. Neocortical connectivity during episodic memory formation.

    Directory of Open Access Journals (Sweden)

    Christopher Summerfield

    2006-05-01

    Full Text Available During the formation of new episodic memories, a rich array of perceptual information is bound together for long-term storage. However, the brain mechanisms by which sensory representations (such as colors, objects, or individuals are selected for episodic encoding are currently unknown. We describe a functional magnetic resonance imaging experiment in which participants encoded the association between two classes of visual stimuli that elicit selective responses in the extrastriate visual cortex (faces and houses. Using connectivity analyses, we show that correlation in the hemodynamic signal between face- and place-sensitive voxels and the left dorsolateral prefrontal cortex is a reliable predictor of successful face-house binding. These data support the view that during episodic encoding, "top-down" control signals originating in the prefrontal cortex help determine which perceptual information is fated to be bound into the new episodic memory trace.

  10. NEOCORTICAL HYPERTROPHY FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM IN RATS

    Science.gov (United States)

    Thyroid hormones (TH) are essential to the normal development of the brain. Although severe congenital hypothyroidism has long been associated with mental retardation and motor defects, it has only recently been established that even subtle decreases in maternal TH alter fetal br...

  11. Neocortical gamma oscillations in idiopathic generalized epilepsy

    DEFF Research Database (Denmark)

    Benedek, Krisztina; Berenyi, Antal; Gombkoto, Peter

    2016-01-01

    Objective: Absence seizures in patients with idiopathic generalized epilepsy (IGE) may in part be explained by a decrease in phasic GABAA (type-A c-aminobutyric acid) receptor function, but the mechanisms are only partly understood. Here we studied the relation between ictal and interictal spike...... decrease in the 8-12 Hz frequency band. The rise in EEG gamma oscillations was short-lasting and decreased before activity declined at lower frequency ranges. Compared to control patients, patients with epilepsy also showed higher interictal values of mean coherence of gamma activity, but this interictal...

  12. Radiograph identifying means

    International Nuclear Information System (INIS)

    Sheldon, A.D.

    1983-01-01

    A flexible character-indentable plastics embossing tape is backed by and bonded to a lead strip, not more than 0.025 inches thick, to form a tape suitable for identifying radiographs. The lead strip is itself backed by a relatively thin and flimsy plastics or fabric strip which, when removed, allows the lead plastic tape to be pressure-bonded to the surface to be radiographed. A conventional tape-embossing gun is used to indent the desired characters in succession into the lead-backed tape, without necessarily severing the lead; and then the backing strip is peeled away to expose the layer of adhesive which pressure-bonds the indented tape to the object to be radiographed. X-rays incident on the embossed tape will cause the raised characters to show up dark on the subsequently-developed film, whilst the raised side areas will show up white. Each character will thus stand out on the developed film. (author)

  13. Integration of H-2Z1, a somatosensory cortex-expressed transgene, interferes with the expression of the Satb1 and Tbc1d5 flanking genes and affects the differentiation of a subset of cortical interneurons.

    Science.gov (United States)

    Narboux-Nême, Nicolas; Goïame, Rosette; Mattéi, Marie-Geneviève; Cohen-Tannoudji, Michel; Wassef, Marion

    2012-05-23

    H-2Z1 is an enhancer trap transgenic mouse line in which the lacZ reporter delineates the somatosensory area of the cerebral cortex where it is expressed in a subset of layer IV neurons. In the search of somatosensory specific genes or regulatory sequences, we mapped the H-2Z1 transgene insertion site to chromosome 17, 100 and 460 kb away from Tbc1d5 and Satb1 flanking genes. We show here that insertion of the H-2Z1 transgene results in three distinct outcomes. First, a genetic background-sensitive expression of lacZ in several brain and body structures. While four genes in a 1 Mb region around the insertion are expressed in the barrel cortex, H-2Z1 expression resembles more that of its two direct neighbors. Moreover, H-2Z1 closely reports most of the body and brain expression sites of the Satb1 chromatin remodeling gene including tooth buds, thymic epithelium, pontine nuclei, fastigial cerebellar nuclei, and cerebral cortex. Second, the H-2Z1 transgene causes insertional mutagenesis of Tbc1d5 and Satb1, leading to a strong decrease in their expressions. Finally, insertion of H-2Z1 affects the differentiation of a subset of cortical GABAergic interneurons, a possible consequence of downregulation of Satb1 expression. Thus, the H-2Z1 "somatosensory" transgene is inserted in the regulatory landscape of two genes highly expressed in the developing somatosensory cortex and reports for a subdomain of their expression profiles. Together, our data suggest that regulation of H-2Z1 expression results from local and remote genetic interactions.

  14. New criteria to identify spectrum

    DEFF Research Database (Denmark)

    Jensen, Arne; Krishna, M.

    In this paper we give some new criteria for identifying the components of a probability measure, in its Lebesgue decomposition. This enables us to give new criteria to identify spectral types of self adjoint operators on Hilbert spaces, especially those of interest....

  15. New criteria to identify spectrum

    DEFF Research Database (Denmark)

    Jensen, Arne; Krishna, M.

    2005-01-01

    In this paper we give some new criteria for identifying the components of a probability measure, in its Lebesgue decomposition. This enables us to give new criteria to identify spectral types of self-adjoint operators on Hilbert spaces, especially those of interest....

  16. Moving from Capstones towards Cornerstones: Successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Nathan eKopp

    2015-10-01

    Full Text Available The substantial progress in the last few years towards uncovering genetic causes and risk factors for autism spectrum disorders (ASD has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein-protein interaction networks, Gene Ontologies annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying genes. Expression studies have highlighted a disproportionate expression of ASD gene sets during mid fetal cortical development, particularly for rare-variants, with multiple analyses highlighting the striatum and cortical projection and interneurons as well. While these explorations have highlighted potentially interesting relationships among these ASD-related genes, there are challenges in how to best transition these insights into empirically testable hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream of the diverse genes associated with autism spectrum disorders could provide the cornerstones needed to build towards broadly applicable therapeutic approaches.

  17. Identifying discharge practice training needs.

    Science.gov (United States)

    Lees, L; Emmerson, K

    A training needs analysis tool was developed to identify nurses' discharge training needs and to improve discharge practice. The tool includes 49 elements of discharge practice subdivided into four areas: corporate, operational, clinical and nurse-led discharge. The tool was disseminated to 15 wards on two hospital sites with assistance from the practice development team. Analysis of discharge training is important to assess discharge training needs and to identify staff who may assist with training.

  18. Identifying tier one key suppliers.

    Science.gov (United States)

    Wicks, Steve

    2013-01-01

    In today's global marketplace, businesses are becoming increasingly reliant on suppliers for the provision of key processes, activities, products and services in support of their strategic business goals. The result is that now, more than ever, the failure of a key supplier has potential to damage reputation, productivity, compliance and financial performance seriously. Yet despite this, there is no recognised standard or guidance for identifying a tier one key supplier base and, up to now, there has been little or no research on how to do so effectively. This paper outlines the key findings of a BCI-sponsored research project to investigate good practice in identifying tier one key suppliers, and suggests a scalable framework process model and risk matrix tool to help businesses effectively identify their tier one key supplier base.

  19. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...... Bayesian hierarchy for sparse models using slab and spike priors (two-component δ-function and continuous mixtures), non-Gaussian latent factors and a stochastic search over the ordering of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated...... computational complexity. We attribute this mainly to the stochastic search strategy used, and to parsimony (sparsity and identifiability), which is an explicit part of the model. We propose two extensions to the basic i.i.d. linear framework: non-linear dependence on observed variables, called SNIM (Sparse Non-linear...

  20. Football refereeing: Identifying innovative methods

    Directory of Open Access Journals (Sweden)

    Reza MohammadKazemi

    2014-08-01

    Full Text Available The aim of the present study is to identify the potentials innovation in football industry. Data were collected from 10 national and international referees, assistant referees and referees’ supervisors in Iran. In this study, technological innovations are identified that assist better refereeing performances. The analysis revealed a significant relationship between using new technologies and referees ‘performance. The results indicate that elite referees, assistant referees and supervisors agreed to use new technological innovations during the game. According to their comments, this kind of technology causes the referees’ performance development.

  1. Testing times: identifying puberty in an identified skeletal sample.

    Science.gov (United States)

    Henderson, Charlotte Y; Padez, Cristina

    2017-06-01

    Identifying the onset of puberty in skeletal remains can provide evidence of social changes associated with the onset of adulthood. This paper presents the first test of a skeletal method for identifying stages of development associated with the onset of puberty in a skeletal sample of known age and cause of death. Skeletal methods for assessing skeletal development associated with changes associated with puberty were recorded in the identified skeletal collection in Coimbra, Portugal. Historical data on the onset of menarche in this country are used to test the method. As expected, females mature faster than their male counterparts. There is some side asymmetry in development. Menarche was found to have been achieved by an average age of 15. Asymmetry must be taken into account when dealing with partially preserved skeletons. Age of menarche is consistent, although marginally higher, than the age expected based on historical data for this time and location. Skeletal development in males could not be tested against historical data, due to the lack of counterpart historical data. The ill health known to be present in this prematurely deceased population may have delayed skeletal development and the onset of puberty.

  2. Minimal output sets for identifiability.

    Science.gov (United States)

    Anguelova, Milena; Karlsson, Johan; Jirstrand, Mats

    2012-09-01

    Ordinary differential equation models in biology often contain a large number of parameters that must be determined from measurements by parameter estimation. For a parameter estimation procedure to be successful, there must be a unique set of parameters that can have produced the measured data. This is not the case if a model is not uniquely structurally identifiable with the given set of outputs selected as measurements. In designing an experiment for the purpose of parameter estimation, given a set of feasible but resource-consuming measurements, it is useful to know which ones must be included in order to obtain an identifiable system, or whether the system is unidentifiable from the feasible measurement set. We have developed an algorithm that, from a user-provided set of variables and parameters or functions of them assumed to be measurable or known, determines all subsets that when used as outputs give a locally structurally identifiable system and are such that any output set for which the system is structurally identifiable must contain at least one of the calculated subsets. The algorithm has been implemented in Mathematica and shown to be feasible and efficient. We have successfully applied it in the analysis of large signalling pathway models from the literature. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Identifying high-risk medication

    DEFF Research Database (Denmark)

    Sædder, Eva; Brock, Birgitte; Nielsen, Lars Peter

    2014-01-01

    salicylic acid, and beta-blockers; 30 drugs or drug classes caused 82 % of all serious MEs. The top ten drugs involved in fatal events accounted for 73 % of all drugs identified. CONCLUSION: Increasing focus on seven drugs/drug classes can potentially reduce hospitalizations, extended hospitalizations...

  4. SNP interaction pattern identifier (SIPI)

    DEFF Research Database (Denmark)

    Lin, Hui Yi; Chen, Dung Tsa; Huang, Po Yu

    2017-01-01

    Motivation: Testing SNP-SNP interactions is considered as a key for overcoming bottlenecks of genetic association studies. However, related statistical methods for testing SNP-SNP interactions are underdeveloped. Results: We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 bi...

  5. Distributed Persistent Identifiers System Design

    Directory of Open Access Journals (Sweden)

    Pavel Golodoniuc

    2017-06-01

    Full Text Available The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID systems, of which there is a great variety in terms of technical and social implementation, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have, by in large, catered for identifier uniqueness, integrity, and persistence, regardless of the identifier’s application domain. Trustworthiness of these systems has been measured by the criteria first defined by Bütikofer (2009 and further elaborated by Golodoniuc 'et al'. (2016 and Car 'et al'. (2017. Since many PID systems have been largely conceived and developed by a single organisation they faced challenges for widespread adoption and, most importantly, the ability to survive change of technology. We believe that a cause of PID systems that were once successful fading away is the centralisation of support infrastructure – both organisational and computing and data storage systems. In this paper, we propose a PID system design that implements the pillars of a trustworthy system – ensuring identifiers’ independence of any particular technology or organisation, implementation of core PID system functions, separation from data delivery, and enabling the system to adapt for future change. We propose decentralisation at all levels — persistent identifiers and information objects registration, resolution, and data delivery — using Distributed Hash Tables and traditional peer-to-peer networks with information replication and caching mechanisms, thus eliminating the need for a central PID data store. This will increase overall system fault tolerance thus ensuring its trustworthiness. We also discuss important aspects of the distributed system’s governance, such as the notion of the authoritative source and data integrity

  6. Taurine activates GABAergic networks in the neocortex of immature mice

    Directory of Open Access Journals (Sweden)

    Bogdan Aurel Sava

    2014-02-01

    Full Text Available Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-GFP transgenic mice (postnatal days 2-4. In 46 % of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 mM significantly enhanced the frequency of postsynaptic currents (PSCs by 744.3 ± 93.8 % (n = 120 cells. This taurine-induced increase of PSC frequency was abolished by 0.2 mM tetrodotoxine, 1 mM strychnine or 3 mM gabazine, but was unaffected by the glutamatergic antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX and (± R(--3-(2-carboxypiperazine-4-yl-propyl-1-phosphonic acid (CPP, suggesting that taurine specifically activates GABAergic network activity projecting to pyramidal neurons. Cell-attached recordings revealed that taurine enhanced the frequency of action potentials in pyramidal neurons, indicating an excitatory action of the GABAergic PSCs. In order to identify the presynaptic targets of taurine we demonstrate that bath application of taurine induced in GAD67-GFP labeled interneurons an inward current that is mainly mediated by glycine receptors and can generate action potentials in these cells. We conclude from these results that taurine can enhance network excitability in the immature neocortex by selectively activating GABAergic interneurons via interactions with glycine receptors.

  7. ORCID: Author Identifiers for Librarians

    Directory of Open Access Journals (Sweden)

    Robyn B. Reed

    2017-10-01

    Full Text Available Generating accurate publication lists by researchers can be challenging when faced with scholars who have common names or who have published under name variations. This article describes ORCID and the goal of generating author identifiers for scholars to connect their research outputs. Included are the reasons for having author identifiers as well as the types of information within individual profiles. This article includes information on how academic libraries are playing a role with ORCID initiatives as well as describing how publishers, institutions, and funders are employing ORCID in their workflows. Highlighted is material on academic institutions in Pennsylvania using ORCID. The purpose of the article is to provide an overview of ORCID and its uses to inform librarians about this important initiative.

  8. Identifying patient risks during hospitalization

    Directory of Open Access Journals (Sweden)

    Lucélia Ferreira Lima

    2008-12-01

    Full Text Available Objective: To identify the risks reported at a public institution andto know the main patient risks from the nursing staff point of view.Methods: A retrospective, descriptive and exploratory study. Thesurvey was developed at a hospital in the city of Taboão da Serra, SãoPaulo, Brazil. The study included all nurses working in care areas whoagreed to participate in the study. At the same time, sentinel eventsoccurring in the period from July 2006 to July 2007 were identified.Results: There were 440 sentinel events reported, and the main risksincluded patient falls, medication errors and pressure ulcers. Sixty-fivenurses were interviewed. They also reported patient falls, medicationerrors and pressure ulcers as the main risks. Conclusions: Riskassessment and implementation of effective preventive actions arenecessary to ensure patient’s safety. Involvement of a multidisciplinaryteam is one of the steps for a successful process.

  9. Identifying vertex covers in graphs

    DEFF Research Database (Denmark)

    Henning, Michael A.; Yeo, Anders

    2012-01-01

    An identifying vertex cover in a graph G is a subset T of vertices in G that has a nonempty intersection with every edge of G such that T distinguishes the edges, that is, e∩T ≠ 0 for every edge e in G and e∩T ≠ f∩T for every two distinct edges e and f in G. The identifying vertex cover number TD......(G) of G is the minimum size of an identifying vertex cover in G. We observe that TD(G)+ρ(G) = |V (G)|, where ρ(G) denotes the packing number of G. We conjecture that if G is a graph of order n and size m with maximum degree Δ, then TD(G) ≤(Δ(Δ-1)/ Δ2+1)n + (2/Δ2+1) m. If the conjecture is true......, then the bound is best possible for all Δ ≥ 1. We prove this conjecture when Δ ≥ 1 and G is a Δ-regular graph. The three known Moore graphs of diameter 2, namely the 5-cycle, the Petersen graph and the Hoffman-Singleton graph, are examples of regular graphs that achieves equality in the upper bound. We also...

  10. Identifying flares in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Bykerk, Vivian P; Bingham, Clifton O; Choy, Ernest H

    2016-01-01

    to flare, with escalation planned in 61%. CONCLUSIONS: Flares are common in rheumatoid arthritis (RA) and are often preceded by treatment reductions. Patient/MD/DAS agreement of flare status is highest in patients worsening from R/LDA. OMERACT RA flare questions can discriminate between patients with...... Set. METHODS: Candidate flare questions and legacy measures were administered at consecutive visits to Canadian Early Arthritis Cohort (CATCH) patients between November 2011 and November 2014. The American College of Rheumatology (ACR) core set indicators were recorded. Concordance to identify flares...

  11. IDENTIFYING BEST PRACTICES IN INSURANCE

    Directory of Open Access Journals (Sweden)

    Răducu Marian PETRESCU

    2016-05-01

    Full Text Available This work aims to identify and develop best practices in the insurance field. We must mention from the beginning that best practices are not compulsory or mandatory rules of law, they cannot and do not want to be placed above the legal provisions in force, they only complement the law. Moreover, we intend to look into the implementation of the Solvency II Directive from the point of view of best practices in insurance. In this research, the main method of study was the theoretical qualitative research (especially document analysis, with the purpose to identify and theoretically develop the information on best practices in the insurance field. The main results of the research consist in the identification of general best practices in performing the activity (such as communication/consultation with the interested parties, the consistency as regards contractual/non-contractual relations, the effectiveness and efficiency, transparency and honesty, fair treatment of customers etc. which have been presented in short and which could be implemented by any company that seeks to achieve superior performances, including the insurance companies. The work also includes some important best practices, described in detail, in a sensitive area such as the insurance field (best practices in relation to the management of personal information, the management and settlement of disputes by insurance companies or intermediaries in the field of insurance etc..

  12. Featured Image: Identifying Weird Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Hoags Object, an example of a ring galaxy. [NASA/Hubble Heritage Team/Ray A. Lucas (STScI/AURA)]The above image (click for the full view) shows PanSTARRSobservationsof some of the 185 galaxies identified in a recent study as ring galaxies bizarre and rare irregular galaxies that exhibit stars and gas in a ring around a central nucleus. Ring galaxies could be formed in a number of ways; one theory is that some might form in a galaxy collision when a smaller galaxy punches through the center of a larger one, triggering star formation around the center. In a recent study, Ian Timmis and Lior Shamir of Lawrence Technological University in Michigan explore ways that we may be able to identify ring galaxies in the overwhelming number of images expected from large upcoming surveys. They develop a computer analysis method that automatically finds ring galaxy candidates based on their visual appearance, and they test their approach on the 3 million galaxy images from the first PanSTARRS data release. To see more of the remarkable galaxies the authors found and to learn more about their identification method, check out the paper below.CitationIan Timmis and Lior Shamir 2017 ApJS 231 2. doi:10.3847/1538-4365/aa78a3

  13. Persistent Identifiers as Boundary Objects

    Science.gov (United States)

    Parsons, M. A.; Fox, P. A.

    2017-12-01

    In 1989, Leigh Star and Jim Griesemer defined the seminal concept of `boundary objects'. These `objects' are what Latour calls `immutable mobiles' that enable communication and collaboration across difference by helping meaning to be understood in different contexts. As Star notes, they are a sort of arrangement that allow different groups to work together without (a priori) consensus. Part of the idea is to recognize and allow for the `interpretive flexibility' that is central to much of the `constructivist' approach in the sociology of science. Persistent Identifiers (PIDs) can clearly act as boundary objects, but people do not usually assume that they enable interpretive flexibility. After all, they are meant to be unambiguous, machine-interpretable identifiers of defined artifacts. In this paper, we argue that PIDs can fill at least two roles: 1) That of the standardized form, where there is strong agreement on what is being represented and how and 2) that of the idealized type, a more conceptual concept that allows many different representations. We further argue that these seemingly abstract conceptions actually help us implement PIDs more effectively to link data, publications, various other artifacts, and especially people. Considering PIDs as boundary objects can help us address issues such as what level of granularity is necessary for PIDs, what metadata should be directly associated with PIDs, and what purpose is the PID serving (reference, provenance, credit, etc.). In short, sociological theory can improve data sharing standards and their implementation in a way that enables broad interdisciplinary data sharing and reuse. We will illustrate this with several specific examples of Earth science data.

  14. Identifying and Tracing User Needs

    Science.gov (United States)

    To, C.; Tauer, E.

    2017-12-01

    Providing adequate tools to the user community hinges on reaching the specific goals and needs behind the intended application of the tool. While the approach of leveraging user-supplied inputs and use cases to identify those goals is not new, there frequently remains the challenge of tracing those use cases through to implementation in an efficient and manageable fashion. Processes can become overcomplicated very quickly, and additionally, explicitly mapping progress towards the achievement of the user demands can become overwhelming when hundreds of use-cases are at play. This presentation will discuss a demonstrated use-case approach that has achieved an initial success with a tool re-design and deployment, the means to apply use cases in the generation of a roadmap for future releases over time, and the ability to include and adjust to new user requirements and suggestions with minimal disruption to the traceability. It is hoped that the findings and lessons learned will help make use case employment easier for others seeking to create user-targeted capabilities.

  15. RECOVIR Software for Identifying Viruses

    Science.gov (United States)

    Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui

    2013-01-01

    Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.

  16. Identifying ELIXIR Core Data Resources.

    Science.gov (United States)

    Durinx, Christine; McEntyre, Jo; Appel, Ron; Apweiler, Rolf; Barlow, Mary; Blomberg, Niklas; Cook, Chuck; Gasteiger, Elisabeth; Kim, Jee-Hyub; Lopez, Rodrigo; Redaschi, Nicole; Stockinger, Heinz; Teixeira, Daniel; Valencia, Alfonso

    2016-01-01

    The core mission of ELIXIR is to build a stable and sustainable infrastructure for biological information across Europe. At the heart of this are the data resources, tools and services that ELIXIR offers to the life-sciences community, providing stable and sustainable access to biological data. ELIXIR aims to ensure that these resources are available long-term and that the life-cycles of these resources are managed such that they support the scientific needs of the life-sciences, including biological research. ELIXIR Core Data Resources are defined as a set of European data resources that are of fundamental importance to the wider life-science community and the long-term preservation of biological data. They are complete collections of generic value to life-science, are considered an authority in their field with respect to one or more characteristics, and show high levels of scientific quality and service. Thus, ELIXIR Core Data Resources are of wide applicability and usage. This paper describes the structures, governance and processes that support the identification and evaluation of ELIXIR Core Data Resources. It identifies key indicators which reflect the essence of the definition of an ELIXIR Core Data Resource and support the promotion of excellence in resource development and operation. It describes the specific indicators in more detail and explains their application within ELIXIR's sustainability strategy and science policy actions, and in capacity building, life-cycle management and technical actions. The identification process is currently being implemented and tested for the first time. The findings and outcome will be evaluated by the ELIXIR Scientific Advisory Board in March 2017. Establishing the portfolio of ELIXIR Core Data Resources and ELIXIR Services is a key priority for ELIXIR and publicly marks the transition towards a cohesive infrastructure.

  17. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter.

    Science.gov (United States)

    Rasmussen, Morten; Kong, Lingxin; Zhang, Guo-rong; Liu, Meng; Wang, Xiaodan; Szabo, Gabor; Curthoys, Norman P; Geller, Alfred I

    2007-05-04

    Many potential uses of direct gene transfer into neurons require restricting expression to one of the two major types of forebrain neurons, glutamatergic or GABAergic neurons. Thus, it is desirable to develop virus vectors that contain either a glutamatergic or GABAergic neuron-specific promoter. The brain/kidney phosphate-activated glutaminase (PAG), the product of the GLS1 gene, produces the majority of the glutamate for release as neurotransmitter, and is a marker for glutamatergic neurons. A PAG promoter was partially characterized using a cultured kidney cell line. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. Glutamic acid decarboxylase (GAD) produces GABA; the two molecular forms of the enzyme, GAD65 and GAD67, are expressed in distinct, but largely overlapping, groups of neurons, and GAD67 is the predominant form in the neocortex. In transgenic mice, an approximately 9 kb fragment of the GAD67 promoter supports expression in most classes of GABAergic neurons. Here, we constructed plasmid (amplicon) Herpes Simplex Virus (HSV-1) vectors that placed the Lac Z gene under the regulation of putative PAG, VGLUT1, or GAD67 promoters. Helper virus-free vector stocks were delivered into postrhinal cortex, and the rats were sacrificed 4 days or 2 months later. The PAG or VGLUT1 promoters supported approximately 90% glutamatergic neuron-specific expression. The GAD67 promoter supported approximately 90% GABAergic neuron-specific expression. Long-term expression was observed using each promoter. Principles for obtaining long-term expression from HSV-1 vectors, based on these and other results, are discussed. Long-term glutamatergic or GABAergic neuron-specific expression may benefit specific experiments on learning or specific gene therapy approaches. Of note, promoter analyses might identify regulatory elements that determine

  18. Cortical Proteins are Chemokinetic to Cells from the Medial Ganglionic Eminence

    Science.gov (United States)

    2011-05-28

    Neuroscience Program Director During embryonic development, a majority of neocortical interneurons originate from the medial ganglionic eminence (MGE...day vaginal plug is seen) EGF Epidermal growth factor ErbB EGF receptor GABA Gamma-aminobutyric acid GE Ganglionic eminence HGF Hepatocyte...species, all mammals have GABAergic precursors residing in the GE producing neurons that migrate along the same tangential route to the neocortex

  19. Age-related effects in the neocortical organization of chimpanzees

    DEFF Research Database (Denmark)

    Autrey, Michelle M; Reamer, Lisa A; Mareno, Mary Catherine

    2014-01-01

    Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray and...

  20. VLSI circuits implementing computational models of neocortical circuits.

    Science.gov (United States)

    Wijekoon, Jayawan H B; Dudek, Piotr

    2012-09-15

    This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Gap junctions in developing thalamic and neocortical neuronal networks

    NARCIS (Netherlands)

    Niculescu, Dragos; Lohmann, C.

    2014-01-01

    The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and

  2. Neocortical synaptophysin asymmetry and behavioral lateralization in chimpanzees (Pan troglodytes)

    DEFF Research Database (Denmark)

    Sherwood, Chet C; Duka, Tetyana; Stimpson, Cheryl D

    2010-01-01

    -immunoreactive puncta density and protein expression levels in the region of hand representation of the primary motor cortex in chimpanzees (Pan troglodytes). Synaptophysin is a presynaptic vesicle-associated protein found in nearly all synapses of the central nervous system. We also tested whether...... at the population level, whereas synaptophysin protein expression levels are significantly higher in the right hemisphere. Handedness was correlated with interindividual variation in synaptophysin-immunoreactive puncta density. As a group, left-handed and ambidextrous chimpanzees showed a rightward bias in puncta...... density. In contrast, puncta densities were symmetrical in right-handed chimpanzees. These findings support the conclusion that synapse asymmetry is modulated by lateralization of skilled motor behavior in chimpanzees....

  3. Epilepsia partialis continua responsive to neocortical electrical stimulation.

    Science.gov (United States)

    Valentin, Antonio; Ughratdar, Ismail; Cheserem, Beverly; Morris, Robert; Selway, Richard; Alarcon, Gonzalo

    2015-08-01

    Epilepsia partialis continua (EPC), defined as a syndrome of continuous focal jerking, is a rare form of focal status epilepticus that usually affects a distal limb, and when prolonged, can produce long-lasting deficits in limb function. Substantial electrophysiologic evidence links the origin of EPC to the motor cortex; thus surgical resection carries the risk of significant handicap. We present two patients with focal, drug-resistant EPC, who were admitted for intracranial video-electroencephalography monitoring to elucidate the location of the epileptogenic focus and identification of eloquent motor cortex with functional mapping. In both cases, the focus resided at or near eloquent motor cortex and therefore precluded resective surgery. Chronic cortical stimulation delivered through subdural strips at the seizure focus (continuous stimulation at 60-130 Hz, 2-3 mA) resulted in >90% reduction in seizures and abolition of the EPC after a follow-up of 22 months in both patients. Following permanent implantation of cortical stimulators, no adverse effects were noted. EPC restarted when intensity was reduced or batteries depleted. Battery replacement restored previous improvement. This two-case report opens up avenues for the treatment of this debilitating condition. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  4. Age Dependency of Trauma-Induced Neocortical Epileptogenesis

    Directory of Open Access Journals (Sweden)

    Igor eTimofeev

    2013-09-01

    Full Text Available Trauma and brain infection are the primary sources of acquired epilepsy, which can occur at any age and may account for a high incidence of epilepsy in developing countries. We have explored the hypothesis that penetrating cortical wounds cause deafferentation of the neocortex, which triggers homeostatic plasticity and lead to epileptogenesis (Houweling et al., 2005. In partial deafferentation experiments of adult cats, acute seizures occurred in most preparations and chronic seizures occurred weeks to months after the operation in 65% of the animals (Nita et al., 2006; Nita and Timofeev, 2007; Nita et al., 2007. Similar deafferentation of young cats (age 8-12 months led to some acute seizures, but we never observed chronic seizure activity even though there was enhanced slow-wave activity in the partially deafferented hemisphere during quiet wakefulness. This suggests that despite a major trauma, the homeostatic plasticity in young animals was able to restore normal levels of cortical excitability, but in fully adult cats the mechanisms underlying homeostatic plasticity may lead to an unstable cortical state. To test this hypothesis we made an undercut in the cortex of an elderly cat. After several weeks this animal developed seizure activity. These observations may lead to an intervention after brain trauma that prevents epileptogenesis from occurring in adults.

  5. The neuronal identity bias behind neocortical GABAergic plasticity.

    Science.gov (United States)

    Allene, Camille; Lourenço, Joana; Bacci, Alberto

    2015-09-01

    In the neocortex, different types of excitatory and inhibitory neurons connect to one another following a detailed blueprint, defining functionally-distinct subnetworks, whose activity and modulation underlie complex cognitive functions. We review the cell-autonomous plasticity of perisomatic inhibition onto principal excitatory neurons. We propose that the tendency of different cortical layers to exhibit depression or potentiation of perisomatic inhibition is dictated by the specific identities of principal neurons (PNs). These are mainly defined by their projection targets and by their preference to be innervated by specific perisomatic-targeting basket cell types. Therefore, principal neurons responsible for relaying information to subcortical nuclei are differentially inhibited and show specific forms of plasticity compared to other PNs that are specialized in more associative functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Psychosocial counselling of identifiable sperm donors

    NARCIS (Netherlands)

    Visser, M.; Mochtar, M.H.; de Melker, A.A.; van der Veen, F.; Repping, S.; Gerrits, T.

    2016-01-01

    STUDY QUESTION: What do identifiable sperm donors feel about psychosocial counselling? SUMMARY ANSWER: Identifiable sperm donors found it important that psychosocial counselling focused on emotional consequences and on rules and regulations and they expected to have access to psychosocial

  7. Psychosocial counselling of identifiable sperm donors

    NARCIS (Netherlands)

    Visser, M. [=Marja; Mochtar, M. H.; de Melker, A. A.; van der Veen, F.; Repping, S.; Gerrits, T.

    2016-01-01

    What do identifiable sperm donors feel about psychosocial counselling? Identifiable sperm donors found it important that psychosocial counselling focused on emotional consequences and on rules and regulations and they expected to have access to psychosocial counselling at the time that

  8. Method of identifying plant pathogen tolerance

    Science.gov (United States)

    Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

    1997-10-07

    A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

  9. A probabilistic perspective on re-identifiability

    NARCIS (Netherlands)

    Koot, M.; Mandjes, M.; van 't Noordende, G.; de Laat, C.

    2013-01-01

    A quasi-identifier is a set of attributes that can be used to re-identify entries in anonymized data sets. A group of individuals is considered about whom quasi-identifying numerical information is disclosed such as date of birth, age, weight, and height. The fraction of individuals is determined

  10. Ability of Slovakian Pupils to Identify Birds

    Science.gov (United States)

    Prokop, Pavol; Rodak, Rastislav

    2009-01-01

    A pupil's ability to identify common organisms is necessary for acquiring further knowledge of biology. We investigated how pupils were able to identify 25 bird species following their song, growth habits, or both features presented simultaneously. Just about 19% of birds were successfully identified by song, about 39% by growth habit, and 45% of…

  11. 29 CFR 4010.7 - Identifying information.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Identifying information. 4010.7 Section 4010.7 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION CERTAIN REPORTING AND DISCLOSURE REQUIREMENTS ANNUAL FINANCIAL AND ACTUARIAL INFORMATION REPORTING § 4010.7 Identifying information...

  12. Water resources management in Tanzania: identifying research ...

    African Journals Online (AJOL)

    This paper aims at identifying research gaps and needs and recommendations for a research agenda on water resources management in Tanzania. We reviewed published literature on water resources management in Tanzania in order to highlight what is currently known, and to identify knowledge gaps, and suggest ...

  13. Identifying Needs and Opportunities for Local Government ...

    African Journals Online (AJOL)

    4carolinebell@gmail.com

    required for better environmental management and the establishment of education and training processes for .... The Education and Training Practices Project (NTB, 1998) identified important links between Applied ... to learn directly from departmental staff what education and training needs they identified with regard to ...

  14. Moving Beyond Weak Identifiers for Proxemic Interaction

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Kjeldskov, Jesper

    2013-01-01

    is significantly closer than what is actually the case. This makes the smartphone a weak identifier for applications that need to track persons. With a focus on feasible interaction design, we present a concept and prototype of a platform, which seek to support proxemic interaction beyond weak identifiers...

  15. Learning environments matter: Identifying influences on the ...

    African Journals Online (AJOL)

    Hennie

    The students completed the Student Motivation for Science Learning questionnaire. Significant differences were identified between different groups and school types. The study is important for identifying the key role of achievement goals, science learning values and science self-efficacies. The main finding emphasises the.

  16. IDENTIFIABILITY VERSUS HETEROGENEITY IN GROUNDWATER MODELING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A M BENALI

    2003-06-01

    Full Text Available Review of history matching of reservoirs parameters in groundwater flow raises the problem of identifiability of aquifer systems. Lack of identifiability means that there exists parameters to which the heads are insensitive. From the guidelines of the study of the homogeneous case, we inspect the identifiability of the distributed transmissivity field of heterogeneous groundwater aquifers. These are derived from multiple realizations of a random function Y = log T  whose probability distribution function is normal. We follow the identifiability of the autocorrelated block transmissivities through the measure of the sensitivity of the local derivatives DTh = (∂hi  ∕ ∂Tj computed for each sample of a population N (0; σY, αY. Results obtained from an analysis of Monte Carlo type suggest that the more a system is heterogeneous, the less it is identifiable.

  17. EZID: Long term identifiers made easy (Invited)

    Science.gov (United States)

    Starr, J.

    2013-12-01

    Scholarly research is producing ever increasing amounts of digital research data, and this data should be managed throughout the research life cycle both as part of good scientific practice, but also to comply with funder mandates, such as the 2013 OSTP Public Access Memo (http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf). By assigning unique and persistent identifiers to data objects, data managers can gain control and flexibility over what can be a daunting task. This is due to the fact that the objects can be moved to new locations without disruption to links, as long as the identifier target is maintained. EZID is a tool that makes assigning and maintaining unique, persistent identifiers easy. It was designed and built by California Digital Library (CDL) and has both a user interface and a RESTful API. EZID currently offers services for two globally unique, persistent identifier schemes: Digital Object Identifiers (DOIs) and Archival Resource Keys (ARKs). DOIs are identifiers originating from the publishing world and are in widespread use for journal articles. CDL is able to offer DOIs because of being a founding member of DataCite (http://www.datacite.org/), an international consortium established to provide easier access to scientific research data on the Internet. ARKs are identifiers originating from the library, archive and museum community. Like DOIs, they become persistent when the objects and identifier forwarding information is maintained. DOIs and ARKs have a key role in data management and, therefore, in data management plans. DOIs are the recommended identifier for use in data citation, and ARKs provide the maximum flexibility needed for data documentation and management throughout the early phases of a project. The two identifier schemes are able to be used together, and EZID is made to work with both. EZID clients, coming from education, research, government, and the private sector, are utilizing the

  18. Communicating identifiability risks to biobank donors

    DEFF Research Database (Denmark)

    Kasperbauer, T. J.; Gjerris, Mickey; Waldemar, Gunhild

    2018-01-01

    can track individuals across multiple databases. This article focuses on the communication of identifiability risks in the process of obtaining consent for donation and research. Most ethical discussions of identifiability risks have focused on the severity of the risk and how it might be mitigated......, and what precisely is at stake in pervasive data sharing. However, there has been little discussion of whether and how to communicate the risk to potential donors. We review the ethical arguments behind favoring different types of risk communication in the consent process, and outline how identifiability...... concerns can be incorporated into either a detailed or a simplified method of communicating risks during the consent process....

  19. Identifying Codes on Directed De Bruijn Graphs

    Science.gov (United States)

    2015-08-27

    JOURNAL ARTICLE (POST PRINT) 3. DATES COVERED (From - To) JUN 2013 – AUG 2015 4. TITLE AND SUBTITLE IDENTIFYING CODES ON DIRECTED DE BRUIJN GRAPHS 5a...owner. 14. ABSTRACT For a directed graph G, a t-identifying code is a subset S ⊆ V (G) with the property that for each vertex v ∈ V (G) the set of...vertices of S reachable from v by a directed path of length at most t is both non-empty and unique. A graph is called t- identifiable if there exists a

  20. Helping You Identify Quality Laboratory Services

    Science.gov (United States)

    Helping You Identify Quality Laboratory Services Selecting quality health care services for yourself, a relative or friend requires special thought and attention. The Joint Commission has prepared this information ...

  1. Identifiable Data Files - Health Outcomes Survey (HOS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Medicare Health Outcomes Survey (HOS) identifiable data files are comprised of the entire national sample for a given 2-year cohort (including both respondents...

  2. Identifying significant environmental features using feature recognition.

    Science.gov (United States)

    2015-10-01

    The Department of Environmental Analysis at the Kentucky Transportation Cabinet has expressed an interest in feature-recognition capability because it may help analysts identify environmentally sensitive features in the landscape, : including those r...

  3. NIH Researchers Identify OCD Risk Gene

    Science.gov (United States)

    ... Issues Research News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of ... gene variant that doubles an individual's risk for obsessive-compulsive disorder (OCD). The new functional variant, or allele, is ...

  4. Comparative Topological Analysis of Neuronal Arbors via Sequence Representation and Alignment

    Science.gov (United States)

    Gillette, Todd Aaron

    neocortical pyramidal cell axons and rodent neocortical dendritic targeting interneurons to be substantially more asymmetric than perisomatic-targeting interneurons. With optimization techniques adapted from the field of genomic alignment, these methods compose a framework with the potential to be made orders of magnitude more efficient. Moreover, the framework is capable of handling expanded sequence representations that include additional branch features, enabling analysis of correspondence and joint conservation of various morphological characteristics.

  5. ORCID Author Identifiers: A Primer for Librarians.

    Science.gov (United States)

    Akers, Katherine G; Sarkozy, Alexandra; Wu, Wendy; Slyman, Alison

    2016-01-01

    The ORCID (Open Researcher and Contributor ID) registry helps disambiguate authors and streamline research workflows by assigning unique 16-digit author identifiers that enable automatic linkages between researchers and their scholarly activities. This article describes how ORCID works, the benefits of using ORCID, and how librarians can promote ORCID at their institutions by raising awareness of ORCID, helping researchers create and populate ORCID profiles, and integrating ORCID identifiers into institutional repositories and other university research information systems.

  6. OCRWM baseline management procedure for document identifiers

    International Nuclear Information System (INIS)

    1993-03-01

    This procedure establishes a uniform numbering system (document identifier) for all Program and project technical, cost, and schedule baselines, and selected management and procurement documents developed for and controlled by the Office of Civilian Radioactive Waste Management (OCRWM) for the Civilian Radioactive Waste Management System (CRWMS). The document identifier defined in this procedure is structured to ensure that the relational integrity between configuration items (CIs) and their associated documentation and software is maintained, traceable, categorical, and retrievable for the life of the program

  7. Exploiting intrinsic fluctuations to identify model parameters.

    Science.gov (United States)

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  8. IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT

    International Nuclear Information System (INIS)

    Marcus, Robert A.; Ragozzine, Darin; Murray-Clay, Ruth A.; Holman, Matthew J.

    2011-01-01

    The identification and characterization of numerous collisional families-clusters of bodies with a common collisional origin-in the asteroid belt has added greatly to the understanding of asteroid belt formation and evolution. More recent study has also led to an appreciation of physical processes that had previously been neglected (e.g., the Yarkovsky effect). Collisions have certainly played an important role in the evolution of the Kuiper Belt as well, though only one collisional family has been identified in that region to date, around the dwarf planet Haumea. In this paper, we combine insights into collisional families from numerical simulations with the current observational constraints on the dynamical structure of the Kuiper Belt to investigate the ideal sizes and locations for identifying collisional families. We find that larger progenitors (r ∼ 500 km) result in more easily identifiable families, given the difficulty in identifying fragments of smaller progenitors in magnitude-limited surveys, despite their larger spread and less frequent occurrence. However, even these families do not stand out well from the background. Identifying families as statistical overdensities is much easier than characterizing families by distinguishing individual members from interlopers. Such identification seems promising, provided the background population is well known. In either case, families will also be much easier to study where the background population is small, i.e., at high inclinations. Overall, our results indicate that entirely different techniques for identifying families will be needed for the Kuiper Belt, and we provide some suggestions.

  9. Distributed design approach in persistent identifiers systems

    Science.gov (United States)

    Golodoniuc, Pavel; Car, Nicholas; Klump, Jens

    2017-04-01

    The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID) systems, of which there is a great variety in terms of technical and social implementations, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have catered for identifier uniqueness, integrity, persistence, and trustworthiness, regardless of the identifier's application domain, the scope of which has expanded significantly in the past two decades. Since many PID systems have been largely conceived and developed by small communities, or even a single organisation, they have faced challenges in gaining widespread adoption and, most importantly, the ability to survive change of technology. This has left a legacy of identifiers that still exist and are being used but which have lost their resolution service. We believe that one of the causes of once successful PID systems fading is their reliance on a centralised technical infrastructure or a governing authority. Golodoniuc et al. (2016) proposed an approach to the development of PID systems that combines the use of (a) the Handle system, as a distributed system for the registration and first-degree resolution of persistent identifiers, and (b) the PID Service (Golodoniuc et al., 2015), to enable fine-grained resolution to different information object representations. The proposed approach solved the problem of guaranteed first-degree resolution of identifiers, but left fine-grained resolution and information delivery under the control of a single authoritative source, posing risk to the long-term availability of information resources. Herein, we develop these approaches further and explore the potential of large-scale decentralisation at all levels: (i) persistent identifiers and information resources registration; (ii) identifier resolution; and (iii) data delivery. To achieve large-scale decentralisation

  10. Scalable persistent identifier systems for dynamic datasets

    Science.gov (United States)

    Golodoniuc, P.; Cox, S. J. D.; Klump, J. F.

    2016-12-01

    Reliable and persistent identification of objects, whether tangible or not, is essential in information management. Many Internet-based systems have been developed to identify digital data objects, e.g., PURL, LSID, Handle, ARK. These were largely designed for identification of static digital objects. The amount of data made available online has grown exponentially over the last two decades and fine-grained identification of dynamically generated data objects within large datasets using conventional systems (e.g., PURL) has become impractical. We have compared capabilities of various technological solutions to enable resolvability of data objects in dynamic datasets, and developed a dataset-centric approach to resolution of identifiers. This is particularly important in Semantic Linked Data environments where dynamic frequently changing data is delivered live via web services, so registration of individual data objects to obtain identifiers is impractical. We use identifier patterns and pattern hierarchies for identification of data objects, which allows relationships between identifiers to be expressed, and also provides means for resolving a single identifier into multiple forms (i.e. views or representations of an object). The latter can be implemented through (a) HTTP content negotiation, or (b) use of URI querystring parameters. The pattern and hierarchy approach has been implemented in the Linked Data API supporting the United Nations Spatial Data Infrastructure (UNSDI) initiative and later in the implementation of geoscientific data delivery for the Capricorn Distal Footprints project using International Geo Sample Numbers (IGSN). This enables flexible resolution of multi-view persistent identifiers and provides a scalable solution for large heterogeneous datasets.

  11. Identifying homelessness using health information exchange data.

    Science.gov (United States)

    Zech, John; Husk, Gregg; Moore, Thomas; Kuperman, Gilad J; Shapiro, Jason S

    2015-05-01

    Homeless patients experience poor health outcomes and consume a disproportionate amount of health care resources compared with domiciled patients. There is increasing interest in the federal government in providing care coordination for homeless patients, which will require a systematic way of identifying these individuals. We analyzed address data from Healthix, a New York City-based health information exchange, to identify patterns that could indicate homelessness. Patients were categorized as likely to be homeless if they registered with the address of a hospital, homeless shelter, place of worship, or an address containing a keyword synonymous with "homelessness." We identified 78,460 out of 7,854,927 Healthix patients (1%) as likely to have been homeless over the study period of September 30, 2008 to July 19, 2013. We found that registration practices for these patients varied widely across sites. The use of health information exchange data enabled us to identify a large number of patients likely to be homeless and to observe the wide variation in registration practices for homeless patients within and across sites. Consideration of these results may suggest a way to improve the quality of record matching for homeless patients. Validation of these results is necessary to confirm the homeless status of identified individuals. Ultimately, creating a standardized and structured field to record a patient's housing status may be a preferable approach. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  13. Subtype-Specific Genes that Characterize Subpopulations of Callosal Projection Neurons in Mouse Identify Molecularly Homologous Populations in Macaque Cortex.

    Science.gov (United States)

    Fame, Ryann M; Dehay, Colette; Kennedy, Henry; Macklis, Jeffrey D

    2017-03-01

    Callosal projection neurons (CPN) interconnect the neocortical hemispheres via the corpus callosum and are implicated in associative integration of multimodal information. CPN have undergone differential evolutionary elaboration, leading to increased diversity of cortical neurons-and more extensive and varied connections in neocortical gray and white matter-in primates compared with rodents. In mouse, distinct sets of genes are enriched in discrete subpopulations of CPN, indicating the molecular diversity of rodent CPN. Elements of rodent CPN functional and organizational diversity might thus be present in the further elaborated primate cortex. We address the hypothesis that genes controlling mouse CPN subtype diversity might reflect molecular patterns shared among mammals that arose prior to the divergence of rodents and primates. We find that, while early expression of the examined CPN-enriched genes, and postmigratory expression of these CPN-enriched genes in deep layers are highly conserved (e.g., Ptn, Nnmt, Cited2, Dkk3), in contrast, the examined genes expressed by superficial layer CPN show more variable levels of conservation (e.g., EphA3, Chn2). These results suggest that there has been evolutionarily differential retraction and elaboration of superficial layer CPN subpopulations between mouse and macaque, with independent derivation of novel populations in primates. Together, these data inform future studies regarding CPN subpopulations that are unique to primates and rodents, and indicate putative evolutionary relationships. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Identifying Adverse Drug Events by Relational Learning.

    Science.gov (United States)

    Page, David; Costa, Vítor Santos; Natarajan, Sriraam; Barnard, Aubrey; Peissig, Peggy; Caldwell, Michael

    2012-07-01

    The pharmaceutical industry, consumer protection groups, users of medications and government oversight agencies are all strongly interested in identifying adverse reactions to drugs. While a clinical trial of a drug may use only a thousand patients, once a drug is released on the market it may be taken by millions of patients. As a result, in many cases adverse drug events (ADEs) are observed in the broader population that were not identified during clinical trials. Therefore, there is a need for continued, post-marketing surveillance of drugs to identify previously-unanticipated ADEs. This paper casts this problem as a reverse machine learning task , related to relational subgroup discovery and provides an initial evaluation of this approach based on experiments with an actual EMR/EHR and known adverse drug events.

  15. Photoacoustic tomography to identify inflammatory arthritis

    Science.gov (United States)

    Rajian, Justin Rajesh; Girish, Gandikota; Wang, Xueding

    2012-09-01

    Identifying neovascularity (angiogenesis) as an early feature of inflammatory arthritis can help in early accurate diagnosis and treatment monitoring of this disease. Photoacoustic tomography (PAT) is a hybrid imaging modality which relies on intrinsic differences in the optical absorption among the tissues being imaged. Since blood has highly absorbing chromophores including both oxygenated and deoxygenated hemoglobin, PAT holds potential in identifying early angiogenesis associated with inflammatory joint diseases. PAT is used to identify changes in the development of inflammatory arthritis in a rat model. Imaging at two different wavelengths, 1064 nm and 532 nm, on rats revealed that there is a significant signal enhancement in the ankle joints of the arthritis affected rats when compared to the normal control group. Histology images obtained from both the normal and the arthritis affected rats correlated well with the PAT findings. Results support the fact that the emerging PAT could become a new tool for clinical management of inflammatory arthritis.

  16. Identifying motivational factors within a multinational company

    Directory of Open Access Journals (Sweden)

    Daniela Bradutanu

    2011-08-01

    Full Text Available The aim of the study is to identify the main motivational factors within a multinational company. The first objective is to identify work functions, formulated on Abraham Maslow’s pyramid, following the identification of the key characteristics that motivate an employee at the work place and last, but not least, the type of motivation that employees focus, intrinsic or extrinsic. The research method targeted a questionnaire based survey, including various company employees and an interview with the manager. The results confirmed that in Romania, employees put great emphasis on extrinsic motivation, a certain income and job security being primary. These results have implications for managers that in order to effectively motivate staff, first, must know their needs and expectations. To identify the main needs and motivational factors we had as a starting point Maslow's pyramid.

  17. Identifying Walking Trips Using GPS Data.

    Science.gov (United States)

    Cho, Gi-Hyoug; Rodríguez, Daniel A; Evenson, Kelly R

    2011-02-01

    this study developed and tested algorithms to identify outdoor walking trips from portable global positioning system (GPS) units in free-living conditions. the study included a calibration and a validation phase. For the calibration phase, we determined the best algorithm from 35 person-days of data. Measures of agreement regarding the daily number and duration of diary-reported and GPS-identified trips were used. In the validation phase, the best algorithm was applied to an additional and separate 136 person-days of diary and GPS data. the preferred algorithm in the calibration phase resulted in 90% of trips identified from the GPS data being found in the diary, whereas 81% of trips reported in the diary being found in the GPS data. The preferred algorithm used 1) a maximum 3-min gap between points to define a trip, 2) at least 5 min or more of continuous GPS points, 3) a speed range between 2 and 8.0 km·h, 4) at least 30 m of displacement between the start and end points of a trip, and 5) merged walking trips when the time gap between trips was less than 3 min. With the validation data, substantial agreement between the GPS and the diary was achieved, with 86% of trips identified from the GPS data found in the diary and 77% of trips reported in the diary found in the GPS data. the algorithm identified free-living walking trips of more than 5 min in duration. The ability to identify outdoor walking trips from GPS data can be improved by reducing recording intervals used in the GPS units and monitoring participant compliance. Further research is desirable to determine whether concurrent wearing of an accelerometer may improve the ability to detect walking more accurately.

  18. Psychosocial counselling of identifiable sperm donors.

    Science.gov (United States)

    Visser, M; Mochtar, M H; de Melker, A A; van der Veen, F; Repping, S; Gerrits, T

    2016-05-01

    What do identifiable sperm donors feel about psychosocial counselling? Identifiable sperm donors found it important that psychosocial counselling focused on emotional consequences and on rules and regulations and they expected to have access to psychosocial counselling at the time that donor-offspring actually sought contact. Most studies on sperm donors are on anonymous donors and focus on recruitment, financial compensation, anonymity and motivations. There is limited knowledge on the value that identifiable sperm donors place on psychosocial counselling and what their needs are in this respect. We performed a qualitative study from March until June 2014 with 25 identifiable sperm donors, who were or had been a donor at the Centre for Reproductive Medicine of the Academic Medical Centre in Amsterdam any time between 1989 and 2014. We held semi-structured in-depth interviews with identifiable sperm donors with an average age of 44 years. The interviews were fully transcribed and analysed using the constant comparative method of grounded theory. Twelve out of 15 donors (former donors ITALIC! n = 8, active donors ITALIC! n = 7) who had received a counselling session during their intake procedure found it important that they had been able to talk about issues such as the emotional consequences of donation, disclosure to their own children, family and friends, future contact with donor-offspring and rules and regulations. Of the 10 former donors who had received no counselling session, 8 had regretted the lack of intensive counselling. In the years following their donation, most donors simply wanted to know how many offspring had been born using their sperm and had no need for further counselling. Nevertheless, they frequently mentioned that they were concerned about the well-being of 'their' offspring. In addition, they would value the availability of psychosocial counselling in the event that donor-offspring actually sought contact. A limitation of our study is its

  19. Minimal covariant observables identifying all pure states

    Energy Technology Data Exchange (ETDEWEB)

    Carmeli, Claudio, E-mail: claudio.carmeli@gmail.com [D.I.M.E., Università di Genova, Via Cadorna 2, I-17100 Savona (Italy); I.N.F.N., Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku (Finland); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); I.N.F.N., Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy)

    2013-09-02

    It has been recently shown by Heinosaari, Mazzarella and Wolf (2013) [1] that an observable that identifies all pure states of a d-dimensional quantum system has minimally 4d−4 outcomes or slightly less (the exact number depending on d). However, no simple construction of this type of minimal observable is known. We investigate covariant observables that identify all pure states and have minimal number of outcomes. It is shown that the existence of this kind of observables depends on the dimension of the Hilbert space.

  20. Molecular Fingerprints to Identify Candida Species

    Directory of Open Access Journals (Sweden)

    Claudia Spampinato

    2013-01-01

    Full Text Available A wide range of molecular techniques have been developed for genotyping Candida species. Among them, multilocus sequence typing (MLST and microsatellite length polymorphisms (MLP analysis have recently emerged. MLST relies on DNA sequences of internal regions of various independent housekeeping genes, while MLP identifies microsatellite instability. Both methods generate unambiguous and highly reproducible data. Here, we review the results achieved by using these two techniques and also provide a brief overview of a new method based on high-resolution DNA melting (HRM. This method identifies sequence differences by subtle deviations in sample melting profiles in the presence of saturating fluorescent DNA binding dyes.

  1. Identifying gaps in international food safety regulation.

    Science.gov (United States)

    McGrady, Benn; Ho, Christina S

    2011-01-01

    The rise in food importation in countries such as the United States, coupled with food safety incidents, has led to increased concern with the safety of imported food. This concern has prompted discussion of how international law and governance mechanisms might enhance food safety. This paper identifies the objectives underlying multilateral approaches to food safety such as raising food safety standards abroad, information sharing and ensuring market access. The paper then explores how these objectives are integrated into the international system and identifies how the current state of the law creates imbalances in the pursuit of these objectives.

  2. Identifying jet quantum numbers event by event

    International Nuclear Information System (INIS)

    Teper, M.J.

    1979-12-01

    A method is proposed to identify the parton that gives rise to any particular jet. The method improves with the number of particles in the jet, and should indicate which of the jets in a three jet event at PETRA is the gluon jet. (author)

  3. Structural identifiability of polynomial and rational systems

    NARCIS (Netherlands)

    J. Nemcová (Jana)

    2010-01-01

    htmlabstractSince analysis and simulation of biological phenomena require the availability of their fully specified models, one needs to be able to estimate unknown parameter values of the models. In this paper we deal with identifiability of parametrizations which is the property of one-to-one

  4. Identifying motifs in folktales using topic models

    NARCIS (Netherlands)

    Karsdorp, F.; Bosch, A.P.J. van den

    2013-01-01

    With the undertake of various folktale digitalization initiatives, the need for computational aids to explore these collections is increasing. In this paper we compare Labeled LDA (L-LDA) to a simple retrieval model on the task of identifying motifs in folktales. We show that both methods are well

  5. 10 Ways to Identify Hearing Loss

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Hearing Loss 10 Ways to Identify Hearing Loss Past Issues / Spring 2015 Table of Contents If ... gov Internet: www.nidcd.nih.gov Read More "Hearing Loss" Articles Managing Hearing Loss / Symptoms, Devices, Prevention & Research / ...

  6. Identifying Mixtures of Mixtures Using Bayesian Estimation

    Science.gov (United States)

    Malsiner-Walli, Gertraud; Frühwirth-Schnatter, Sylvia; Grün, Bettina

    2017-01-01

    ABSTRACT The use of a finite mixture of normal distributions in model-based clustering allows us to capture non-Gaussian data clusters. However, identifying the clusters from the normal components is challenging and in general either achieved by imposing constraints on the model or by using post-processing procedures. Within the Bayesian framework, we propose a different approach based on sparse finite mixtures to achieve identifiability. We specify a hierarchical prior, where the hyperparameters are carefully selected such that they are reflective of the cluster structure aimed at. In addition, this prior allows us to estimate the model using standard MCMC sampling methods. In combination with a post-processing approach which resolves the label switching issue and results in an identified model, our approach allows us to simultaneously (1) determine the number of clusters, (2) flexibly approximate the cluster distributions in a semiparametric way using finite mixtures of normals and (3) identify cluster-specific parameters and classify observations. The proposed approach is illustrated in two simulation studies and on benchmark datasets. Supplementary materials for this article are available online. PMID:28626349

  7. Congenital Heart Diseases associated with Identified Syndromes ...

    African Journals Online (AJOL)

    Recognised syndromes were seen in 69(68%) cases. Down syndrome with 54 children contributed 78.3% of those with known syndromes. Other identified syndromes and associations were Marfan's, Noonan's, Edwards, Prune Belly, Apert, Ellis-van creveld syndrome and congenital rubella syndrome. Congenital heart ...

  8. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    We assume that the transverse momentum distributions of identified particles measured in final state are contributed by a few energy sources which can be regarded as partons or quarks in the interacting system. The particle is contributed by each source with gluons which have transverse momentum distributions in an ...

  9. Teaching science students to identify entrepreneurial opportunities

    NARCIS (Netherlands)

    Nab, J.|info:eu-repo/dai/nl/304827614

    2015-01-01

    This dissertation describes a research project on teaching science students to identify entrepreneurial opportunities, which is a core competence for entrepreneurs that should be emphasized in education. This research consists of four studies. The first case study aims at finding design strategies

  10. Identifying Protein-Calorie Malnutrition Workshop.

    Science.gov (United States)

    Walker, Susan S.; Barker, Ellen M.

    Instructional materials are provided for a workshop to enable participants to assist in identifying patients at risk with protein-calorie malnutrition and in corrrecting this nutritional deficiency. Representative topics are nutrients; protein, mineral, and vitamin sources, functions, and deficiency symptoms; malnutrition; nutritional deficiency…

  11. Identifying Ethical Hypernorms for Accounting Educators

    Science.gov (United States)

    Siegel, Philip H.; Mintz, Steven; Naser-Tavakolian, Mohsen; O'Shaughnessy, John

    2012-01-01

    Accounting educators have a unique role in academe because students learn about codes of ethics that will guide their actions as professionals. We identify hypernorms related to internal auditing educators that reflect unethical behaviors believed to be universally unacceptable by that community. We then compare the results to a prior survey of…

  12. Identifying Sexual Harassment: A Classroom Activity

    Science.gov (United States)

    Madson, Laura; Shoda, Jennifer

    2002-01-01

    We created a classroom activity to illustrate the complexity involved in identifying sexual harassment. In the activity, students decided whether 6 fictional scenarios constituted sexual harassment. The activity stimulates animated discussion, and evaluation data indicate that it received positive feedback from students and refined students'…

  13. Problems Identifying Independent and Dependent Variables

    Science.gov (United States)

    Leatham, Keith R.

    2012-01-01

    This paper discusses one step from the scientific method--that of identifying independent and dependent variables--from both scientific and mathematical perspectives. It begins by analyzing an episode from a middle school mathematics classroom that illustrates the need for students and teachers alike to develop a robust understanding of…

  14. Representing biodiversity: data and procedures for identifying ...

    Indian Academy of Sciences (India)

    Unknown

    alternative uses of biological resources, the methods for identifying priority areas have to ... conservation investment and make enlightened trade-offs. Negotiation can be ..... The energy and commitment of those involved in the Costa Rican. Figure 1. Three kinds of areas × features matrices showing (A) presence only data,.

  15. Identifying the Multiple Intelligences of Your Students

    Science.gov (United States)

    McClellan, Joyce A.; Conti, Gary J.

    2008-01-01

    One way of addressing individual differences among adult learners is to identify the Multiple Intelligences of the learner. Multiple Intelligences refers to the concept developed by Howard Gardner that challenges the traditional view of intelligence and explains the presence of nine different Multiple Intelligences. The purpose of this study was…

  16. Understanding intercellular communication in the brain: Identified ...

    Indian Academy of Sciences (India)

    Understanding intercellular communication in the brain: Identified neuromuscular synapses of the fruitfly. Drosophila serve as a model. The transmission of information between nerve cells in the brain takes place at specialized sites of contact, the synapses. Spatial interactions between synapses and temporal modulation of ...

  17. Klebsiella pneumoniae antibiotic resistance identified by atomic ...

    Indian Academy of Sciences (India)

    In particular, we studied Klebsiella pneumoniae bacteria provided by the Lavagna Hospital ASL4Liguria (Italy), where there are cases linked with antibiotics resistance of the Klebsiella pneumoniae. By comparing AFMimages of bacteria strains treated with different antibiotics is possible to identify unambiguously the ...

  18. Avoiding medication mixups. Identifiable imprint codes.

    Science.gov (United States)

    Vasudevan, P; Del Gianni, T; Robertson, W O

    1996-01-01

    This study was done to determine if current imprinting of solid medication forms permits health care professionals to identify the manufacturers involved so as to be able to activate the hierarchic identification system mandated by the Food and Drug Administration. We tested 15 representatives of 6 groups of health professionals for their ability to identify the manufacturer after having examined 30 solid-dosage forms drawn from a pseudo-random sample of stock hospital formulary products. The correct identification of the manufacturer was the sole criterion. Of the 2,700 opportunities, the manufacturer was able to be identified for only 43%. Nurses and medical students had a 35% success rate, pharmacists and poison center specialists a 55% success rate, and residents and attending physicians a 40% rate. None approached 95% accuracy. Currently employed imprints fail in their objective to permit health care professionals--or the general public--to rapidly identify prescription drugs. The manufacturers' logotypes need to be modified if this identification system is to be implemented. We propose a simple voluntary collaborative effort by the pharmaceutical industry to solve the problem. PMID:9000855

  19. Identifying Barriers to Study Abroad Program Participation

    Science.gov (United States)

    McKinley, Karen E.

    2014-01-01

    University administrators, industry professionals, and government leaders encourage college students to participate in study abroad programs. Despite an increase in the number of students going abroad, the percentage of students participating in global programs remain low. This study identified barriers to study abroad program participation at a…

  20. Identifying Teaching Methods that Engage Entrepreneurship Students

    Science.gov (United States)

    Balan, Peter; Metcalfe, Mike

    2012-01-01

    Purpose: Entrepreneurship education particularly requires student engagement because of the complexity of the entrepreneurship process. The purpose of this paper is to describe how an established measure of engagement can be used to identify relevant teaching methods that could be used to engage any group of entrepreneurship students.…

  1. Identifying systematic DFT errors in catalytic reactions

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    Using CO2 reduction reactions as examples, we present a widely applicable method for identifying the main source of errors in density functional theory (DFT) calculations. The method has broad applications for error correction in DFT calculations in general, as it relies on the dependence...

  2. Identifying particular places through experimental walking

    Directory of Open Access Journals (Sweden)

    Henrik Schultz

    2016-11-01

    Full Text Available Experimental walking can be used to identify particular places, design strategies and spatial visions for urban landscapes. Walking designers can explore sites and, in particular, their temporal dynamics and atmospheric particularities – both essential elements in making particular places. This article illustrates the benefits of this method, using the changing German city of Freiburg as an example.

  3. Identifying Foods causing Allergies/ Intolerances among Diabetic ...

    African Journals Online (AJOL)

    Objective: This study was designed to identify the foods that caused allergies / intolerances and symptoms of reaction experienced by diabetic patients attending State Specialist Hospital, Akure. Materials and Methods: Ninety-eight diabetics aged 30-80 years (30 males and 68 females) were included in the study.

  4. Recent Advances in the Pathogenesis of Syndromic Autisms

    Directory of Open Access Journals (Sweden)

    A. Benvenuto

    2009-01-01

    Full Text Available Background. Current advances in genetic technology continue to expand the list of medical conditions associated with autism. Clinicians have to identify specific autistic-related syndromes, and to provide tailored counseling. The aim of this study is to elucidate recent advances in autism research that offer important clues into pathogenetic mechanisms of syndromic autism and relevant implications for clinical practice. Data Sources. The PubMed database was searched with the keywords “autism” and “chromosomal abnormalities,” “metabolic diseases,” “susceptibility loci.” Results. Defined mutations, genetic syndromes, and metabolic diseases account for up to 20% of autistic patients. Metabolic and mitochondrial defects may have toxic effects on the brain cells, causing neuronal loss and altered modulation of neurotransmission systems. Alterations of the neocortical excitatory/inhibitory balance and perturbations of interneurons' development represent the most probable pathogenetic mechanisms underlying the autistic phenotype in Fragile X-Syndrome and Tuberous Sclerosis Complex. Chromosomal abnormalities and potential candidate genes are strongly implicated in the disruption of neural connections, brain growth, and synaptic/dendritic morphology. Conclusion. Metabolic testing may be appropriate if specific symptoms are present. High-resolution chromosome analysis may be recommended if a specific diagnosis is suspected because of obvious dysmorphisms. Identifying cryptic chromosomal abnormalities by whole genome microarray analysis can increase the understanding of the neurobiological pathways to autism.

  5. Guidelines for identifying suspect/counterfeit material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    These guidelines are intended to assist users of products in identifying: substandard, misrepresented, or fraudulently marked items. The guidelines provide information about such topics as: precautions, inspection and testing, dispositioning identified items, installed inspection and reporting suspect/counterfeit materials. These guidelines apply to users who are developing procurement documents, product acceptance/verification methods, company procedures, work instructions, etc. The intent of these SM guidelines in relation to the Quality Assurance Program Description (QAPD) and implementing company Management Control Procedures is not to substitute or replace existing requirements, as defined in either the QAPD or company implementing instructions (Management Control Procedures). Instead, the guidelines are intended to provide a consolidated source of information addressing the issue of Suspect/Counterfeit materials. These guidelines provide an extensive suspect component listing and suspect indications listing. Users can quickly check their suspect items against the list of manufacturers products (i.e., type, LD. number, and nameplate information) by consulting either of these listings.

  6. Persistent Identifiers for Dutch cultural heritage institutions

    Science.gov (United States)

    Ras, Marcel; Kruithof, Gijsbert

    2016-04-01

    Over the past years, more and more collections belonging to archives, libraries, media, museums, and knowledge institutes are being digitised and made available online. These are exciting times for ALM institutions. They are realising that, in the information society, their collections are goldmines. Unfortunately most heritage institutions in the Netherlands do not yet meet the basic preconditions for long-term availability of their collections. The digital objects often have no long lasting fixed reference yet. URL's and web addresses change. Some digital objects that were referenced in Europeana and other portals can no longer be found. References in scientific articles have a very short life span, which is damaging for scholarly research. In 2015, the Dutch Digital Heritage Network (NDE) has started a two-year work program to co-ordinate existing initiatives in order to improve the (long-term) accessibility of the Dutch digital heritage for a wide range of users, anytime, anyplace. The Digital Heritage Network is a partnership established on the initiative of the Ministry of Education, Culture and Science. The members of the NDE are large, national institutions that strive to professionally preserve and manage digital data, e.g. the National Library, The Netherlands Institute for Sound and Vision, the Netherlands Cultural Heritage Agency, the Royal Netherlands Academy of Arts and Sciences, the National Archive of the Netherlands and the DEN Foundation, and a growing number of associations and individuals both within and outside the heritage sector. By means of three work programmes the goals of the Network should be accomplished and improve the visibility, the usability and the sustainability of digital heritage. Each programme contains of a set of projects. Within the sustainability program a project on creating a model for persistent identifiers is taking place. The main goals of the project are (1) raise awareness among cultural heritage institutions on the

  7. An Xpert screen to identify carbapenemases

    Directory of Open Access Journals (Sweden)

    Mubin Kazi

    2016-01-01

    Full Text Available To prevent the spread of carbapenemases-producing Enterobacteriaceae (CPE active surveillance, contact isolation and cohorting infected patients should be practiced. Rectal swabs for the Xpert MDRO-assay of 32 patients were included. 71.85% were positive for targets incorporated into the MDRO-assay; whereas 28% were phenotypically not CRE and Xpert negative (9.37% had different mechanism [bla OXA]. The assay identified 59.3%, 9.37% and 3.1% as bla NDM, bla NDM+VIM and bla VIM, respectively. The assay is a screening test that identifies CPE harbouring organism within an hour and can be installed at tertiary-care facilities to screen colonized patients.

  8. Identifying Critical States through the Relevance Index

    Directory of Open Access Journals (Sweden)

    Andrea Roli

    2017-02-01

    Full Text Available The identification of critical states is a major task in complex systems, and the availability of measures to detect such conditions is of utmost importance. In general, criticality refers to the existence of two qualitatively different behaviors that the same system can exhibit, depending on the values of some parameters. In this paper, we show that the relevance index may be effectively used to identify critical states in complex systems. The relevance index was originally developed to identify relevant sets of variables in dynamical systems, but in this paper, we show that it is also able to capture features of criticality. The index is applied to two prominent examples showing slightly different meanings of criticality, namely the Ising model and random Boolean networks. Results show that this index is maximized at critical states and is robust with respect to system size and sampling effort. It can therefore be used to detect criticality.

  9. Relationship between flanker identifiability and compatibility effect.

    Science.gov (United States)

    Schwarz, W; Mecklinger, A

    1995-10-01

    What is the relation between the identifiability of masked flankers and their ability to induce compatibility effects in a letter classification task? Using a within-subjects design (n = 8), we first determined identification performance for two flankers (H or N) around an irrelevant target letter as a function of the time (stimulus onset asynchrony, or SOA) after which the flankers were masked. In a second condition, subjects classified the central letter of the same stimulus patterns irrespectively of the identity of the flankers. The compatibility effects increased with increasing identification performance as a function of SOA, and we found a significant compatibility effect even at an SOA at which the identifiability of the flankers did not differ significantly from zero. We discuss the statistical power of our design and an interpretation of our results in terms of a dissociation between perceptual processes and processes directly activating the motor system (direct parameter specification; cf. Neumann, 1990).

  10. Trustworthy persistent identifier systems of the future

    Science.gov (United States)

    Golodoniuc, Pavel; Klump, Jens; Car, Nicholas

    2016-04-01

    Over the last two decades, persistent identifier (PID) systems have seen some significant changes in their governance policies, system capabilities, and technology. The development of most systems was driven by two main application areas, namely archives and libraries. Guidelines and criteria for trustworthy PID systems have been clearly devised (Bütikofer, 2009) and many PID system implementations for the identification of static digital objects have been built (e.g., PURL). However systems delivering persistent identifiers for dynamic datasets are not yet mature. There has been a rapid proliferation of different PID systems caused by the specific technical or organisational requirements of various communities that could not be met by existing systems such as DOI, ISBN, and EAN. Many of these different systems were limited by their inability to provide native means of persistent identifier resolution. This has prompted a decoupling of PID-associated data from the resolution service and this is where the Handle system has played a significant role. The Handle allowed to build a distributed system of independently managed resolver services. A trustworthy PID system must be designed to outlive the objects it provides persistent identifiers for, which may cease to exist or otherwise be deprecated, and the technology used to implement it, which will certainly need to change with time. We propose that such a system should rest on four pillars of agreements - (i) definitions, (ii) policies, (iii) services, and (iv) data services, to ensure longevity. While we believe all four pillars are equally important, we intentionally leave regulating aspects of issuing of identifiers and their registration out of the scope of this paper and focus on the agreements that have to be established between PID resolver services and the data sources indicated by the persistent identifiers. We propose an approach to development of PID systems that combines the use of (a) the Handle system

  11. Identifying mechanistic similarities in drug responses

    KAUST Repository

    Zhao, C.

    2012-05-15

    Motivation: In early drug development, it would be beneficial to be able to identify those dynamic patterns of gene response that indicate that drugs targeting a particular gene will be likely or not to elicit the desired response. One approach would be to quantitate the degree of similarity between the responses that cells show when exposed to drugs, so that consistencies in the regulation of cellular response processes that produce success or failure can be more readily identified.Results: We track drug response using fluorescent proteins as transcription activity reporters. Our basic assumption is that drugs inducing very similar alteration in transcriptional regulation will produce similar temporal trajectories on many of the reporter proteins and hence be identified as having similarities in their mechanisms of action (MOA). The main body of this work is devoted to characterizing similarity in temporal trajectories/signals. To do so, we must first identify the key points that determine mechanistic similarity between two drug responses. Directly comparing points on the two signals is unrealistic, as it cannot handle delays and speed variations on the time axis. Hence, to capture the similarities between reporter responses, we develop an alignment algorithm that is robust to noise, time delays and is able to find all the contiguous parts of signals centered about a core alignment (reflecting a core mechanism in drug response). Applying the proposed algorithm to a range of real drug experiments shows that the result agrees well with the prior drug MOA knowledge. © The Author 2012. Published by Oxford University Press. All rights reserved.

  12. Identifiability Scaling Laws in Bilinear Inverse Problems

    OpenAIRE

    Choudhary, Sunav; Mitra, Urbashi

    2014-01-01

    A number of ill-posed inverse problems in signal processing, like blind deconvolution, matrix factorization, dictionary learning and blind source separation share the common characteristic of being bilinear inverse problems (BIPs), i.e. the observation model is a function of two variables and conditioned on one variable being known, the observation is a linear function of the other variable. A key issue that arises for such inverse problems is that of identifiability, i.e. whether the observa...

  13. Discrimination of SM-Identified Individuals

    OpenAIRE

    Wright, Susan

    2006-01-01

    The misconception that sadomasochism (SM) is violence or abusive behavior has resulted in significant persecution against SM-identified individuals in the form of discrimination, harassment and physical attacks. Historically, women who practiced SM were targeted within the feminist movement due to official opposition against sadomasochistic practices led by the National Organization for Women (NOW). Current statistics of incidents of discrimination, harassment and physical attacks against SM-...

  14. Which functional unit to identify sustainable foods?

    Science.gov (United States)

    Masset, Gabriel; Vieux, Florent; Darmon, Nicole

    2015-09-01

    In life-cycle assessment, the functional unit defines the unit for calculation of environmental indicators. The objective of the present study was to assess the influence of two functional units, 100 g and 100 kcal (420 kJ), on the associations between three dimensions for identifying sustainable foods, namely environmental impact (via greenhouse gas emissions (GHGE)), nutritional quality (using two distinct nutrient profiling systems) and price. GHGE and price data were collected for individual foods, and were each expressed per 100 g and per 100 kcal. Two nutrient profiling models, SAIN,LIM and UK Ofcom, were used to assess foods' nutritional quality. Spearman correlations were used to assess associations between variables. Sustainable foods were identified as those having more favourable values for all three dimensions. The French Individual and National Dietary Survey (INCA2), 2006-2007. Three hundred and seventy-three foods highly consumed in INCA2, covering 65 % of total energy intake of adult participants. When GHGE and price were expressed per 100 g, low-GHGE foods had a lower price and higher SAIN,LIM and Ofcom scores (r=0·59, -0·34 and -0·43, respectively), suggesting a compatibility between the three dimensions; 101 and 100 sustainable foods were identified with SAIN,LIM and Ofcom, respectively. When GHGE and price were expressed per 100 kcal, low-GHGE foods had a lower price but also lower SAIN,LIM and Ofcom scores (r=0·67, 0·51 and 0·47, respectively), suggesting that more environment-friendly foods were less expensive but also less healthy; thirty-four sustainable foods were identified with both SAIN,LIM and Ofcom. The choice of functional unit strongly influenced the compatibility between the sustainability dimensions and the identification of sustainable foods.

  15. The Complexity of Identifying Large Equivalence Classes

    DEFF Research Database (Denmark)

    Skyum, Sven; Frandsen, Gudmund Skovbjerg; Miltersen, Peter Bro

    1999-01-01

    We prove that at least 3k−4/k(2k−3)(n/2) – O(k)equivalence tests and no more than 2/k (n/2) + O(n) equivalence tests are needed in the worst case to identify the equivalence classes with at least k members in set of n elements. The upper bound is an improvement by a factor 2 compared to known res...

  16. Transverse momentum distributions of identified particles produced ...

    Indian Academy of Sciences (India)

    Comparisons with experimental data. The pT spectra, in different presentation forms as used in [11,28–31], for identified parti- cles emitted in pp collisions at different centre-of-mass energies are shown in figures 1–4, where y, E, p, σ, and B denote the rapidity, energy, momentum, cross-section, and di- lepton branching ratio ...

  17. Identifying the Universal part of TMDs

    CERN Document Server

    Van der Veken, F.F.

    2016-01-01

    We attempt to identify a path layout in the definition of transverse-momentum-dependent T-odd parton distribution functions (TMD)s which combines features of both, initial- and final-state interactions, so that it remains universal despite the fact that the Wilson lines entering such TMDs change their orientation. The generic structure of the quark correlator for this path layout is calculated.

  18. Have No PHEAR: Networks Without Identifiers

    Science.gov (United States)

    2015-12-07

    Ethernet and TCP/IP were not designed to ensure the security and privacy of users. To protect users’ pri- vacy, anonymity networks such as Tor have been...protocols that power the Internet were not developed with the security and privacy of users in mind, there are many opportunities for on-path network...IEEE 802 network (such as Eth- ernet or Wireless Ethernet networks, for example). This address is a globally unique identifier for the device’s network

  19. Identifying Topics in Microblogs Using Wikipedia.

    Directory of Open Access Journals (Sweden)

    Ahmet Yıldırım

    Full Text Available Twitter is an extremely high volume platform for user generated contributions regarding any topic. The wealth of content created at real-time in massive quantities calls for automated approaches to identify the topics of the contributions. Such topics can be utilized in numerous ways, such as public opinion mining, marketing, entertainment, and disaster management. Towards this end, approaches to relate single or partial posts to knowledge base items have been proposed. However, in microblogging systems like Twitter, topics emerge from the culmination of a large number of contributions. Therefore, identifying topics based on collections of posts, where individual posts contribute to some aspect of the greater topic is necessary. Models, such as Latent Dirichlet Allocation (LDA, propose algorithms for relating collections of posts to sets of keywords that represent underlying topics. In these approaches, figuring out what the specific topic(s the keyword sets represent remains as a separate task. Another issue in topic detection is the scope, which is often limited to specific domain, such as health. This work proposes an approach for identifying domain-independent specific topics related to sets of posts. In this approach, individual posts are processed and then aggregated to identify key tokens, which are then mapped to specific topics. Wikipedia article titles are selected to represent topics, since they are up to date, user-generated, sophisticated articles that span topics of human interest. This paper describes the proposed approach, a prototype implementation, and a case study based on data gathered during the heavily contributed periods corresponding to the four US election debates in 2012. The manually evaluated results (0.96 precision and other observations from the study are discussed in detail.

  20. Identifying Topics in Microblogs Using Wikipedia.

    Science.gov (United States)

    Yıldırım, Ahmet; Üsküdarlı, Suzan; Özgür, Arzucan

    2016-01-01

    Twitter is an extremely high volume platform for user generated contributions regarding any topic. The wealth of content created at real-time in massive quantities calls for automated approaches to identify the topics of the contributions. Such topics can be utilized in numerous ways, such as public opinion mining, marketing, entertainment, and disaster management. Towards this end, approaches to relate single or partial posts to knowledge base items have been proposed. However, in microblogging systems like Twitter, topics emerge from the culmination of a large number of contributions. Therefore, identifying topics based on collections of posts, where individual posts contribute to some aspect of the greater topic is necessary. Models, such as Latent Dirichlet Allocation (LDA), propose algorithms for relating collections of posts to sets of keywords that represent underlying topics. In these approaches, figuring out what the specific topic(s) the keyword sets represent remains as a separate task. Another issue in topic detection is the scope, which is often limited to specific domain, such as health. This work proposes an approach for identifying domain-independent specific topics related to sets of posts. In this approach, individual posts are processed and then aggregated to identify key tokens, which are then mapped to specific topics. Wikipedia article titles are selected to represent topics, since they are up to date, user-generated, sophisticated articles that span topics of human interest. This paper describes the proposed approach, a prototype implementation, and a case study based on data gathered during the heavily contributed periods corresponding to the four US election debates in 2012. The manually evaluated results (0.96 precision) and other observations from the study are discussed in detail.

  1. Identified particles in quark and gluon jets

    CERN Document Server

    Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Novák, M; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Rybin, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G

    1997-01-01

    A sample of about 1.4 million hadronic \\z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of \\kp, \\ko, \\p, \\l and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity.

  2. Identifying Tracks Duplicates via Neural Network

    CERN Document Server

    Sunjerga, Antonio; CERN. Geneva. EP Department

    2017-01-01

    The goal of the project is to study feasibility of state of the art machine learning techniques in track reconstruction. Machine learning techniques provide promising ways to speed up the pattern recognition of tracks by adding more intelligence in the algorithms. Implementation of neural network to process of track duplicates identifying will be discussed. Different approaches are shown and results are compared to method that is currently in use.

  3. Identifying web usage behavior of bank customers

    Science.gov (United States)

    Araya, Sandro; Silva, Mariano; Weber, Richard

    2002-03-01

    The bank Banco Credito e Inversiones (BCI) started its virtual bank in 1996 and its registered customers perform currently more than 10,000 Internet transactions daily, which typically cause les than 10% of traditional transaction costs. Since most of the customers are still not registered for online banking, one of the goals of the virtual bank is to increase then umber of registered customers. Objective of the presented work was to identify customers who are likely to perform online banking but still do not use this medium for their transactions. This objective has been reached by determining profiles of registered customers who perform many transactions online. Based on these profiles the bank's Data Warehouse is explored for twins of these heavy users that are still not registered for online banking. We applied clustering in order to group the registered customers into five classes. One of these classes contained almost 30% of all registered customers and could clearly be identified as class of heavy users. Next a neural network assigned online customers to the previously found five classes. Applying the network trained on online customers to all the bank customers identified twins of heavy users that, however had not performed online transactions so far. A mailing to these candidates informing about the advantages of online banking doubled the number of registrations compared to previous campaigns.

  4. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  5. Metabolites of cannabidiol identified in human urine.

    Science.gov (United States)

    Harvey, D J; Mechoulam, R

    1990-03-01

    1. Urine from a dystonic patient treated with cannabidiol (CBD) was examined by g.l.c.-mass spectrometry for CBD metabolites. Metabolites were identified as their trimethylsilyl (TMS), [2H9]TMS, and methyl ester/TMS derivatives and as the TMS derivatives of the product of lithium aluminium deuteride reduction. 2. Thirty-three metabolites were identified in addition to unmetabolized CBD, and a further four metabolites were partially characterized. 3. The major metabolic route was hydroxylation and oxidation at C-7 followed by further hydroxylation in the pentyl and propenyl groups to give 1"-, 2"-, 3"-, 4"- and 10-hydroxy derivatives of CBD-7-oic acid. Other metabolites, mainly acids, were formed by beta-oxidation and related biotransformations from the pentyl side-chain and these were also hydroxylated at C-6 or C-7. The major oxidized metabolite was CBD-7-oic acid containing a hydroxyethyl side-chain. 4. Two 8,9-dihydroxy compounds, presumably derived from the corresponding epoxide were identified. 5. Also present were several cyclized cannabinoids including delta-6- and delta-1-tetrahydrocannabinol and cannabinol. 6. This is the first metabolic study of CBD in humans; most observed metabolic routes were typical of those found for CBD and related cannabinoids in other species.

  6. Bisexual Phenomena Among Gay-Identified Men.

    Science.gov (United States)

    Semon, Theodore L; Hsu, Kevin J; Rosenthal, A M; Bailey, J Michael

    2017-01-01

    A high proportion of self-identified gay men exhibit aspects of bisexuality during their lives. Some identify as bisexual before later identifying as gay; this has been called transitional bisexuality. Although many gay men report no attraction to women-or even sexual disgust toward them-others report some slight attraction to women. The latter have been studied as mostly homosexual men. We studied men with and without a history of transitional bisexuality, as well as mostly homosexual (i.e., those with Kinsey scores of 5) and completely homosexual (i.e., those with Kinsey scores of 6) men with respect to their sexual history with women, their current self-reported sexual arousal and disgust toward women and men, and their patterns of genital sexual arousal to female and male stimuli. Gay men with a history of transitional bisexuality generally lacked current sexual attraction and sexual arousal to women, compared with other gay men. Thus, transitional bisexuality among future gay men is mostly a matter of transitional bisexual identification. In contrast, mostly homosexual men showed statistically significant increases in genital arousal to female stimuli, compared with completely homosexual men.

  7. Persistent Identifiers, Discoverability and Open Science (Communication)

    Science.gov (United States)

    Murphy, Fiona; Lehnert, Kerstin; Hanson, Brooks

    2016-04-01

    Early in 2016, the American Geophysical Union announced it was incorporating ORCIDs into its submission workflows. This was accompanied by a strong statement supporting the use of other persistent identifiers - such as IGSNs, and the CrossRef open registry 'funding data'. This was partly in response to funders' desire to track and manage their outputs. However the more compelling argument, and the reason why the AGU has also signed up to the Center for Open Science's Transparency and Openness Promotion (TOP) Guidelines (http://cos.io/top), is that ultimately science and scientists will be the richer for these initiatives due to increased opportunities for interoperability, reproduceability and accreditation. The AGU has appealed to the wider community to engage with these initiatives, recognising that - unlike the introduction of Digital Object Identifiers (DOIs) for articles by CrossRef - full, enriched use of persistent identifiers throughout the scientific process requires buy-in from a range of scholarly communications stakeholders. At the same time, across the general research landscape, initiatives such as Project CRediT (contributor roles taxonomy), Publons (reviewer acknowledgements) and the forthcoming CrossRef DOI Event Tracker are contributing to our understanding and accreditation of contributions and impact. More specifically for earth science and scientists, the cross-functional Coalition for Publishing Data in the Earth and Space Sciences (COPDESS) was formed in October 2014 and is working to 'provide an organizational framework for Earth and space science publishers and data facilities to jointly implement and promote common policies and procedures for the publication and citation of data across Earth Science journals'. Clearly, the judicious integration of standards, registries and persistent identifiers such as ORCIDs and International Geo Sample Numbers (IGSNs) to the research and research output processes is key to the success of this venture

  8. Body linear traits for identifying prolific goats

    Directory of Open Access Journals (Sweden)

    Avijit Haldar

    2014-12-01

    Full Text Available Aim: The present study was conducted on prolific goat breed to identify body linear type traits that might be associated with prolificacy trait in goats. Materials and Methods: Two-stage stratified random sample survey based data were collected from 1427 non-pregnant goats with the history of single, twin and triplet litter sizes (LZ between January 2008 to February 2011 for 3 years in 68 villages located in East and North East India. Data on sixteen body linear traits were analyzed using logistic regression model to do the step-wise selection for identifying the body linear traits that could determine LZ. An average value for each identified body linear trait was determined for classifying the goats into three categories: Goats having the history of single LZ, goats having the history of twin LZ and goats having the history of triplet LZ. Results: The LZ proportions for single, twin and triplet, were 29.50, 59.14 and 11.36%, respectively, with the prolificacy rate of 181.85% in Indian Black Bengal goats. A total of eight body linear traits that could determine LZ in prolific goats were identified. Heart girth (HG measurement (>60.90 cm, paunch girth (PG (>70.22 cm, wither height (WH (>49.75 cm, neck length (>21.45 cm, ear length (>12.80 cm and distance between trochanter major (DTM bones (>12.28 cm, pelvic triangle area (PTA (>572.25 cm2 and clearance at udder (CU (>23.16 cm showed an increase likelihood of multiple LZ when compared to single LZ. Further, HG measurement (>62.29 cm, WH (>50.54 cm, PG (>71.85 cm and ear length (>13.00 cm, neck length (>22.01 cm, PTA (>589.64 cm2, CU (>23.20 cm and DTM bones (>12.47 cm were associated with increased likelihood of triplet LZ, when compared with that of twin LZ. Conclusion: HG measurement was the best discriminating factor, while PG, neck length, DTM bones, CU, PTA, WH and ear length measurements were other important factors that could be used for identifying prolific goats to achieve economic

  9. Identifying novel drug indications through automated reasoning.

    Directory of Open Access Journals (Sweden)

    Luis Tari

    Full Text Available With the large amount of pharmacological and biological knowledge available in literature, finding novel drug indications for existing drugs using in silico approaches has become increasingly feasible. Typical literature-based approaches generate new hypotheses in the form of protein-protein interactions networks by means of linking concepts based on their cooccurrences within abstracts. However, this kind of approaches tends to generate too many hypotheses, and identifying new drug indications from large networks can be a time-consuming process.In this work, we developed a method that acquires the necessary facts from literature and knowledge bases, and identifies new drug indications through automated reasoning. This is achieved by encoding the molecular effects caused by drug-target interactions and links to various diseases and drug mechanism as domain knowledge in AnsProlog, a declarative language that is useful for automated reasoning, including reasoning with incomplete information. Unlike other literature-based approaches, our approach is more fine-grained, especially in identifying indirect relationships for drug indications.To evaluate the capability of our approach in inferring novel drug indications, we applied our method to 943 drugs from DrugBank and asked if any of these drugs have potential anti-cancer activities based on information on their targets and molecular interaction types alone. A total of 507 drugs were found to have the potential to be used for cancer treatments. Among the potential anti-cancer drugs, 67 out of 81 drugs (a recall of 82.7% are indeed known cancer drugs. In addition, 144 out of 289 drugs (a recall of 49.8% are non-cancer drugs that are currently tested in clinical trials for cancer treatments. These results suggest that our method is able to infer drug indications (original or alternative based on their molecular targets and interactions alone and has the potential to discover novel drug indications for

  10. Identifying single copy orthologs in Metazoa.

    Directory of Open Access Journals (Sweden)

    Christopher J Creevey

    2011-12-01

    Full Text Available The identification of single copy (1-to-1 orthologs in any group of organisms is important for functional classification and phylogenetic studies. The Metazoa are no exception, but only recently has there been a wide-enough distribution of taxa with sufficiently high quality sequenced genomes to gain confidence in the wide-spread single copy status of a gene.Here, we present a phylogenetic approach for identifying overlooked single copy orthologs from multigene families and apply it to the Metazoa. Using 18 sequenced metazoan genomes of high quality we identified a robust set of 1,126 orthologous groups that have been retained in single copy since the last common ancestor of Metazoa. We found that the use of the phylogenetic procedure increased the number of single copy orthologs found by over a third more than standard taxon-count approaches. The orthologs represented a wide range of functional categories, expression profiles and levels of divergence.To demonstrate the value of our set of single copy orthologs, we used them to assess the completeness of 24 currently published metazoan genomes and 62 EST datasets. We found that the annotated genes in published genomes vary in coverage from 79% (Ciona intestinalis to 99.8% (human with an average of 92%, suggesting a value for the underlying error rate in genome annotation, and a strategy for identifying single copy orthologs in larger datasets. In contrast, the vast majority of EST datasets with no corresponding genome sequence available are largely under-sampled and probably do not accurately represent the actual genomic complement of the organisms from which they are derived.

  11. Method of identifying defective particle coatings

    Science.gov (United States)

    Cohen, Mark E.; Whiting, Carlton D.

    1986-01-01

    A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.

  12. [Identifying children at risk for cardiorespiratory arrest].

    Science.gov (United States)

    Carrillo Alvarez, A; Martínez Gutiérrez, A; Salvat Germán, F

    2004-08-01

    Cardiorespiratory arrest in children with severe disease does not usually present suddenly or unexpectedly but is often the result of a progressive deterioration of respiratory and/or circulatory function. Before failure of these functions occurs, there is a series of clinical signs that serve as a warning. Health professionals should not only evaluate clinical signs of respiratory and/or circulatory insufficiency but should also be able to identify these warning signs as early as possible, preferably in the compensation phase, given that the possibility that this process can be reversed by therapeutic measures decreases as the process progresses.

  13. Identifying opportunities in online-communities

    DEFF Research Database (Denmark)

    Hienerth, C.; Lettl, Christopher

    how this phenomenon - as manifested in user communities - can be used to derive deeper insights into the prominent phases of opportunity identification, evaluation and exploitation. We also outline how user communities create new avenues for empirical research on these early entrepreneurial processes......Previous research has identified innovation as a crucial prerequisite for early entrepreneurial processes. However, the nature of how innovations are developed is changing dramatically, as it is becoming increasingly open, collaborative and democratized. This paper demonstrates in conceptual terms....... Based on our analysis, we develop a set of hypotheses on how processes in user communities affect the outcome of entrepreneurial activities....

  14. Identifying variables that influence manufacturing product quality

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2014-10-01

    Full Text Available In the article a risk analysis of the production process of selected products in a plant producing votive candles was conducted. The Pareto-Lorenz diagram and FMEA method were used which indicated the most important areas affecting the production of selected elements of candles. The synthesis of intangible factors affecting production in the audited company was also carried out with particular emphasis on the operation of the production system. The factors determining the validity of studies was examined, describing the principle of BOST 14 Toyota management. The most important areas of the company were identified, positively affecting the production process.

  15. Identifying biomass fuel shortages in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Howes, Michael (Sussex Univ., Brighton (UK). Inst. of Development Studies)

    1989-01-01

    This paper analyses data from the Sri Lankan Forestry Master Plan and other sources, to explore the causes of biomass shortages, and to identify the areas where interventions are likely to have most impact. Five districts, concentrated in the wet lowland and hill country zones, are found to be in overall biomass fuel deficit whilst in a further five, which include dry zone locations, fuelwood consumption exceeds potential supply, Within the area of overall deficit, poorer urban groups and rural families with no home gardens - who together comprise 15% of all households nationally - are affected most severely. Another 10% of households are likely to suffer to a lesser extent. (author).

  16. EVA: Visual Analytics to Identify Fraudulent Events.

    Science.gov (United States)

    Leite, Roger A; Gschwandtner, Theresia; Miksch, Silvia; Kriglstein, Simone; Pohl, Margit; Gstrein, Erich; Kuntner, Johannes

    2018-01-01

    Financial institutions are interested in ensuring security and quality for their customers. Banks, for instance, need to identify and stop harmful transactions in a timely manner. In order to detect fraudulent operations, data mining techniques and customer profile analysis are commonly used. However, these approaches are not supported by Visual Analytics techniques yet. Visual Analytics techniques have potential to considerably enhance the knowledge discovery process and increase the detection and prediction accuracy of financial fraud detection systems. Thus, we propose EVA, a Visual Analytics approach for supporting fraud investigation, fine-tuning fraud detection algorithms, and thus, reducing false positive alarms.

  17. Identifying Phase Space Boundaries with Voronoi Tessellations

    CERN Document Server

    Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao

    2016-11-24

    Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. The robust detection of such phase space boundaries in the data could also be used to corroborate a new physics discovery based on a cut-and-count analysis.

  18. Identifying QCD Transition Using Deep Learning

    Science.gov (United States)

    Zhou, Kai; Pang, Long-gang; Su, Nan; Petersen, Hannah; Stoecker, Horst; Wang, Xin-Nian

    2018-02-01

    In this proceeding we review our recent work using supervised learning with a deep convolutional neural network (CNN) to identify the QCD equation of state (EoS) employed in hydrodynamic modeling of heavy-ion collisions given only final-state particle spectra ρ(pT, V). We showed that there is a traceable encoder of the dynamical information from phase structure (EoS) that survives the evolution and exists in the final snapshot, which enables the trained CNN to act as an effective "EoS-meter" in detecting the nature of the QCD transition.

  19. Identifying MMORPG Bots: A Traffic Analysis Approach

    Directory of Open Access Journals (Sweden)

    Wen-Chin Chen

    2008-11-01

    Full Text Available Massively multiplayer online role playing games (MMORPGs have become extremely popular among network gamers. Despite their success, one of MMORPG's greatest challenges is the increasing use of game bots, that is, autoplaying game clients. The use of game bots is considered unsportsmanlike and is therefore forbidden. To keep games in order, game police, played by actual human players, often patrol game zones and question suspicious players. This practice, however, is labor-intensive and ineffective. To address this problem, we analyze the traffic generated by human players versus game bots and propose general solutions to identify game bots. Taking Ragnarok Online as our subject, we study the traffic generated by human players and game bots. We find that their traffic is distinguishable by 1 the regularity in the release time of client commands, 2 the trend and magnitude of traffic burstiness in multiple time scales, and 3 the sensitivity to different network conditions. Based on these findings, we propose four strategies and two ensemble schemes to identify bots. Finally, we discuss the robustness of the proposed methods against countermeasures of bot developers, and consider a number of possible ways to manage the increasingly serious bot problem.

  20. Identifying dependability requirements for space software systems

    Directory of Open Access Journals (Sweden)

    Edgar Toshiro Yano

    2010-09-01

    Full Text Available Computer systems are increasingly used in space, whether in launch vehicles, satellites, ground support and payload systems. Software applications used in these systems have become more complex, mainly due to the high number of features to be met, thus contributing to a greater probability of hazards related to software faults. Therefore, it is fundamental that the specification activity of requirements have a decisive role in the effort of obtaining systems with high quality and safety standards. In critical systems like the embedded software of the Brazilian Satellite Launcher, ambiguity, non-completeness, and lack of good requirements can cause serious accidents with economic, material and human losses. One way to assure quality with safety, reliability and other dependability attributes may be the use of safety analysis techniques during the initial phases of the project in order to identify the most adequate dependability requirements to minimize possible fault or failure occurrences during the subsequent phases. This paper presents a structured software dependability requirements analysis process that uses system software requirement specifications and traditional safety analysis techniques. The main goal of the process is to help to identify a set of essential software dependability requirements which can be added to the software requirement previously specified for the system. The final results are more complete, consistent, and reliable specifications.

  1. Identifying Bitcoin users by transaction behavior

    Science.gov (United States)

    Monaco, John V.

    2015-05-01

    Digital currencies, such as Bitcoin, offer convenience and security to criminals operating in the black marketplace. Some Bitcoin marketplaces, such as Silk Road, even claim anonymity. This claim contradicts the findings in this work, where long term transactional behavior is used to identify and verify account holders. Transaction timestamps and network properties observed over time contribute to this finding. The timestamp of each transaction is the result of many factors: the desire purchase an item, daily schedule and activities, as well as hardware and network latency. Dynamic network properties of the transaction, such as coin flow and the number of edge outputs and inputs, contribute further to reveal account identity. In this paper, we propose a novel methodology for identifying and verifying Bitcoin users based on the observation of Bitcoin transactions over time. The behavior we attempt to quantify roughly occurs in the social band of Newell's time scale. A subset of the Blockchain 230686 is taken, selecting users that initiated between 100 and 1000 unique transactions per month for at least 6 different months. This dataset shows evidence of being nonrandom and nonlinear, thus a dynamical systems approach is taken. Classification and authentication accuracies are obtained under various representations of the monthly Bitcoin samples: outgoing transactions, as well as both outgoing and incoming transactions are considered, along with the timing and dynamic network properties of transaction sequences. The most appropriate representations of monthly Bitcoin samples are proposed. Results show an inherent lack of anonymity by exploiting patterns in long-term transactional behavior.

  2. Identifying, meeting, and assessing customer expectations

    International Nuclear Information System (INIS)

    Danner, T.A.

    1995-01-01

    Maintaining proficiency in carrying out mission goals is fundamental to the success of any organization. The definitive mission of the Waste Management and Remedial Action Division (WMRAD) of Oak Ridge National Laboratory (ORNL) is open-quotes to conduct waste management activities in a compliant, publicly acceptable, technically sound, and cost-efficient mannerclose quotes. In order to effectively fulfill this mission, must meet or exceed several standards in respect to our customers. These include: (1) identifying current and future customer expectations; (2) managing our relationships with our customers; (3) ensuring our commitment to our customers; and (4) measuring our success m customer satisfaction. Our customers have a great variety of requirements and expectations. Many of these are in the form of local, state, and federal regulations and environmental standards. Others are brought to our attention through inquires made to the Department of Energy (DOE).Consumer surveys have proven to be effective tools which have been used to make improvements, enhance certain program elements, and identify beneficial areas in already existing programs. In addition, national working groups, technology transfer meetings, and manager/contractor's meeting offer excellent opportunities to assess our activities

  3. Measurements with self-identifying aerosols

    International Nuclear Information System (INIS)

    Kyle, T.; Schuster, B.G.

    1978-01-01

    The use of modern single particle detection of aerosols has made it possible to test multiple HEPA filter systems. Problems have been encountered in such tests with the background aerosol on the downstream side of the filters. Since the ducts are maintained at a negative pressure, ambient aerosols leak into the ducts and provide concentrations of particles which are comparable to the number of particles of the test aerosol passing through the filters. The background count creates an upper limit to the protection factor which can be measured. This limitation can be overcome by the use of an identifiable aerosol. The most direct method of identifying an aerosol is to use fluorescent particles, which has been done in the past. In the present case, the fluorescence of the individual particle is used, rather than dissolving the particles in solution to develop the fluorescence. Two systems based upon fluorescent solid or liquid particles are being developed. Both involve single particle detection and excitation by a portable helium-cadmium laser. The advantage of the solid particles system is the ability to capture the particles on a filter. The filter can then be dissolved and the number of particles counted and sized, since the particles do not dissolve. This also permits the use of greater sample flow rates than is possible with a real time system

  4. Identifying Functional Cysteine Residues in the Mitochondria.

    Science.gov (United States)

    Bak, Daniel W; Pizzagalli, Mattia D; Weerapana, Eranthie

    2017-04-21

    The mitochondria are dynamic organelles that regulate oxidative metabolism and mediate cellular redox homeostasis. Proteins within the mitochondria are exposed to large fluxes in the surrounding redox environment. In particular, cysteine residues within mitochondrial proteins sense and respond to these redox changes through oxidative modifications of the cysteine thiol group. These oxidative modifications result in a loss in cysteine reactivity, which can be monitored using cysteine-reactive chemical probes and quantitative mass spectrometry (MS). Analysis of cell lysates treated with cysteine-reactive probes enable the identification of hundreds of cysteine residues, however, the mitochondrial proteome is poorly represented (proteins and suppression of mitochondrial peptide MS signals by highly abundant cytosolic peptides. Here, we apply a mitochondrial isolation and purification protocol to substantially increase coverage of the mitochondrial cysteine proteome. Over 1500 cysteine residues from ∼450 mitochondrial proteins were identified, thereby enabling interrogation of an unprecedented number of mitochondrial cysteines. Specifically, these mitochondrial cysteines were ranked by reactivity to identify hyper-reactive cysteines with potential catalytic and regulatory functional roles. Furthermore, analyses of mitochondria exposed to nitrosative stress revealed previously uncharacterized sites of protein S-nitrosation on mitochondrial proteins. Together, the mitochondrial cysteine enrichment strategy presented herein enables detailed characterization of protein modifications that occur within the mitochondria during (patho)physiological fluxes in the redox environment.

  5. Identifying barriers to Muslim integration in France.

    Science.gov (United States)

    Adida, Claire L; Laitin, David D; Valfort, Marie-Anne

    2010-12-28

    Is there a Muslim disadvantage in economic integration for second-generation immigrants to Europe? Previous research has failed to isolate the effect that religion may have on an immigrant family's labor market opportunities because other factors, such as country of origin or race, confound the result. This paper uses a correspondence test in the French labor market to identify and measure this religious effect. The results confirm that in the French labor market, anti-Muslim discrimination exists: a Muslim candidate is 2.5 times less likely to receive a job interview callback than is his or her Christian counterpart. A high-n survey reveals, consistent with expectations from the correspondence test, that second-generation Muslim households in France have lower income compared with matched Christian households. The paper thereby contributes to both substantive debates on the Muslim experience in Europe and methodological debates on how to measure discrimination. Following the National Academy of Sciences' 2001 recommendations on combining a variety of methodologies and applying them to real-world situations, this research identifies, measures, and infers consequences of discrimination based on religious affiliation, controlling for potentially confounding factors, such as race and country of origin.

  6. ABCB5 Identifies Immunoregulatory Dermal Cells

    Directory of Open Access Journals (Sweden)

    Tobias Schatton

    2015-09-01

    Full Text Available Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly defined immunomodulatory cell populations poses a barrier to this field. Here, we show that ATP-binding cassette member B5 (ABCB5 identifies dermal immunoregulatory cells (DIRCs capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1. Purified Abcb5+ DIRCs suppressed T cell proliferation, evaded immune rejection, homed to recipient immune tissues, and induced Tregs in vivo. In fully major-histocompatibility-complex-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5+ DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy.

  7. Identifying the immunomodulatory components of helminths.

    Science.gov (United States)

    Shepherd, C; Navarro, S; Wangchuk, P; Wilson, D; Daly, N L; Loukas, A

    2015-06-01

    Immunomodulatory components of helminths offer great promise as an entirely new class of biologics for the treatment of inflammatory diseases. Here, we discuss the emerging themes in helminth-driven immunomodulation in the context of therapeutic drug discovery. We broadly define the approaches that are currently applied by researchers to identify these helminth molecules, highlighting key areas of potential exploitation that have been mostly neglected thus far, notably small molecules. Finally, we propose that the investigation of immunomodulatory compounds will enable the translation of current and future research efforts into potential treatments for autoimmune and allergic diseases, while at the same time yielding new insights into the molecular interface of host-parasite biology. © 2015 John Wiley & Sons Ltd.

  8. Identifying States of a Financial Market

    Science.gov (United States)

    Münnix, Michael C.; Shimada, Takashi; Schäfer, Rudi; Leyvraz, Francois; Seligman, Thomas H.; Guhr, Thomas; Stanley, H. Eugene

    2012-09-01

    The understanding of complex systems has become a central issue because such systems exist in a wide range of scientific disciplines. We here focus on financial markets as an example of a complex system. In particular we analyze financial data from the S&P 500 stocks in the 19-year period 1992-2010. We propose a definition of state for a financial market and use it to identify points of drastic change in the correlation structure. These points are mapped to occurrences of financial crises. We find that a wide variety of characteristic correlation structure patterns exist in the observation time window, and that these characteristic correlation structure patterns can be classified into several typical ``market states''. Using this classification we recognize transitions between different market states. A similarity measure we develop thus affords means of understanding changes in states and of recognizing developments not previously seen.

  9. Identifying states of a financial market.

    Science.gov (United States)

    Münnix, Michael C; Shimada, Takashi; Schäfer, Rudi; Leyvraz, Francois; Seligman, Thomas H; Guhr, Thomas; Stanley, H Eugene

    2012-01-01

    The understanding of complex systems has become a central issue because such systems exist in a wide range of scientific disciplines. We here focus on financial markets as an example of a complex system. In particular we analyze financial data from the S&P 500 stocks in the 19-year period 1992-2010. We propose a definition of state for a financial market and use it to identify points of drastic change in the correlation structure. These points are mapped to occurrences of financial crises. We find that a wide variety of characteristic correlation structure patterns exist in the observation time window, and that these characteristic correlation structure patterns can be classified into several typical "market states". Using this classification we recognize transitions between different market states. A similarity measure we develop thus affords means of understanding changes in states and of recognizing developments not previously seen.

  10. Machine learning for identifying botnet network traffic

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2013-01-01

    . Due to promise of non-invasive and resilient detection, botnet detection based on network traffic analysis has drawn a special attention of the research community. Furthermore, many authors have turned their attention to the use of machine learning algorithms as the mean of inferring botnet......-related knowledge from the monitored traffic. This paper presents a review of contemporary botnet detection methods that use machine learning as a tool of identifying botnet-related traffic. The main goal of the paper is to provide a comprehensive overview on the field by summarizing current scientific efforts....... The contribution of the paper is three-fold. First, the paper provides a detailed insight on the existing detection methods by investigating which bot-related heuristic were assumed by the detection systems and how different machine learning techniques were adapted in order to capture botnet-related knowledge...

  11. Identifying modular relations in complex brain networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Mørup, Morten; Siebner, Hartwig

    2012-01-01

    and obtains comparable reproducibility and predictability. For resting state functional magnetic resonance imaging data from 30 healthy controls the IRM model is also superior to the two simpler alternatives, suggesting that brain networks indeed exhibit universal complex relational structure......We evaluate the infinite relational model (IRM) against two simpler alternative nonparametric Bayesian models for identifying structures in multi subject brain networks. The models are evaluated for their ability to predict new data and infer reproducible structures. Prediction and reproducibility...... are measured within the data driven NPAIRS split-half framework. Using synthetic data drawn from each of the generative models we show that the IRM model outperforms the two competing models when data contain relational structure. For data drawn from the other two simpler models the IRM does not overfit...

  12. Identifying Multiquark Hadrons from Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Jido, Daisuke; Ohnishi, Akira; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-01-01

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  13. Identifying people from gait pattern with accelerometers

    Science.gov (United States)

    Ailisto, Heikki J.; Lindholm, Mikko; Mantyjarvi, Jani; Vildjiounaite, Elena; Makela, Satu-Marja

    2005-03-01

    Protecting portable devices is becoming more important, not only because of the value of the devices themselves, but for the value of the data in them and their capability for transactions, including m-commerce and m-banking. An unobtrusive and natural method for identifying the carrier of portable devices is presented. The method uses acceleration signals produced by sensors embedded in the portable device. When the user carries the device, the acceleration signal is compared with the stored template signal. The method consists of finding individual steps, normalizing and averaging them, aligning them with the template and computing cross-correlation, which is used as a measure of similarity. Equal Error Rate of 6.4% is achieved in tentative experiments with 36 test subjects.

  14. Identifying Biases in Dust Source Functions

    Science.gov (United States)

    Evan, A. T.; Wang, W.; Zhao, C.

    2017-12-01

    The Sahara is the largest desert in the world and accounts for more than 50% of global dust emission. However, it is difficult to identify dust source regions as the Sahara is vastly uninhabited. In order to model North African dust, previous works have used satellite data to construct so-called dust source functions. Here we examine such dust source function using output from multi-year runs with the Weather Research and Forecasting with Chemistry (WRF-Chem) model. We find that dust source functions based on satellite data overestimate DOD in the Sahel and the western Sahara region. To eliminate the biases of the dust source function due to advection, we develop a new source function using DOD in the lowest 1 km from the model. This work suggests that dust source functions constructed with satellite retrievlas of optical depth may overestimate dust emission in the downwind regions and DOD may not be a good proxy for the source function.

  15. De-identifying an EHR Database

    DEFF Research Database (Denmark)

    Lauesen, Søren; Pantazos, Kostas; Lippert, Søren

    2011-01-01

    Abstract. Electronic health records (EHR) contain a large amount of structured data and free text. Exploring and sharing clinical data can improve healthcare and facilitate the development of medical software. However, revealing confidential information is against ethical principles and laws. We de......-identified a Danish EHR database with 437,164 patients. The goal was to generate a version with real medical records, but related to artificial persons. We developed a de-identification algorithm that uses lists of named entities, simple language analysis, and special rules. Our algorithm consists of 3 steps: collect...... of anonymity, readability and correctness (F-measure of 95%). The algorithm has to be adjusted for each culture, language and database....

  16. Identifying financial crises in real time

    Science.gov (United States)

    da Fonseca, Eder Lucio; Ferreira, Fernando F.; Muruganandam, Paulsamy; Cerdeira, Hilda A.

    2013-03-01

    Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities.

  17. Method of identifying features in indexed data

    Science.gov (United States)

    Jarman, Kristin H [Richland, WA; Daly, Don Simone [Richland, WA; Anderson, Kevin K [Richland, WA; Wahl, Karen L [Richland, WA

    2001-06-26

    The present invention is a method of identifying features in indexed data, especially useful for distinguishing signal from noise in data provided as a plurality of ordered pairs. Each of the plurality of ordered pairs has an index and a response. The method has the steps of: (a) providing an index window having a first window end located on a first index and extending across a plurality of indices to a second window end; (b) selecting responses corresponding to the plurality of indices within the index window and computing a measure of dispersion of the responses; and (c) comparing the measure of dispersion to a dispersion critical value. Advantages of the present invention include minimizing signal to noise ratio, signal drift, varying baseline signal and combinations thereof.

  18. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise......, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA...... sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein...

  19. Identifying Relevant Studies in Software Engineering

    DEFF Research Database (Denmark)

    Zhang, He; Ali Babar, Muhammad; Tell, Paolo

    2011-01-01

    Context: Systematic literature review (SLR) has become an important research methodology in software engineering since the introduction of evidence-based software engineering (EBSE) in 2004. One critical step in applying this methodology is to design and execute appropriate and effective search....... Objective: The main objective of the research reported in this paper is to improve the search step of undertaking SLRs in software engineering (SE) by devising and evaluating systematic and practical approaches to identifying relevant studies in SE. Method: We have systematically selected and analytically...... serve as a supplement to the guidelines for SLRs in EBSE. We plan to further evaluate the proposed approach using a series of case studies on varying research topics in SE....

  20. Strategic planning: Identifying organization information requirements

    Energy Technology Data Exchange (ETDEWEB)

    Moise, C.S.

    1993-12-01

    Historically, information resource management has been left to the ``data processing`` arm of the organization. With technological movements away from centralized mainframe-based information processing toward distributed client/server-based information processing, almost every part of an organization is becoming more involved with the information technology itself, and certainly more involved with budgeting for the technology. However, users and buyers of information technology frequently remain dependent upon the information systems department for planning what users need and should buy. This paper reviews techniques for identifying requirements throughout an organization and structuring information resources to meet organizational needs. This will include basing information resource needs on meeting business needs, utilizing ``internal`` and ``external`` information resource planners, using information mapping, assessing information resources, and developing partnerships.

  1. High-PT Physics with Identified Particles

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.; Liu, W.

    2009-11-09

    The suppression of high-P{sub T} particles in heavy ion collisions was one of the key discoveries at the Relativistic Heavy Ion Collider. This is usually parameterized by the average rate of momentum-transfer squared to this particle, {cflx q}. Here we argue that measurements of identified particles at high P{sub T} can lead to complementary information about the medium. The leading particle of a jet can change its identity through interactions with the medium. Tracing such flavor conversions could allow us to constrain the mean free path. Here we review the basic concepts of flavor conversions and discuss applications to particle ratios and elliptic flow. We make a prediction that strangeness is enhanced at high P{sub T} at RHIC energies while its elliptic flow is suppressed.

  2. Diverse papillomaviruses identified in Weddell seals.

    Science.gov (United States)

    Smeele, Zoe E; Burns, Jennifer M; Van Doorsaler, Koenraad; Fontenele, Rafaela S; Waits, Kara; Stainton, Daisy; Shero, Michelle R; Beltran, Roxanne S; Kirkham, Amy L; Berngartt, Rachel; Kraberger, Simona; Varsani, Arvind

    2018-04-01

    Papillomaviridae is a diverse family of circular, double-stranded DNA (dsDNA) viruses that infect a broad range of mammalian, avian and fish hosts. While papillomaviruses have been characterized most extensively in humans, the study of non-human papillomaviruses has contributed greatly to our understanding of their pathogenicity and evolution. Using high-throughput sequencing approaches, we identified 7 novel papillomaviruses from vaginal swabs collected from 81 adult female Weddell seals (Leptonychotes weddellii) in the Ross Sea of Antarctica between 2014-2017. These seven papillomavirus genomes were amplified from seven individual seals, and six of the seven genomes represented novel species with distinct evolutionary lineages. This highlights the diversity of papillomaviruses among the relatively small number of Weddell seal samples tested. Viruses associated with large vertebrates are poorly studied in Antarctica, and this study adds information about papillomaviruses associated with Weddell seals and contributes to our understanding of the evolutionary history of papillomaviruses.

  3. QTLminer: identifying genes regulating quantitative traits

    Directory of Open Access Journals (Sweden)

    Schughart Klaus

    2010-10-01

    Full Text Available Abstract Background Quantitative trait locus (QTL mapping identifies genomic regions that likely contain genes regulating a quantitative trait. However, QTL regions may encompass tens to hundreds of genes. To find the most promising candidate genes that regulate the trait, the biologist typically collects information from multiple resources about the genes in the QTL interval. This process is very laborious and time consuming. Results QTLminer is a bioinformatics tool that automatically performs QTL region analysis. It is available in GeneNetwork and it integrates information such as gene annotation, gene expression and sequence polymorphisms for all the genes within a given genomic interval. Conclusions QTLminer substantially speeds up discovery of the most promising candidate genes within a QTL region.

  4. Identifying links between origami and compliant mechanisms

    Directory of Open Access Journals (Sweden)

    H. C. Greenberg

    2011-12-01

    Full Text Available Origami is the art of folding paper. In the context of engineering, orimimetics is the application of folding to solve problems. Kinetic origami behavior can be modeled with the pseudo-rigid-body model since the origami are compliant mechanisms. These compliant mechanisms, when having a flat initial state and motion emerging out of the fabrication plane, are classified as lamina emergent mechanisms (LEMs. To demonstrate the feasibility of identifying links between origami and compliant mechanism analysis and design methods, four flat folding paper mechanisms are presented with their corresponding kinematic and graph models. Principles from graph theory are used to abstract the mechanisms to show them as coupled, or inter-connected, mechanisms. It is anticipated that this work lays a foundation for exploring methods for LEM synthesis based on the analogy between flat-folding origami models and linkage assembly.

  5. DNA Barcoding Identifies Illegal Parrot Trade.

    Science.gov (United States)

    Gonçalves, Priscila F M; Oliveira-Marques, Adriana R; Matsumoto, Tania E; Miyaki, Cristina Y

    2015-01-01

    Illegal trade threatens the survival of many wild species, and molecular forensics can shed light on various questions raised during the investigation of cases of illegal trade. Among these questions is the identity of the species involved. Here we report a case of a man who was caught in a Brazilian airport trying to travel with 58 avian eggs. He claimed they were quail eggs, but authorities suspected they were from parrots. The embryos never hatched and it was not possible to identify them based on morphology. As 29% of parrot species are endangered, the identity of the species involved was important to establish a stronger criminal case. Thus, we identified the embryos' species based on the analyses of mitochondrial DNA sequences (cytochrome c oxidase subunit I gene [COI] and 16S ribosomal DNA). Embryonic COI sequences were compared with those deposited in BOLD (The Barcode of Life Data System) while their 16S sequences were compared with GenBank sequences. Clustering analysis based on neighbor-joining was also performed using parrot COI and 16S sequences deposited in BOLD and GenBank. The results, based on both genes, indicated that 57 embryos were parrots (Alipiopsitta xanthops, Ara ararauna, and the [Amazona aestiva/A. ochrocephala] complex), and 1 was an owl. This kind of data can help criminal investigations and to design species-specific anti-poaching strategies, and demonstrate how DNA sequence analysis in the identification of bird species is a powerful conservation tool. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Melanoma biomolecules: independently identified but functionally intertwined

    Directory of Open Access Journals (Sweden)

    Danielle Erin Dye

    2013-09-01

    Full Text Available The majority of patients diagnosed with melanoma present with thin lesions and generally these patients have a good prognosis. However, 5% of patients with early melanoma (< 1mm thick will have recurrence and die within 10 years, despite no evidence of local or metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic markers to help identify those patients that may be at risk of recurrent disease. Many studies and several meta-analyses have compared gene and protein expression in melanocytes, naevi, primary and metastatic melanoma in an attempt to find informative prognostic markers for these patients. However, although a large number of putative biomarkers have been described, few of these molecules are informative when used in isolation. The best approach is likely to involve a combination of molecules. We believe one approach could be to analyze the expression of a group of interacting proteins that regulate different aspects of the metastatic pathway. This is because a primary lesion expressing proteins involved in multiple stages of metastasis may be more likely to lead to secondary disease than one that does not. This review focuses on five putative biomarkers - melanoma cell adhesion molecule (MCAM, galectin-3 (gal-3, matrix metalloproteinase 2 (MMP-2, chondroitin sulfate proteoglycan 4 (CSPG4 and paired box 3 (PAX3. The goal is to provide context around what is known about the contribution of these biomarkers to melanoma biology and metastasis. Although each of these molecules have been independently identified as likely biomarkers, it is clear from our analyses that each are closely linked with each other, with intertwined roles in melanoma biology.

  7. Identifying osteoporotic vertebral endplate and cortex fractures.

    Science.gov (United States)

    Wáng, Yì Xiáng J; Santiago, Fernando Ruiz; Deng, Min; Nogueira-Barbosa, Marcello H

    2017-10-01

    Osteoporosis is the most common metabolic bone disease, and vertebral fractures (VFs) are the most common osteoporotic fracture. A single atraumatic VF may lead to the diagnosis of osteoporosis. Prevalent VFs increase the risk of future vertebral and non-vertebral osteoporotic fracture independent of bone mineral density (BMD). The accurate and clear reporting of VF is essential to ensure patients with osteoporosis receive appropriate treatment. Radiologist has a vital role in the diagnosis of this disease. Several morphometrical and radiological methods for detecting osteoporotic VF have been proposed, but there is no consensus regarding the definition of osteoporotic VF. A vertebra may fracture yet not ever result in measurable changes in radiographic height or area. To overcome these difficulties, algorithm-based qualitative approach (ABQ) was developed with a focus on the identification of change in the vertebral endplate. Evidence of endplate fracture (rather than variation in vertebral shape) is the primary indicator of osteoporotic fracture according to ABQ criteria. Other changes that may mimic osteoporotic fractures should be systemically excluded. It is also possible that vertebral cortex fracture may not initially occur in endplate. Particularly, vertebral cortex fracture can occur in anterior vertebral cortex without gross vertebral deformity (VD), or fractures deform the anterior vertebral cortex without endplate disruption. This article aims to serve as a teaching material for physicians or researchers to identify vertebral endplate/cortex fracture (ECF). Emphasis is particularly dedicated to identifying ECF which may not be associated apparent vertebral body collapse. We believe a combined approach based on standardized radiologic evaluation by experts and morphometry measurement is the most appropriate approach to detect and classify VFs.

  8. Identifying osteoporotic vertebral endplate and cortex fractures

    Science.gov (United States)

    Santiago, Fernando Ruiz; Deng, Min; Nogueira-Barbosa, Marcello H.

    2017-01-01

    Osteoporosis is the most common metabolic bone disease, and vertebral fractures (VFs) are the most common osteoporotic fracture. A single atraumatic VF may lead to the diagnosis of osteoporosis. Prevalent VFs increase the risk of future vertebral and non-vertebral osteoporotic fracture independent of bone mineral density (BMD). The accurate and clear reporting of VF is essential to ensure patients with osteoporosis receive appropriate treatment. Radiologist has a vital role in the diagnosis of this disease. Several morphometrical and radiological methods for detecting osteoporotic VF have been proposed, but there is no consensus regarding the definition of osteoporotic VF. A vertebra may fracture yet not ever result in measurable changes in radiographic height or area. To overcome these difficulties, algorithm-based qualitative approach (ABQ) was developed with a focus on the identification of change in the vertebral endplate. Evidence of endplate fracture (rather than variation in vertebral shape) is the primary indicator of osteoporotic fracture according to ABQ criteria. Other changes that may mimic osteoporotic fractures should be systemically excluded. It is also possible that vertebral cortex fracture may not initially occur in endplate. Particularly, vertebral cortex fracture can occur in anterior vertebral cortex without gross vertebral deformity (VD), or fractures deform the anterior vertebral cortex without endplate disruption. This article aims to serve as a teaching material for physicians or researchers to identify vertebral endplate/cortex fracture (ECF). Emphasis is particularly dedicated to identifying ECF which may not be associated apparent vertebral body collapse. We believe a combined approach based on standardized radiologic evaluation by experts and morphometry measurement is the most appropriate approach to detect and classify VFs. PMID:29184768

  9. FLRT proteins act as guidance cues for migrating cortical interneurons

    OpenAIRE

    Fleitas Pérez, Catherine

    2015-01-01

    El establecimiento de las conectividad neuronal comienza durante el desarrollo y depende de la migración neuronal y del correcto posicionamiento de las nuevas neuronas, las cuales se integran dentro de capas específicas de la corteza. Las proteínas transmembrana ricas en fibronectina y leucina (FLRT) han evolucionado como nuevos reguladores de varios aspectos durante el desarrollo del sistema nervioso, incluyendo la migración neuronal. Este trabajo se centra en el estudio de la implicación in...

  10. Tuning afferent synapses of hippocampal interneurons by neuropeptide Y

    DEFF Research Database (Denmark)

    Ledri, Marco; Sørensen, Andreas Toft; Erdelyi, Ferenc

    2011-01-01

    for the first time that excitatory and inhibitory inputs onto CCK basket cells in the dentate gyrus of the hippocampus are modulated by NPY through activation of NPY Y2 receptors. The frequency of spontaneous and miniature EPSCs, as well as the amplitudes of stimulation-evoked EPSCs were decreased. Similarly...

  11. Use of lice to identify cowbird hosts

    Science.gov (United States)

    Hahn, D.C.; Price, R.D.; Osenton, P.C.

    2000-01-01

    The host specificity of avian lice (Phthiraptera) may be utilized by biologists to investigate the brood parasitism patterns of Brown-headed Cowbirds (Molothrus ater). As nestlings, brood parasites have a unique opportunity to encounter lice that are typically host specific. Lice are permanent hemimetabolic ectoparasites, a group found strictly on the body of the host, and they are transferred almost exclusively by bodily contact between hosts during care of young and at copulation. We investigated whether cowbird nestlings become infested with avian lice from their host parents and carry these lice away when they fledge, in effect bearing ectoparasite indicators of the species that raised them. The technique of examining the lice on cowbird fledglings to identify their foster parents would be much less costly than hiring a team of experts to determine parasitism patterns in the conventional way by finding hundreds of songbird nests. We examined 244 cowbird fledglings and found that they carried a rich fauna of lice representing 11 species and six genera, almost the entire spectrum of louse genera known to occur on passerines. We also examined 320 songbirds from 30 species, all known hosts of the Brown-headed Cowbird. As a group the host birds bore a diversity of louse species comparable to that on the fledgling cowbirds: 13 species of lice from seven genera. In contrast, most individual passerine host species yielded only 1 or 2 louse species, significantly fewer than the cowbird fledglings (p parasitism patterns. The incomplete state of passerine louse taxonomy requires anyone using this technique to de-louse both cowbird fledglings and local host species in order to have a reference collection of lice. Lice from cowbird fledglings can be identified by a skilled taxonomist and linked to particular host species, and the principal difficulty is the scarcity of skilled avian louse taxonomists. We also found an unusually rich louse fauna on 219 adult cowbirds, which

  12. Identifying functional decline: a methodological challenge

    Directory of Open Access Journals (Sweden)

    Grimmer K

    2013-08-01

    Full Text Available Karen Grimmer, Kate Beaton, Kevan Hendry International Centre for Allied Health Evidence, University of South Australia, Adelaide, SA, Australia Background: Functional decline (FD in older people has commonly been measured in the hospital setting with instruments which have been validated on decrease over time in capacity to undertake basic activities of daily living (ADL. In a nonhospitalized sample of older people (independently community dwelling, but potentially on the cusp of FD, it is possible that other measures could be used to predict decline. Early, accurate, and efficient identification of older community-dwelling people who are on the cusp of FD can assist in identifying appropriate interventions to slow the rate of decline. Methods: This paper reports on associations between four outcome measures which have been associated with FD (instrumental ADLs [IADLs], quality of life, hospitalizations and falls. The sample was older individuals who were discharged from one large metropolitan emergency department (ED during 2011–2012, without an inpatient admission. Results: Of 597 individuals aged 65+ who provided baseline information, 148 subjects provided four outcome measures at both 1 and 3 months follow up. Overall, approximately 24% demonstrated decreased IADL scores over the 3 months, with domains of home activities, laundry, shopping, and getting places declining the most. Over this time, 18% fell often, and 11% were consistently hospitalized. Between 1 and 3 months follow up, 41% declined in mental component scores, and 50% declined in physical component scores. Low mental and physical component quality of life scores were associated with downstream increased falls and hospitalizations, and decreased quality of life and IADLs. However, change in the four outcome measures was largely independent in factor analysis. Conclusion: Measuring the four outcome measures over 3 months post-discharge from an ED presentation, showed that

  13. Pseudonymization of patient identifiers for translational research.

    Science.gov (United States)

    Aamot, Harald; Kohl, Christian Dominik; Richter, Daniela; Knaup-Gregori, Petra

    2013-07-24

    The usage of patient data for research poses risks concerning the patients' privacy and informational self-determination. Next-generation-sequencing technologies and various other methods gain data from biospecimen, both for translational research and personalized medicine. If these biospecimen are anonymized, individual research results from genomic research, which should be offered to patients in a clinically relevant timeframe, cannot be associated back to the individual. This raises an ethical concern and challenges the legitimacy of anonymized patient samples. In this paper we present a new approach which supports both data privacy and the possibility to give feedback to patients about their individual research results. We examined previously published privacy concepts regarding a streamlined de-pseudonymization process and a patient-based pseudonym as applicable to research with genomic data and warehousing approaches. All concepts identified in the literature review were compared to each other and analyzed for their applicability to translational research projects. We evaluated how these concepts cope with challenges implicated by personalized medicine. Therefore, both person-centricity issues and a separation of pseudonymization and de-pseudonymization stood out as a central theme in our examination. This motivated us to enhance an existing pseudonymization method regarding a separation of duties. The existing concepts rely on external trusted third parties, making de-pseudonymization a multistage process involving additional interpersonal communication, which might cause critical delays in patient care. Therefore we propose an enhanced method with an asymmetric encryption scheme separating the duties of pseudonymization and de-pseudonymization. The pseudonymization service provider is unable to conclude the patient identifier from the pseudonym, but assigns this ability to an authorized third party (ombudsman) instead. To solve person-centricity issues, a

  14. A Triplet Repeat Expansion Genetic Mouse Model of Infantile Spasms Syndrome, Arx(GCG)10+7, with Interneuronopathy, Spasms in Infancy, Persistent Seizures, and Adult Cognitive and Behavioral Impairment

    Science.gov (United States)

    Price, Maureen G.; Yoo, Jong W.; Burgess, Daniel L.; Deng, Fang; Hrachovy, Richard A.; Frost, James D.; Noebels, Jeffrey L.

    2009-01-01

    Infantile spasms syndrome (ISS) is a catastrophic pediatric epilepsy with motor spasms, persistent seizures, mental retardation, and in some cases, autism. One of its monogenic causes is an insertion mutation (c.304ins (GCG)7) on the X chromosome, expanding the first polyalanine tract of the interneuron-specific transcription factor ARX from 16 to 23 alanine codons. Null mutation of the Arx gene impairs GABA- and cholinergic interneuronal migration but results in a neonatal lethal phenotype. We developed the first viable genetic mouse model of ISS that spontaneously recapitulates salient phenotypic features of the human triplet-repeat expansion mutation. Arx (GCG)10+7 (“Arx Plus7”) pups display abnormal spasm-like myoclonus and other key EEG features, including multifocal spikes, electrodecremental episodes, and spontaneous seizures persisting into maturity. The neurobehavioral profile of Arx mutants was remarkable for lowered anxiety, impaired associative learning, and abnormal social interaction. Laminar decreases of Arx+ cortical interneurons and a selective reduction of calbindin-, but not parvalbumin- or calretinin-expressing interneurons in neocortical layers and hippocampus indicate that specific classes of synaptic inhibition are missing from the adult forebrain, providing a basis for the seizures and cognitive disorder. A significant reduction of calbindin, NPY-expressing and cholinergic interneurons in the mutant striatum suggest that dysinhibition within this network may contribute to the dyskinetic motor spasms. This mouse model narrows the range of critical pathogenic elements within brain inhibitory networks essential to recreate this complex neurodevelopmental syndrome. PMID:19587282

  15. Can we identify source lithology of basalt?

    Science.gov (United States)

    Yang, Zong-Feng; Zhou, Jun-Hong

    2013-01-01

    The nature of source rocks of basaltic magmas plays a fundamental role in understanding the composition, structure and evolution of the solid earth. However, identification of source lithology of basalts remains uncertainty. Using a parameterization of multi-decadal melting experiments on a variety of peridotite and pyroxenite, we show here that a parameter called FC3MS value (FeO/CaO-3*MgO/SiO2, all in wt%) can identify most pyroxenite-derived basalts. The continental oceanic island basalt-like volcanic rocks (MgO>7.5%) (C-OIB) in eastern China and Mongolia are too high in the FC3MS value to be derived from peridotite source. The majority of the C-OIB in phase diagrams are equilibrium with garnet and clinopyroxene, indicating that garnet pyroxenite is the dominant source lithology. Our results demonstrate that many reputed evolved low magnesian C-OIBs in fact represent primary pyroxenite melts, suggesting that many previous geological and petrological interpretations of basalts based on the single peridotite model need to be reconsidered.

  16. Process to identify and evaluate restoration options

    International Nuclear Information System (INIS)

    Strand, J.; Senner, S.; Weiner, A.; Rabinowitch, S.; Brodersen, M.; Rice, K.; Klinge, K.; MacMullin, S.; Yender, R.; Thompson, R.

    1993-01-01

    The restoration planning process has yielded a number of possible alternatives for restoring resources and services injured by the Exxon Valdez oil spill. They were developed by resource managers, scientists, and the public, taking into consideration the results of damage assessment and restoration studies and information from the scientific literature. The alternatives thus far identified include no action natural recovery, management of human uses, manipulation of resources, habitat protection and acquisition, acquisition of equivalent resources, and combinations of the above. Each alternative consists of a different mix of resource- or service-specific restoration options. To decide whether it was appropriate to spend restoration funds on a particular resource or service, first criteria had to be developed that evaluated available evidence for consequential injury and the adequacy and rate of natural recovery. Then, recognizing the range of effective restoration options, a second set of criteria was applied to determine which restoration options were the most beneficial. These criteria included technical feasibility, potential to improve the rate or degree of recovery, the relationship of expected costs to benefits, cost effectiveness, and the potential to restore the ecosystem as a whole. The restoration options considered to be most beneficial will be grouped together in several or more of the above alternatives and presented in a draft restoration plan. They will be further evaluated in a companion draft environmental impact statement

  17. Identifying Memory Allocation Patterns in HEP Software

    Science.gov (United States)

    Kama, S.; Rauschmayr, N.

    2017-10-01

    HEP applications perform an excessive amount of allocations/deallocations within short time intervals which results in memory churn, poor locality and performance degradation. These issues are already known for a decade, but due to the complexity of software frameworks and billions of allocations for a single job, up until recently no efficient mechanism has been available to correlate these issues with source code lines. However, with the advent of the Big Data era, many tools and platforms are now available to do large scale memory profiling. This paper presents, a prototype program developed to track and identify each single (de-)allocation. The CERN IT Hadoop cluster is used to compute memory key metrics, like locality, variation, lifetime and density of allocations. The prototype further provides a web based visualization back-end that allows the user to explore the results generated on the Hadoop cluster. Plotting these metrics for every single allocation over time gives a new insight into application’s memory handling. For instance, it shows which algorithms cause which kind of memory allocation patterns, which function flow causes how many short-lived objects, what are the most commonly allocated sizes etc. The paper will give an insight into the prototype and will show profiling examples for the LHC reconstruction, digitization and simulation jobs.

  18. NASA EOSDIS Data Identifiers: Approach and System

    Directory of Open Access Journals (Sweden)

    Lalit Wanchoo

    2017-04-01

    Full Text Available NASA’s Earth Science Data and Information System (ESDIS Project began investigating the use of Digital Object Identifiers (DOIs in 2010 with the goal of assig