WorldWideScience

Sample records for nemosis induces angiogenic

  1. Nemosis, a novel way of fibroblast activation, in inflammation and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi [Haartman Institute, POB 21, FI-00014 University of Helsinki (Finland); Enzerink, Anna; Raesaenen, Kati; Salmenperae, Pertteli [Haartman Institute, POB 21, FI-00014 University of Helsinki (Finland)

    2009-06-10

    Malignant cells when grown in suspension, as a rule, proliferate and can form spheroids that have been used as a model of tumor nodules, micrometastases and avascular tumors. In contrast, normal adherent cells cannot be stimulated to grow as multicellular aggregates. Now, recent results show that normal fibroblasts if forced to cluster (spheroid formation) do not grow but undergo a new pathway of cell activation (nemosis) leading to a massive proinflammatory, proteolytic and growth factor response. The clustering and activation are initiated by fibronectin-integrin interaction. The activated fibroblasts are able to modulate the behavior of cancer cells and, furthermore malignant cells boost this activation even further. In this model, the activation of fibroblasts terminates in programmed necrosis-like cell death. Activation of the tumor stroma, especially of fibroblasts, is of critical importance for tumor progression, although mechanisms leading to their activation are still largely uncharacterized. In summary, our results suggest that this kind of fibroblast activation (nemosis) may be involved in pathological conditions such as inflammation and cancer.

  2. Nemosis, a novel way of fibroblast activation, in inflammation and cancer

    International Nuclear Information System (INIS)

    Vaheri, Antti; Enzerink, Anna; Raesaenen, Kati; Salmenperae, Pertteli

    2009-01-01

    Malignant cells when grown in suspension, as a rule, proliferate and can form spheroids that have been used as a model of tumor nodules, micrometastases and avascular tumors. In contrast, normal adherent cells cannot be stimulated to grow as multicellular aggregates. Now, recent results show that normal fibroblasts if forced to cluster (spheroid formation) do not grow but undergo a new pathway of cell activation (nemosis) leading to a massive proinflammatory, proteolytic and growth factor response. The clustering and activation are initiated by fibronectin-integrin interaction. The activated fibroblasts are able to modulate the behavior of cancer cells and, furthermore malignant cells boost this activation even further. In this model, the activation of fibroblasts terminates in programmed necrosis-like cell death. Activation of the tumor stroma, especially of fibroblasts, is of critical importance for tumor progression, although mechanisms leading to their activation are still largely uncharacterized. In summary, our results suggest that this kind of fibroblast activation (nemosis) may be involved in pathological conditions such as inflammation and cancer.

  3. Angiogenic effect induced by mineral fibres

    International Nuclear Information System (INIS)

    Carbonari, Damiano; Campopiano, Antonella; Ramires, Deborah; Strafella, Elisabetta; Staffolani, Sara; Tomasetti, Marco; Curini, Roberta; Valentino, Matteo; Santarelli, Lory; Amati, Monica

    2011-01-01

    Highlights: → In this study we described the angiogenetic effect of some mineral fibres. → Wollastonite fibres induce blood vessel formation. → The size and shape of the fibres were important factors for the cell signalling. → Wollastonite induce ROS-NFκB activation and EGFR signalling. → Involvement of wollastonite exposure in the development of pathological conditions. -- Abstract: Due to the toxic effect of asbestos, other materials with similar chemical-physical characteristics have been introduced to substitute it. We evaluate the angiogenic effect of certain asbestos substitute fibres such as glass fibres (GFs), ceramic fibres (CFs) and wollastonite fibres (WFs) and then compare angiogenic responses to those induced by crocidolite asbestos fibres (AFs). An in vitro model using human endothelial cells in small islands within a culture matrix of fibroblasts (Angio-Kit) was used to evaluate vessel formation. The release of IL-6, sIL-R6, IL-8, VEGF-A and their soluble receptors, sVEGFR-1, sVEGFR-2, was determined in the conditioning medium of Angio-Kit system after fibre treatment. ROS formation and cell viability were evaluated in cultured endothelial cells (HUVEC). To evaluate the involvement of intracellular mechanisms, EGFR signalling, ROS formation and nuclear factor-κB (NFκB) pathway were then inhibited by incubating HUVEC cells with AG1478, NAC and PDTC respectively, and the cytokine and growth factor release was analyzed in the culture medium after 7 days of fibre incubation. Among the mineral fibres tested, WFs markedly induced blood vessel formation which was associated with release of IL-6 and IL-8, VEGF-A and their soluble receptors. ROS production was observed in HUVEC after WFs treatment which was associated with cell cytotoxicity. The EGFR-induced ERK phosphorylation and ROS-mediated NFκB activation were involved in the cytokine and angiogenic factor release. However, only the EGFR activation was able to induce angiogenesis. The WFs

  4. VEGF-independent angiogenic pathways induced by PDGF-C

    Science.gov (United States)

    Kumar, Anil; Zhang, Fan; Lee, Chunsik; Li, Yang; Tang, Zhongshu; Arjunan, Pachiappan

    2010-01-01

    VEGF is believed to be a master regulator in both developmental and pathological angiogenesis. The role of PDGF-C in angiogenesis, however, is only at the beginning of being revealed. We and others have shown that PDGF-C is a critical player in pathological angiogenesis because of its pleiotropic effects on multiple cellular targets. The angiogenic pathways induced by PDGF-C are, to a large extent, VEGF-independent. These pathways may include, but not limited to, the direct effect of PDGF-C on vascular cells, the effect of PDGF-C on tissue stroma fibroblasts, and its effect on macrophages. Taken together, the pleiotropic, versatile and VEGF-independent angiogenic nature of PDGF-C has placed it among the most important target genes for antiangiogenic therapy. PMID:20871734

  5. Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling.

    Science.gov (United States)

    Toivanen, Pyry I; Nieminen, Tiina; Laakkonen, Johanna P; Heikura, Tommi; Kaikkonen, Minna U; Ylä-Herttuala, Seppo

    2017-07-17

    Vascular Endothelial Growth Factors (VEGFs) are promising molecules for the treatment of ischemic diseases by pro-angiogenic therapy. Snake venom VEGFs are a novel subgroup with unique receptor binding profiles and as such are potential new therapeutic agents. We determined the ligand-receptor interactions, gene regulation and angiogenic properties of Vipera ammodytes venom VEGF, Vammin, and compared it to the canonical angiogenic factor VEGF-A to evaluate the use of Vammin for therapeutic angiogenesis. Vammin efficiently induced VEGFR-2 mediated proliferation and expression of genes associated with proliferation, migration and angiogenesis. VEGF-A 165 and especially VEGF-A 109 induced less pronounced effects. Vammin regulates a number of signaling pathways by inducing the expression of NR4A family nuclear receptors and regulators of calcium signaling and MAP kinase pathways. Interestingly, MARC1, which encodes an enzyme discovered to catalyze reduction of nitrate to NO, was identified as a novel VEGFR-2 regulated gene. In rabbit skeletal muscle adenoviral delivery of Vammin induced prominent angiogenic responses. Both the vector dose and the co-receptor binding of the ligand were critical parameters controlling the type of angiogenic response from sprouting angiogenesis to vessel enlargement. Vammin induced VEGFR-2/NRP-1 mediated signaling more effectively than VEGF-A, consequently it is a promising candidate for development of pro-angiogenic therapies.

  6. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  7. Roles of pro-angiogenic and anti-angiogenic factors as well as matrix metalloproteinases in healing of NSAID-induced small intestinal ulcers in rats.

    Science.gov (United States)

    Gyenge, Melinda; Amagase, Kikuko; Kunimi, Shino; Matsuoka, Rie; Takeuchi, Koji

    2013-10-06

    We examined changes in the expression of a pro-angiogenic factor, vascular endothelial growth factor (VEGF), and an anti-angiogenic factor, endostatin, as well as matrix metalloproteinase (MMP)-2 and MMP-9 in the rat small intestine after administration of indomethacin and investigated the roles of these factors in the healing of indomethacin-induced small intestinal ulcers. Male SD rats were given indomethacin (10mg/kg) p.o. and euthanized at various time points (3-24h and 2-7days) after the administration. To impair the healing of these lesions, low-dose of indomethacin (2mg/kg) was given p.o. once daily for 6days starting 1day after ulceration. Levels of VEGF, endostatin, MMP-2 and MMP-9 were determined by Western blotting. The expression of both VEGF and endostatin was upregulated after the ulceration. Repeated administration of low-dose indomethacin impaired the ulcer healing with a decrease of VEGF expression and a further increase of endostatin expression, resulting in a marked decrease in the ratio of VEGF/endostatin expression. The levels of MMP-2 and MMP-9 were both significantly increased after the ulceration, but these responses were suppressed by the repeated indomethacin treatment. The healing of these ulcers was significantly delayed by the repeated administration of MMP inhibitors such as ARP-101 and SB-3CT. The results confirm the importance of the balance between pro-angiogenic and anti-angiogenic activities in the healing of indomethacin-induced small intestinal damage and further suggest that the increased expression of MMP-2 and MMP-9 is another important factor for ulcer healing in the small intestine. © 2013.

  8. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    International Nuclear Information System (INIS)

    Gonzalez-Perez, Ruben Rene; Lanier, Viola; Newman, Gale

    2013-01-01

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis

  9. Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade.

    Directory of Open Access Journals (Sweden)

    Xiangying Kong

    Full Text Available Rheumatoid arthritis (RA is characterized by a pre-vascular seriously inflammatory phase, followed by a vascular phase with high increase in vessel growth. Since angiogenesis has been considered as an essential event in perpetuating inflammatory and immune responses, as well as supporting pannus growth and development of RA, inhibition of angiogenesis has been proposed as a novel therapeutic strategy for RA. Triptolide, a diterpenoid triepoxide from Tripterygium wilfordii Hook F, has been extensively used in treatment of RA patients. It also acts as a small molecule inhibitor of tumor angiogenesis in several cancer types. However, it is unclear whether triptolide possesses an anti-angiogenic effect in RA. To address this problem, we constructed collagen-induced arthritis (CIA model using DA rats by the injection of bovine type II collagen. Then, CIA rats were treated with triptolide (11-45 µg/kg/day starting on the day 1 after first immunization. The arthritis scores (P<0.05 and the arthritis incidence (P<0.05 of inflamed joints were both significantly decreased in triptolide-treated CIA rats compared to vehicle CIA rats. More interestingly, doses of 11~45 µg/kg triptolide could markedly reduce the capillaries, small, medium and large vessel density in synovial membrane tissues of inflamed joints (all P<0.05. Moreover, triptolide inhibited matrigel-induced cell adhesion of HFLS-RA and HUVEC. It also disrupted tube formation of HUVEC on matrigel and suppressed the VEGF-induced chemotactic migration of HFLS-RA and HUVEC, respectively. Furthermore, triptolide significantly reduced the expression of angiogenic activators including TNF-α, IL-17, VEGF, VEGFR, Ang-1, Ang-2 and Tie2, as well as suppressed the IL1-β-induced phosphorylated of ERK, p38 and JNK at protein levels. In conclusion, our data suggest for the first time that triptolide may possess anti-angiogenic effect in RA both in vivo and in vitro assay systems by downregulating the

  10. Identification of a potent endothelium-derived angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Vera Jankowski

    Full Text Available The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N=6 were sufficient to induce angiogenic and proliferative effects (1.34 ± 0.26 nmol L(-1. In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.

  11. Is human fracture hematoma inherently angiogenic?

    LENUS (Irish Health Repository)

    Street, J

    2012-02-03

    This study attempts to explain the cellular events characterizing the changes seen in the medullary callus adjacent to the interfragmentary hematoma during the early stages of fracture healing. It also shows that human fracture hematoma contains the angiogenic cytokine vascular endothelial growth factor and has the inherent capability to induce angiogenesis and thus promote revascularization during bone repair. Patients undergoing emergency surgery for isolated bony injury were studied. Raised circulating levels of vascular endothelial growth factor were seen in all injured patients, whereas the fracture hematoma contained significantly higher levels of vascular endothelial growth factor than did plasma from these injured patients. However, incubation of endothelial cells in fracture hematoma supernatant significantly inhibited the in vitro angiogenic parameters of endothelial cell proliferation and microtubule formation. These phenomena are dependent on a local biochemical milieu that does not support cytokinesis. The hematoma potassium concentration is cytotoxic to endothelial cells and osteoblasts. Subcutaneous transplantation of the fracture hematoma into a murine wound model resulted in new blood vessel formation after hematoma resorption. This angiogenic effect is mediated by the significant concentrations of vascular endothelial growth factor found in the hematoma. This study identifies an angiogenic cytokine involved in human fracture healing and shows that fracture hematoma is inherently angiogenic. The differences between the in vitro and in vivo findings may explain the phenomenon of interfragmentary hematoma organization and resorption that precedes fracture revascularization.

  12. Synthetic Receptors Induce Anti Angiogenic and Stress Signaling on Human First Trimester Cytotrophoblast Cells

    Directory of Open Access Journals (Sweden)

    Ahmed F. Pantho

    2017-05-01

    Full Text Available The cytotrophoblast (CTB cells of the human placenta have membrane receptors that bind certain cardiotonic steroids (CTS found in blood plasma. One of these, marinobufagenin, is a key factor in the etiology of preeclampsia. Herein, we used synthetic receptors (SR to study their effectiveness on the angiogenic profile of human first trimester CTB cells. The humanextravillous CTB cells (Sw.71 used in this study were derived from first trimester chorionic villus tissue. Culture media of CTB cells treated with ≥1 nM SR level revealed sFlt-1 (Soluble fms-like tyrosine kinase-1 was significantly increased while VEGF (vascular endothelial growth factor was significantly decreased in the culture media (* p < 0.05 for each The AT2 receptor (Angiotensin II receptor type 2 expression was significantly upregulated in ≥1 nM SR-treated CTB cells as compared to basal; however, the AT1 (Angiotensin II receptor, type 1 and VEGFR-1 (vascular endothelial growth factor receptor 1 receptor expression was significantly downregulated (* p < 0.05 for each. Our results show that the anti-proliferative and anti-angiogenic effects of SR on CTB cells are similar to the effects of CTS. The observed anti angiogenic activity of SR on CTB cells demonstrates that the functionalized-urea/thiourea molecules may be useful as potent inhibitors to prevent CTS-induced impairment of CTB cells.

  13. The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia

    Directory of Open Access Journals (Sweden)

    Pooneh Nikuei

    2015-07-01

    Full Text Available Preeclampsia is an important pregnancy disorder with serious maternal and fetal complications which its etiology has not been completely understood yet. Early diagnosis and management of disease could reduce its potential side effects. The vascular endothelial growth factor (VEGF family including VEGF-A is the most potent endothelial growth factor which induces angiogenesis and endothelial cell proliferation and has basic role in vasculogenesis. VEGF and its tyrosine kinase receptors (Flt1 and KDR are major factors for fetal and placental angiogenic development. Finding mechanisms involved in expression of angiogenic factors may lead to new prognostic and therapeutic points in management of preeclampsia. Recent researches, has shown capability of some anti-angiogenic factors as potential candidate to be used as early predictors for preeclampsia. Soluble fms-like tyrosin kinase-1 (sFlt1 is a truncated splice variant of the membrane-bound VEGF receptor Flt1, that is produced by the placenta and it can bind to angiogenic growth factors and neutraliz, their effects. It is also observed that the ratio of sFlt1 to placental growth factor is valuable as prognostic marker. In this review, VEGF family member’s role in angiogenesis is evaluated as biomarkers to be used for prediction of preeclampsia.

  14. Platelet lysate-based pro-angiogenic nanocoatings.

    Science.gov (United States)

    Oliveira, Sara M; Pirraco, Rogério P; Marques, Alexandra P; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L; Mano, João F

    2016-03-01

    Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenic-associated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Karl Egan

    Full Text Available Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.

  16. Angiogenic activity of sesamin through the activation of multiple signal pathways

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Lee, Jung Joon; Kim, Jong-Dai; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125 FAK -, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  17. HIF-1α effects on angiogenic potential in human small cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Xia Wanli

    2011-08-01

    Full Text Available Abstract Background Hypoxia-inducible factor-1 alpha (HIF-1α maybe an important regulatory factor for angiogenesis of small cell lung cancer (SCLC. Our study aimed to investigate the effect of HIF-1α on angiogenic potential of SCLC including two points: One is the effect of HIF-1α on the angiogenesis of SCLC in vivo. The other is the regulation of angiogenic genes by HIF-1α in vitro and in vivo. Methods In vivo we used an alternative method to study the effect of HIF-1a on angiogenic potential of SCLC by buliding NCI-H446 cell transplantation tumor on the chick embryo chorioallantoic membrane (CAM surface. In vitro we used microarray to screen out the angiogenic genes regulated by HIF-1a and tested their expression level in CAM transplantation tumor by RT-PCR and Western-blot analysis. Results In vivo angiogenic response surrounding the SCLC transplantation tumors in chick embryo chorioallantoic membrane (CAM was promoted after exogenous HIF-1α transduction (p In vitro the changes of angiogenic genes expression induced by HIF-1α in NCI-H446 cells were analyzed by cDNA microarray experiments. HIF-1α upregulated the expression of angiogenic genes VEGF-A, TNFAIP6, PDGFC, FN1, MMP28, MMP14 to 6.76-, 6.69-, 2.26-, 2.31-, 4.39-, 2.97- fold respectively and glycolytic genes GLUT1, GLUT2 to2.98-, 3.74- fold respectively. In addition, the expression of these angiogenic factors were also upregulated by HIF-1α in the transplantion tumors in CAM as RT-PCR and Western-blot analysis indicated. Conclusions These results indicated that HIF-1α may enhance the angiogenic potential of SCLC by regulating some angiogenic genes such as VEGF-A, MMP28 etc. Therefore, HIF-1α may be a potential target for the gene targeted therapy of SCLC.

  18. Development of a surrogate angiogenic potency assay for clinical-grade stem cell production.

    Science.gov (United States)

    Lehman, Nicholas; Cutrone, Rochelle; Raber, Amy; Perry, Robert; Van't Hof, Wouter; Deans, Robert; Ting, Anthony E; Woda, Juliana

    2012-09-01

    Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.

  19. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model.

    Science.gov (United States)

    O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy

    2013-01-01

    Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non

  20. Different angiogenic phenotypes in primary and secondary glioblastomas.

    Science.gov (United States)

    Karcher, Sibylle; Steiner, Hans-Herbert; Ahmadi, Rezvan; Zoubaa, Saida; Vasvari, Gergely; Bauer, Harry; Unterberg, Andreas; Herold-Mende, Christel

    2006-05-01

    Primary and secondary glioblastomas (pGBM, sGBM) are supposed to evolve through different genetic pathways, including EGF receptor and PDGF and its receptor and thus genes that are involved in tumor-induced angiogenesis. However, whether other angiogenic cytokines are also differentially expressed in these glioblastoma subtypes is not known so far, but this knowledge might be important to optimize an antiangiogenic therapy. Therefore, we studied the expression of several angiogenic cytokines, including VEGF-A, HGF, bFGF, PDGF-AB, PDGF-BB, G-CSF and GM-CSF in pGBMs and sGBMs as well as in gliomas WHO III, the precursor lesions of sGBMs. In tumor tissues, expression of all cytokines was observed albeit with marked differences concerning intensity and distribution pattern. Quantification of the cytokines in the supernatant of 30 tissue-corresponding glioma cultures revealed a predominant expression of VEGF-A in pGBMs and significantly higher expression levels of PDGF-AB in sGBMs. HGF and bFGF were determined in nearly all tumor cultures but with no GBM subtype or malignancy-related differences. Interestingly, GM-CSF and especially G-CSF were produced less frequently by tumor cells. However, GM-CSF secretion occurred together with an increased number of simultaneously secreted cytokines and correlated with a worse patient prognosis and may thus represent a more aggressive angiogenic phenotype. Finally, we confirmed an independent contribution of each tumor-derived cytokine analyzed to tumor-induced vascularization. Our data indicate that an optimal antiangiogenic therapy may require targeting of multiple angiogenic pathways that seem to differ markedly in pGBMs and sGBMs. 2005 Wiley-Liss, Inc.

  1. Anti-angiogenic activity and phytochemical screening of fruit fractions from Vitex agnus castus.

    Science.gov (United States)

    Certo, Giovanna; Costa, Rosaria; D'Angelo, Valeria; Russo, Marina; Albergamo, Ambrogina; Dugo, Giacomo; Germanò, Maria Paola

    2017-12-01

    Although the antitumour activity of Vitex agnus castus fruits has been already addressed, no work has yet assessed their anti-angiogenic potential. To this purpose, several extractive fractions of such fruits were tested on zebrafish embrios by EAP assay, so that only the bioactive fractions could be subsequently tested on the chick chorioallantoic membrane by CAM assay. Bioactive fractions were also phytochemically screened to identify those bioactive compounds responsible for anti-angiogenic activity. A marked inhibition of vessel formation was detected only in zebrafish embryos treated with chloroform or ethyl acetate fractions. Considering CAM assay, chloroform fraction induced a strong reduction of microvasculature and haemoglobin content; while lower anti-angiogenic effects of the ethyl acetate fraction were determined. Phytochemical analyses confirmed the presence of several bioactive anti-angiogenic compounds. Overall, obtained preliminary results highlighted a potential anti-angiogenic activity of V. agnus castus fruits.

  2. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression.

    Science.gov (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata

    2016-02-01

    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Pextra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Evaluation of the in vitro and in vivo angiogenic effects of exendin-4

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye-Min [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Kang, Yujung; Chun, Hyung J. [Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (United States); Jeong, Joo-Won [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Park, Chan, E-mail: psychan@khu.ac.kr [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2013-04-26

    Highlights: •We investigated the effects of exendin-4 on the angiogenic process. •Exendin-4 increased migration, sprouting, and tube formation by HUVECs in in vitro. •Exendin-4 increased sprouts in aortic rings and induced new vessels in Matrigel in in vivo. •Exendin-4 may be of potential use for the treatment of vascular complications of diabetes. -- Abstract: Exendin-4, an analog of glucagon-like peptide (GLP)-1, has beneficial effects on cardiovascular disease induced by diabetes mellitus (DM). Recently, exendin-4 was reported to induce the proliferation of endothelial cells. However, its angiogenic effect on endothelial cells has not been clearly evaluated. Therefore, we investigated the effects of exendin-4 on the angiogenic process with respect to migration, sprouting, and neovascularization using in vitro and in vivo assays. Treatment with exendin-4 increased the migration of human umbilical vein endothelial cells (HUVECs) in in vitro scratch wound assays, as well as the number of lumenized vessels sprouting from HUVECs in in vitro 3D bead assays. These responses were abolished by co-treatment with exendin (9–39), a GLP-1 receptor antagonist, which suggests that exendin-4 regulates endothelial cell migration and tube formation in a GLP-1 receptor-dependent manner. In an ex vivo assay, treatment of aortic rings with exendin-4 increased the sprouting of endothelial cells. Exendin-4 also significantly increased the number of new vessels and induced blood flow in Matrigel plugs in in vivo assays. Our results provide clear evidence for the angiogenic effect of exendin-4 in in vitro and in vivo assays and provide a mechanism underlying the cardioprotective effects of exendin-4.

  4. Characterizing the angiogenic activity of patients with single ventricle physiology and aortopulmonary collateral vessels.

    Science.gov (United States)

    Sandeep, Nefthi; Uchida, Yutaka; Ratnayaka, Kanishka; McCarter, Robert; Hanumanthaiah, Sridhar; Bangoura, Aminata; Zhao, Zhen; Oliver-Danna, Jacqueline; Leatherbury, Linda; Kanter, Joshua; Mukouyama, Yoh-Suke

    2016-04-01

    Patients with single ventricle congenital heart disease often form aortopulmonary collateral vessels via an unclear mechanism. To gain insights into the pathogenesis of aortopulmonary collateral vessels, we correlated angiogenic factor levels with in vitro activity and angiographic aortopulmonary collateral assessment and examined whether patients with single ventricle physiology have increased angiogenic factors that can stimulate endothelial cell sprouting in vitro. In patients with single ventricle physiology (n = 27) and biventricular acyanotic control patients (n = 21), hypoxia-inducible angiogenic factor levels were measured in femoral venous and arterial plasma at cardiac catheterization. To assess plasma angiogenic activity, we used a 3-dimensional in vitro cell sprouting assay that recapitulates angiogenic sprouting. Aortopulmonary collateral angiograms were graded using a 4-point scale. Compared with controls, patients with single ventricle physiology had increased vascular endothelial growth factor (artery: 58.7 ± 1.2 pg/mL vs 35.3 ± 1.1 pg/mL, P collateral severity. We are the first to correlate plasma angiogenic factor levels with angiography and in vitro angiogenic activity in patients with single ventricle disease with aortopulmonary collaterals. Patients with single ventricle disease have increased stromal-derived factor 1-alpha and soluble fms-like tyrosine kinase-1, and their roles in aortopulmonary collateral formation require further investigation. Plasma factors and angiogenic activity correlate poorly with aortopulmonary collateral severity in patients with single ventricles, suggesting complex mechanisms of angiogenesis. Published by Elsevier Inc.

  5. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    Science.gov (United States)

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent; Griffioen, Arjan W.

    2007-01-01

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  7. Targeting different angiogenic pathways with combination of curcumin, leflunomide and perindopril inhibits diethylnitrosamine-induced hepatocellular carcinoma in mice.

    Science.gov (United States)

    Nasr, Magda; Selima, Eman; Hamed, Omar; Kazem, Amany

    2014-01-15

    No effective chemopreventive agent has been approved against hepatocellular carcinoma (HCC) to date. Since HCC is one of the hypervascular solid tumors, blocking angiogenesis represents an intriguing approach to HCC chemoprevention. The aim of the current study was to examine the combined effect of the anti-angiogenic agents: leflunomide; a disease modifying antirheumatic drug, perindopril; an angiotensin converting enzyme inhibitor (ACEI) and curcumin; the active principle of turmeric, on diethylnitrosamine (DEN)-induced HCC in mice. Eight weeks following DEN administration, there was a significant rise in immunohistochemical staining of CD31-positive endothelial cells and consequently hepatic microvessel density (MVD) as compared to normal liver. DEN treatment was associated with elevation in hepatic vascular endothelial growth factor (VEGF) level as compared to normal controls (Pcurcumin alone abrogated the DEN-induced increased MVD as well as the elevated expression of VEGF, while only curcumin inhibited HIF-1α hepatic expression. Combination of these agents showed further inhibitory action on neovascularization and synergistic attenuation of hepatic VEGF (1954.27±115pg/ml) when compared to each single agent. Histopathological examination revealed a more beneficial chemopreventive activity in the combination group compared to each monotherapy. In conclusion, the combination treatment of leflunomide, perindopril and curcumin targeting different angiogenic pathways, resulted in synergistic inhibition of angiogenesis and consequently more effective chemoprevention of HCC. © 2013 Published by Elsevier B.V.

  8. In vitro and in vivo anti-angiogenic activities of Panduratin A.

    Directory of Open Access Journals (Sweden)

    Siew-Li Lai

    Full Text Available Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA, a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays.PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs with IC(50 value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2 secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy.

  9. CXCL16 is a novel angiogenic factor for human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Zhuge, Xin; Murayama, Toshinori; Arai, Hidenori; Yamauchi, Ryoko; Tanaka, Makoto; Shimaoka, Takeshi; Yonehara, Shin; Kume, Noriaki; Yokode, Masayuki; Kita, Toru

    2005-01-01

    CXCL16 is a unique chemokine with characteristics as a receptor for phosphatidylserine and oxidized low density lipoproteins in macrophages, and is involved in the accumulation of cellular cholesterol during atherosclerotic lesion development. In this study, we report a new function of CXCL16 as a novel angiogenic factor in human umbilical vein endothelial cells (HUVEC). CXCL16 stimulated proliferation and chemotaxis of HUVEC in a dose-dependent manner, reaching a maximum at 1 nM. CXCL16 also significantly induced tube formation of HUVEC on Matrigel. Further, exposure of HUVEC to CXCL16 led to a time- and dose-dependent activation of mitogen-activated protein kinase (ERK1/2), which was completely inhibited by a mitogen-activated protein kinase kinase inhibitor, PD98059. Proliferation and tube formation in response to CXCL16 were also blocked by the pretreatment with PD98059, but not CXCL16-induced chemotaxis. Thus, our data indicate that CXCL16 may act as a novel angiogenic factor for HUVEC and that ERK is involved as an important signaling molecule to mediate its angiogenic effects

  10. Angiopoietin-like-4 is a potential angiogenic mediator in arthritis

    NARCIS (Netherlands)

    Hermann, L.M.; Pinkerton, M.; Jennings, K.; Yang, L.; Grom, A.; Sowders, D.; Kersten, A.H.; Witte, D.P.; Hirsch, R.; Thornton, S.

    2005-01-01

    Our previous studies of gene expression profiling during collagen-induced arthritis (CIA) indicated that the putative angiogenic factor Angptl4 was one of the most highly expressed mRNAs early in disease. To investigate the potential involvement of Angptl4 in CIA pathogenesis, Angptl4 protein levels

  11. Systemic Effects of Anti-Angiogenic Therapy

    International Nuclear Information System (INIS)

    Starlinger, P.

    2011-01-01

    Anti-angiogenic cancer therapy has gained importance within the past decades. In this context, Bevacizumab, a monoclonal antibody neutralizing vascular endothelial growth factor, has been approved for clinical use. The combination of chemotherapy with Bevacizumab has shown a remarkable benefit in several neoplastic entities. However, a notable number of patients do not respond to this therapy. Furthermore, response to therapy seems to be short-lived. The primary topic of this PhD thesis was to characterize systemic effects of anti-angiogenic therapy to possibly identify mechanisms that could explain this heterogeneity in therapy response. To this end, a carefully selected subset of angiogenesis factors were monitored in detail in the course of a clinical study of pancreatic cancer receiving gemcitabine based anti-angiogenic therapy with Bevacizumab. To enable the reliable monitoring of angiogenesis parameters, we initially defined an optimized procedure to evaluate angiogenesis factors in blood. During these investigations a remarkable association of circulating angiogenic growth factors with platelet counts and activation was observed. Strikingly, we were able to confirm this association in the clinical setting. In particular, the anti-angiogenic factor thrombospondin-1 (TSP-1) correlated with platelet counts. We further showed that the highly myelosuppressive chemotherapeutic agent gemcitabine resulted in a decrease of platelet counts and circulating TSP-1 levels. As a result, we hypothesized that the choice of chemotherapy might affect the angiogenic balance and counteract the therapeutic effect of bevacizumab. This notion was further supported by a careful evaluation of other studies reporting on the combination of Bevacizumab with thrombocytopenic chemotherapies which were generally of minor therapeutic benefit for cancer patients. To further focus on TSP-1 as an essential modulator of neovascularization and anti-angiogenic therapy we investigated TSP-1

  12. Tumor Vesicle—Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Danilo Millimaggi

    2007-04-01

    Full Text Available Matrix metalloproteinase (MMP degradation of extracellular matrix is thought to play an important role in invasion, angiogenesis, tumor growth, and metastasis. Several studies have demonstrated that CD147/ extracellular MMP inducer, a membrane-spanning molecule highly expressed in tumor cells, may be involved in the progression of malignancies by regulating expression of MMP in peritumoral stromal cells. In the present study we show that CD147 is expressed in microvesicles derived from epithelial ovarian cancer cells and that CD147-positive vesicles may promote an angiogenic phenotype in endothelial cells in vitro. Vesicles shed by human ovarian carcinoma cell lines OVCAR3, SKOV3, and A2780 expressed different levels of CD147 and stimulated proangiogenic activities of human umbilical vein endothelial cells (HUVECs in a CD147-dependent fashion (OVCAR3 > SKOV3 > A2780. Moreover, vesicles shed by ovarian carcinoma cell line CABA I with low CD147 expression had no significant effect on the development of angiogenic phenotype in HUVECs. The treatment of OVCAR3 cells with small interfering RNA against CD147 suppressed the angiogenic potential of OVCAR3-derived microvesicles. However, transfection of CD147 cDNA into the CABA I cell line enabled CABA I-derived vesicles to induce angiogenesis and to promote MMP genes expression in HUVECs. We therefore conclude that vesicles shed by ovarian cancer cells may induce proangiogenic activities of HUVECs by a CD147-mediated mechanism.

  13. Identification of a potent endothelium-derived angiogenic factor

    DEFF Research Database (Denmark)

    Jankowski, Vera; Tölle, Markus; Tran, Thi Nguyet Anh

    2013-01-01

    The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelia...

  14. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan)

    2013-08-16

    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.

  15. Characterization of neuritin as a novel angiogenic factor

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dingding; Qin, Bo; Liu, Guoqing; Liu, Tingting; Ji, Guoqing; Wu, Yanhua [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Yu, Long, E-mail: longyu@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Neuritin protein has no effect on the endothelial cell proliferation and adhesion. Black-Right-Pointing-Pointer Neuritin protein increases endothelial cell migration. >Neuritin does not increase tumor cell proliferation in vitro. Black-Right-Pointing-Pointer Overexpression of neuritin induces tumor angiogenesis. >Overexpression of neuritin inhibits tumorigenesis. -- Abstract: Neuritin (NRN1), a neurotrophic factor, plays an important role in neurite growth and neuronal survival. In this study, we identify a new function of neuritin as a novel angiogenic factor in vitro and in vivo. Recombinant neuritin protein had no effect on the proliferation and adhesion of human umbilical vein endothelial cells (HUVEC), but it dose-dependently increased endothelial cell migration. Furthermore, overexpression of neuritin significantly promoted tumor angiogenesis, and surprisingly, it inhibited tumor growth in a xenograft tumor model. Thus, our results indicate that neuritin may act as an important angiogenic factor and serve as a potential target for cancer therapy.

  16. [Anti-angiogenic drugs].

    Science.gov (United States)

    Sato, Yasufumi

    2010-06-01

    Angiogenesis or neovascularization, the formation of neo-vessels, is a physiological phenomenon endued in vasculature, but is involved in various pathological conditions. Angiogenesis is required for tumor growth and metastasis, and thus constitutes an important target for the control of tumor progression. Indeed, the recent development of bevacizumab, a neutralizing anti-VEGF monoclonal antibody as the first anti-angiogenic drug, legalized the clinical merit of anti-angiogenesis in cancers. Thereafter, various drugs targeting VEGF-mediated signals have been developed to control tumor angiogenesis. Thus, anti-angiogenic drugs are now recognized in the clinic as a major step forward for the treatment of cancers. This review focuses on the current status of antiangiogenesis treatment in cancers.

  17. Assessment of angiogenic properties of biomaterials using the chicken embryo chorioallantoic membrane assay

    International Nuclear Information System (INIS)

    Azzarello, Joseph; Ihnat, Michael A; Kropp, Bradley P; Warnke, Linda A; Lin, H.-K.

    2007-01-01

    The angiogenic potential of a biomaterial is a critical factor for successful graft intake in tissue engineering. We developed a modified, rapid and reproducible chicken embryo chorioallantoic membrane (CAM) assay to evaluate the ability of biomaterials in inducing blood vessel density. Five biomaterials including one-layer porcine small intestinal submucosa (SIS), two-layer SIS, four-layer vacuum pressed (VP) SIS, polyglycolic acid (PGA) and PGA modified with poly(lactic-co-glycolic acid) (PLGA) were analyzed. A circular section (1.2 mm diameter) of each biomaterial was placed near a group of blood vessels in the CAM. Blood vessels around the biomaterials were captured with black and white images at 96 h post implantation; and the images were subjected to densitometry evaluation. One-layer SIS induced a significant increase in blood vessel density as compared to the cellulose nitrate negative control, and had the greatest increase in blood vessel density as compared to four-layer VP SIS, PGA, or PLGA modified PGA. Although two-layer SIS has enhanced physical structure for surgical manipulation, its induction in blood vessel density was significantly lower than the one-layer SIS. Stripping the SIS proteins or incubating one-layer SIS with neutralizing antibodies against basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) resulted in decreased angiogenesis. Consistent with results obtained from bladder augmentation animal models, these results confirmed that angiogenic growth factors were present in SIS and affected the angiogenic potential of biomaterials. These data also demonstrated that the CAM assay can be used to ascertain methodically the angiogenic potential of biomaterials

  18. Chemopreventive effect and angiogenic activity of punicalagin isolated from leaves of Lafoensia pacari A. St.-Hil

    Energy Technology Data Exchange (ETDEWEB)

    Costa Carneiro, Cristiene, E-mail: profacristiene@gmail.com [Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001970 Goiânia, GO (Brazil); Costa Santos, Suzana da [Instituto de Química, Universidade Federal de Goiás, 74001970 Goiânia, GO (Brazil); Souza Lino, Ruy de [Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605050 Goiânia, GO (Brazil); Bara, Maria Teresa Freitas; Chaibub, Beatriz Abdallah [Faculdade de Farmácia, Universidade Federal de Goiás, 74605170 Goiânia, GO (Brazil); Melo Reis, Paulo Roberto de; Chaves, Dwight Assis [Laboratório de Estudos Experimentais e Biotecnológicos, Pontifícia Universidade Católica de Goiás, 74605010 Goiânia, GO (Brazil); Ribeiro da Silva, Antônio Jorge [Núcleo de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941590 Rio de Janeiro, RJ (Brazil); Santos Silva, Luana; Melo e Silva, Daniela de; Chen-Chen, Lee [Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001970 Goiânia, GO (Brazil)

    2016-11-01

    Punicalagin is the major ellagitannin constituent from leaves of Lafoensia pacari, a Brazilian medicinal plant widely used for the treatment of peptic ulcer and wound healing. Genotoxic, cytotoxic, antigenotoxic, and anticytotoxic effects of punicalagin were assessed using micronucleus (MN) test and comet assay in mice. Due to the extensive use of L. pacari in the wound healing process, we also assessed the angiogenic activity of punicalagin using the chick chorioallantoic membrane (CAM) angiogenic assay. The highest dose of punicalagin (50 mg/kg) showed significant cytotoxic effect by MN test and in the co-treatment with cyclophosphamide (CPA), this cytotoxicity was enhanced. Co-treatment, pre-treatment and post-treatment of punicalagin with CPA led to a significant reduction in the number of DNA breaks and in the frequency of CPA-induced MN, indicating antigenotoxic effect. Using the CAM model, punicalagin exhibited angiogenic activity in all doses mainly at the lowest concentration (12.5 μg/μL). Therefore, these findings indicate an effective chemopreventive role of punicalagin and a high capacity to induce DNA repair. Also, the angiogenic activity presented by punicalagin in this study could contribute for the processes of tissue repairing and wound healing. - Highlights: • The ellagitannin punicalagin was isolated for the first time from L. pacari leaves. • The genotoxic and chemopreventive effects of punicalagin were evaluated in mice. • The highest dose of punicalagin showed significant cytotoxic effect. • Punicalagin exhibited antigenotoxic effects by the co-, pre- and post-treatment. • Punicalagin showed angiogenic activity and could be applied for tissue repairing.

  19. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    Science.gov (United States)

    Lopes, Flavia C. M.; Traina, Fabiola; Almeida, Camila B.; Leonardo, Flavia C.; Franco-Penteado, Carla F.; Garrido, Vanessa T.; Colella, Marina P.; Soares, Raquel; Olalla-Saad, Sara T.; Costa, Fernando F.; Conran, Nicola

    2015-01-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the

  20. Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase

    International Nuclear Information System (INIS)

    Ai, Shingo; Cheng Xianwu; Inoue, Aiko; Nakamura, Kae; Okumura, Kenji; Iguchi, Akihisa; Murohara, Toyoaki; Kuzuya, Masafumi

    2007-01-01

    Neutrophil elastase (NE), a serine protease released from the azurophil granules of activated neutrophil, proteolytically cleaves multiple cytokines, and cell surface proteins. In the present study, we examined whether NE affects the biological abilities of angiogenic growth factors such as basic-fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). NE degraded bFGF and VEGF in a time- and concentration-dependent manner, and these degradations were suppressed by sivelestat, a synthetic inhibitor of NE. The bFGF- or VEGF-mediated proliferative activity of human umbilical vein endothelial cells was inhibited by NE, and the activity was recovered by sivelestat. Furthermore, NE reduced the bFGF- or VEGF-induced tubulogenic response of the mice aortas, ex vivo angiogenesis assay, and these effects were also recovered by sivelestat. Neutrophil-derived NE degraded potent angiogenic factors, resulting in loss of their angiogenic activity. These findings provide additional insight into the role played by neutrophils in the angiogenesis process at sites of inflammation

  1. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Directory of Open Access Journals (Sweden)

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  2. Preeclampsia and the Anti-Angiogenic State

    OpenAIRE

    Agarwal, Isha; Karumanchi, S. Ananth

    2011-01-01

    Preeclampsia is a major cause of maternal and fetal morbidity and mortality worldwide, however, its etiology remains unclear. Abnormal placental angiogenesis during pregnancy resulting from high levels of anti-angiogenic factors, soluble Flt1 (sFlt1) and soluble endoglin (sEng), has been implicated in preeclampsia pathogenesis. Accumulating evidence also points to a role for these anti-angiogenic proteins as serum biomarkers for the clinical diagnosis and prediction of preeclampsia. Uncoverin...

  3. Comparison of anti-angiogenic properties of pristine carbon nanoparticles

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta

    2013-01-01

    nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes...... showed the greatest anti-angiogenic properties. Interestingly, fullerene exhibited the opposite effect, increasing blood vessel development, while graphite nanoparticles and graphene had no effect. Subsequently, protein levels of pro-angiogenic growth factor receptors were analysed, showing that diamond...... nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy....

  4. PlGF repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitors.

    Directory of Open Access Journals (Sweden)

    Hiroto Iwasaki

    Full Text Available Despite preclinical success in regenerating and revascularizing the infarcted heart using angiogenic growth factors or bone marrow (BM cells, recent clinical trials have revealed less benefit from these therapies than expected.We explored the therapeutic potential of myocardial gene therapy of placental growth factor (PlGF, a VEGF-related angiogenic growth factor, with progenitor-mobilizing activity.Myocardial PlGF gene therapy improves cardiac performance after myocardial infarction, by inducing cardiac repair and reparative myoangiogenesis, via upregulation of paracrine anti-apoptotic and angiogenic factors. In addition, PlGF therapy stimulated Sca-1(+/Lin(- (SL BM progenitor proliferation, enhanced their mobilization into peripheral blood, and promoted their recruitment into the peri-infarct borders. Moreover, PlGF enhanced endothelial progenitor colony formation of BM-derived SL cells, and induced a phenotypic switch of BM-SL cells, recruited in the infarct, to the endothelial, smooth muscle and cardiomyocyte lineage.Such pleiotropic effects of PlGF on cardiac repair and regeneration offer novel opportunities in the treatment of ischemic heart disease.

  5. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    Science.gov (United States)

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  6. A rhodium(III) complex inhibits LPS-induced nitric oxide production and angiogenic activity in cellulo.

    Science.gov (United States)

    Liu, Li-Juan; Lin, Sheng; Chan, Daniel Shiu-Hin; Vong, Chi Teng; Hoi, Pui Man; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang

    2014-11-01

    Metal-containing complexes have arisen as viable alternatives to organic molecules as therapeutic agents. Metal complexes possess a number of advantages compared to conventional carbon-based compounds, such as distinct geometries, interesting electronic properties, variable oxidation states and the ability to arrange different ligands around the metal centre in a precise fashion. Meanwhile, nitric oxide (NO) plays key roles in the regulation of angiogenesis, vascular permeability and inflammation. We herein report a novel cyclometalated rhodium(III) complex as an inhibitor of lipopolysaccharides (LPS)-induced NO production in RAW264.7 macrophages. Experiments suggested that the inhibition of NO production in cells by complex 1 was mediated through the down-regulation of nuclear factor-κB (NF-κB) activity. Furthermore, complex 1 inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs) as revealed by an endothelial tube formation assay. This study demonstrates that kinetically inert rhodium(III) complexes may be potentially developed as effective anti-angiogenic agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Resveratrol modulates the angiogenic response to exercise training in skeletal muscle of aged men

    DEFF Research Database (Denmark)

    Gliemann Hybholt, Lasse; Olesen, Jesper; Biensø, Rasmus S

    2014-01-01

    Aim: The polyphenol resveratrol has in animal studies been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Methods: Forty-three healthy...... physically inactive aged men (65±1 years) were divided into A) a training group that conducted 8 weeks of intense exercise training where half of the subjects received a daily intake of either 250 mg trans resveratrol (n=14) and the other half received placebo (n=13); and B) a non-training group...... show that exercise training has a strong angiogenic effect whereas resveratrol supplementation may limit basal and training-induced angiogenesis....

  8. Angiogenic biomarkers in pregnancy

    DEFF Research Database (Denmark)

    Rasmussen, Lene G; Lykke, Jacob A; Staff, Anne C

    2015-01-01

    We review diagnostic and predictive roles of the angiogenic proteins placental growth factor, soluble fms-like tyrosine kinase 1, and soluble endoglin in preeclampsia, and their association with future cardiovascular disease, diabetes, and breast cancer. Specific patterns of these proteins repres...

  9. Cyr61/CCN1 and CTGF/CCN2 mediate the pro-angiogenic activity of VHL mutant renal carcinoma cells

    Science.gov (United States)

    Chintalapudi, Mastan R.; Markiewicz, Margaret; Kose, Nurgun; Dammai, Vincent; Champion, Kristen J.; Hoda, Rana S.; Trojanowska, Maria; Hsu, Tien

    2008-01-01

    The von Hippel-Lindau (VHL) protein serves as a negative regulator of hypoxia inducible factor-alpha subunit (HIF-α). Since HIF regulates critical angiogenic factors such as vascular endothelial growth factor (VEGF) and lesions in VHL gene are present in a majority of the highly vascularized renal cell carcinoma (RCC), it is believed that deregulation of the VHL-HIF pathway is crucial for the pro-angiogenic activity of RCC. Although VEGF has been confirmed as a critical angiogenic factor up-regulated in VHL mutant cells, the efficacy of anti-angiogenic therapy specifically targeting VEGF signaling remains modest. In this study we developed a three-dimensional in vitro assay to evaluate the ability of RCC cells to promote cord formation by the primary human dermal microvascular endothelial cells (HDMECs). Compared to VHL wild-type cells, VHL mutant RCC cells demonstrated a significantly increased pro-angiogenic activity, which correlated with increased secretion of Cyr61/CCN1, CTGF/CCN2 and VEGF in conditioned culture medium. Both CCN proteins are required for HDMEC cord formation as shown by RNAi knock-down experiments. Importantly, the pro-angiogenic activities conferred by the CCN proteins and VEGF are additive, suggesting non-overlapping functions. Expression of the CCN proteins is at least partly dependent on the HIF-2α function, the dominant HIF-α isoform expressed in RCC. Finally, immunohistochemical staining of Cyr61/CCN1 and CTGF/CCN2 in renal cell carcinoma tissue samples showed that increased expression of these proteins correlates with loss of VHL protein expression. These findings strengthened the notion that the hypervascularized phenotype of RCC is afforded by multiple pro-angiogenic factors that function in parallel pathways. PMID:18212329

  10. Melanocyte-secreted fibromodulin promotes an angiogenic microenvironment.

    Science.gov (United States)

    Adini, Irit; Ghosh, Kaustabh; Adini, Avner; Chi, Zai-Long; Yoshimura, Takeru; Benny, Ofra; Connor, Kip M; Rogers, Michael S; Bazinet, Lauren; Birsner, Amy E; Bielenberg, Diane R; D'Amato, Robert J

    2014-01-01

    Studies have established that pigmentation can provide strong, protective effects against certain human diseases. For example, angiogenesis-dependent diseases such as wet age-related macular degeneration and infantile hemangioma are more common in light-skinned individuals of mixed European descent than in African-Americans. Here we found that melanocytes from light-skinned humans and albino mice secrete high levels of fibromodulin (FMOD), which we determined to be a potent angiogenic factor. FMOD treatment stimulated angiogenesis in numerous in vivo systems, including laser-induced choroidal neovascularization, growth factor-induced corneal neovascularization, wound healing, and Matrigel plug assays. Additionally, FMOD enhanced vascular sprouting during normal retinal development. Deletion of Fmod in albino mice resulted in a marked reduction in the amount of neovascularization induced by retinal vein occlusion, corneal growth factor pellets, and Matrigel plugs. Our data implicate the melanocyte-secreted factor FMOD as a key regulator of angiogenesis and suggest an underlying mechanism for epidemiological differences between light-skinned individuals of mixed European descent and African-Americans. Furthermore, inhibition of FMOD in humans has potential as a therapeutic strategy for treating angiogenesis-dependent diseases.

  11. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    International Nuclear Information System (INIS)

    Bredow, Sebastian; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-01-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m 3 for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease

  12. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Tanemura, Masahiro; Umeshita, Koji; Doki, Yuichiro; Mori, Masaki; Nagano, Hiroaki; Yamamoto, Hirofumi; Noda, Takehiro; Murakami, Masahiro; Kobayashi, Shogo; Marubashi, Shigeru; Eguchi, Hidetoshi; Takeda, Yutaka

    2009-01-01

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  13. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy.

    Science.gov (United States)

    Patten, Ian S; Rana, Sarosh; Shahul, Sajid; Rowe, Glenn C; Jang, Cholsoon; Liu, Laura; Hacker, Michele R; Rhee, Julie S; Mitchell, John; Mahmood, Feroze; Hess, Philip; Farrell, Caitlin; Koulisis, Nicole; Khankin, Eliyahu V; Burke, Suzanne D; Tudorache, Igor; Bauersachs, Johann; del Monte, Federica; Hilfiker-Kleiner, Denise; Karumanchi, S Ananth; Arany, Zoltan

    2012-05-09

    Peripartum cardiomyopathy (PPCM) is an often fatal disease that affects pregnant women who are near delivery, and it occurs more frequently in women with pre-eclampsia and/or multiple gestation. The aetiology of PPCM, and why it is associated with pre-eclampsia, remain unknown. Here we show that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble FLT1 (sFLT1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by subclinical cardiac dysfunction, the extent of which correlates with circulating levels of sFLT1. Exogenous sFLT1 alone caused diastolic dysfunction in wild-type mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFLT1. These data indicate that PPCM is mainly a vascular disease, caused by excess anti-angiogenic signalling in the peripartum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM.

  14. Clinical Implication of Anti-Angiogenic Effect of Regorafenib in Metastatic Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Yoojoo Lim

    Full Text Available Regorafenib induces distinct radiological changes that represent its anti-angiogenic effect. However, clinical implication of the changes is unclear.Tumor attenuation as measured by Hounsfield units (HU in contrast-enhanced computed tomography (CT and cavitary changes of lung metastases were analyzed in association with treatment outcome of metastatic colorectal cancer patients (N = 80 treated with regorafenib in a prospective study.141 lesions in 72 patients were analyzed with HU. After 2 cycles of regorafenib, 87.5% of patients showed decrease of HU (Median change -23.9%, range -61.5%-20.7%. Lesional attenuation change was modestly associated with metabolic changes of 18-fluoro-deoxyglucose positron emission tomography-CT (Pearson's r = 0.37, p = 0.002. Among 53 patients with lung metastases, 17 (32.1% developed cavitary changes. There were no differences in disease control rate, progression-free survival, or overall survival according to the radiological changes. At the time of progressive disease (PD according to RECIST 1.1, HU was lower than baseline in 86.0% (43/50 and cavitary change of lung metastasis persisted without refilling in 84.6% (11/13.Regorafenib showed prominent anti-angiogenic effect in colorectal cancer, but the changes were not associated with treatment outcome. However, the anti-angiogenic effects persisted at the time of PD, which suggests that we may need to develop new treatment strategies.

  15. Clinical Implication of Anti-Angiogenic Effect of Regorafenib in Metastatic Colorectal Cancer

    Science.gov (United States)

    Yoon, Jeong Hee; Lee, Jeong Min; Lee, Jung Min; Paeng, Jin Chul; Won, Jae-Kyung; Kang, Gyeong Hoon; Jeong, Seung-Yong; Park, Kyu Joo; Lee, Kyung-Hun; Kim, Jee Hyun; Kim, Tae-You

    2015-01-01

    Background Regorafenib induces distinct radiological changes that represent its anti-angiogenic effect. However, clinical implication of the changes is unclear. Methods Tumor attenuation as measured by Hounsfield units (HU) in contrast-enhanced computed tomography (CT) and cavitary changes of lung metastases were analyzed in association with treatment outcome of metastatic colorectal cancer patients (N = 80) treated with regorafenib in a prospective study. Results 141 lesions in 72 patients were analyzed with HU. After 2 cycles of regorafenib, 87.5% of patients showed decrease of HU (Median change -23.9%, range -61.5%–20.7%). Lesional attenuation change was modestly associated with metabolic changes of 18-fluoro-deoxyglucose positron emission tomography-CT (Pearson’s r = 0.37, p = 0.002). Among 53 patients with lung metastases, 17 (32.1%) developed cavitary changes. There were no differences in disease control rate, progression-free survival, or overall survival according to the radiological changes. At the time of progressive disease (PD) according to RECIST 1.1, HU was lower than baseline in 86.0% (43/50) and cavitary change of lung metastasis persisted without refilling in 84.6% (11/13). Conclusion Regorafenib showed prominent anti-angiogenic effect in colorectal cancer, but the changes were not associated with treatment outcome. However, the anti-angiogenic effects persisted at the time of PD, which suggests that we may need to develop new treatment strategies. PMID:26671465

  16. Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Michelle E LeBlanc

    Full Text Available Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3 was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs. HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2 pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.

  17. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Directory of Open Access Journals (Sweden)

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  18. Insulin Like Growth Factor-1 (IGF-1 Causes Overproduction of IL-8, an Angiogenic Cytokine and Stimulates Neovascularization in Isoproterenol-Induced Myocardial Infarction in Rats

    Directory of Open Access Journals (Sweden)

    Nagaraja Haleagrahara

    2011-11-01

    Full Text Available Angiogenesis factors are produced in response to hypoxic or ischemic insult at the site of pathology, which will cause neovascularization. Insulin like growth factor-1 (IGF-1 exerts potent proliferative, angiogenic and anti-apoptotic effects in target tissues. The present study was aimed to evaluate the effects of IGF-1 on circulating level of angiogenic cytokine interleukin-8 (IL-8, in experimentally-induced myocardial ischemia in rats. Male Sprague-Dawley rats were divided into control, IGF-1 treated (2 µg/kg/day subcutaneously, for 5 and 10 days, isoproterenol (ISO treated (85 mg/kg, subcutaneously for two days and ISO with IGF-1 treated (for 5 and 10 days. Heart weight, serum IGF-1, IL-8 and cardiac marker enzymes (CK-MB and LDH were recorded after 5 and 10 days of treatment. Histopathological analyses of the myocardium were also done. There was a significant increase in serum cardiac markers with ISO treatment indicating myocardial infarction in rats. IGF-1 level increased significantly in ISO treated groups and the level of IGF-1 was significantly higher after 10 days of treatment. IL-8 level increased significantly after ISO treatment after 5 and 10 days and IGF-1 concurrent treatment to ISO rats had significantly increased IL-8 levels. Histopathologically, myocyte necrosis and nuclear pyknosis were reduced significantly in IGF-1 treated group and there were numerous areas of capillary sprouting suggestive of neovascularization in the myocardium. Thus, IGF-1 protects the ischemic myocardium with increased production of circulating angiogenic cytokine, IL-8 and increased angiogenesis.

  19. In Vitro and In Vivo Investigation of the Angiogenic Effects of Liraglutide during Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Allan Langlois

    Full Text Available This study investigated the angiogenic properties of liraglutide in vitro and in vivo and the mechanisms involved, with a focus on Hypoxia Inducible Factor-1α (HIF-1α and mammalian target of rapamycin (mTOR.Rat pancreatic islets were incubated in vitro with 10 μmol/L of liraglutide (Lira for 12, 24 and 48 h. Islet viability was studied by fluorescein diacetate/propidium iodide staining and their function was assessed by glucose stimulation. The angiogenic effect of liraglutide was determined in vitro by the measure of vascular endothelial growth factor (VEGF secretion using enzyme-linked immunosorbent assay and by the evaluation of VEGF and platelet-derived growth factor-α (PDGFα expression with quantitative polymerase chain reaction technic. Then, in vitro and in vivo, angiogenic property of Lira was evaluated using immunofluorescence staining targeting the cluster of differentiation 31 (CD31. To understand angiogenic mechanisms involved by Lira, HIF-1α and mTOR activation were studied using western blotting. In vivo, islets (1000/kg body-weight were transplanted into diabetic (streptozotocin Lewis rats. Metabolic control was assessed for 1 month by measuring body-weight gain and fasting blood glucose.Islet viability and function were respectively preserved and enhanced (p<0.05 with Lira, versus control. Lira increased CD31-positive cells, expression of VEGF and PDGFα (p<0.05 after 24 h in culture. Increased VEGF secretion versus control was also observed at 48 h (p<0.05. Moreover, Lira activated mTOR (p<0.05 signalling pathway. In vivo, Lira improved vascular density (p<0.01, body-weight gain (p<0.01 and reduced fasting blood glucose in transplanted rats (p<0.001.The beneficial effects of liraglutide on islets appeared to be linked to its angiogenic properties. These findings indicated that glucagon-like peptide-1 analogues could be used to improve transplanted islet revascularisation.

  20. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Joanne E McBane

    Full Text Available Islet transplantation to treat type 1 diabetes (T1D has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1 hydrogels, +/- circulating angiogenic cells (CACs, were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7 kPa vs. 0.4 kPa elastic modulus, respectively, had more cross-links (9.2 vs. 7.4/µm(2, and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18 h compared to collagen (79% vs. 69%. In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF(+ and CXCR4(+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.

  1. Anti-inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir.

    Science.gov (United States)

    Prado, Maria Rosa Machado; Boller, Christian; Zibetti, Rosiane Guetter Mello; de Souza, Daiany; Pedroso, Luciana Lopes; Soccol, Carlos Ricardo

    2016-11-01

    The search for new bioactive molecules is a driving force for research pharmaceutical industries, especially those molecules obtained from fermentation. The molecules possessing angiogenic and anti-inflammatory attributes have attracted attention and are the focus of this study. Angiogenic activity from kefir polysaccharide extract, via chorioallantoic membrane assay, exhibited a pro-angiogenic effect compared with vascular endothelial factor (pro-angiogenic) and hydrocortisone (anti-angiogenic) activity as standards with an EC50 of 192ng/mL. In terms of anti-inflammatory activity determined via hyaluronidase enzyme assay, kefir polysaccharide extract inhibited the enzyme with a minimal activity of 2.08mg/mL and a maximum activity of 2.57mg/mL. For pharmaceutical purposes, kefir polysaccharide extract is considered to be safe because it does not inhibit VERO cells in cytotoxicity assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Laura Pisarsky

    2016-05-01

    Full Text Available Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward anaerobic glycolysis. Indeed, combinatorial treatment with a glycolysis inhibitor (3PO efficiently inhibits tumor growth. Moreover, tumors establish metabolic symbiosis, illustrated by the differential expression of MCT1 and MCT4, monocarboxylate transporters active in lactate exchange in glycolytic tumors. Accordingly, genetic ablation of MCT4 expression overcomes adaptive resistance against anti-angiogenic therapy. Hence, targeting metabolic symbiosis may be an attractive avenue to avoid resistance development to anti-angiogenic therapy in patients.

  3. Vasohibin inhibits angiogenic sprouting in vitro and supports vascular maturation processes in vivo

    International Nuclear Information System (INIS)

    Kern, Johann; Steurer, Michael; Gastl, Günther; Gunsilius, Eberhard; Untergasser, Gerold

    2009-01-01

    The murine homologue of human vasohibin (mVASH1), a putative antiangiogenic protein, was investigated for its effects on in vitro and in vivo angiogenesis. Cell growth and migration were analyzed in murine fibroblasts, smooth muscle cells and endothelial cells. Angiogenic sprouting was studied in human umbilical vein endothelial cells (HUVECs) in the spheroid sprouting assay. In vivo effects on blood vessel formation were investigated in the chorioallantoic membrane (CAM) assay and in the C57BL/6 melanoma xenograft model. Purified murine and human VASH1 protein induced apoptosis of murine fibroblasts in vitro, but not of vascular aortic smooth muscle cells (AoSMC) or endothelial cells. Adenoviral overexpression of murine and human VASH1 inhibited capillary sprouting of HUVECs in the spheroid assay. Administration of recombinant murine and human VASH1 inhibited growth of large vessels in the CAM assay and promoted the formation of a dense, fine vascular network. Murine VASH1-overexpressing B16F10 melanomas displayed a reduction in large vessels and vascular area. Moreover, tumors showed more microvessels that stained positive for the mural cell markers α-smooth muscle cell actin (ASMA) and proteoglycan (NG2). Our data imply that murine VASH1 causes angiogenic remodelling by inhibiting angiogenic sprouting and large vessel growth, thereby supporting the formation of a vascular bed consisting predominantly of mature microvessels

  4. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    2010-02-01

    Full Text Available The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools.Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes.We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  5. Induction of Pro-Angiogenic Factors by Pregnancy-Specific Glycoproteins and Studies on Receptor Usage

    Science.gov (United States)

    2008-01-01

    induce pro- angiogenic factors during pregancy . To address this, the specific aims of this study are to: 1. Examine the cytokine expression of monocytes...dialyzed into a 20 mM sodium phosphate...it was processed as described below. 68 PSG1d-Flag and PSG22N1A were dialyzed into a 20 mM sodium phosphate buffer containing 20 mM imidazole

  6. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption

    Science.gov (United States)

    Seifi, Massoud; Lotfi, Ali; Badiee, Mohammad Reza; Abdolazimi, Zahra; Amdjadi, Parisa; Bargrizan, Majid

    2016-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100 and 1000 ng of basic fibroblast growth factor (bFGF), respectively, positive control group (CP) receiving an orthodontic appliance and injection of phosphate buffered saline (PBS) and the negative control group (CN) receiving only the anesthetic agent. A nickel titanium coil spring was placed between the first molar and the incisor on the right side of maxilla. Twenty-one days later, the rats were sacrificed. Histopathological sections were made to assess the number and area of resorption lacunae, number of blood vessels, osteoclasts and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD) test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively) were significantly lower than in CP (4.17 ± 0.90 and 2.77 ± 0.01×10-3, respectively, P=0.000). Number of blood vessels, osteoclasts and Howship’s lacunae were significantly higher in E1000 compared to CP (Proot resorption by providing more oxygen and angiogenesis. PMID:27551674

  7. In Vitro and In Vivo Investigation of the Angiogenic Effects of Liraglutide during Islet Transplantation

    Science.gov (United States)

    Langlois, Allan; Mura, Carole; Bietiger, William; Seyfritz, Elodie; Dollinger, Camille; Peronet, Claude; Maillard, Elisa; Pinget, Michel; Jeandidier, Nathalie; Sigrist, Séverine

    2016-01-01

    Introduction This study investigated the angiogenic properties of liraglutide in vitro and in vivo and the mechanisms involved, with a focus on Hypoxia Inducible Factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR). Materials and Methods Rat pancreatic islets were incubated in vitro with 10 μmol/L of liraglutide (Lira) for 12, 24 and 48 h. Islet viability was studied by fluorescein diacetate/propidium iodide staining and their function was assessed by glucose stimulation. The angiogenic effect of liraglutide was determined in vitro by the measure of vascular endothelial growth factor (VEGF) secretion using enzyme-linked immunosorbent assay and by the evaluation of VEGF and platelet-derived growth factor-α (PDGFα) expression with quantitative polymerase chain reaction technic. Then, in vitro and in vivo, angiogenic property of Lira was evaluated using immunofluorescence staining targeting the cluster of differentiation 31 (CD31). To understand angiogenic mechanisms involved by Lira, HIF-1α and mTOR activation were studied using western blotting. In vivo, islets (1000/kg body-weight) were transplanted into diabetic (streptozotocin) Lewis rats. Metabolic control was assessed for 1 month by measuring body-weight gain and fasting blood glucose. Results Islet viability and function were respectively preserved and enhanced (p<0.05) with Lira, versus control. Lira increased CD31-positive cells, expression of VEGF and PDGFα (p<0.05) after 24 h in culture. Increased VEGF secretion versus control was also observed at 48 h (p<0.05). Moreover, Lira activated mTOR (p<0.05) signalling pathway. In vivo, Lira improved vascular density (p<0.01), body-weight gain (p<0.01) and reduced fasting blood glucose in transplanted rats (p<0.001). Conclusion The beneficial effects of liraglutide on islets appeared to be linked to its angiogenic properties. These findings indicated that glucagon-like peptide-1 analogues could be used to improve transplanted islet revascularisation

  8. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    Science.gov (United States)

    Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells.

    Science.gov (United States)

    Ungvari, Zoltan; Tucsek, Zsuzsanna; Sosnowska, Danuta; Toth, Peter; Gautam, Tripti; Podlutsky, Andrej; Csiszar, Agnes; Losonczy, Gyorgy; Valcarcel-Ares, M Noa; Sonntag, William E; Csiszar, Anna

    2013-08-01

    Age-related impairment of angiogenesis is likely to play a central role in cerebromicrovascular rarefaction and development of vascular cognitive impairment, but the underlying mechanisms remain elusive. To test the hypothesis that dysregulation of Dicer1 (ribonuclease III, a key enzyme of the microRNA [miRNA] machinery) impairs endothelial angiogenic capacity in aging, primary cerebromicrovascular endothelial cells (CMVECs) were isolated from young (3 months old) and aged (24 months old) Fischer 344 × Brown Norway rats. We found an age-related downregulation of Dicer1 expression both in CMVECs and in small cerebral vessels isolated from aged rats. In aged CMVECs, Dicer1 expression was increased by treatment with polyethylene glycol-catalase. Compared with young cells, aged CMVECs exhibited altered miRNA expression profile, which was associated with impaired proliferation, adhesion to vitronectin, collagen and fibronectin, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing technology), and impaired ability to form capillary-like structures. Overexpression of Dicer1 in aged CMVECs partially restored miRNA expression profile and significantly improved angiogenic processes. In young CMVECs, downregulation of Dicer1 (siRNA) resulted in altered miRNA expression profile associated with impaired proliferation, adhesion, migration, and tube formation, mimicking the aging phenotype. Collectively, we found that Dicer1 is essential for normal endothelial angiogenic processes, suggesting that age-related dysregulation of Dicer1-dependent miRNA expression may be a potential mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging.

  10. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM).

    Science.gov (United States)

    Demeure, Kevin; Fack, Fred; Duriez, Elodie; Tiemann, Katja; Bernard, Amandine; Golebiewska, Anna; Bougnaud, Sébastien; Bjerkvig, Rolf; Domon, Bruno; Niclou, Simone P

    2016-02-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future

  11. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  12. Potential Angiogenic Role of Platelet-Activating Factor in Human Breast Cancer

    Science.gov (United States)

    Montrucchio, Giuseppe; Sapino, Anna; Bussolati, Benedetta; Ghisolfi, Gianpiero; Rizea-Savu, Simona; Silvestro, Luigi; Lupia, Enrico; Camussi, Giovanni

    1998-01-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34- and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested. PMID:9811351

  13. Angiogenic activity of Synadenium umbellatum Pax latex

    Directory of Open Access Journals (Sweden)

    PR. Melo-Reis

    Full Text Available Synadenium umbellatum Pax, popularly known as "cola-nota", is a medicinal plant that grows in tropical regions. Latex of this plant is used to treat various diseases such as diabetes mellitus, Hansen´s disease, tripanosomiases, leukemia and several malignant tumors. In the present study, the angiogenic activity of S. umbellatum latex was evaluated using the chick embryo chorioallantoic membrane (CAM assay. Results showed significant increase of the vascular net (p < 0.05 compared to the negative control (H2O. The histological analysis was in accordance with the results obtained. In conclusion, our data indicate that S. umbellatum latex, under the conditions of this research, presented angiogenic effect.

  14. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines

    Science.gov (United States)

    Rabquer, Bradley J.; Ohara, Ray A.; Stinson, William A.; Campbell, Phillip L.; Amin, M. Asif; Balogh, Beatrix; Zakhem, George; Renauer, Paul A.; Lozier, Ann; Arasu, Eshwar; Haines, G. Kenneth; Kahaleh, Bashar; Schiopu, Elena; Khanna, Dinesh; Koch, Alisa E.

    2016-01-01

    Objectives. Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. Methods. Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. Results. Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. Conclusion. Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc. PMID:26705326

  15. Anti-angiogenic activity of a new andrographolide derivative in zebrafish and HUVECs.

    Science.gov (United States)

    Li, Jingjing; Peng, Yuran; Li, Shang; Sun, Yicheng; Chan, Judy Yuet-Wa; Cui, Guozhen; Wang, Decai; Zhou, Guo-Chun; Lee, Simon Ming-Yuen

    2016-10-15

    Andrographolide is among the most promising anti-tumor and anti-angiogenic components in Andrographis paniculata but its poor bioavailability and limited efficacy pose difficulties for its therapeutic development. Therefore, improving its pharmaceutical features and potency, by modifying its chemical structure, is desirable. In the present study, a new andrographolide derivative (AGP-40) was synthesized and characterized for its anti-angiogenic properties. Human umbilical vein endothelial cells (HUVECs) and zebrafish models were used to identify the anti-angiogenic activity of AGP-40. AGP-40 significantly suppressed the formation of blood vessels in zebrafish and inhibited proliferation, migration and tube formation in vitro. The anti-angiogenic effects of AGP-40 are at least partially mediated via the PI3K/Akt and MEK/Erk(1/2) signaling pathways. Furthermore, AGP-40 exhibited stronger anti-proliferative effects than andrographolide against A549, HepG2, Hela cancer cell lines. This study is the first to demonstrate the promising anti-angiogenic activity of the new andrographolide derivative AGP-40. Our results indicate that AGP-40 could serve as a potential therapeutic agent for the treatment and prevention of diseases associated with excessive angiogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    It is well established that acute exercise promotes an angiogenic response and that a period of exercise training results in capillary growth. Skeletal muscle angiogenesis is a complex process that requires a coordinated interplay of multiple factors and compounds to ensure proper vascular function....... The angiogenic process is initiated through changes in mechanical and/or metabolic factors during exercise and when exercise is repeated these stimuli may result in capillary growth if needed. The present PhD thesis is based on six studies in which the regulation of angiogenesis in skeletal muscle...... was studied in peripheral arterial disease. Vascular endothelial growth factor (VEGF) is the most important factor in exercise-induced angiogenesis and is located primarily in muscle cells but also in endothelial cells, pericytes, and in the extracellular matrix. VEGF protein secretion to the interstitium...

  17. Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Mun-Gyu Song

    2016-11-01

    Full Text Available Objective: Adipose tissue (AT expansion requires AT remodeling, which depends on AT angiogenesis. Modulation of AT angiogenesis could have therapeutic promise for the treatment of obesity. However, it is unclear how the capacity of angiogenesis in each adipose depot is affected by over-nutrition. Therefore, we investigated the angiogenic capacity (AC of subcutaneous and visceral fats in lean and obese mice. Methods: We compared the AC of epididymal fat (EF and inguinal fat (IF using an angiogenesis assay in diet-induced obese (DIO mice and diet-resistant (DR mice fed a high-fat diet (HFD. Furthermore, we compared the expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation using RT-qPCR in the EF and IF of lean mice fed a low-fat diet (LFD, DIO mice, and DR mice fed a HFD. Results: DIO mice showed a significant increase in the AC of EF only at 22 weeks of age compared to DR mice. The expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation were significantly higher in the EF of DIO mice than in those of LFD mice and DR mice, while expression levels of genes related to macrophages and their recruitment were higher in the IF of DIO mice than in those of LFD and DR mice. Expression of genes related to angiogenesis (including Hif1a, Vegfa, Fgf1, Kdr, and Pecam1, macrophage recruitment, and inflammation (including Emr1, Ccr2, Itgax, Ccl2, Tnf, and Il1b correlated more strongly with body weight in the EF of HFD-fed obese mice compared to that of IF. Conclusions: These results suggest depot-specific differences in AT angiogenesis and a potential role in the susceptibility to diet-induced obesity. Keywords: Angiogenesis, Inflammation, Adipose tissue, Diet-induced obese mice, Diet-resistant mice, High-fat diet

  18. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  19. Anti-Angiogenic Therapeutic Indictors in Breast Cancer

    National Research Council Canada - National Science Library

    Su, Min-Ying

    2003-01-01

    This project studies the therapeutic indicators in ant-angiogenic therapy. Every animal with mammary tumor was scheduled to receive a baseline MRI, core biopsy, then followed by 4 treatments with weekly MRI follow...

  20. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  1. Emerging paradigms and questions on pro-angiogenic bone marrow-derived myelomonocytic cells.

    Science.gov (United States)

    Laurent, Julien; Touvrey, Cédric; Botta, Francesca; Kuonen, François; Ruegg, Curzio

    2011-01-01

    Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.

  2. Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors

    Directory of Open Access Journals (Sweden)

    Tian Yufeng

    2010-06-01

    Full Text Available Abstract Background New, more effective strategies are needed to treat highly aggressive neuroblastoma. Our laboratory has previously shown that full-length Secreted Protein Acidic and Rich in Cysteine (SPARC and a SPARC peptide corresponding to the follistatin domain of the protein (FS-E potently block angiogenesis and inhibit the growth of neuroblastoma tumors in preclinical models. Peptide FS-E is structurally complex and difficult to produce, limiting its potential as a therapeutic in the clinic. Results In this study, we synthesized two smaller and structurally more simple SPARC peptides, FSEN and FSEC, that respectively correspond to the N-and C-terminal loops of peptide FS-E. We show that both peptides FSEN and FSEC have anti-angiogenic activity in vitro and in vivo, although FSEC is more potent. Peptide FSEC also significantly inhibited the growth of neuroblastoma xenografts. Histologic examination demonstrated characteristic features of tumor angiogenesis with structurally abnormal, tortuous blood vessels in control neuroblastoma xenografts. In contrast, the blood vessels observed in tumors, treated with SPARC peptides, were thin walled and structurally more normal. Using a novel method to quantitatively assess blood vessel abnormality we demonstrated that both SPARC peptides induced changes in blood vessel architecture that are consistent with blood vessel normalization. Conclusion Our results demonstrate that SPARC peptide FSEC has potent anti-angiogenic and anti-tumorigenic effects in neuroblastoma. Its simple structure and ease of production indicate that it may have clinical utility in the treatment of high-risk neuroblastoma and other types of pediatric and adult cancers, which depend on angiogenesis.

  3. [Evaluation of angiogenic activity in sera from patients with interstitial lung diseases].

    Science.gov (United States)

    Zielonka, T M; Demkow, U; Kowalski, J; Kuś, J; Krychniak-Soszka, A; Radzikowska, E; Skopińska-Rózewska, E; Rowińska-Zakrzewska, E

    1997-01-01

    Angiogenesis is a process of new blood vessels' formation occurring in many physiological and pathological conditions. Neovascularisation is the principal vascular response in chronic inflammation and concomitant fibrotic process. Microvascular changes in various organ sites in sarcoidosis (BBS) and some of the symptoms of the disease may be related to microangiopathy. Moreover, vascular alterations were also observed in lung specimens from idiopathic pulmonary fibrosis (IPF) and avian fanciers lung (AFL) patients. The present study was aimed at testing the effects of serum from 43 patients with ILD (24 BBS, 8 AFL, 8 IPF, 3 DIPF--drug induced pulmonary fibrosis) and 11 healthy controls on angiogenic capability of normal blood peripheral mononuclear cells (PBMC) in the murine intradermal angiogenesis assay (according to Sidky and Auerbach). The data demonstrated that sera from ILD patients significantly enhanced angiogenic capacity of normal PBMC as compared to control sera (p < 0.001). The effect was more pronounced for AFL patients than for BBS and IPF ones (p < 0.05). Sera from DIPF did not stimulate angiogenesis compared to control sera. The data showed that sera from ILD patients constitute sources of mediators participating in angiogenesis. This phenomenon may play role in pathogenesis of chronic immunological processes in lung.

  4. Cord Blood Angiogenic Profile in Normotensive Pregnancies

    African Journals Online (AJOL)

    2017-06-30

    Jun 30, 2017 ... favorable anti- to pro-angiogenic balance in pregnant women. ... tweak,and build upon the work non-commercially,as long as the author is credited and the new ..... utero blood pressure in childhood and adult life and mortality.

  5. Radiosensitivity of angiogenic and mitogenic factors in human amniotic membrane

    International Nuclear Information System (INIS)

    Deocaris, Custer C.; De Guzman, Zenaida M.; Deocaris, Chester C.; Jacinto, Sonia D.

    2003-01-01

    Amniotic membrane as a temporary biological dressing remains as a beneficial and cost-effective means of treating burns in developing countries. This medical application is attributed mainly to placental structural and biochemical features that are important for maintaining proper embryonic development. Since fresh amnions are nevertheless for straightforward clinical use and for preservation, radiation-sterilization is been performed to improve the safety of this placental material. However, like any other sterilization method, gamma-radiation may induce physical and chemical changes that may influence the biological property of the material. Thus, the aim of this study is to compare the effects of various levels of radiation-sterilization protocols for human amnions on angiogenic (neovascularization) and epithelial-mitogenic activities, both of which are physiological processes fundamental to wound healing. Water-soluble extract of non-irradiated amnions demonstrates a strong stimulatory effect on both cell proliferation and angiogenesis. No change in biological activity is seen in amnions irradiated at 25 kGy, the sterilization dose used by the Philippine Nuclear Research Institute (PNRI) for the production of radiation-sterilized human amniotic membranes (RSHAM). However, it appears that amniotic angiogenic factors are more radiosensitive than its mitogenic components, evident from the depressed vascularization of the chorioallantoic membrane (CAM) exposed to 35 kGy-irradiated amnions. The dose of 35 kGy is at present the medical sterilization dose used at the Central Tissue Bank in Warsaw (Poland) for the preparation of their amnion allografts. (Authors)

  6. Screening of hypoxia-inducible genes in sporadic ALS.

    LENUS (Irish Health Repository)

    Cronin, Simon

    2008-10-01

    Genetic variations in two hypoxia-inducible angiogenic genes, VEGF and ANG, have been linked with sporadic amyotrophic lateral sclerosis (SALS). Common variations in these genes may reduce the levels or functioning of their products. VEGF and ANG belong to a larger group of angiogenic genes that are up-regulated under hypoxic conditions. We hypothesized that common genetic variation across other members of this group may also predispose to sporadic ALS. To screen other hypoxia-inducible angiogenic genes for association with SALS, we selected 112 tagging single nucleotide polymorphisms (tgSNPs) that captured the common genetic variation across 16 VEGF-like and eight ANG-like hypoxia-inducible genes. Screening for association was performed in 270 Irish individuals with typical SALS and 272 ethnically matched unrelated controls. SNPs showing association in the Irish phase were genotyped in a replication sample of 281 Swedish sporadic ALS patients and 286 Swedish controls. Seven markers showed association in the Irish. The one modest replication signal observed in the Swedish replication sample, at rs3801158 in the gene inhibin beta A, was for the opposite allele vs. the Irish cohort. We failed to detect association of common variation across 24 candidate hypoxia-inducible angiogenic genes with SALS.

  7. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian; Widdows, Kate L.; Erol, Melek M.; Burch, Charles W.; Sanz-Herrera, José A.; Ochoa, Ignacio; Stä mpfli, Rolf; Roqan, Iman S.; Gabe, Simon M.; Ansari, Tahera I.; Boccaccini, Aldo R.

    2011-01-01

    The angiogenic properties of micron-sized (m-BG) and nano-sized (n-BG) bioactive glass (BG) filled poly(D,L lactide) (PDLLA) composites were investigated. On the basis of cell culture work investigating the secretion of vascular endothelial growth factor (VEGF) by human fibroblasts in contact with composite films (0, 5, 10, 20 wt %), porous 3D composite scaffolds, optimised with respect to the BG filler content capable of inducing angiogenic response, were produced. The in vivo vascularisation of the scaffolds was studied in a rat animal model and quantified using stereological analyses. The prepared scaffolds had high porosities (81-93%), permeability (k = 5.4-8.6 × 10-9 m2) and compressive strength values (0.4-1.6 MPa) all in the range of trabecular bone. On composite films containing 20 wt % m-BG or n-BG, human fibroblasts produced 5 times higher VEGF than on pure PDLLA films. After 8 weeks of implantation, m-BG and n-BG containing scaffolds were well-infiltrated with newly formed tissue and demonstrated higher vascularisation and percentage blood vessel to tissue (11.6-15.1%) than PDLLA scaffolds (8.5%). This work thus shows potential for the regeneration of hard-soft tissue defects and increased bone formation arising from enhanced vascularisation of the construct. © 2011 Elsevier Ltd.

  8. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2011-06-01

    The angiogenic properties of micron-sized (m-BG) and nano-sized (n-BG) bioactive glass (BG) filled poly(D,L lactide) (PDLLA) composites were investigated. On the basis of cell culture work investigating the secretion of vascular endothelial growth factor (VEGF) by human fibroblasts in contact with composite films (0, 5, 10, 20 wt %), porous 3D composite scaffolds, optimised with respect to the BG filler content capable of inducing angiogenic response, were produced. The in vivo vascularisation of the scaffolds was studied in a rat animal model and quantified using stereological analyses. The prepared scaffolds had high porosities (81-93%), permeability (k = 5.4-8.6 × 10-9 m2) and compressive strength values (0.4-1.6 MPa) all in the range of trabecular bone. On composite films containing 20 wt % m-BG or n-BG, human fibroblasts produced 5 times higher VEGF than on pure PDLLA films. After 8 weeks of implantation, m-BG and n-BG containing scaffolds were well-infiltrated with newly formed tissue and demonstrated higher vascularisation and percentage blood vessel to tissue (11.6-15.1%) than PDLLA scaffolds (8.5%). This work thus shows potential for the regeneration of hard-soft tissue defects and increased bone formation arising from enhanced vascularisation of the construct. © 2011 Elsevier Ltd.

  9. Angiogenic effects of cryosurgery with liquid nitrogen on the normal skin of rats, through morphometric study.

    Science.gov (United States)

    Pimentel, Camila Bianco; Moraes, Aparecida Machado de; Cintra, Maria Letícia

    2014-01-01

    Cryosurgery is an efficient therapeutic technique used to treat benign and malignant cutaneous diseases. The primary active mechanism of cryosurgery is related to vascular effects on treated tissue. After a cryosurgical procedure, exuberant granulation tissue is formed at the injection site, probably as a result of angiogenic stimulation of the cryogen and inflammatory response, particularly in endothelial cells. To evaluate the angiogenic effects of freezing, as part of the phenomenon of healing rat skin subjected to previous injury. Two incisions were made in each of the twenty rats, which were divided randomly into two groups of ten. After 3 days, cryosurgery with liquid nitrogen was performed in one of incisions. The rats' samples were then collected, cut and stained to conduct histopathological examination, to assess the local angiogenesis in differing moments and situations. It was possible to demonstrate that cryosurgery, in spite of promoting cell death and accentuated local inflammation soon after its application, induces quicker cell proliferation in the affected tissue and maintenance of this rate in a second phase, than in tissue healing without this procedure. These findings, together with the knowledge that there is a direct relationship between mononuclear cells and neovascularization (the development of a rich system of new vessels in injury caused by cold), suggest that cryosurgery possesses angiogenic stimulus, even though complete healing takes longer to occur. The significance level for statistical tests was 5% (p<0,05).

  10. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner.

    Science.gov (United States)

    Xie, Liang; Duncan, Michael B; Pahler, Jessica; Sugimoto, Hikaru; Martino, Margot; Lively, Julie; Mundel, Thomas; Soubasakos, Mary; Rubin, Kristofer; Takeda, Takaaki; Inoue, Masahiro; Lawler, Jack; Hynes, Richard O; Hanahan, Douglas; Kalluri, Raghu

    2011-06-14

    Whereas the roles of proangiogenic factors in carcinogenesis are well established, those of endogenous angiogenesis inhibitors (EAIs) remain to be fully elaborated. We investigated the roles of three EAIs during de novo tumorigenesis to further test the angiogenic balance hypothesis, which suggests that blood vessel development in the tumor microenvironment can be governed by a net loss of negative regulators of angiogenesis in addition to the well-established principle of up-regulated angiogenesis inducers. In a mouse model of pancreatic neuroendocrine cancer, administration of endostatin, thrombospondin-1, and tumstatin peptides, as well as deletion of their genes, reveal neoplastic stage-specific effects on angiogenesis, tumor progression, and survival, correlating with endothelial expression of their receptors. Deletion of tumstatin and thrombospondin-1 in mice lacking the p53 tumor suppressor gene leads to increased incidence and reduced latency of angiogenic lymphomas associated with diminished overall survival. The results demonstrate that EAIs are part of a balance mechanism regulating tumor angiogenesis, serving as intrinsic microenvironmental barriers to tumorigenesis.

  11. The association between angiogenic markers and fetal sex

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Jørgensen, J S; Herse, F

    2016-01-01

    OBJECTIVE: Current research suggests sexual dimorphism between the male and female fetoplacental units, but with unknown relevance for preeclampsia. We investigated the association between fetal sex and concentrations of the angiogenic markers soluble Fms-like kinase 1 (sFlt-1), placental growth...... factor (PlGF), and sFlt-1/PlGF ratio in first and second-third trimester in women with/without preeclampsia, and the impact of fetal sex on the prognostic value of angiogenic markers for preeclampsia. STUDY DESIGN: Observational study in a prospective, population-based cohort of 2110 singleton...... (preeclampsia cases) associated with fetal sex in adjusted analyses (pfetal sex (all, p=0.028; preeclampsia, p=0.067) In receiver operating curve analysis, prediction of early-onset preeclampsia by sFlt-1/PlGF tended to be superior...

  12. Anti-angiogenic and cytotoxicity studies of some medicinal plants.

    Science.gov (United States)

    Ng, Kwok-Wen; Salhimi, Salizawati Muhamad; Majid, Amin Malik; Chan, Kit-Lam

    2010-06-01

    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation. Georg Thieme Verlag KG Stuttgart-New York.

  13. Micro-angiographic system using synchrotron radiation and conventional x-ray source for visualizing angiogenic vessels induced by cardiovascular regeneration therapy

    International Nuclear Information System (INIS)

    Mori, H.; Chiku, M.; Nishigami, K.; Tanaka, E.; Kimura, K.; Kawai, T.; Suzuki, K.; Mochizuki, R.; Okawa, Y.

    2004-01-01

    Therapeutic angiogenesis improved critical limb and myocardial ischemia in human, however, angiogenic vessels were not visualized well by conventional angiography, because of its limited spatial resolution of 200 μm. Recently, synchrotron radiation system characterized by high brightness, monochromatic and collimated nature revealed the micro-vessels of heart and lower limb in situ. We developed also an in-house microangiographic system with a relatively low cost. Limb ischemia models were made by ligature of femoral artery and treated by angiogenic growth factor genes and so on. One month after the treatment, we evaluated collateral micro-vessels by using the conventional and micro-angiographic systems. The approach was left femoral artery, and catheter was located in abdominal aorta. Iodine contrast (300 mg/ml) was injected 5 ml by 3 ml/sec with auto-injection system. The imaging was recorded by digital source in 1000 x 1000 pixels. The micro-angiographic system could detect the micro-vessels more precisely than conventional angiographic system and evaluate their function. (author)

  14. Inhibition of Lysyl Oxidases Impairs Migration and Angiogenic Properties of Tumor-Associated Pericytes

    Directory of Open Access Journals (Sweden)

    Aline Lopes Ribeiro

    2017-01-01

    Full Text Available Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFRβ. Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor β-aminopropionitrile (βAPN significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with βAPN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents.

  15. Short-term hypoxia/reoxygenation activates the angiogenic pathway ...

    Indian Academy of Sciences (India)

    2013-04-20

    Apr 20, 2013 ... angiogenic pathway in the rat caudate putamen as a neuroprotective mechanism to hypoxia .... (1:3 w/v) with a homogenator (Pellet Pestle Motor Cordless, ..... showing that the capillary density in the rat cerebral cortex was.

  16. Celecoxib restores angiogenic factor expression at the maternal-fetal interface in the BPH/5 mouse model of preeclampsia.

    Science.gov (United States)

    Reijnders, Dorien; Liu, Chin-Chi; Xu, Xinjing; Zhao, Anna M; Olson, Kelsey N; Butler, Scott D; Douglas, Nataki C; Sones, Jenny L

    2018-05-01

    Preeclampsia (PE), a hypertensive disease of pregnancy, is a leading cause of fetal and maternal morbidity/mortality. Early angiogenic and inflammatory disturbances within the placenta are thought to underlie the development of the maternal PE syndrome and poor pregnancy outcomes. However, the exact etiology remains largely unknown. Here, we use the BPH/5 mouse model of PE to elucidate the way in which inflammation early in pregnancy contributes to abnormal expression of angiogenic factors at the maternal-fetal interface. We have previously described improvement in maternal hypertension and fetal growth restriction in this model after treatment with the anti-inflammatory cyclooxygenase-2 (Cox2) specific inhibitor celecoxib. To further characterize the mechanisms by which celecoxib improves poor pregnancy outcomes in BPH/5 mice, we determined expression of angiogenic factors and complement pathway components after celecoxib. In BPH/5 implantation sites there was increased hypoxia inducible factor-1α ( Hif1α), heme oxygenase-1 ( Ho-1), and stem cell factor ( Scf) mRNA concomitant with elevated prostaglandin synthase 2 ( Ptgs2), encoding Cox2, and elevated VEGF protein. Angiopoietin 1 ( Ang1), tunica interna endothelial cell kinase-2 receptor ( Tie2), complement factor 3 ( C3), and complement factor B ( CfB) were increased in midgestation BPH/5 placentae. Whereas BPH/5 expression levels of VEGF, Ang1, and Tie2 normalized after celecoxib, placental C3 and CfB mRNA remained unchanged. However, celecoxib did reduce the pregnancy-specific circulating soluble fms-like tyrosine kinase-1 (sFlt-1) rise in BPH/5 mice at midgestation. These data show that elevated Cox2 during implantation contributes to placental angiogenic factor imbalances in the BPH/5 mouse model of PE.

  17. Tumour vasculature and angiogenic profile of paediatric pilocytic astrocytoma; is it much different from glioblastoma?

    NARCIS (Netherlands)

    Sie, M.; de Bont, E. S. J. M.; Scherpen, F. J. G.; Hoving, E. W.; den Dunnen, W. F. A.

    2010-01-01

    Aims: Pilocytic astrocytomas are the most frequent brain tumours in children. Because of their high vascularity, this study aimed to obtain insights into potential angiogenic related therapeutic targets in these tumours by characterization of the vasculature and the angiogenic profile. In this study

  18. Anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenes from Daphne genkwa based on hierarchical cluster and principal component analysis.

    Science.gov (United States)

    Wang, Ling; Lan, Xin-Yi; Ji, Jun; Zhang, Chun-Feng; Li, Fei; Wang, Chong-Zhi; Yuan, Chun-Su

    2018-06-01

    Rheumatoid arthritis (RA) is one of the most prevalent chronic inflammatory and angiogenic diseases. The aim of this study was to evaluate the anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenoids isolated from Daphne genkwa. LC-MS was used to identify diterpenes isolated from D. genkwa. The anti-inflammatory and anti-angiogenic activities of eight diterpenoids were evaluated on LPS-induced macrophage RAW264.7 cells and TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) using hierarchical cluster analysis (HCA) and principal component analysis (PCA). The eight diterpenes isolated from D. genkwa were identified as yuanhuaphnin, isoyuanhuacine, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuagine, isoyuanhuadine, yuanhuadine, yuanhuaoate C and yuanhuacine. All the eight diterpenes significantly down-regulated the excessive secretion of TNF-α, IL-6, IL-1β and NO in LPS-induced RAW264.7 macrophages. However, only 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl markedly reduced production of VEGF, MMP-3, ICAM and VCAM in TNF-α-stimulated HUVECs. HCA obtained 4 clusters, containing 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, isoyuanhuacine, isoyuanhuadine and five other compounds. PCA showed that the ranking of diterpenes sorted by efficacy from highest to lowest was 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuaphnin, isoyuanhuacine, yuanhuacine, yuanhuaoate C, yuanhuagine, isoyuanhuadine, yuanhuadine. In conclusion, eight diterpenes isolated from D. genkwa showed different levels of activity in LPS-induced RAW264.7 cells and TNF-α-stimulated HUVECs. The comprehensive evaluation of activity by HCA and PCA indicated that of the eight diterpenes, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl was the best, and can be developed as a new drug for RA therapy.

  19. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  20. Balance of antiangiogenic and angiogenic factors in the context of the etiology of preeclampsia.

    Science.gov (United States)

    Seki, Hiroyuki

    2014-10-01

    The "two-stage disorder" theory that is assumed for the etiology of preeclampsia hypothesizes that antiangiogenic and angiogenic factors and/or placental debris play an important role in this disorder. The physiological actions of placental debris occur via the balance between antiangiogenic and angiogenic factors. Accordingly, this balance between antiangiogenic and angiogenic factors should be investigated to elucidate the various pathological features of preeclampsia. Their accurate evaluation is needed to investigate not only antiangiogenic factors (such as sFlt-1 and sEng) and angiogenic factors (such as vascular endothelial growth factor, placental growth factor and transforming growth factor-β) but also the expression level of their receptors such as Flt-1 and Eng. However, it is ethically and technically difficult to investigate the above-mentioned factors at antepartum in human patients. The examination of the ratios of sFlt-1/vascular endothelial growth factor receptor ligands and sEng/transforming vascular endothelial growth factor-β and the use of experimental animal models may help in elucidating various unresolved issues in preeclampsia. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  1. Anti-Angiogenics: Current Situation and Future Perspectives.

    Science.gov (United States)

    Zirlik, Katja; Duyster, Justus

    2018-01-01

    Angiogenesis, the process leading to the formation of new blood vessels, is one of the hallmarks of cancer. Extensive studies established that i) vascular endothelial growth factor (VEGF) is a key driver of sprouting angiogenesis, ii) VEGF is overexpressed in most solid cancers, and iii) inhibition of VEGF can suppress tumor growth in animal models. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve the tumor of nutrients and oxygen, primarily through the blockade of VEGF/VEGF receptor signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, either alone or in combination with chemotherapy and other targeted therapies. However, inhibition of VEGF signaling is not effective in all cancers, and anti-angiogenics have often only limited impact on overall survival of cancer patients. This review focuses on the current status of FDA-approved anti-angiogenic antibodies and tyrosine kinase inhibitors and summarizes the progress and future directions of VEGF-targeted therapy. © 2018 S. Karger GmbH, Freiburg.

  2. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner

    Science.gov (United States)

    Xie, Liang; Duncan, Michael B.; Pahler, Jessica; Sugimoto, Hikaru; Martino, Margot; Lively, Julie; Mundel, Thomas; Soubasakos, Mary; Rubin, Kristofer; Takeda, Takaaki; Inoue, Masahiro; Lawler, Jack; Hynes, Richard O.; Hanahan, Douglas; Kalluri, Raghu

    2011-01-01

    Whereas the roles of proangiogenic factors in carcinogenesis are well established, those of endogenous angiogenesis inhibitors (EAIs) remain to be fully elaborated. We investigated the roles of three EAIs during de novo tumorigenesis to further test the angiogenic balance hypothesis, which suggests that blood vessel development in the tumor microenvironment can be governed by a net loss of negative regulators of angiogenesis in addition to the well-established principle of up-regulated angiogenesis inducers. In a mouse model of pancreatic neuroendocrine cancer, administration of endostatin, thrombospondin-1, and tumstatin peptides, as well as deletion of their genes, reveal neoplastic stage-specific effects on angiogenesis, tumor progression, and survival, correlating with endothelial expression of their receptors. Deletion of tumstatin and thrombospondin-1 in mice lacking the p53 tumor suppressor gene leads to increased incidence and reduced latency of angiogenic lymphomas associated with diminished overall survival. The results demonstrate that EAIs are part of a balance mechanism regulating tumor angiogenesis, serving as intrinsic microenvironmental barriers to tumorigenesis. PMID:21622854

  3. Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yulia Shamis

    Full Text Available Human embryonic and induced pluripotent stem cells (hESC/hiPSC are promising cell sources for the derivation of large numbers of specific cell types for tissue engineering and cell therapy applications. We have describe a directed differentiation protocol that generates fibroblasts from both hESC and hiPSC (EDK/iPDK that support the repair and regeneration of epithelial tissue in engineered, 3D skin equivalents. In the current study, we analyzed the secretory profiles of EDK and iPDK cells to investigate the production of factors that activate and promote angiogenesis. Analysis of in vitro secretion profiles from EDK and iPDK cells demonstrated the elevated secretion of pro-angiogenic soluble mediators, including VEGF, HGF, IL-8, PDGF-AA, and Ang-1, that stimulated endothelial cell sprouting in a 3D model of angiogenesis in vitro. Phenotypic analysis of EDK and iPDK cells during the course of differentiation from hESCs and iPSCs revealed that both cell types progressively acquired pericyte lineage markers NG2, PDGFRβ, CD105, and CD73 and demonstrated transient induction of pericyte progenitor markers CD31, CD34, and Flk1/VEGFR2. Furthermore, when co-cultured with endothelial cells in 3D fibrin-based constructs, EDK and iPDK cells promoted self-assembly of vascular networks and vascular basement membrane deposition. Finally, transplantation of EDK cells into mice with hindlimb ischemia significantly reduced tissue necrosis and improved blood perfusion, demonstrating the potential of these cells to stimulate angiogenic responses in vivo. These findings demonstrate that stable populations of pericyte-like angiogenic cells can be generated with high efficiency from hESC and hiPSC using a directed differentiation approach. This provides new cell sources and opportunities for vascular tissue engineering and for the development of novel strategies in regenerative medicine.

  4. Perforated Gastric Ulcer Associated with Anti-Angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Diogo Libânio

    2017-08-01

    Full Text Available Anti-angiogenic therapy with bevacizumab, an inhibitor of vascular endothelial growth factor, is commonly used in metastatic colorectal cancer and is rarely associated with gastrointestinal perforation, perforation being more frequent in the primary tumor site or at the anastomotic level. We present the case of a 64-year-old male with stage IV rectal adenocarcinoma who was on palliative chemotherapy with FOLFOX and bevacizumab. After the 4th chemotherapy cycle, our patient started fever and epigastric pain. He was hemodynamically stable, and signs of peritoneal irritation were absent. There were no alterations in the abdominal X-ray, and C-reactive protein was markedly elevated. A CT scan revealed a de novo thickness in the gastric antrum. Upper digestive endoscopy showed an ulcerated 40-mm lesion in the angulus, with a 20-mm orifice communicating with an exsudative cavity revested by the omentum. A conservative approach was decided including fasting, broad-spectrum intravenous antibiotics, and proton-pump inhibitors. Subsequent gastroduodenal series showed no contrast extravasation, allowing the resumption of oral nutrition. Esophagogastroduodenoscopy after 8 weeks showed perforation closure. Biopsies did not show neoplastic cells or Heliobacter pylori infection. Although the success in the conservative management of perforation allowing the maintenance of palliative chemotherapy (without bevacizumab, the patient died after 4 months due to liver failure. The reported case shows an uncommon endoscopic finding due to a rare complication of anti-angiogenic therapy. Additionally, it reminds clinicians that a history of gastroduodenal ulcers should be actively sought before starting anti-angiogenic treatment and that suspicion for perforation should be high in these cases.

  5. Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Hoier, Birgitte

    2014-01-01

    . Depending on the mechanical signal provided, capillary growth may occur either by longitudinal splitting (shear stress) or by sprouting (passive stretch). The mechanical signals initiate angiogenic processes by up-regulation or release of angioregulatory proteins that either promote, modulate or inhibit...... by mechanical or by chemical signalling. Mechanical signals originate from shear stress forces on the endothelial cell layer induced by the blood flowing through the vessel, but include also mechanical stretch and compression of the vascular structures and the surrounding tissue, as the muscle contracts...

  6. Muscle ERRγ mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming.

    Science.gov (United States)

    Matsakas, Antonios; Yadav, Vikas; Lorca, Sabina; Narkar, Vihang

    2013-10-01

    Treatment of Duchenne muscular dystrophy (DMD) by replacing mutant dystrophin or restoring dystrophin-associated glycoprotein complex (DAG) has been clinically challenging. Instead, identifying and targeting muscle pathways deregulated in DMD will provide new therapeutic avenues. We report that the expression of nuclear receptor estrogen-related receptor-γ (ERRγ), and its metabolic and angiogenic targets are down-regulated (50-85%) in skeletal muscles of mdx mice (DMD model) vs. wild-type mice. Corelatively, oxidative myofibers, muscle vasculature, and exercise tolerance (33%) are decreased in mdx vs. wild-type mice. Overexpressing ERRγ selectively in the dystrophic muscles of the mdx mice restored metabolic and angiogenic gene expression compared with control mdx mice. Further, ERRγ enhanced muscle oxidative myofibers, vasculature, and blood flow (by 33-66%) and improved exercise tolerance (by 75%) in the dystrophic mice. Restoring muscle ERRγ pathway ameliorated muscle damage and also prevented DMD hallmarks of postexercise muscle damage, hypoxia, and fatigue in mdx mice. Notably, ERRγ did not restore sarcolemmal DAG complex, which is thus dispensable for antidystrophic effects of ERRγ. In summary, ERRγ-dependent metabolic and angiogenic gene program is defective in DMD, and we demonstrate that its restoration is a potential strategy for treating muscular dystrophy.

  7. A Novel Natural Product-Derived Compound, Vestaine A1, Exerts both Pro-Angiogenic and Anti-Permeability Activity via a Different Pathway from VEGF

    Directory of Open Access Journals (Sweden)

    Yoko Ishimoto

    2016-10-01

    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF is a key molecule in the regulation of both angiogenesis and vascular permeability. However, it is known that overproduction of VEGF induces abnormal blood vessel formation and these vessels cause several disease pathologies, such as diabetic retinopathy. The purpose of this study was to find novel vasoactive compounds which have different properties from VEGF. Methods/Results: We screened a natural product library using a co-culture angiogenic assay of endothelial cells and fibroblasts. By focusing on morphological changes of endothelial cells, we isolated the novel compounds vestaine A1 and vestaine B1 from the cultured broth of an actinomycete strain, Streptomyces sp. SANK 63697. Vestaine A1 enhanced tube formation of endothelial cells in Matrigel and suppressed cell death induced by serum deprivation. Vestaine A1 activated both MEK1/2 and PI-3 kinase pathways independently of the VEGF pathway in a dose- and time-dependent fashion. Finally, vestaine A1 potently suppressed VEGF-induced vascular permeability both in vitro and in vivo. Conclusion: Vestaine A1 has the potential to exhibit both pro-angiogenic and anti-permeability properties, and would therefore be useful for therapeutic treatment for abnormal vascular permeability-related diseases.

  8. Anti-angiogenic treatment of gastrointestinal malignancies.

    Science.gov (United States)

    Salmon, J Stuart; Lockhart, A Craig; Berlin, Jordan

    2005-01-01

    The scientific rationale to block angiogenesis as a treatment strategy for human cancer has been developed over the last 30 years, but is only now entering the clinical arena. Preclinical studies have demonstrated the importance of the vascular endothelial growth factor (VEGF) pathways in both physiologic and pathologic angiogenesis, and have led to the development of approaches to block its role in tumor angiogenesis. Bevacizumab is an antibody to VEGF and has been shown to prolong survival when given with chemotherapy in the treatment of metastatic colorectal cancer (CRC). Although this is the first anti-angiogenic treatment to be approved for the treatment of human epithelial malignancy, a number of other approaches currently are in development. Soluble chimeric receptors to sequester serum VEGF and monoclonal antibodies against VEGF receptors have both shown considerable promise in the laboratory and are being brought into clinical investigation. A number of small-molecule tyrosine kinase inhibitors that have activity against VEGF receptors also are in clinical trials. Although these novel treatments are being pioneered in CRC, anti-angiogenic approaches also are being tested in the treatment of other gastrointestinal malignancies. Anti-VEGF therapy has shown promise in such traditionally resistant tumors as pancreatic cancer and hepatocellular carcinoma. This review will examine the preclinical foundation and then focus on the clinical studies of anti-VEGF therapy in gastrointestinal cancers.

  9. Angiogenic and angiostatic factors in the molecular control of angiogenesis.

    Science.gov (United States)

    Distler, J H W; Hirth, A; Kurowska-Stolarska, M; Gay, R E; Gay, S; Distler, O

    2003-09-01

    The vascular system that ensures an adequate blood flow is required to provide the cells with sufficient supply of nutrients and oxygen. Two different mechanisms of the formation of new vessels can be distinguished: vasculogenesis, the formation of the first primitive vascular plexus de novo and angiogenesis, the formation of new vessels from preexisting ones. Both processes are regulated by a delicate balance of pro- and anti-angiogenic factors. Physiologically, angiostatic mediators outweigh the angiogenic molecules and angiogenesis does not occur. Under certain conditions such as tumor formation or wound healing, the positive regulators of angiogenesis predominate and the endothelium becomes activated. Angiogenesis is initiated by vasodilatation and an increased permeability. After destabilization of the vessel wall, endothelial cells proliferate, migrate and form a tube, which is finally stabilized by pericytes and smooth muscle cells. Numerous soluble growth factors and inhibitors, cytokines and proteases as well as extracellular matrix proteins and adhesion molecules strictly control this multi-step process. The properties and interactions of angiogenic molecules such as VEGFs, FGFs, angiopoietins, PDGF, angiogenin, angiotropin, HGF, CXC chemokines with ELR motif, PECAM-1, integrins and VE-cadherin as well as angiostatic key players such as angiostatin, endostatin, thrombospondin, CXC chemokines without ELR motif, PEDF are discussed in this review with respect to their molecular impact on angiogenesis.

  10. Non-invasive imaging for studying anti-angiogenic therapy effects

    NARCIS (Netherlands)

    Ehling, J.; Lammers, Twan Gerardus Gertudis Maria; Kiessling, F.

    2013-01-01

    Noninvasive imaging plays an emerging role in preclinical and clinical cancer research and has high potential to improve clinical translation of new drugs. This article summarises and discusses tools and methods to image tumour angiogenesis and monitor anti-angiogenic therapy effects. In this

  11. Extravillous trophoblast invasion in placenta accreta is associated with differential local expression of angiogenic and growth factors: a cross-sectional study.

    Science.gov (United States)

    Duzyj, C M; Buhimschi, I A; Laky, C A; Cozzini, G; Zhao, G; Wehrum, M; Buhimschi, C S

    2018-02-22

    Placenta accreta is clinically associated with maternal uterine scar. Our objective was to investigate the biochemical contribution of maternal scarring to hyperinvasive trophoblast. We hypothesised that trophoblast over-invasion in placenta accreta is associated with aberrant invasion-site signalling of growth and angiogenic factors known to be involved in wound healing and promotion of cell invasion through the epithelial to mesenchymal cellular programme. Cross-sectional series. Yale-New Haven Hospital. Women with histologically confirmed normal and abnormal placentation. Placental invasion site tissue sections were immunostained for endoglin and other angiogenic regulators, and transforming growth factor β (TGFβ) proteins. Maternal serum endoglin, and the vascular endothelial growth factor (VEGF) mediators hypoxia-inducible factor-1α (HIF1α) and endostatin, were assessed using immunoassay. Differences in median H-score by immunostaining and in mean serum level by immunoassay. By immunostaining, placenta accreta samples demonstrated intervillous endoglin shedding and increased trophoblast expression of its cleavage protein matrix metalloproteinase-14. Absent decidual HIF1α and endostatin were observed in areas of VEGF upregulation. TGFβ1 was present in myocytes but not in collagen bundles into which accreta trophoblast invaded. Maternal serum endoglin decreased in praevia and accreta when corrected for gestational age. Angiogenic and growth factors at the placental invasion site are altered in accreta, both by decidual absence and within myometrial scar. We postulate this promotes the invasive phenotype of placenta accreta by activating hyperinvasive trophoblast and by dysregulating placental vascular remodelling. Yale Department of Obstetrics, Gynecology and Reproductive Sciences funds. Placenta accreta histology shows dysregulation of angiogenic and growth factors. © 2018 Royal College of Obstetricians and Gynaecologists.

  12. Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.

    Science.gov (United States)

    Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M

    2016-02-01

    Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI  30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.

  13. Oxidized LDL-induced angiogenesis involves sphingosine 1-phosphate: prevention by anti-S1P antibody.

    Science.gov (United States)

    Camaré, Caroline; Trayssac, Magali; Garmy-Susini, Barbara; Mucher, Elodie; Sabbadini, Roger; Salvayre, Robert; Negre-Salvayre, Anne

    2015-01-01

    Neovascularization occurring in atherosclerotic lesions may promote plaque expansion, intraplaque haemorrhage and rupture. Oxidized LDL (oxLDL) are atherogenic, but their angiogenic effect is controversial; both angiogenic and anti-angiogenic effects have been reported. The angiogenic mechanism of oxLDL is partly understood, but the role of the angiogenic sphingolipid, sphingosine 1-phosphate (S1P), in this process is not known. Thus, we investigated whether S1P is involved in the oxLDL-induced angiogenesis and whether an anti-S1P monoclonal antibody can prevent this effect. Angiogenesis was assessed by capillary tube formation by human microvascular endothelial cells (HMEC-1) cultured on Matrigel and in vivo by the Matrigel plug assay in C57BL/6 mice. Human oxLDL exhibited a biphasic angiogenic effect on HMEC-1; low concentrations were angiogenic, higher concentrations were cytotoxic. The angiogenic response to oxLDL was blocked by the sphingosine kinase (SPHK) inhibitor, dimethylsphingosine, by SPHK1-siRNA and by an anti-S1P monoclonal antibody. Moreover, inhibition of oxLDL uptake and subsequent redox signalling by anti-CD36 and anti-LOX-1 receptor antibodies and by N-acetylcysteine, respectively, blocked SPHK1 activation and tube formation. In vivo, in the Matrigel plug assay, low concentrations of human oxLDL or murine oxVLDL also triggered angiogenesis, which was prevented by i.p. injection of the anti-S1P antibody. These data highlight the role of S1P in angiogenesis induced by oxLDL both in HMEC-1 cultured on Matrigel and in vivo in the Matrigel plug model in mice, and demonstrate that the anti-S1P antibody effectively blocks the angiogenic effect of oxLDL. © 2014 The British Pharmacological Society.

  14. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    Science.gov (United States)

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biomarkers for Anti-Angiogenic Therapy in Cancer

    Directory of Open Access Journals (Sweden)

    Markus Wehland

    2013-04-01

    Full Text Available Angiogenesis, the development of new vessels from existing vasculature, plays a central role in tumor growth, survival, and progression. On the molecular level it is controlled by a number of pro- and anti-angiogenic cytokines, among which the vascular endothelial growth factors (VEGFs, together with their related VEGF-receptors, have an exceptional position. Therefore, the blockade of VEGF signaling in order to inhibit angiogenesis was deemed an attractive approach for cancer therapy and drugs interfering with the VEGF-ligands, the VEGF receptors, and the intracellular VEGF-mediated signal transduction were developed. Although promising in pre-clinical trials, VEGF-inhibition proved to be problematic in the clinical context. One major drawback was the generally high variability in patient response to anti-angiogenic drugs and the rapid development of therapy resistance, so that, in total, only moderate effects on progression-free and overall survival were observed. Biomarkers predicting the response to VEGF-inhibition might attenuate this problem and help to further individualize drug and dosage determination. Although up to now no definitive biomarker has been identified for this purpose, several candidates are currently under investigation. This review aims to give an overview of the recent developments in this field, focusing on the most prevalent tumor species.

  16. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases].

    Science.gov (United States)

    Boufettal, H; Feige, J-J; Benharouga, M; Aboussaouira, T; Nadifi, S; Mahdaoui, S; Samouh, N; Alfaidy, N

    2013-10-01

    Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. URG4/URGCP enhances the angiogenic capacity of human hepatocellular carcinoma cells in vitro via activation of the NF-κB signaling pathway

    International Nuclear Information System (INIS)

    Xing, Sizhong; Zhang, Bing; Hua, Ruixi; Tai, William Chi-shing; Zeng, Zhirong; Xie, Binhui; Huang, Chenghui; Xue, Jisu; Xiong, Shiqiu; Yang, Jianyong; Liu, Side; Li, Heping

    2015-01-01

    Angiogenesis is essential for tumor growth. Hepatocellular carcinoma (HCC) is characterized by hypervascularity; high levels of angiogenesis are associated with poor prognosis and a highly invasive phenotype in HCC. Up-regulated gene-4 (URG4), also known as upregulator of cell proliferation (URGCP), is overexpressed in multiple tumor types and has been suggested to act as an oncogene. This study aimed to elucidate the effect of URG4/URGCP on the angiogenic capacity of HCC cells in vitro. Expression of URG4/URGCP in HCC cell lines and normal liver epithelial cell lines was examined by Western blotting and quantitative real-time PCR. URG4/URGCP was stably overexpressed or transiently knocked down using a shRNA in two HCC cell lines. The human umbilical vein endothelial cell (HUVEC) tubule formation and Transwell migration assays and chicken chorioallantoic membrane (CAM) assay were used to examine the angiogenic capacity of conditioned media from URG4/URGCP-overexpressing and knockdown cells. A luciferase reporter assay was used to examine the transcriptional activity of nuclear factor kappa – light – chain - enhancer of activated B cells (NF-κB). NF-κB was inhibited by overexpressing degradation-resistant mutant inhibitor of κB (IκB)-α. Expression of vascular endothelial growth factor C (VEGFC), tumor necrosis factor-α (TNFα), interleukin (IL)-6, IL-8 and v-myc avian myelocytomatosis viral oncogene homolog (MYC) were examined by quantitative real-time PCR; VEGFC protein expression was analyzed using an ELISA. URG4/URGCP protein and mRNA expression were significantly upregulated in HCC cell lines. Overexpressing URG4/URGCP enhanced - while silencing URG4/URGCP decreased - the capacity of HCC cell conditioned media to induce HUVEC tubule formation and migration and neovascularization in the CAM assay. Furthermore, overexpressing URG4/URGCP increased - whereas knockdown of URG4/URGCP decreased - VEGFC expression, NF-κB transcriptional activity, the levels

  18. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    Science.gov (United States)

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (pstar extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (pstar methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  19. Personalizes lung motion simulation fore external radiotherapy using an artificial neural network

    International Nuclear Information System (INIS)

    Laurent, R.

    2011-01-01

    The development of new techniques in the field of external radiotherapy opens new ways of gaining accuracy in dose distribution, in particular through the knowledge of individual lung motion. The numeric simulation NEMOSIS (Neural Network Motion Simulation System) we describe is based on artificial neural networks (ANN) and allows, in addition to determining motion in a personalized way, to reduce the necessary initial doses to determine it. In the first part, we will present current treatment options, lung motion as well as existing simulation or estimation methods. The second part describes the artificial neural network used and the steps for defining its parameters. An accurate evaluation of our approach was carried out on original patient data. The obtained results are compared with an existing motion estimated method. The extremely short computing time, in the range of milliseconds for the generation of one respiratory phase, would allow its use in clinical routine. Modifications to NEMOSIS in order to meet the requirements for its use in external radiotherapy are described, and a study of the motion of tumor outlines is carried out. This work lays the basis for lung motion simulation with ANNs and validates our approach. Its real time implementation coupled to its predication accuracy makes NEMOSIS promising tool for the simulation of motion synchronized with breathing. (author)

  20. Physicochemical/photophysical characterization and angiogenic properties of Curcuma longa essential oil

    Directory of Open Access Journals (Sweden)

    LILHIAN A. ARAÚJO

    Full Text Available ABSTRACT This study analyzed the physicochemical and photophysical properties of essential oil of Curcuma longa and its angiogenic potential. The results showed that curcumin is the main fluorescent component present in the oil, although the amount is relatively small. The experimental chorioallantoic membrane model was used to evaluate angiogenic activity, showing a significant increase in the vascular network of Curcuma longa and positive control groups when compared to the neutral and inhibitor controls (P 0.05. Histological analysis showed extensive neovascularization, hyperemia and inflammation in the positive control group and Curcuma longa when compared to other controls (P <0.05, characteristic factors of the angiogenesis process. In conclusion, Curcuma longa oil showed considerable proangiogenic activity and could be a potential compound in medical applications.

  1. Physicochemical/photophysical characterization and angiogenic properties of Curcuma longa essential oil.

    Science.gov (United States)

    Araújo, Lilhian A; Araújo, Rafael G M; Gomes, Flávia O; Lemes, Susy R; Almeida, Luciane M; Maia, Lauro J Q; Gonçalves, Pablo J; Mrué, Fátima; Silva-Junior, Nelson J; Melo-Reis, Paulo R DE

    2016-01-01

    This study analyzed the physicochemical and photophysical properties of essential oil of Curcuma longa and its angiogenic potential. The results showed that curcumin is the main fluorescent component present in the oil, although the amount is relatively small. The experimental chorioallantoic membrane model was used to evaluate angiogenic activity, showing a significant increase in the vascular network of Curcuma longa and positive control groups when compared to the neutral and inhibitor controls (P Curcuma longa essential oil and the positive control (P >0.05). Histological analysis showed extensive neovascularization, hyperemia and inflammation in the positive control group and Curcuma longa when compared to other controls (P Curcuma longa oil showed considerable proangiogenic activity and could be a potential compound in medical applications.

  2. Angiogenic activity in patients with psoriasis is significantly decreased by Goeckerman's therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andrys, C.; Borska, L.; Pohl, D.; Fiala, Z.; Hamakova, K.; Krejsek, J. [Faculty Hospital, Hradec Kralove (Czech Republic). Dept. of Clinical Immunology & Allergy

    2007-03-15

    Goeckerman's therapy (GT) of psoriasis is based on daily application of pharmacy grade coal tar on affected skin with subsequent exposure to UV light. Goeckerman's therapy is still the first line therapy of psoriasis in the Czech Republic because of its low cost and long-term efficacy. Disturbances in angiogenic activity are characteristic for the immunopathogenesis of psoriasis. An abnormal spectrum of cytokines, growth factors and proangiogenic mediators is produced by keratinocytes and inflammatory cells in patients suffering from the disease. The aim of this study was to evaluate the influence of GT of psoriasis on angiogenic activities by comparing serum levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in 44 patients with psoriasis in peripheral blood samples collected before and after therapy. It was found that the angiogenic potential which is abnormally increased in patients with psoriasis is significantly alleviated by GT.

  3. Circulating Angiogenic Factors and the Risk of Adverse Outcomes among Haitian Women with Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Melissa I March

    Full Text Available Angiogenic factors are strongly associated with adverse maternal and fetal outcomes among women with preterm preeclampsia (PE in developed countries. We evaluated the role of angiogenic factors and their relationship to adverse outcomes among Haitian women with PE.We measured plasma antiangiogenic soluble fms-like tyrosine kinase 1 (sFlt1 and proangiogenic placental growth factor (PlGF levels in women with PE (n=35 compared to controls with no hypertensive disorders (NHD (n=43 among subjects with singleton pregnancies that delivered at Hospital Albert Schweitzer (HAS in Haiti. We divided the preeclamptic women into two groups, early onset (≤ 34 weeks and late onset (>34 weeks and examined relationships between sFlt1/PlGF ratios on admission and adverse outcomes (abruption, respiratory complications, stroke, renal insufficiency, eclampsia, maternal death, birth weight 34 weeks with no adverse outcome.PE-related adverse outcomes are common in women in Haiti and are associated with profound angiogenic imbalance regardless of gestational age at presentation.

  4. Excretion of anti-angiogenic proteins in patients with chronic allograft dysfunction.

    Science.gov (United States)

    Moskowitz-Kassai, Eliza; Mackelaite, Lina; Chen, Jun; Patel, Kaushal; Dadhania, Darshana M; Gross, Steven S; Chander, Praveen; Delaney, Vera; Deng, Luqin; Chen, Ligong; Cui, Xiangqin; Suthanthiran, Manikkam; Goligorsky, Michael S

    2012-02-01

    We have recently documented the appearance of an anti-angiogenic peptide, endorepellin, in the urine of patients with chronic allograft dysfunction (CAD). Here, we analyzed using enzyme-linked immunosorbent assay the excretion of anti-angiogenic peptides endostatin, pigment epithelium-derived factor (PEDF) and Kruppel-like factor-2 (KLF-2), in healthy individuals, patients with stable graft function and patients with various degrees of CAD. In healthy subjects and patients with CAD-0, endostatin, PEDF and KLF-2 excretions were at the level of detection. In contrast, there were significant differences between the patients with CAD-3 and CAD-0, CAD-1 and healthy controls for endostatin and CAD-0 versus CAD-3 for PEDF, but no differences in KLF-2 excretion. Receiver operating characteristic (ROC) curve analyses demonstrated a highly discriminative profile for all three biomarkers: the combination of these parameters offered 83% sensitivity and 90% specificity in distinguishing CAD-0 from CAD-1-3. The quality of these potential biomarkers of CAD was, however, highest in discriminating CAD status in biopsy-proven cases and dropped when CAD-0 was diagnosed based on clinical criteria. In conclusion, these findings indicate the diagnostic potential of urinary detection of endostatin, PEDF and to lesser degree KLF-2 and suggest a mechanistic role played by anti-angiogenic substances in the developing vasculopathy and vascular rarefaction in patients with CAD.

  5. Expression of the angiogenic mediator, angiopoietin-like 4, in the eyes of patients with proliferative sickle retinopathy.

    Directory of Open Access Journals (Sweden)

    Kathleen Jee

    Full Text Available The recent success of therapies directly targeting the angiogenic mediator, vascular endothelial growth factor (VEGF, for the treatment of proliferative diabetic retinopathy has encouraged clinicians to extend the use of anti-VEGF therapies for the treatment of another ischemic retinal vascular disease, proliferative sickle cell retinopathy (PSR, the most common cause of irreversible blindness in patients with sickle cell disease. However, results from case reports evaluating anti-VEGF therapies for PSR have been mixed. This highlights the need to identify alternative therapeutic targets for the treatment of retinal neovascularization in sickle cell patients. In this regard, angiopoietin-like 4 (ANGPTL4 is a novel angiogenic factor regulated by the transcription factor, hypoxia-inducible factor 1, the master regulator of angiogenic mediators (including VEGF in ischemic retinal disease. In an effort to identify alternative targets for the treatment of sickle cell retinopathy, we have explored the expression of ANGPTL4 in the eyes of patients with PSR. To this end, we examined expression and localization of ANGPTL4 by immunohistochemistry in autopsy eyes from patients with known PSR (n = 5 patients. Complementary studies were performed using enzyme-linked immunosorbent assays in aqueous (n = 8; 7 patients, 2 samples from one eye of same patient and vitreous (n = 3 patients samples from a second group of patients with active PSR. We detected expression of ANGPTL4 in neovascular tissue and in the ischemic inner retina in PSR, but not control, eyes. We further observed elevated expression of ANGPTL4 in the aqueous and vitreous of PSR patients compared to controls. These results suggest that ANGPTL4 could contribute to the development of retinal neovascularization in sickle cell patients and could therefore be a therapeutic target for the treatment of PSR.

  6. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    International Nuclear Information System (INIS)

    Zhu, Zhuoli; Gan, Xueqi; Fan, Hongyi; Yu, Haiyang

    2015-01-01

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  7. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhuoli; Gan, Xueqi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Fan, Hongyi [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yu, Haiyang, E-mail: yhyang6812@foxmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2015-12-25

    Mesenchymal stem cells (MSCs) have been broadly used for tissue regeneration and repair due to their broad differentiation potential and potent paracrine properties such as angiogenic capacity. Strategies to increase their survival rate after transplantation and the angiogenic ability are of priority for the utility of MSCs. In this study, we found that mechanical stretch (10% extension, 30 cycles/min cyclic stretch) preconditioning increase the angiogenic capacity via VEGFA induction. In addition, mechanical stretch also increases the survival rate of mesenchymal stem cells under nutrients deprivation. Consistent with the increase VEGFA expression and resistance to apoptosis, nuclear localization of NFκB activity p65 increased upon mechanical stretch. Inhibition of NFκB activity by BAY 11-708 blocks the pro-angiogenesis and anti-apoptosis function of mechanical stretch. Taken together, our findings here raise the possibility that mechanical stretch preconditioning might enhance the therapeutic efficacy of mesenchymal stem cells. - Highlights: • Mechanical stretch increases the angiogenic capacity via VEGFA induction in MSCs. • Mechanical stretch increases the survival rate of MSCs under nutrients deprivation. • Mechanical stretch manipulates MSCs via the activation of NFκB.

  8. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    Science.gov (United States)

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  9. In vitro and in vivo anti-angiogenic activity of girinimbine isolated from Murraya koenigii

    Directory of Open Access Journals (Sweden)

    Iman V

    2015-03-01

    Full Text Available Venoos Iman,1 Hamed Karimian,1 Syam Mohan,2 Yahya Hasan Hobani,2 Mohamed Ibrahim Noordin,1 Mohd Rais Mustafa,3 Suzita Mohd Noor41Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Research Center, University of Jazan, Jazan, Saudi Arabia; 3Department of Pharmacology, Centre for Natural Products and Drug Discovery (CENAR, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 4Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, MalaysiaAbstract: Girinimbine is a carbazole alkaloid isolated from the stem bark and root of Murraya koenigii. Here we report that girinimbine is an inhibitor of angiogenic activity both in vitro and in vivo. MTT results showed that girinimbine inhibited proliferation of human umbilical vein endothelial cells, while results from endothelial cell invasion, migration, tube formation, and wound healing assays demonstrated significant time- and dose-dependent inhibition by girinimbine. A proteome profiler array done on girinimbine-treated human umbilical vein endothelial cells showed that girinimbine had mediated regulation of pro-angiogenic and anti-angiogenic proteins. The anti-angiogenic potential of girinimbine was also evidenced in vivo in the zebrafish embryo model wherein girinimbine inhibited neo vessel formation in zebrafish embryos following 24 hours of exposure. Together, these results showed that girinimbine could effectively suppress angiogenesis, suggestive of its therapeutic potential as a novel angiogenesis inhibitor. Keywords: angiogenesis, inhibitor, carbazole alkaloid, zebrafish

  10. Dynamics of tumor growth and combination of anti-angiogenic and cytotoxic therapies

    Science.gov (United States)

    Kohandel, M.; Kardar, M.; Milosevic, M.; Sivaloganathan, S.

    2007-07-01

    Tumors cannot grow beyond a certain size (about 1-2 mm in diameter) through simple diffusion of oxygen and other essential nutrients into the tumor. Angiogenesis, the formation of blood vessels from pre-existing vessels, is a crucial and observed step, through which a tumor obtains its own blood supply. Thus, strategies that interfere with the development of this tumor vasculature, known as anti-angiogenic therapy, represent a novel approach to controlling tumor growth. Several pre-clinical studies have suggested that currently available angiogenesis inhibitors are unlikely to yield significant sustained improvements in tumor control on their own, but rather will need to be used in combination with conventional treatments to achieve maximal benefit. Optimal sequencing of anti-angiogenic treatment and radiotherapy or chemotherapy is essential to the success of these combined treatment strategies. Hence, a major challenge to mathematical modeling and computer simulations is to find appropriate dosages, schedules and sequencing of combination therapies to control or eliminate tumor growth. Here, we present a mathematical model that incorporates tumor cells and the vascular network, as well as their interplay. We can then include the effects of two different treatments, conventional cytotoxic therapy and anti-angiogenic therapy. The results are compared with available experimental and clinical data.

  11. Assessment of the anti-angiogenic, anti-inflammatory and antinociceptive properties of ethyl vanillin.

    Science.gov (United States)

    Jung, Hyun-Joo; Song, Yun Seon; Kim, Kyunghoon; Lim, Chang-Jin; Park, Eun-Hee

    2010-02-01

    The present work aimed to assess novel pharmacological properties of ethyl vanillin (EVA) which is used as a flavoring agent for cakes, dessert, confectionary, etc. EVA exhibited an inhibitory activity in the chorioallantoic membrane angiogenesis. Anti-inflammatory activity of EVA was convinced using the two in vivo models, such as vascular permeability and air pouch models in mice. Antinociceptive activity of EVA was assessed using acetic acid-induced writhing model in mice. EVA suppressed production of nitric oxide and induction of inducible nitric oxide synthase in the lipopolysaccharide (LPS)-activated RAW264.7 macrophage cells. However, EVA could not suppress induction of cyclooxygenase-2 in the LPS-activated macrophages. EVA diminished reactive oxygen species level in the LPS-activated macrophages. EVA also suppressed enhanced matrix metalloproteinase-9 gelatinolytic activity in the LPSactivated RAW264.7 macrophage cells. EVA at the used concentrations couldn't diminish viability of the macrophage cells. Taken together, the anti-angiogenic, anti-inflammatory and anti-nociceptive properties of EVA are based on its suppressive effect on the production of nitric oxide possibly via decreasing the reactive oxygen species level.

  12. Analysis of GLUT-1, GLUT-3, and angiogenic index in syndromic and non-syndromic keratocystic odontogenic tumors

    Directory of Open Access Journals (Sweden)

    Rafaella Bastos LEITE

    2017-04-01

    Full Text Available Abstract The aim of this study was to evaluate the immunoexpression of glucose transporters 1 (GLUT-1 and 3 (GLUT-3 in keratocystic odontogenic tumors associated with Gorlin syndrome (SKOTs and non-syndromic keratocystic odontogenic tumors (NSKOTs, and to establish correlations with the angiogenic index. Seventeen primary NSKOTs, seven recurrent NSKOTs, and 17 SKOTs were selected for the study. The percentage of immunopositive cells for GLUT-1 and GLUT-3 in the epithelial component of the tumors was assessed. The angiogenic index was determined by microvessel count. The results were analyzed statistically using the nonparametric Kruskal-Wallis test and Spearman’s correlation test. High epithelial immunoexpression of GLUT-1 was observed in most tumors (p = 0.360. There was a higher frequency of negative cases for GLUT-3 in all groups. The few GLUT-3-positive tumors exhibited low expression of this protein in epithelial cells. No significant difference in the angiogenic index was observed between groups (p = 0.778. GLUT-1 expression did not correlate significantly with the angiogenic index (p > 0.05. The results suggest that the more aggressive biological behavior of SKOTs when compared to NSKOTs may not be related to GLUT-1 or GLUT-3 expression. GLUT-1 may play an important role in glucose uptake by epithelial cells of KOTs and this process is unlikely related to the angiogenic index. GLUT-1 could be a potential target for future development of therapeutic strategies for KOTs.

  13. Cardioprotective effect of valsartan in mice with short-term high-salt diet by regulating cardiac aquaporin 1 and angiogenic factor expression.

    Science.gov (United States)

    Jiang, Yong; Wang, Hui-Yan; Zheng, Sheng; Mu, Shang-Qiang; Ma, Meng-Ni; Xie, Xin; Zhang, Yang-Yang; Zhang, Chun-Xue; Cai, Jian-Hui

    2015-01-01

    Hypertension is the most common risk factor for various cardiovascular and cerebrovascular diseases that affects approximately 61 million, or 25% of the population in United States. The dietary salt intake is one of the most important but modifiable factors for hypertension. In the current study, we aim to elucidate the role of aquaporin 1 in high-salt-induced hypertension and cardiac injuries and whether angiotensin II receptor blocker valsartan could ameliorate the effect of high salt on blood pressure. Mice were fed with normal diet, high-salt diet in the presence or absence of valsartan for 4 weeks. The body weight gain, feeding behavior, blood pressure, and cardiac pathology changes were monitored after 4 weeks. The expression of aquaporin 1, vascular endothelial growth factor, transforming growth factor β1, and basic fibroblast growth factor were analyzed using quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Valsartan partially reversed the effects of high-salt diet on hypertension, cardiac injuries such as fibrosis and inflammatory cell infiltration, and inhibition of aquaporin 1 and angiogenic factors; valsartan alone did not exert such effects. The current data demonstrated that the reduction of cardiac aquaporin 1 and angiogenic factor expression level might be associated with high-salt-induced hypertension and cardiac injuries in mice, which could be ameliorated by angiotensin II receptor blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1

    Science.gov (United States)

    Qin, Liuliang; Zhao, Dezheng; Xu, Jianfeng; Ren, Xianghui; Terwilliger, Ernest F.; Parangi, Sareh; Lawler, Jack; Dvorak, Harold F.

    2013-01-01

    Angiogenesis plays an important role in cancer and in many other human diseases. Vascular endothelial growth factor-A (VEGF-A), the best known angiogenic factor, was originally discovered as a potent vascular permeability factor (VPF), suggesting that other vascular permeabilizing agents, such as histamine and serotonin, might also have angiogenic activity. We recently demonstrated that, like VEGF-A, histamine and serotonin up-regulate the orphan nuclear receptor and transcription factor TR3 (mouse homolog Nur77) and that TR3/Nur77 is essential for their vascular permeabilizing activities. We now report that histamine and serotonin are also angiogenic factors that, at low micromolar concentrations, induce endothelial cell proliferation, migration and tube formation in vitro, and angiogenesis in vivo. All of these responses are mediated through specific histamine and serotonin receptors, are independent of VEGF-A, and are directly dependent on TR3/Nur77. Initially, the angiogenic response closely resembled that induced by VEGF-A, with generation of “mother” vessels. However, after ∼10 days, mother vessels began to regress as histamine and serotonin, unlike VEGF-A, up-regulated the potent angiogenesis inhibitor thrombospondin-1, thereby triggering a negative feedback loop. Thus, histamine and serotonin induce an angiogenic response that fits the time scale of acute inflammation. PMID:23315169

  15. Apelin is a novel angiogenic factor in retinal endothelial cells

    International Nuclear Information System (INIS)

    Kasai, Atsushi; Shintani, Norihito; Oda, Maki; Kakuda, Michiya; Hashimoto, Hitoshi; Matsuda, Toshio; Hinuma, Shuji; Baba, Akemichi

    2004-01-01

    There has been much focus recently on the possible functions of apelin, an endogenous ligand for the orphan G-protein-coupled receptor APJ, in cardiovascular and central nervous systems. We report a new function of apelin as a novel angiogenic factor in retinal endothelial cells. The retinal endothelial cell line RF/6A highly expressed both apelin and APJ transcripts, while human umbilical venous endothelial cells (HUVECs) only expressed apelin mRNA. In accordance with these observations, apelin at concentrations of 1 pM-1 μM significantly enhanced migration, proliferation, and capillary-like tube formation of RF/6A cells, but not those of HUVECs, whereas VEGF stimulates those parameters of both cell types. In vivo Matrigel plug assay for angiogenesis, the inclusion of 1 nM apelin in the Matrigel resulted in clear capillary-like formations with an increase of hemoglobin content in the plug. This is the first report showing that apelin is an angiogenic factor in retinal endothelial cells

  16. Novel PI3K/AKT targeting anti-angiogenic activities of 4-vinylphenol, a new therapeutic potential of a well-known styrene metabolite.

    Science.gov (United States)

    Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Kwok, Hin-Fai; Cheng, Ling; Wong, Eric Chun-Wai; Jiang, Lei; Yu, Hua; Leung, Hoi-Wing; Wong, Yuk-Lau; Leung, Ping-Chung; Fung, Kwok-Pui; Lau, Clara Bik-San

    2015-06-08

    The pneumo- and hepato-toxicity of 4-vinylphenol (4VP), a styrene metabolite, has been previously reported. Nevertheless, the present study reported the novel anti-angiogenic activities of 4VP which was firstly isolated from the aqueous extract of a Chinese medicinal herb Hedyotis diffusa. Our results showed that 4VP at non-toxic dose effectively suppressed migration, tube formation, adhesion to extracellular matrix proteins, as well as protein and mRNA expressions of metalloproteinase-2 of human endothelial cells (HUVEC and HMEC-1). Investigation of the signal transduction revealed that 4VP down-regulated PI3K/AKT and p38 MAPK. Besides, 4VP interfered with the phosphorylation of ERK1/2, the translocation and expression of NFkappaB. In zebrafish embryo model, the new blood vessel growth was significantly blocked by 4VP (6.25-12.5 μg/mL medium). The VEGF-induced blood vessel formation in Matrigel plugs in C57BL/6 mice was suppressed by 4VP (20-100 μg/mL matrigel). In addition, the blood vessel number and tumor size were reduced by intraperitoneal 4VP (0.2-2 mg/kg) in 4T1 breast tumor-bearing BALB/c mice, with doxorubicin as positive control. Together, the in vitro and in vivo anti-angiogenic activities of 4VP were demonstrated for the first time. These findings suggest that 4VP has great potential to be further developed as an anti-angiogenic agent.

  17. Cells and Angiogenic Cytokines in Therapeutic Angiogenesis for Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Luo, Yu; Zhang, Dai-Fu; Liang, Bo

    2005-01-01

    In the past 20 to 30 years,great developments had been achieved in the applying of cells and angiogenic cytokines for ischemic heart disease.The thesis reviews latest studies of mechanism and clinic application of this novel therapy....

  18. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations.

    Science.gov (United States)

    Matluobi, Danial; Araghi, Atefeh; Maragheh, Behnaz Faramarzian Azimi; Rezabakhsh, Aysa; Soltani, Sina; Khaksar, Majid; Siavashi, Vahid; Feyzi, Adel; Bagheri, Hesam Saghaei; Rahbarghazi, Reza; Montazersaheb, Soheila

    2018-01-01

    Phenolic monoterpene compound, named Carvacrol, has been found to exert different biological outcomes. It has been accepted that the angiogenic activity of human mesenchymal stem cells was crucial in the pursuit of appropriate regeneration. In the current experiment, we investigated the contribution of Carvacrol on the angiogenic behavior of primary human mesenchymal stem cells. Mesenchymal stem cells were exposed to Carvacrol in a dose ranging from 25 to 200μM for 48h. We measured cell survival rate by MTT assay and migration rate by a scratch test. The oxidative status was monitored by measuring SOD, GPx activity. The endothelial differentiation was studied by evaluating the level of VE-cadherin and vWF by real-time PCR and ELISA analyses. The content of VEGF and tubulogenesis behavior was monitored in vitro. We also conducted Matrigel plug in vivo CAM assay to assess the angiogenic potential of conditioned media from human mesenchymal stem cells after exposure to Carvacrol. Carvacrol was able to increase mesenchymal stem cell survival and migration rate (pcells by detecting vWF and VE-cadherin expression (pmesenchymal stem cells conditioned media improved angiogenesis tube formation in vitro (pmesenchymal stem cells by modulating cell differentiation and paracrine angiogenic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities.

    Directory of Open Access Journals (Sweden)

    Radu O Minea

    2010-06-01

    Full Text Available Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1, VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis. Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.

  20. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences.

    NARCIS (Netherlands)

    Broxterman, H.J.; Lankelma, J.; Hoekman, K.

    2003-01-01

    Intrinsic resistance to anticancer drugs, or resistance developed during chemotherapy, remains a major obstacle to successful treatment. This is the case both for resistance to cytotoxic agents, directed at malignant cells, and for resistance to anti-angiogenic agents, directed at non-malignant

  1. Application of a drug delivery system using ultrasound and nano/microbubbles for anti-angiogenic therapy

    International Nuclear Information System (INIS)

    Horie, Sachiko; Kodama, Tetsuya; Sato, Yasushi

    2017-01-01

    The drug delivery system using ultrasound and nano/microbubbles is a molecular delivery approach using the mechanism of sonoporation. With sonoporation, an endothelium-derived negative-feedback regulator of angiogenesis, Vasohibin-1 (VASH1), was introduced specifically into tumor vessels. We found VASH1 in tumor vessels induce normalization of tumor vessels and inhibited tumor growth. A recent topic regarding tumor angiogenesis is vascular normalization. Tumor vessels are abnormal or immature that cause hyperpermeability and impaired blood flow. Tumor vascular normalization improves blood flow and tissue hypoxia, which increase the effectiveness of chemotherapy and radiotherapy and reduce tumor cell malignancy. In this review, application of drug delivery system using ultrasound for an anti-angiogenic therapy, a tumor vessel normalization therapy to treat cancer, is summarized. (author)

  2. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis.

    Science.gov (United States)

    Casas, Bárbara S; Vitória, Gabriela; do Costa, Marcelo N; Madeiro da Costa, Rodrigo; Trindade, Pablo; Maciel, Renata; Navarrete, Nelson; Rehen, Stevens K; Palma, Verónica

    2018-02-22

    Schizophrenia is a neurodevelopmental disease characterized by cerebral connectivity impairment and loss of gray matter. It was described in adult schizophrenia patients (SZP) that concentration of VEGFA, a master angiogenic factor, is decreased. Recent evidence suggests cerebral hypoperfusion related to a dysfunctional Blood Brain Barrier (BBB) in SZP. Since neurogenesis and blood-vessel formation occur in a coincident and coordinated fashion, a defect in neurovascular development could result in increased vascular permeability and, therefore, in poor functionality of the SZP's neurons. Here, we characterized the conditioned media (CM) of human induced Pluripotent Stem Cells (hiPSC)-derived Neural Stem Cells of SZP (SZP NSC) versus healthy subjects (Ctrl NSC), and its impact on angiogenesis. Our results reveal that SZP NSC have an imbalance in the secretion and expression of several angiogenic factors, among them non-canonical neuro-angiogenic guidance factors. SZP NSC migrated less and their CM was less effective in inducing migration and angiogenesis both in vitro and in vivo. Since SZP originates during embryonic brain development, our findings suggest a defective crosstalk between NSC and endothelial cells (EC) during the formation of the neuro-angiogenic niche.

  3. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  4. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells.

    Science.gov (United States)

    Mena, H A; Carestia, A; Scotti, L; Parborell, F; Schattner, M; Negrotto, S

    2016-02-01

    ESSENTIALS: Extracellular histones are highly augmented in sites of neovessel formation, such as regeneration tissues. We studied histone effect on survival and angiogenic activity of mature and progenitor endothelial cells. Extracellular histones trigger apoptosis and pyroptosis and reduce angiogenesis in vivo and in vitro. Histone blockade can be useful as a therapeutic strategy to improve angiogenesis and tissue regeneration. Extracellular histones are highly augmented in sites of neovessel formation, like regeneration tissues. Their cytotoxic effect has been studied in endothelial cells, although the mechanism involved and their action on endothelial colony-forming cells (ECFCs) remain unknown. To study the effect of histones on ECFC survival and angiogenic functions and compare it with mature endothelial cells. Nuclear morphology analysis showed that each human recombinant histone triggered both apoptotic-like and necrotic-like cell deaths in both mature and progenitor endothelial cells. While H1 and H2A exerted a weak toxicity, H2B, H3 and H4 were the most powerful. The percentage of apoptosis correlated with the percentage of ECFCs exhibiting caspase-3 activation and was zeroed by the pan-caspase inhibitor Z-VAD-FMK. Necrotic-like cell death was also suppressed by this compound and the caspase-1 inhibitor Ac-YVAD-CMK, indicating that histones triggered ECFC pyroptosis. All histones, at non-cytotoxic concentrations, reduced migration and H2B, H3 and H4 induced cell cycle arrest and impaired tubulogenesis via p38 activation. Neutrophil-derived histones exerted similar effects. In vivo blood vessel formation in the quail chorioallantoic membrane was also reduced by H2B, H3 and H4. Their cytotoxic and antiangiogenic effects were suppressed by unfractioned and low-molecular-weight heparins and the combination of TLR2 and TLR4 blocking antibodies. Histones trigger both apoptosis and pyroptosis of ECFCs and inhibit their angiogenic functions. Their cytotoxic and

  5. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria.

    Directory of Open Access Journals (Sweden)

    Andrea Conroy

    Full Text Available Placental malaria (PM is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo.Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI enhanced C5a receptor expression (CD88 on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1beta, and IL-10, chemokines (IL-8, MCP-1, MIP1alpha, MIP1beta and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM.These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function.

  6. Influence of Echinacea purpurea intake during pregnancy on fetal growth and tissue angiogenic activity.

    Directory of Open Access Journals (Sweden)

    Ewa Sommer

    2008-04-01

    Full Text Available The process of angiogenesis and control of blood vessels sprouting are fundamental to human health, as they play key roles in many physiological and pathological conditions. Intake of different pharmaceuticals with antiangiogenic activity by pregnant women may lead to severe developmental disturbances as it was described in case of thalidomide. It may also cause immunomodulatory effects as it was shown for antibiotics, theobromine, caffeic acid or catechins on the pregnant mice model. At present, Echinacea purpurea-based phytoceuticals are among the most popular herbals in the marketplace. Many compounds of Echinacea extracts (polysaccharides, alkamides, polyphenols, glycoproteins exert immunomodulatory, anti-oxidative and anti-inflammatory activity. Echinacea is one of the most powerful and effective remedies against many kinds of bacterial and viral infections. In previous studies we shown significant inhibitory effect of the Echinacea purpurea based remedy on tumour angiogenic activity using cutaneous angiogenesis test, and an inhibitory effect on L-1 sarcoma growth was observed . The aim of the present study was to establish whether pharmaceuticals containing alcoholic extracts of Echinacea purpurea given to pregnant mice influence angiogenic activity and tissue VEGF and bFGF production of their fetuses. We showed that angiogenic activity of tissue homogenates was increased in Esberitox group and diminished in case of Immunal forte as compared to standard diet group. In case of Echinapur group we did not find significant differences in angiogenic activity. VEGF and bFGF concentration were lower in all groups compared to the control. In the case of Echinapur and Esberitox number of fetuses in one litter were slightly lower as compared to control group, but the difference is on the border of statistical significance. In conclusion, there is some possibility that pharmaceuticals containing Echinacea purpurea might influence fetal development in

  7. Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices.

    Science.gov (United States)

    Wang, Mengmeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H Harry

    2017-01-01

    Angiogenesis, the growth of new blood vessels from pre-existing vessels, is a critical step in cancer invasion. Better understanding of the angiogenic mechanisms is required to develop effective antiangiogenic therapies for cancer treatment. We culture angiogenic vessels in 3D microfluidic devices under different Sphingosin-1-phosphate (S1P) conditions and develop an automated vessel formation tracking system (AVFTS) to track the angiogenic vessel formation and extract quantitative vessel information from the experimental time-lapse phase contrast images. The proposed AVFTS first preprocesses the experimental images, then applies a distance transform and an augmented fast marching method in skeletonization, and finally implements the Hungarian method in branch tracking. When applying the AVFTS to our experimental data, we achieve 97.3% precision and 93.9% recall by comparing with the ground truth obtained from manual tracking by visual inspection. This system enables biologists to quantitatively compare the influence of different growth factors. Specifically, we conclude that the positive S1P gradient increases cell migration and vessel elongation, leading to a higher probability for branching to occur. The AVFTS is also applicable to distinguish tip and stalk cells by considering the relative cell locations in a branch. Moreover, we generate a novel type of cell lineage plot, which not only provides cell migration and proliferation histories but also demonstrates cell phenotypic changes and branch information.

  8. Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men.

    Science.gov (United States)

    Gliemann, Lasse; Olesen, Jesper; Biensø, Rasmus Sjørup; Schmidt, Jakob Friis; Akerstrom, Thorbjorn; Nyberg, Michael; Lindqvist, Anna; Bangsbo, Jens; Hellsten, Ylva

    2014-10-15

    In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol (n = 14) and the other half received placebo (n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol (n = 9) or placebo (n = 7). The group that trained with placebo showed a ~20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis. Copyright © 2014 the American Physiological Society.

  9. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

    Science.gov (United States)

    Ramer, Robert; Fischer, Sascha; Haustein, Maria; Manda, Katrin; Hinz, Burkhard

    2014-09-15

    Cannabinoids inhibit tumor neovascularization as part of their tumorregressive action. However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied. Cellular behavior of human umbilical vein endothelial cells (HUVEC) associated with angiogenesis was evaluated by Boyden chamber, two-dimensional tube formation and fibrin bead assay, with the latter assessing three-dimensional sprout formation. Viability was quantified by the WST-1 test. Conditioned media (CM) from A549 lung cancer cells treated with cannabidiol, Δ(9)-tetrahydrocannabinol, R(+)-methanandamide or the CB2 agonist JWH-133 elicited decreased migration as well as tube and sprout formation of HUVEC as compared to CM of vehicle-treated cancer cells. Inhibition of sprout formation was further confirmed for cannabinoid-treated A549 cells co-cultured with HUVEC. Using antagonists to cannabinoid-activated receptors the antimigratory action was shown to be mediated via cannabinoid receptors or transient receptor potential vanilloid 1. SiRNA approaches revealed a cannabinoid-induced expression of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) as well as its upstream trigger, the intercellular adhesion molecule-1, to be causally linked to the observed decrease of HUVEC migration. Comparable anti-angiogenic effects were not detected following direct exposure of HUVEC to cannabinoids, but occurred after addition of recombinant TIMP-1 to HUVEC. Finally, antimigratory effects were confirmed for CM of two other cannabinoid-treated lung cancer cell lines (H460 and H358). Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 in intercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The effect of riboflavin/UVA cross-linking on anti-degeneration and promoting angiogenic capability of decellularized liver matrix.

    Science.gov (United States)

    Xiang, Junxi; Liu, Peng; Zheng, Xinglong; Dong, Dinghui; Fan, Shujuan; Dong, Jian; Zhang, Xufeng; Liu, Xuemin; Wang, Bo; Lv, Yi

    2017-10-01

    Weak mechanical property and unstable degradation rate limited the application of decellularized liver matrix in tissue engineering. The aim of this study was to explore a new method for improving the mechanical properties, anti-degeneration and angiogenic capability of decellularized liver matrix. This was achieved by a novel approach using riboflavin/ultraviolet A treatment to induce collagen cross-linking of decellularized matrix. Histological staining and scanning electron microscope showed that the diameter of cross-linked fibers significantly increased compared with the control group. The average peak load and Young's modulus of decellularized matrix were obviously improved after cross-linking. Then we implanted the modified matrix into the rat hepatic injury model to test the anti-degeneration and angiogenic capability of riboflavin/UVA cross-linked decellularized liver scaffolds in vivo. The results indicated that cross-linked scaffolds degrade more slowly than those in the control group. In the experiment group, average microvessel density in the implanted matrix was higher than that in the control group since the first week after implantation. In conclusion, we initiated the method to improve the biomechanical properties of decellularized liver scaffolds by riboflavin/UVA cross-linking, and more importantly, its improvement on anti-degeneration and angiogenesis was identified. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2662-2669, 2017. © 2017 Wiley Periodicals, Inc.

  11. ITE Suppresses Angiogenic Responses in Human Artery and Vein Endothelial Cells: Differential Roles of AhR.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Zou, Qing-Yun; Jiang, Yi-Zhou; Zhou, Chi; Zheng, Jing

    2017-12-01

    Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor is involved in regulation of many essential biological processes including vascular development and angiogenesis. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an AhR ligand, which regulates immune responses and cancer cell growth. However, the roles of the ITE/AhR pathway in mediating placental angiogenesis remains elusive. Here, we determined if ITE affected placental angiogenic responses via AhR in human umbilical vein (HUVECs) and artery endothelial (HUAECs) cells in vitro. We observed that ITE dose- and time-dependently inhibited proliferation and viability of HUAECs and HUVECs, whereas it inhibited migration of HUAECs, but not HUVECs. While AhR siRNA significantly suppressed AhR protein expression in HUVECs and HUAECs, it attenuated the ITE-inhibited angiogenic responses of HUAECs, but not HUVECs. Collectively, ITE suppressed angiogenic responses of HUAECs and HUVECs, dependent and independent of AhR, respectively. These data suggest that ITE may regulate placental angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Investigating the in vitro and in vivo angiogenic activity of five Philippine medicinal plants associated with wound healing properties

    International Nuclear Information System (INIS)

    Lacson, Mona Lisa B.; Macahig, Rene Angelo S.; Rojas, Nina Rosario L.

    2015-01-01

    Plants have been used since time immemorial to treat many ailments and speed up healing process. Plant parts and extracts have been traditionally used to heal wounds. Angiogenesis is one of the events associated with wound healing. It is a tightly regulated process of blood vessel formation and an important target for diseases like coronary infarction, ischemia and stroke. Several in vitro and in vivo methods have been developed to assess the angiogenic activity of different compounds. These include the chorio-allantaoic membrane (CAM) assay which uses the egg's gas exchange membrane to assess the angiogenic potential of a substance and the tube formation assay which uses endothelial cells grown in the lab. Aqueous ethanolic extracts of five Philippine medicinal plants associated with wound healing were used in the study. Preliminary phytochemical screening using spray raegents and toxicity test using brine shrimp (Artemia salina) nauplii was done. 10% of the computed LC 5 0 value was used to screen the angiogenic potential of the plant extracts using human umbilical vein endothelial cells (HUVECs) in an in vitro tube formation assay and in vivo chorio-allantoic membrane (CAM) assay. Phorbol myristate (PMA) a known pro-angiogenic compound was used as positive control. Initial phytochemical screening showed that the crude enthanolic extracts of the leaves of the five contain flavonoids, steroids, phenols, saponins, alkanoids, coumarins, anthranoids, anthraquinones, sugars and essential oils. Brine shrimp lethality assay revealed that the plants used were not toxic to Artemia salina nauplii at 1000 μg/mL. In vitro tube formation assay revealed the crude ethanolic extracts of the leaves of M. indica showed the greatest angiogenic activity, closely followed by C. pubescens, T. catappa, A. barbadensis and C. odorata. The effect of the crude ethanolic extracts of the plants on blood vessel formation in the in vivo CAM model showed A. barbadensis with the highest

  13. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Elena V Rosca

    Full Text Available We investigated the application of a mimetic 20 amino acid peptide derived from type IV collagen for treatment of breast cancer. We showed that the peptide induced a decrease of proliferation, adhesion, and migration of endothelial and tumor cells in vitro. We also observed an inhibition of triple negative MDA-MB-231 xenograft growth by 75% relative to control when administered intraperitoneally for 27 days at 10 mg/kg. We monitored in vivo the changes in vascular properties throughout the treatment using MRI and found that the vascular volume and permeability surface area product decreased significantly. The treatment also resulted in an increase of caspase-3 activity and in a reduction of microvascular density. The multiple mode of action of this peptide, i.e., anti-angiogenic, and anti-tumorigenic, makes it a viable candidate as a therapeutic agent as a monotherapy or in combination with other compounds.

  14. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype.

    Science.gov (United States)

    Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B

    2014-09-01

    Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.

  15. Disrupted Balance of Angiogenic and Antiangiogenic Signalings in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Mitsuko Furuya

    2011-01-01

    Full Text Available The placenta plays a central role in governing local circulatory system that mediates maternal condition and fetal growth. In early gestational phases, the placenta exerts properties of invasion and neovascularization for successful placentation. Extravillous invasive trophoblasts replace uterine endometrial vasculature and establish local blood pathway to obtain oxygen and nutrients from the mother. In later phases, the placenta promotes villous angiogenesis and vascular maturation that are finely controlled by angiogenic and antiangiogenic molecules. Among various molecules involved in placental neovascularization, vascular endothelial growth factor receptors (VEGFRs and angiotensin II receptor type 1 (AT1 mediate important signaling pathways for maternal circulatory system and fetal growth. VEGFR1 and VEGFR2 are functional receptors for placental growth factor (PlGF and VEGF, respectively, and PlGF-VEGFR1 and VEGF-VEGFR2 interactions are disturbed in many preeclamptic patients by excess amount of soluble form of VEGFR1 (also named sFlt1, a natural PlGF/VEGF antagonist. Recent studies have disclosed that excessive sFlt1 production in the placenta and aberrant AT1 signaling in the mother are closely associated with the pathology of preeclampsia and intrauterine growth restriction (IUGR. In this paper, neovascularization of the placenta and pathological events associated with disrupted balance between angiogenic and antiangiogenic signaling in preeclampsia are discussed.

  16. Enhanced activity of meprin-α, a pro-migratory and pro-angiogenic protease, in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Lottaz

    Full Text Available Meprin-α is a metalloprotease overexpressed in cancer cells, leading to the accumulation of this protease in a subset of colorectal tumors. The impact of increased meprin-α levels on tumor progression is not known. We investigated the effect of this protease on cell migration and angiogenesis in vitro and studied the expression of meprin-α mRNA, protein and proteolytic activity in primary tumors at progressive stages and in liver metastases of patients with colorectal cancer, as well as inhibitory activity towards meprin-α in sera of cancer patient as compared to healthy controls. We found that the hepatocyte growth factor (HGF-induced migratory response of meprin-transfected epithelial cells was increased compared to wild-type cells in the presence of plasminogen, and that the angiogenic response in organ-cultured rat aortic explants was enhanced in the presence of exogenous human meprin-α. In patients, meprin-α mRNA was expressed in colonic adenomas, primary tumors UICC (International Union Against Cancer stage I, II, III and IV, as well as in liver metastases. In contrast, the corresponding protein accumulated only in primary tumors and liver metastases, but not in adenomas. However, liver metastases lacked meprin-α activity despite increased expression of the corresponding protein, which correlated with inefficient zymogen activation. Sera from cancer patients exhibited reduced meprin-α inhibition compared to healthy controls. In conclusion, meprin-α activity is regulated differently in primary tumors and metastases, leading to high proteolytic activity in primary tumors and low activity in liver metastases. By virtue of its pro-migratory and pro-angiogenic activity, meprin-α may promote tumor progression in colorectal cancer.

  17. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  18. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit; Zhang, Huoming; Liu, Pei; Tsao, George Sai-wah; Li Lung, Maria; Mak, Nai-ki; Ngok-shun Wong, Ricky; Ying-kit Yue, Patrick

    2015-01-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  19. Evidence for a Proangiogenic Activity of TNF-Related Apoptosis-Inducing Ligand

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    2004-07-01

    Full Text Available Starting from the observation that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/ Apo-2L protein is expressed in both malignant and inflammatory cells in some highly vascularized soft tissue sarcomas, the angiogenic potential of TRAIL was investigated in a series of in vitro assays. Recombinant soluble TRAIL induced endothelial cell migration and vessel tube formation to a degree comparable to vascular endothelial growth factor (VEGF, one of the best-characterized angiogenic factors. However, the proangiogenic activity of TRAIL was not mediated by endogenous expression of VEGF. Although TRAIL potentiated VEGF-induced extracellular signal-regulated kinase (ERK phosphorylation and endothelial cell proliferation, the combination of TRAIL + VEGF did not show additive effects with respect to VEGF alone in inducing vessel tube formation. Thus, although TRAIL has gained attention as a potential anticancer therapeutic for its ability to induce apoptosis in a variety of cancer cells, our present data suggest that TRAIL might also play an unexpected role in promoting angiogenesis, which might have therapeutic implications.

  20. Circulating angiogenic cells can be derived from cryopreserved peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Tanja Sofrenovic

    Full Text Available Cell transplantation for regenerative medicine has become an appealing therapeutic method; however, stem and progenitor cells are not always freshly available. Cryopreservation offers a way to freeze cells as they are generated, for storage and transport until required for therapy. This study was performed to assess the feasibility of cryopreserving peripheral blood mononuclear cells (PBMCs for the subsequent in vitro generation of their derived therapeutic population, circulating angiogenic cells (CACs.PBMCs were isolated from healthy human donors. Freshly isolated cells were either analyzed immediately or cryopreserved in media containing 6% plasma serum and 5% dimethyl sulfoxide. PBMCs were thawed after being frozen for 1 (early thaw or 28 (late thaw days and analyzed, or cultured for 4 days to generate CACs. Analysis of the cells consisted of flow cytometry for viability and phenotype, as well as functional assays for their adhesion and migration potential, cytokine secretion, and in vivo angiogenic potential.The viability of PBMCs and CACs as well as their adhesion and migration properties did not differ greatly after cryopreservation. Phenotypic changes did occur in PBMCs and to a lesser extent in CACs after freezing; however the potent CD34(+VEGFR2(+CD133(+ population remained unaffected. The derived CACs, while exhibiting changes in inflammatory cytokine secretion, showed no changes in the secretion of important regenerative and chemotactic cytokines, nor in their ability to restore perfusion in ischemic muscle.Overall, it appears that changes do occur in cryopreserved PBMCs and their generated CACs; however, the CD34(+VEGFR2(+CD133(+ progenitor population, the secretion of pro-vasculogenic factors, and the in vivo angiogenic potential of CACs remain unaffected by cryopreservation.

  1. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome.

    Science.gov (United States)

    Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  2. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  3. Early pregnancy angiogenic markers and spontaneous abortion

    DEFF Research Database (Denmark)

    Andersen, Louise B; Dechend, Ralf; Karumanchi, S Ananth

    2016-01-01

    BACKGROUND: Spontaneous abortion is the most commonly observed adverse pregnancy outcome. The angiogenic factors soluble Fms-like kinase 1 and placental growth factor are critical for normal pregnancy and may be associated to spontaneous abortion. OBJECTIVE: We investigated the association between...... maternal serum concentrations of soluble Fms-like kinase 1 and placental growth factor, and subsequent spontaneous abortion. STUDY DESIGN: In the prospective observational Odense Child Cohort, 1676 pregnant women donated serum in early pregnancy, gestational week ..., interquartile range 71-103). Concentrations of soluble Fms-like kinase 1 and placental growth factor were determined with novel automated assays. Spontaneous abortion was defined as complete or incomplete spontaneous abortion, missed abortion, or blighted ovum

  4. Maternal fish consumption, fatty acid levels and angiogenic factors: The Generation R Study

    NARCIS (Netherlands)

    P.K. Bautista-Niño (Paula); M.J. Tielemans (Myrte); S. Schalekamp-Timmermans (Sarah); J.C.J. Steenweg-de Graaff (Jolien); A. Hofman (Albert); H.W. Tiemeier (Henning); V.W.V. Jaddoe (Vincent); E.A.P. Steegers (Eric); J.F. Felix (Janine); O.H. Franco (Oscar)

    2015-01-01

    textabstractIntroduction Angiogenic factors, such as placental growth factor (PlGF) and soluble Flt-1 (sFlt-1), are key regulators of placental vascular development. Evidence from in vitro studies indicates that fatty acids can affect angiogenesis. We investigated the associations of maternal fish

  5. Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine

    Science.gov (United States)

    Doloff, J.C.; Khan, N.; Ma, J.; Demidenko, E.; Swartz, H.M.; Jounaidi, Y.

    2010-01-01

    Metronomic cyclophosphamide treatment is associated with anti-angiogenic activity and is anticipated to generate exploitable hypoxia using hypoxia-activated prodrugs. Weekly administration of tirapazamine (TPZ; 5 mg/kg body weight i.p.) failed to inhibit the growth of 9L gliosarcoma tumors grown s.c. in scid mice. However, the anti-tumor effect of weekly cyclophosphamide (CPA) treatment (140 mg/kg BW i.p.) was substantially enhanced by weekly TPZ administration. An extended tumor free period and increased frequency of tumor eradication without overt toxicity were observed when TPZ was given 3, 4 or 5 days after each weekly CPA treatment. Following the 2nd CPA injection, Electron Paramagnetic Resonance (EPR) Oximetry indicated significant increases in tumor pO2, starting at 48 hr, which further increased after the 3rd CPA injection. pO2 levels were, however, stable in growing untreated tumors. A strong negative correlation (−0.81) between tumor pO2 and tumor volume during 21 days of weekly CPA chemotherapy was observed, indicating increasing tumor pO2 with decreasing tumor volume. Furthermore, CPA treatment resulted in increased tumor uptake of activated CPA. CPA induced increases in VEGF RNA, which reached a maximum on day 1, and in PLGF RNA which was sustained throughout the treatment, while anti-angiogenic host thrombospondin-1 increased dramatically through day 7 post-CPA treatment. Weekly cyclophosphamide treatment was anticipated to generate exploitable hypoxia. However, our findings suggest that weekly CPA treatment induces a functional improvement of tumor vasculature, which is characterized by increased tumor oxygenation and drug uptake in tumors, thus counter-intuitively, benefiting intratumoral activation of TPZ and perhaps other bioreductive drugs. PMID:19754361

  6. Anti-angiogenic Therapy in Patients with Advanced Gastric and Gastroesophageal Junction Cancer: A Systematic Review.

    Science.gov (United States)

    Chen, Li-Tzong; Oh, Do-Youn; Ryu, Min-Hee; Yeh, Kun-Huei; Yeo, Winnie; Carlesi, Roberto; Cheng, Rebecca; Kim, Jongseok; Orlando, Mauro; Kang, Yoon-Koo

    2017-10-01

    Despite advancements in therapy for advanced gastric and gastroesophageal junction cancers, their prognosis remains dismal. Tumor angiogenesis plays a key role in cancer growth and metastasis, and recent studies indicate that pharmacologic blockade of angiogenesis is a promising approach to therapy. In this systematic review, we summarize current literature on the clinical benefit of anti-angiogenic agents in advanced gastric cancer. We conducted a systematic search of PubMed and conference proceedings including the American Society of Clinical Oncology, the European Society for Medical Oncology, and the European Cancer Congress. Included studies aimed to prospectively evaluate the efficacy and safety of anti-angiogenic agents in advanced gastric or gastroesophageal junction cancer. Each trial investigated at least one of the following endpoints: overall survival, progression-free survival/time to progression, and/or objective response rate. Our search yielded 139 publications. Forty-two met the predefined inclusion criteria. Included studies reported outcomes with apatinib, axitinib, bevacizumab, orantinib, pazopanib, ramucirumab, regorafenib, sorafenib, sunitinib, telatinib, and vandetanib. Second-line therapy with ramucirumab and third-line therapy with apatinib are the only anti-angiogenic agents so far shown to significantly improve survival of patients with advanced gastric cancer. Overall, agents that specifically target the vascular endothelial growth factor ligand or receptor have better safety profile compared to multi-target tyrosine kinase inhibitors.

  7. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties

    Directory of Open Access Journals (Sweden)

    Lachlan M. Moldenhauer

    2015-05-01

    Full Text Available Circulating endothelial progenitor cells (EPCs provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3 strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133+ EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs, namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133+ cell expansion with clear pro-angiogenic properties (in vitro and in vivo and thus may provide clinical utility for humans in the future.

  8. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF(V600E).

    Science.gov (United States)

    Husain, Amjad; Hu, Nina; Sadow, Peter M; Nucera, Carmelo

    2016-10-01

    Cachexia is the result of complex metabolic alterations which cause morbidity and mortality in patients with advanced cancers including undifferentiated (anaplastic) thyroid carcinoma (ATC). ATC is a lethal disease with limited therapeutic options and unclear etiology for cachexia. We hypothesize that the BRAF(V600E) oncoprotein triggers microvascular endothelial cell tubule formation (in vitro angiogenesis) by means of factors which play a crucial role in angiogenic switch, inflammation/immune response and cachexia. We use human ATC cells and applied multiplex ELISA assay to screen for and measure angiogenic/cachectic and pro-inflammatory factors in the ATC-derived secretome. We find that vemurafenib anti-BRAF(V600E) therapy significantly reduces secreted VEGFA, VEGFC and IL6 protein levels compared to vehicle-treated ATC cells. As a result, the secretome from vemurafenib-treated ATC cells inhibits microvascular endothelial cell-related in vitro angiogenesis. Furthermore, ATC clinical samples express VEGFA, VEGFC and IL6 proteins. Our results suggest that angiogenic/cachectic and pro-inflammatory/immune response factors could play a crucial role in BRAF(V600E)-positive human ATC aggressiveness. Understanding the extent to which microenvironment-associated angiogenic factors participate in cachexia and cancer metabolism in advanced thyroid cancers will reveal new biomarkers and foster novel therapeutic approaches. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  11. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    International Nuclear Information System (INIS)

    Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa; De Palma, Michele

    2013-01-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches

  12. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction.

    Science.gov (United States)

    Hatanaka, Kazuaki; Ito, Kenta; Shindo, Tomohiko; Kagaya, Yuta; Ogata, Tsuyoshi; Eguchi, Kumiko; Kurosawa, Ryo; Shimokawa, Hiroaki

    2016-09-01

    We have previously demonstrated that low-energy extracorporeal cardiac shock wave (SW) therapy improves myocardial ischemia through enhanced myocardial angiogenesis in a porcine model of chronic myocardial ischemia and in patients with refractory angina pectoris. However, the detailed molecular mechanisms for the SW-induced angiogenesis remain unclear. In this study, we thus examined the effects of SW irradiation on intracellular signaling pathways in vitro. Cultured human umbilical vein endothelial cells (HUVECs) were treated with 800 shots of low-energy SW (1 Hz at an energy level of 0.03 mJ/mm(2)). The SW therapy significantly upregulated mRNA expression and protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). The SW therapy also enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) and Akt. Furthermore, the SW therapy enhanced phosphorylation of caveolin-1 and the expression of HUTS-4 that represents β1-integrin activity. These results suggest that caveolin-1 and β1-integrin are involved in the SW-induced activation of angiogenic signaling pathways. To further examine the signaling pathways involved in the SW-induced angiogenesis, HUVECs were transfected with siRNA of either β1-integrin or caveolin-1. Knockdown of either caveolin-1 or β1-integrin suppressed the SW-induced phosphorylation of Erk1/2 and Akt and upregulation of VEGF and eNOS. Knockdown of either caveolin-1 or β1-integrin also suppressed SW-induced enhancement of HUVEC migration in scratch assay. These results suggest that activation of mechanosensors on cell membranes, such as caveolin-1 and β1-integrin, and subsequent phosphorylation of Erk and Akt may play pivotal roles in the SW-induced angiogenesis. Copyright © 2016 the American Physiological Society.

  13. Placental growth factor neutralising antibodies give limited anti-angiogenic effects in an in vitro organotypic angiogenesis model.

    Science.gov (United States)

    Brave, Sandra R; Eberlein, Cath; Shibuya, Masabumi; Wedge, Stephen R; Barry, Simon T

    2010-12-01

    Vascular Endothelial Growth Factor Receptor (VEGFR) mediated signalling drives angiogenesis. This is predominantly attributed to the activity of VEGFR-2 following binding of VEGF-A. Whether other members of the VEGFR and ligand families such as VEGFR-1 and its ligand Placental Growth Factor (PlGF) can also contribute to developmental and pathological angiogenesis is less clear. We explored the function of PlGF in VEGF-A dependent angiogenesis using an in vitro co-culture assay in which endothelial cells are cultured on a fibroblast feeder layer. In the presence of 2% FS MCDB media (containing limited growth factors) in vitro endothelial tube formation is driven by endogenous angiogenic stimuli which are produced by the fibroblast and endothelial cells. Under these conditions independent sequestration of either free VEGF-A or PlGF with polyclonal and monoclonal antibodies inhibited tube formation suggesting that both ligands are required to drive an angiogenic response. Endothelial tube formation could only be driven within this assay by the addition of exogenous VEGF-A, VEGF-E or VEGF-A/PlGF heterodimer, but not by PlGF alone, implying that activation of either VEGFR-2/VEGFR-1 heterodimers or VEGFR-2 homodimers were responsible for eliciting an angiogenic response directly, but not VEGFR-1 homodimers. In contrast to results obtained with an endogenous angiogenic drive, sequestration of PlGF did not affect endothelial tube formation when the assay was driven by 1 ng/ml exogenous VEGF-A. These data suggest that although neutralising PlGF can be shown to reduce endothelial tube formation in vitro, this effect is only observed under restricted culture conditions and is influenced by VEGF-A. Such data questions whether neutralising PlGF would have a therapeutic benefit in vivo in the presence of pathological concentrations of VEGF-A.

  14. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    International Nuclear Information System (INIS)

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun

    2006-01-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Δp85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways

  15. Productive infection of HUVEC by HHV-8 is associated with changes compatible with angiogenic transformations.

    Science.gov (United States)

    Foglieni, C; Scabini, S; Belloni, D; Broccolo, F; Lusso, P; Malnati, M S; Ferrero, E

    2005-01-01

    Kaposi's Sarcoma (KS) is an angioproliferative disease associated with human herpesvirus 8 (HHV-8) infection. We have characterized the morphologic and phenotypic modifications of HUVEC in a model of productive HHV-8 infection. HHV-8 replication was associated with ultra-structural changes, flattened soma and a loss of marginal folds and intercellular contacts, and morphologic features, spindle cell conversion and cordon-like structures formation. Phenotypic changes observed on cordon-like structures included partial loss and redistribution of CD31/PECAM-1 and VE-cadherin, uPAR up-regulation and de novo expression of CD13/APN. Such changes demonstrate the induction, in HUVEC, of an angiogenic profile. Most of these findings are directly linked to HHV-8-encoded proteins expression, suggesting that HHV-8 itself may participate to the initial steps of the angiogenic transformation in KS.

  16. Pro-angiogenic cell-based therapy for the treatment of ischemic cardiovascular diseases.

    Science.gov (United States)

    Silvestre, Jean-Sébastien

    2012-10-01

    Pro-angiogenic cell therapy has emerged as a promising option to treat patients with acute myocardial infarction or with critical limb ischemia. Exciting pre-clinical studies have prompted the initiation of numerous clinical trials based on administration of stem/progenitor cells with pro-angiogenic potential. Most of the clinical studies performed so far have used bone marrow-derived or peripheral blood-derived mononuclear cells and showed, overall, a modest but significant benefit on tissue remodeling and function in patients with ischemic diseases. These mixed results pave the way for the development of strategies to overcome the limitation of autologous cell therapy and to propose more efficient approaches. Such strategies include pretreatment of cells with activators to augment cell recruitment and survival in the ischemic target area and/or the improvement of cell functions such as their paracrine ability to release proangiogenic factors and vasoactive molecules. In addition, efforts should be directed towards stimulation of both angiogenesis and vessel maturation, the development of a composite product consisting of stem/progenitor cells encapsulated in a biomaterial and the use of additional sources of regenerative cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Syndecan-1 knock-down in decidualized human endometrial stromal cells leads to significant changes in cytokine and angiogenic factor expression patterns

    Directory of Open Access Journals (Sweden)

    Krüssel Jan-Steffen

    2010-11-01

    Full Text Available Abstract Background Successful embryonic implantation depends on a synchronized embryo-maternal dialogue. Chemokines, such as chemokine ligand 1 (CXCL1, play essential roles in the maternal reproductive tract leading to morphological changes during decidualization, mediating maternal acceptance towards the semi-allograft embryo and induction of angiogenesis. Chemokine binding to their classical G-protein coupled receptors is essentially supported by the syndecan (Sdc family of heparan sulfate proteoglycans. The aim of this study was to identify the involvement of Sdc-1 at the embryo-maternal interface regarding changes of the chemokine and angiogenic profile of the decidua during the process of decidualization and implantation in human endometrium. Methods A stable Sdc-1 knock-down was generated in the immortalized human endometrial stromal cell line St-T1 and was named KdS1. The ability of KdS1 to decidualize was proven by Insulin-like growth factor binding 1 (IGFBP1 and prolactin (PRL confirmation on mRNA level before further experiments were carried out. Dot blot protein analyses of decidualized knock-down cells vs non-transfected controls were performed. In order to imitate embryonic implantation, decidualized KdS1 were then incubated with IL-1beta, an embryo secretion product, vs controls. Statistical analyses were performed applying the Student's t-test with p Results The induction of the Sdc-1 knock-down revealed significant changes in cytokine and angiogenic factor expression profiles of dKdS1 vs decidualized controls. Incubation with embryonic IL-1beta altered the expression patterns of KdS1 chemokines and angiogenic factors towards inflammatory-associated molecules and factors involved in matrix regulation. Conclusions Sdc-1 knock-down in human endometrial stroma cells led to fulminant changes regarding cytokine and angiogenic factor expression profiles upon decidualization and imitation of embryonic contact. Sdc-1 appears to play an

  18. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    Science.gov (United States)

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein

  19. Evaluation of antibacterial, angiogenic, and osteogenic activities of green synthesized gap-bridging copper-doped nanocomposite coatings

    Directory of Open Access Journals (Sweden)

    Huang D

    2017-10-01

    Full Text Available Dan Huang,1 Kena Ma,1,2 Xinjie Cai,1,2 Xu Yang,3 Yinghui Hu,1 Pin Huang,1 Fushi Wang,1 Tao Jiang,1,2 Yining Wang1,2 1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 2Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China; 3Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Titanium (Ti and its alloys have been widely used in clinics for years. However, their bio-inert surface challenges application in patients with compromised surgical conditions. Numerous studies were conducted to modify the surface topography and chemical composition of Ti substrates, for the purpose of obtaining antibacterial, angiogenic, and osteogenic activities. In this study, using green electrophoretic deposition method, we fabricated gap-bridging chitosan-gelatin (CSG nanocomposite coatings incorporated with different amounts of copper (Cu; 0.01, 0.1, 1, and 10 mM for Cu I, II, III, and IV groups, respectively on the Ti substrates. Physicochemical characterization of these coatings confirmed that Cu ions were successfully deposited into the coatings in a metallic status. After rehydration, the coatings swelled by 850% in weight. Mechanical tests verified the excellent tensile bond strength between Ti substrates and deposited coatings. All Cu-containing CSG coatings showed antibacterial property against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The antibacterial property was positively correlated with the Cu concentration. In vitro cytocompatibility evaluation demonstrated that activities of bone marrow stromal cells were not impaired on Cu-doped coatings except for the Cu IV group. Moreover, enhanced angiogenic and osteogenic activities were observed on Cu II and Cu III groups. Overall, our results

  20. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies.

    Science.gov (United States)

    Faes, Seraina; Uldry, Emilie; Planche, Anne; Santoro, Tania; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2016-12-27

    Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.

  1. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3β Inhibition-Induced Reduction of VEGF Release

    Directory of Open Access Journals (Sweden)

    Ahmed Alhusban

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i were treated with 50 μg/mL advanced glycation end (AGE products in the presence or absence of silymarin (50, 100 μM. The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p=0.0001. Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p=0.001. This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.

  2. Comprehensive study of angiogenic factors in women with endometriosis compared to women without endometriosis.

    Science.gov (United States)

    Yerlikaya, Gülen; Balendran, Sukirthini; Pröstling, Katharina; Reischer, Theresa; Birner, Peter; Wenzl, Rene; Kuessel, Lorenz; Streubel, Berthold; Husslein, Heinrich

    2016-09-01

    Endometriosis is a benign gynaecological disease, affecting women during their reproductive years. Angiogenesis represents a crucial step in the pathogenesis of endometriosis, because endometriotic lesions require neovascularization. In this study several angiogenesis-related genes have been studied in the context of endometriosis. Some of the analyzed angiogenic factors as well as their interactions were studied the first time regarding a possible association with endometriosis. This case-control study consisted of 205 biopsies of 114 patients comprising 61 endometriosis patients and 53 control patients. Among them in 29 cases paired samples were obtained. VEGFA, VEGFR2, HIF1A, HGF, NRP1, PDGFB, FGF18, TNFα, TGFB2, EPHB4, EPO and ANG mRNA expression was analyzed by qRT-PCR in ectopic tissue samples, in eutopic endometrium of women with and without endometriosis, and in unaffected peritoneum of women with and without endometriosis. VEGFR2, HIF1A, HGF, PDGFB, NRP1 and EPHB4 are overexpressed in ectopic lesions compared to eutopic tissues. VEGFR2, HGF, PDGFB, NRP1, and EPHB4 showed highest mRNA levels in peritoneal implants, in contrast HIF1A showed the highest expression in ovarian endometriomas. Correlation analyses of angiogenic factors in ectopic lesions revealed the strongest associations between VEGFR2, PDGFB, and EPHB4. We further showed a significant upregulation of VEGFR2, HIF1A and EPHB4 in eutopic endometrium of women with endometriosis compared to that of controls and a trend towards upregulation of HGF. Additionally, a significant downregulation for HIF1A, HGF and EPHB4 was observed in unaffected peritoneal tissues of women with endometriosis compared to controls. We identified new genes (EPHB4 and NRP1) that may contribute to angiogenesis in endometriosis beside known factors (VEGFA, VEGFR2, HIF1A, HGF, and PDGFB). Correlation studies revealed the putative importance of EBHB4 in association with endometriosis. Our analyses support preliminary reports

  3. ALTERED EXPRESSION OF SURFACE RECEPTORS AT EA.HY926 ENDOTHELIAL CELL LINE INDUCED WITH PLACENTAL SECRETORY FACTORS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2012-01-01

    Full Text Available Abstract. Placental cell populations produce a great variety of angiogenic factors and cytokines than control angiogenesis in placenta. Functional regulation of endothelial cells proceeds via modulation of endothelial cell receptors for endogenous angiogenic and apoptotic signals. Endothelial phenotype alteration during normal pregnancy and in cases of preclampsia is not well understood. The goal of this investigation was to evaluate altered expression of angiogenic and cytokine receptors at EA.hy926 endothelial cells under the influence of placental tissue supernatants. Normal placental tissue supernatants from 1st and 3rd trimesters, and pre-eclamptic placental tissue supernatants (3rd trimester stimulated angiogenic and cytokine receptors expression by the cultured endothelial cells, as compared with their background expression. Tissue supernatants from placental samples of 3rd trimester caused a decreased expression of angiogenic and cytokine receptors by endothelial cells, thus reflecting maturation of placental vascular system at these terms. Supernatants from preeclamptic placental tissue induced an increase of CD119 expression, in comparison with normal placental supernatants from the 3rd trimester. This finding suggests that IFNγ may be a factor of endothelial activation in pre-eclampsia. The study was supported by grants ГК №02.740.11.0711, НШ-3594.2010.7., and МД-150.2011.7.

  4. Tumor necrosis factor-alpha but not interleukin-1 beta or interleukin-8 concentrations correlate with angiogenic activity of peritoneal fluid from patients with minimal to mild endometriosis

    NARCIS (Netherlands)

    Maas, J. W.; Calhaz-Jorge, C.; ter Riet, G.; Dunselman, G. A.; de Goeij, A. F.; Struijker-Boudier, H. A.

    2001-01-01

    OBJECTIVE: To assess the angiogenic activity of peritoneal fluid in women with minimal to mild endometriosis and to investigate the relationship between this activity and the concentration of macrophage-derived angiogenic factors and clinical variables, such as phase of menstrual cycle, type of

  5. Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity

    NARCIS (Netherlands)

    Smith, T.F.; Anastopoulos, A.D.; Garrett, M.E.; Arias Vasquez, A.; Franke, B.; Oades, R.D.; Sonuga-Barke, E.; Asherson, P.; Gill, M.; Buitelaar, J.K.; Sergeant, J.A.; Kollins, S.H.; Faraone, S.V.; Ashley-Koch, A.; Consortium, I.

    2014-01-01

    Low birth weight is associated with increased risk for Attention-Deficit/Hyperactivity Disorder (ADHD); however, the etiological underpinnings of this relationship remain unclear. This study investigated if genetic variants in angiogenic, dopaminergic, neurotrophic, kynurenine, and cytokine-related

  6. Cathepsin D non-proteolytically induces proliferation and migration in human omental microvascular endothelial cells via activation of the ERK1/2 and PI3K/AKT pathways.

    Science.gov (United States)

    Pranjol, Md Zahidul I; Gutowski, Nicholas J; Hannemann, Michael; Whatmore, Jacqueline L

    2018-01-01

    Epithelial ovarian cancer (EOC) frequently metastasises to the omentum, a process that requires pro-angiogenic activation of human omental microvascular endothelial cells (HOMECs) by tumour-secreted factors. We have previously shown that ovarian cancer cells secrete a range of factors that induce pro-angiogenic responses e.g. migration, in HOMECs including the lysosomal protease cathepsin D (CathD). However, the cellular mechanism by which CathD induces these cellular responses is not understood. The aim of this study was to further examine the pro-angiogenic effects of CathD in HOMECs i.e. proliferation and migration, to investigate whether these effects are dependent on CathD catalytic activity and to delineate the intracellular signalling kinases activated by CathD. We report, for the first time, that CathD significantly increases HOMEC proliferation and migration via a non-proteolytic mechanism resulting in activation of ERK1/2 and AKT. These data suggest that EOC cancer secreted CathD acts as an extracellular ligand and may play an important pro-angiogenic, and thus pro-metastatic, role by activating the omental microvasculature during EOC metastasis to the omentum. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Angiogenic factors for prediction of preeclampsia and intrauterine growth restriction onset in high-risk women: AngioPred study.

    Science.gov (United States)

    Raia-Barjat, Tiphaine; Prieux, Carole; Gris, Jean-Christophe; Chapelle, Céline; Laporte, Silvy; Chauleur, Céline

    2017-09-22

    The study aimed to compare the level of two angiogenic factors, soluble fms-like tyrosine kinase-1 (sFlt1) and soluble endoglin (sEng), for the prediction of preeclampsia and intrauterine growth restriction in high-risk pregnant women. A prospective multicenter cohort study of 200 pregnant patients was conducted between June 2008 and October 2010. sFlt1 and sEng were measured by enzyme-linked immunosorbent assay. Forty-five patients developed a placenta-mediated adverse pregnancy outcome. Plasma levels of sFlt1 and sEng were higher in patients who will experience a preeclampsia at 28, 32, and 36 weeks compared with patients with no complication. The same results were observed for intrauterine growth restriction. Plasma levels of sFlt1 and sEng were not significantly different for patients with preeclampsia compare to patients with intrauterine growth restriction. Patients with early pre-eclampsia (PE) had very high rates of angiogenic factors at 20, 24, and 28 weeks. Patients with late PE and early and late intrauterine growth retardation (IUGR) had high rates at 32 and 36 weeks. In high-risk women, angiogenic factors are disturbed before the onset of preeclampsia and this is true for intrauterine growth restriction.

  8. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.

    Science.gov (United States)

    Wang, Xu; Gu, Zhipeng; Jiang, Bo; Li, Li; Yu, Xixun

    2016-04-01

    For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization.

  9. Fibrocytes: A Novel Stromal Cells to Regulate Resistance to Anti-Angiogenic Therapy and Cancer Progression.

    Science.gov (United States)

    Goto, Hisatsugu; Nishioka, Yasuhiko

    2017-12-29

    An adequate blood supply is essential for cancer cells to survive and grow; thus, the concept of inhibiting tumor angiogenesis has been applied to cancer therapy, and several drugs are already in clinical use. It has been shown that treatment with those anti-angiogenic drugs improved the response rate and prolonged the survival of patients with various types of cancer; however, it is also true that the effect was mostly limited. Currently, the disappointing clinical results are explained by the existence of intrinsic or acquired resistance to the therapy mediated by both tumor cells and stromal cells. This article reviews the mechanisms of resistance mediated by stromal cells such as endothelial cells, pericytes, fibroblasts and myeloid cells, with an emphasis on fibrocytes, which were recently identified as the cell type responsible for regulating acquired resistance to anti-angiogenic therapy. In addition, the other emerging role of fibrocytes as mediator-producing cells in tumor progression is discussed.

  10. HET0016, a selective inhibitor of 20-HETE synthesis, decreases pro-angiogenic factors and inhibits growth of triple negative breast cancer in mice.

    Directory of Open Access Journals (Sweden)

    Thaiz Ferraz Borin

    Full Text Available A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals' right flank and randomly assigned to early (1 and 2, starting treatments on day 0, or delayed groups (3 and 4 on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05. Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05 compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day's data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.

  11. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chun-Hsu [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Kuo, Yueh-Hsiung, E-mail: kuoyh@mail.cmu.edu.tw [Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung 40402, Taiwan (China); Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Wu, Chieh-Hsi, E-mail: chhswu@tmu.edu.tw [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  12. A ternary-complex of a suicide gene, a RAGE-binding peptide, and polyethylenimine as a gene delivery system with anti-tumor and anti-angiogenic dual effects in glioblastoma.

    Science.gov (United States)

    Choi, Eunji; Oh, Jungju; Lee, Dahee; Lee, Jaewon; Tan, Xiaonan; Kim, Minkyung; Kim, Gyeungyun; Piao, Chunxian; Lee, Minhyung

    2018-04-13

    The receptor for advanced glycation end-products (RAGE) is involved in tumor angiogenesis. Inhibition of RAGE might be an effective anti-angiogenic therapy for cancer. In this study, a cationic RAGE-binding peptide (RBP) was produced as an antagonist of RAGE, and a ternary-complex consisting of RBP, polyethylenimine (2 kDa, PEI2k), and a suicide gene (pHSVtk) was developed as a gene delivery system with dual functions: the anti-tumor effect of pHSVtk and anti-angiogenic effect of RBP. As an antagonist of RAGE, RBP decreased the secretion of vascular-endothelial growth factor (VEGF) in activated macrophages and reduced the tube-formation of endothelial cells in vitro. In in vitro transfection assays, the RBP/PEI2k/plasmid DNA (pDNA) ternary-complex had higher transfection efficiency than the PEI2k/pDNA binary-complex. In an intracranial glioblastoma animal model, the RBP/PEI2k/pHSVtk ternary-complex reduced α-smooth muscle actin expression, suggesting that the complex has an anti-angiogenic effect. In addition, the ternary-complex had higher pHSVtk delivery efficiency than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes in an animal model. As a result, the ternary-complex induced apoptosis and reduced tumor volume more effectively than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes. In conclusion, due to its dual anti-tumor and anti-angiogenesis effects, the RBP/PEI2k/pHSVtk ternary-complex might be an efficient gene delivery system for the treatment of glioblastoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts.

    Science.gov (United States)

    Merjaneh, Mays; Langlois, Amélie; Larochelle, Sébastien; Cloutier, Chanel Beaudoin; Ricard-Blum, Sylvie; Moulin, Véronique J

    2017-08-01

    Wound healing is a very highly organized process where numerous cell types are tightly regulated to restore injured tissue. Myofibroblasts are cells that produce new extracellular matrix and contract wound edges. We previously reported that the human myofibroblasts isolated from normal wound (WMyos) produced microvesicles (MVs) in the presence of the serum. In this study, MVs were further characterized using a proteomic strategy and potential functions of the MVs were determined. MV proteins isolated from six WMyo populations were separated using two-dimensional differential gel electrophoresis. Highly conserved spots were selected and analyzed using mass spectrometry resulting in the identification of 381 different human proteins. Using the DAVID database, clusters of proteins involved in cell motion, apoptosis and adhesion, but also in extracellular matrix production (21 proteins, enrichment score: 3.32) and in blood vessel development/angiogenesis (19 proteins, enrichment score: 2.66) were identified. Another analysis using the functional enrichment analysis tool FunRich was consistent with these results. While the action of the myofibroblasts on extracellular matrix formation is well known, their angiogenic potential is less studied. To further characterize the angiogenic activity of the MVs, they were added to cultured microvascular endothelial cells to evaluate their influence on cell growth and migration using scratch test and capillary-like structure formation in Matrigel ® . The addition of a MV-enriched preparation significantly increased endothelial cell growth, migration and capillary formation compared with controls. The release of microvesicles by the wound myofibroblasts brings new perspectives to the field of communication between cells during the normal healing process.

  14. Research of the degradation products of chitosan's angiogenic function

    International Nuclear Information System (INIS)

    Wang Jianyun; Chen Yuanwei; Ding Yulong; Shi Guoqi; Wan Changxiu

    2008-01-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 deg. C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent

  15. Placental Induced Growth Factor (PIGf) in Coronary Artery Disease

    Science.gov (United States)

    Sundaresan, Alamelu; Carabello, Blaise; Mehta, Satish; Schlegel, Todd; Pellis, Neal; Ott, Mark; Pierson, Duane

    2010-01-01

    Our previous studies on normal human lymphocytes have shown a five-fold increase (p less than 0.001) in angiogenic inducers such as Placental Induced Growth Factor (PIGf) in physiologically stressful environments such as modeled microgravity, a space analog. This suggests de-regulation of cardiovascular signalling pathways indicated by upregulation of PIGf. In the current study, we measured PIGf in the plasma of 33 patients with and without coronary artery disease (CAD) to investigate whether such disease is associated with increased levels of PIGf. A control consisting of 31 sex matched apparently healthy subjects was also included in the study. We observed that the levels of PIGf in CAD patients were significantly increased compared to those in healthy control subjects (p less than 0.001) and usually increased beyond the clinical threshold level (greater than 27ng/L). The mechanisms leading to up-regulation of angiogenic factors and the adaptation of organisms to stressful environments such as isolation, high altitude, hypoxia, ischemia, microgravity, increased radiation, etc are presently unknown and require further investigation in spaceflight and these other physiologically stressed environments.

  16. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Fang; Li, Xiuli [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China); Kong, Jian [Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing (China); Pan, Bing [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Sun, Min [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xian (China); Zheng, Lemin, E-mail: zhengl@bjmu.edu.cn [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Yao, Yuanqing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China)

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.

  17. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Gu, Fang; Li, Xiuli; Kong, Jian; Pan, Bing; Sun, Min; Zheng, Lemin; Yao, Yuanqing

    2013-01-01

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA 3.1 empty vector, pcDNA 3.1 -VEGF111b or pcDNA 3.1 -VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  18. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein Induced Retinal Angiogenesis

    Science.gov (United States)

    Lee, Heon-Woo; Chong, Diana C.; Ola, Roxana; Dunworth, William P.; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M.; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L.; Eichmann, Anne; Jin, Suk-Won

    2017-01-01

    Objective Increasing evidence suggests that Bone Morphogenetic Protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early post-natal angiogenesis by analysis of inducible, endothelial specific deletion of the BMP receptor components Bmpr2, Alk1, Alk2 and Alk3 in mouse retinal vessels. Approach and Results Expression analysis of several BMP ligands showed that pro-angiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of BMP Type 2 receptor (Bmpr2). Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branchpoints behind the front, leading to attenuated radial expansion. To identify critical BMPR1s associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of three BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for pro-angiogenic BMP signaling in retinal vessels. Conclusions Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential pro-angiogenic cue for retinal vessels. PMID:28232325

  19. Circulating Angiogenic Growth Factors in Diabetes Patients with Peripheral Arterial Disease and Exertional Leg Pain in Ghana

    Directory of Open Access Journals (Sweden)

    Kwame Yeboah

    2017-01-01

    Full Text Available Objective. Peripheral arterial disease (PAD is a common complication of diabetes, associated with impairment in angiogenesis. Angiogenesis is regulated by angiogenic growth factors such as angiopoietin 1 (Ang-1, Ang-2, and vascular endothelial growth factor (VEGF. We studied the association between angiogenic growth factors versus PAD and exertional leg symptoms in diabetes patients in Ghana. Method. In this cross-sectional study, ankle-brachial index was measured with oscillometrically and exertional leg symptoms were screened with Edinburgh claudication questionnaire in 140 diabetes patients and 110 nondiabetes individuals. Circulating levels of Ang-1, Ang-2, and VEGF were measured with immunosorbent assay. Results. The prevalence of PAD and exertional leg pain was 16.8% and 24.8%, respectively. Compared to non-PAD participants, PAD patients had higher VEGF levels [85.8 (37.5–154.5 versus 57.7 (16.6–161.1 p=0.032] and lower Ang-1 levels [31.3 (24.8–42.6 versus 40.9 (28.2–62.1, p=0.017]. In multivariable logistic regression, patients with exertional leg pain had increased the odds of plasma Ang-2 levels [OR (95% CI: 2.08 (1.08–6.41, p=0.036]. Conclusion. Diabetes patients with PAD and exertional leg pain have imbalance in angiogenic growth factors, indicating impaired angiogenesis. In patients with exertional leg pains, Ang-2 may be an important biomarker.

  20. hCG-dependent regulation of angiogenic factors in human granulosa lutein cells.

    Science.gov (United States)

    Phan, B; Rakenius, A; Pietrowski, D; Bettendorf, H; Keck, C; Herr, D

    2006-07-01

    As prerequisite for development and maintenance of many diseases angiogenesis is of particular interest in medicine. Pathologic angiogenesis takes place in chronic arthritis, collagen diseases, arteriosclerosis, retinopathy associated with diabetes, and particularly in cancers. However, angiogenesis as a physiological process regularly occurs in the ovary. After ovulation the corpus luteum is formed by rapid vascularization of initially avascular granulosa lutein cell tissue. This process is regulated by gonadotropic hormones. In order to gain further insights in the regulatory mechanisms of angiogenesis in the ovary, we investigated these mechanisms in cell culture of human granulosa lutein cells. In particular, we determined the expression and production of several angiogenic factors including tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), Leptin, connective tissue growth factor (CTGF), meningioma-associated complimentary DNA (Mac25), basic fibroblast growth factor (bFGF), and Midkine. In addition, we showed that human chorionic gonadotropin (hCG) has distinct effects on their expression and production. hCG enhances the expression and production of TIMP-1, whereas it downregulates the expression of CTGF and Mac25. Furthermore it decreases the expression of Leptin. Our results provide evidence that hCG determines growth and development of the corpus luteum by mediating angiogenic pathways in human granulosa lutein cells. Hence we describe a further approach to understand the regulation of angiogenesis in the ovary.

  1. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor.

    Science.gov (United States)

    Hahne, Martin; Schumann, Peggy; Mursell, Mathias; Strehl, Cindy; Hoff, Paula; Buttgereit, Frank; Gaber, Timo

    2018-03-01

    Hypoxia driven angiogenesis is a prominent feature of tissue regeneration, inflammation and tumor growth and is regulated by hypoxia-inducible factor (HIF)-1 and -2. The distinct functions of HIFs in the hypoxia-induced angiogenesis and metabolic switch of endothelial cells are still unknown and therefore aim of this study. We investigated the role of HIF-1 and -2 in the adaptation of immortalized human microvascular endothelial cells (HMEC-1) to hypoxic conditions (1% O 2 ) in terms of angiogenesis, cytokine secretion, gene expression and ATP/ADP-ratio using shRNA-mediated reduction of the oxygen sensitive α-subunits of either HIF-1 or HIF-2 or the combination of both. Reduction of HIF-1α diminished cellular energy, hypoxia-induced glycolytic gene expression, and angiogenesis not altering pro-angiogenic factors. Reduction of HIF-2α diminished hypoxia-induced pro-angiogenic factors, enhanced anti-angiogenic factors and attenuated angiogenesis not altering glycolytic gene expression. Reduction of both HIFs reduced cell survival, gene expression of glycolytic enzymes and pro-angiogenic factors as compared to the corresponding control. Finally, we identified the macrophage migration inhibitory factor (MIF) to be redundantly regulated by HIF-1 and HIF-2 and to be essential in the process of hypoxia-driven angiogenesis. Our results demonstrate a major impact of HIF-1 and HIF-2 on hypoxia-induced angiogenesis indicating distinct but also overlapping functions of HIF-1 and HIF-2. These findings open new possibilities for therapeutic approaches by specifically targeting the HIF-1 and HIF-2 or their target MIF. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative and curcumin ethylenediamine manganese complex

    OpenAIRE

    SUNTORNSUK, Leena; Koizumi, Keiichi; Saitoh, Yurika; Nakamura, ElianeShizuka; KAMMASUD, Naparat; VAJARAGUPTA, Opa; Saiki, Ikuo

    2004-01-01

    We investigated the anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative (curcumin ED) and curcumin ethylenediamine manganese complex (curcumin EDMn) through the inhibition of the formation of tube-like structures by human umbilical vascular endothelial cells (HUVEC). Curcumin, curcumin ED, curcumin EDMn did not show cytotoxicity to HUVEC at concentrations equal and lower than 10 μM. At the concentration of 10 μM,curcumin, curcumin ED and curcumin EDMn inhibited the tube fo...

  3. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxi...

  4. Late acute graft-versus-host disease: a prospective analysis of clinical outcomes and circulating angiogenic factors.

    Science.gov (United States)

    Holtan, Shernan G; Khera, Nandita; Levine, John E; Chai, Xiaoyu; Storer, Barry; Liu, Hien D; Inamoto, Yoshihiro; Chen, George L; Mayer, Sebastian; Arora, Mukta; Palmer, Jeanne; Flowers, Mary E D; Cutler, Corey S; Lukez, Alexander; Arai, Sally; Lazaryan, Aleksandr; Newell, Laura F; Krupski, Christa; Jagasia, Madan H; Pusic, Iskra; Wood, William; Renteria, Anne S; Yanik, Gregory; Hogan, William J; Hexner, Elizabeth; Ayuk, Francis; Holler, Ernst; Watanaboonyongcharoen, Phandee; Efebera, Yvonne A; Ferrara, James L M; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel; Lee, Stephanie J; Pidala, Joseph

    2016-11-10

    Late acute (LA) graft-versus-host disease (GVHD) is persistent, recurrent, or new-onset acute GVHD symptoms occurring >100 days after allogeneic hematopoietic cell transplantation (HCT). The aim of this analysis is to describe the onset, course, morbidity, and mortality of and examine angiogenic factors associated with LA GVHD. A prospective cohort of patients (n = 909) was enrolled as part of an observational study within the Chronic GVHD Consortium. Eighty-three patients (11%) developed LA GVHD at a median of 160 (interquartile range, 128-204) days after HCT. Although 51 out of 83 (61%) achieved complete or partial response to initial therapy by 28 days, median failure-free survival was only 7.1 months (95% confidence interval, 3.4-19.1 months), and estimated overall survival (OS) at 2 years was 56%. Given recently described alterations of circulating angiogenic factors in classic acute GVHD, we examined whether alterations in such factors could be identified in LA GVHD. We first tested cases (n = 55) and controls (n = 50) from the Chronic GVHD Consortium and then validated the findings in 37 cases from Mount Sinai Acute GVHD International Consortium. Plasma amphiregulin (AREG; an epidermal growth factor [EGF] receptor ligand) was elevated, and an AREG/EGF ratio at or above the median was associated with inferior OS and increased nonrelapse mortality in both cohorts. Elevation of AREG was detected in classic acute GVHD, but not chronic GVHD. These prospective data characterize the clinical course of LA GVHD and demonstrate alterations in angiogenic factors that make LA GVHD biologically distinct from chronic GVHD. © 2016 by The American Society of Hematology.

  5. Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Saptak Banerjee

    Full Text Available We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.

  6. Effects of Ellagic Acid on Angiogenic Factors in Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Vanella, Luca; Di Giacomo, Claudia; Acquaviva, Rosaria; Barbagallo, Ignazio; Li Volti, Giovanni; Cardile, Venera; Abraham, Nader G.; Sorrenti, Valeria

    2013-01-01

    Background: Several natural antioxidants, including ellagic acid (EA), have been reported to have chemotherapeutic activity in vivo and in vitro settings. Cytochrome P450 (CYP) activity and synthesis of both epoxyeicosatrienoic acids (EETs) and 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), together with vascular endothelial growth factor (VEGF) and heme oxygenase system (HO) have emerged as important modulators of tumor growth and metastasis. Methods: The anti-angiogenic effects of EA were investigated in the human prostatic cancer cell line LnCap. HO-1, HO-2, CYP2J2 and soluble epoxyde hydrolase (sEH) expressions were evaluated by western blotting. Levels of VEGF and osteoprotegerin (OPG) were determined in the culture supernatant using an ELISA assay, while CYP mRNAs were determined by qRT-PCR. Results: EA treatment induced a significant decrease (p < 0.05) in HO-1, HO-2 and CYP2J2 expression, and in VEGF and OPG levels. Similarly CYP2J2, CYP4F2 and CYPA22 mRNAs were significantly (p < 0.05) down-regulated by EA treatment. The decrease in CYP2J2 mRNA was associated with an increase in sEH expression. Conclusions: Results reported in the present study highlighted the ability of EA to modulate a new pathway, in addition to anti-proliferative and pro-differentiation properties, via a mechanism that involves a decrease in eicosanoid synthesis and a down-regulation of the HO system in prostate cancer

  7. Effects of Ellagic Acid on Angiogenic Factors in Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Vanella, Luca; Di Giacomo, Claudia; Acquaviva, Rosaria; Barbagallo, Ignazio; Li Volti, Giovanni [Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania (Italy); Cardile, Venera [Department of Bio-Medical Sciences, Section of Physiology, University of Catania, I-95125, Catania (Italy); Abraham, Nader G. [Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701 (United States); Sorrenti, Valeria, E-mail: sorrenti@unict.it [Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania (Italy)

    2013-06-19

    Background: Several natural antioxidants, including ellagic acid (EA), have been reported to have chemotherapeutic activity in vivo and in vitro settings. Cytochrome P450 (CYP) activity and synthesis of both epoxyeicosatrienoic acids (EETs) and 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), together with vascular endothelial growth factor (VEGF) and heme oxygenase system (HO) have emerged as important modulators of tumor growth and metastasis. Methods: The anti-angiogenic effects of EA were investigated in the human prostatic cancer cell line LnCap. HO-1, HO-2, CYP2J2 and soluble epoxyde hydrolase (sEH) expressions were evaluated by western blotting. Levels of VEGF and osteoprotegerin (OPG) were determined in the culture supernatant using an ELISA assay, while CYP mRNAs were determined by qRT-PCR. Results: EA treatment induced a significant decrease (p < 0.05) in HO-1, HO-2 and CYP2J2 expression, and in VEGF and OPG levels. Similarly CYP2J2, CYP4F2 and CYPA22 mRNAs were significantly (p < 0.05) down-regulated by EA treatment. The decrease in CYP2J2 mRNA was associated with an increase in sEH expression. Conclusions: Results reported in the present study highlighted the ability of EA to modulate a new pathway, in addition to anti-proliferative and pro-differentiation properties, via a mechanism that involves a decrease in eicosanoid synthesis and a down-regulation of the HO system in prostate cancer.

  8. Molecular features of interaction between VEGFA and anti-angiogenic drugs used in retinal diseases: a computational approach

    Directory of Open Access Journals (Sweden)

    Chiara Bianca Maria Platania

    2015-10-01

    Full Text Available Anti-angiogenic agents are biological drugs used for treatment of retinal neovascular degenerative diseases. In this study, we aimed at in-silico analysis of interaction of vascular endothelial growth factor A (VEGFA, the main mediator of angiogenesis, with binding domains of anti-angiogenic agents used for treatment of retinal diseases, such as ranibizumab, bevacizumab and aflibercept. The analysis of anti-VEGF/VEGFA complexes was carried out by means of protein-protein docking and molecular dynamics (MD coupled to molecular mechanics-Poisson Boltzmann Surface Area (MM-PBSA calculation. Molecular dynamics simulation was further analyzed by protein contact networks. Rough energetic evaluation with protein-protein docking scores revealed that aflibercept/VEGFA complex was characterized by electrostatic stabilization, whereas ranibizumab and bevacizumab complexes were stabilized by Van der Waals (VdW energy term; these results were confirmed by MM-PBSA. Comparison of MM-PBSA predicted energy terms with experimental binding parameters reported in literature indicated that the high association rate (Kon of aflibercept to VEGFA was consistent with high stabilizing electrostatic energy. On the other hand, the relatively low experimental dissociation rate (Koff of ranibizumab may be attributed to lower conformational fluctuations of the ranibizumab/VEGFA complex, higher number of contacts and hydrogen bonds in comparison to bevacizumab and aflibercept. Thus, the anti-angiogenic agents have been found to be considerably different both in terms of molecular interactions and stabilizing energy. Characterization of such features can improve the design of novel biological drugs potentially useful in clinical practice.

  9. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    International Nuclear Information System (INIS)

    Baek, Yi-Yong; Lee, Dong-Keon; So, Ju-Hoon; Kim, Cheol-Hee; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Won, Moo-Ho; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong

    2015-01-01

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC 50 of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases

  10. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  11. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    Science.gov (United States)

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.

  12. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    International Nuclear Information System (INIS)

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-01-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface α5β1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1α) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1α mediated transcriptional activity as well as HIF-1α mediated angiogenic sprouting of ECs. HIF-1α plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1α activities.

  13. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Tandle, Anita T. [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Calvani, Maura; Uranchimeg, Badarch [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Zahavi, David [Tumor Angiogenesis Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892 (United States); Melillo, Giovanni [DTP-Tumor Hypoxia Laboratory, SAIC Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702 (United States); Libutti, Steven K., E-mail: slibutti@montefiore.org [Department of Surgery, Montefiore-Einstein Center for Cancer Care, Albert Einstein College of Medicine, Greene Medical Arts Pavilion, 4th Floor 3400, Bainbridge Avenue, Bronx, New York 10467 (United States)

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  14. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    International Nuclear Information System (INIS)

    Patten, Steven G; Adamcic, Una; Lacombe, Kristen; Minhas, Kanwal; Skowronski, Karolina; Coomber, Brenda L

    2010-01-01

    Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein. Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal) and WM239 (melanoma) xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1 -/- mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX. VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD) in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93%) and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60%) xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased stabilization of colorectal microvessels, but no

  15. Angiogenic dysfunction in bone marrow-derived early outgrowth cells from diabetic animals is attenuated by SIRT1 activation.

    Science.gov (United States)

    Yuen, Darren A; Zhang, Yanling; Thai, Kerri; Spring, Christopher; Chan, Lauren; Guo, Xiaoxin; Advani, Andrew; Sivak, Jeremy M; Gilbert, Richard E

    2012-12-01

    Impaired endothelial repair is a key contributor to microvascular rarefaction and consequent end-organ dysfunction in diabetes. Recent studies suggest an important role for bone marrow-derived early outgrowth cells (EOCs) in mediating endothelial repair, but the function of these cells is impaired in diabetes, as in advanced age. We sought to determine whether diabetes-associated EOC dysfunction might be attenuated by pharmacological activation of silent information regulator protein 1 (SIRT1), a lysine deacetylase implicated in nutrient-dependent life span extension in mammals. Despite being cultured in normal (5.5 mM) glucose for 7 days, EOCs from diabetic rats expressed less SIRT1 mRNA, induced less endothelial tube formation in vitro and neovascularization in vivo, and secreted less of the proangiogenic ELR(+) CXC chemokines CXCL1, CXCL3, and CXCL5. Ex vivo SIRT1 activation restored EOC chemokine secretion and increased the in vitro and in vivo angiogenic activity of EOC conditioned medium derived from diabetic animals to levels similar to that derived from control animals. These findings suggest a pivotal role for SIRT1 in diabetes-induced EOC dysfunction and that its pharmacologic activation may provide a new strategy for the restoration of EOC-mediated repair mechanisms.

  16. Angiogenic and inflammatory biomarkers in the differentiation of pulmonary hypertension.

    Science.gov (United States)

    Säleby, Joanna; Bouzina, Habib; Lundgren, Jakob; Rådegran, Göran

    2017-10-01

    Pulmonary hypertension (PH) is a serious condition where diagnosis often is delayed due to unspecific symptoms. New methods to diagnose and differentiate PH earlier would therefore be of great value. The aim of this study was therefore to evaluate the relationship between circulating angiogenic and inflammatory biomarkers and various hemodynamic variables in relation to different causes of PH. Plasma samples from 63 patients at diagnosis were extracted from Lund Cardio Pulmonary Register, separated into pulmonary arterial hypertension (PAH, n = 22), chronic thromboembolic pulmonary hypertension (CTEPH, n = 15) and left heart disease (LHD) with (n = 21) and without (n = 5) PH. Blood samples from eight control subjects devoid of PH were additionally evaluated. Plasma concentrations of angiogenic (PlGF, Tie2, VEGF-A, VEGF-D, bFGF, sFlt-1) and inflammatory (IL-6, IL-8, TNF-α) biomarkers were analysed and related to hemodynamic variables. SFlt-1 (p < .004) and VEGF-A (p < .035) were higher in all PH groups compared to controls. TNF-α (p < .030) were elevated in PAH patients in relation to the other PH groups as well as controls. Likewise, plasma VEGF-D (p < .008) were elevated in LHD with PH compared to the other groups with PH and controls. In PAH, higher sFlt-1 concentrations correlated to a worse state of hemodynamics. Our findings indicate that sFlt-1 and VEGF-A may be future tools when discriminating PH from non-PH. Moreover, TNF-α may differentiate PAH and VEGF- D may differentiate LHD with PH, from the other groups with PH, as well as controls. SFlt-1 may furthermore play a role as a future marker of disease severity.

  17. The PR-1 domain accounts for the anti-angiogenic activity of a cysteine-rich secretory protein member from the buccal glands of Lampetra japonica.

    Science.gov (United States)

    Duan, Dandan; Wang, Hongyan; Zhou, Rong; Jiang, Qi; Xiao, Rong

    2018-02-01

    Previous studies have shown that cysteine-rich buccal gland protein (CRBGP) from buccal glands of Lampetra japonica could suppress angiogenesis in chick chorioallantoic membrane models. As CRBGP is composed of a pathogenesis-related group 1 (PR-1) domain and a cysteine-rich domain (CRD), which domain accounts for the effects of CRBGP on anti-angiogenesis? In the present study, recombinant PR-1 and CRD (rL-PR-1 and rL-CRD) were obtained. MTT assays showed rL-PR-1 inhibited the proliferation of HUVECs significantly in a dose-dependent manner with an IC 50 of 2μM, while rL-CRD had no obviously inhibitory effect on the proliferation of HUVECs, suggested that PR-1 is the main function domain on the anti-angiogenic activity of CRBGP. Similar to CRBGP, rL-PR-1 induced apoptosis in HUVECs in a mitochondrial-dependent pathway by affecting the level of BAX, BCL2 and caspase 3. Also, the cytotoxic property of rL-PR-1 might be one of the factors which suppressed the proliferation of HUVECs. Furthermore, rL-PR-1 blocked the adhesion, migration, invasion and tube formation of HUVECs by disturbing the cytoskeleton arrangement and down-regulating the level of matrix metallo-peptidase 2. In summary, rL-PR-1 has the anti-angiogenic activity which would provide the information on the functions and mechanisms of cysteine-rich secretory protein family members. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. MiRNA-486 regulates angiogenic activity and survival of mesenchymal stem cells under hypoxia through modulating Akt signal

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xue-Feng [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001 (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Department of Respiration, Qinghai Provincial People' s Hospital, Xining (China); Wang, Hua; Xiao, Feng-Jun [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yin, Yue [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Department of Hematology, Peking University First Hospital, Beijing (China); Xu, Qin-Qin [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001 (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Ge, Ri-Li, E-mail: geriligao@hotmail.com [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining 810001 (China); Wang, Li-Sheng, E-mail: wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2016-02-12

    MicroRNA-486 (miR-486) was first identified from human fetal liver cDNA library and validated as a regulator of hematopoiesis. Its roles in regulating the biological function of bone marrow-derived mesnechymal stem cells (BM-MSCs) under hypoxia have not been explored yet. In this study, we demonstrated that exposure to hypoxia upregulates miR-486 expression in BM-MSCs. Lentivirus-mediated overexpression of miR-486 resulted in increase of hepatocyte growth factor (HGF) and vascular endothelial growth factor(VEGF) in both mRNA and protein levels. MiR-486 expression also promotes proliferation and reduces apoptosis of BM-MSCs. Whereas MiR-486 knockdown downregulated the secretion of HGF and VEGF and induced apoptosis of BM-MSCs. Furthermore, PTEN-PI3K/AKT signaling was validated to be involved in changes of BM-MSC biological functions regulated by miR-486. These results suggested that MiR-486 mediated the hypoxia-induced angiogenic activity and promoted the proliferation and survival of BM-MSCs through regulating PTEN-PI3K/AKT signaling. These findings might provide a novel understanding of effective therapeutic strategy for hypoxic-ischemic diseases. - Highlights: • miR-486 is a hypoxia-induced miRNA. • miR-486 regulates the secretion of HGF and VEGF, promotes proliferation, and inhibits apoptosis of BM-MSCs. • miR-486 enhances PI3K/AKT activity signaling by targeting PTEN molecule.

  19. Angiogenic imbalance and diminished matrix metalloproteinase-2 and -9 underlie regional decreases in uteroplacental vascularization and feto-placental growth in hypertensive pregnancy.

    Science.gov (United States)

    Dias-Junior, Carlos A; Chen, Juanjuan; Cui, Ning; Chiang, Charles L; Zhu, Minglin; Ren, Zongli; Possomato-Vieira, Jose S; Khalil, Raouf A

    2017-12-15

    Preeclampsia is a form of hypertension-in-pregnancy (HTN-Preg) with unclear mechanism. Generalized reduction of uterine perfusion pressure (RUPP) could be an initiating event leading to uteroplacental ischemia, angiogenic imbalance, and HTN-Preg. Additional regional differences in uteroplacental blood flow could further affect the pregnancy outcome and increase the risk of preeclampsia in twin or multiple pregnancy, but the mechanisms involved are unclear. To test the hypothesis that regional differences in angiogenic balance and matrix metalloproteinases (MMPs) underlie regional uteroplacental vascularization and feto-placental development, we compared fetal and placental growth, and placental and myoendometrial vascularization in the proximal, middle and distal regions of the uterus (in relation to the iliac bifurcation) in normal pregnant (Preg) and RUPP rats. Maternal blood pressure and plasma anti-angiogenic soluble fms-like tyrosine kinase-1 (sFlt-1)/placenta growth factor (PIGF) ratio were higher, and average placentae number, placenta weight, litter size, and pup weight were less in RUPP than Preg rats. The placenta and pup number and weight were reduced, while the number and diameter of placental and adjacent myoendometrial arteries, and MMP-2 and MMP-9 levels/activity were increased, and sFlt-1/PlGF ratio was decreased in distal vs proximal uterus of Preg rats. In RUPP rats, the placenta and pup number and weight, the number and diameter of placental and myoendometrial arteries, and MMP-2 and -9 levels/activity were decreased, and sFlt-1/PlGF ratio was increased in distal vs proximal uterus. Treatment with sFlt-1 or RUPP placenta extract decreased MMP-2 and MMP-9 in distal segments of Preg uterus, and treatment with PIGF or Preg placenta extract restored MMP levels in distal segments of RUPP uterus. Thus, in addition to the general reduction in placental and fetal growth during uteroplacental ischemia, localized angiogenic imbalance and diminished MMP-2

  20. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    Science.gov (United States)

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  1. The interplay between surfaces and soluble factors define the immunologic and angiogenic properties of myeloid dendritic cells

    Directory of Open Access Journals (Sweden)

    Mansfield Kristen

    2011-06-01

    Full Text Available Abstract Background Dendritic cells (DCs are antigen presenting cells capable of inducing specific immune responses against microbial infections, transplant antigens, or tumors. Interestingly, microenvironment conditions such as those present in tumor settings might induce a DC phenotype that is poorly immunogenic and with the capability of promoting angiogenesis. We hypothesize that this plasticity may be caused not only by the action of specific cytokines or growth factors but also by the properties of the surfaces with which they interact, such as extracellular matrix (ECM components. Results Herewith we studied the effect of different surfaces and soluble factors on the biology of DCs. To accomplish this, we cultured murine myeloid(m DCs on surfaces coated with fibronectin, collagen I, gelatin, and Matrigel using poly-D-lysine and polystyrene as non-biological surfaces. Further, we cultured these cells in the presence of regular DC medium (RPMI 10% FBS or commercially available endothelial medium (EGM-2. We determined that mDCs could be kept in culture up to 3 weeks in these conditions, but only in the presence of GM-CSF. We were able to determine that long-term DC cultures produce an array of angiogenic factors, and that some of these cultures still retain the capability to induce T cell responses. Conclusions Altogether these data indicate that in order to design DC-based vaccines or treatments focused on changing the phenotype of DCs associated with diseases such as cancer or atherosclerosis, it becomes necessary to fully investigate the microenvironment in which these cells are present or will be delivered.

  2. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  3. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    International Nuclear Information System (INIS)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2017-01-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO 2 nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO 2 NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu 2+ . The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO 2 NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  4. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang, E-mail: hangruiqiang@tyut.edu.cn; Tang, Bin

    2017-02-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO{sub 2} nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO{sub 2} NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (< 15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu{sup 2+}. The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO{sub 2} NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings. - Highlights: • Cu-Ti-O NTAs possess long-term antibacterial ability against Staphylococcus aureus. • Cu-Ti-O NTAs can up-regulate nitric oxide synthesis and vascular endothelial growth factors secretion of endothelial cells. • Cu-Ti-O NTAs can enhance in vitro angiogenesis activity of endothelial cells.

  5. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    International Nuclear Information System (INIS)

    Solomon, Kimberly D.; Ong, Joo L.

    2013-01-01

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  6. The Biological Properties of OGI Surfaces Positively Act on Osteogenic and Angiogenic Commitment of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Paolo Ghensi

    2017-11-01

    Full Text Available Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC. MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment.

  7. Deletion of pro-angiogenic factor vasohibin-2 ameliorates glomerular alterations in a mouse diabetic nephropathy model

    Science.gov (United States)

    Masuda, Kana; Ujike, Haruyo; Hinamoto, Norikazu; Miyake, Hiromasa; Tanimura, Satoshi; Sugiyama, Hitoshi; Sato, Yasufumi; Maeshima, Yohei; Wada, Jun

    2018-01-01

    Angiogenesis has been implicated in glomerular alterations in the early stage of diabetic nephropathy. We previously reported the renoprotective effects of vasohibin-1 (VASH1), which is a novel angiogenesis inhibitor derived from endothelial cells, on diabetic nephropathy progression. Vasohibin-2 (VASH2) was originally identified as a VASH1 homolog and possesses pro-angiogenic activity in contrast to VASH1. In addition, VASH2 was recently shown to promote epithelial-to-mesenchymal transition via enhanced transforming growth factor (TGF)-β signaling in cancer cells. Herein, we investigated the pathogenic roles of VASH2 in diabetic nephropathy using VAHS2-deficient mice. The type 1 diabetes model was induced by intraperitoneal injections of streptozotocin in VASH2 homozygous knockout (VASH2LacZ/LacZ) or wild-type mice. These mice were euthanized 16 weeks after inducing hyperglycemia. Increased urine albumin excretion and creatinine clearance observed in diabetic wild-type mice were significantly prevented in diabetic VASH2-deficient mice. Accordingly, diabetes-induced increase in glomerular volume and reduction in glomerular slit-diaphragm density were significantly improved in VASH2 knockout mice. Increased glomerular endothelial area was also suppressed in VASH2-deficient mice, in association with inhibition of enhanced vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2), but not VEGF level. Furthermore, glomerular accumulation of mesangial matrix, including type IV collagen, and increased expression of TGF-β were improved in diabetic VASH2 knockout mice compared with diabetic wild-type mice. Based on the immunofluorescence findings, endogenous VASH2 localization in glomeruli was consistent with mesangial cells. Human mesangial cells (HMCs) were cultured under high glucose condition in in vitro experiments. Transfection of VASH2 small interfering RNA (siRNA) into the HMCs resulted in the suppression of type IV collagen production induced by high glucose

  8. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  9. Thrombin induces rapid PAR1-mediated non-classical FGF1 release

    International Nuclear Information System (INIS)

    Duarte, Maria; Kolev, Vihren; Soldi, Raffaella; Kirov, Alexander; Graziani, Irene; Oliveira, Silvia Marta; Kacer, Doreen; Friesel, Robert; Maciag, Thomas; Prudovsky, Igor

    2006-01-01

    Thrombin induces cell proliferation and migration during vascular injury. We report that thrombin rapidly stimulated expression and release of the pro-angiogenic polypeptide fibroblast growth factor 1 (FGF1). Thrombin failed to induce FGF1 release from protease-activated receptor 1 (PAR1) null fibroblasts, indicating that this effect was dependent on PAR1. Similarly to thrombin, FGF1 expression and release were induced by TRAP, a specific oligopeptide agonist of PAR1. These results identify a novel aspect of the crosstalk between FGF and thrombin signaling pathways which both play important roles in tissue repair and angiogenesis

  10. Angiogenic Factor Profiles in Pregnant Women With a History of Early-Onset Severe Preeclampsia Receiving Low-Molecular-Weight Heparin Prophylaxis.

    Science.gov (United States)

    Lecarpentier, Edouard; Gris, Jean Christophe; Cochery-Nouvellon, Eva; Mercier, Erick; Touboul, Cyril; Thadhani, Ravi; Karumanchi, S Ananth; Haddad, Bassam

    2018-01-01

    To evaluate whether daily low-molecular-weight (LMW) heparin prophylaxis during pregnancy alters profile of circulating angiogenic factors that have been linked with the pathogenesis of preeclampsia and fetal growth restriction. This is a planned ancillary study of the Heparin-Preeclampsia trial, a randomized trial in pregnant women with a history of severe early-onset preeclampsia (less than 34 weeks of gestation). In the parent study, all women were treated with aspirin and then randomized to receive LMW heparin or aspirin alone. In this study, we measured serum levels of circulating angiogenic factors (soluble fms-like tyrosine kinase-1, placental growth factor, and soluble endoglin by immunoassay) at the following gestational windows: 10-13 6/7 weeks, 14-17 6/7 weeks, 18-21 6/7 weeks, 22-25 6/7 weeks, 26-29 6/7 weeks, 30-33 6/7 weeks, and 34-37 6/7 weeks. Samples were available from 185 patients: LMW heparin+aspirin (n=92) and aspirin alone (n=93). The two groups had comparable baseline characteristics and had similar adverse composite outcomes (35/92 [38.0%] compared with 36/93 [38.7%]; P=.92). There were no significant differences in serum levels of soluble fms-like tyrosine kinase-1, placental growth factor, and soluble endoglin in the participants who received LMW heparin and aspirin compared with those who received aspirin alone regardless of gestational age period. Finally, women who developed an adverse composite outcome at less than 34 weeks of gestation demonstrated significant alterations in serum angiogenic profile as early as 10-13 6/7 weeks that was most dramatic 6-8 weeks preceding delivery. Prophylactic LMW heparin therapy when beginning from before 14 weeks of gestation with aspirin during pregnancy is not associated with an improved angiogenic profile. This may provide a molecular explanation for the lack of clinical benefit noted in recent trials. ClinicalTrials.gov, NCT00986765.

  11. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium

    International Nuclear Information System (INIS)

    Basilico, Nicoletta; Magnetto, Chiara; D'Alessandro, Sarah; Panariti, Alice; Rivolta, Ilaria; Genova, Tullio; Khadjavi, Amina; Gulino, Giulia Rossana; Argenziano, Monica; Soster, Marco

    2015-01-01

    In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects of hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes. - Highlights: • Hypoxia enhances MMP-2 and reduces TIMP-1 secretion by dermal HMEC-1 cell line. • Hypoxia compromises migration and matrix invasion abilities of

  12. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Basilico, Nicoletta, E-mail: nicoletta.basilico@unimi.it [Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università di Milano, via Pascal 36, 20133 Milano (Italy); Magnetto, Chiara, E-mail: c.magnetto@inrim.it [Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce, 91, 10135 Torino (Italy); D' Alessandro, Sarah, E-mail: sarah.dalessandro@unimi.it [Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, via Pascal 36, 20133 Milano (Italy); Panariti, Alice, E-mail: alice.panariti@mail.mcgill.ca [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Via Cadore 48, 20900 Monza (Italy); Rivolta, Ilaria, E-mail: ilaria.rivolta@unimib.it [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Via Cadore 48, 20900 Monza (Italy); Genova, Tullio, E-mail: tullio.genova@unito.it [Dipartimento di Scienze della Vita e Biologia dei Sistemi, Via Accademia Albertina 13, 10123 Torino (Italy); Khadjavi, Amina, E-mail: amina.khadjavi@unito.it [Dipartimento di Neuroscienze, Università di Torino, Corso Raffaello 30, 10125 Torino (Italy); Gulino, Giulia Rossana, E-mail: giuliarossana.gulino@unito.it [Dipartimento di Oncologia, Università di Torino, Via Santena 5 bis, 10126 Torino (Italy); Argenziano, Monica, E-mail: monica.argenziano@unito.it [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Giuria, 9, 10125 Torino (Italy); Soster, Marco, E-mail: marco.soster@unito.it [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Giuria, 9, 10125 Torino (Italy); and others

    2015-11-01

    In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects of hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes. - Highlights: • Hypoxia enhances MMP-2 and reduces TIMP-1 secretion by dermal HMEC-1 cell line. • Hypoxia compromises migration and matrix invasion abilities of

  13. Growth of MCF-7 breast cancer cells and efficacy of anti-angiogenic agents in a hydroxyethyl chitosan/glycidyl methacrylate hydrogel.

    Science.gov (United States)

    Wang, Hejing; Qian, Junmin; Zhang, Yaping; Xu, Weijun; Xiao, Juxiang; Suo, Aili

    2017-01-01

    Breast cancer negatively affects women's health worldwide. The tumour microenvironment plays a critical role in tumour initiation, proliferation, and metastasis. Cancer cells are traditionally grown in two-dimensional (2D) cultures as monolayers on a flat solid surface lacking cell-cell and cell-matrix interactions. These experimental conditions deviate from the clinical situation. Improved experimental systems that can mimic the in vivo situation are required to discover new therapies, particularly for anti-angiogenic agents that mainly target intercellular factors and play an essential role in treating some cancers. Chitosan can be modified to construct three-dimensional (3D) tumour models. Here, we report an in vitro 3D tumour model using a hydroxyethyl chitosan/glycidyl methacrylate (HECS-GMA) hydrogel produced by a series of chitosan modifications. Parameters relating to cell morphology, viability, proliferation, and migration were analysed using breast cancer MCF-7 cells. In a xenograft model, secretion of angiogenesis-related growth factors and the anti-angiogenic efficacy of Endostar and Bevacizumab in cells grown in HECS-GMA hydrogels were assessed by immunohistochemistry. Hydroxyethyl chitosan/glycidyl methacrylate hydrogels had a highly porous microstructure, mechanical properties, swelling ratio, and morphology consistent with a 3D tumour model. Compared with a 2D monolayer culture, breast cancer MCF-7 cells residing in the HECS-GMA hydrogels grew as tumour-like clusters in a 3D formation. In a xenograft model, MCF-7 cells cultured in the HECS-GMA hydrogels had increased secretion of angiogenesis-related growth factors. Recombinant human endostatin (Endostar), but not Bevacizumab (Avastin), was an effective anti-angiogenic agent in HECS-GMA hydrogels. The HECS-GMA hydrogel provided a 3D tumour model that mimicked the in vivo cancer microenvironment and supported the growth of MCF7 cells better than traditional tissue culture plates. The HECS

  14. A Mouse Model of the Cornea Pocket Assay for Angiogenesis Study

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Fan; Li, Yang; Arjunan, Pachiappan; Kumar, Anil; Lee, Chunsik; Li, Xuri

    2011-01-01

    A normal cornea is clear of vascular tissues. However, blood vessels can be induced to grow and survive in the cornea when potent angiogenic factors are administered 1. This uniqueness has made the cornea pocket assay one of the most used models for angiogenesis studies. The cornea composes multiple layers of cells. It is therefore possible to embed a pellet containing the angiogenic factor of interest in the cornea to investigate its angiogenic effect 2,3. Here, we provide a step by step demonstration of how to (I) produce the angiogenic factor-containing pellet (II) embed the pellet into the cornea (III) analyze the angiogenesis induced by the angiogenic factor of interest. Since the basic fibroblast growth factor (bFGF) is known as one of the most potent angiogenic factors 4, it is used here to induce angiogenesis in the cornea. PMID:21876523

  15. Angiotensin II Evokes Angiogenic Signals within Skeletal Muscle through Co-ordinated Effects on Skeletal Myocytes and Endothelial Cells

    Science.gov (United States)

    Gorman, Jennifer L.; Liu, Sammy T. K.; Slopack, Dara; Shariati, Khashayar; Hasanee, Adam; Olenich, Sara; Olfert, I. Mark; Haas, Tara L.

    2014-01-01

    Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload-induced

  16. Aminopeptidase A is a functional target in angiogenic blood vessels.

    Science.gov (United States)

    Marchiò, Serena; Lahdenranta, Johanna; Schlingemann, Reinier O; Valdembri, Donatella; Wesseling, Pieter; Arap, Marco A; Hajitou, Amin; Ozawa, Michael G; Trepel, Martin; Giordano, Ricardo J; Nanus, David M; Dijkman, Henri B P M; Oosterwijk, Egbert; Sidman, Richard L; Cooper, Max D; Bussolino, Federico; Pasqualini, Renata; Arap, Wadih

    2004-02-01

    We show that a membrane-associated protease, aminopeptidase A (APA), is upregulated and enzymatically active in blood vessels of human tumors. To gain mechanistic insight, we evaluated angiogenesis in APA null mice. We found that, although these mice develop normally, they fail to mount the expected angiogenic response to hypoxia or growth factors. We then isolated peptide inhibitors of APA from a peptide library and show that they specifically bind to and inhibit APA, suppress migration and proliferation of endothelial cells, inhibit angiogenesis, and home to tumor blood vessels. Finally, we successfully treated tumor-bearing mice with APA binding peptides or anti-APA blocking monoclonal antibodies. These data show that APA is a regulator of blood vessel formation, and can serve as a functional vascular target.

  17. Relationship between tumour necrosis factor-related apoptosis inducing ligand (TRAIL) and vascular endothelial growth factor in human multiple myeloma patients.

    Science.gov (United States)

    Bolkun, Lukasz; Lemancewicz, Dorota; Piszcz, Jaroslaw; Moniuszko, Marcin; Bolkun-Skornicka, Urszula; Szkiladz, Malgorzata; Jablonska, Ewa; Kloczko, Janusz; Dzieciol, Janusz

    2015-12-01

    Tumour necrosis factor-alfa (TNF-α) is an inflammatory cytokine with a wide spectrum of biological activity, including angiogenesis. Tumour necrosis factor-related apoptosis inducing ligand (TRAIL), which belongs to the TNF family of proteins, plays a role in the regulation of vascular responses, but its effect on the formation of new blood vessels (angiogenesis) is unclear. We analysed TRAIL concentrations in parallel with pro-angiogenic cytokines in serum and their expression in trephine biopsy (TB) in 56 patients with newly diagnosed IgG MM and 24 healthy volunteers. The study showed statistically higher concentrations of TRAIL and TNF-α, as well as of VEGF and its receptor, in MM patients compared to healthy volunteers and patients in advanced stages of the disease. Furthermore, we observed a significant decrease in all studied pro-angiogenic cytokines and significant increase of TRAIL concentration after anti-angiogenic therapy, with meaningful differences between responders (at least partial remission) and patients with progression during the induction treatment. It was also established that TRAIL correlated statistically and negatively with pro-angiogenic cytokines such as VEGF with its receptor and expression of VEGF and syndecan-1 in TB. In summary, our data indicate that in MM patients, both clinical course and treatment responsiveness are associated with dynamic yet corresponding changes of levels of TRAIL parallel pro-angiogenic mediators such as VEGF with its receptor and expression of VEGF and syndecan-1 in TB. Copyright © 2014 John Wiley & Sons, Ltd.

  18. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    Directory of Open Access Journals (Sweden)

    Skowronski Karolina

    2010-12-01

    Full Text Available Abstract Background Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein. Methods Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal and WM239 (melanoma xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1-/- mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX. Results VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93% and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60% xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased

  19. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential.

    Science.gov (United States)

    Efimenko, Anastasia; Dzhoyashvili, Nina; Kalinina, Natalia; Kochegura, Tatiana; Akchurin, Renat; Tkachuk, Vsevolod; Parfyonova, Yelena

    2014-01-01

    Tissue regeneration is impaired in aged individuals. Adipose-derived mesenchymal stromal cells (ADSCs), a promising source for cell therapy, were shown to secrete various angiogenic factors and improve vascularization of ischemic tissues. We analyzed how patient age affected the angiogenic properties of ADSCs. ADSCs were isolated from subcutaneous fat tissue of patients with coronary artery disease (CAD; n = 64, 43-77 years old) and without CAD (n = 31, 2-82 years old). ADSC phenotype characterized by flow cytometry was CD90(+)/CD73(+)/CD105(+)/CD45(-)/CD31(-) for all samples, and these cells were capable of adipogenic and osteogenic differentiation. ADSCs from aged patients had shorter telomeres (quantitative reverse transcription polymerase chain reaction) and a tendency to attenuated telomerase activity. ADSC-conditioned media (ADSC-CM) stimulated capillary-like tube formation by endothelial cells (EA.hy926), and this effect significantly decreased with the age of patients both with and without CAD. Angiogenic factors (vascular endothelial growth factor, placental growth factor, hepatocyte growth factor, angiopoetin-1, and angiogenin) in ADSC-CM measured by enzyme-linked immunosorbent assay significantly decreased with patient age, whereas levels of antiangiogenic factors thrombospondin-1 and endostatin did not. Expression of angiogenic factors in ADSCs did not change with patient age (real-time polymerase chain reaction); however, gene expression of factors related to extracellular proteolysis (urokinase and its receptor, plasminogen activator inhibitor-1) and urokinase-type plasminogen activator receptor surface expression increased in ADSCs from aged patients with CAD. ADSCs from aged patients both with and without CAD acquire aging characteristics, and their angiogenic potential declines because of decreasing proangiogenic factor secretion. This could restrict the effectiveness of autologous cell therapy with ADSCs in aged patients.

  20. Synergistic effect of anti-angiogenic herbal composition (Meta-X) in combination with radiotherapy on the inhibition of tumor growth

    International Nuclear Information System (INIS)

    Han, Young Soo; Song, Jie Young; Yoon, Yeon Sook; Kim, Joon Sik; Park, Byung Young; Lee, Hee Suk; Kim, Min Yung

    2004-01-01

    Anti-angiogenic composition called Meta-X was made from herbal medicines that are currently used oral drugs for other indications. We examined biochemical properties of Meta-X, and synergistic effect of Meta-X combined with irradiation on the inhibition of tumor growth

  1. Synergistic effect of anti-angiogenic herbal composition (Meta-X) in combination with radiotherapy on the inhibition of tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young Soo; Song, Jie Young; Yoon, Yeon Sook [Korea Institute of Radilolgical and Medical Science, Seoul (Korea, Republic of); Kim, Joon Sik; Park, Byung Young; Lee, Hee Suk; Kim, Min Yung [AngioLab, Seoul (Korea, Republic of)

    2004-07-01

    Anti-angiogenic composition called Meta-X was made from herbal medicines that are currently used oral drugs for other indications. We examined biochemical properties of Meta-X, and synergistic effect of Meta-X combined with irradiation on the inhibition of tumor growth.

  2. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species

    Science.gov (United States)

    Alcayaga-Miranda, Francisca; González, Paz L.; Lopez-Verrilli, Alejandra; Varas-Godoy, Manuel; Aguila-Díaz, Carolina; Contreras, Luis; Khoury, Maroun

    2016-01-01

    Mesenchymal stem cells (MSCs) secrete exosomes that are capable of modifying the tumor environment through different mechanisms including changes in the cancer-cell secretome. This activity depends on their cargo content that is largely defined by their cellular origin. Endometrial cells are fine regulators of the angiogenic process during the menstrual cycle that includes an angiostatic condition that is associated with the end of the cycle. Hence, we studied the angiogenic activity of menstrual stem cells (MenSCs)-secreted exosomes on prostate PC3 tumor cells. Our results showed that exosomes induce a reduction in VEGF secretion and NF-κB activity. Lower reactive oxygen species (ROS) production in exosomes-treated cells was detected by the DCF method, suggesting that the inhibition of the intracellular ROS impacts both NF-κB and VEGF pathways. We confirmed using tubule formation and plug transplantation assays that MenSCs-exosomes suppress the secretion of pro-angiogenic factors by the PC3 cells in a ROS-dependent manner. The inhibition of the tumor angiogenesis and, consequently, the tumor growth was also confirmed using a xenograft mouse model. Additionally, the anti-tumoral effect was associated with a reduction of tumor hemoglobin content, vascular density and inhibition of VEGF and HIF-1α expression. Importantly, we demonstrate that the exosomes anti-angiogenic effect is specific to the menstrual cell source, as bone marrow MSCs-derived exosomes showed an opposite effect on the VEGF and bFGF expression in tumor cells. Altogether, our results indicate that MenSCs-derived exosomes acts as blockers of the tumor-induced angiogenesis and therefore could be suitable for anti-cancer therapies. PMID:27286448

  3. Angiogenic Factors and Cytokines in Diabetic Retinopathy

    Science.gov (United States)

    Abcouwer, Steven F.

    2013-01-01

    Diabetic retinopathy (DR) is a sight-threatening complication of both type-1 and type-2 diabetes. The recent success of treatments inhibiting the function of vascular endothelial growth factor (VEGF) demonstrates that specific targeting of a growth factor responsible for vascular permeability and growth is an effective means of treating DR-associated vascular dysfunction, edema and angiogenesis. This has stimulated research of alternative therapeutic targets involved in the control of retinal vascular function. However, additional treatment options and preventative measures are still needed and these require a greater understanding of the pathological mechanisms leading to the disturbance of retinal tissue homeostasis in DR. Although severe DR can be treated as a vascular disease, abundant data suggests that inflammation is also occurring in the diabetic retina.Thus, anti-inflammatory therapies may also be useful for treatment and prevention of DR. Herein, the evidence for altered expression of angiogenic factors and cytokines in DR is reviewed and possible mechanisms by which the expression of VEGF and cytokines may be increased in the diabetic retina are examined. In addition, the potential role for microglial activation in diabetic retinal neuroinflammation is explored. PMID:24319628

  4. HL-217, a new topical anti-angiogenic agent, inhibits retinal vascular leakage and pathogenic subretinal neovascularization in Vldlr−/− mice

    International Nuclear Information System (INIS)

    Kim, Junghyun; Kim, Chan-Sik; Jo, Kyuhyung; Cho, Yun-Seok; Kim, Hyun-Gyu; Lee, Geun-Hyeog; Lee, Yun Mi; Sohn, Eunjin; Kim, Jin Sook

    2015-01-01

    Highlights: • HL-217 is a new synthetic topical anti-angiogenic agent. • HL-217 attenuated subretinal neovascularization in Vldlr −/− mice. • HL-217 blocked the binding of PDGF-BB to PDGFRβ. - Abstract: HL-217 is a new synthetic angiogenesis inhibitor. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. In this study, we examined the mechanism of action and efficacy of topical application of HL-217 on subretinal neovascularization in very low-density lipoprotein receptor knockout (Vldlr −/− ) mice. In three-week-old male Vldlr −/− mice, HL-217 (1.5 or 3 mg/ml) was administered twice per day for 4 weeks by topical eye drop instillation. Neovascular areas were then measured. We used a protein array to evaluate the expression levels of angiogenic factors. The inhibitory effect of HL-217 on the PDGF-BB/PDGFRβ interaction was evaluated in vitro. The neovascular area in the Vldlr −/− mice was significantly reduced by HL-217. Additionally, HL-217 decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, HL-217 dose-dependently inhibited the PDGF-BB/PDGFRβ interaction (IC 50 = 38.9 ± 0.7 μM). These results suggest that HL-217 is a potent inhibitor of PDGF-BB. HL-217, when applied topically, is an effective inhibitor of subretinal neovascularization due to its ability to inhibit the pro-angiogenic effects of PDGF-BB

  5. Monitoring and Targeting Anti-VEGF Induced Hypoxia within the Viable Tumor by 19F–MRI and Multispectral Analysis

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    2017-11-01

    Full Text Available The effect of anti-angiogenic agents on tumor oxygenation has been in question for a number of years, where both increases and decreases in tumor pO2 have been observed. This dichotomy in results may be explained by the role of vessel normalization in the response of tumors to anti-angiogenic therapy, where anti-angiogenic therapies may initially improve both the structure and the function of tumor vessels, but more sustained or potent anti-angiogenic treatments will produce an anti-vascular response, producing a more hypoxic environment. The first goal of this study was to employ multispectral (MS 19F–MRI to noninvasively quantify viable tumor pO2 and evaluate the ability of a high dose of an antibody to vascular endothelial growth factor (VEGF to produce a strong and prolonged anti-vascular response that results in significant tumor hypoxia. The second goal of this study was to target the anti-VEGF induced hypoxic tumor micro-environment with an agent, tirapazamine (TPZ, which has been designed to target hypoxic regions of tumors. These goals have been successfully met, where an antibody that blocks both murine and human VEGF-A (B20.4.1.1 was found by MS 19F–MRI to produce a strong anti-vascular response and reduce viable tumor pO2 in an HM-7 xenograft model. TPZ was then employed to target the anti-VEGF-induced hypoxic region. The combination of anti-VEGF and TPZ strongly suppressed HM-7 tumor growth and was superior to control and both monotherapies. This study provides evidence that clinical trials combining anti-vascular agents with hypoxia-activated prodrugs should be considered to improved efficacy in cancer patients.

  6. Cyclic versus Hemi-Bastadins. Pleiotropic Anti-Cancer Effects: from Apoptosis to Anti-Angiogenic and Anti-Migratory Effects

    Directory of Open Access Journals (Sweden)

    Peter Proksch

    2013-03-01

    Full Text Available Bastadins-6, -9 and -16 isolated from the marine sponge Ianthella basta displayed in vitro cytostatic and/or cytotoxic effects in six human and mouse cancer cell lines. The in vitro growth inhibitory effects of these bastadins were similar in cancer cell lines sensitive to pro-apoptotic stimuli versus cancer cell lines displaying various levels of resistance to pro-apoptotic stimuli. While about ten times less toxic than the natural cyclic bastadins, the synthetically derived 5,5'-dibromohemibastadin-1 (DBHB displayed not only in vitro growth inhibitory activity in cancer cells but also anti-angiogenic properties. At a concentration of one tenth of its in vitro growth inhibitory concentration, DBHB displayed actual antimigratory effects in mouse B16F10 melanoma cells without any sign of cytotoxicity and/or growth inhibition. The serum concentration used in the cell culture media markedly influenced the DBHB-induced antimigratory effects in the B16F10 melanoma cell population. We are currently developing a specific inhalation formulation for DBHB enabling this compound to avoid plasmatic albumin binding through its direct delivery to the lungs to combat primary as well as secondary (metastases tumors.

  7. Immuno-Expression of Endoglin and Smooth Muscle Actin in the Vessels of Brain Metastases. Is There a Rational for Anti-Angiogenic Therapy?

    Directory of Open Access Journals (Sweden)

    Valeria Barresi

    2014-04-01

    Full Text Available Despite ongoing clinical trials, the efficacy of anti-angiogenic drugs for the treatment of brain metastases (BM is still questionable. The lower response rate to anti-angiogenic therapy in the presence of BM than in metastatic disease involving other sites suggests that BM may be insensitive to these drugs, although the biological reasons underlining this phenomenon are still to be clarified. With the aim of assessing whether the targets of anti-angiogenic therapies are actually present in BM, in the present study, we analyzed the microvessel density (MVD, a measure of neo-angiogenesis, and the vascular phenotype (mature vs. immature in the tumor tissue of a series of BM derived from different primary tumors. By using immunohistochemistry against endoglin, a specific marker for newly formed vessels, we found that neo-angiogenesis widely varies in BM depending on the site of the primary tumor, as well as on its histotype. According to our results, BM from lung cancer displayed the highest MVD counts, while those from renal carcinoma had the lowest. Then, among BM from lung cancer, those from large cell and adenocarcinoma histotypes had significantly higher MVD counts than those originating from squamous cell carcinoma (p = 0.0043; p = 0.0063. Of note, MVD counts were inversely correlated with the maturation index of the endoglin-stained vessels, reflected by the coverage of smooth muscle actin (SMA positive pericytes (r = −0.693; p < 0.0001. Accordingly, all the endoglin-positive vessels in BM from pulmonary squamous cell carcinoma and renal carcinoma, displayed a mature phenotype, while vessels with an immature phenotype were found in highly vascularized BM from pulmonary large cell and adenocarcinoma. The low MVD and mature phenotype observed in BM from some primary tumors may account for their low sensitivity to anti-angiogenic therapies. Although our findings need to be validated in correlative studies with a clinical response, this should

  8. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K; Sell, S A; Madurantakam, P; Bowlin, G L, E-mail: glbowlin@vcu.ed [Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2009-06-15

    The aim of this study was to investigate macrophage interactions with electrospun scaffolds and quantify the expression of key angiogenic growth factors in vitro. This study will further help in evaluating the potential of these electrospun constructs as vascular grafts for tissue repair and regeneration in situ. Human peripheral blood macrophages were seeded in serum free media on electrospun (10 mm) discs of polydioxanone (PDO), elastin and PDO:elastin blends (50:50, 70:30 and 90:10). The growth factor secretion was analyzed by ELISA. Macrophages produced high levels of vascular endothelial growth factor and acidic fibroblast growth factor. Transforming growth factor beta-1 (TGF-beta1) secretion was relatively low and there was negligible production of basic fibroblast growth factor. Therefore, it can be anticipated that these scaffolds will support tissue regeneration and angiogenesis. (communication)

  9. Effects on in vitro and in vivo angiogenesis induced by small peptides carrying adhesion sequences.

    Science.gov (United States)

    Conconi, Maria Teresa; Ghezzo, Francesca; Dettin, Monica; Urbani, Luca; Grandi, Claudio; Guidolin, Diego; Nico, Beatrice; Di Bello, Carlo; Ribatti, Domenico; Parnigotto, Pier Paolo

    2010-07-01

    It is well known that tumor growth is strictly dependent on neo-vessel formation inside the tumor mass and that cell adhesion is required to allow EC proliferation and migration inside the tumor. In this work, we have evaluated the in vitro and in vivo effects on angiogenesis of some peptides, originally designed to promote cell adhesion on biomaterials, containing RGD motif mediating cell adhesion via integrin receptors [RGD, GRGDSPK, and (GRGDSP)(4)K] or the heparin-binding sequence of human vitronectin that interacts with HSPGs [HVP(351-359)]. Cell adhesion, proliferation, migration, and capillary-like tube formation in Matrigel were determined on HUVECs, whereas the effects on in vivo angiogenesis were evaluated using the CAM assay. (GRGDSP)(4)K linear sequence inhibited cell adhesion, decreased cell proliferation, migration and morphogenesis in Matrigel, and induced anti-angiogenic responses on CAM at higher degree than that determined after incubation with RGD or GRGDSPK. Moreover, it counteracted both in vitro and in vivo the pro-angiogenic effects induced by the Fibroblast growth factor (FGF-2). On the other hand, HVP was not able to affect cell adhesion and appeared less effective than (GRGDSP)(4)K. Our data indicate that the activity of RGD-containing peptides is related to their adhesive properties, and their effects are modulated by the number of cell adhesion motifs and the aminoacidic residues next to these sequences. The anti-angiogenic properties of (GRGDSP)(4)K seem to depend on its interaction with integrins, whereas the effects of HVP may be partially due to an impairment of HSPGs/FGF-2.

  10. Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images.

    Science.gov (United States)

    Kather, Jakob Nikolas; Marx, Alexander; Reyes-Aldasoro, Constantino Carlos; Schad, Lothar R; Zöllner, Frank Gerrit; Weis, Cleo-Aron

    2015-08-07

    Blood vessels in solid tumors are not randomly distributed, but are clustered in angiogenic hotspots. Tumor microvessel density (MVD) within these hotspots correlates with patient survival and is widely used both in diagnostic routine and in clinical trials. Still, these hotspots are usually subjectively defined. There is no unbiased, continuous and explicit representation of tumor vessel distribution in histological whole slide images. This shortcoming distorts angiogenesis measurements and may account for ambiguous results in the literature. In the present study, we describe and evaluate a new method that eliminates this bias and makes angiogenesis quantification more objective and more efficient. Our approach involves automatic slide scanning, automatic image analysis and spatial statistical analysis. By comparing a continuous MVD function of the actual sample to random point patterns, we introduce an objective criterion for hotspot detection: An angiogenic hotspot is defined as a clustering of blood vessels that is very unlikely to occur randomly. We evaluate the proposed method in N=11 images of human colorectal carcinoma samples and compare the results to a blinded human observer. For the first time, we demonstrate the existence of statistically significant hotspots in tumor images and provide a tool to accurately detect these hotspots.

  11. The Angiogenic Potential of DPSCs and SCAPs in an In Vivo Model of Dental Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Petra Hilkens

    2017-01-01

    Full Text Available Adequate vascularization, a restricting factor for the survival of engineered tissues, is often promoted by the addition of stem cells or the appropriate angiogenic growth factors. In this study, human dental pulp stem cells (DPSCs and stem cells from the apical papilla (SCAPs were applied in an in vivo model of dental pulp regeneration in order to compare their regenerative potential and confirm their previously demonstrated paracrine angiogenic properties. 3D-printed hydroxyapatite scaffolds containing DPSCs and/or SCAPs were subcutaneously transplanted into immunocompromised mice. After twelve weeks, histological and ultrastructural analysis demonstrated the regeneration of vascularized pulp-like tissue as well as mineralized tissue formation in all stem cell constructs. Despite the secretion of vascular endothelial growth factor in vitro, the stem cell constructs did not display a higher vascularization rate in comparison to control conditions. Similar results were found after eight weeks, which suggests both osteogenic/odontogenic differentiation of the transplanted stem cells and the promotion of angiogenesis in this particular setting. In conclusion, this is the first study to demonstrate the successful formation of vascularized pulp-like tissue in 3D-printed scaffolds containing dental stem cells, emphasizing the promising role of this approach in dental tissue engineering.

  12. Immunological, anti-angiogenic and clinical effects of intratumoral interleukin 12 electrogene therapy combined with metronomic cyclophosphamide in dogs with spontaneous cancer: A pilot study.

    Science.gov (United States)

    Cicchelero, Laetitia; Denies, Sofie; Vanderperren, Katrien; Stock, Emmelie; Van Brantegem, Leen; de Rooster, Hilde; Sanders, Niek N

    2017-08-01

    The immunological, anti-angiogenic and clinical effects of metronomic cyclophosphamide and 3 consecutive intratumoral interleukin (IL)-12 gene therapy (electrogene therapy (EGT)) treatments were evaluated in 6 dogs with spontaneous cancer. In all dogs, a decrease in peripheral leukocytes 2 days after IL-12 EGT coincided with erythema and swelling of the tumor. In the tumor, a transient increase in IL-12 levels was measured, whereas a continuous increase in interferon γ (IFNγ) and thrombospondin 1 (TSP-1) were determined in contrast to a continuous decrease in vascular endothelial growth factor (VEGF). In the serum, a transient increase in IL-12 and IL-10 levels were noted in contrast to a transient decrease in VEGF and TSP-1. The treatment resulted in a significant anti-angiogenic effect. Although all primary tumors continued to progress in time, this progression was slower than before treatment according to the contrast-enhanced ultrasound data. Besides the encouraging immunostimulatory and anti-angiogenic effects observed in all dogs we also noticed in 4 out of 6 dogs clinically relevant improvements in quality of life and weight. These results hold great promise for combinatorial strategies of IL-12 EGT and metronomic chemotherapy with conventional antitumor (immuno)therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. HL-217, a new topical anti-angiogenic agent, inhibits retinal vascular leakage and pathogenic subretinal neovascularization in Vldlr{sup −/−} mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghyun; Kim, Chan-Sik; Jo, Kyuhyung [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of); Cho, Yun-Seok; Kim, Hyun-Gyu; Lee, Geun-Hyeog [Research and Development Center, Hanlim Pharm. Co. Ltd., 1656-10, Seocho-dong, Seocho-gu, Seoul (Korea, Republic of); Lee, Yun Mi; Sohn, Eunjin [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of); Kim, Jin Sook, E-mail: jskim@kiom.re.kr [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of)

    2015-01-02

    Highlights: • HL-217 is a new synthetic topical anti-angiogenic agent. • HL-217 attenuated subretinal neovascularization in Vldlr{sup −/−} mice. • HL-217 blocked the binding of PDGF-BB to PDGFRβ. - Abstract: HL-217 is a new synthetic angiogenesis inhibitor. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. In this study, we examined the mechanism of action and efficacy of topical application of HL-217 on subretinal neovascularization in very low-density lipoprotein receptor knockout (Vldlr{sup −/−}) mice. In three-week-old male Vldlr{sup −/−} mice, HL-217 (1.5 or 3 mg/ml) was administered twice per day for 4 weeks by topical eye drop instillation. Neovascular areas were then measured. We used a protein array to evaluate the expression levels of angiogenic factors. The inhibitory effect of HL-217 on the PDGF-BB/PDGFRβ interaction was evaluated in vitro. The neovascular area in the Vldlr{sup −/−} mice was significantly reduced by HL-217. Additionally, HL-217 decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, HL-217 dose-dependently inhibited the PDGF-BB/PDGFRβ interaction (IC{sub 50} = 38.9 ± 0.7 μM). These results suggest that HL-217 is a potent inhibitor of PDGF-BB. HL-217, when applied topically, is an effective inhibitor of subretinal neovascularization due to its ability to inhibit the pro-angiogenic effects of PDGF-BB.

  15. Longitudinal analysis of osteogenic and angiogenic signaling factors in healing models mimicking atrophic and hypertrophic non-unions in rats.

    Directory of Open Access Journals (Sweden)

    Susann Minkwitz

    Full Text Available Impaired bone healing can have devastating consequences for the patient. Clinically relevant animal models are necessary to understand the pathology of impaired bone healing. In this study, two impaired healing models, a hypertrophic and an atrophic non-union, were compared to physiological bone healing in rats. The aim was to provide detailed information about differences in gene expression, vascularization and histology during the healing process. The change from a closed fracture (healing control group to an open osteotomy (hypertrophy group led to prolonged healing with reduced mineralized bridging after 42 days. RT-PCR data revealed higher gene expression of most tested osteogenic and angiogenic factors in the hypertrophy group at day 14. After 42 days a significant reduction of gene expression was seen for Bmp4 and Bambi in this group. The inhibition of angiogenesis by Fumagillin (atrophy group decreased the formation of new blood vessels and led to a non-healing situation with diminished chondrogenesis. RT-PCR results showed an attempt towards overcoming the early perturbance by significant up regulation of the angiogenic regulators Vegfa, Angiopoietin 2 and Fgf1 at day 7 and a further continuous increase of Fgf1, -2 and Angiopoietin 2 over time. However µCT angiograms showed incomplete recovery after 42 days. Furthermore, lower expression values were detected for the Bmps at day 14 and 21. The Bmp antagonists Dan and Twsg1 tended to be higher expressed in the atrophy group at day 42. In conclusion, the investigated animal models are suitable models to mimic human fracture healing complications and can be used for longitudinal studies. Analyzing osteogenic and angiogenic signaling patterns, clear changes in expression were identified between these three healing models, revealing the importance of a coordinated interplay of different factors to allow successful bone healing.

  16. Combination of PDT and topical angiogenic inhibitor for treatment of port wine stain (PWS) birthmarks: a novel approach

    Science.gov (United States)

    Yuan, Kaihua; Huang, Qiaobing; Huang, Zheng

    2009-06-01

    Port wine stain (PWS) birthmarks are a congenital cutaneous vascular malformation involving ecstatic post-capillary venules. Current standard treatment for PWS is the pulsed dye laser (PDL). Vascular-targeted photodynamic therapy (PDT) has been used for the treatment of PWS in China since the early 1990's. Both can achieve a certain degree of color blanching in various types of PWS lesions. However, the majority of PWS lesions require multiple treatments. Some PWS lesions can recur or become darker after successful treatment. Recently, it has been proposed that this phenomenon might be initiated by neoangiogenesis that can be caused by treatment via wound healing response. The combined use of photothermolysis and a topical application of an angiogenic inhibitor such as Imiquimod and Rapamycin, were evaluated in several pilot studies. It is well-known that PDT can induce various host immune responses VEGF overexpression. Recent clinical data also show that improved clinical outcomes are obtained through the combination of ocular PDT and anti-VEGF therapy. This article will discuss rationales and implications of using such a combination modality and highlight recent progress based on our clinical experience and published data.

  17. Shengui Sansheng San extraction is an angiogenic switch via regulations of AKT/mTOR, ERK1/2 and Notch1 signal pathways after ischemic stroke.

    Science.gov (United States)

    Liu, Bowen; Luo, Cheng; Zheng, Zhaoguang; Xia, Zhenyan; Zhang, Qian; Ke, Chienchih; Liu, Renshyan; Zhao, Yonghua

    2018-05-15

    As a traditional Chinese herbal formula, Shengui Sansheng San (SSS) has been employed for stroke treatment more than 300 years. We hypothesize that SSS extraction is an angiogenic switch in penumbra post-stroke, and corresponding mechanisms are investigated. In present study, rats were subjected to permanent middle cerebral artery occlusion model (MCAo) and were treated with low, middle and high doses of SSS extraction. We assessed neurological function and survival rate, and measured infarct volume by 2,3,5-triphenyltetrazolium chloride staining on day 7 after ischemia. von Willebrand factor (vWF), stromal cell-derived factor-1 alpha (SDF-1α) /chemokine (C-X-C motif) receptor 4 (CXCR4) axis, vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) as well as protein kinase B (AKT)/mammalian target of rapamycin (mTOR) /hypoxia-inducible factor-1 alpha (HIF-1α), extracellular signal-regulated kinase 1/2 (ERK1/2) and Notch1 signaling pathways were respectively investigated by immunofluorescence assay or western blotting in vivo and oxygen-glucose-deprived (OGD) brain microvascular endothelial cells (BMECs); simultaneously, wound healing of BMECs and tube formation assay were administrated. Compared to MCAo group, SSS extraction could significantly improve neurological functional scores, survival rate and cerebral infarct volume, enhance vWF + vascular density and perimeter, SDF-1α/CXCR4 axis, VEGF expression, as well as activate AKT/mTOR/HIF-1α and ERK1/2 and inhibit Notch1 pathways in penumbra. In vitro, containing SSS extraction serum increased BMEC migration, capillary formation and VEGF expression via up-regulations of AKT/mTOR and ERK1/2 pathways in OGD BMECs, but ERK inhibitor (U0126) reversed the result of VEGF expression in high dose of SSS group. Additionally, VEGFR2 and Notch1 expressions were suppressed by containing SSS extraction serum. All results were in dose dependent manner. Our study firstly demonstrates that SSS extraction is an

  18. Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice

    International Nuclear Information System (INIS)

    Hu, Zhiwei; Rao, Benqiang; Chen, Shimin; Duanmu, Jinzhong

    2010-01-01

    The objective of this study was to develop a ligand-targeted photodynamic therapy (tPDT) by conjugating factor VII (fVII) protein with photosensitiser verteporfin in order to overcome the poor selectivity and enhance the effect of non-targeted PDT (ntPDT) for cancer. fVII is a natural ligand for receptor tissue factor (TF) with high affinity and specificity. The reason for targeting receptor TF for the development of tPDT is that TF is a common but specific target on angiogenic tumour vascular endothelial cells (VEC) and many types of tumour cells, including solid tumours and leukaemia. Murine factor VII protein (mfVII) containing a mutation (Lys341Ala) was covalently conjugated via a cross linker EDC with Veterporfin (VP) that was extracted from liposomal Visudyne, and then free VP was separated by Sephadex G50 spin columns. fVII-tPDT using mfVII-VP conjugate, compared to ntPDT, was tested in vitro for the killing of breast cancer cells and VEGF-stimulated VEC and in vivo for inhibiting the tumour growth of breast tumours in a mouse xenograft model. We showed that: (i) fVII protein could be conjugated with VP without affecting its binding activity; (ii) fVII-tPDT could selectively kill TF-expressing breast cancer cells and VEGF-stimulated angiogenic HUVECs but had no side effects on non-TF expressing unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of VP PDT by three to four fold; (iii) fVII-tPDT induced significantly stronger levels of apoptosis and necrosis than ntPDT; and (iv) fVII-tPDT had a significantly stronger effect on inhibiting breast tumour growth in mice than ntPDT. We conclude that the fVII-targeted VP PDT that we report here is a novel and effective therapeutic with improved selectivity for the treatment of breast cancer. Since TF is expressed on many types of cancer cells including leukaemic cells and selectively on angiogenic tumour VECs, fVII-tPDT could have broad therapeutic applications for other solid cancers

  19. Tumor angiogenesis--a new therapeutic target in gliomas

    DEFF Research Database (Denmark)

    Lund, E L; Spang-Thomsen, M; Skovgaard-Poulsen, H

    1998-01-01

    significant angiogenic activity primarily by the expression of the angiogenic factor VEGF Anti-angiogenic therapy represents a new promising therapeutic modality in solid tumors. Several agents are currently under evaluation in clinical trials. The present review describes the principal inducers...

  20. Changes of plasma angiogenic factors during chronic resistance exercise in type 1 diabetic rats

    International Nuclear Information System (INIS)

    Esfahani, S.P.; Gharakhanlou, R.

    2012-01-01

    Objective: Exercise has several beneficial effects on cardiovascular system. However, the exact mechanism is unclear. The purpose of this study was to evaluate the effects of chronic resistance exercise on some plasma angiogenic factors in type 1 diabetic rats. Methodology: Thirty male Wistar rats were divided into three groups of control, diabetic and diabetic trained (n = 10 each). Diabetes was induced by a single intraperitoneal injection of streptozotocin (55 mg/kg). The rats in the trained group undertook one training session per day, 3 days/week, for 4 weeks. Blood samples were taken and the concentrations of plasma glucose, lipid profile, nitric oxide (NO), vascular endothelial growth factor (VEGF) and soluble form of VEGF receptor-1 (sFlt-1) were determined. Results: We found a significant reduction in plasma NO concentrations in diabetic rats compared to the controls (p 0.05). There were no significant differences in plasma VEGF and sFlt-1 concentrations between diabetic sedentary and trained groups (p > 0.05). Moreover, VEGF/sFlt-1 ratios in diabetic animals were lower than the control group and resistance exercise could not increase this ratio in diabetic animals (p > 0.05) Conclusion: Resistance exercise could not change plasma VEGF, sFlt-1 and VEGF/sFlt-1 ratio. However, it increased plasma NO concentrations in diabetic animals. More studies are needed to determine the effects of this type of exercise on the angiogenesis process. (author)

  1. Urinary tract infection during pregnancy, angiogenic factor profiles, and risk of preeclampsia.

    Science.gov (United States)

    Easter, Sarah Rae; Cantonwine, David E; Zera, Chloe A; Lim, Kee-Hak; Parry, Samuel I; McElrath, Thomas F

    2016-03-01

    Despite decades of research, and much progress in discernment of biomarkers in the maternal circulation, the pathogenesis of preeclampsia (PE) remains elusive. The pathophysiology of PE is believed to involve aberrant placentation and an associated increase in systemic inflammation. In this conceptualization, PE becomes more likely when the level of systemic inflammatory burden inherent in pregnancy itself exceeds the maternal capacity to compensate for this additional stress. If this is the case, then it is possible to hypothesize that conditions, such as infectious disease, that increase systemic inflammatory burden should also increase the risk of PE. As urinary tract infection (UTI) represents a common source of inflammation during pregnancy, we tested whether presence of UTI during pregnancy increased the odds of developing PE. Prior work has documented this association. However many of these studies were limited by small cohort sizes and insufficient control for covariates. The present study is a secondary analysis of a robust contemporary obstetrical cohort recruited to examine the ability of longitudinally sampled maternal angiogenic concentrations to predict PE. We hypothesize that the occurrence of UTI during a pregnancy is associated with the later occurrence of PE in that pregnancy. As PE is believed to be associated with aberrations in systemic angiogenic levels (placental growth factor and soluble isoform of VEGF receptor), we further hypothesize that there will be significant interactions between maternal angiogenic protein levels and the occurrence of UTI. Women aged ≥18 years (n = 2607) were recruited and followed up prospectively from the initiation of prenatal care through delivery at 3 regional academic centers. PE was defined by American Congress of Obstetricians and Gynecologists criteria and was independently validated by a panel of physicians. UTI was defined by the presence of clinical symptoms necessitating treatment in addition to

  2. The β3-Integrin Binding Protein β3-Endonexin Is a Novel Negative Regulator of Hypoxia-Inducible Factor-1

    Science.gov (United States)

    Kračun, Damir; Rieß, Florian; Kanchev, Ivan; Gawaz, Meinrad

    2014-01-01

    Abstract Aims: Integrins are multifunctional heterodimeric adhesion receptors that mediate the attachment between a cell and the extracellular matrix or other surrounding cells. In endothelial cells, integrins can modulate cell migration and motility. In particular, β3-integrin is expressed in angiogenic vessels. Signal transduction by β3-integrins requires the recruitment of intracellular signaling molecules. β3-endonexin is a highly spliced molecule that has been identified as a β3-integrin binding protein. β3-endonexin isoforms are expressed in endothelial cells and have been suggested to act as shuttle proteins between the membrane and the nucleus. However, their functional role in angiogenesis is unclear. In this study, we investigated whether β3-endonexin isoforms are involved in endothelial angiogenic processes under hypoxia. Results: The overexpression of β3-endonexin isoforms decreased endothelial proliferation and tube formation under hypoxia, while the depletion of β3-endonexin by RNAi promoted angiogenic responses in vitro and in vivo. In hypoxia, β3-endonexin accumulated in the nucleus, and prevention of this response by depletion of β3-endonexin increased hypoxic activation and induction of the hypoxia-inducible factor (HIF)-1 and its target genes VEGF and PAI-1. β3-endonexin diminished nuclear factor kappa B (NFκB) activation and decreased NFκB binding to the HIF-1α promoter under hypoxia, subsequently diminishing NFκB-dependent transcription of HIF-1α under hypoxia. Innovation: Our results indicate for the first time that the overexpression of β3-endonexin can decrease hypoxic induction and activation of HIF-1α and can prevent hypoxic endothelial proliferation and angiogenic responses. Conclusion: β3-endonexin can act as a novel anti-angiogenic factor specifically in the response to hypoxia due to its negative impact on the activation of HIF-1. Antioxid. Redox Signal. 20, 1964–1976. PMID:24386901

  3. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.

    Science.gov (United States)

    Wang, Xiaoju; Cheng, Fang; Liu, Jun; Smått, Jan-Henrik; Gepperth, David; Lastusaari, Mika; Xu, Chunlin; Hupa, Leena

    2016-12-01

    Biocomposites of copper-containing mesoporous bioactive glass (Cu-MBG) and nanofibrillated cellulose (NFC) were designated as potential dressing material for chronic wound healing. The phase composition and mesoporous micro-structure of the synthesized Cu-MBGs were elaborately characterized by combining several techniques, including TEM, SEM, XRD, SXAS and N 2 physisorption. High bioactivity of the Cu-MBG was confirmed in stimulated body fluids in vitro. A controlled dissolution of Cu from the glass suggests Cu-MBG a suitable source for Cu release in wound healing dressings. Depending on the content of Cu-MBG in the composite formulation, the composites were fabricated as membranes and aerogels. In biocompatibility assessment of the composites, a dose-dependent cytotoxicity of Cu 2+ on 3T3 fibroblasts was found. Importantly, a critical biological level of Cu 2+ below 10mg/L was suggested for the survival and growth of 3T3 fibroblasts. The Cu 2+ released from the composite aerogel of NFC and Cu-MBG showed a profound angiogenic effect in the 3D spheroid culture system of human umbilical vein endothelial cells. Moreover, the angiogenic gene expression of 3T3 fibroblast was upregulated in the real-time quantitative PCR analysis, which also confirms that the incorporation of Cu-MBG into NFC matrix enhances the proangiogenic potential of the biocomposites. In addition, composites of NFC and Cu-MBG also showed an inhibiting effect on the growth of E. coli. To address an urgent need in clinics on developing a new generation of therapeutic dressings with advanced functionalities, this study has exploited the utilization of Cu-containing mesoporous bioactive glass in the nanocellulose matrix to release Cu 2+ as therapeutic ions for its angiogenic effect on promoting wound healing. This manuscript reports research work on biomaterial design, fabrication development, material characterizations and bioassessments in 2D cellular studies. To utilize nanocellulose derived from the

  4. Clinicopathological Features and Prognosis of Papillary Thyroid Microcarcinoma for Surgery and Relationships with the BRAFV600E Mutational Status and Expression of Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Chenlei Shi

    Full Text Available To investigate the clinicopathological characteristics of papillary thyroid microcarcinoma (PTMC for surgery by comparing the difference between PTMC and larger papillary thyroid carcinoma (LPTC.We analyzed the differences in the clinicopathological characteristics, prognosis, B-type RAF kinase (BRAFV600E mutational status and expression of angiogenic factors, including pigment epithelium-derived factor (PEDF, Vascular Endothelial Growth Factor (VEGF, and hypoxia-inducible factor alpha subunit (HIF-1α, between PTMC and LPTC by retrospectively reviewing the records of 251 patients with papillary thyroid carcinoma, 169 with PTMC, and 82 with LPTC (diameter >1 cm.There were no significant differences in the gender, age, multifocality, Hashimoto's thyroiditis, TNM stage, PEDF protein expression, rate of recurrence, or mean follow-up duration between patients with PTMC or LPTC. The prevalence of extrathyroidal invasion (EI, lymph node metastasis (LNM, and BRAF mutation in patients with PTMC was significantly lower than in patients with LPTC. In addition, in PTMC patients with EI and/or LNM and/or positive BRAF (high-risk PTMC patients, the prevalence of extrathyroidal invasion, Hashimoto's disease, lymph node metastasis, tumor TNM stage, PEDF positive protein expression, the rate of recurrent disease, and the mRNA expression of anti-angiogenic factors was almost as high as in patients with larger PTC, but with no significant difference.Extrathyroid invasion, lymph node metastases, and BRAFV600E mutation were the high risk factors of PTMC. PTMC should be considered for the same treatment strategy as LPTC when any of these factors is found. Particularly, PTMC with BRAFV600E gene mutations needed earlier surgical treatment. In addition, the high cell subtype of PTMC with BRAFV600E gene mutation is recommended for total thyroidectomy in primary surgery to reduce the risk of recurrence.

  5. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities

    OpenAIRE

    Jianhong Zhou; Lingzhou Zhao

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited t...

  6. Monocytes with angiogenic potential are selectively induced by liver resection and accumulate near the site of liver regeneration.

    Science.gov (United States)

    Schauer, Dominic; Starlinger, Patrick; Zajc, Philipp; Alidzanovic, Lejla; Maier, Thomas; Buchberger, Elisabeth; Pop, Lorand; Gruenberger, Birgit; Gruenberger, Thomas; Brostjan, Christine

    2014-10-30

    Monocytes reportedly contribute to liver regeneration. Three subsets have been identified to date: classical, intermediate, non-classical monocytes. The intermediate population and a subtype expressing TIE2 (TEMs) were suggested to promote angiogenesis. In a clinical setting, we investigated which monocyte subsets are regulated after liver resection and correlate with postoperative liver function. In 38 patients monocyte subsets were evaluated in blood and subhepatic wound fluid by flow cytometry before and 1-3 days after resection of colorectal liver metastases. The monocyte-regulating cytokines macrophage colony stimulating factor (M-CSF), transforming growth factor beta 1 (TGFβ1), and angiopoietin 2 (ANG-2) were measured in patient plasma by ELISA. C-reactive protein (CRP) and liver function parameters were retrieved from routine hospital analyses. On post-operative day (POD) 1 blood monocytes shifted to significantly elevated levels of intermediate monocytes. In wound fluid, a delayed surge in intermediate monocytes was detected by POD 3. Furthermore, TEMs were highly enriched in wound fluid as compared to circulation. CRP and M-CSF levels were substantially increased in patient blood after surgery and correlated significantly with the frequency of intermediate monocytes. In addition, liver function parameters showed a significant association with intermediate monocyte levels on POD 3. The reportedly pro-angiogenic subsets of monocytes are selectively increased upon liver resection and accumulate next to the site of liver regeneration. As previously proposed by in vitro experiments, the release of CRP and M-CSF may trigger the induction of intermediate monocytes. The correlation with liver parameters points to a functional involvement of these monocyte populations in liver regeneration which warrants further investigation.

  7. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells

    International Nuclear Information System (INIS)

    Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko; Ohta, Keisuke; Miura, Masahiko

    2007-01-01

    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also found that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis

  8. Novel retinoblastoma treatment avoids chemotherapy: the effect of optimally timed combination therapy with angiogenic and glycolytic inhibitors on LHBETATAG retinoblastoma tumors

    Directory of Open Access Journals (Sweden)

    Samuel K Houston

    2011-01-01

    Full Text Available Samuel K Houston1, Yolanda Piña1, Timothy G Murray1, Hinda Boutrid1, Colleen Cebulla2, Amy C Schefler1, Wei Shi1, Magda Celdran1, William Feuer1, Jaime Merchan3, Ted J Lampidis41Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; 2Department of Ophthalmology, The Ohio State University, Columbus, OH, USA; 3Division of Hematology/Oncology, Department of Medicine, 4Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USAPurpose: The purpose of this study was to evaluate the effect of optimally timed combination treatment with angiogenic and glycolytic inhibitors on tumor burden, hypoxia, and angiogenesis in advanced retinoblastoma tumors.Methods: LHBETATAG mice (n = 30 were evaluated. Mice were divided into 5 groups (n = 6 and received injections at 16 weeks of age (advanced tumors with a saline, b anecortave acetate (AA, c 2-deoxyglucose (2-DG, d AA + 2-DG (1 day post-AA treatment, or e AA + 2-DG (1 week post-AA treatment. Eyes were enucleated at 21 weeks and tumor sections were analyzed for hypoxia, angiogenesis, and tumor burden.Results: Eyes treated with 2-DG 1 day post-AA injection showed a 23% (P = 0.03 reduction in tumor burden compared with 2-DG alone and a 61% (P < 0.001 reduction compared with saline-treated eyes. Eyes treated with 2-DG 1 week post-AA injection showed no significant decrease in tumor burden compared with 2-DG alone (P = 0.21 and a 56% (P < 0.001 decrease in comparison with saline-treated eyes. 2-DG significantly reduced the total density of new blood vessels in tumors by 44% compared to saline controls (P < 0.001, but did not affect the density of mature vasculature.Conclusions: Combination therapy with angiogenic and glycolytic inhibitors significantly enhanced tumor control. Synergistic effects were shown to be dependent on the temporal course of treatment

  9. Correlation between spontaneous apoptosis and the expression of angiogenic factors in advanced gastric adenocarcinoma.

    Science.gov (United States)

    Ikeguchi, M; Cai, J; Fukuda, K; Oka, S; Katano, K; Tsujitani, S; Maeta, M; Kaibara, N

    2001-06-01

    The aim of this study was to investigate whether angiogenic factors influence the occurrence of spontaneous apoptosis in advanced gastric cancer. The apoptotic indices (AIs) of 97 tumors from 97 patients with advanced gastric cancer (pT3, pN0, pM0, Stage II) were analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. Intratumoral microvessel densities (IMVDs) of tumors stained with anti-CD34 monoclonal antibody were quantified under x 200 magnification using computer-assisted image analysis. The expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF), thymidine phosphorylase (dThdPase), transforming growth factor-alpha (TGF-alpha), and p53 were analyzed immunohistochemically and compared with IMVDs and AIs. The mean IMVD of the 97 tumors was 365/mm2 (range 147-990/mm2). The mean AI of tumors was 2.1% (range 0-11.3%). A significant inverse correlation between the AIs and the IMVDs was shown (p = -0.278, P = 0.0064). The mean IMVDs of tumors with high expressions of dThdPase, TGF-alpha, or p53 were significantly higher than those of tumors with low expressions of these factors. The mean AI of tumors with high expressions of dThdPase was significantly lower than that of tumors with low expressions of dThdPase (P = 0.023). However, no significant correlations were detected between AIs and the expression levels of VEGF, TGF-alpha, or p53. In gastric cancer, dThdPase may play an important role in tumor progression by increasing microvessels and by suppressing apoptosis of cancer cells.

  10. Tumor necrosis factor-α regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells

    NARCIS (Netherlands)

    Giraudo, E.; Primo, L.; Audero, E.; Gerber, H.-P.; Koolwijk, P.; Soker, S.; Klagsbrun, M.; Ferrara, N.; Bussolino, F.

    1998-01-01

    Tumor necrosis factor-α (TNF-α) modulates gene expression in endothelial cells and is angiogenic in vivo. TNF-α does not activate in vitro migration and proliferation of endothelium, and its angiogenic activity is elicited by synthesis of direct angiogenic inducers or of proteases. Here, we show

  11. Angiogenic proteins, placental weight and perinatal outcomes among pregnant women in Tanzania.

    Science.gov (United States)

    McDonald, Chloe R; Darling, Anne M; Liu, Enju; Tran, Vanessa; Cabrera, Ana; Aboud, Said; Urassa, Willy; Kain, Kevin C; Fawzi, Wafaie W

    2016-01-01

    Placental vascular development, and ultimately placental weight, is essential to healthy fetal development. Here, we examined placental weight in a cohort of Tanzanian women in association with angiogenic proteins known to regulate placental vascular development and perinatal outcomes. A total of n = 6579 women with recorded placental weight were included in this study. The relative risk of adverse perinatal outcomes (Apgar score, death, asphyxia, respiratory distress, seizures, pneumonia and sepsis) was compared between placental weight in the bottom and top 10th percentiles. We quantified angiogenic mediators (Ang-1, Ang-2, VEGF, PGF and sFlt-1) in plasma samples (n = 901) collected between 12 to 27 weeks of pregnancy using ELISA and assessed the relative risk of placental weight in the bottom and top 10th percentiles by protein levels in quartiles. Women with Ang-2 levels in the highest quartile had an increased relative risk of placental weight in the bottom 10th percentile (RR = 1.45 (1.10, 1.91), p = 0.01). Women with VEGF-A (RR = 0.73 (0.56, 0.96), p = 0.05) and PGF (RR = 0.58 (0.44, 0.72), p = 0.002) in the highest quartile had a reduced relative risk of placental weight in the bottom 10th percentile. Low placental weight (in bottom 10th percentile) was associated with an increased relative risk of Apgar score of <7 at 1 minute (RR = 2.31 (1.70, 3.13), p = 0.001), at 5 minutes (RR = 3.53 (2.34, 5.33), p = 0.001), neonatal death (RR = 5.02 (3.61, 7.00), p = 0.001), respiratory distress (RR = 4.80(1.71, 13.45), p = 0.001), and seizures (RR = 4.18 (1.16, 15.02), p = 0.03). The association between low placental weight and risk of adverse perinatal outcomes in this cohort suggests that placental weight could serve as a useful indicator, providing additional insight into high-risk pregnancies and identifying neonates that may require additional monitoring and follow-up.

  12. Celecoxib alleviates tamoxifen-instigated angiogenic effects by ROS-dependent VEGF/VEGFR2 autocrine signaling

    International Nuclear Information System (INIS)

    Kumar, B N Prashanth; Rajput, Shashi; Dey, Kaushik Kumar; Parekh, Aditya; Das, Subhasis; Mazumdar, Abhijit; Mandal, Mahitosh

    2013-01-01

    Tamoxifen (TAM) is widely used in the chemotherapy of breast cancer and as a preventive agent against recurrence after surgery. However, extended TAM administration for breast cancer induces increased VEGF levels in patients, promoting new blood vessel formation and thereby limiting its efficacy. Celecoxib (CXB), a selective COX-2 inhibitor, suppresses VEGF gene expression by targeting the VEGF promoter responsible for its inhibitory effect. For this study, we had selected CXB as non-steroidal anti-inflammatory drug in combination with TAM for suppressing VEGF expression and simultaneously reducing doses of both the drugs. The effects of CXB combined with TAM were examined in two human breast cancer cell lines in culture, MCF7 and MDA-MB-231. Assays of proliferation, apoptosis, angiogenesis, metastasis, cell cycle distribution, and receptor signaling were performed. Here, we elucidated how the combination of TAM and CXB at nontoxic doses exerts anti-angiogenic effects by specifically targeting VEGF/VEGFR2 autocrine signaling through ROS generation. At the molecular level, TAM-CXB suppresses VHL-mediated HIF-1α activation, responsible for expression of COX-2, MMP-2 and VEGF. Besides low VEGF levels, TAM-CXB also suppresses VEGFR2 expression, confirmed through quantifying secreted VEGF levels, luciferase and RT-PCR studies. Interestingly, we observed that TAM-CXB was effective in blocking VEGFR2 promoter induced expression and further 2 fold decrease in VEGF levels was observed in combination than TAM alone in both cell lines. Secondly, TAM-CXB regulated VEGFR2 inhibits Src expression, responsible for tumor progression and metastasis. FACS and in vivo enzymatic studies showed significant increase in the reactive oxygen species upon TAM-CXB treatment. Taken together, our experimental results indicate that this additive combination shows promising outcome in anti-metastatic and apoptotic studies. In a line, our preclinical studies evidenced that this additive

  13. Using the angiogenic factors sFlt-1 and PlGF with Doppler ultrasound of the uterine artery for confirming preeclampsia.

    Science.gov (United States)

    Bahlmann, Franz; Al Naimi, Ammar

    2016-11-01

    The aim of this study is to assess the value of the angiogenic factors for diagnosing preeclampsia and predicting the severity of manifestation. A secondary aim is assessing the combination of the uterine artery Doppler with the angiogenic factors for improving the diagnostic power. This is a prospective single center study in a tertiary referral hospital. This study includes 728 individual patients. Inclusion criteria were singleton pregnancies, a referral to the hospital with suspicion of preeclampsia and any one or combination of the following symptoms: headache, upper abdominal pain, edema, and hypertension. Patients with complications that would affect the course of the pregnancy, such as placenta praevia, premature preterm rupture of membranes, breech presentation, and fetal chromosomal or structural anomalies, were excluded from the study. Blood samples collection and uterine artery Doppler ultrasound were performed at time of recruitment. The differences in sFlt-1, PlGF, and their quotient among normal collective and patients with preeclampsia were analyzed. Doppler ultrasound was performed by one of four highly qualified sonographers. Wilcoxon-Mann-Whitney U test, Spearman's rank correlation, receiver operating characteristic curves, Chi-square test, and logistic regression were used in the analysis. A total of 1003 individual samples for the angiogenic factors were included in the analysis. 584 out of the recruited 728 patients had follow-up data with delivery information at the study hospital. Patients with preeclampsia show a significant increase in sFlt-1, which directly correlate with the increased severity of manifestation (Spearman's ρ 0.49). The sFlt-1 cut-off value of 5424 pg/ml confirms preeclampsia with 83.7 % sensitivity, 68.1 % specificity, and 24 % misclassification rate. Preeclampsia patients also show a significant decrease in PlGF, which negatively correlates with the increased severity of manifestation (Spearman's ρ -0.39). A Pl

  14. Embolization biomaterial reinforced with nanotechnology for an in-situ release of anti-angiogenic agent in the treatment of hyper-vascularized tumors and arteriovenous malformations.

    Science.gov (United States)

    Jubeli, E; Yagoubi, N; Pascale, F; Bédouet, L; Slimani, K; Labarre, D; Saint-Maurice, J P; Laurent, A; Moine, L

    2015-10-01

    A polymer based material was developed to act as an embolic agent and drug reservoir for the treatment of arteriovenous malformations (AVM) and hyper vascularized solid tumors. The aim was to combine the blocking of blood supply to the target region and the inhibition of the embolization-stimulated angiogenesis. The material is composed of an ethanolic solution of a linear acrylate based copolymer and acrylate calibrated microparticles containing nanospheres loaded with sunitinib, an anti-angiogenic agent. The precipitation of the linear copolymer in aqueous environment after injection through microcatheter results in the formation of an in-situ embolization gel whereas the microparticles serve to increase the cohesive properties of the embolization agent and to form a reservoir from which the sunitinib-loaded nanospheres are released post-embolization. The swollen state of the microparticles in contact with aqueous medium results in the release of the nanospheres out of microparticles macromolecular structure. After the synthesis, the formulation and the characterization of the different components of the material, anti-angiogenic activity was evaluated in vitro using endothelial cells and in vivo using corneal neovascularization model in rabbit. The efficiency of the arterial embolization was tested in vivo in a sheep model. Results proved the feasibility of this new system for vascular embolization in association with an in situ delivery of anti-angiogenic drug. This combination is a promising strategy for the management of arteriovenous malformations and solid tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Prospective evaluation of angiogenic, hypoxic and EGFR-related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Eriksen, Jesper Grau; Broholm, Helle

    2010-01-01

    , hypoxia and mediators of the epidermal growth factor receptor (EGFR) pathway were investigated. Tumor tissue was obtained from a previous phase II study, treating recurrent primary glioblastoma multiforme (GBM) patients with the EGFR inhibitor cetuximab in combination with bevacizumab and irinotecan...... of cetuximab. There is still an urgent need for one or more reliable and reproducible biomarkers able to predict the efficacy of anti-angiogenic therapy....

  16. Phosphorylated human prolactin (S179D-hPRL) is a potent anti-angiogenic hormone in vitro and in vivo

    International Nuclear Information System (INIS)

    Ueda, Eric Kinnosuke Martins

    2006-01-01

    previously shown, S179D-hPRL blocked extracellular regulated kinase (ERK) phosphorylation in response to bFGF, but, in addition, continued co-incubation showed a delayed and prolonged activation of ERK. PD98059 [a specific mitogen-activated protein kinase (MAPkinase) inhibitor] inhibited this delayed activation of ERK and the effects of S179D-hPRL on all parameters except p53, or activity of the Bax promoter. We conclude that low doses of S179D-hPRL block bFGF-induced ERK signaling and yet activates ERK in a different time frame to elevate p21, and activate the extrinsic pathway. Longer incubations and higher concentrations, however, additionally activate the intrinsic pathway using an alternate intracellular signal. These findings suggest that circulating levels of phosphorylated hPRL may reduce the progression of cancer and, furthermore, that S179D-hPRL may be a useful anti-angiogenic therapeutic. (author)

  17. [Concentration of selected angiogenic factors in serum and peritoneal fluid of women with endometriosis].

    Science.gov (United States)

    Gogacz, Marek; Gałczyński, Krzysztof; Romanek-Piva, Katarzyna; Winkler, Izabela; Rechberger, Tomasz; Adamiak-Godlewska, Aneta

    2015-03-01

    Endometriosis is a sex hormone-dependent and successively progressing gynecological disease, characterized by the presence of endometrial tissue outside the uterus. The etiology of endometriosis is known to be multifactorial, and its growth depends on immunological, hormonal, genetic and environmental factors. Angiogenesis plays a key role in implantation and growth of endometriotic lesions, as well as in adhesion formation. Physiologically angiogenesis is responsible for neoangiogenesis and recruitment of new capillaries from the already existing capillaries. It is well-documented that altered angiogenesis provokes improper follicular maturation, infertility recurrent miscarriages, ovarian hyperstimulation syndrome, and carcinogenesis. Factors stimulating angionesis include angiogenin, vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). The aim of the study was to analyze angiogenic factor concentration (angiogenin, VEGF, FGF) in blood serum and peritoneal fluid in patients with diagnosed endometriosis and idiopathic infertility. A total of 39 patients were recruited for the study including 19 patients (study group) diagnosed with endometriosis during the laparoscopic procedure and 20 patients (control group) with idiopathic infertility and no morphologic changes within the pelvis revealed during the laparoscopic procedure. All patients underwent laparoscopy during the follicular phase of the menstrual cycle. Vein blood sample was obtained before the procedure and during laparoscopy the entire peritoneal fluid was aspirated for further measurement of VEGF, FGF and angiogenin concentrations. Angiogenin concentration in peritoneal fluid was statistically higher in patient with idiopathic infertility in comparison to endometriosis (pendometriosis, but no statistical significance was found. VEGF and FGF concentration in blood serum and peritoneal fluid was similar in both groups (p>0.05). There were no significant differences between serum

  18. Angiogenic profile and smoking in the Finnish Genetics of Pre-Eclampsia Consortium (FINNPEC) cohort.

    Science.gov (United States)

    Jääskeläinen, Tiina; Suomalainen-König, Sanna; Hämäläinen, Esa; Pulkki, Kari; Romppanen, Jarkko; Heinonen, Seppo; Laivuori, Hannele

    2017-11-01

    The biological mechanism by which smoking reduces the risk of pre-eclampsia (PE) is unresolved. We studied serum levels of soluble fms-like tyrosine kinase 1 (sFlt-1), placental growth factor (PlGF) and their ratio, in addition to soluble endoglin (sEng) in early and late pregnancy to ascertain whether these factors are altered in women who smoke. First trimester serum samples were available from 217 women who later developed PE and 238 women who did not develop PE. Second/third trimester serum samples were available from 174 PE and 54 non-PE women. PE women who smoked during pregnancy had elevated first trimester concentrations of serum PlGF [geometric mean (95% CI): 39.8 (32.6-48.5) pg/ml, p = .001] and reduced sEng concentration [5.0 (4.6-5.6) ng/ml, p = .047] compared to PE non-smokers [30.0 (28.1-32.1) pg/ml and 6.1 (5.9-6.4) ng/ml, respectively]. Non-smoking women in the PE group had the highest sFlt-1/PlGF ratio in early and late pregnancy. The protective effect of smoking in reducing the risk of PE may be due to the early pregnancy change towards pro-angiogenic marker profile. Also, in late pregnancy, smoking exerted effect in sFlt-1/PlGF ratio in PE pregnancies, and may complicate its use as a prognostic and diagnostic marker. Key messages Smoking appears to have angiogenic effects in early pregnancy with reduced sEng concentrations and elevated PlGF concentrations in both normal and PE pregnancies. Throughout pregnancy, smoking exerted effect in PlGF concentration and sFlt-1/PlGF ratio in PE pregnancies, and thus may complicate its use as a prognostic and diagnostic marker.

  19. Role of tumor necrosis factor-alpha and platelet-activating factor in neoangiogenesis induced by synovial fluids of patients with rheumatoid arthritis.

    Science.gov (United States)

    Lupia, E; Montrucchio, G; Battaglia, E; Modena, V; Camussi, G

    1996-08-01

    The aim of the present study was to investigate in vivo in a mouse model the stimulation of neoangiogenesis by synovial fluids of patients with rheumatoid arthritis (RA) and to determine the role of tumor necrosis factor (TNF)-alpha and platelet-activating factor (PAF) in the formation of new vessels. Angiogenesis was studied in a mouse model in which Matrigel, injected subcutaneously, was used as a vehicle for the delivery of potential angiogenic stimuli. Synovial fluids of patients with RA but not with osteoarthritis (OA) were shown to induce neoangiogenesis. Since synovial fluid of patients with RA contained significantly higher levels of TNF-alpha-like bioactivity and of PAF than that of patients with OA, the role of these mediators was evaluated by using an anti-TNF-alpha neutralizing monoclonal antibody (mAb) and a PAF receptor antagonist, WEB 2170. When added to Matrigel, anti-TNF-alpha mAb and particularly WEB 2170 significantly reduced neoangiogenesis induced by synovial fluids of RA patients. Moreover, PAF extracted and purified from synovial fluid induced angiogenesis. These results suggest that the neoangiogenesis observed in rheumatoid synovitis may be due, at least in part, to the angiogenic effect of locally produced TNF-alpha and PAF.

  20. Sourcing of an alternative pericyte-like cell type from peripheral blood in clinically relevant numbers for therapeutic angiogenic applications.

    Science.gov (United States)

    Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael

    2015-03-01

    Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10-40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies.

  1. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L show high anti-angiogenic, anti-tumor, brine shrimp and fibroblast NIH/3T3 cell line cytotoxicity

    Directory of Open Access Journals (Sweden)

    Muhammad eAyaz

    2016-03-01

    Full Text Available Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, GC-MS to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr, its subsequent fractions; n-hexane (Ph.Hex, chloroform (Ph.Chf, ethyl acetate (Ph.EtAc, n-Butanol (Ph.Bt, aqueous (Ph.Aq, saponins (Ph.Sp were performed using the chick embryo chorioallantoic membrane (CAM assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed on Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line using brine shrimps and MTT cells viability assays. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt and Ph.EtAc identified 126, 124, 153, 131 and 164 compounds respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75 and 461.53 µg/ml respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19 and 342.53 µg/ml respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50 and 71.50% cytotoxicity respectively at 1000 µg/ml with the LD50 of 140, 160 and 175 µg/ml respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer.

  2. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.

    Directory of Open Access Journals (Sweden)

    Zhong Hua

    Full Text Available MicroRNAs (miRNAs are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle. We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false

  3. The SK3 channel promotes placental vascularization by enhancing secretion of angiogenic factors.

    Science.gov (United States)

    Rada, Cara C; Murray, Grace; England, Sarah K

    2014-11-15

    Proper placental perfusion is essential for fetal exchange of oxygen, nutrients, and waste with the maternal circulation. Impairment of uteroplacental vascular function can lead to pregnancy complications, including preeclampsia and intrauterine growth restriction (IUGR). Potassium channels have been recognized as regulators of vascular proliferation, angiogenesis, and secretion of vasoactive factors, and their dysfunction may underlie pregnancy-related vascular diseases. Overexpression of one channel in particular, the small-conductance calcium-activated potassium channel 3 (SK3), is known to increase vascularization in mice, and mice overexpressing the SK3 channel (SK3(T/T) mice) have a high rate of fetal demise and IUGR. Here, we show that overexpression of SK3 causes fetal loss through abnormal placental vascularization. We previously reported that, at pregnancy day 14, placentas isolated from SK3(T/T) mice are smaller than those obtained from wild-type mice. In this study, histological analysis reveals that SK3(T/-) placentas at this stage have abnormal placental morphology, and microcomputed tomography shows that these placentas have significantly larger and more blood vessels than those from wild-type mice. To identify the mechanism by which these vascularization defects occur, we measured levels of vascular endothelial growth factor (VEGF), placental growth factor, and the soluble form of VEGF receptor 1 (sFlt-1), which must be tightly regulated to ensure proper placental development. Our data reveal that overexpression of SK3 alters systemic and placental ratios of the angiogenic factor VEGF to antiangiogenic factor sFlt-1 throughout pregnancy. Additionally, we observe increased expression of hypoxia-inducing factor 2α in SK3(T/-) placentas. We conclude that the SK3 channel modulates placental vascular development and fetal health by altering VEGF signaling. Copyright © 2014 the American Physiological Society.

  4. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation

    Directory of Open Access Journals (Sweden)

    Ji Hye Jun

    2016-09-01

    Full Text Available Background/Aims Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL. Methods The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs treated with lithocholic acid (LCA and siRNA-CRP. Results The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. Conclusion CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  5. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation.

    Science.gov (United States)

    Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin

    2016-09-01

    Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  6. PEDF-induced alteration of metabolism leading to insulin resistance.

    Science.gov (United States)

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yun-Jeong; Cho, Hyun-Ji [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Magae, Junji [Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263 (Japan); Lee, In-Kyu [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Park, Keun-Gyu, E-mail: kpark@knu.ac.kr [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  8. Microvascular function in pre-eclampsia is influenced by insulin resistance and an imbalance of angiogenic mediators.

    Science.gov (United States)

    Ghosh, Anshuman; Freestone, Nicholas S; Anim-Nyame, Nicholas; Arrigoni, Francesca I F

    2017-04-01

    In preeclampsia, maternal microvascular function is disrupted and angiogenesis is dysfunctional. Insulin resistance that occurs in some pregnancies also pathologically affects microvascular function. We wished to examine the relationship of angiogenic mediators and insulin resistance on microvascular health in pregnancy. We performed a nested, case-control study of 16 women who developed preeclampsia with 17 normal pregnant controls. We hypothesized that the impaired microvascular blood flow in preeclamptic women associated with an increased ratio of the antiangiogenic factors; (s-endoglin [sEng] and soluble fms-like tyrosine kinase-1 [sFlt-1]) and proangiogenic molecule (placental growth factor [PlGF]) could be influenced by insulin resistance. Serum samples taken after 28 weeks of gestation were measured for the angiogenic factors, insulin, and glucose alongside the inflammatory marker; tumor necrosis factor-α and endothelial activation, namely; soluble vascular cell adhesion molecule 1, intercellular adhesion molecule-1, and e-selectin. Maternal microvascular blood flow, measured by strain gauge plethysmography, correlated with ratios of pro- and antiangiogenic mediators independently of preeclampsia. Decreased microvascular function measured in preeclampsia strongly correlated with both the antiangiogenic factor (sFlt-1 + sEng): PlGF ratio and high levels of insulin resistance, and combining insulin resistance with antiangiogenic factor ratios further strengthened this relationship. In pregnancy, microvascular blood flow is strongly associated with perturbations in pro- and antiangiogenic mediators. In preeclampsia, the relationship of maternal microvascular dysfunction with antiangiogenic mediators is strengthened when combined with insulin resistance. © 2017 Kingston University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Aminopeptidase N inhibition could be involved in the anti-angiogenic effect of dobesilates

    Directory of Open Access Journals (Sweden)

    Farsa Oldřich

    2015-01-01

    Full Text Available Calcium, magnesium and zinc 2,5-dihydroxybenzenesulfonates (dobesilates were synthesized by sulfonation of hydroquinone with sulfuric acid under mild conditions. To form the salts, neutralization with calcium carbonate followed by cation exchange by means of magnesium or zinc sulfates was performed. The dobesilates were characterized by standard spectral methods and by AAS for metal content and then tested for inhibitory activity against aminopeptidase N. Calcium and magnesium 2,5-dihydroxybenzene sulfonates exhibited rather weak inhibitory activity to aminopeptidase N as demonstrated by IC50 values of 978.0 and 832.1 mmol l-1 respectively while zinc 2,5-dihydroxybenzene sulfonate reached the more significant inhibitory activity characterized by IC50 77.4 mmol l-1. The inhibitory activity results suggest that the inhibition of aminopeptidase N could play a role in the anti-angiogenic activity of 2,5-dihydroxybenzenesulfonates.

  10. Adipose Extracellular Matrix/Stromal Vascular Fraction Gel Secretes Angiogenic Factors and Enhances Skin Wound Healing in a Murine Model

    Directory of Open Access Journals (Sweden)

    Mingliang Sun

    2017-01-01

    Full Text Available Mesenchymal stem cells are an attractive cell type for cytotherapy in wound healing. The authors recently developed a novel, adipose-tissue-derived, injectable extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel for stem cell therapy. This study was designed to assess the therapeutic effects of ECM/SVF-gel on wound healing and potential mechanisms. ECM/SVF-gel was prepared for use in nude mouse excisional wound healing model. An SVF cell suspension and phosphate-buffered saline injection served as the control. The expression levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, and monocyte chemotactic protein-1 (MCP-1 in ECM/SVF-gel were analyzed at different time points. Angiogenesis (tube formation assays of ECM/SVF-gel extracts were evaluated, and vessels density in skin was determined. The ECM/SVF-gel extract promoted tube formation in vitro and increased the expression of the angiogenic factors VEGF and bFGF compared with those in the control. The expression of the inflammatory chemoattractant MCP-1 was high in ECM/SVF-gel at the early stage and decreased sharply during the late stage of wound healing. The potent angiogenic effects exerted by ECM/SVF-gel may contribute to the improvement of wound healing, and these effects could be related to the enhanced inflammatory response in ECM/SVF-gel during the early stage of wound healing.

  11. The angiogenic related functions of bone marrow mesenchymal stem cells are promoted by CBDL rat serum via the Akt/Nrf2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Cheng-Cheng; Chen, Bing; Gu, Jian-Teng; Ning, Jiao-Lin; Chen, Lin; Zeng, Jing; Yi, Bin, E-mail: yibin1974@163.com; Lu, Kai-Zhi, E-mail: lukaizhi2010@163.com

    2016-05-15

    Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile duct ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS. - Highlights: • Peripheral blood MSCs was increased in CBDL rats; however, the difference found for the number of BM-MSCs was not significant. • The directional migration, proliferation and ability to secrete VEGF of BM-MSCs were

  12. Changes in circulating angiogenic factors after an acute training bout before and after resistance training with or without whole-body-vibration training

    Science.gov (United States)

    Beijer, Åsa; Degens, Hans; May, Francisca; Bloch, Wilhelm; Rittweger, Joern; Rosenberger, Andre

    2012-07-01

    Both Resistance Exercise and Whole-Body-Vibration training are currently considered as countermeasures against microgravity-induced physiological deconditioning. Here we investigated the effects of whole-body vibration superimposed upon resistance exercise. Within this context, the present study focuses on changes in circulating angiogenic factors as indicators of skeletal muscle adaption. Methods: Twenty-six healthy male subjects (25.2 ± 4.2 yr) were included in this two-group parallel-designed study and randomly assigned to one of the training interventions: either resistance exercise (RE) or resistance vibration exercise (RVE). Participants trained 2-3 times per week for 6 weeks (completing 16 training sessions), where one session took 9 ± 1 min. Participants trained with weights on a guided barbell. The individual training load was set at 80% of their 1-Repetition-Maximum. Each training session consisted of three sets with 8 squats and 12 heel raises, following an incremental training design with regards to weight (RE and RVE) and vibration frequency (RVE only). The vibration frequency was increased from 20 Hz in the first week till 40 Hz during the last two weeks with 5-Hz weekly increments. At the first and 16 ^{th} training session, six blood samples (pre training and 2 min, 5 min, 15 min, 35 min and 75 min post training) were taken. Circulating levels of vascular endothelial growth factor (VEGF), Endostatin and Matrix Metalloproteinases -2 and -9 (MMPs) were determined in serum using Enzyme-linked Immunosorbent Assays. Results: MMP-2 levels increased by 7.0% (SE = 2.7%, P < 0.001) within two minutes after the exercise bout and then decreased to 5.7% below baseline (SE = 2.4%, P < 0.001) between 15 and 75 minutes post exercise. This response was comparable before and after the training programs (P = 0.70) and also between the two intervention groups (P = 0.42). Preliminary analyses indicate that a similar pattern applies to circulating MMP-9, VEGF and

  13. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity

    Science.gov (United States)

    Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo

    2014-02-01

    Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.

  14. Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF

    DEFF Research Database (Denmark)

    Høier, Birgitte; Hellsten, Ylva

    2014-01-01

    , such as shear stress and passive stretch, lead to cellular signalling, enhanced expression of angiogenic factors and initiation of capillary growth. The most central angiogenic factor in skeletal muscle capillary growth is vascular endothelial growth factor (VEGF). During muscle contraction, VEGF increases...... in the muscle interstitium, acts on VEGF receptors on the capillary endothelium and thereby stimulates angiogenic processes. A primary source of muscle interstitial VEGF during exercise is the skeletal muscle fibers which contain large stores of VEGF within vesicles. We propose that, during muscle activity...

  15. Effects of TiO₂ and Co₃O₄ nanoparticles on circulating angiogenic cells.

    Directory of Open Access Journals (Sweden)

    Valentina Spigoni

    Full Text Available Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs and cardiovascular (CV risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs, which take part in vascular endothelium repair/replacement.CACs were isolated from healthy donors' buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 μg/ml to test the effects of NP – characterized by Transmission Electron Microscopy – on CAC viability, apoptosis (caspase 3/7 activation, function (fibronectin adhesion assay, oxidative stress and inflammatory cytokine gene expression.Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested, which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01. Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01 and increased caspase activity (p<0.01, lipid peroxidation end-products (p<0.05 and pro-inflammatory cytokine gene expression (p<0.05 or lower. Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower and Co3O4 (p<0.01 NPs.In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs. Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans.

  16. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration.

    Science.gov (United States)

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-08-24

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. ASCs must be treated to reduce the secretion of VEGF-A and other factors that

  17. Cytotoxicity, anti-angiogenic, apoptotic effects and transcript profiling of a naturally occurring naphthyl butenone, guieranone A

    Directory of Open Access Journals (Sweden)

    Kuete Victor

    2012-06-01

    Full Text Available Abstract Background Malignant diseases are responsible of approximately 13% of all deaths each year in the world. Natural products represent a valuable source for the development of novel anticancer drugs. The present study was aimed at evaluating the cytotoxicity of a naphtyl butanone isolated from the leaves of Guiera senegalensis, guieranone A (GA. Results The results indicated that GA was active on 91.67% of the 12 tested cancer cell lines, the IC50 values below 4 μg/ml being recorded on 83.33% of them. In addition, the IC50 values obtained on human lymphoblastic leukemia CCRF-CEM (0.73 μg/ml and its resistant subline CEM/ADR5000 (1.01 μg/ml and on lung adenocarcinoma A549 (0.72 μg/ml cell lines were closer or lower than that of doxorubicin. Interestingly, low cytotoxicity to normal hepatocyte, AML12 cell line was observed. GA showed anti-angiogenic activity with up to 51.9% inhibition of the growth of blood capillaries on the chorioallantoic membrane of quail embryo. Its also induced apotosis and cell cycle arrest. Ingenuity Pathway Analysis identified several pathways in CCRF-CEM cells and functional group of genes regulated upon GA treatment (P , the Cell Cycle: G2/M DNA Damage Checkpoint Regulation and ATM Signaling pathways being amongst the four most involved functional groups. Conclusion The overall results of this work provide evidence of the cytotoxic potential of GA and supportive data for its possible use in cancer chemotherapy.

  18. Downregulation of adaptor protein MyD88 compromises the angiogenic potential of B16 murine melanoma

    Science.gov (United States)

    Araya, Paula; Nuñez, Nicolás Gonzalo; Mena, Hebe Agustina; Bocco, José Luis; Negrotto, Soledad; Maccioni, Mariana

    2017-01-01

    The mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models. In this study, we sought to better define the role of MyD88 in neoplastic cells using a murine melanoma model. Herein, we have demonstrated that MyD88 expression is required to maintain the angiogenic switch that supports B16 melanoma growth. By knocking down MyD88 we reduced TLR-mediated NF-κB activation with no evident effects over cell proliferation and survival. In addition, MyD88 downregulation was associated with a decrease of HIF1α levels and its target gene VEGF, in correlation with an impaired capability to induce capillary sprouting and tube formation of endothelial cells. Melanomas developed from cells lacking MyD88 showed an enhanced secretion of chemoattractant ligands such as CCL2, CXCL10 and CXCL1 and have an improved infiltration of macrophages to the tumor site. Our results imply that cell-autonomous signaling through MyD88 is required to sustain tumor growth and underscore its function as an important positive modulator of tumor angiogenesis. PMID:28662055

  19. Inhibitors of Angiogenesis.

    Science.gov (United States)

    Büning, H; Hacker, U T

    Angiogenesis plays a pivotal role in malignant, ischemic, inflammatory, infectious and immune disorders. The increasing molecular understanding of angiogenic processes fostered the development of strategies to induce or inhibit angiogenesis for therapeutic purposes. Here, we focus on anti-angiogenic therapies, which represent a standard of care in the treatment of different cancer types and in neovascular age-related macular degeneration. Specifically, strategies related to the blockade of angiogenic proteins and receptors will be outlined covering both preclinical and clinical aspects. Finally, examples of gene therapy based anti-angiogenic approaches are presented.

  20. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Directory of Open Access Journals (Sweden)

    Hendrik Gremmels

    2017-01-01

    Full Text Available Background. Endothelial colony forming cells (ECFCs have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS. The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN. Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays. Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

  1. Next generation metronomic chemotherapy-report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6-8 May 2016, Mumbai.

    Science.gov (United States)

    Pantziarka, Pan; Hutchinson, Lisa; André, Nicolas; Benzekry, Sébastien; Bertolini, Francesco; Bhattacharjee, Atanu; Chiplunkar, Shubhada; Duda, Dan G; Gota, Vikram; Gupta, Sudeep; Joshi, Amit; Kannan, Sadhana; Kerbel, Robert; Kieran, Mark; Palazzo, Antonella; Parikh, Aparna; Pasquier, Eddy; Patil, Vijay; Prabhash, Kumar; Shaked, Yuval; Sholler, Giselle Saulnier; Sterba, Jaroslav; Waxman, David J; Banavali, Shripad

    2016-01-01

    The 5 th Biennial Metronomic and Anti-angiogenic Therapy Meeting was held on 6 th - 8 th May in the Indian city of Mumbai. The meeting brought together a wide range of clinicians and researchers interested in metronomic chemotherapy, anti-angiogenics, drug repurposing and combinations thereof. Clinical experiences, including many from India, were reported and discussed in three symposia covering breast cancer, head and neck cancers and paediatrics. On the pre-clinical side research into putative mechanisms of action, and the interactions between low dose metronomic chemotherapy and angiogenesis and immune responses, were discussed in a number of presentations. Drug repurposing was discussed both in terms of clinical results, particularly with respect to angiosarcoma and high-risk neuroblastoma, and in pre-clinical settings, particularly the potential for peri-operative interventions. However, it was clear that there remain a number of key areas of challenge, particularly in terms of definitions, perceptions in the wider oncological community, mechanisms of action and predictive biomarkers. While the potential for metronomics and drug repurposing in low and middle income countries remains a key theme, it is clear that there is also considerable potential for clinically relevant improvements in patient outcomes even in high income economies.

  2. Therapeutic study of proton beam in vascular disease animal models

    International Nuclear Information System (INIS)

    Lee, Y. M.; Jang, K. H.; Kim, M. J.; Choi, J. H.

    2010-04-01

    We previously reported that proton beam inhibited angiogenic vessels in zebrafish and that proton induced cancer cell apoptosis via p53 induction as well as caspase-3 activity. In this study, we performed to identity the effect of candidate chemicals on the angiogenic inhibition in vitro and in vivo (zebrafish Flk1:EGFP transgenic fish). And we treated small cell lung adenocarcinoma cell line, A549 cells with proton beam in combination with angiogenic inhibitors we found in this study. By the MTT assay, we performed cell viability assay with cancer cells and we investigated that HIF-1α induction by proton beam by the western blot analysis. We found novel anti-angiogenic chemicals from traditional herb. That is decursin, and glyceollins from the Angelica gigas, and soy bean. Decrusin and glyceollins inhibited VEGF- or bFGF-induced endothelial cell proliferation, migration and zebrafish microvessel development. Moreover, glyceollins inhibited hypoxia-induced HIF-1α in a dose dependent manner. However, proton beam itself did not induce HIF-1α whereas it increased HIF-1α stability under hypoxia. Even proton beam induced cell death of A549 small cell lung carcinoma cells but the combination of decrusin or glyceollins did not increase the cancer cell death

  3. Therapeutic study of proton beam in vascular disease animal models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. M.; Jang, K. H.; Kim, M. J.; Choi, J. H. [Kyungpook National University, Daegu (Korea, Republic of)

    2010-04-15

    We previously reported that proton beam inhibited angiogenic vessels in zebrafish and that proton induced cancer cell apoptosis via p53 induction as well as caspase-3 activity. In this study, we performed to identity the effect of candidate chemicals on the angiogenic inhibition in vitro and in vivo (zebrafish Flk1:EGFP transgenic fish). And we treated small cell lung adenocarcinoma cell line, A549 cells with proton beam in combination with angiogenic inhibitors we found in this study. By the MTT assay, we performed cell viability assay with cancer cells and we investigated that HIF-1{alpha} induction by proton beam by the western blot analysis. We found novel anti-angiogenic chemicals from traditional herb. That is decursin, and glyceollins from the Angelica gigas, and soy bean. Decrusin and glyceollins inhibited VEGF- or bFGF-induced endothelial cell proliferation, migration and zebrafish microvessel development. Moreover, glyceollins inhibited hypoxia-induced HIF-1{alpha} in a dose dependent manner. However, proton beam itself did not induce HIF-1{alpha} whereas it increased HIF-1{alpha} stability under hypoxia. Even proton beam induced cell death of A549 small cell lung carcinoma cells but the combination of decrusin or glyceollins did not increase the cancer cell death

  4. The hexane fraction of Ardisia crispa Thunb. A. DC. roots inhibits inflammation-induced angiogenesis

    Science.gov (United States)

    2013-01-01

    Background Ardisia crispa (Myrsinaceae) is used in traditional Malay medicine to treat various ailments associated with inflammation, including rheumatism. The plant’s hexane fraction was previously shown to inhibit several diseases associated with inflammation. As there is a strong correlation between inflammation and angiogenesis, we conducted the present study to investigate the anti-angiogenic effects of the plant’s roots in animal models of inflammation-induced angiogenesis. Methods We first performed phytochemical screening and high-performance liquid chromatography (HPLC) fingerprinting of the hexane fraction of Ardisia crispa roots ethanolic extract (ACRH) and its quinone-rich fraction (QRF). The anti-inflammatory properties of ACRH and QRF were tested using the Miles vascular permeability assay and the murine air pouch granuloma model following oral administration at various doses. Results Preliminary phytochemical screening of ACRH revealed the presence of flavonoids, triterpenes, and tannins. The QRF was separated from ACRH (38.38% w/w) by column chromatography, and was isolated to yield a benzoquinonoid compound. The ACRH and QRF were quantified by HPLC. The LD50 value of ACRH was 617.02 mg/kg. In the Miles vascular permeability assay, the lowest dose of ACRH (10 mg/kg) and all doses of QRF significantly reduced vascular endothelial growth factor (VEGF)-induced hyperpermeability, when compared with the vehicle control. In the murine air pouch granuloma model, ACRH and QRF both displayed significant and dose-dependent anti-inflammatory effects, without granuloma weight. ACRH and QRF significantly reduced the vascular index, but not granuloma tissue weight. Conclusions In conclusion, both ACRH and QRF showed potential anti-inflammatory properties in a model of inflammation-induced angiogenesis model, demonstrating their potential anti-angiogenic properties. PMID:23298265

  5. Defibrotide: an endothelium protecting and stabilizing drug, has an anti-angiogenic potential in vitro and in vivo.

    Science.gov (United States)

    Koehl, Gudrun E; Geissler, Edward K; Iacobelli, Massimo; Frei, Caroline; Burger, Verena; Haffner, Silvia; Holler, Ernst; Andreesen, Reinhard; Schlitt, Hans J; Eissner, Günther

    2007-05-01

    Defibrotide (DF) is a polydisperse mixture of 90% single-stranded oligonucleotides with anti-thrombotic and anti-apoptotic functions. DF is used in the treatment of endothelial complications in the course of allogeneic stem cell transplantation. Recent preclinical evidence suggests that DF might also have anti-neoplastic properties. In the present study we hypothesized that DF might inhibit tumors via an anti-angiogenic effect. The anti-angiogenic potential of DF was tested in vitro using human microvascular endothelial cells forming vessel structures across a layer of dermal fibroblasts. Our results show that pharmacologic DF concentrations (100 mug/ml) significantly reduced vessel formation in this assay. Similarly, DF blocked sprouting from cultured rat aortic rings. In vivo, angiogenesis in a human gastric tumor (TMK1) implanted in dorsal skin-fold chambers (in nude mice) was inhibited by i.v. application of 450 mg/kg DF. Notably, due to its short half-life, DF was most effective when given on a daily basis. Although the precise mechanism of DF remains to be elucidated, initial Western blots show that DF reduces phosphorylation-activation of p70S6 kinase, which is a key target in the PI3K/Akt/mTOR signaling pathway linked to endothelial cell and pericyte proliferation and activation. However, in vitro data suggest that DF acts independently of vascular endothelial growth factor. Taken together, our data suggest that while DF is known for its endothelium-protecting function in SCT, it also inhibits formation of new blood vessels, and thus should be considered for further testing as an adjuvant anti-cancer agent, either alone, or in combination with other drugs.

  6. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training

    DEFF Research Database (Denmark)

    Høier, Birgitte; Nordsborg, Nikolai; Andersen, Søren

    2012-01-01

    This study examined the effect of acute exercise and 4 weeks of aerobic training on skeletal muscle gene and protein expression of pro- and anti-angiogenic factors in 14 young male subjects. Training consisted of 60 min of cycling (~ 60% of VO2 max), 3 times/week. Biopsies were obtained from m. v....... lateralis before and after training. Muscle interstitial fluid was collected during cycling at week 0 and 4. Training increased (P ... to acute exercise increased similarly (>6-fold; P training. Resting protein levels of soluble VEGF receptor-1 in interstitial fluid, and of VEGF, Thrombospondin-1 (TSP-1) and Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in muscle, were unaffected by training, whereas e...

  7. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    International Nuclear Information System (INIS)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man

    2014-01-01

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repair with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways

  8. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  9. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-01-01

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: ► Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. ► Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. ► These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. ► Anti-SEMA4D blocking antibody inhibits Plexin-B1 activation. ► SEMA4D is a valid anti-angiogenic target in the

  10. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    International Nuclear Information System (INIS)

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik

    2007-01-01

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells

  11. Decidual Stromal Cell Response to Paracrine Signals from the Trophoblast: Amplification of Immune and Angiogenic Modulators

    DEFF Research Database (Denmark)

    Hess, AP; Hamilton, AE; Talbi, S

    2007-01-01

    During the invasive phase of implantation, trophoblasts and maternal decidual stromal cells secrete products that regulate trophoblast differentiation and migration into the maternal endometrium. Paracrine interactions between the extravillous trophoblast and the maternal decidua are important...... a functional genomics approach to investigate these paracrine interactions. Human endometrial stromal cells were decidualized with progesterone and were further treated with conditioned media (CM) from human trophoblasts (TCM) or, as a control, with conditioned media (CCM) from non-decidualized stromal cells...... regulated groups. The data demonstrate a significant induction of pro-inflammatory cytokines and chemokines, as well as angiogenic/static factors in decidualized endometrial stromal cells in response to trophoblast-secreted products. The data suggest that the trophoblast acts to alter the local immune...

  12. Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs.

    Science.gov (United States)

    Chen, Mo; Qiu, Tao; Wu, Jiajie; Yang, Yang; Wright, Graham D; Wu, Min; Ge, Ruowen

    2018-03-09

    Classic endocytosis destinations include the recycling endosome returning to the plasma membrane or the late endosome (LE) merging with lysosomes for cargo degradation. However, the anti-angiogenic proteins angiostatin and isthmin, are endocytosed and trafficked to mitochondria (Mito) to execute apoptosis of endothelial cells. How these extracellular proteins reach mitochondria remains a mystery. Through confocal and super-resolution fluorescent microscopy, we demonstrate that angiostatin and isthmin are trafficked to mitochondria through the interaction between LE and Mito. Using purified organelles, the LE-Mito interaction is confirmed through in vitro lipid-fusion assay, as well as single vesicle total internal reflection fluorescent microscopy. LE-Mito interaction enables the transfer of not only lipids but also proteins from LE to Mito. Angiostatin and isthmin augment this endosomal protein trafficking pathway and make use of it to reach mitochondria to execute apoptosis. Cell fractionation and biochemical analysis identified that the cytosolic scaffold protein Na+/H+ exchanger regulatory factor 1 (NHERF1) associated with LE and the t-SNARE protein synaptosome-associated protein 25 kDa (SNAP25) associated with Mito form an interaction complex to facilitate LE-Mito interaction. Proximity ligation assay coupled with fluorescent microscopy showed that both NHERF1 and SNAP25 are located at the contacting face between LE and Mito. RNAi knockdown of either NHERF1 or SNAP25 suppressed not only the mitochondrial trafficking of angiostatin and isthmin but also their anti-angiogenic and pro-apoptotic functions. Hence, this study reveals a previously unrealized endosomal protein trafficking pathway from LE to Mito that allows extracellular proteins to reach mitochondria and execute apoptosis.

  13. In vivo growth-restricted and reversible malignancy induced by Human Herpesvirus-8/ KSHV: a cell and animal model of virally induced Kaposi's sarcoma

    Science.gov (United States)

    Mutlu, Agata D'Agostino; Cavallin, Lucas E.; Vincent, Loïc; Chiozzini, Chiara; Eroles, Pilar; Duran, Elda M.; Asgari, Zahra; Hooper, Andrea T.; La Perle, Krista M. D.; Hilsher, Chelsey; Gao, Shou-Jiang; Dittmer, Dirk P.; Rafii, Shahin; Mesri, Enrique A.

    2007-01-01

    Transfection of a Kaposi's sarcoma (KS) herpesvirus (KSHV) Bacterial Artificial Chromosome (KSHVBac36) into mouse bone marrow endothelial lineage cells generates a cell (mECK36) that forms KS-like tumors in mice. mECK36 expressed most KSHV genes and were angiogenic, but didn't form colonies in soft agar. In nude mice, mECK36 formed KSHV-harboring vascularized spindle-cell sarcomas that were LANA+/podoplanin+, overexpressed VEGF and Angiopoietin ligands and receptors, and displayed KSHV and host transcriptomes reminiscent of KS. mECK36 that lost the KSHV episome reverted to non-tumorigenicity. siRNA suppression of KSHV vGPCR, an angiogenic gene up-regulated in mECK36 tumors, inhibited angiogenicity and tumorigenicity. These results show that KSHV malignancy is in vivo growth-restricted and reversible, defining mECK36 as a biologically sensitive animal model of KSHV-dependent KS. PMID:17349582

  14. Glucose-induced serum- and glucocorticoid-regulated kinase activation in oncofetal fibronectin expression

    International Nuclear Information System (INIS)

    Khan, Zia A.; Barbin, Yousef P.; Farhangkhoee, Hana; Beier, Norbert; Scholz, Wolfgang; Chakrabarti, Subrata

    2005-01-01

    Preferential expression of oncofetal extra domain-B fibronectin (EDB + FN), a proposed angiogenic marker, has been shown in proliferative diabetic retinopathy. High levels of glucose also increase EDB + FN expression in endothelial cells (ECs) via transforming growth factor-β1 (TGF-β1) and endothelin-1 (ET-1). The present study was aimed at elucidating the role of serum- and glucocorticoid-regulated kinase (SGK-1) in glucose-induced EDB + FN expression. Using human macro- and microvascular ECs, we show that high levels of glucose, TGF-β1, and ET-1 increase the EDB + FN expression via SGK-1 alteration at the mRNA, protein, and activity levels. Inhibition of TGF-β1 and ET-1 prevented glucose-induced SGK-1 activation and the EDB + FN expression. Furthermore, using siRNA-mediated SGK-1 gene silencing, we show that glucose-induced EDB + FN expression can be completely prevented. These findings provide first evidence of glucose-induced SGK-1 activation in altered EDB + FN expression and provide novel avenues for therapeutic modalities

  15. Uncaria rhynchophylla induces angiogenesis in vitro and in vivo.

    Science.gov (United States)

    Choi, Do-Young; Huh, Jeong-Eun; Lee, Jae-Dong; Cho, Eun-Mi; Baek, Yong-Hyeon; Yang, Ha-Ru; Cho, Yoon-Je; Kim, Kang-Il; Kim, Deog-Yoon; Park, Dong-Suk

    2005-12-01

    Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine the angiogenic properties of Uncaria rhynchophylla. Uncaria rhynchophylla significantly enhanced human umbilical vein endothelial cells (HUVECs) proliferation in a dose-dependent manner. Neutralization of vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) by monoclonal antibody suppressed the Uncaria rhynchophylla stimulatory effect on proliferation. In addition, Uncaria rhynchophylla significantly increased chemotactic-migration on gelatin and tubular structures on Matrigel of HUVECs in a dose-dependent manner. Interestingly, Uncaria rhynchophylla dose-dependently increased VEGF, and bFGF gene expression and protein secretion of HUVEC. The angiogenic activity of Uncaria rhynchophylla was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. These results suggest that Uncaria rhynchophylla could potentially used to accelerate vascular wound healing or to promote the growth of collateral blood vessel in ischemic tissues.

  16. Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules.

    Science.gov (United States)

    He, Bo; Jabouille, Arnaud; Steri, Veronica; Johansson-Percival, Anna; Michael, Iacovos P; Kotamraju, Venkata Ramana; Junckerstorff, Reimar; Nowak, Anna K; Hamzah, Juliana; Lee, Gabriel; Bergers, Gabriele; Ganss, Ruth

    2018-06-01

    High-grade brain cancer such as glioblastoma (GBM) remains an incurable disease. A common feature of GBM is the angiogenic vasculature, which can be targeted with selected peptides for payload delivery. We assessed the ability of micelle-tagged, vascular homing peptides RGR, CGKRK and NGR to specifically bind to blood vessels in syngeneic orthotopic GBM models. By using the peptide CGKRK to deliver the tumour necrosis factor (TNF) superfamily member LIGHT (also known as TNF superfamily member 14; TNFSF14) to angiogenic tumour vessels, we have generated a reagent that normalizes the brain cancer vasculature by inducing pericyte contractility and re-establishing endothelial barrier integrity. LIGHT-mediated vascular remodelling also activates endothelia and induces intratumoural high endothelial venules (HEVs), which are specialized blood vessels for lymphocyte infiltration. Combining CGKRK-LIGHT with anti-vascular endothelial growth factor and checkpoint blockade amplified HEV frequency and T-cell accumulation in GBM, which is often sparsely infiltrated by immune effector cells, and reduced tumour burden. Furthermore, CGKRK and RGR peptides strongly bound to blood vessels in freshly resected human GBM, demonstrating shared peptide-binding activities in mouse and human primary brain tumour vessels. Thus, peptide-mediated LIGHT targeting is a highly translatable approach in primary brain cancer to reduce vascular leakiness and enhance immunotherapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy.

    Science.gov (United States)

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio; Ezquer, Fernando

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when

  18. EG-VEGF Maintenance Over Early Gestation to Develop a Pregnancy-Induced Hypertensive Animal Model.

    Science.gov (United States)

    Reynaud, Déborah; Sergent, Frédéric; Abi Nahed, Roland; Brouillet, Sophie; Benharouga, Mohamed; Alfaidy, Nadia

    2018-01-01

    During the last decade, multiple animal models have been developed to mimic hallmarks of pregnancy-induced hypertension (PIH) diseases, which include gestational hypertension, preeclampsia (PE), or eclampsia. Converging in vitro, ex vivo, and clinical studies from our group strongly suggested the potential involvement of the new angiogenic factor EG-VEGF (endocrine gland-derived-VEGF) in the development of PIH. Here, we described the protocol that served to demonstrate that maintenance of EG-VEGF production over 11.5 days post coitus (dpc) in the gravid mice caused the development of PIH. The developed model exhibited most hallmarks of preeclampsia.

  19. Implication of snail in metabolic stress-induced necrosis.

    Directory of Open Access Journals (Sweden)

    Cho Hee Kim

    2011-03-01

    Full Text Available Necrosis, a type of cell death accompanied by the rupture of the plasma membrane, promotes tumor progression and aggressiveness by releasing the pro-inflammatory and angiogenic cytokine high mobility group box 1. It is commonly found in the core region of solid tumors due to hypoxia and glucose depletion (GD resulting from insufficient vascularization. Thus, metabolic stress-induced necrosis has important clinical implications for tumor development; however, its regulatory mechanisms have been poorly investigated.Here, we show that the transcription factor Snail, a key regulator of epithelial-mesenchymal transition, is induced in a reactive oxygen species (ROS-dependent manner in both two-dimensional culture of cancer cells, including A549, HepG2, and MDA-MB-231, in response to GD and the inner regions of a multicellular tumor spheroid system, an in vitro model of solid tumors and of human tumors. Snail short hairpin (sh RNA inhibited metabolic stress-induced necrosis in two-dimensional cell culture and in multicellular tumor spheroid system. Snail shRNA-mediated necrosis inhibition appeared to be linked to its ability to suppress metabolic stress-induced mitochondrial ROS production, loss of mitochondrial membrane potential, and mitochondrial permeability transition, which are the primary events that trigger necrosis.Taken together, our findings demonstrate that Snail is implicated in metabolic stress-induced necrosis, providing a new function for Snail in tumor progression.

  20. Angiogenic effect of the aqueous extract of Cynodon dactylon on human umbilical vein endothelial cells and granulation tissue in rat.

    Science.gov (United States)

    Soraya, Hamid; Moloudizargari, Milad; Aghajanshakeri, Shahin; Javaherypour, Soheil; Mokarizadeh, Aram; Hamedeyazdan, Sanaz; Esmaeli Gouvarchin Ghaleh, Hadi; Mikaili, Peyman; Garjani, Alireza

    2015-01-29

    Cynodon dactylon, a valuable medicinal plant, is widely used in Iranian folk medicine for the treatment of various cardiovascular diseases such as heart failure and atherosclerosis. Moreover, its anti-diabetic, anti-cancer and anti-microbial properties have been also reported. Concerning the critical role of angiogenesis in the incidence and progression of tumors and also its protective role in cardiovascular diseases, we investigated the effects of the aqueous extract prepared from the rhizomes of C. dactylon on vascular endothelial growth factor (VEGF) expressions in Human Umbilical Vein Endothelial Cells (HUVECs) and also on angiogenesis in carrageenan induced air-pouch model in rats. In the air-pouch model, carrageenan was injected into an air-pouch on the back of the rats and following an IV injection of carmine red dye on day 6, granulation tissue was processed for the assessment of the dye content. Furthermore, in an in vitro study, angiogenic property of the extract was assessed through its effect on VEGF expression in HUVECs. Oral administration of 400 mg/kg/day of the extract significantly increased angiogenesis (p<0.05) and markedly decreased neutrophil (p<0.05) and total leukocyte infiltration (p<0.001) into the granulation tissues. Moreover, the extract increased the expression of total VEGF in HUVECs at a concentration of (100 μl/ml). The present study showed that the aqueous extract of C. dactylon promotes angiogenesis probably through stimulating VEGF expression.

  1. Unexpected neuronal protection of SU5416 against 1-Methyl-4-phenylpyridinium ion-induced toxicity via inhibiting neuronal nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Wei Cui

    Full Text Available SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2 for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP(+-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP(+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP(+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC(50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA abolished the neuroprotective effects of SU5416 against MPP(+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.

  2. Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes

    NARCIS (Netherlands)

    Tilborg, van G.A.F.; Mulder, W.J.M.; Schaft, van der D.W.J.; Reutelingsperger, C.; Griffioen, A.W.; Strijkers, G.J.; Nicolay, K.

    2008-01-01

    Angiogenic, that is, newly formed, blood vessels play an important role in tumor growth and metastasis and are a potential target for tumor treatment. In previous studies, the avß3 integrin, which is strongly expressed in angiogenic vessels, has been used as a target for Arg-Gly-Asp

  3. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Chin, Hsien-Kuo; Horng, Chi-Ting; Liu, Yi-Shan; Lu, Chi-Cheng; Su, Chen-Ying; Chen, Pei-Syuan; Chiu, Hong-Yi; Tsai, Fuu-Jen; Shieh, Po-Chuen; Yang, Jai-Sing

    2018-05-01

    Anti-angiogenesis is one of the most general clinical obstacles in cancer chemotherapy. Kaempferol is a flavonoid phytochemical found in many fruits and vegetables. Our previous study revealed that kaempferol triggered apoptosis in human umbilical vein endothelial cells (HUVECs) by ROS‑mediated p53/ATM/death receptor signaling. However, the anti‑angiogenic potential of kaempferol remains unclear and its underlying mechanism warranted further exploration in VEGF‑stimulated HUVECs. In the present study, kaempferol significantly reduced VEGF‑stimulated HUVEC viability. Kaempferol treatment also inhibited cell migration, invasion, and tube formation in VEGF‑stimulated HUVECs. VEGF receptor‑2 (VEGFR‑2), and its downstream signaling cascades (such as AKT, mTOR and MEK1/2‑ERK1/2) were reduced as determined by western blotting and kinase activity assay in VEGF‑stimulated HUVECs after treatment with kaempferol. The present study revealed that kaempferol may possess angiogenic inhibition through regulation of VEGF/VEGFR‑2 and its downstream signaling cascades (PI3K/AKT, MEK and ERK) in VEGF-stimulated endothelial cells.

  4. Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes

    NARCIS (Netherlands)

    van Tilborg, Geralda A. F.; Mulder, Willem J. M.; van der Schaft, Daisy W. J.; Reutelingsperger, Chris P. M.; Griffioen, Arjan W.; Strijkers, Gustav J.; Nicolay, Klaas

    2008-01-01

    Angiogenic, that is, newly formed, blood vessels play an important role in tumor growth and metastasis and are a potential target for tumor treatment. In previous studies, the alpha(v)beta(3) integrin, which is strongly expressed in angiogenic vessels, has been used as a target for Arg-Gly-Asp

  5. Association between adverse pregnancy outcome and imbalance in angiogenic regulators and oxidative stress biomarkers in gestational hypertension and preeclampsia.

    Science.gov (United States)

    Turpin, Cornelius A; Sakyi, Samuel A; Owiredu, William K B A; Ephraim, Richard K D; Anto, Enoch O

    2015-08-25

    Gestational hypertension (GH) and Preeclampsia, (PE) are the most complicated amongst hypertensive disorders of pregnancy. The mechanism that links hypertension in pregnancy to adverse maternal outcomes is not fully understood though some relate this to endothelial dysfunction originating from an imbalanced angiogenic regulators and oxidative stress biomarkers. This study assessed the correlation between angiogenic regulators and oxidative stress biomarker levels with adverse pregnancy outcomes among GH and PE participants. A cohort of pregnant women who received antenatal care at the Obstetrics and Gynaecology department of the Komfo Anokye Teaching Hospital (KATH) were followed. During their antenatal visits, 100 developed PE and 70 developed GE, of these, 50 PE and 50 GH gave informed consent. Their blood samples were taken at time of diagnosis and 48 h post-partum. 50 other aged-matched women who did not develop neither GH nor PE were selected as controls. Placental growth factor (PLGF), soluble fms-like tyrosine kinase 1 (sFlt-1) and 8-epi-prostaglandin F2alpha (8-epi-PGF2α) levels were estimated by ELISA and total antioxidant capacity (T-AOC) was measured spectrophotometrically. Graphpad Prism was used for data analysis. Median levels of sFlt-1, 8-epi-PGF2α and sFlt-1/PLGF were elevated among participants with PE co-existing with intrauterine fetal death (IUFD), placental abruptio, placental previa, HELLP syndrome and intrauterine growth restriction (IUGR) compared to PE without adverse outcomes (p = 0.041, p = 0.005, p = 0.0002). Levels of PLGF, T-AOC and PLGF/sFlt-1 were significantly reduced among participants with PE co-existing with IUFD, placental abruptio, placental previa, HELLP syndrome and IUGR compared to PE without adverse outcomes (p = 0.0013, p = 0.006, p < 0.0001). A significant negative correlation of IUGR (p = 0.0030; p < 0.0001), placental abruptio (p < 0.0001; p < 0.0001), IUFD (p < 0.0001; p

  6. Daily low-dose/continuous capecitabine combined with neo-adjuvant irradiation reduces VEGF and PDGF-BB levels in rectal carcinoma patients

    International Nuclear Information System (INIS)

    Loven, David; B e'Ery, Einat; Yerushalmi, Rinat; Koren, Claude; Sulkes, Aaron; Fenig, Eyal; Lavi, Idit; Shaked, Yuval

    2008-01-01

    Metronomic low-dose chemotherapy regimen was found to have an antiangiogenic effect in tumors. However, its effect on levels of circulating pro-angiogenic and anti-angiogenic factors is not fully explored. Materials and methods. The levels of both VEGF and PDGF-BB were measured in three time points, in the serum of 32 rectal carcinoma patients receiving daily reduced-dose/continuous capecitabine in combination with preoperative pelvic irradiation. Results. We found a significant decrease in VEGF and PDGF-BB serum levels during the combination treatment (p<0.0001), followed by an increase in the successive rest-period (p<0.0001). In addition, substantial changes in platelets counts were observed during treatment in correlation with the changes of VEGF and PDGF-BB serum levels. Discussion. These results suggest that combined chemo-irradiation affect levels of pro-angiogenic factors during treatment, and may reflect an anti-angiogenic window induced during this treatment. The potential implications of this inducible phenomenon, including a possible clinical benefit from the administration of long lasting metronomic chemotherapy immediately following combined chemo-irradiation, would warrant further investigation

  7. Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, J. [Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago (United States); Thippegowda, P.B., E-mail: btprabha@uic.edu [Department of Pharmacology, (M/C 868), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612 (United States); Kanum, S.A. [Department of Chemistry, Yuvaraj' s College, University of Mysore, Mysore (India)

    2009-09-18

    Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells and arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.

  8. The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Bae, Yoon-Kyung; Kim, Gee-Hye; Lee, Jae Cheoun; Seo, Byoung-Moo; Joo, Kyeung-Min; Lee, Gene; Nam, Hyun

    2017-06-30

    Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, αsmooth muscle actin, platelet-derived growth factor receptor β, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HU-VECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the SDF-1α and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the peri-vascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.

  9. Response to Plasmapheresis Measured by Angiogenic Factors in a Woman with Antiphospholipid Syndrome in Pregnancy

    Directory of Open Access Journals (Sweden)

    Karoline Mayer-Pickel

    2015-01-01

    Full Text Available An imbalance of angiogenic and antiangiogenic placental factors such as endoglin and soluble fms-like tyrosine kinase 1 has been implicated in the pathophysiology of preeclampsia. Extraction of these substances by plasmapheresis might be a therapeutical approach in cases of severe early-onset preeclampsia. Case Report. A 21-year-old primigravida with antiphospholipid syndrome developed early-onset preeclampsia at 18 weeks’ gestation. She was treated successfully with plasmapheresis in order to prolong pregnancy. Endoglin and sflt-1-levels were measured by ELISA before and after treatment. Endoglin levels decreased significantly after treatment (p < 0.05 and showed a significant decrease throughout pregnancy. A rerise of endoglin and sflt-1 preceded placental abruption 4 weeks before onset of incident. Conclusion. Due to the limited long-term therapeutical possibilities for pregnancies complicated by PE, plasmapheresis seems to be a therapeutical option. This consideration refers especially to pregnancies with early-onset preeclampsia, in which, after first conventional treatment of PE, prolongation of pregnancy should be above all.

  10. Effects of TiO2 and Co3O4 Nanoparticles on Circulating Angiogenic Cells

    Science.gov (United States)

    Spigoni, Valentina; Cito, Monia; Alinovi, Rossella; Pinelli, Silvana; Passeri, Giovanni; Zavaroni, Ivana; Goldoni, Matteo; Campanini, Marco; Aliatis, Irene; Mutti, Antonio

    2015-01-01

    Background and Aim Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs) and cardiovascular (CV) risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs), which take part in vascular endothelium repair/replacement. Methods CACs were isolated from healthy donors’ buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 μg/ml) to test the effects of NP – characterized by Transmission Electron Microscopy – on CAC viability, apoptosis (caspase 3/7 activation), function (fibronectin adhesion assay), oxidative stress and inflammatory cytokine gene expression. Results Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested), which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01). Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01) and increased caspase activity (p<0.01), lipid peroxidation end-products (p<0.05) and pro-inflammatory cytokine gene expression (p<0.05 or lower). Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower) and Co3O4 (p<0.01) NPs. Conclusions In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only) and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs). Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans. PMID:25803285

  11. In vitro and in vivo study of endothelial cells radio-induced death modulation by Sphingosine-1-Phosphate

    International Nuclear Information System (INIS)

    Bonnaud, St.

    2007-01-01

    Protecting the vasculature from radiation-induced death is a major concern in tissue radioprotection. Developing a model of endothelial cells radiosensitivity, we proved that HMEC-1 undergo 2 waves of death after exposure to 15 Gy: an early pre mitotic apoptosis dependent of ceramide generation and a delayed DNA damage-induced mitotic death. Sphingosine-1-Phosphate (S1P), a ceramide antagonist, protects HMEC-1 only from early apoptosis, but not from mitotic death. We confirmed in vivo the S1P radioprotection from ceramide-mediated radio-induced apoptosis, and that S1P radioprotection is partially mediated by S1Ps receptors. Segregation between these 2 types of death may give the opportunity to define a new class of radioprotectors for normal tissue where quiescent endothelium represent the most sensitive target, while excluding malignant tumor containing pro-proliferating angiogenic endothelial cells, sensitive to mitotic death. (author)

  12. Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization

    Science.gov (United States)

    Kopp, Hans-Georg; Hooper, Andrea T.; Broekman, M. Johan; Avecilla, Scott T.; Petit, Isabelle; Luo, Min; Milde, Till; Ramos, Carlos A.; Zhang, Fan; Kopp, Tabitha; Bornstein, Paul; Jin, David K.; Marcus, Aaron J.; Rafii, Shahin

    2006-01-01

    Thrombopoietic cells may differentially promote or inhibit tissue vascularization by releasing both pro- and antiangiogenic factors. However, the molecular determinants controlling the angiogenic phenotype of thrombopoietic cells remain unknown. Here, we show that expression and release of thrombospondins (TSPs) by megakaryocytes and platelets function as a major antiangiogenic switch. TSPs inhibited thrombopoiesis, diminished bone marrow microvascular reconstruction following myelosuppression, and limited the extent of revascularization in a model of hind limb ischemia. We demonstrate that thrombopoietic recovery following myelosuppression was significantly enhanced in mice deficient in both TSP1 and TSP2 (TSP-DKO mice) in comparison with WT mice. Megakaryocyte and platelet levels in TSP-DKO mice were rapidly restored, thereby accelerating revascularization of myelosuppressed bone marrow and ischemic hind limbs. In addition, thrombopoietic cells derived from TSP-DKO mice were more effective in supporting neoangiogenesis in Matrigel plugs. The proangiogenic activity of TSP-DKO thrombopoietic cells was mediated through activation of MMP-9 and enhanced release of stromal cell–derived factor 1. Thus, TSP-deficient thrombopoietic cells function as proangiogenic agents, accelerating hemangiogenesis within the marrow and revascularization of ischemic hind limbs. As such, interference with the release of cellular stores of TSPs may be clinically effective in augmenting neoangiogenesis. PMID:17143334

  13. Intravitreal itraconazole inhibits laser-induced choroidal neovascularization in rats.

    Directory of Open Access Journals (Sweden)

    Jeong Hun Bae

    Full Text Available Choroidal neovascularization (CNV is a major cause of severe visual loss in patients with age-related macular degeneration (AMD. Recently, itraconazole has shown potent and dose-dependent inhibition of tumor-associated angiogenesis. We evaluated the anti-angiogenic effect of itraconazole in a rat model of laser-induced CNV. After laser photocoagulation in each eye to cause CNV, right eyes were administered intravitreal injections of itraconazole; left eyes received balanced salt solution (BSS as controls. On day 14 after laser induction, fluorescein angiography (FA was used to assess abnormal vascular leakage. Flattened retinal pigment epithelium (RPE-choroid tissue complex was stained with Alexa Fluor 594-conjugated isolectin B4 to measure the CNV area and volume. Vascular endothelial growth factor receptor 2 (VEGFR2 mRNA and protein expression was determined 1, 4, 7, and 14 days after intravitreal injection by quantitative RT-PCR or Western blot. VEGF levels were analyzed by enzyme-linked immunosorbent assay (ELISA. Intravitreal itraconazole significantly reduced leakage from CNV as assessed by FA and CNV area and volume on flat mounts compared with intravitreal BSS (p = 0.002 for CNV leakage, p<0.001 for CNV area and volume. Quantitative RT-PCR showed significantly lower expression of VEGFR2 mRNA in the RPE-choroid complexes of itraconazole-injected eyes than those of BSS-injected eyes on days 7 and 14 (p = 0.003 and p = 0.006. Western blots indicated that VEGFR2 was downregulated after itraconazole treatment. ELISA showed a significant difference in VEGF level between itraconazole-injected and BSS-injected eyes on days 7 and 14 (p = 0.04 and p = 0.001. Our study demonstrated that intravitreal itraconazole significantly inhibited the development of laser-induced CNV in rats. Itraconazole had anti-angiogenic activity along with the reduction of VEGFR2 and VEGF levels. Itraconazole may prove beneficial for treating CNV as an alternative or

  14. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

    Science.gov (United States)

    Kim, Young-Mee; Kim, Seok-Jo; Tatsunami, Ryosuke; Yamamura, Hisao; Fukai, Tohru; Ushio-Fukai, Masuko

    2017-06-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H 2 O 2 ) or overexpression of Nox4, which produces H 2 O 2 , increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H 2 O 2 to promote mtROS production. Mechanistically, H 2 O 2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H 2 O 2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program. Copyright © 2017 the American Physiological Society.

  15. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    International Nuclear Information System (INIS)

    Morbidelli, Lucia; Monici, Monica; Marziliano, Nicola; Cogoli, Augusto; Fusi, Franco; Waltenberger, Johannes; Ziche, Marina

    2005-01-01

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompanied by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness

  16. Molecular mechanisms of anti-angiogenic effect of curcumin.

    Science.gov (United States)

    Gururaj, Anupama E; Belakavadi, Madesh; Venkatesh, Deepak A; Marmé, Dieter; Salimath, Bharathi P

    2002-10-04

    Modulation of pathological angiogenesis by curcumin (diferuloylmethane), the active principle of turmeric, seems to be an important possibility meriting mechanistic investigations. In this report, we have studied the effect of curcumin on the growth of Ehrlich ascites tumor cells and endothelial cells in vitro. Further, regulation of tumor angiogenesis by modulation of angiogenic ligands and their receptor gene expression in tumor and endothelial cells, respectively, by curcumin was investigated. Curcumin, when injected intraperitoneally (i.p) into mice, effectively decreased the formation of ascites fluid by 66% in EAT bearing mice in vivo. Reduction in the number of EAT cells and human umbelical vein endothelial cells (HUVECs) in vitro by curcumin, without being cytotoxic to these cells, is attributed to induction of apoptosis by curcumin, as is evident by an increase in cells with fractional DNA content seen in our results on FACS analysis. However, curcumin had no effect on the growth of NIH3T3 cells. Curcumin proved to be a potent angioinhibitory compound, as demonstrated by inhibition of angiogenesis in two in vivo angiogenesis assay systems, viz. peritoneal angiogenesis and chorioallantoic membrane assay. The angioinhibitory effect of curcumin in vivo was corroborated by the results on down-regulation of the expression of proangiogenic genes, in EAT, NIH3T3, and endothelial cells by curcumin. Our results on Northern blot analysis clearly indicated a time-dependent (0-24h) inhibition by curcumin of VEGF, angiopoietin 1 and 2 gene expression in EAT cells, VEGF and angiopoietin 1 gene expression in NIH3T3 cells, and KDR gene expression in HUVECs. Further, decreased VEGF levels in conditioned media from cells treated with various doses of curcumin (1 microM-1mM) for various time periods (0-24h) confirm its angioinhibitory action at the level of gene expression. Because of its non-toxic nature, curcumin could be further developed to treat chronic diseases that

  17. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells

    Science.gov (United States)

    Mimeault, Murielle; Batra, Surinder K

    2013-01-01

    Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse. PMID:23301832

  18. Luminal and basal-like breast cancer cells show increased migration induced by hypoxia, mediated by an autocrine mechanism

    International Nuclear Information System (INIS)

    Voss, Melanie J; Möller, Mischa F; Powe, Desmond G; Niggemann, Bernd; Zänker, Kurt S; Entschladen, Frank

    2011-01-01

    Some breast cancer patients receiving anti-angiogenic treatment show increased metastases, possibly as a result of induced hypoxia. The effect of hypoxia on tumor cell migration was assessed in selected luminal, post-EMT and basal-like breast carcinoma cell lines. Migration was assessed in luminal (MCF-7), post-EMT (MDA-MB-231, MDA-MB-435S), and basal-like (MDA-MB-468) human breast carcinoma cell lines under normal and oxygen-deprived conditions, using a collagen-based assay. Cell proliferation was determined, secreted cytokine and chemokine levels were measured using flow-cytometry and a bead-based immunoassay, and the hypoxic genes HIF-1α and CA IX were assessed using PCR. The functional effect of tumor-cell conditioned medium on the migration of neutrophil granulocytes (NG) was tested. Hypoxia caused increased migratory activity but not proliferation in all tumor cell lines, involving the release and autocrine action of soluble mediators. Conditioned medium (CM) from hypoxic cells induced migration in normoxic cells. Hypoxia changed the profile of released inflammatory mediators according to cell type. Interleukin-8 was produced only by post-EMT and basal-like cell lines, regardless of hypoxia. MCP-1 was produced by MDA-MB-435 and -468 cells, whereas IL-6 was present only in MDA-MB-231. IL-2, TNF-α, and NGF production was stimulated by hypoxia in MCF-7 cells. CM from normoxic and hypoxic MDA-MB-231 and MDA-MB-435S cells and hypoxic MCF-7 cells, but not MDA-MB-468, induced NG migration. Hypoxia increases migration by the autocrine action of released signal substances in selected luminal and basal-like breast carcinoma cell lines which might explain why anti-angiogenic treatment can worsen clinical outcome in some patients

  19. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner.

    Science.gov (United States)

    Vasilopoulou, E; Loubière, L S; Lash, G E; Ohizua, O; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S Y

    2014-06-01

    Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. This laboratory-based study used human decidua from first (8-11 weeks; n = 18) and second (12-16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10-) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel(®) was evaluated. Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different

  20. Polymorphisms in the hypoxia-inducible factor 1 alpha gene in Mexican patients with preeclampsia: A case-control study

    Directory of Open Access Journals (Sweden)

    Nava-Salazar Sonia

    2011-03-01

    Full Text Available Abstract Background Although the etiology of preeclampsia is still unclear, recent work suggests that changes in circulating angiogenic factors play a key role in its pathogenesis. In the trophoblast of women with preeclampsia, hypoxia-inducible factor 1 alpha (HIF-1α is over-expressed, and induces the expression of non-angiogenic factors and inhibitors of trophoblast differentiation. This observation prompted the study of HIF-1α and its relation to preeclampsia. It has been described that the C1772T (P582S and G1790A (A588T polymorphisms of the HIF1A gene have significantly greater transcriptional activity, correlated with an increased expression of their proteins, than the wild-type sequence. In this work, we studied whether either or both HIF1A variants contribute to preeclampsia susceptibility. Results Genomic DNA was isolated from 150 preeclamptic and 105 healthy pregnant women. Exon 12 of the HIF1A gene was amplified by PCR, and the genotypes of HIF1A were determined by DNA sequencing. In preeclamptic women and controls, the frequencies of the T allele for C1772T were 4.3 vs. 4.8%, and the frequencies of the A allele for G1790A were 0.0 vs. 0.5%, respectively. No significant differences were found between groups. Conclusion The frequency of the C1772T and G1790A polymorphisms of the HIF1A gene is very low, and neither polymorphism is associated with the development of preeclampsia in the Mexican population.

  1. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Sugiyama, Masahiko

    2009-01-01

    Dental caries is a common public health problem, causing early loss of dental pulp and resultant tooth loss. Dental pulp has important functions to sustain teeth providing nutrient and oxygen supply, innervation, reactionary/reparative dentin formation and immune response. Regeneration of pulp is an unmet need in endodontic therapy, and angiogenesis/vasculogenesis and neurogenesis are critical for pulp regeneration. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. In this review, we introduce some stem cell subfractions, CD31(-)/CD146(-) SP cells and CD105(+) cells with high angiogenic and neurogenic potential, derived from human adult dental pulp tissue. Potential utility of these cells is addressed as a source of cells for treatment of cerebral and limb ischemia and pulp inflammation complete with angiogenesis and vasculogenesis.

  2. Combination of HIF-1α gene transfection and HIF-1-activated bone marrow-derived angiogenic cell infusion improves burn wound healing in aged mice.

    Science.gov (United States)

    Du, J; Liu, L; Lay, F; Wang, Q; Dou, C; Zhang, X; Hosseini, S M; Simon, A; Rees, D J; Ahmed, A K; Sebastian, R; Sarkar, K; Milner, S; Marti, G P; Semenza, G L; Harmon, J W

    2013-11-01

    Impaired burn wound healing in the elderly represents a major clinical problem. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator that orchestrates the cellular response to hypoxia. Its actions in dermal wounds promote angiogenesis and improve healing. In a murine burn wound model, aged mice had impaired wound healing associated with reduced levels of HIF-1. When gene therapy with HIF-1 alone did not correct these deficits, we explored the potential benefit of HIF-1 gene therapy combined with the intravenous infusion of bone marrow-derived angiogenic cells (BMDACs) cultured with dimethyloxalylglycine (DMOG). DMOG is known to reduce oxidative degradation of HIF-1. The mice treated with a plasmid DNA construct expressing a stabilized mutant form of HIF-1α (CA5-HIF-1α)+BMDACs had more rapid wound closure. By day 17, there were more mice with completely closed wounds in the treated group (χ(2), P=0.05). The dermal blood flow measured by laser Doppler showed significantly increased wound perfusion on day 11. Homing of BMDACs to the burn wound was dramatically enhanced by CA5-HIF-1α gene therapy. HIF-1α mRNA expression in the burn wound was increased after transfection with CA5-HIF-1α plasmid. Our findings offer insight into the pathophysiology of burns in the elderly and point to potential targets for developing new therapeutic strategies.

  3. Loss of p19(Arf facilitates the angiogenic switch and tumor initiation in a multi-stage cancer model via p53-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Danielle B Ulanet

    2010-08-01

    Full Text Available The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag, stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms.

  4. Endothelium trans differentiated from Wharton's jelly mesenchymal cells promote tissue regeneration: potential role of soluble pro-angiogenic factors.

    Science.gov (United States)

    Aguilera, Valeria; Briceño, Luis; Contreras, Hector; Lamperti, Liliana; Sepúlveda, Esperanza; Díaz-Perez, Francisca; León, Marcelo; Veas, Carlos; Maura, Rafael; Toledo, Jorge Roberto; Fernández, Paulina; Covarrubias, Ambart; Zuñiga, Felipe Andrés; Radojkovic, Claudia; Escudero, Carlos; Aguayo, Claudio

    2014-01-01

    Mesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton's jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton's jelly (hWMSCs) can accelerate tissue repair in vivo. Mesenchymal stem cells were isolated from human Wharton's jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO). hWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures. These results demonstrate that mesenchymal stem cells isolated from Wharton's jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.

  5. G-protein-coupled receptor 81 promotes a malignant phenotype in breast cancer through angiogenic factor secretion.

    Science.gov (United States)

    Lee, Yu Jin; Shin, Kyeong Jin; Park, Soo-Ah; Park, Kyeong Su; Park, Seorim; Heo, Kyun; Seo, Young-Kyo; Noh, Dong-Young; Ryu, Sung Ho; Suh, Pann-Ghill

    2016-10-25

    G-protein-coupled receptor 81 (GPR81) functions as a receptor for lactate and plays an important role in the regulation of anti-lipolytic effects in adipocytes. However, to data, a role for GPR81 in the tumor microenvironment has not been clearly defined. Here, GPR81 expression in breast cancer patients and several breast cancer cell lines was significantly increased compared with normal mammary tissues and cells. GPR81 knockdown resulted in impaired breast cancer growth and led to apoptosis both in vitro and in vivo. Furthermore, the inhibition of GPR81 signaling suppressed angiogenesis through a phosphoinositide 3-OH kinase (PI3K)/Akt-cAMP response element binding protein (CREB) pathway, which led to decreased production of the pro-angiogenic mediator amphiregulin (AREG). Overall, these findings identify GPR81 as a tumor-promoting receptor in breast cancer progression and suggest a novel mechanism that regulates GPR81-dependent activation of the PI3K/Akt signaling axis in tumor microenvironment.

  6. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  7. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Chiu-Fang; Yang, Jai-Sing; Tsai, Fuu-Jen; Chiang, Ni-Na; Lu, Chi-Cheng; Huang, Yu-Syuan; Chen, Chun; Chen, Fu-An

    2016-05-01

    Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting.

  8. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Su [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Ji-Yun [Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Kang, Hyo-Jin [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Hyung-Jin [Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  9. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    International Nuclear Information System (INIS)

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-01-01

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  10. Anti-angiogenic-specific adverse events in patients with non-small cell lung cancer treated with nintedanib and docetaxel

    DEFF Research Database (Denmark)

    Reck, Martin; Mellemgaard, Anders; von Pawel, Joachim

    2015-01-01

    +docetaxel in the overall population and overall survival was significantly improved in the pre-specified analysis of patients with adenocarcinoma. We evaluated the frequency of characteristic adverse events (AEs) commonly seen with existing anti-angiogenic agents. MATERIALS AND METHODS: The incidence and intensity of AEs......, hypertension, bleeding, thromboembolic events, and skin disorders. RESULTS AND CONCLUSION: The incidence of patients with all-grade gastrointestinal (GI) perforations was low and balanced between arms (0.5% in both) and across histologies; the incidence of non-GI perforations was 1.2% with nintedanib......+docetaxel versus 0.2% with placebo+docetaxel. The incidence of some events was higher with nintedanib+docetaxel versus placebo+docetaxel; hypertension (3.5% vs 0.9%), rash (11.0% vs 8.1%), and cutaneous adverse reactions (13.0% vs 10.7%). Rash and cutaneous adverse reactions were predominantly Grade 1-2 with both...

  11. Ghrelin did not change coronary angiogenesis in diet-induced obese mice.

    Science.gov (United States)

    Khazaei, M; Tahergorabi, Z

    2017-02-28

    Ghrelin is a 28 amino acids peptide that initially was recognized as an endogenous ligand for growth hormone secretagogue receptor (GHSR). Recently, a number of studies demonstrated that ghrelin is a cardiovascular hormone with a series cardiovascular effect. The main objective of this study was to investigate the effect of systemic ghrelin administration on angiogenesis in the heart and its correlation with serum leptin levels in normal and diet-induced obese mice. 24 male C57BL/6 mice were randomly divided into four groups: normal diet (ND) or control, ND+ghrelin, high-fat-diet (HFD) or obese and HFD+ghrelin (n=6/group). Obese and control groups received HFD or ND, respectively, for 14 weeks. Then, the ghrelin was injected subcutaneously 100µg/kg twice daily. After 10 days, the animals were sacrificed, blood samples were taken and the hearts were removed. The angiogenic response in the heart was assessed by immunohisochemical staining. HFD significantly increased angiogenesis in the heart expressed as the number of CD31 positive cells than standard diet. Ghrelin did not alter angiogenesis in the heart in both obese and control groups, however, it reduced serum nitric oxide (NO) and leptin levels in obese mice. There was a strong positive correlation between the number of CD31 positive cells and serum leptin concentration (r=0.74). Leptin as an angiogenic factor has a positive correlation with angiogenesis in the heart. Although systemic administration of ghrelin reduced serum leptin and NO levels in obese mice, however, it could not alter coronary angiogenesis.

  12. DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses.

    Science.gov (United States)

    Bruneau, Sarah; Nakayama, Hironao; Woda, Craig B; Flynn, Evelyn A; Briscoe, David M

    2013-09-05

    The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.

  13. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells

    International Nuclear Information System (INIS)

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stephane; Bobichon, Helene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William

    2006-01-01

    UVA irradiation, dose-dependently (5-20 J/cm 2 ), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen ( 1 O 2 ). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively

  14. Effects of " vitex agnus castus" extract and magnesium supplementation, alone and in combination, on osteogenic and angiogenic factors and fracture healing in women with long bone fracture

    OpenAIRE

    Mohammad Hassan Eftekhari; Zahra Hassanzadeh Rostami; Mohammad Jafar Emami; Hamid Reza Tabatabaee

    2014-01-01

    Background: The purpose of this study was to investigate the effects of the combination of vitex agnus castus extract, as a source of phytoestrogens, plus magnesium supplementation on osteogenic and angiogenic factors and callus formation in women with long bone fracture. Material and Methods: In a double-blind randomized placebo controlled trial, 64 women with long bone fracture, 20-45 years old, were randomly allocated to receive 1) one Agnugol tablet (4 mg dried fruit extract of vitex agnu...

  15. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hao [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing (China); Xiang, Yongsheng [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, First Affiliated Hospital of Jinan University, Guangzhou (China); Jiang, Xiaodan; Ke, Yiquan; Xiao, Zongyu; Guo, Yang; Wang, Qiujing; Du, Mouxuan; Qin, Linsha; Zou, Yuxi; Cai, Yingqian [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Chen, Zhenzhou, E-mail: czz1020@163.com [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Xu, Ruxiang, E-mail: zjxuruxiang@163.com [Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Department of Neurosurgery, Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing (China)

    2013-11-01

    Highlights: •Expression of hTERT and VEGF changed the lifespan and morphology of hBMSCs. •The expression of VEGF and hTRET promoted angiogenesis in vitro and in vivo. •The expression of VEGF and hTRET in hBMSCs had few effects on tumorigenicity. -- Abstract: Previous studies have confirmed the therapeutic effects of bone marrow stromal cells (BMSCs) transplantation on cerebral ischemia. However, the proliferative, differentiative, and homing capacity of BMSC from the elderly are significantly reduced, especially after several passages expansion in vitro. In this study, by introducing lentivirus-mediated hTERT and VEGF genes to modify human BMSCs from aged donors, we observed extended lifespan, promoted angiogenic capacity while less enhanced tumorigenicity of the genetically engineering BMSCs. These results therefore suggest that the modification of aged BMSCs by dual expression of hTERT and VEGF may be used for autologous cell replacement for ischemic cerebrovascular disease in elderly patients.

  16. Dual expression of hTERT and VEGF prolongs life span and enhances angiogenic ability of aged BMSCs

    International Nuclear Information System (INIS)

    Tang, Hao; Xiang, Yongsheng; Jiang, Xiaodan; Ke, Yiquan; Xiao, Zongyu; Guo, Yang; Wang, Qiujing; Du, Mouxuan; Qin, Linsha; Zou, Yuxi; Cai, Yingqian; Chen, Zhenzhou; Xu, Ruxiang

    2013-01-01

    Highlights: •Expression of hTERT and VEGF changed the lifespan and morphology of hBMSCs. •The expression of VEGF and hTRET promoted angiogenesis in vitro and in vivo. •The expression of VEGF and hTRET in hBMSCs had few effects on tumorigenicity. -- Abstract: Previous studies have confirmed the therapeutic effects of bone marrow stromal cells (BMSCs) transplantation on cerebral ischemia. However, the proliferative, differentiative, and homing capacity of BMSC from the elderly are significantly reduced, especially after several passages expansion in vitro. In this study, by introducing lentivirus-mediated hTERT and VEGF genes to modify human BMSCs from aged donors, we observed extended lifespan, promoted angiogenic capacity while less enhanced tumorigenicity of the genetically engineering BMSCs. These results therefore suggest that the modification of aged BMSCs by dual expression of hTERT and VEGF may be used for autologous cell replacement for ischemic cerebrovascular disease in elderly patients

  17. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Gao, Zhong-Xiu-Zi; Huang, Da-Yong; Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong; Zheng, Jin-Hua

    2010-01-01

    Research highlights: → It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. → The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. → Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and m

  18. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong-Xiu-Zi [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Huang, Da-Yong [Department of Oncology, The Second Clinical Hospital, Harbin Medical University, Harbin (China); Li, Hai-Xia; Zhang, Li-Na; Lv, Yan-Hong; Cui, Hai-Dong [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China); Zheng, Jin-Hua, E-mail: jhzhenghrbmu@yahoo.cn [Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin (China)

    2010-09-10

    Research highlights: {yields} It has been shown that scutellarin exhibits a variety of pharmacological actions, including anti-oxidative, anti-inflammatory, vasodilator as well as cardiovascular and cerebrovascular ischemia protective effects, indicating beneficial vascular effects of scutellarin. Therefore, it is speculated that scutellarin may be able to stimulate angiogenesis, which could be beneficial in the treatment of ischemic disease, wound healing and tissue regeneration. {yields} The purpose of the present study was to elucidate the direct angiogenic actions of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. {yields} Our results showed that scutellarin to directly induce in vitro angiogenesis, which is closely correlated with upregulated MMP-2 expression, suggesting a potential for increasing angiogenesis. -- Abstract: Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin's effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin's angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly

  19. Blocking S1P interaction with S1P1 receptor by a novel competitive S1P1-selective antagonist inhibits angiogenesis

    International Nuclear Information System (INIS)

    Fujii, Yasuyuki; Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi; Igarashi, Yasuyuki; Goitsuka, Ryo

    2012-01-01

    Highlights: ► The effect of a newly developed S1P 1 -selective antagonist on angiogenic responses. ► S1P 1 is a critical component of VEGF-related angiogenic responses. ► S1P 1 -selective antagonist showed in vitro activity to inhibit angiogenesis. ► S1P 1 -selective antagonist showed in vivo activity to inhibit angiogenesis. ► The efficacy of S1P 1 -selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P 1 ) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P 1 and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P 1 -selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P 1 antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P 1 is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  20. Do cell based tissue engineering products for meniscus regeneration influence vascularization?

    Science.gov (United States)

    Koch, Matthias; Ehrenreich, Tobias; Koehl, Gudrun; Pattappa, Girish; Pfeifer, Christian; Loibl, Markus; Müller, Michael; Nerlich, Michael; Angele, Peter; Zellner, Johannes

    2017-01-01

    Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appear to be a promising strategy for the treatment of meniscal defects. Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice. Observations were undertaken during a 14 days period. Cell preconditioning differed between experimental groups. Immunohistochemical analysis of the regenerated tissue in the meniscus-ring induced by cell loaded composite scaffolds for differentiation and anti-angiogenic factors were performed. Meniscus-pellets and MSC-/MC-based tissue-engineering-products induced angiogenesis. An accelerated vascularization was detected in the group of meniscus-pellets derived from the vascularized zone compared to avascular meniscus-pellets. In terms of cell-based tissue-engineering-products, chondrogenic preconditioning resulted in significantly increased vessel growth. MSC-constructs showed an accelerated angiogenesis. Immunohistochemical evaluation showed a progressive differentiation and lower content for anti-angiogenic endostatin in the precultured group. Preconditioning of MC-/MSC-based tissue-engineering-products is a promising tool to influence the angiogenic potential of tissue-engineering-products and to adapt these properties according to the aimed tissue qualities.

  1. Models for radiation-induced tissue degeneration and conceptualization of rehabilitation of irradiated tissue by cell therapy

    International Nuclear Information System (INIS)

    Phulpin, Berengere

    2011-01-01

    Radiation therapy induced acute and late sequelae within healthy tissue included in the irradiated area. In general, lesions are characterized by ischemia, cell apoptosis and fibrosis. In this context, cell therapy using bone marrow mesenchymal stem cells (BMSC) might represent an attractive new therapeutic approach, based partly on their angiogenic ability and their involvement in the natural processes of tissue repair. The first part of this work consisted in the development of experimental mouse model of radio-induced tissue degeneration similar to that occurring after radiotherapy. The aim was to better understand the physiopathological mechanisms of radiation-induced tissue damage and to determine the best treatment strategy. The second part of this work investigated the feasibility of autologous BMSC therapy on the murine model of radiation previously established with emphasis on two pre-requisites: the retention of the injected cells within the target tissue and the evaluation of the graft on bone metabolism. This preclinical investigation in a mouse model constitutes an essential step allowing an evaluation of the benefit of cell therapy for the treatment of radiation-induced tissue injury. Data from these studies could allow the proposal of clinical studies [fr

  2. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  3. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    Directory of Open Access Journals (Sweden)

    Michel Goldberg

    2015-01-01

    Full Text Available The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically.

  4. Angiogenic properties of sustained release platelet-rich plasma: characterization in-vitro and in the ischemic hind limb of the mouse.

    Science.gov (United States)

    Bir, Shyamal Chandra; Esaki, Jiro; Marui, Akira; Yamahara, Kenichi; Tsubota, Hideki; Ikeda, Tadashi; Sakata, Ryuzo

    2009-10-01

    While single growth factor has limitation to induce optimal neovascularization, platelet-rich plasma (PRP) is an autologous reserver of various growth factors. However, little is known about the mechanism of PRP-related neovascularization.The objective of this investigation was to characterize the angiogenic and growth factor content of PRP and to determine, in vitro, its effect on endothelial cell proliferation. Additionally, this experiment sought to determine the effectiveness of different compositions of PRP (solution versus sustained release) on perfusion and neovascularization in a murine model of hind limb ischemia. Different growth factors were measured by enzyme-linked immunosorbent assay (ELISA). In vivo study, we used gelatin hydrogel as a sustained release carrier for growth factors in PRP. We induced hind limb ischemia by excising right femoral artery in wild type C57BL6 mice. After surgery, mice were randomly assigned to four experimental groups; control (C), 100 muL of sustained release form of platelet-poor plasma (PPP), 100 muL of solution form of PRP (PRP-sol), 100 muL of sustained release form of PRP (PRP-sr); each formulation was administered via an intramuscular injection to the ischemic hind limb. Endpoint evaluations were blood perfusion by laser Doppler perfusion image, vascular density by anti Von Willebrand factor (vWF), and mature vessel density by anti smooth muscle actin (SMA) antibody. Green fluorescent protein (GFP+) transgenic mice were generated by transplantation of bone marrow derived mononuclear cells to wild type C57BL6 mice, and finally CD34+ cell in the ischemic site of transgenic mice was detected by staining with anti-CD34 antibody. In vitro study showed that PRP containing different growth factors induces endothelial cell proliferation and capillary tube formation. In vivo study demonstrated that sustained release of PRP increased perfusion of ischemic tissue as measured by laser Doppler perfusion imaging (LDPI) (57 +/- 12

  5. Curcumin and turmeric attenuate arsenic-induced angiogenesis in ovo.

    Science.gov (United States)

    Pantazis, Panayotis; Varman, Aarthi; Simpson-Durand, Cindy; Thorpe, Jessica; Ramalingam, Satish; Subramaniam, Dharmalingam; Houchen, Courtney; Ihnat, Michael; Anant, Shrikant; Ramanujam, Rama P

    2010-01-01

    Trivalent arsenic [As(III)] is currently approved by the FDA for the treatment of chronic and acute leukemias. However, As(III) has also demonstrated damaging effects on human health, including development of cardiovascular disease, diabetes, and cancer. Further, As(III) is a potent angiogenic agent. In this context, curcumin, an active ingredient in the dietary agent turmeric, has demonstrated potent antiproliferative, antiinflammatory, and antiangiogenic properties. In this report, we have shown that both curcumin and turmeric inhibit expression of vascular endothelial growth factor in HCT-116 human colon cancer cells exposed to As(III). Further, in the chicken chorioallantoic membrane assay model, treatment with low As(III) concentrations results in extensive increase in blood vessel density, which, however, is reduced in the presence of curcumin or turmeric. Collectively, the findings reported here strongly suggest that turmeric and curcumin can dramatically attenuate the process of angiogenesis induced by low As(III) concentrations.

  6. Ginsenoside-Rg{sub 1} induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Hoi-Hin [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Chan, Lai-Sheung [Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Poon, Po-Ying [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Yue, Patrick Ying-Kit [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Wong, Ricky Ngok-Shun, E-mail: rnswong@hkbu.edu.hk [Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China); Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR (China)

    2015-09-15

    Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg{sub 1} (Rg{sub 1}), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg{sub 1}-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg{sub 1} could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3′-UTR. Intriguingly, ginsenoside-Rg{sub 1} was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg{sub 1}-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg{sub 1} could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg{sub 1,} and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy. - Highlights: • Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. • Ginsenoside-Rg{sub 1} (Rg{sub 1}) has been demonstrated as an angiogenesis-stimulating compound. • We found that Rg{sub 1} induces angiogenesis by

  7. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  8. Increased Retinal Expression of the Pro-Angiogenic Receptor GPR91 via BMP6 in a Mouse Model of Juvenile Hemochromatosis.

    Science.gov (United States)

    Arjunan, Pachiappan; Gnanaprakasam, Jaya P; Ananth, Sudha; Romej, Michelle A; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D; Martin, Pamela M; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D; Ganapathy, Vadivel

    2016-04-01

    Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv(-/-) mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv(-/-) retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv(-/-) mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv(-/-) pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Expression of GPR91 was higher in Hjv(-/-) retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv(-/-) retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv(-/-) retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization.

  9. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-01-01

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy

  10. Blocking S1P interaction with S1P{sub 1} receptor by a novel competitive S1P{sub 1}-selective antagonist inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yasuyuki, E-mail: y.fujii@po.rd.taisho.co.jp [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Igarashi, Yasuyuki [Laboratory of Biomembrane and Biofunctional Chemistry, Hokkaido University, Sapporo, Hokkaido 060-0812 (Japan); Goitsuka, Ryo [Division of Development and Aging, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022 (Japan)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer The effect of a newly developed S1P{sub 1}-selective antagonist on angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1} is a critical component of VEGF-related angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vitro activity to inhibit angiogenesis. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vivo activity to inhibit angiogenesis. Black-Right-Pointing-Pointer The efficacy of S1P{sub 1}-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P{sub 1}) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P{sub 1} and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P{sub 1}-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P{sub 1} antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P{sub 1} is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  11. Pristimerin Inhibits Prostate Cancer Bone Metastasis by Targeting PC-3 Stem Cell Characteristics and VEGF-Induced Vasculogenesis of BM-EPCs

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2015-08-01

    Full Text Available Background/Aims: Prostate cancer (PCa is one of the most common malignant cancers and a major leading cause of cancer deaths in men. Cancer stem-like cells are shown to be highly tumorigenic, pro-angiogenic and can significantly contribute to tumor new vessel formation and bone marrow derived-EPCs (BM-EPCs are shown to recruit to the angiogenic switch in tumor growth and metastatic progression, suggesting the importance of targeting cancer stem cells (CSCs and EPCs for novel tumor therapies. Pristimerin, an active component isolated from Celastraceae and Hippocrateaceae, has shown anti-tumor effects in some cell lines in previous studies. However, the effect and mechanism of Pristimerin on CSCs and EPCs in PCa bone metastasis are not well studied. Methods: The effect of Pristimerin on PC-3 stem cell characteristics and metastasis were detected by spheroid formation, CD133 and CD44 protein expression, matrix-gel invasive assay and colony-formation assay in vitro, VEGF and pro-inflammatory cytokines expression by ELISA assay, and tumor tumorigenicity by X-ray and MR in NOD-SCID mice model in vivo. In addition, we also detected the effect of Pristimerin on VEGF-induced vasculogenesis and protein expression of BM-EPCs. Results: Pristimerin could significantly inhibit spheroid formation and protein expression of CD133 and CD44, reduce VEGF and pro-inflammation cytokines expression of PC-3 cell, and prevent the xenografted PC-3 tumor growth in the bone of nude mice. The present data also showed that Pristimerin significantly inhibited VEGF-induced vasculogenesis of BM-EPCs by suppressing the EPCs functions including proliferation, adhesion, migration, tube formation and inactivation the phosphorylation of VEGFR-2, Akt and eNOS. Conclusion: These data provide evidence that Pristimerin has strong potential for development as a novel agent against prostate bone metastasis by suppressing PC-3 stem cell characteristics and VEGF-induced vasculogenesis of BM-EPCs.

  12. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Li Chen

    2015-01-01

    Full Text Available Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2/Bcl-2 associated X protein (Bax in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases.

  13. Reduced angiogenic factor expression in intrauterine fetal growth restriction using semiquantitative immunohistochemistry and digital image analysis.

    Science.gov (United States)

    Alahakoon, Thushari I; Zhang, Weiyi; Arbuckle, Susan; Zhang, Kewei; Lee, Vincent

    2018-05-01

    To localize, quantify and compare angiogenic factors, vascular endothelial growth factor (VEGF), placental growth factor (PlGF), as well as their receptors fms-like tyrosine kinase receptor (Flt-1) and kinase insert domain receptor (KDR) in the placentas of normal pregnancy and complications of preeclampsia (PE), intrauterine fetal growth restriction (IUGR) and PE + IUGR. In a prospective cross-sectional case-control study, 30 pregnant women between 24-40 weeks of gestation, were recruited into four clinical groups. Representative placental samples were stained for VEGF, PlGF, Flt-1 and KDR. Analysis was performed using semiquantitative methods and digital image analysis. The overall VEGF and Flt-1 were strongly expressed and did not show any conclusive difference in the expression between study groups. PlGF and KDR were significantly reduced in expression in the placentas from pregnancies complicated by IUGR compared with normal and preeclamptic pregnancies. The lack of PlGF and KDR may be a cause for the development of IUGR and may explain the loss of vasculature and villous architecture in IUGR. Automated digital image analysis software is a viable alternative method to the manual reading of placental immunohistochemical staining. © 2018 Japan Society of Obstetrics and Gynecology.

  14. Exosomes from Cardiomyocyte Progenitor Cells and Mesenchymal Stem Cells Stimulate Angiogenesis Via EMMPRIN.

    Science.gov (United States)

    Vrijsen, Krijn R; Maring, Janita A; Chamuleau, Steven A J; Verhage, Vera; Mol, Emma A; Deddens, Janine C; Metz, Corina H G; Lodder, Kirsten; van Eeuwijk, Esther C M; van Dommelen, Susan M; Doevendans, Pieter A; Smits, Anke M; Goumans, Marie-José; Sluijter, Joost P G

    2016-10-01

    To date, cellular transplantation therapy has not yet fulfilled its high expectations for cardiac repair. A major limiting factor is lack of long-term engraftment of the transplanted cells. Interestingly, transplanted cells can positively affect their environment via secreted paracrine factors, among which are extracellular vesicles, including exosomes: small bi-lipid-layered vesicles containing proteins, mRNAs, and miRNAs. An exosome-based therapy will therefore relay a plethora of effects, without some of the limiting factors of cell therapy. Since cardiomyocyte progenitor cells (CMPC) and mesenchymal stem cells (MSC) induce vessel formation and are frequently investigated for cardiac-related therapies, the pro-angiogenic properties of CMPC and MSC-derived exosome-like vesicles are investigated. Both cell types secrete exosome-like vesicles, which are efficiently taken up by endothelial cells. Endothelial cell migration and vessel formation are stimulated by these exosomes in in vitro models, mediated via ERK/Akt-signaling. Additionally, these exosomes stimulated blood vessel formation into matrigel plugs. Analysis of pro-angiogenic factors revealed high levels of extracellular matrix metalloproteinase inducer (EMMPRIN). Knockdown of EMMPRIN on CMPCs leads to a diminished pro-angiogenic effect, both in vitro and in vivo. Therefore, CMPC and MSC exosomes have powerful pro-angiogenic effects, and this effect is largely mediated via the presence of EMMPRIN on exosomes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  16. Molecular basis for the regulation of hypoxia-inducible factor-1α levels by 2-deoxy-D-ribose.

    Science.gov (United States)

    Ikeda, Ryuji; Tabata, Sho; Tajitsu, Yusuke; Nishizawa, Yukihiko; Minami, Kentaro; Furukawa, Tatsuhiko; Yamamoto, Masatatsu; Shinsato, Yoshinari; Akiyama, Shin-Ichi; Yamada, Katsushi; Takeda, Yasuo

    2013-09-01

    The angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-Deoxy-D-ribose, a degradation product of thymidine generated by TP enzymatic activity, inhibits the upregulation of hypoxia-inducible factor (HIF) 1α, BNIP3 and caspase-3 induced by hypoxia. In the present study, we investigated the molecular basis for the suppressive effect of 2-deoxy-D-ribose on the upregulation of HIF-1α. 2-Deoxy-D-ribose enhanced the interaction of HIF-1α and the von Hippel-Lindau (VHL) protein under hypoxic conditions. It did not affect the expression of HIF-1α, prolyl hydroxylase (PHD)1/2/3 and VHL mRNA under normoxic or hypoxic conditions, but enhanced the interaction of HIF-1α and PHD2 under hypoxic conditions. 2-Deoxy-D-ribose also increased the amount of hydroxy-HIF-1α in the presence of the proteasome inhibitor MG-132. The expression levels of TP are elevated in many types of malignant solid tumors and, thus, 2-deoxy-D-ribose generated by TP in these tumors may play an important role in tumor progression by preventing hypoxia-induced apoptosis.

  17. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  18. Association between Placental Lesions, Cytokines and Angiogenic Factors in Pregnant Women with Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Ingrid C Weel

    Full Text Available Preeclampsia (PE is considered the leading cause of maternal and perinatal morbidity and mortality. The placenta seems to play an essential role in this disease, probably due to factors involved in its formation and development. The present study aimed to investigate the association between placental lesions, cytokines and angiogenic factors in pregnant women with preeclampsia (PE. We evaluated 20 normotensive pregnant women, 40 with early-onset PE and 80 with late-onset PE. Placental samples were analyzed for histopathology, immunohistochemistry and determination of granulocyte-macrophage colony-stimulating factor (GM-CSF, interleukin-10 (IL-10, transforming growth factor-beta 1 (TGF-β1, tumor necrosis factor-alpha (TNF-α, placental growth factor (PlGF, vascular endothelial growth factor (VEGF, fms-like tyrosine-kinase-1 (Flt-1 and endoglin (Eng levels. Higher percentages of increased syncytial knots and increased perivillous fibrin deposits, and greater levels of TNF-α, TGF-β1and Flt-1 were detected in placentas from early-onset PE. Levels of IL-10, VEGF and PlGF were decreased in PE versus normotensive placentas. Both the TNF-α/IL-10 and sFlt-1/PlGF ratios were higher in placental homogenate of early-onset PE than late-onset PE and control groups. The more severe lesions and the imbalance between TNF-α/IL-10 and PlGF/sFlt-1 in placentas from early-onset PE allows differentiation of early and late-onset PE and suggests higher placental impairment in early-onset PE.

  19. Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue.

    Science.gov (United States)

    Popa, Mirel-Adrian; Mihai, Maria-Cristina; Constantin, Alina; Şuică, Viorel; Ţucureanu, Cătălin; Costache, Raluca; Antohe, Felicia; Dubey, Raghvendra K; Simionescu, Maya

    2018-01-01

    The use of mesenchymal stem cells (MSC) as a therapeutic tool in cardiovascular diseases is promising. Since androgens exert some beneficial actions on the cardiovascular system, we tested our hypothesis that this hormone could promote MSC-mediated repair processes, also. Cultured MSCs isolated from Wharton's jelly were exposed to 30 nM dihydrotestosterone (DHT) for 1 or 4 days and the effects of the hormone on their growth/migration/adhesion and the underlying mechanisms were assessed. Results were obtained by real-time cell impedance measurements, and DNA quantification showed that DHT increased MSC proliferation by ~30%. As determined by xCELLigence system, DHT augmented (~2 folds) the migration of MSC toward cardiac tissue slices (at 12 h), and this effect was blocked by flutamide, an androgen receptor (AR) antagonist. Exposure of cells to DHT, upregulated the gene and protein expression of AR , EMMPRIN and MMP-9 and downregulated the expression of MMP-2 DHT significantly induced the release of nitric oxide by MSC (≥2-fold) and flutamide blocked this effect. When MSCs were co-cultured with cardiac slices, immunohistochemical analysis and qRT-PCR showed that the integration of DHT-stimulated MSC was significantly higher than that of in controls. In conclusion, our findings provide the first evidence that DHT promotes MSC growth, migration and integration into the cardiac slices. The modulating effects of DHT were associated with upregulation of ARs and of key molecules known to promote tissue remodeling and angiogenesis. Our findings suggest that priming of MSC with DHT may potentially increase their capability to regenerate cardiac tissue; in vivo studies are needed to confirm our in vitro findings. © 2018 Society for Endocrinology.

  20. Sphingosine kinase 1/sphingosine-1-phosphate (S1P)/S1P receptor axis is involved in ovarian cancer angiogenesis.

    Science.gov (United States)

    Dai, Lan; Liu, Yixuan; Xie, Lei; Wu, Xia; Qiu, Lihua; Di, Wen

    2017-09-26

    Sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) signaling pathway has been implicated in a variety of pathological processes of ovarian cancer. However, the function of this axis in ovarian cancer angiogenesis remains incompletely defined. Here we provided the first evidence that SphK1/S1P/S1PR 1/3 pathway played key roles in ovarian cancer angiogenesis. The expression level of SphK1, but not SphK2, was closely correlated with the microvascular density (MVD) of ovarian cancer tissue. In vitro , the angiogenic potential and angiogenic factor secretion of ovarian cancer cells could be attenuated by SphK1, but not SphK2, blockage and were restored by the addition of S1P. Moreover, in these cells, we found S1P stimulation induced the angiogenic factor secretion via S1PR 1 and S1PR 3 , but not S1PR 2 . Furthermore, inhibition of S1PR 1/3 , but not S1PR 2 , attenuated the angiogenic potential and angiogenic factor secretion of the cells. in vivo , blockage of SphK or S1PR 1/3 could attenuate ovarian cancer angiogenesis and inhibit angiogenic factor expression in mouse models. Collectively, the current study showed a novel role of SphK1/S1P/S1PR 1/3 axis within the ovarian cancer, suggesting a new target to block ovarian cancer angiogenesis.

  1. AdVEGF-B186 and AdVEGF-DΔNΔC induce angiogenesis and increase perfusion in porcine myocardium.

    Science.gov (United States)

    Nurro, Jussi; Halonen, Paavo J; Kuivanen, Antti; Tarkia, Miikka; Saraste, Antti; Honkonen, Krista; Lähteenvuo, Johanna; Rissanen, Tuomas T; Knuuti, Juhani; Ylä-Herttuala, Seppo

    2016-11-01

    Coronary heart disease remains a significant clinical problem, and new therapies are needed especially for patients with refractory angina for whom the current therapies do not provide sufficient relief. The aim of this study was to find out if angiogenic gene therapy using new members of the vascular endothelial growth factor (VEGF) family, VEGF-B 186 and VEGF-D ΔNΔC , increase myocardial perfusion as measured by the positron emission tomography (PET) 15 O-imaging, and whether there would be coronary steal effect to the contralateral side. Furthermore, safety of intramyocardial angiogenic adenoviral gene transfer was evaluated. Intramyocardial adenoviral (Ad) VEGF-B 186 or AdVEGF-D ΔNΔC gene transfers were given endovascularly into the porcine posterolateral wall of the left ventricle (n=34). Six days later, PET 15 O-imaging for myocardial perfusion and coronary angiography were performed. AdVEGF-B 186 and AdVEGF-D ΔNΔC induced angiogenesis and increased total microvascular area 1.8-fold (95% CI 0.2 to 3.5) and 2.8-fold (95% CI 1.4 to 4.3), respectively. At rest, perfusion was maintained at normal levels, but at stress, relative perfusion was increased 1.4-fold (95% CI 1.1 to 1.7) for AdVEGF-B 186 and 1.3-fold (95% CI 1.0 to 1.7) for AdVEGF-D ΔNΔC , without causing coronary steal effect in the control area. The therapy was well tolerated and did not lead to any significant changes in laboratory safety parameters. Both AdVEGF-B 186 and AdVEGF-D ΔNΔC gene transfers induced efficient angiogenesis in the myocardium resulting in an increased myocardial perfusion measured by PET. Importantly, local perfusion increase did not induce any coronary steal effect. As such, both treatments seem suitable new candidates for the induction of therapeutic angiogenesis for the treatment of refractory angina. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration

    International Nuclear Information System (INIS)

    Guardiola-Serrano, Francisca; Haendeler, Judith; Lukosz, Margarete; Sturm, Karsten; Melchner, Harald von; Altschmied, Joachim

    2008-01-01

    Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine involved in apoptotic cell death, cellular proliferation, differentiation, inflammation, and tumorigenesis. In tumors it is secreted by tumor associated macrophages and can have both pro- and anti-tumorigenic effects. To identify genes regulated by TNFα, we performed a gene trap screen in the mammary carcinoma cell line MCF-7 and recovered 64 unique, TNFα-induced gene trap integration sites. Among these were the genes coding for the zinc finger protein ZC3H10 and for the transcription factor grainyhead-like 3 (GRHL3). In line with the dual effects of TNFα on tumorigenesis, we found that ZC3H10 inhibits anchorage independent growth in soft agar suggesting a tumor suppressor function, whereas GRHL3 strongly stimulated the migration of endothelial cells which is consistent with an angiogenic, pro-tumorigenic function

  3. 10-Hydroxy-2-decenoic Acid, a Major Fatty Acid from Royal Jelly, Inhibits VEGF-Induced Angiogenesis in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Izuta

    2009-01-01

    Full Text Available Vascular endothelial growth factor (VEGF is reported to be a potent pro-angiogenic factor that plays a pivotal role in both physiological and pathological angiogenesis. Royal jelly (RJ is a honeybee product containing various proteins, sugars, lipids, vitamins and free amino acids. 10-Hydroxy-2-decenoic acid (10HDA, a major fatty acid component of RJ, is known to have various pharmacological effects; its antitumor activity being especially noteworthy. However, the mechanism underlying this effect is unclear. We examined the effect of 10HDA on VEGF-induced proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs. Our findings showed that, 10HDA at 20 µM or more significantly inhibited such proliferation, migration and tube formation. Similarly, 10 µM GM6001, a matrix metalloprotease inhibitor, prevented VEGF-induced migration and tube formation. These findings indicate that 10HDA exerts an inhibitory effect on VEGF-induced angiogenesis, partly by inhibiting both cell proliferation and migration. Further experiments will be needed to clarify the detailed mechanism.

  4. A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model.

    Science.gov (United States)

    Bao, Hanmei; Lv, Feng; Liu, Tianjun

    2017-12-01

    Site-specific controlled release of exogenous angiogenic growth factors, such as recombinant human basic fibroblast growth factor (rhbFGF), has become a promising approach to improve peripheral vascular disease. Here, we have developed an implant composed of spiral magnesium (Mg) and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The encapsulated protein could release continually for 4weeks with well preserved bioactivity. We compared the angiogenic effect produced by Mg-PLGA-rhbFGF with that of a PLGA implant loaded with rhbFGF (PLGA-rhbFGF). The incorporation of Mg in the implant raised the microclimate pH in the polymer, which preserved the stability of rhbFGF. Mg-PLGA-rhbFGF exhibited advantages over PLGA-rhbFGF implant in terms of a cytocompatibility evaluation. An in vivo angiogenesis test further confirmed the efficacy of released rhbFGF. HE, CD31 and α-SMA staining revealed that the controlled release of rhbFGF from the Mg-PLGA-rhbFGF implant was superior in promoting angiogenesis compared with that of the PLGA-rhbFGF implant. Four weeks post-implantation, the capillary density of the Mg-PLGA-rhbFGF group was significantly higher than that of the PLGA-rhbFGF, control and the normal group (pspiral magnesium and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The preparation method does not involve any complex processes and results in a high encapsulation efficiency (approximately 100%). The degradation of metal Mg raise the microclimate pH in the PLGA polymer, which could well preserve the bioactivity of rhbFGF incorporated in the implant. Mg-PLGA-based, sustained local delivery of rhbFGF promotes post-ischemic angiogenesis and blood flow recovery in rat limb ischemic model. This work marks the first report for controlled release of rhbFGF in combination with metal Mg, and suggests potential therapeutic usefulness of Mg-PLGA-rhbFGF for tissue ischemia

  5. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    Science.gov (United States)

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (pabnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding. Copyright © 2017. Published by Elsevier Inc.

  6. Anti-proliferative effects of gold nanoparticles functionalized with Semaphorin 3F

    Science.gov (United States)

    Tan, Gamze; Onur, Mehmet Ali

    2017-08-01

    The new vessel formations play a vital role in growth and spread of cancer. Current anti-angiogenic therapies, predominantly based on vascular endothelial growth factor (VEGF) inhibition, can inhibit vascular development; however, they are usually ineffective against the primary tumor occurrence. The aim of this study was to assess anti-angiogenic effects of gold nanoparticles (AuNPs) functionalized with Semaphorin (Sema) 3F protein. The polyethylene glycol (PEG)-coated AuNPs were covalently functionalized with Sema 3F and labeled with the TAMRA fluorescent dye. The effect of the NPs on human umbilical vein endothelial cells (HUVECs) is probed in the way of internalization and viability assays. AuNP-Sema 3F bioconjugates showed great endothelial cell uptake. AuNP-Sema 3F bioconjugates reduced VEGF165-induced endothelial cell proliferation more effectively than Sema 3F alone, suggesting that the therapeutic effects of Sema 3F can be improved by conjugation to AuNPs. Also, no significant toxicity effect was induced by bioconjugates. This is the first study that reports a covalent binding of full length Sema 3F to NPs. The exogenously administration of Sema 3F, which has both anti-angiogenic and anti-tumoral activity, to tumor vasculature via a carrying platform may not only lead to more effective anti-angiogenic treatment but also may make current approach more applicable in clinical use like drug delivery system. [Figure not available: see fulltext.

  7. Expressions of pathologic markers in PRP based chondrogenic differentiation of human adipose derived stem cells.

    Science.gov (United States)

    Pakfar, Arezou; Irani, Shiva; Hanaee-Ahvaz, Hana

    2017-02-01

    Optimization of the differentiation medium through using autologous factors such as PRP is of great consideration, but due to the complex, variable and undefined composition of PRP on one hand and lack of control over the absolute regulatory mechanisms in in vitro conditions or disrupted and different mechanisms in diseased tissue microenvironments in in vivo conditions on the other hand, it is complicated and rather unpredictable to get the desired effects of PRP making it inevitable to monitor the possible pathologic or undesired differentiation pathways and therapeutic effects of PRP. Therefore, in this study the probable potential of PRP on inducing calcification, inflammation and angiogenesis in chondrogenically-differentiated cells was investigated. The expressions of chondrogenic, inflammatory, osteogenic and angiogenic markers from TGFβ or PRP-treated cells during chondrogenic differentiation of human adipose-derived stem cells (ADSCs) was evaluated. Expressions of Collagen II (Col II), Aggrecan, Sox9 and Runx2 were quantified using q-RT PCR. Expression of Col II and X was investigated by immunocytochemistry as well. Glycosaminoglycans (GAGs) production was also determined by GAG assay. Possible angiogenic/inflammatory potential was determined by quantitatively measuring the secreted VEGF, TNFα and phosphorylated VEGFR2 via ELISA. In addition, the calcification of the construct was monitored by measuring ALP activity and calcium deposition. Our data showed that PRP positively induced chondrogenesis; meanwhile the secretion of angiogenic and inflammatory markers was decreased. VEGFR2 phosphorylation and ALP activity had a decreasing trend, but tissue mineralization was enhanced upon treating with PRP. Although reduction in inflammatory/angiogenic potential of the chondrogenically differentiated constructs highlights the superior effectiveness of PRP in comparison to TGFβ for chondrogenic differentiation, yet further improvement of the PRP

  8. EWS Knockdown and Taxifolin Treatment Induced Differentiation and Removed DNA Methylation from p53 Promoter to Promote Expression of Puma and Noxa for Apoptosis in Ewing's Sarcoma.

    Science.gov (United States)

    Hossain, Mohammad Motarab; Ray, Swapan Kumar

    2014-10-01

    Ewing's sarcoma is a pediatric tumor that mainly occurs in soft tissues and bones. Malignant characteristics of Ewing's sarcoma are correlated with expression of EWS oncogene. We achieved knockdown of EWS expression using a plasmid vector encoding EWS short hairpin RNA (shRNA) to increase anti-tumor mechanisms of taxifolin (TFL), a new flavonoid, in human Ewing's sarcoma cells in culture and animal models. Immunofluorescence microscopy and flow cytometric analysis showed high expression of EWS in human Ewing's sarcoma SK-N-MC and RD-ES cell lines. EWS shRNA plus TFL inhibited 80% cell viability and caused the highest decreases in EWS expression at mRNA and protein levels in both cell lines. Knockdown of EWS expression induced morphological features of differentiation. EWS shRNA plus TFL caused more alterations in molecular markers of differentiation than either agent alone. EWS shRNA plus TFL caused the highest decreases in cell migration with inhibition of survival, angiogenic and invasive factors. Knockdown of EWS expression was associated with removal of DNA methylation from p53 promoter, promoting expression of p53, Puma, and Noxa. EWS shRNA plus TFL induced the highest amounts of apoptosis with activation of extrinsic and intrinsic pathways in both cell lines in culture. EWS shRNA plus TFL also inhibited growth of Ewing's sarcoma tumors in animal models due to inhibition of differentiation inhibitors and angiogenic and invasive factors and also induction of activation of caspase-3 for apoptosis. Collectively, knockdown of EWS expression increased various anti-tumor mechanisms of TFL in human Ewing's sarcoma in cell culture and animal models.

  9. NO-dependent proliferation and migration induced by Vitamin D in HUVEC.

    Science.gov (United States)

    Pittarella, Pamela; Squarzanti, Diletta F; Molinari, Claudio; Invernizzi, Marco; Uberti, Francesca; Renò, Filippo

    2015-05-01

    Recently, Vitamin D (Vit. D) has gained importance in cellular functions of a wide range of extraskeletal organs and target tissues, other than bone. In particular, Vit. D has displayed important beneficial effects in the cardiovascular system. Although little is known about the mechanism by which this response is exerted, a Vit. D-induced eNOS-dependent nitric oxide (NO) production in endothelial cells (EC) has been reported. The aim of this study was to evaluate whether Vit. D administration could affect human EC proliferation and/or migration through NO production. For this purpose, HUVEC (human umbilical vein endothelial cells) were used to evaluate Vit. D effects on cell proliferation and migration in a 3D matrix. Experiments were also performed in the presence of the specific VDR ligand ZK159222 and eNOS inhibitor L-NAME. This study demonstrated that Vit. D can promote both HUVEC proliferation and migration in a 3D matrix. These effects were NO dependent, since HUVEC proliferation and migration were abrogated along with Vit. D induced MMP-2 expression by inhibiting eNOS activity by L-NAME. These findings support the role of Vit. D in the angiogenic process, suggesting new applications for Vit. D in tissue repair and wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of gintonin on the proliferation, migration, and tube formation of human umbilical-vein endothelial cells: involvement of lysophosphatidic-acid receptors and vascular-endothelial-growth-factor signaling

    Directory of Open Access Journals (Sweden)

    Sung-Hee Hwang

    2016-10-01

    Conclusion: The gintonin-mediated proliferation, migration, and vascular-endothelial-growth-factor release in HUVECs via LPA-receptor activation may be one of in vitro mechanisms underlying ginseng-induced angiogenic and wound-healing effects.

  11. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Science.gov (United States)

    Forget, Mary A; Voorhees, Jeffrey L; Cole, Sara L; Dakhlallah, Duaa; Patterson, Ivory L; Gross, Amy C; Moldovan, Leni; Mo, Xiaokui; Evans, Randall; Marsh, Clay B; Eubank, Tim D

    2014-01-01

    Reports demonstrate the role of M-CSF (CSF1) in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2), the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs) with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor expression.

  12. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro.

    Science.gov (United States)

    Ciafrè, Silvia Anna; Niola, Francesco; Wannenes, Francesca; Farace, Maria Giulia

    2004-01-01

    Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors. Copyright 2004 S. Karger AG, Basel

  13. Oral Mucosa Harbors a High Frequency of Endothelial Cells: A Novel Postnatal Cell Source for Angiogenic Regeneration.

    Science.gov (United States)

    Zhou, Jian; Rogers, Jason H; Lee, Scott H; Sun, DongMing; Yao, Hai; Mao, Jeremy J; Kong, Kimi Y

    2017-01-15

    Endothelial progenitor cells/endothelial cells (EPCs/ECs) have great potential to treat pathological conditions such as cardiac infarction, muscle ischemia, and bone fractures, but isolation of EPC/ECs from existing cell sources is challenging due to their low EC frequency. We have isolated endothelial progenitor (EP)-like cells from rat oral mucosa and characterized their yield, immunophenotype, growth, and in vivo angiogenic potential. The frequency of EP-like cells derived from oral mucosa is thousands of folds higher than EPCs derived from donor-match bone marrow samples. EP-like cells from oral mucosa were positive for EC markers CD31, VE-Cadherin, and VEGFR2. Oral mucosa-derived EP-like cells displayed robust uptake of acetylated low-density lipoprotein and formed stable capillary networks in Matrigel. Subcutaneously implanted oral mucosa-derived EP-like cells anastomosed with host blood vessels, implicating their ability to elicit angiogenesis. Similar to endothelial colony-forming cells, EP-like cells from oral mucosa have a significantly higher proliferative rate than human umbilical vein endothelial cells. These findings identify a putative EPC source that is easily accessible in the oral cavity, potentially from discarded tissue specimens, and yet with robust yield and potency for angiogenesis in tissue and organ regeneration.

  14. Effect of alternating and direct currents on Pseudomonas ...

    African Journals Online (AJOL)

    ONOS

    2010-09-20

    Sep 20, 2010 ... Based on the effect of natural selection, these bacteria become resistant to ..... Effect of electrical stimulation on chronic leg ulcer size and appearance. Phys. ... stimulation directly induces pre-angiogenic responses in vascular.

  15. Phosphorylated human prolactin (S179D-hPRL) is a potent anti-angiogenic hormone in vitro and in vivo; Prolactina humana pseudofosforilada (S179D-hPRL) e um potente fator anti-angiogenico in vitro e in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Eric Kinnosuke Martins

    2006-07-01

    previously shown, S179D-hPRL blocked extracellular regulated kinase (ERK) phosphorylation in response to bFGF, but, in addition, continued co-incubation showed a delayed and prolonged activation of ERK. PD98059 [a specific mitogen-activated protein kinase (MAPkinase) inhibitor] inhibited this delayed activation of ERK and the effects of S179D-hPRL on all parameters except p53, or activity of the Bax promoter. We conclude that low doses of S179D-hPRL block bFGF-induced ERK signaling and yet activates ERK in a different time frame to elevate p21, and activate the extrinsic pathway. Longer incubations and higher concentrations, however, additionally activate the intrinsic pathway using an alternate intracellular signal. These findings suggest that circulating levels of phosphorylated hPRL may reduce the progression of cancer and, furthermore, that S179D-hPRL may be a useful anti-angiogenic therapeutic. (author)

  16. A Model for Breast Cancer-Induced Angiogenesis

    Science.gov (United States)

    1997-09-01

    Protein kinase C isozyme expression in phorbol ester- sensitive and -resistant EL4 thymoma cells . J. Biol. Chem. 266:5676-568 1. Jalava A, Akerman K...that exogenous angiogenic factors were unable to stimulate endothelial cell proliferation. Furthermore, under non- stimulated conditions, endothelial... cell proliferation was restricted to the adipose tissue and perilobular connective tissue. The endothelium within the fibrous stroma could almost never

  17. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    Science.gov (United States)

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  18. Angiogenic competency of biodegradable hydrogels fabricated from polyethylene glycol-crosslinked tyrosine-derived polycarbonates

    Directory of Open Access Journals (Sweden)

    HJ Sung

    2008-04-01

    Full Text Available Synthetic biomaterials can be used as instructive biological milieus to guide cellular behaviour and function. To further realize this application, we synthesized a series of structurally similar hydrogels and tested their ability to modulate angiogenesis. Hydrogels were synthesized from poly(DTE-co-x% DT carbonate crosslinked by y% poly(ethylene glycol (PEG. Hydrogel desaminotyrosyl tyrosine (DT contents (x% ranged from 10-100%, and crosslink densities (y% PEG-crosslinker ranged from 5-80%. The hydrogels were fashioned into porous scaffolds with highly interconnected macro- and micro-pore (>100 and <10 mm in diameter, respectively architecture using poly(DTE-co-10%DT carbonate crosslinked with 8% PEG. Under physiological conditions (in vitro, the hydrogels degraded into three major products: desaminotyrosyl-tyrosine ethyl ester (DTE, desaminotyrosyl tyrosine (DT, and poly(ethylene glycol-di-DT-hydrazide (PEG-di-DT hydrazide. Increasing either DT content or crosslink density brought quickened degradation. Because DT and DTE, two of the three major degradation products, have not demonstrated any noticeable cytotoxicity or angiogenic effect in previous studies, we measured the cytotoxicity of PEG-di-DT hydrazide, the third major degradation product. We found that PEG-di-DT hydrazide only displayed significant cytotoxicity at the high concentration of 100 mg/mL. Interestingly, PEG-di-DT hydrazide and its further degradation product PEG-dihydrazide stimulated in vitro endothelial cell migration and tubulogenesis, which is comparable to results found with FGF-beta treatment. Subcutaneous implantation of the PEG-crosslinked poly(DTE-co-10%DT carbonate scaffolds into the backs of rats elicited greater tissue growth over time and superior vascularization than poly(DTE carbonate implantation. These results show that this new class of biomaterials has a strong potential to modulate angiogenesis.

  19. Human chorionic gonadotropin, angiogenic factors, and preeclampsia risk: a nested case-control study.

    Science.gov (United States)

    Asvold, Bjørn O; Eskild, Anne; Vatten, Lars J

    2014-05-01

    To study whether human chorionic gonadotropin concentrations during pregnancy or combinations of human chorionic gonadotropin and other angiogenic factors, soluble fms-like tyrosine kinase 1 and placental growth factor (PlGF), are associated with preeclampsia risk. Nested case-control study. Population cohort of pregnant women. A total of 121 cases of preterm (cases of term preeclampsia (≥37 weeks of gestation) and 356 women without preeclampsia (controls). Women with preeclampsia were identified by linkage to the Medical Birth Registry of Norway. Concentrations of human chorionic gonadotropin, soluble fms-like tyrosine kinase 1 and PlGF were measured in maternal serum samples collected in each trimester of pregnancy. Odds ratios of preterm and term preeclampsia. High human chorionic gonadotropin concentrations (highest quartile) in the first trimester were associated with reduced risk for preterm preeclampsia (OR 0.3, 95% CI 0.1-0.9), compared with low human chorionic gonadotropin (lowest quartile), whereas high human chorionic gonadotropin concentrations in the second trimester were associated with increased risk for preterm preeclampsia (OR 4.0, 95% CI 1.8-8.9). High human chorionic gonadotropin concentrations in the third trimester were associated with increased risk for term preeclampsia (OR 4.8, 95% CI 1.8-13.3). Concentrations of human chorionic gonadotropin above the median value combined with PlGF below the median in the second trimester were associated with very high risk for preterm preeclampsia (OR 36.9, 95% CI 8.2-165.8). The results suggest an important role of human chorionic gonadotropin in the pathophysiological processes that lead to preeclampsia. The combined association of human chorionic gonadotropin and PlGF indicates a possible synergism between underlying biological pathways. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  20. Clinical Importance of Angiogenic Cytokines, Fibrinolytic Activity and Effusion Size in Parapneumonic Effusions

    Science.gov (United States)

    Chung, Chi-Li; Hsiao, Shih-Hsin; Hsiao, George; Sheu, Joen-Rong; Chen, Wei-Lin; Chang, Shi-Chuan

    2013-01-01

    Objective To investigate the relationship among angiogenic cytokines, fibrinolytic activity and effusion size in parapneumonic effusion (PPE) and their clinical importance. Methods From January 2008 through December 2010, 26 uncomplicated (UPPE) and 38 complicated (CPPE) PPE were studied. Based on chest ultrasonography, there were non-loculated in 30, uni-loculated in 12, and multi-loculated effusions in 22 patients. The effusion size radiological scores, and effusion vascular endothelial growth factor (VEGF), interleukin (IL)-8, plasminogen activator inhibitor type-1 (PAI-1) and tissue type plasminogen activator (tPA) were measured on admission. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results The effusion size and effusion VEGF, IL-8 and PAI-1/tPA ratio were significantly higher in CPPE than in UPPE, and significantly higher in multi-loculated PPE than in non-locualted and uni-loculated PPE, respectively. VEGF (cutoff value 1975 pg/ml) and IL-8 (cutoff value 1937 pg/ml) seemed best to discriminate between UPPE and CPPE. VEGF, IL-8 and effusion size correlated positively with PAI-1/tPA ratio in both UPPE and CPPE. Moreover, the level of VEGF, but not IL-8, correlated positively with effusion size in all patients (r = 0.79, peffusion were prone to have medical treatment failure (n = 10; VEGF, odds ratio 1.01, p = 0.02; effusion size, odds ratio 1.26, p = 0.01). Additionally, ten patients with RPT had larger effusion size and higher levels of VEGF and PAI-1/tPA ratio than did those without. Conclusions In PPE, VEGF and IL-8 levels are valuable to identify CPPE, and higher VEGF level or larger effusion is associated with decreased fibrinolytic activity, development of pleural loculation and fibrosis, and higher risk of medical treatment failure. PMID:23308155

  1. Therapeutic Implications from Sensitivity Analysis of Tumor Angiogenesis Models

    Science.gov (United States)

    Poleszczuk, Jan; Hahnfeldt, Philip; Enderling, Heiko

    2015-01-01

    Anti-angiogenic cancer treatments induce tumor starvation and regression by targeting the tumor vasculature that delivers oxygen and nutrients. Mathematical models prove valuable tools to study the proof-of-concept, efficacy and underlying mechanisms of such treatment approaches. The effects of parameter value uncertainties for two models of tumor development under angiogenic signaling and anti-angiogenic treatment are studied. Data fitting is performed to compare predictions of both models and to obtain nominal parameter values for sensitivity analysis. Sensitivity analysis reveals that the success of different cancer treatments depends on tumor size and tumor intrinsic parameters. In particular, we show that tumors with ample vascular support can be successfully targeted with conventional cytotoxic treatments. On the other hand, tumors with curtailed vascular support are not limited by their growth rate and therefore interruption of neovascularization emerges as the most promising treatment target. PMID:25785600

  2. TU-G-BRA-07: Characterization of Tumor Proliferation During Successive Cycles of Anti-Angiogenic Therapy Using [F-18]FLT PET/CT

    International Nuclear Information System (INIS)

    Scarpelli, M; Perlman, S; Harmon, S; Perk, T; Scully, P; Bruce, J; Liu, G; Jeraj, R

    2015-01-01

    Purpose: Studies have shown cessation of anti-angiogenic treatment during the first cycle of therapy resulted in rebound of tumor proliferation (flare). This study characterized proliferation dynamics during the first and third cycle of anti-angiogenic treatment using [F-18]FLT PET. Methods: Thirteen patients with various solid cancers were treated with Axitinib (Pfizer, Inc) at a dose of 5mg orally, twice daily, on contiguous three-week cycles with intermittent dosing (two-weeks-on/one-week-off). All patients received three FLT PET/CT scans during cycle 1 (C1): at baseline (C1D0), peak Axitinib concentration (C1D14), and the end of washout (C1D21). Ten patients received up to an additional three scans at corresponding time points during cycle 3 (C3). Lesions were identified by a nuclear medicine physician and manually contoured. Tumor burden was quantified using standard SUV metrics. Correlations between imaging metrics across C1 and C3 were calculated using the Spearman correlation. Results: At C1 peak drug concentration 11/13 patients had decreases in SUVtotal, with median decrease of 50% (change from C1D0 to C1D14). At C3 peak drug concentration 7/7 patients had decreases in SUVtotal, with median decrease of 20% (C3D0 to C3D14). Proliferative flare during C1 washout (>20% increase from C1D14 to C1D21) occurred in 9/13 patients, with median SUVtotal increase of 190%. Flare was also seen in C3 for 5/5 patients, with median SUVtotal increase of 70% (change from C3D14 to C3D21). Correlations were found between changes in imaging metrics across C1 and C3, notably the change in SUVtotal from C1D0 to C1D21 and the change in SUVtotal from C1D0 to C3D0 (ρ = 0.80). Conclusion: Measurements of SUVtotal showed that both patient response to treatment and flare were evident in both cycles of treatment. Correlation between changes in SUVtotal across C1 and C3 suggest early time points could be used to characterize patient response in later cycles. Research funded in part by

  3. A Phase 1 trial of the PARP inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer

    Science.gov (United States)

    Liu, Joyce F.; Tolaney, Sara M.; Birrer, Michael; Fleming, Gini F.; Buss, Mary K.; Dahlberg, Suzanne E.; Lee, Hang; Whalen, Christin; Tyburski, Karin; Winer, Eric; Ivy, Percy; Matulonis, Ursula A.

    2014-01-01

    Background PARP-inhibitors and anti-angiogenics have activity in recurrent ovarian and breast cancer; however, the effect of combined therapy against PARP and angiogenesis in this population has not been reported. We investigated the toxicities and recommended phase 2 dosing (RP2D) of the combination of cediranib, a multitargeted inhibitor of VEGFR-1/2/3, and olaparib, a PARP-inhibitor (NCT01116648). Methods Cediranib tablets once daily and olaparib capsules twice daily were administered orally in a standard 3+3 dose escalation design. Patients with recurrent ovarian or metastatic triple-negative breast cancer were eligible. Patients had measurable disease by RECIST 1.1 or met GCIG CA125 criteria. No prior PARP-inhibitors or anti-angiogenics in the recurrent setting were allowed. Results 28 patients (20 ovarian, 8 breast) enrolled to 4 dose levels. 2 DLTs (1 grade 4 neutropenia ≥4 days; 1 grade 4 thrombocytopenia) occurred at the highest dose level (cediranib 30mg daily; olaparib 400mg BID). The RP2D was cediranib 30mg daily and olaparib 200mg BID. Grade 3 or higher toxicities occurred in 75% of patients, and included grade 3 hypertension (25%) and grade 3 fatigue (18%). One grade 3 bowel obstruction occurred. The overall response rate (ORR) in the 18 RECIST-evaluable ovarian cancer patients was 44%, with a clinical benefit rate (ORR plus SD >24 weeks) of 61%. None of the 7 evaluable breast cancer patients achieved clinical response; 2 patients had stable disease for >24 weeks. Interpretation The combination of cediranib and olaparib has hematologic DLTs and anticipated class toxicities, with promising evidence of activity in ovarian cancer patients. PMID:23810467

  4. In vitro and in vivo study of endothelial cells radio-induced death modulation by Sphingosine-1-Phosphate; Etude in vitro et in vivo de la regulation de la mort radioinduite des cellules endotheliales par la Sphingosine-1-Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Bonnaud, St

    2007-01-15

    Protecting the vasculature from radiation-induced death is a major concern in tissue radioprotection. Developing a model of endothelial cells radiosensitivity, we proved that HMEC-1 undergo 2 waves of death after exposure to 15 Gy: an early pre mitotic apoptosis dependent of ceramide generation and a delayed DNA damage-induced mitotic death. Sphingosine-1-Phosphate (S1P), a ceramide antagonist, protects HMEC-1 only from early apoptosis, but not from mitotic death. We confirmed in vivo the S1P radioprotection from ceramide-mediated radio-induced apoptosis, and that S1P radioprotection is partially mediated by S1Ps receptors. Segregation between these 2 types of death may give the opportunity to define a new class of radioprotectors for normal tissue where quiescent endothelium represent the most sensitive target, while excluding malignant tumor containing pro-proliferating angiogenic endothelial cells, sensitive to mitotic death. (author)

  5. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Chuang, Cheng-Hung; Liu, Chia-Hua; Lu, Ta-Jung; Hu, Miao-Lin

    2014-01-01

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  6. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Cheng-Hung, E-mail: chchuang@hk.edu.tw [Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 1018 Sec. 6 Taiwan Boulevard, Taichung 43302, Taiwan, ROC (China); Liu, Chia-Hua [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Lu, Ta-Jung [Department of Chemistry, Institute of Technology and Innovation Management, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Hu, Miao-Lin, E-mail: mlhuhu@dragon.nchu.edu.tw [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China)

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  7. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    Science.gov (United States)

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation.

    Science.gov (United States)

    Scheidegger, F; Ellner, Y; Guye, P; Rhomberg, T A; Weber, H; Augustin, H G; Dehio, C

    2009-07-01

    The zoonotic pathogen Bartonella henselae (Bh) can lead to vasoproliferative tumour lesions in the skin and inner organs known as bacillary angiomatosis and bacillary peliosis. The knowledge on the molecular and cellular mechanisms involved in this pathogen-triggered angiogenic process is confined by the lack of a suitable animal model and a physiologically relevant cell culture model of angiogenesis. Here we employed a three-dimensional in vitro angiogenesis assay of collagen gel-embedded endothelial cell (EC) spheroids to study the angiogenic properties of Bh. Spheroids generated from Bh-infected ECs displayed a high capacity to form sprouts, which represent capillary-like projections into the collagen gel. The VirB/VirD4 type IV secretion system and a subset of its translocated Bartonella effector proteins (Beps) were found to profoundly modulate this Bh-induced sprouting activity. BepA, known to protect ECs from apoptosis, strongly promoted sprout formation. In contrast, BepG, triggering cytoskeletal rearrangements, potently inhibited sprouting. Hence, the here established in vitro model of Bartonella- induced angiogenesis revealed distinct and opposing activities of type IV secretion system effector proteins, which together with a VirB/VirD4-independent effect may control the angiogenic activity of Bh during chronic infection of the vasculature.

  9. Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy.

    Science.gov (United States)

    Son, Keum-Joo; Choi, Ki Ryung; Lee, Seog Jae; Lee, Hyunah

    2016-02-01

    Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT(+) CD11c(+) cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.

  10. The use of human cornea organotypic cultures to study herpes simplex virus type 1 (HSV-1)-induced inflammation.

    Science.gov (United States)

    Drevets, Peter; Chucair-Elliott, Ana; Shrestha, Priyadarsini; Jinkins, Jeremy; Karamichos, Dimitrios; Carr, Daniel J J

    2015-10-01

    To determine the utility of human organotypic cornea cultures as a model to study herpes simplex virus type 1 (HSV-1)-induced inflammation and neovascularization. Human organotypic cornea cultures were established from corneas with an intact limbus that were retrieved from donated whole globes. One cornea culture was infected with HSV-1 (10(4) plaque-forming units), while the other cornea from the same donor was mock-infected. Supernatants were collected at intervals post-culture with and without infection to determine viral titer (by plaque assay) and pro-angiogenic and proinflammatory cytokine concentration by suspension array analysis. In some experiments, the cultured corneas were collected and evaluated for HSV-1 antigens by immunohistochemical means. Another set of experiments measured susceptibility of human three-dimensional cornea fibroblast constructs, in the presence and absence of TGF-β1, to HSV-1 infection in terms of viral replication and the inflammatory response to infection as a comparison to the organotypic cornea cultures. Organotypic cornea cultures and three-dimensional fibroblast constructs exhibited varying degrees of susceptibility to HSV-1. Fibroblast constructs were more susceptible to infection in terms of infectious virus recovered in a shorter period of time. There were changes in the levels of select pro-angiogenic or proinflammatory cytokines that were dictated as much by the cultures producing them as by whether they were infected with HSV-1 or treated with TGF-β1. Organotypic cornea and three-dimensional fibroblast cultures are likely useful for the identification and short-term study of novel antiviral compounds and virus replication, but are limited in the study of the local immune response to infection.

  11. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.

    Science.gov (United States)

    Schimke, Magdalena M; Stigler, Robert; Wu, Xujun; Waag, Thilo; Buschmann, Peter; Kern, Johann; Untergasser, Gerold; Rasse, Michael; Steinmüller-Nethl, Doris; Krueger, Anke; Lepperdinger, Günter

    2016-04-01

    Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Combined EGFR- and notch inhibition display additive inhibitory effect on glioblastoma cell viability and glioblastoma-induced endothelial cell sprouting in vitro

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Olsen, Louise Stobbe

    2016-01-01

    BACKGROUND: For Glioblastoma (GBM) patients, a number of anti-neoplastic strategies using specifically targeting drugs have been tested; however, the effects on survival have been limited. One explanation could be treatment resistance due to redundant signaling pathways, which substantiates...... the need for combination therapies. In GBM, both the epidermal growth factor receptor (EGFR) and the notch signaling pathways are often deregulated and linked to cellular growth, invasion and angiogenesis. Several studies have confirmed cross-talk and co-dependence of these pathways. Therefore, this study....... In order to determine angiogenic processes, we used an endothelial spheroid sprouting assay. For assessment of secreted VEGF from GBM cells we performed a VEGF-quantikine ELISA. RESULTS: GBM cells were confirmed to express EGFR and Notch and to have the capacity to induce endothelial cell sprouting...

  13. The Metabolic Response of Skeletal Muscle to Endurance Exercise Is Modified by the ACE-I/D Gene Polymorphism and Training State

    Directory of Open Access Journals (Sweden)

    Paola Valdivieso

    2017-12-01

    Full Text Available The insertion/deletion polymorphism in the gene for the regulator of vascular tone, angiotensin-converting enzyme (ACE, is the prototype of a genetic influence on physical fitness and this involves an influence on capillary supply lines and dependent aerobic metabolism in skeletal muscle. The respective interaction of ACE-I/D genotype and training status on local metabolic and angiogenic reactions in exercised muscle is not known. Toward this end we characterized the metabolomic and angiogenic response in knee extensor muscle, m. vastus lateralis, in 18 untrained and 34 endurance-trained (physically active, V˙O2max > 50 mL min−1 kg−1 white British men to an exhaustive bout of one-legged cycling exercise. We hypothesized that training status and ACE-I/D genotype affect supply-related muscle characteristics of exercise performance in correspondence to ACE expression and angiotensin 2 levels. ACE-I/D genotype and training status developed an interaction effect on the cross-sectional area (CSA of m. vastus lateralis and mean CSA of slow type fibers, which correlated with peak power output (r ≥ 0.44. Genotype × training interactions in muscle also resolved for exercise-induced alterations of 22 metabolites, 8 lipids, glycogen concentration (p = 0.016, ACE transcript levels (p = 0.037, and by trend for the pro-angiogenic factor tenascin-C post exercise (p = 0.064. Capillary density (p = 0.001, capillary-to-fiber ratio (p = 0.010, systolic blood pressure (p = 0.014, and exercise-induced alterations in the pro-angiogenic protein VEGF (p = 0.043 depended on the ACE-I/D genotype alone. Our observations indicate that variability in aerobic performance in the studied subjects was in part reflected by an ACE-I/D-genotype-modulated metabolic phenotype of a major locomotor muscle. Repeated endurance exercise appeared to override this genetic influence in skeletal muscle by altering the ACE-related metabolic response and molecular aspects of the

  14. The Metabolic Response of Skeletal Muscle to Endurance Exercise Is Modified by the ACE-I/D Gene Polymorphism and Training State.

    Science.gov (United States)

    Valdivieso, Paola; Vaughan, David; Laczko, Endre; Brogioli, Michael; Waldron, Sarah; Rittweger, Jörn; Flück, Martin

    2017-01-01

    The insertion/deletion polymorphism in the gene for the regulator of vascular tone, angiotensin-converting enzyme (ACE), is the prototype of a genetic influence on physical fitness and this involves an influence on capillary supply lines and dependent aerobic metabolism in skeletal muscle. The respective interaction of ACE-I/D genotype and training status on local metabolic and angiogenic reactions in exercised muscle is not known. Toward this end we characterized the metabolomic and angiogenic response in knee extensor muscle, m. vastus lateralis , in 18 untrained and 34 endurance-trained (physically active, [Formula: see text]O2max > 50 mL min -1 kg -1 ) white British men to an exhaustive bout of one-legged cycling exercise. We hypothesized that training status and ACE-I/D genotype affect supply-related muscle characteristics of exercise performance in correspondence to ACE expression and angiotensin 2 levels. ACE-I/D genotype and training status developed an interaction effect on the cross-sectional area (CSA) of m. vastus lateralis and mean CSA of slow type fibers, which correlated with peak power output ( r ≥ 0.44). Genotype × training interactions in muscle also resolved for exercise-induced alterations of 22 metabolites, 8 lipids, glycogen concentration ( p = 0.016), ACE transcript levels ( p = 0.037), and by trend for the pro-angiogenic factor tenascin-C post exercise ( p = 0.064). Capillary density ( p = 0.001), capillary-to-fiber ratio ( p = 0.010), systolic blood pressure ( p = 0.014), and exercise-induced alterations in the pro-angiogenic protein VEGF ( p = 0.043) depended on the ACE-I/D genotype alone. Our observations indicate that variability in aerobic performance in the studied subjects was in part reflected by an ACE-I/D-genotype-modulated metabolic phenotype of a major locomotor muscle. Repeated endurance exercise appeared to override this genetic influence in skeletal muscle by altering the ACE-related metabolic response and molecular aspects

  15. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    International Nuclear Information System (INIS)

    Belakavadi, Madesh; Prabhakar, B.T.; Salimath, Bharathi P.

    2005-01-01

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells

  16. Stimulating retinal blood vessel protection with hypoxia-inducible factor stabilization: identification of novel small-molecule hydrazones to inhibit hypoxia-inducible factor prolyl hydroxylase (an American Ophthalmological Society thesis).

    Science.gov (United States)

    Sears, Jonathan E; Hoppe, George

    2013-09-01

    To discover novel small molecules that inhibit hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD), a key enzyme that regulates the posttranslational stability and hence activity of HIF. NIH3T3 cell line stably transfected with firefly luciferase under a HIF-1-inducible promoter was used to screen a Chembridge library of 34,000 small molecules of molecular weight 250 to 550 Da. Positive hits were considered at 4.5-fold higher luminescence than control. Selected compounds were validated in vitro. The most effective dose was then used to treat mice expressing firefly luciferase fused to the oxygen-dependent degradation domain (lucODD) in order to determine the location of the receptor for systemic treatment with small-molecule HIF PHD inhibitors. Twenty-three novel small molecules were discovered, the majority of which were hydrazones and hydrazines. Of the 23 compounds, each had different selectivity for expression of erythropoietin or vascular endothelial growth factor, two angiogenic, HIF-regulated gene products. In addition, each showed different selectivity for hepatocytes or kidney, or both or neither, when injected intraperitoneally in an in vivo reporter gene assay. The discovery of multiple small molecules that inhibit HIF PHD identifies new reagents to develop strategies to prevent the degradation of HIF by its selective PHD. These molecules are novel hypoxia mimetics that may provide new strategies to protect retinovasculature from hyperoxia.

  17. Expression and regulation of HIF-1 alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor

    NARCIS (Netherlands)

    Westra, Johanna; Brouwer, Elisabeth; van Roosmalen, Ingrid A. M.; Doornbos-van der Meer, Berber; van Leeuwen, Miek A.; Posthumus, Marcel D.; Kallenberg, Cees G. M.

    2010-01-01

    Background: Macrophages expressing the pro-angiogenic transcription factor hypoxia-inducible factor (HIF)-1alpha have been demonstrated in rheumatoid arthritis (RA) in the synovial tissue. Aim of the present study was to investigate intracellular signal transduction regulation of pro-inflammatory

  18. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Ali Seyed M

    2008-06-01

    Full Text Available Abstract Background Photodynamic therapy (PDT involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h and long (6 h drug light interval (DLI hypericin-PDT (HY-PDT treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors. Results Immunohistochemistry (IHC results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF, tumor necrosis growth factor-α (TNF-α, interferon-α (IFN-α and basic fibroblast growth factor (bFGF were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF and Ephrin-A3 (EFNA3 were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways. Conclusion In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT.

  19. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors

    Science.gov (United States)

    Kermani, Pouneh; Rafii, Dahlia; Jin, David K.; Whitlock, Paul; Schaffer, Wendy; Chiang, Anne; Vincent, Loic; Friedrich, Matthias; Shido, Koji; Hackett, Neil R.; Crystal, Ronald G.; Rafii, Shahin; Hempstead, Barbara L.

    2005-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) is required for the maintenance of cardiac vessel wall stability during embryonic development through direct angiogenic actions on endothelial cells expressing the tropomysin receptor kinase B (TrkB). However, the role of BDNF and a related neurotrophin ligand, neurotrophin-4 (NT-4), in the regulation of revascularization of the adult tissues is unknown. To study the potential angiogenic capacity of BDNF in mediating the neovascularization of ischemic and non-ischemic adult mouse tissues, we utilized a hindlimb ischemia and a subcutaneous Matrigel model. Recruitment of endothelial cells and promotion of channel formation within the Matrigel plug by BDNF and NT-4 was comparable to that induced by VEGF-A. The introduction of BDNF into non-ischemic ears or ischemic limbs induced neoangiogenesis, with a 2-fold increase in the capillary density. Remarkably, treatment with BDNF progressively increased blood flow in the ischemic limb over 21 days, similar to treatment with VEGF-A. The mechanism by which BDNF enhances capillary formation is mediated in part through local activation of the TrkB receptor and also by recruitment of Sca-1+CD11b+ pro-angiogenic hematopoietic cells. BDNF induces a potent direct chemokinetic action on subsets of marrow-derived Sca-1+ hematopoietic cells co-expressing TrkB. These studies suggest that local regional delivery of BDNF may provide a novel mechanism for inducing neoangiogenesis through both direct actions on local TrkB-expressing endothelial cells in skeletal muscle and recruitment of specific subsets of TrkB+ bone marrow–derived hematopoietic cells to provide peri-endothelial support for the newly formed vessels. PMID:15765148

  20. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  1. Epigenetic control of hypoxia inducible factor-1α-dependent expression of placental growth factor in hypoxic conditions.

    Science.gov (United States)

    Tudisco, Laura; Della Ragione, Floriana; Tarallo, Valeria; Apicella, Ivana; D'Esposito, Maurizio; Matarazzo, Maria Rosaria; De Falco, Sandro

    2014-04-01

    Hypoxia plays a crucial role in the angiogenic switch, modulating a large set of genes mainly through the activation of hypoxia-inducible factor (HIF) transcriptional complex. Endothelial cells play a central role in new vessels formation and express placental growth factor (PlGF), a member of vascular endothelial growth factor (VEGF) family, mainly involved in pathological angiogenesis. Despite several observations suggest a hypoxia-mediated positive modulation of PlGF, the molecular mechanism governing this regulation has not been fully elucidated. We decided to investigate if epigenetic modifications are involved in hypoxia-induced PlGF expression. We report that PlGF expression was induced in cultured human and mouse endothelial cells exposed to hypoxia (1% O 2), although DNA methylation at the Plgf CpG-island remains unchanged. Remarkably, robust hyperacetylation of histones H3 and H4 was observed in the second intron of Plgf, where hypoxia responsive elements (HREs), never described before, are located. HIF-1α, but not HIF-2α, binds to identified HREs. Noteworthy, only HIF-1α silencing fully inhibited PlGF upregulation. These results formally demonstrate a direct involvement of HIF-1α in the upregulation of PlGF expression in hypoxia through chromatin remodeling of HREs sites. Therefore, PlGF may be considered one of the putative targets of anti-HIF therapeutic applications.

  2. Bone marrow transplantation rescues intestinal mucosa after whole body radiation via paracrine mechanisms

    International Nuclear Information System (INIS)

    Chang, Ya Hui; Lin, Li-Mei; Lou, Chi-Wen; Chou, Chuan-Kai; Ch’ang, Hui-Ju

    2012-01-01

    Purpose: Our previous study reveals bone marrow transplantation (BMT) recruits host marrow-derived myelomonocytic cells to radiation-injured intestine, enhancing stromal proliferation, leading secondarily to epithelial regeneration. In this study, we propose BMT ameliorates intestinal damage via paracrine mechanisms. Materials and methods: Angiogenic cytokines within the intestinal mucosa of mice after whole body irradiation (WBI) with or without BMT were measured by cytokine array and ELISA. BM conditioned medium (BMCM) with or without treatment with neutralizing antibodies to angiogenic cytokines were continuously infused into mice for three days after radiation. Carrageenan was used to deplete myelomonocytic cells of mice. Results: BMT increased VEGF, bFGF and other angiogenic and chemotactic cytokines in the intestinal mucosa within 24 h after WBI. Infusion of BMCM ameliorated radiation-induced intestinal damage with improved stromal activity and prolonged survival of mice. Neutralization of bFGF, PDGF and other angiogenic cytokines within BMCM abolished the mitigating effect to the intestine. Pretreatment of carrageenan to recipient mice reversed some of the cytokine levels, including VEGF, bFGF and IGF within the intestinal mucosa after BMT. Conclusions: Our result suggests BMT recruits host myelomonocytic cells and enhances intestinal stroma proliferation after radiation by secreting cytokines enhancing angiogenesis and chemotaxis. Host myelomonocytic cells further uplift the paracrine effect to enhance intestinal mucosal recovery.

  3. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells.

    Science.gov (United States)

    Shang, Fei; Liu, Mingming; Li, Bingwei; Zhang, Xiaoyan; Sheng, Youming; Liu, Shuying; Han, Jianqun; Li, Hongwei; Xiu, Ruijuan

    2016-05-01

    Angiogenesis is a long-term complex process involving various protein factors in hepatocellular carcinoma (HCC). Dexamethasone (Dex), considered as a synthetic glucocorticoid drug in clinical therapy, has been reported to have the therapeutic efficacy against liver cancer by intervention of abnormal glycolysis. In this study, we investigated the anti-angiogenic effect of Dex in murine liver cancer and attempted to demonstrate the potential mechanism. The malignant cells H22 were treated with Dex. Western blotting was used to explore the expression of PEPCK and G6Pase which were the two key enzymes that regulated gluconeogenesis. The supernatants from cultured H22 treated by Dex were collected and co-cultured with HUVECs. In vitro, migration assay, transwell assay and tube formation assay were performed to assess for migration, proliferation and tube formation abilities of HUVECs, respectively. In situ murine hepatoma model with green fluorescent protein markers (HepG2-GFP) was constructed to determine angiogenesis after treatment by Dex. PEPCK and G6Pase were almost deficient in H22 compared with normal liver cells NCTC-1469 (P gluconeogenesis could be restored significantly (P gluconeogenesis pathway.

  4. Clinical importance of angiogenic cytokines, fibrinolytic activity and effusion size in parapneumonic effusions.

    Directory of Open Access Journals (Sweden)

    Chi-Li Chung

    Full Text Available OBJECTIVE: To investigate the relationship among angiogenic cytokines, fibrinolytic activity and effusion size in parapneumonic effusion (PPE and their clinical importance. METHODS: From January 2008 through December 2010, 26 uncomplicated (UPPE and 38 complicated (CPPE PPE were studied. Based on chest ultrasonography, there were non-loculated in 30, uni-loculated in 12, and multi-loculated effusions in 22 patients. The effusion size radiological scores, and effusion vascular endothelial growth factor (VEGF, interleukin (IL-8, plasminogen activator inhibitor type-1 (PAI-1 and tissue type plasminogen activator (tPA were measured on admission. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT, were assessed at 6-month follow-up. RESULTS: The effusion size and effusion VEGF, IL-8 and PAI-1/tPA ratio were significantly higher in CPPE than in UPPE, and significantly higher in multi-loculated PPE than in non-locualted and uni-loculated PPE, respectively. VEGF (cutoff value 1975 pg/ml and IL-8 (cutoff value 1937 pg/ml seemed best to discriminate between UPPE and CPPE. VEGF, IL-8 and effusion size correlated positively with PAI-1/tPA ratio in both UPPE and CPPE. Moreover, the level of VEGF, but not IL-8, correlated positively with effusion size in all patients (r = 0.79, p<0.001 and in UPPE (r = 0.64, p<0.001 and CPPE (r = 0.71, p<0.001 groups. The patients with higher VEGF or greater effusion were prone to have medical treatment failure (n = 10; VEGF, odds ratio 1.01, p = 0.02; effusion size, odds ratio 1.26, p = 0.01. Additionally, ten patients with RPT had larger effusion size and higher levels of VEGF and PAI-1/tPA ratio than did those without. CONCLUSIONS: In PPE, VEGF and IL-8 levels are valuable to identify CPPE, and higher VEGF level or larger effusion is associated with decreased fibrinolytic activity, development of pleural loculation and fibrosis, and higher risk of medical treatment failure.

  5. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Mary A Forget

    Full Text Available Reports demonstrate the role of M-CSF (CSF1 in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2, the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor

  6. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.

    Science.gov (United States)

    Sones, Jennifer L; Merriam, Audrey A; Seffens, Angelina; Brown-Grant, Dex-Ann; Butler, Scott D; Zhao, Anna M; Xu, Xinjing; Shawber, Carrie J; Grenier, Jennifer K; Douglas, Nataki C

    2018-05-01

    Preeclampsia (PE), a hypertensive disorder of pregnancy, is a leading cause of maternal and fetal morbidity and mortality. Although the etiology is unknown, PE is thought to be caused by defective implantation and decidualization in pregnancy. Pregnant blood pressure high (BPH)/5 mice spontaneously develop placentopathies and maternal features of human PE. We hypothesized that BPH/5 implantation sites have transcriptomic alterations. Next-generation RNA sequencing of implantation sites at peak decidualization, embryonic day (E)7.5, revealed complement gene up-regulation in BPH/5 vs. controls. In BPH/5, expression of complement factor 3 was increased around the decidual vasculature of E7.5 implantation sites and in the trophoblast giant cell layer of E10.5 placentae. Altered expression of VEGF pathway genes in E5.5 BPH/5 implantation sites preceded complement dysregulation, which correlated with abnormal vasculature and increased placental growth factor mRNA and VEGF 164 expression at E7.5. By E10.5, proangiogenic genes were down-regulated, whereas antiangiogenic sFlt-1 was up-regulated in BPH/5 placentae. We found that early local misexpression of VEGF genes and abnormal decidual vasculature preceded sFlt-1 overexpression and increased complement deposition in BPH/5 placentae. Our findings suggest that abnormal decidual angiogenesis precedes complement activation, which in turn contributes to the aberrant trophoblast invasion and poor placentation that underlie PE.-Sones, J. L., Merriam, A. A., Seffens, A., Brown-Grant, D.-A., Butler, S. D., Zhao, A. M., Xu, X., Shawber, C. J., Grenier, J. K., Douglas, N. C. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.

  7. Angiogenesis PET Tracer Uptake (68Ga-NODAGA-E[(cRGDyK)]₂) in Induced Myocardial Infarction in Minipigs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Follin, Bjarke; Kastrup, Jens

    2016-01-01

    Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following...... myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ₃ integrin has been found to be highly expressed in activated...... endothelial cells and has been identified as a critical modulator of angiogenesis. (68)Ga-NODAGA-E[c(RGDyK)]₂ (RGD) has recently been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ₃ integrin. In the present study, we induced myocardial infarction in Göttingen...

  8. Interleukin-6 triggers human cerebral endothelial cells proliferation and migration: The role for KDR and MMP-9

    International Nuclear Information System (INIS)

    Yao, Jianhua S.; Zhai Wenwu; Young, William L.; Yang Guoyuan

    2006-01-01

    Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for First time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p < 0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression

  9. Levels of serum-circulating angiogenic factors within 1 week prior to delivery are closely related to conditions of pregnant women with pre-eclampsia, gestational hypertension, and/or fetal growth restriction.

    Science.gov (United States)

    Nanjo, Sakiko; Minami, Sawako; Mizoguchi, Mika; Yamamoto, Madoka; Yahata, Tamaki; Toujima, Saori; Shiro, Michihisa; Kobayashi, Aya; Muragaki, Yasuteru; Ino, Kazuhiko

    2017-12-01

    We aimed to investigate maternal serum angiogenic marker profiles within 1 week prior to delivery in cases of gestational hypertension (GH), pre-eclampsia (PE), and/or fetal growth restriction (FGR) with different clinical conditions. We enrolled 165 women with singleton pregnancy. The participants were classified based on three characteristics: (i) proteinuria (GH and PE); (ii) FGR (PE with FGR [PE + FGR], PE alone, and FGR alone); and (iii) onset (early onset PE [EO PE] and late-onset PE [LO PE]). All sera were obtained within 1 week prior to delivery, and soluble fms-like tyrosine kinase 1 (sFlt-1), soluble endoglin (sEng), and placental growth factor (PlGF) were measured with enzyme-linked immunosorbent assay. (i) In PE, a significantly increased sFlt-1, sEng, and sFlt-1 to PlGF ratio (sFlt-1/PlGF) and significantly decreased PlGF were observed compared with GH and Term control, whereas in GH, only sFlt-1/PlGF was significantly higher than Term control. (ii) In PE + FGR, similar changes were more markedly shown compared with PE alone. The FGR alone group exhibited similar tendencies as PE, although significant differences were found in PlGF and sEng levels. (iii) In EO PE, significant changes were observed in all factors compared with LO PE or Term control, while no significant change in PlGF levels was observed between LO PE and Term control. We demonstrated that the levels of circulating angiogenic factors just before delivery are correlated with the severity of hypertensive disorders of pregnancy and FGR. Profiling these specific markers may contribute to better understanding of the clinical conditions in individual patients and their pathogenesis. © 2017 Japan Society of Obstetrics and Gynecology.

  10. Moya moya: étiologie rare d'accident vasculaire cérébral ...

    African Journals Online (AJOL)

    Moya moya disease is an angiogenic disease characterized by the narrowing of the distal internal carotid artery extending to the proximal segments of the middle and anterior cerebral arteries, inducing collateral vessels formation. These vessels come from the collateral parenchymal vessels, the perforating vessels, ...

  11. Critical role of tissue kallikrein in vessel formation and maturation : Implications for therapeutic revascularization

    NARCIS (Netherlands)

    Stone, O.A.; Richer, C.; Emanueli, C.; Weel, V. van; Quax, P.H.A.; Katare, R.; Kraenkel, N.; Campagnolo, P.; Barcelos, L.S.; Siragusa, M.; Sala-Newby, G.B.; Baldessari, D.; Mione, M.; Vincent, M.P.; Benest, A.V.; Al Haj Zen, A.; Gonzalez, J.; Bates, D.O.; Alhenc-Gelas, F.; Madeddu, P.

    2009-01-01

    OBJECTIVE : Human Tissue Kallikrein (hKLK1) overexpression promotes an enduring neovascularization of ischemic tissue, yet the cellular mechanisms of hKLK1-induced arteriogenesis remain unknown. Furthermore, no previous study has compared the angiogenic potency of hKLK1, with its loss of function

  12. T26

    Directory of Open Access Journals (Sweden)

    Z. Pranjol

    2015-11-01

    Conclusion: CD and CL induced proliferation in HOMECs. CD and CL may non- proteolytically contribute to pro-angiogenic responses of the omental microvasculature. Induction of phosphorylation of proliferative kinases ERK1/2, AKT and p38α suggest possible downstream signalling cascades of these proteins.

  13. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes

    2000-01-01

    Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice...

  14. Laser-induced immune modulation inhibits tumor growth in vivo (Conference Presentation)

    Science.gov (United States)

    Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena

    2017-02-01

    Photobiomodulation stands as a recommended therapy for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. We assessed cancer cell metabolism and proliferation in vitro and in vivo after exposure to different laser protocols. We exploited both ectopic melanoma and a more physiological oral carcinogenesis mouse model, followed by molecular, histological and immunohistochemical characterization. Laser irradiation resulted in a slightly increase in cell metabolism and proliferation in vitro, albeit each protocol exerted a difference response. Of notice, in vivo laser light reduced tumour growth and invasiveness, indicating e beneficial effect on tumor microenvironment. Laser-treated tumors were surrounded and infiltrated by immune cells, mainly lymphocytes and dendritic cells, paralleled by an enhanced secretion of type I interferons. In contrast, the number of pro-angiogenic macrophages was reduced in response to laser irradiation, with consequent normalization of the tumor vasculature. Based on these finding we have also started exploring the effect of photobiomodulation on lymphocyte response in an experimental model of vaccination. Preliminary data indicate that laser light induced antigen-specific CD8+ and CD4+ T cell responses. In conclusion, our data point toward photobiomodulation as an effective strategy to boost the immune response in vivo, with relevant, therapeutic activities in both cancer and vaccination experimental models. These results support the safe use of laser light on cancer patients and open the way to innovative therapeutic opportunities.

  15. Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFβ1) in the regulation of ovarian angiogenesis.

    Science.gov (United States)

    Kuo, Shih-Wei; Ke, Ferng-Chun; Chang, Geen-Dong; Lee, Ming-Ting; Hwang, Jiuan-Jiuan

    2011-06-01

    Angiogenesis occurs during ovarian follicle development and luteinization. Pituitary secreted FSH was reported to stimulate the expression of endothelial mitogen VEGF in granulosa cells. And, intraovarian cytokine transforming growth factor (TGF)β1 is known to facilitate FSH-induced differentiation of ovarian granulosa cells. This intrigues us to investigate the potential role of FSH and TGFβ1 regulation of granulosa cell function in relation to ovarian angiogenesis. Granulosa cells were isolated from gonadotropin-primed immature rats and treated once with FSH and/or TGFβ1 for 48 h, and the angiogenic potential of conditioned media (granulosa cell culture conditioned media; GCCM) was determined using an in vitro assay with aortic ring embedded in collagen gel and immunoblotting. FSH and TGFβ1 increased the secreted angiogenic activity in granulosa cells (FSH + TGFβ1 > FSH ≈ TGFβ1 >control) that was partly attributed to the increased secretion of pro-angiogenic factors VEGF and PDGF-B. This is further supported by the evidence that pre-treatment with inhibitor of VEGF receptor-2 (Ki8751) or PDGF receptor (AG1296) throughout or only during the first 2-day aortic ring culture period suppressed microvessel growth in GCCM-treated groups, and also inhibited the FSH + TGFβ1-GCCM-stimulated release of matrix remodeling-associated gelatinase activities. Interestingly, pre-treatment of AG1296 at late stage suppressed GCCM-induced microvessel growth and stability with demise of endothelial and mural cells. Together, we provide original findings that both FSH and TGFβ1 increased the secretion of VEGF and PDGF-B, and that in turn up-regulated the angiogenic activity in rat ovarian granulosa cells. This implicates that FSH and TGFβ1 play important roles in regulation of ovarian angiogenesis during follicle development. Copyright © 2010 Wiley-Liss, Inc.

  16. Apatinib Inhibits Angiogenesis Via Suppressing Akt/GSK3β/ANG Signaling Pathway in Anaplastic Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Zhijian Jin

    2017-12-01

    Full Text Available Background/Aims: Anaplastic thyroid carcinoma (ATC is one of the most lethal human malignancies, and there is no efficient method to slow its process. Apatinib, a novel tyrosine kinase inhibitor (TKI, has been confirmed for its efficacy and safety in the treatment of advanced gastric carcinoma patients. However, the effects of Apatinib in ATC are still unknown. Methods: In this study, we explored the effects and mechanisms of Apatinib on tumor growth and angiogenesis in vitro and in vitro in ATC cells. Angiogenesis antibodies array was utilized to detect the expression of angiogenesis-related genes after Apatinib treatment in ATC cells. In addition, we used Akt activator, Akt inhibitor and GSK3β inhibitor to further study the mechanism for how Apatinib suppressed angiogenesis. Results: Apatinib treatment could suppress the growth of ATC cells in a dose- and time-dependent manner via inducing apoptosis and blocking cell cycle progression at G0/G1 phase. Moreover, Apatinib treatment decreased the expression of angiogenin (ANG and inhibited angiogenesis of ATC cells in vitro and in vitro. We further confirmed that recombinant human ANG (rhANG significantly abrogated Apatinib-mediated anti-angiogenic ability in ATC cells. Additionally, Apatinib treatment decreased the level of p-Akt and p-GSK3β. Moreover, the Apatinib-mediated decrease of ANG and anti-angiogenic ability were partly reversed when an Akt activator, SC79, was administered. Furthermore, the anti-angiogenic ability of Apatinib can be enhanced in the presence of Akt inhibitor, and the inhibition of GSK3β attenuated the anti-angiogenic ability of Apatinib. Conclusion: Our results demonstrated that Apatinib treatment inhibited tumor growth, and Apatinib-induced suppression of Akt/GSK3β/ANG signaling pathway may play an important role in the inhibition of angiogenesis in ATC, supporting a potential therapeutic approach for using Apatinib in the treatment of ATC.

  17. Valproic acid decreases urothelial cancer cell proliferation and induces thrombospondin-1 expression

    Directory of Open Access Journals (Sweden)

    Byler Timothy K

    2012-08-01

    Full Text Available Abstract Background Prevention of bladder cancer recurrence is a central challenge in the management of this highly prevalent disease. The histone deacetylase inhibitor valproic acid (sodium valproate has anti-angiogenic properties and has been shown to decrease bladder cancer growth in model systems. We have previously shown reduced expression of thrombospondin-1 in a mouse model and in human bladder cancer relative to normal urothelium. We speculated that inhibition of angiogenesis by valproate might be mediated by this anti-angiogenic protein. Methods Bladder cancer cell lines UMUC3 and T24 were treated with valproate or another histone deacetylase inhibitor, vorinostat, in culture for a period of three days. Proliferation was assessed by alamar blue reduction. Gene expression was evaluated by reverse transcription of RNA and quantitative PCR. Results Proliferation assays showed treatment with valproate or vorinostat decreased proliferation in both cell lines. Histone deacetylase inhibition also increased relative expression of thrombospondin-1 up to 8 fold at 5 mM valproate. Conclusions Histone deacetylase inhibitors warrant further study for the prevention or treatment of bladder cancer.

  18. Angiogenesis and anti-angiogenesis: Perspectives for the treatment of solid tumors

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Collen, A.; Koolwijk, P.

    1999-01-01

    Angiogenesis is the formation of new blood vessels from preexisting ones. Many solid tumors depend on an extensive newly formed vascular network to become nourished and to expand. Tumor cells induce the formation of an extensive but aberrant vascular network by the secretion of angiogenic factors. A

  19. The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells.

    Science.gov (United States)

    Wajid, Nadia; Naseem, Rashida; Anwar, Sanam Saiqa; Awan, Sana Javaid; Ali, Muhammad; Javed, Sara; Ali, Fatima

    2015-09-01

    Stomal cells derived from Wharton's jelly of human umbilical cord (WJMSCs) are considered as the potential therapeutic agents for regeneration and are getting famous for stem cell banking. Our study aims to evaluate the effects of gestational diabetes on proliferation capacity and viability of WJMSCs. Mesenchymal stromal cells were isolated from Wharton's jelly of human umbilical cords from normal and gestational diabetic (DWJMSCs) mothers. Growth patterns of both types of cells were analyzed through MTT assay and population doubling time. Cell survival, cell death and glucose utilization were estimated through trypan blue exclusion assay, LDH assay and glucose detection assay respectively. Angiogenic ability was evaluated by immunocytochemistry and ELISA for VEGF A. Anti-cancerous potential was analyzed on HeLa cells. DWJMSCs exhibited low proliferative rate, increased population doubling time, reduced cell viability and increased cell death. Interestingly, DWJMSCs were found to have a reduced glucose utilization and anti-cancerous ability while enhanced angiogenic ability. Gestational diabetes induces adverse effects on growth, angiogenic and anti-cancerous potential of WJMSCs.

  20. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  1. Transcriptome Profiling of Neovascularized Corneas Reveals miR-204 as a Multi-target Biotherapy Deliverable by rAAVs

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2018-03-01

    Full Text Available Corneal neovascularization (NV is the major sight-threatening pathology caused by angiogenic stimuli. Current drugs that directly target pro-angiogenic factors to inhibit or reverse the disease require multiple rounds of administration and have limited efficacies. Here, we identify potential anti-angiogenic corneal microRNAs (miRNAs and demonstrate a framework that employs discovered miRNAs as biotherapies deliverable by recombinant adeno-associated viruses (rAAVs. By querying differentially expressed miRNAs in neovascularized mouse corneas induced by alkali burn, we have revealed 39 miRNAs that are predicted to target more than 5,500 differentially expressed corneal mRNAs. Among these, we selected miR-204 and assessed its efficacy and therapeutic benefit for treating injured corneas. Our results show that delivery of miR-204 by rAAV normalizes multiple novel target genes and biological pathways to attenuate vascularization of injured mouse cornea. Importantly, this gene therapy treatment alternative is efficacious and safe for mitigating corneal NV. Overall, our work demonstrates the discovery of potential therapeutic miRNAs in corneal disorders and their translation into viable treatment alternatives.

  2. Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Müller cell and vascular injury in the retina.

    Science.gov (United States)

    Tan, Sih Min; Deliyanti, Devy; Figgett, William A; Talia, Dean M; de Haan, Judy B; Wilkinson-Berka, Jennifer L

    2015-07-01

    Oxidative stress is an important contributor to glial and vascular cell damage in ischemic retinopathies. We hypothesized that ebselen via its ability to reduce reactive oxygen species (ROS) and augment nuclear factor-like 2 (Nrf2) anti-oxidants would attenuate hypoxia-induced damage to macroglial Müller cells and also lessen retinal vasculopathy. Primary cultures of rat Müller cells were exposed to normoxia (21% O2), hypoxia (0.5% O2) and ebselen (2.5 μM) for up to 72 h. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice while control mice were housed in room air. Mice received vehicle (saline, 5% dimethyl sulfoxide) or ebselen (10 mg/kg) each day between postnatal days 6-18. In cultured Müller cells, flow cytometry for dihydroethidium revealed that ebselen reduced the hypoxia-induced increase in ROS levels, whilst increasing the expression of Nrf2-regulated anti-oxidant genes, heme oxygenase 1, glutathione peroxidase-1, NAD(P)H dehydrogenase quinone oxidoreductase 1 and glutamate-cysteine ligase. Moreover, in Müller cells, ebselen reduced the hypoxia-induced increase in protein levels of pro-angiogenic and pro-inflammatory factors including vascular endothelial growth factor, interleukin-6, monocyte chemoattractant-protein 1 and intercellular adhesion molecule-1, and the mRNA levels of glial fibrillary acidic protein (GFAP), a marker of Müller cell injury. Ebselen improved OIR by attenuating capillary vaso-obliteration and neovascularization and a concomitant reduction in Müller cell gliosis and GFAP. We conclude that ebselen protects against hypoxia-induced injury of retinal Müller cells and the microvasculature, which is linked to its ability to reduce oxidative stress, vascular damaging factors and inflammation. Agents such as ebselen may be potential treatments for retinopathies that feature oxidative stress-mediated damage to glia and the microvasculature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer.

    Science.gov (United States)

    Liu, Joyce F; Tolaney, Sara M; Birrer, Michael; Fleming, Gini F; Buss, Mary K; Dahlberg, Suzanne E; Lee, Hang; Whalen, Christin; Tyburski, Karin; Winer, Eric; Ivy, Percy; Matulonis, Ursula A

    2013-09-01

    Poly(ADP-ribose) polymerase (PARP)-inhibitors and anti-angiogenics have activity in recurrent ovarian and breast cancer; however, the effect of combined therapy against PARP and angiogenesis in this population has not been reported. We investigated the toxicities and recommended phase 2 dosing (RP2D) of the combination of cediranib, a multitargeted inhibitor of vascular endothelial growth factor receptor (VEGFR)-1/2/3 and olaparib, a PARP-inhibitor (NCT01116648). Cediranib tablets once daily and olaparib capsules twice daily were administered orally in a standard 3+3 dose escalation design. Patients with recurrent ovarian or metastatic triple-negative breast cancer were eligible. Patients had measurable disease by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 or met Gynecologic Cancer InterGroup (GCIG) CA125 criteria. No prior PARP-inhibitors or anti-angiogenics in the recurrent setting were allowed. 28 patients (20 ovarian, 8 breast) enrolled to 4 dose levels. 2 dose limiting toxicities (DLTs) (1 grade 4 neutropenia ≥ 4 days; 1 grade 4 thrombocytopenia) occurred at the highest dose level (cediranib 30 mg daily; olaparib 400 mg twice daily [BID]). The RP2D was cediranib 30 mg daily and olaparib 200 mg BID. Grade 3 or higher toxicities occurred in 75% of patients, and included grade 3 hypertension (25%) and grade 3 fatigue (18%). One grade 3 bowel obstruction occurred. The overall response rate (ORR) in the 18 RECIST-evaluable ovarian cancer patients was 44%, with a clinical benefit rate (ORR plus stable disease (SD) > 24 weeks) of 61%. None of the seven evaluable breast cancer patients achieved clinical response; two patients had stable disease for > 24 weeks. The combination of cediranib and olaparib has haematologic DLTs and anticipated class toxicities, with promising evidence of activity in ovarian cancer patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment

    Directory of Open Access Journals (Sweden)

    Sachot N

    2017-07-01

    Full Text Available Nadège Sachot,1,2 Agata Roguska,3 Josep Anton Planell,1,2 Malgorzata Lewandowska,3 Elisabeth Engel,1,2,4 Oscar Castaño1,2,5,6 1Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC, Barcelona, 2CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza, Spain; 3Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland; 4Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC, 5Department of Materials Science and Physical Chemistry, Universitat de Barcelona (UB, 6Department of Engineerings: Electronics, Universitat de Barcelona, Barcelona, Spain Abstract: The success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties. The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior. Here, blended polylactic acid (PLA calcium phosphate ORMOGLASS (organically modified glass nanofibrous mats have been incubated up to 4 weeks in physiological simulated conditions, and their morphological, topographical, and chemical changes have been investigated. The results showed that a significant loss of inorganic phase occurred at the beginning of the immersion and the ORMOGLASS maintained a stable composition afterward throughout the degradation period. As a whole, the nanostructured scaffolds underwent fast and heterogeneous degradation. This study reveals that an angiogenic calcium

  5. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance.

    Science.gov (United States)

    Hamdollah Zadeh, Maryam A; Amin, Elianna M; Hoareau-Aveilla, Coralie; Domingo, Enric; Symonds, Kirsty E; Ye, Xi; Heesom, Katherine J; Salmon, Andrew; D'Silva, Olivia; Betteridge, Kai B; Williams, Ann C; Kerr, David J; Salmon, Andrew H J; Oltean, Sebastian; Midgley, Rachel S; Ladomery, Michael R; Harper, Steven J; Varey, Alexander H R; Bates, David O

    2015-01-01

    The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A165b. Whereas flTIA-1 selectively bound VEGF-A165 mRNA and increased translation of VEGF-A165b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    Science.gov (United States)

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-01-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer.

  7. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Vallon, Mario, E-mail: m.vallon@arcor.de [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Rohde, Franziska; Janssen, Klaus-Peter [Chirurgische Klinik und Poliklinik, Technische Universitaet Muenchen, Munich (Germany); Essler, Markus [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany)

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  8. Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A165a, VEGF-A165b, PIGF and VE-cadherin.

    Science.gov (United States)

    Pang, Vincent; Bates, David O; Leach, Lopa

    2017-12-01

    The human placenta nourishes and protects the developing foetus whilst influencing maternal physiology for fetal advantage. It expresses several members of the vascular endothelial growth factor (VEGF) family including the pro-angiogenic/pro-permeability VEGF-A 165 a isoform, the anti-angiogenic VEGF-A 165 b, placental growth factor (PIGF) and their receptors, VEGFR1 and VEGFR2. Alterations in the ratio of these factors during gestation and in complicated pregnancies have been reported; however, the impact of this on feto-placental endothelial barrier integrity is unknown. The present study investigated the interplay of these factors on junctional occupancy of VE-cadherin and macromolecular leakage in human endothelial monolayers and the perfused placental microvascular bed. Whilst VEGF-A 165 a (50 ng/ml) increased endothelial monolayer albumin permeability ( P 0.05) or PlGF ( P >0.05) did not. Moreover, VEGF-A 165 b (100 ng/ml; P 0.05) inhibited VEGF-A 165 a-induced permeability when added singly. PlGF abolished the VEGF-A 165 b-induced reduction in VEGF-A 165 a-mediated permeability ( P >0.05); PlGF was found to compete with VEGF-A 165 b for binding to Flt-1 at equimolar affinity. Junctional occupancy of VE-cadherin matched alterations in permeability. In the perfused microvascular bed, VEGF-A 165 b did not induce microvascular leakage but inhibited and reversed VEGF-A 165 a-induced loss of junctional VE-cadherin and tracer leakage. These results indicate that the anti-angiogenic VEGF-A 165 b isoform does not increase permeability in human placental microvessels or HUVEC primary cells and can interrupt VEGF-A 165 a-induced permeability. Moreover, the interplay of these isoforms with PIGF (and s-flt1) suggests that the ratio of these three factors may be important in determining the placental and endothelial barrier in normal and complicated pregnancies. © 2017 The Author(s).

  9. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats.

    Science.gov (United States)

    Su, Yu-Wen; Chung, Rosa; Ruan, Chun-Sheng; Chim, Shek Man; Kuek, Vincent; Dwivedi, Prem P; Hassanshahi, Mohammadhossein; Chen, Ke-Ming; Xie, Yangli; Chen, Lin; Foster, Bruce K; Rosen, Vicki; Zhou, Xin-Fu; Xu, Jiake; Xian, Cory J

    2016-06-01

    Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016

  10. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  11. Exploring the role of CHI3L1 in pre-metastatic lungs of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Stephania eLibreros

    2013-12-01

    Full Text Available Elevated levels of chitinase-3-like-1 (CHI3L1 are associated with poor prognosis, shorter recurrence-free intervals and low survival in breast cancer patients. Breast cancer often metastasizes to the lung. We hypothesized that molecules expressed in the pre-metastatic lung microenvironment could support the newly immigrant tumor cells by providing growth and angiogenic factors. Macrophages are known to play an important role in tumor growth by releasing pro-angiogenic molecules. Using mouse mammary tumor models, we have previously shown that during neoplastic progression both the mammary tumor cells and splenic macrophages from tumor-bearing mice express higher levels of CHI3L1 compared to normal control mice. However, the role of CHI3L1 in inducing angiogenesis by macrophages at the pulmonary microenvironment to support newly arriving breast cancer cells is not yet known. In this study, we determined the expression of CHI3L1 in bronchoalveolar lavage macrophages and interstitial macrophages in regulating angiogenesis that could support the growth of newly immigrant mammary tumor cells into the lung. Here we show that in vitro treatment of pulmonary macrophages with recombinant murine CHI3L1 resulted in enhanced expression of pro-angiogenic molecules including CCL2, CXCL2 and MMP-9. We and others have previously shown that inhibition of CHI3L1 decreases the production of angiogenic molecules. In this study, we explored if in vivo administration of chitin microparticles has an effect on the expression of CHI3L1 and pro-angiogenic molecules in the lungs of mammary tumor-bearing mice. We show that treatment with chitin microparticles decreases the expression of CHI3L1 and pro-angiogenic molecules in the metastatic lung. These studies suggest that targeting CHI3L1 may serve as a potential therapeutic agent to inhibit angiogenesis and thus possibly tumor growth and metastasis.

  12. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Hitoshi [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Natsume, Atsushi, E-mail: anatsume@med.nagoya-u.ac.jp [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Iwami, Kenichiro; Ohka, Fumiharu [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan); Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae [Department of Biomolecular Engineering, Tokyo Institute of Technology Graduate School of Bioscience and Biotechnology, Yokohama (Japan); Ito, Kengo [National Center for Geriatrics and Gerontology, Aichi (Japan); Saito, Kiyoshi [Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima (Japan); Sugita, Sachi; Hoshino, Tsuneyoshi [MICRON Inc.Medical Facilities Support Department, Aichi (Japan); Wakabayashi, Toshihiko [Department of Neurosurgery, Nagoya University School of Medicine, Nagoya (Japan)

    2013-03-29

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas.

  13. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    International Nuclear Information System (INIS)

    Ando, Hitoshi; Natsume, Atsushi; Iwami, Kenichiro; Ohka, Fumiharu; Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae; Ito, Kengo; Saito, Kiyoshi; Sugita, Sachi; Hoshino, Tsuneyoshi; Wakabayashi, Toshihiko

    2013-01-01

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas

  14. Radiosensitization of human endothelial cells by IL-24

    International Nuclear Information System (INIS)

    Meyn, R.E.

    2003-01-01

    Radiation therapy remains an important cancer treatment modality but despite improvements in dose delivery many patients still fail at their primary tumor site. Therefore, new strategies designed to improve local control are needed. Protocols combining radiation with anti-angiogenic agents might be of particular advantage based on their documented low toxicity. In this regard, we have been conducting preclinical investigations of a novel cytokine, mda7/IL-24. Our collaborators have shown that mda7/IL-24 protein targets the endothelial cells of the tumor microvascular system and has potent anti-angiogenic properties in both in vitro and in vivo assays. Recently, we have demonstrated that recombinant mda7/IL-24 protein radiosensitizes human endothelial cells in vitro. Specifically, 10 ng/ml of recombinant human IL-24 protein for 12 hrs reduced the survival at 2 Gy for human umbilical vein endothelial cells (HUVECs) from 0.33 to 0.12. We are also working on understanding the molecular basis for this radiosensitizing effect. Preliminary data suggest a model whereby mda7/IL-24 engages a specific receptor on the surface of endothelial cells and initiates a signal transduction pathway that modulates the cell's propensity for radiation-induced apoptosis and capacity for repairing radiation-induced DNA double strand breaks. Mechanistic insight gained from these studies may have implications for the actions of other anti-angiogenic agents and may generally explain the regulation of radiosensitivity imparted by growth factors and cytokines

  15. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis.

    Science.gov (United States)

    Chen, Chun-Yuan; Rao, Shan-Shan; Ren, Lu; Hu, Xiong-Ke; Tan, Yi-Juan; Hu, Yin; Luo, Juan; Liu, Yi-Wei; Yin, Hao; Huang, Jie; Cao, Jia; Wang, Zhen-Xing; Liu, Zheng-Zhao; Liu, Hao-Ming; Tang, Si-Yuan; Xu, Ran; Xie, Hui

    2018-01-01

    Chronic non-healing wounds represent one of the most common complications of diabetes and need advanced treatment strategies. Exosomes are key mediators of cell paracrine action and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of exosomes from human urine-derived stem cells (USC-Exos) on diabetic wound healing and the underlying mechanism. Methods: USCs were characterized by flow cytometry and multipotent differentiation potential analyses. USC-Exos were isolated from the conditioned media of USCs and identified by transmission electron microscopy and flow cytometry. A series of functional assays in vitro were performed to assess the effects of USC-Exos on the activities of wound healing-related cells. Protein profiles in USC-Exos and USCs were examined to screen the candidate molecules that mediate USC-Exos function. The effects of USC-Exos on wound healing in streptozotocin-induced diabetic mice were tested by measuring wound closure rates, histological and immunofluorescence analyses. Meanwhile, the role of the candidate protein in USC-Exos-induced regulation of angiogenic activities of endothelial cells and diabetic wound healing was assessed. Results: USCs were positive for CD29, CD44, CD73 and CD90, but negative for CD34 and CD45. USCs were able to differentiate into osteoblasts, adipocytes and chondrocytes. USC-Exos exhibited a cup- or sphere-shaped morphology with a mean diameter of 51.57 ± 2.93 nm and positive for CD63 and TSG101. USC-Exos could augment the functional properties of wound healing-related cells including the angiogenic activities of endothelial cells. USC-Exos were enriched in the proteins that are involved in regulation of wound healing-related biological processes. Particularly, a pro-angiogenic protein called deleted in malignant brain tumors 1 (DMBT1) was highly expressed in USC-Exos. Further functional assays showed that DMBT1 protein was required for USC-Exos-induced

  16. Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Vincent Anne

    2005-03-01

    Full Text Available Abstract Background In mammals, the CNS vasculature is established during the postnatal period via active angiogenesis, providing different brain regions with capillary networks of various densities that locally supply adapted metabolic support to neurons. Thereafter this vasculature remains essentially quiescent excepted for specific pathologies. In the adult rat hypothalamus, a particularly dense network of capillary vessels is associated with the supraoptic (SON and paraventricular (PVN nuclei containing the magnocellular neurons secreting vasopressin and oxytocin, two neurohormones involved in the control of the body fluid homoeostasis. In the seventies, it was reported that proliferation of astrocytes and endothelial cells occurs within these hypothalamic nuclei when strong metabolic activation of the vasopressinergic and oxytocinergic neurons was induced by prolonged hyperosmotic stimulation. The aim of the present study was to determine whether such proliferative response to osmotic stimulus is related to local angiogenesis and to elucidate the cellular and molecular mechanisms involved. Results Our results provide evidence that cell proliferation occurring within the SON of osmotically stimulated adult rats corresponds to local angiogenesis. We show that 1 a large majority of the SON proliferative cells is associated with capillary vessels, 2 this proliferative response correlates with a progressive increase in density of the capillary network within the nucleus, and 3 SON capillary vessels exhibit an increased expression of nestin and vimentin, two markers of newly formed vessels. Contrasting with most adult CNS neurons, hypothalamic magnocellular neurons were found to express vascular endothelial growth factor (VEGF, a potent angiogenic factor whose production was increased by osmotic stimulus. When VEGF was inhibited by dexamethasone treatment or by the local application of a blocking antibody, the angiogenic response was strongly

  17. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  18. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo.

    Science.gov (United States)

    Cartland, Siân P; Genner, Scott W; Zahoor, Amna; Kavurma, Mary M

    2016-12-02

    Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  19. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors

    International Nuclear Information System (INIS)

    Zhang, Ge; Miyake, Makito; Lawton, Adrienne; Goodison, Steve; Rosser, Charles J

    2014-01-01

    Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment

  20. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Do, Ji Yeon; Choi, Young Keun [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kook, Hyun [Department of Pharmacology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Lee, In-Kyu [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Park, Dong Ho, E-mail: sarasate2222@gmail.com [Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O{sub 2}). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice.

  1. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    International Nuclear Information System (INIS)

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-01-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O 2 ). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice

  2. Comparison of the crystal structures of the potent anticancer and anti-angiogenic agent regorafenib and its monohydrate.

    Science.gov (United States)

    Sun, Meng Ying; Wu, Su Xiang; Zhou, Xin Bo; Gu, Jian Ming; Hu, Xiu Rong

    2016-04-01

    Regorafenib {systematic name: 4-[4-({[4-chloro-3-(trifluoromethy)phenyl]carbamoyl}amino)-3-fluorophenoxy]-1-methylpyridine-2-carboxamide}, C21H15ClF4N4O3, is a potent anticancer and anti-angiogenic agent that possesses various activities on the VEGFR, PDGFR, raf and/or flt-3 kinase signaling molecules. The compound has been crystallized as polymorphic form I and as the monohydrate, C21H15ClF4N4O3·H2O. The regorafenib molecule consists of biarylurea and pyridine-2-carboxamide units linked by an ether group. A comparison of both forms shows that they differ in the relative orientation of the biarylurea and pyridine-2-carboxamide units, due to different rotations around the ether group, as measured by the C-O-C bond angles [119.5 (3)° in regorafenib and 116.10 (15)° in the monohydrate]. Meanwhile, the conformational differences are reflected in different hydrogen-bond networks. Polymorphic form I contains two intermolecular N-H...O hydrogen bonds, which link the regorafenib molecules into an infinite molecular chain along the b axis. In the monohydrate, the presence of the solvent water molecule results in more abundant hydrogen bonds. The water molecules act as donors and acceptors, forming N-H...O and O-H...O hydrogen-bond interactions. Thus, R4(2)(28) ring motifs are formed, which are fused to form continuous spiral ring motifs along the a axis. The (trifluoromethyl)phenyl rings protrude on the outside of these motifs and interdigitate with those of adjacent ring motifs, thereby forming columns populated by halogen atoms.

  3. Hypoxia-Inducible Factor-1α: A Potential Factor for the Enhancement of Osseointegration between Dental Implants and Tissue-Engineered Bone

    Directory of Open Access Journals (Sweden)

    Duohong Zou

    2011-07-01

    Full Text Available Introduction: Tissue-engineered bones are widely utilized to protect healthy tissue, reduce pain, and increase the success rate of dental implants. one of the most challenging obstacles lies in obtaining effective os-seointegration between dental implants and tissue-engineered structures. Deficiencies in vascularization, osteogenic factors, oxygen, and other nutrients inside the tissue-engineered bone during the early stages following implantation all inhibit effective osseointe-gration. Oxygen is required for aerobic metabolism in bone and blood vessel tissues, but oxygen levels inside tissue-engineered bone are not suf-ficient for cell proliferation. HIF-1α is a pivotal regulator of hypoxic and ischemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis, arteriogenesis, and osteogenesis.The hypothesis: Hypoxia-Inducible Factor-1α seems a potential factor for the enhancement of osseointegration between dental implants and tissue-engineered bone.Evaluation of the hypothesis: Enhancement of HIF-1α protein expression is recognized as the most promising approach for angiogenesis, because it can induce multiple angiogenic targets in a coordinated manner. Therefore, it will be a novel potential therapeutic methods targeting HIF-1α expression to enhance osseointegration be-tween dental implants and tissue-engineered bone.

  4. THE ABERRANT PROMOTER HYPERMETHYLATION PATTERN OF THE ANTI - ANGIOGENIC TSP1 GENE IN EPITHELIAL OVARIAN CARCINOMA: AN INDIAN STUDY

    Directory of Open Access Journals (Sweden)

    Ramesh

    2015-06-01

    Full Text Available PURPOSE: The promoter hypermethylation patterns of Thrombospodin - 1 gene in 50 EOC patients were studied and the methylation pattern was correlated with various clinic pathological parameters. METHODS: The promoter hypermethylation pattern of the TSP - 1 gene was assessed using nested PCR and Methylation specific PCR. STATISTICAL ANALYSIS: All the available data was statistically analyzed using the Chi square test or Fisher Exact Test on the SPSS software version 22.0 and a value <0.0 5 was considered statistically significant. RESULTS: Forty of the fifty ovarian carcinoma samples reported positive for methylation corresponding to a methylation frequency of 80%. A methylation frequency of 89.2%, 83.3% and 42.8% was observed in malignant , Low malignant potential (borderline and benign sample cohorts. CONCLUSION: From the results drawn from this study, it clearly shows that the anti angiogenic protein TSP - 1 is extensively hypermethylated in ovarian carcinoma and that it accumulates over t he progression of the disease from benign to malignant. As previous reports suggest that there is no evidence of mutation of this gene, promoter hypermethylation may be a crucial factor for the down regulation of the gene. Further by clubbing together the promoter hypermethylation pattern of TSP - 1 gene with hypermethylation patterns of other TSG may provide a better insight into the application of using methylation profiles of TSG as a biomarker in the detection of ovarian carcinoma.

  5. Incorporation of osteogenic and angiogenic small interfering RNAs into chitosan sponge for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Jia S

    2014-11-01

    angiogenic siRNAs may be used as a scaffold for bone regeneration. The dual siRNA concept may also be useful in the biofunctionalization of other materials. Keywords: chitosan sponge, osteogenesis, angiogenesis, small interfering RNA 

  6. Suppression of VEGF-induced angiogenesis and tumor growth by Eugenia jambolana, Musa paradisiaca, and Coccinia indica extracts.

    Science.gov (United States)

    M, Harsha Raj; Ghosh, Debidas; Banerjee, Rita; Salimath, Bharathi P

    2017-12-01

    Abnormal angiogenesis and evasion of apoptosis are hallmarks of cancer. Accordingly, anti-angiogenic and pro-apoptotic therapies are effective strategies for cancer treatment. Medicinal plants, namely, Eugenia jambolana Lam. (Myrtaceae), Musa paradisiaca L. (Musaceae), and Coccinia indica Wight & Arn. (Cucurbitaceae), have not been greatly investigated for their anticancer potential. We investigated the anti-angiogenic and pro-apoptotic efficacy of ethyl acetate (EA) and n-butanol (NB) extracts of E. jambolana (seeds), EA extracts of M. paradisiaca (roots) and C. indica (leaves) with respect to mammary neoplasia. Effect of extracts (2-200 μg/mL) on cytotoxicity and MCF-7, MDA-MB-231 and endothelial cell (EC) proliferation and in vitro angiogenesis were evaluated by MTT, 3 [H]thymidine uptake and EC tube formation assays, respectively. In vivo tumour proliferation, VEGF secretion and angiogenesis were assessed using the Ehrlich ascites tumour (EAT) model followed by rat corneal micro-pocket and chicken chorioallantoic membrane (CAM) assays. Apoptosis induction was assessed by morphological and cell cycle analysis. EA extracts of E. jambolana and M. paradisiaca exhibited the highest cytotoxicity (IC 50 25 and 60 μg/mL), inhibited cell proliferation (up to 81%), and tube formation (83% and 76%). In vivo treatment reduced body weight (50%); cell number (16.5- and 14.7-fold), secreted VEGF (∼90%), neoangiogenesis in rat cornea (2.5- and 1.5-fold) and CAM (3- and 1.6-fold) besides EAT cells accumulation in sub-G1 phase (20% and 18.38%), respectively. Considering the potent anti-angiogenic and pro-apoptotic properties, lead molecules from EA extracts of E. jambolana and M. paradisiaca can be developed into anticancer drugs.

  7. TLX controls angiogenesis through interaction with the von Hippel-Lindau protein

    OpenAIRE

    Zhao-jun Zeng; Erik Johansson; Amiko Hayashi; Pavithra L. Chavali; Nina Akrap; Takeshi Yoshida; Kimitoshi Kohno; Hiroto Izumi; Keiko Funa

    2012-01-01

    Summary TLX is known as the orphan nuclear receptor indispensable for maintaining neural stem cells in adult neurogenesis. We report here that neuroblastoma cell lines express high levels of TLX, which further increase in hypoxia to enhance the angiogenic capacity of these cells. The proangiogenetic activity of TLX appears to be induced by its direct binding to the von Hippel-Lindau protein (pVHL), which stabilizes TLX. In turn, TLX competes with hydroxylated hypoxia-inducible factor (HIF-α) ...

  8. Live Brugia malayi microfilariae inhibit transendothelial migration of neutrophils and monocytes.

    Directory of Open Access Journals (Sweden)

    Jan-Hendrik Schroeder

    Full Text Available Lymphatic filariasis is a major tropical disease caused by the parasite Brugia malayi. Microfilariae (Mf circulate in the peripheral blood for 2-3 hours in synchronisation with maximal feeding of the mosquito vector. When absent from the peripheral blood, Mf sequester in the capillaries of the lungs. Mf are therefore in close contact with vascular endothelial cells (EC and may induce EC immune function and/or wound repair mechanisms such as angiogenesis. In this study, Mf were co-cultured with human umbilical vein EC (HUVEC or human lung microvascular EC (HLMVEC and the transendothelial migration of leukocyte subsets was analysed. In addition, the protein and/or mRNA expression of chemokine, cytokine and angiogenic mediators in endothelial cells in the presence of live microfilariae were measured by a combination of cDNA arrays, protein arrays, ELISA and fluorescence antibody tests.Surprisingly, our findings indicate that Mf presence partially blocked transendothelial migration of monocytes and neutrophils, but not lymphocytes. However, Mf exposure did not result in altered vascular EC expression of key mediators of the tethering stage of extravasation, such as ICAM-1, VCAM-1 and various chemokines. To further analyse the immunological function of vascular EC in the presence of Mf, we measured the mRNA and/or protein expression of a number of pro-inflammatory mediators. We found that expression levels of the mediators tested were predominantly unaltered upon B. malayi Mf exposure. In addition, a comparison of angiogenic mediators induced by intact Mf and Wolbachia-depleted Mf revealed that even intact Mf induce the expression of remarkably few angiogenic mediators in vascular EC. Our study suggests that live microfilariae are remarkably inert in their induction and/or activation of vascular cells in their immediate local environment. Overall, this work presents important insights into the immunological function of the vascular endothelium during

  9. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  10. MicroRNA-134 Contributes to Glucose-Induced Endothelial Cell Dysfunction and This Effect Can Be Reversed by Far-Infrared Irradiation.

    Directory of Open Access Journals (Sweden)

    Hsei-Wei Wang

    Full Text Available Diabetes mellitus (DM is a metabolic disease that is increasing worldwide. Furthermore, it is associated with the deregulation of vascular-related functions, which can develop into major complications among DM patients. Endothelial colony forming cells (ECFCs have the potential to bring about medical repairs because of their post-natal angiogenic activities; however, such activities are impaired by high glucose- (HG and the DM-associated conditions. Far-infrared radiation (FIR transfers energy as heat that is perceived by the thermoreceptors in human skin. Several studies have revealed that FIR improves vascular endothelial functioning and boost angiogenesis. FIR has been used as anti-inflammatory therapy and as a clinical treatment for peripheral circulation improvement. In addition to vascular repair, there is increasing evidence to show that FIR can be applied to a variety of diseases, including cardiovascular disorders, hypertension and arthritis. Yet mechanism of action of FIR and the biomarkers that indicate FIR effects remain unclear. MicroRNA-134 (miR-134-5p was identified by small RNA sequencing as being increased in high glucose (HG treated dfECFCs (HG-dfECFCs. Highly expressed miR-134 was also validated in dmECFCs by RT-qPCR and it is associated with impaired angiogenic activities of ECFCs. The functioning of ECFCs is improved by FIR treatment and this occurs via a reduction in the level of miR-134 and an increase in the NRIP1 transcript, a direct target of miR-134. Using a mouse ischemic hindlimb model, the recovery of impaired blood flow in the presence of HG-dfECFCs was improved by FIR pretreatment and this enhanced functionality was decreased when there was miR-134 overexpression in the FIR pretreated HG-dfECFCs. In conclusion, our results reveal that the deregulation of miR-134 is involved in angiogenic defects found in DM patients. FIR treatment improves the angiogenic activity of HG-dfECFCs and dmECFCs and FIR has potential as

  11. Discriminating Different Cancer Cells Using a Zebrafish in Vivo Assay

    Directory of Open Access Journals (Sweden)

    Pooja Pardhanani

    2011-10-01

    Full Text Available Despite the expanded understanding of tumor angiogenesis phenomenon and how it impacts cancer treatment outcomes, we have yet to develop a robust assay that can quickly, easily, and quantitatively measure tumor-induced angiogenesis. Since the zebrafish/tumor xenograft represents an emerging tool in this regard, the present study strives to capitalize on the ease, effectiveness, and the adaptability of this model to quantify tumor angiogenesis. In order to test a range of responses, we chose two different tumorigenic cell lines, the human non-small cell lung carcinoma (H1299 and the mouse lung adenocarcinoma (CL13. Non-tumorigenic 3T3-L1 cells served as negative control. The cells were grafted near to the perivitelline space of the zebrafish embryos and the angiogenic response was analyzed using whole-mount alkaline phosphatase (AP vessel staining and fluorescence microscopy. Angiogenic activity was scored based on the length and number of the newly formed ectopic vessels and the percentage of embryos with ectopic vessels. At 2 day-post-implantation, we detected a significant increase in the length and number of ectopic vessels with H1299 cell implantation compared to CL13 cell transplantation, both are higher than 3T3-L1 control. We also observed a significantly higher percentage of embryos with ectopic vessels with H1299 and CL13 transplantation compared to the 3T3-L1 control, but this parameter is not as robust and reliable as measuring the length and number of ectopic vessels. Furthermore, the systemic exposure of zebrafish embryos to an anti-angiogenesis drug (PTK 787, inhibitor of vascular endothelial growth factor receptor tyrosine kinase inhibited tumor-induced angiogenesis, suggesting that the assay can be used to evaluate anti-angiogenic drugs. This study implicates the feasibility of using zebrafish xenotransplantation to perform quantitative measurement of the angiogenic activity of cancer cells which can be further extended to

  12. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Hany A. [Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Arafa, El-Shaimaa A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Salama, Samir A. [Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11511 (Egypt); Arab, Hany H. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Wu, Chieh-Hsi, E-mail: chhswu@mail.cmu.edu.tw [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Weng, Jing-Ru, E-mail: columnster@gmail.com [Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2013-11-01

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  13. Discriminating Different Cancer Cells Using a Zebrafish in Vivo Assay

    International Nuclear Information System (INIS)

    Moshal, Karni S.; Ferri-Lagneau, Karine F.; Haider, Jamil; Pardhanani, Pooja; Leung, TinChung

    2011-01-01

    Despite the expanded understanding of tumor angiogenesis phenomenon and how it impacts cancer treatment outcomes, we have yet to develop a robust assay that can quickly, easily, and quantitatively measure tumor-induced angiogenesis. Since the zebrafish/tumor xenograft represents an emerging tool in this regard, the present study strives to capitalize on the ease, effectiveness, and the adaptability of this model to quantify tumor angiogenesis. In order to test a range of responses, we chose two different tumorigenic cell lines, the human non-small cell lung carcinoma (H1299) and the mouse lung adenocarcinoma (CL13). Non-tumorigenic 3T3-L1 cells served as negative control. The cells were grafted near to the perivitelline space of the zebrafish embryos and the angiogenic response was analyzed using whole-mount alkaline phosphatase (AP) vessel staining and fluorescence microscopy. Angiogenic activity was scored based on the length and number of the newly formed ectopic vessels and the percentage of embryos with ectopic vessels. At 2 day-post-implantation, we detected a significant increase in the length and number of ectopic vessels with H1299 cell implantation compared to CL13 cell transplantation, both are higher than 3T3-L1 control. We also observed a significantly higher percentage of embryos with ectopic vessels with H1299 and CL13 transplantation compared to the 3T3-L1 control, but this parameter is not as robust and reliable as measuring the length and number of ectopic vessels. Furthermore, the systemic exposure of zebrafish embryos to an anti-angiogenesis drug (PTK 787, inhibitor of vascular endothelial growth factor receptor tyrosine kinase) inhibited tumor-induced angiogenesis, suggesting that the assay can be used to evaluate anti-angiogenic drugs. This study implicates the feasibility of using zebrafish xenotransplantation to perform quantitative measurement of the angiogenic activity of cancer cells which can be further extended to measure cancer cell

  14. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis.

    Science.gov (United States)

    Yang, Le; Yue, Shi; Yang, Lin; Liu, Xin; Han, Zhen; Zhang, Yuanyuan; Li, Liying

    2013-07-01

    Sphingosine kinase (SphK)/sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) axis is involved in multiple biological processes, including liver fibrosis. Angiogenesis is an important pathophysiological process closely associated with liver fibrosis; however, the functional role of SphK/S1P/S1PR in this process remains incompletely defined. Bile duct ligation or carbon tetrachloride was used to induce liver fibrosis in mice. Human fibrotic samples were obtained from livers of patients undergoing liver transplantation. S1P levels in the liver were examined by HPLC. Expression of angiogenic markers, including angiopoietin 1, CD31, vascular cell adhesion molecule-1, and von Willebrand factor, was characterized by immunofluorescence, real-time RT-PCR, and Western blot in the fibrotic liver and primary mouse hepatic stellate cells (HSCs). SphK inhibitor (SKI) or S1PR antagonists were administered intraperitoneally in mice. S1P levels in the liver were closely correlated with mRNA expression of angiogenic markers. Ang1 is expressed in activated HSCs of the fibrotic liver and in primary HSCs. In HSCs, by using specific antagonists or siRNAs, we demonstrated S1P stimulation induced Ang1 expression via S1PR1 and S1PR3. In vivo, S1P reduction by SKI inhibited angiogenesis in fibrotic mice. Furthermore, S1PR1/3 antagonist significantly blocked upregulation of angiogenic markers in the injured liver, and attenuated the extent of liver fibrosis, while S1PR2 antagonist had no effect on angiogenesis, supporting the key role of S1PR1 and S1PR3 in angiogenesis underlying liver fibrosis process. SphK1/S1P/S1PR1/3 axis plays a crucial role in the angiogenic process required for fibrosis development, which may represent an effective therapeutic strategy for liver fibrosis. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications.

    Science.gov (United States)

    De Bock, Katrien; Cauwenberghs, Sandra; Carmeliet, Peter

    2011-02-01

    As a result of excessive production of angiogenic molecules, tumor vessels become abnormal in structure and function. By impairing oxygen delivery, abnormal vessels fuel a vicious cycle of non-productive angiogenesis, which creates a hostile microenvironment from where tumor cells escape through leaky vessels and which renders tumors less responsive to chemoradiation. While anti-angiogenic strategies focused on inhibiting new vessel growth and destroying pre-existing vessels, clinical studies showed modest anti-tumor effects. For many solid tumors, anti-VEGF treatment offers greater clinical benefit when combined with chemotherapy. This is partly due to a normalization of the tumor vasculature, which improves cytotoxic drug delivery and efficacy and offers unprecedented opportunities for anti-cancer treatment. Here, we overview key novel molecular players that induce vessel normalization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Green Synthesis of Silver Nanoparticles using Achillea biebersteinii Flower Extract and Its Anti-Angiogenic Properties in the Rat Aortic Ring Model

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2014-04-01

    Full Text Available Silver nanoparticles display unique physical and biological properties which have attracted intensive research interest because of their important medical applications. In this study silver nanoparticles (Ab.Ag-NPs were synthesized for biomedical applications using a completely green biosynthetic method using Achillea biebersteinii flowers extract. The structure and properties of Ab.Ag-NPs were investigated using UV-visible spectroscopic techniques, transmission electron microscopy (TEM, zeta potential and energy dispersive X-ray spectrometers (EDS. The UV-visible spectroscopic analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver nanoparticles. The average particle diameter as determined by TEM was found to be 12 ± 2 nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis also exhibits presentation of silver element. As angiogenesis is an important phenomenon and as growth factors imbalance in this process causes the acceleration of several diseases including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat aortic ring model. The results showed that Ab.Ag-NPs (200 μg/mL lead to a 50% reduction in the length and number of vessel-like structures. The synthesized silver nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any harmful chemicals were well-dispersed and stabilized through this green method and showed potential therapeutic benefits against angiogenesis.

  17. In vitro and in vivo evaluations of a radioiodinated thymidine phosphorylase inhibitor as a tumor diagnostic agent for angiogenic enzyme imaging

    International Nuclear Information System (INIS)

    Akizawa, Hiromichi; Zhao, Songji; Takahashi, Masayuki; Nishijima, Ken-ichi; Kuge, Yuji; Tamaki, Nagara; Seki, Koh-ichi; Ohkura, Kazue

    2010-01-01

    Introduction: The expression of thymidine phosphorylase (TP) is closely associated with angiogenesis, tumor invasiveness and activation of antitumor agents. We evaluated radioiodinated 5-iodo-6-[(2-iminoimidazolidinyl)methyl]uracil ([ 125 I]IIMU) having high TP-inhibitory potency as the new radiotracer for SPECT targeting of TP expression in tumors. Methods: The characteristics of the radioiodinated TP inhibitor IIMU were determined by evaluating the uptake by tumor cells in vitro and by biodistribution studies in vivo. The distribution of the radiotracer and the extent of TP-specific uptake by tumors were evaluated by a counting method in tumor-bearing mice. Results: The in vitro uptake of radiolabeled IIMU by A431 cells along with high TP expressions was attributed to the binding of the radiotracer to its target enzyme, i.e., TP. In vivo distribution of the radiotracer in A431 tumor-bearing mice revealed tumor/blood and tumor/muscle activity uptake ratios of 36 and 106, respectively, at 3 h after the radiotracer injection. On using low TP-expressing tumors and TP blocking studies as controls, minor TP-specific accumulation of the radiotracer was detected in these studies. Conclusion: According to the binding of radioiodinated IIMU to the angiogenic enzyme TP, it can be concluded that radioiodinated IIMU might be suitable as a SPECT tracer for tumor imaging.

  18. Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2.

    Science.gov (United States)

    Tu, Min; Lu, Cheng; Lv, Nan; Wei, Jishu; Lu, Zipeng; Xi, Chunhua; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Li, Qiang; Wu, Junli; Song, Guoxin; Wang, Shui; Gao, Wentao; Miao, Yi

    2016-12-28

    Vasohibin 2 (VASH2) is an angiogenic factor and cancer-related protein that acts via paracrine mechanisms. Here, we investigated the angiogenic function and mechanism of action of VASH2 in 200 human breast cancer tissues by performing immunohistochemical staining, western blot, indirect sandwich enzyme-linked immunosorbent assay (ELISA), and a semi-quantitative sandwich-based antibody array. Breast cancer cells stably overexpressing VASH2 or with knocked-down VASH2 were established and used for in vivo and in vitro models. In human luminal tissue, but not in HER2-positive or basal-like breast cancer tissues, VASH2 was positively correlated with CD31-positive microvascular density, induced angiogenesis in xenograft tumors, and promoted human umbilical vein endothelial cell tube formation in vitro. VASH2 expression was absent in the concentrated conditioned medium collected from knocked-down VASH2 and VASH2-overexpressing luminal breast cancer cells. Further, VASH2 regulated the expression of fibroblast growth factor 2 (FGF2) in human luminal breast cancer cells, and the pro-angiogenic effect induced by VASH2 overexpression was blocked by FGF2 neutralization in vitro. Additionally, dual luciferase reporter assay and Chromatin immunoprecipitation analysis results showed that FGF2 promoter was transcriptionally activated by VASH2 via histone modifications. In conclusion, VASH2 expression is positively correlated with FGF2 expression and promotes angiogenesis in human luminal breast cancer by transcriptional activation of fibroblast growth factor 2 through non-paracrine mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    Science.gov (United States)

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  20. Melatonin Activates Endoplasmic Reticulum Stress and Apoptosis in Rats with Diethylnitrosamine-Induced Hepatocarcinogenesis.

    Directory of Open Access Journals (Sweden)

    Andrea Janz Moreira

    Full Text Available Hepatocellular carcinoma (HCC is one of the most lethal human cancers worldwide because of its high incidence, its metastatic potential and the low efficacy of conventional treatment. Inactivation of apoptosis is implicated in tumour progression and chemotherapy resistance, and has been linked to the presence of endoplasmic reticulum stress. Melatonin, the main product of the pineal gland, exerts anti-proliferative, pro-apoptotic and anti-angiogenic effects in HCC cells, but these effects still need to be confirmed in animal models. Male Wistar rats in treatment groups received diethylnitrosamine (DEN 50 mg/kg intraperitoneally twice/once a week for 18 weeks. Melatonin was given in drinking water at 1 mg/kg/d, beginning 5 or 12 weeks after the start of DEN administration. Melatonin improved survival rates and successfully attenuated liver injury, as shown by histopathology, decreased levels of serum transaminases and reduced expression of placental glutathione S-transferase. Furthermore, melatonin treatment resulted in a significant increase of caspase 3, 8 and 9 activities, polyadenosine diphosphate (ADP ribose polymerase (PARP cleavage, and Bcl-associated X protein (Bax/Bcl-2 ratio. Cytochrome c, p53 and Fas-L protein concentration were also significantly enhanced by melatonin. Melatonin induced an increased expression of activating transcription factor 6 (ATF6, C/EBP-homologous protein (CHOP and immunoglobulin heavy chain-binding protein (BiP, while cyclooxygenase (COX-2 expression decreased. Data obtained suggest that induction of apoptosis and ER stress contribute to the beneficial effects of melatonin in rats with DEN-induced HCC.

  1. Platelet-rich plasma extract prevents pulmonary edema through angiopoietin-Tie2 signaling.

    Science.gov (United States)

    Mammoto, Tadanori; Jiang, Amanda; Jiang, Elisabeth; Mammoto, Akiko

    2015-01-01

    Increased vascular permeability contributes to life-threatening pathological conditions, such as acute respiratory distress syndrome. Current treatments for sepsis-induced pulmonary edema rely on low-tidal volume mechanical ventilation, fluid management, and pharmacological use of a single angiogenic or chemical factor with antipermeability activity. However, it is becoming clear that a combination of multiple angiogenic/chemical factors rather than a single factor is required for maintaining stable and functional blood vessels. We have demonstrated that mouse platelet-rich plasma (PRP) extract contains abundant angiopoietin (Ang) 1 and multiple other factors (e.g., platelet-derived growth factor), which potentially stabilize vascular integrity. Here, we show that PRP extract increases tyrosine phosphorylation levels of Tunica internal endothelial cell kinase (Tie2) and attenuates disruption of cell-cell junctional integrity induced by inflammatory cytokine in cultured human microvascular endothelial cells. Systemic injection of PRP extract also increases Tie2 phosphorylation in mouse lung and prevents endotoxin-induced pulmonary edema and the consequent decreases in lung compliance and exercise intolerance resulting from endotoxin challenge. Soluble Tie2 receptor, which inhibits Ang-Tie2 signaling, suppresses the ability of PRP extract to inhibit pulmonary edema in mouse lung. These results suggest that PRP extract prevents endotoxin-induced pulmonary edema mainly through Ang-Tie2 signaling, and PRP extract could be a potential therapeutic strategy for sepsis-induced pulmonary edema and various lung diseases caused by abnormal vascular permeability.

  2. Circulating angiogenic cell function is inhibited by cortisol in vitro and associated with psychological stress and cortisol in vivo.

    Science.gov (United States)

    Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L

    2016-05-01

    Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Circulating Angiogenic Cell Function is Inhibited by Cortisol in Vitro and Associated with Psychological Stress and Cortisol in Vivo

    Science.gov (United States)

    Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J.; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L.

    2016-01-01

    Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age = 26 years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. PMID:26925833

  4. Increased expression of pro-angiogenic factors and vascularization in thyroid hyperfunctioning adenomas with and without TSH receptor activating mutations.

    Science.gov (United States)

    Celano, Marilena; Sponziello, Marialuisa; Tallini, Giovanni; Maggisano, Valentina; Bruno, Rocco; Dima, Mariavittoria; Di Oto, Enrico; Redler, Adriano; Durante, Cosimo; Sacco, Rosario; Filetti, Sebastiano; Russo, Diego

    2013-02-01

    Autonomously functioning thyroid nodules (AFTN) are known to receive an increased blood influx necessary to sustain their high rate of growth and hormone production. Here, we investigated the expression of hematic and lymphatic vases in a series of 20 AFTN compared with the contralateral non-tumor tissues of the same patients, and the transcript levels of proteins involved in the control of vascular proliferation, including the vascular endothelial growth factor (VEGF) and platelet-derived growth factors (PDGF) and their receptors and the endothelial nitric oxide synthase (eNOS). In parallel, the expression of the differentiation markers sodium/iodide symporter (NIS), thyroperoxidase (TPO), thyroglobulin (Tg), and TSH receptor (TSHR) was also investigated. The data were further analyzed comparing subgroups of tumors with or without mutations in the TSHR gene. Analysis by means of CD31 and D2-40 immunostaining showed in AFTN an increased number of hematic, but not lymphatic, vessels in parallel with an enhanced proliferation rate shown by increased Ki67 staining. Quantitative RT-PCR analysis revealed an increase of VEGF, VEGFR1 and 2, PDGF-A, PDGF-B, and eNOS expression in tumor versus normal tissues. Also, higher transcript levels of NIS, TPO, and Tg were detected. Comparison of the two subgroups of samples revealed only few differences in the expression of the genes examined. In conclusion, these data demonstrate an increased expression of angiogenesis-related factors associated with an enhanced proliferation of hematic, but not lymphatic, vessels in AFTNs. In this context, the presence of TSHR mutations may only slightly influence the expression of pro-angiogenic growth factors.

  5. Enhanced regeneration potential of mobilized dental pulp stem cells from immature teeth.

    Science.gov (United States)

    Nakayama, H; Iohara, K; Hayashi, Y; Okuwa, Y; Kurita, K; Nakashima, M

    2017-07-01

    We have previously demonstrated that dental pulp stem cells (DPSCs) isolated from mature teeth by granulocyte colony-stimulating factor (G-CSF)-induced mobilization method can enhance angiogenesis/vasculogenesis and improve pulp regeneration when compared with colony-derived DPSCs. However, the efficacy of this method in immature teeth with root-formative stage has never been investigated. Therefore, the aim of this study was to examine the stemness, biological characteristics, and regeneration potential in mobilized DPSCs compared with colony-derived DPSCs from immature teeth. Mobilized DPSCs isolated from immature teeth were compared to colony-derived DPSCs using methods including flow cytometry, migration assays, mRNA expression of angiogenic/neurotrophic factor, and induced differentiation assays. They were also compared in trophic effects of the secretome. Regeneration potential was further compared in an ectopic tooth transplantation model. Mobilized DPSCs had higher migration ability and expressed more angiogenic/neurotrophic factors than DPSCs. The mobilized DPSC secretome produced a higher stimulatory effect on migration, immunomodulation, anti-apoptosis, endothelial differentiation, and neurite extension. In addition, vascularization and pulp regeneration potential were higher in mobilized DPSCs than in DPSCs. G-CSF-induced mobilization method enhances regeneration potential of colony-derived DPSCs from immature teeth. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Progestins inhibit estradiol-induced vascular endothelial growth factor and stromal cell-derived factor 1 in human endometrial stromal cells.

    Science.gov (United States)

    Okada, Hidetaka; Okamoto, Rika; Tsuzuki, Tomoko; Tsuji, Shoko; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2011-09-01

    To investigate whether 17β-estradiol (E(2)) and progestins exert direct effects on vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1 (SDF-1/CXCL12) in human endometrial stromal cells (ESCs) and thereby to clarify the regulatory function of these local angiogenic factors in the endometrium. In vitro experiment. Research laboratory at Kansai Medical University. Fourteen patients undergoing hysterectomy for benign reasons. ESCs were cultured with E(2) and/or various clinically relevant progestins (medroxyprogesterone acetate [MPA], norethisterone [NET], levonorgestrel [LNG], dienogest [DNG], and progesterone [P]). The mRNA levels and production of VEGF and SDF-1 were assessed by real-time reverse-transcription polymerase chain reaction and ELISA, respectively. E(2) significantly induced the mRNA levels and protein production of VEGF and SDF-1 in ESCs. MPA could antagonize the E(2)-stimulated effects in a time- and dose-dependent manner, and this effect could be reversed by RU-486 (P receptor antagonist). All of the progestins (MPA, NET, LNG, and DNG; 10(-9) to 10(-7) mol/L) attenuated E(2)-induced VEGF and SDF-1 production, whereas P showed these inhibitory effects only when present in a high concentration (10(-7) mol/L). Progestins have inhibitory effects on E(2)-induced VEGF and SDF-1 in ESCs. These results may indicate a potential mechanism for action of the female sex steroids in the human endometrium that can be helpful for various clinical applications. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Siân P. Cartland

    2016-12-01

    Full Text Available Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A and fibroblast growth-factor-2 (FGF-2 either separately (10 ng/mL or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1 cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people.

  8. Aromatic Hydrocarbon Receptor Suppresses Prostate Cancer Bone Metastasis Cells-Induced Vasculogenesis of Endothelial Progenitor Cells under Hypoxia

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2016-07-01

    Full Text Available Background/Aims: Hypoxia leads to the development of neovascularization in solid tumor by regulating VEGF expression. Aromatic hydrocarbon receptor (AHR, a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with hypoxia-inducible factors 1β (HIF-1β and inhibits the secretion of vascular endothelial growth factor (VEGF. The purpose of this study was to explore whether AHR can suppress hypoxia-induced VEGF production in prostate bone metastasis cells and repress neovascularization in endothelial progenitor cells (EPCs, and, if so, through what mechanisms. Methods: PC-3 or LNCaP cells induced angiogenesis was detected by Matrigel-based tube formation assay, mRNA expression levels was measured by qRT-PCR, VEGF secretion level was determined by ELISA assay, respectively. Results: AHR activation inhibits hypoxia-induced adhesiveness and vasculogenesis of EPCs induced by PC-3 or LNCaP cells under hypoxia. Moreover, AHR activation suppressed hypoxia-induced VEGF production in PC-3 and LNCaP cells (48 ± 14% in PC-3, p = 0.000; 41 ± 14% in LNCaP, p = 0.000 by attenuating HIF-1α and HIF-1β level that in turn diminished the angiogenic ability of EPCs in vitro. Furthermore, we found the mRNA level of hypoxia-inducible factors 1α (HIF-1α (1.54 ± 0.13 fold in PC-3, p = 0.002, 1.62 ± 0.12 fold in LNCaP, p = 0.001 and HIF-1β (1.67 ± 0.23 fold in PC-3, p = 0.007; 1.75 ± 0.26 fold in LNCaP, p=0.008 were upregulated in prostate cancer bone metastasis PC-3 and LNCaP cell lines in response to hypoxia, and revealed that the regulation of VEGF by HIF-1α and HIF-1β was possibly mediated by the activation of phosphatidylinositol 3-kinase pathway. Conclusion: By providing a mechanistic insight into the modulation of neovascularization by AHR ligand, we suggest that AHR ligand has a strong potential of being a new therapeutic agent with applications in the field of bone metastatic prostate cancer.

  9. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein.

    OpenAIRE

    Iliopoulos, O; Levy, A P; Jiang, C; Kaelin, W G; Goldberg, M A

    1996-01-01

    Inactivation of the von Hippel-Lindau protein (pVHL) has been implicated in the pathogenesis of renal carcinomas and central nervous system hemangioblastomas. These are highly vascular tumors which overproduce angiogenic peptides such as vascular endothelial growth factor/vascular permeability factor (VEGF/VPF). Renal carcinoma cells lacking wild-type pVHL were found to produce mRNAs encoding VEGF/VPF, the glucose transporter GLUT1, and the platelet-derived growth factor B chain under both no...

  10. Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2016-04-01

    Full Text Available Implant constructs supporting angiogenesis are favorable for treating critically-sized bone defects, as ingrowth of capillaries towards the center of large defects is often insufficient. Consequently, the insufficient nutritional supply of these regions leads to impaired bone healing. Implants with specially designed angiogenic supporting geometry and functionalized with proangiogenic cytokines can enhance angiogenesis. In this study, Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were used for incorporation into poly-ε-caprolactone (PCL-coated porous titanium implants. Bioactivity of released factors and influence on angiogenesis of functionalized implants were evaluated using a migration assay and angiogenesis assays. Both implants released angiogenic factors, inducing migration of endothelial cells. Also, VEGF-functionalized PCL-coated titanium implants enhanced angiogenesis in vitro. Both factors were rapidly released in high doses from the implant coating during the first 72 h.

  11. Gastric angiogenesis and Helicobacter pylori infection Angiogénesis gástrica e infección por Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    I. D. Pousa

    2006-06-01

    Full Text Available The formation of new blood vessels seen in conditions commonly associated with Helicobacter pylori (H. pylori infection, including gastritis, peptic ulcer, and gastric carcinoma, prompts consideration of a potential relationship between mucosal colonization by this organism and the angiogenic process. H. pylori directly or indirectly damages endothelial cells, which induces a number of changes in the microvasculature of the gastric mucosa. In H. pylori-associated conditions, that is, in gastritis, peptic ulcer and gastric carcinoma, there is an increased concentration of angiogenic factors, and subsequently a formation of new blood vessels. However, this early angiogenesis -which is activated to repair the gastric mucosa- is subsequently inhibited in patients with peptic ulcer, and ulcer healing is thus delayed. This may be due to the antiproliferative action of this organism on endothelial cells. While the angiogenic process becomes inhibited in infected patients with peptic ulcer, it remains seemingly active in those with gastritis or gastric cancer. This fact is in support of the notion suggested by various studies that peptic ulcer and gastric cancer are mutually excluding conditions. In the case of gastric cancer, neoangiogenesis would enhance nutrient and oxygen supply to cancer cells, and thus tumor growth and metastatic spread.

  12. Gastric angiogenesis and Helicobacter pylori infection

    Directory of Open Access Journals (Sweden)

    I. D. Pousa

    Full Text Available The formation of new blood vessels seen in conditions commonly associated with Helicobacter pylori (H. pylori infection, including gastritis, peptic ulcer, and gastric carcinoma, prompts consideration of a potential relationship between mucosal colonization by this organism and the angiogenic process. H. pylori directly or indirectly damages endothelial cells, which induces a number of changes in the microvasculature of the gastric mucosa. In H. pylori-associated conditions, that is, in gastritis, peptic ulcer and gastric carcinoma, there is an increased concentration of angiogenic factors, and subsequently a formation of new blood vessels. However, this early angiogenesis -which is activated to repair the gastric mucosa- is subsequently inhibited in patients with peptic ulcer, and ulcer healing is thus delayed. This may be due to the antiproliferative action of this organism on endothelial cells. While the angiogenic process becomes inhibited in infected patients with peptic ulcer, it remains seemingly active in those with gastritis or gastric cancer. This fact is in support of the notion suggested by various studies that peptic ulcer and gastric cancer are mutually excluding conditions. In the case of gastric cancer, neoangiogenesis would enhance nutrient and oxygen supply to cancer cells, and thus tumor growth and metastatic spread.

  13. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors.

    Directory of Open Access Journals (Sweden)

    Alok De

    Full Text Available Patients with ovarian cancer (OC may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla, have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen - CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC.

  14. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential.

    Science.gov (United States)

    Adini, Irit; Adini, Avner; Bazinet, Lauren; Watnick, Randolph S; Bielenberg, Diane R; D'Amato, Robert J

    2015-02-01

    The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases. © FASEB.

  15. ACE inhibition modifies exercise-induced pro-angiogenic and mitochondrial gene transcript expression

    NARCIS (Netherlands)

    van Ginkel, S.; Ruoss, S.; Valdivieso, P.; Degens, H.; Waldron, S.; de Haan, Arnold; Flück, M.

    2016-01-01

    Skeletal muscle responds to endurance exercise with an improvement of biochemical pathways that support substrate supply and oxygen-dependent metabolism. This is reflected by enhanced expression of associated factors after exercise and is specifically modulated by tissue perfusion and oxygenation.

  16. Diacylglycerol kinase α mediates 17-β-estradiol-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line through the G protein-coupled estrogen receptor GPR30.

    Science.gov (United States)

    Filigheddu, Nicoletta; Sampietro, Sara; Chianale, Federica; Porporato, Paolo E; Gaggianesi, Miriam; Gregnanin, Ilaria; Rainero, Elena; Ferrara, Michele; Perego, Beatrice; Riboni, Francesca; Baldanzi, Gianluca; Graziani, Andrea; Surico, Nicola

    2011-12-01

    Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Radiation induces invasiveness of pancreatic cancer via up-regulation of heparanase

    International Nuclear Information System (INIS)

    Lerner, I.; Bensoussan, E.; Meirovitz, A.; Elkin, M.; Vlodavsky, I.

    2013-01-01

    The full text of the publication follows. Pancreatic cancer is one of the most aggressive neoplasms with an extremely low survival rate. Because most pancreatic carcinoma patients miss the opportunity for complete surgical resection at the time of diagnosis, radiotherapy remains a major component of treatment modalities. However, pancreatic cancer often shows resistance to radiation therapy. Ionizing radiation (IR)-induced aggressiveness is emerging as one of the important mechanisms responsible for the limited benefit of radiation therapy in pancreatic cancer, but the identity of downstream effectors responsible for this effect remains poorly investigated. Here we report that IR promotes pancreatic cancer aggressiveness through up-regulation of the heparanase. Heparanase is a predominant mammalian enzyme capable of degrading heparan sulfate (HS), the main polysaccharide component of the basement membrane and other types of extracellular matrix (ECM). Cleavage of HS by heparanase leads to disassembly of ECM, enables cell invasion, releases HS-bound angiogenic and growth factors from the ECM depots, and generates bioactive HS fragments. We found that clinically relevant doses of IR augment invasive ability of pancreatic cells in vitro and in vivo via induction of heparanase. Our results indicate that the effect of IR on heparanase expression is mediated by Egr1 transcription factor. Moreover, specific inhibitor of heparanase enzymatic activity abolished IR-induced invasiveness of pancreatic carcinoma cells in vitro, while combined treatment with IR and the heparanase inhibitor, but not IR alone, attenuated ortho-topic pancreatic tumor progression in vivo. The proposed up-regulation of heparanase by IR represents a new molecular pathway through which IR may promote pancreatic tumor aggressiveness, providing explanation for the limited benefit from radiation therapy in pancreatic cancer. Our research is expected to offer a new approach to improve the efficacy of

  18. Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro

    International Nuclear Information System (INIS)

    Sermsathanasawadi, N.; Inoue, Yoshinori; Iwai, Takehisa; Ishii, Hideto; Yoshida, Masayuki; Igarashi, Kaori; Miura, Masahiko

    2009-01-01

    The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation. (author)

  19. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    International Nuclear Information System (INIS)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo; Komiya, Eriko; Dang, Nam H.; Iwao, Noriaki; Ohnuma, Kei; Morimoto, Chikao

    2016-01-01

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  20. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    Science.gov (United States)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.