WorldWideScience

Sample records for nemo mobile sensor

  1. A comparative signaling cost analysis of Macro Mobility scheme in NEMO (MM-NEMO) with mobility management protocol

    Science.gov (United States)

    Islam, Shayla; Abdalla, Aisha H.; Habaebi, Mohamed H.; Latif, Suhaimi A.; Hassan, Wan H.; Hasan, Mohammad K.; Ramli, H. A. M.; Khalifa, Othman O.

    2013-12-01

    NEMO BSP is an upgraded addition to Mobile IPv6 (MIPv6). As MIPv6 and its enhancements (i.e. HMIPv6) possess some limitations like higher handoff latency, packet loss, NEMO BSP also faces all these shortcomings by inheritance. Network Mobility (NEMO) is involved to handle the movement of Mobile Router (MR) and it's Mobile Network Nodes (MNNs) during handoff. Hence it is essential to upgrade the performance of mobility management protocol to obtain continuous session connectivity with lower delay and packet loss in NEMO environment. The completion of handoff process in NEMO BSP usually takes longer period since MR needs to register its single primary care of address (CoA) with home network that may cause performance degradation of the applications running on Mobile Network Nodes. Moreover, when a change in point of attachment of the mobile network is accompanied by a sudden burst of signaling messages, "Signaling Storm" occurs which eventually results in temporary congestion, packet delays or even packet loss. This effect is particularly significant for wireless environment where a wireless link is not as steady as a wired link since bandwidth is relatively limited in wireless link. Hence, providing continuous Internet connection without any interruption through applying multihoming technique and route optimization mechanism in NEMO are becoming the center of attention to the current researchers. In this paper, we propose a handoff cost model to compare the signaling cost of MM-NEMO with NEMO Basic Support Protocol (NEMO BSP) and HMIPv6.The numerical results shows that the signaling cost for the MM-NEMO scheme is about 69.6 % less than the NEMO-BSP and HMIPv6.

  2. A comparative signaling cost analysis of Macro Mobility scheme in NEMO (MM-NEMO) with mobility management protocol

    International Nuclear Information System (INIS)

    Islam, Shayla; Abdalla, Aisha H; Habaebi, Mohamed H; Latif, Suhaimi A; Hassan, Wan H; Hasan, Mohammad K; Ramli, H A M; Khalifa, Othman O

    2013-01-01

    NEMO BSP is an upgraded addition to Mobile IPv6 (MIPv6). As MIPv6 and its enhancements (i.e. HMIPv6) possess some limitations like higher handoff latency, packet loss, NEMO BSP also faces all these shortcomings by inheritance. Network Mobility (NEMO) is involved to handle the movement of Mobile Router (MR) and it's Mobile Network Nodes (MNNs) during handoff. Hence it is essential to upgrade the performance of mobility management protocol to obtain continuous session connectivity with lower delay and packet loss in NEMO environment. The completion of handoff process in NEMO BSP usually takes longer period since MR needs to register its single primary care of address (CoA) with home network that may cause performance degradation of the applications running on Mobile Network Nodes. Moreover, when a change in point of attachment of the mobile network is accompanied by a sudden burst of signaling messages, ''Signaling Storm'' occurs which eventually results in temporary congestion, packet delays or even packet loss. This effect is particularly significant for wireless environment where a wireless link is not as steady as a wired link since bandwidth is relatively limited in wireless link. Hence, providing continuous Internet connection without any interruption through applying multihoming technique and route optimization mechanism in NEMO are becoming the center of attention to the current researchers. In this paper, we propose a handoff cost model to compare the signaling cost of MM-NEMO with NEMO Basic Support Protocol (NEMO BSP) and HMIPv6.The numerical results shows that the signaling cost for the MM-NEMO scheme is about 69.6 % less than the NEMO-BSP and HMIPv6

  3. Evaluation of QoS supported in Network Mobility NEMO environments

    International Nuclear Information System (INIS)

    Hussien, L F; Abdalla, A H; Habaebi, M H; Khalifa, O O; Hassan, W H

    2013-01-01

    Network mobility basic support (NEMO BS) protocol is an entire network, roaming as a unit which changes its point of attachment to the Internet and consequently its reachability in the network topology. NEMO BS doesn't provide QoS guarantees to its users same as traditional Internet IP and Mobile IPv6 as well. Typically, all the users will have same level of services without considering about their application requirements. This poses a problem to real-time applications that required QoS guarantees. To gain more effective control of the network, incorporated QoS is needed. Within QoS-enabled network the traffic flow can be distributed to various priorities. Also, the network bandwidth and resources can be allocated to different applications and users. Internet Engineering Task Force (IETF) working group has proposed several QoS solutions for static network such as IntServ, DiffServ and MPLS. These QoS solutions are designed in the context of a static environment (i.e. fixed hosts and networks). However, they are not fully adapted to mobile environments. They essentially demands to be extended and adjusted to meet up various challenges involved in mobile environments. With existing QoS mechanisms many proposals have been developed to provide QoS for individual mobile nodes (i.e. host mobility). In contrary, research based on the movement of the whole mobile network in IPv6 is still undertaking by the IETF working groups (i.e. network mobility). Few researches have been done in the area of providing QoS for roaming networks. Therefore, this paper aims to review and investigate (previous /and current) related works that have been developed to provide QoS in mobile network. Consequently, a new proposed scheme will be introduced to enhance QoS within NEMO environment, achieving by which seamless mobility to users of mobile network node (MNN)

  4. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  5. Vehicle classification using mobile sensors.

    Science.gov (United States)

    2013-04-01

    In this research, the feasibility of using mobile traffic sensors for binary vehicle classification on arterial roads is investigated. Features (e.g. : speed related, acceleration/deceleration related, etc.) are extracted from vehicle traces (passeng...

  6. Mobile Sensor Technologies Being Developed

    Science.gov (United States)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a

  7. Energy optimization in mobile sensor networks

    Science.gov (United States)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while

  8. Data Dissemination in Mobile Phone Sensor Networks

    NARCIS (Netherlands)

    Le Viet Duc, Duc Viet

    Deploying sensors over large areas is costly in terms of configuration, hardware, and maintenance. Using onboard sensors of today mobile phones can significantly reduce the expenses in monitoring areas and disseminating events or data. Via the available short-range Bluetooth and/or WiFi interfaces,

  9. RedNemo

    DEFF Research Database (Denmark)

    Alkan, Ferhat; Erten, Cesim

    2017-01-01

    is their erroneous nature; they contain false-positive interactions and usually many more false-negatives. Recently, several computational methods have been proposed for network reconstruction based on topology, where given an input PPI network the goal is to reconstruct the network by identifying false...... material including source code, useful scripts, experimental data and the results are available at http://webprs.khas.edu.tr/∼cesim/Red Nemo. tar.gz CONTACT: cesim@khas.edu.tr Supplementary information: Supplementary data are available at Bioinformatics online....

  10. Sensor Fusion for Autonomous Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Plascencia, Alfredo

    Multi-sensor data fusion is a broad area of constant research which is applied to a wide variety of fields such as the field of mobile robots. Mobile robots are complex systems where the design and implementation of sensor fusion is a complex task. But research applications are explored constantl....... The scope of the thesis is limited to building a map for a laboratory robot by fusing range readings from a sonar array with landmarks extracted from stereo vision images using the (Scale Invariant Feature Transform) SIFT algorithm....

  11. Nemo-3 calorimeter electronics

    International Nuclear Information System (INIS)

    Bernaudin, P.; Cheikali, C.; Lavigne, B.; Richard, A.; Lebris, J.

    2000-11-01

    The calorimeter electronics of the NEMO-3 double beta decay experiment fulfills three functions: -energy measurement of the electrons by measuring the charge of the pulses, - time measurement, - fast first level triggering. The electronics of the 1940 Scintillator-PM modules is implemented as 40 '9U x 400 mm VME' boards of up to 51 channels. For each channel the analog signals conditioning is implemented as one SMD daughter board. Each board performs 12 bit charge measurements with 0.35 pC charge resolution, 12 bit time measurements with 50 ps time resolution and a fast analog multiplicity level for triggering. The total handling and conversion time for all the channels is less than 100 μs. The electronics will be presented as well as the test system. (authors)

  12. PORFIDO on the NEMO Phase 2 tower

    Energy Technology Data Exchange (ETDEWEB)

    Ciaffoni, Orlando; Cordelli, Marco; Habel, Roberto; Martini, Agnese; Trasatti, Luciano [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (RM) (Italy)

    2014-11-18

    We have designed and built an underwater measurement system, PORFIDO (Physical Oceanography by RFID Outreach) to gather oceanographic data from the Optical Modules of a neutrino telescope with a minimum of disturbance to the main installation. PORFIDO is composed of a sensor glued to the outside of an Optical Module, in contact with seawater, and of a reader placed inside the sphere, facing the sensor. Data are transmitted to the reader through the glass by RFID and to shore in real time for periods of years. The sensor gathers power from the radio frequency, thus eliminating the need for batteries or connectors through the glass. We have deployed four PORFIDO probes measuring temperatures with the NEMO-KM3Net-Italy Phase 2 tower in april 2013. The four probes are operative and are transmitting temperature data from 3500 m depth.

  13. PORFIDO on the NEMO Phase 2 tower

    International Nuclear Information System (INIS)

    Ciaffoni, Orlando; Cordelli, Marco; Habel, Roberto; Martini, Agnese; Trasatti, Luciano

    2014-01-01

    We have designed and built an underwater measurement system, PORFIDO (Physical Oceanography by RFID Outreach) to gather oceanographic data from the Optical Modules of a neutrino telescope with a minimum of disturbance to the main installation. PORFIDO is composed of a sensor glued to the outside of an Optical Module, in contact with seawater, and of a reader placed inside the sphere, facing the sensor. Data are transmitted to the reader through the glass by RFID and to shore in real time for periods of years. The sensor gathers power from the radio frequency, thus eliminating the need for batteries or connectors through the glass. We have deployed four PORFIDO probes measuring temperatures with the NEMO-KM3Net-Italy Phase 2 tower in april 2013. The four probes are operative and are transmitting temperature data from 3500 m depth

  14. Sensor fusion for mobile robot navigation

    International Nuclear Information System (INIS)

    Kam, M.; Zhu, X.; Kalata, P.

    1997-01-01

    The authors review techniques for sensor fusion in robot navigation, emphasizing algorithms for self-location. These find use when the sensor suite of a mobile robot comprises several different sensors, some complementary and some redundant. Integrating the sensor readings, the robot seeks to accomplish tasks such as constructing a map of its environment, locating itself in that map, and recognizing objects that should be avoided or sought. The review describes integration techniques in two categories: low-level fusion is used for direct integration of sensory data, resulting in parameter and state estimates; high-level fusion is used for indirect integration of sensory data in hierarchical architectures, through command arbitration and integration of control signals suggested by different modules. The review provides an arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks. It points to several further-research needs, including: robustness of decision rules; simultaneous consideration of self-location, motion planning, motion control and vehicle dynamics; the effect of sensor placement and attention focusing on sensor fusion; and adaptation of techniques from biological sensor fusion

  15. Estimating Human Predictability From Mobile Sensor Data

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Larsen, Jakob Eg; Jensen, Kristian

    2010-01-01

    Quantification of human behavior is of prime interest in many applications ranging from behavioral science to practical applications like GSM resource planning and context-aware services. As proxies for humans, we apply multiple mobile phone sensors all conveying information about human behavior....... Using a recent, information theoretic approach it is demonstrated that the trajectories of individual sensors are highly predictable given complete knowledge of the infinite past. We suggest using a new approach to time scale selection which demonstrates that participants have even higher predictability...

  16. Expanding the substantial interactome of NEMO using protein microarrays.

    LENUS (Irish Health Repository)

    Fenner, Beau J

    2010-01-01

    Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway.

  17. NEMO: A Stellar Dynamics Toolbox

    Science.gov (United States)

    Barnes, Joshua; Hut, Piet; Teuben, Peter

    2010-10-01

    NEMO is an extendible Stellar Dynamics Toolbox, following an Open-Source Software model. It has various programs to create, integrate, analyze and visualize N-body and SPH like systems, following the pipe and filter architecture. In addition there are various tools to operate on images, tables and orbits, including FITS files to export/import to/from other astronomical data reduction packages. A large growing fraction of NEMO has been contributed by a growing list of authors. The source code consist of a little over 4000 files and a little under 1,000,000 lines of code and documentation, mostly C, and some C++ and Fortran. NEMO development started in 1986 in Princeton (USA) by Barnes, Hut and Teuben. See also ZENO (ascl:1102.027) for the version that Barnes maintains.

  18. Review paper of gateway selection schemes for MANET of NEMO (MANEMO)

    International Nuclear Information System (INIS)

    Mahmood, Z; Hashim, A; Khalifa, O; Anwar, F; Hameed, S

    2013-01-01

    The fast growth of Internet applications brings with it new challenges for researchers to provide new solutions that guarantee better Internet access for mobile hosts and networks. The globally reachable, Home-Agent based, infrastructure Network Mobility (NEMO) and the local, multi-hop, and infrastructure-less Mobile Ad hoc Network (MANET) developed by Internet Engineering Task Force (IETF) support different topologies of the mobile networks. A new architecture was proposed by combining both topologies to obtain Mobile Ad Hoc NEMO (MANEMO). However, the integration of NEMO and MANET introduces many challenges such as network loops, sub-optimal route, redundant tunnel problem, absence of communication without Home Agent reachability, and exit router selection when multiple Exit Routers to the Internet exist. This paper aims to review the different proposed models that could be used to implement the gateway selection mechanism and it highlights the strengths as well as the limitations of these approaches

  19. Mobile Networked Sensors for Environmental Observatories

    Science.gov (United States)

    Kaiser, W. J.

    2005-12-01

    carried by NIMS include sensors for visible wavelength imaging, thermal infrared temperature mapping, microclimate, solar radiation, and for water quality and physical characterization of aquatic systems. NIMS devices include compact embedded computing, wireless network connectivity to surrounding static sensors, and remote Internet access. Exploiting this onboard computing allows NIMS devices to follow precise scanning protocols and self-calibration procedures. This presentation will describe permanent facility NIMS systems deployed at the James San Jacinto Mountains Reserve. Rapidly deployable NIMS permitting short term, highly mobile experiments will also be discussed. This includes the Thermal Mapper system that simultaneously samples plant physical structure (using laser position sensing and imaging) along with plant surface temperature (using high spatial resolution thermal infrared sensing). This compact system has been applied to the investigation of thermal characteristics of alpine plants in varying soil surfaces at the White Mountains Research Station. Other NIMS applications and results to be described include novel spatial mapping of nitrate concentration and other variables in flowing streams. Finally, this presentation will also address the many future applications of observatories linking investigators with remote mobile and static sensor networks. This research is supported by the NSF0331481 ITR program. Research has been performed in collaboration with R. Ambrose, K. Bible, D. Estrin, E. Graham, M. Hamilton, M. Hanson, T. Harmon, G. Pottie, P. Rundel, M. Srivastava, and G. Sukhatme

  20. Investigation of the Usability of Mobile Sensors for Weather Forecasting

    Directory of Open Access Journals (Sweden)

    Semih Dalğın

    2015-08-01

    Full Text Available Crowd sourcing is a popular method for providing data from people by the use of mobile sensor, internet and communication technologies. However efficient use of the raw data provided by the sensors with different characteristics in order to obtain accurate results is not investigated in detail. This study aims to investigate the data collected by mobile sensors integrated in the smartphones for scientific purposes such as weather forecasting. In this context, accuracy of the data provided mobile humidity, pressure and temperature sensors was examined in this study. Data provided by 5 smart phones and 3 Bluetooth sensors were tested in this context. Accuracy assessment process was performed by calculating the Root Mean Square Errors of the data with respect to reference data collected by TST Sensor simultaneously. This study shows that accuracy of the data collected with the mobile sensors is affected by several external parameters such as climatic conditions, handling habits of the user, and etc. Although it is possible to calculate correction constant for each sensor separately, it is not possible to calculate a unique and universal correction constant in order to increase the accuracy of the raw data collected by the mobile sensors. Therefore further studies should be executed for improving the accuracy of the mobile sensor data for scientific purposes.

  1. LinkMind: link optimization in swarming mobile sensor networks.

    Science.gov (United States)

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  2. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2011-08-01

    Full Text Available A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  3. Performance analysis of a self-locating mobile sensor

    DEFF Research Database (Denmark)

    Bøgsted, Martin; Rasmussen, Jakob Gulddahl; Lundbye-Christensen, Søren

    to an autoregressive model. Measurement uncertainty is assumed to follow a Gaussian distribution and the probability for detecting a distance to a given sensor is assumed to fall off exponentially with squared distance. The combined model is formulated as a nonlinear state space model and Bayesian inference......We consider the ability of a mobile sensor to locate its own geographical location, the so-called self-localization problem. The need to locate people and objects has inspired the development of many systems for automatic localization. Most systems are based on location information and measured...... the performance of localization algorithms in mobile and critical situations. This is done by exploring the performance of various filtering techniques for self-localization of a mobile sensor in a field of sensors. More specifically, we model the mobility of the sensor such that the velocity varies according...

  4. Alcohol control: Mobile sensor system and numerical signal analysis

    OpenAIRE

    Seifert, Rolf; Keller, Hubert B.; Conrad, Thorsten; Peter, Jens

    2016-01-01

    An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is ...

  5. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2012-01-01

    of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link...... optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm...

  6. Autonomous Distributed Self-Organization for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2009-11-01

    Full Text Available This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently. A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.

  7. Autonomous distributed self-organization for mobile wireless sensor networks.

    Science.gov (United States)

    Wen, Chih-Yu; Tang, Hung-Kai

    2009-01-01

    This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.

  8. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    Science.gov (United States)

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  9. Alcohol Control: Mobile Sensor System and Numerical Signal Analysis

    Directory of Open Access Journals (Sweden)

    Rolf SEIFERT

    2016-10-01

    Full Text Available An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is also incorporated in the system. The applications demonstrate a good substance identification capability of the sensor system and a very good concentration determination of the components.

  10. Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.

    Science.gov (United States)

    La, Hung Manh; Sheng, Weihua

    2013-04-01

    In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

  11. Sensor city mobility. Innovaties in mobiliteit kansrijk voor stedelijke regio's

    NARCIS (Netherlands)

    Burgmeijer, J.W.

    2014-01-01

    Slimmer omgaan met informatie uit sensoren loont. Dat is de uitkomst van het innovatieproject Sensor City Mobility. Van 2010 tot 2014 was 'sensor city' Assen een living lab voor dit project. Het project beoogde een innovatieslag in reisinformatie- en verkeersmanagementdiensten. Het project is

  12. Mobile Sensor Networks for Inspection Tasks in Harsh Industrial Environments

    NARCIS (Netherlands)

    Mulder, Jacob; Wang, Xinyu; Ferwerda, Franke; Cao, Ming

    Recent advances in sensor technology have enabled the fast development of mobile sensor networks operating in various unknown and sometimes hazardous environments. In this paper, we introduce one integrative approach to design, analyze and test distributed control algorithms to coordinate a network

  13. Mobile platform sampling for designing environmental sensor networks.

    Science.gov (United States)

    Budi, Setia; de Souza, Paulo; Timms, Greg; Susanto, Ferry; Malhotra, Vishv; Turner, Paul

    2018-02-09

    This paper proposes a method to design the deployment of sensor nodes in a new region where historical data is not available. A number of mobile platforms are simulated to build initial knowledge of the region. Further, an evolutionary algorithm is employed to find the optimum placement of a given number of sensor nodes that best represents the region of interest.

  14. Structure Sensor for mobile markerless augmented reality

    Science.gov (United States)

    Kilgus, T.; Bux, R.; Franz, A. M.; Johnen, W.; Heim, E.; Fangerau, M.; Müller, M.; Yen, K.; Maier-Hein, L.

    2016-03-01

    3D Visualization of anatomical data is an integral part of diagnostics and treatment in many medical disciplines, such as radiology, surgery and forensic medicine. To enable intuitive interaction with the data, we recently proposed a new concept for on-patient visualization of medical data which involves rendering of subsurface structures on a mobile display that can be moved along the human body. The data fusion is achieved with a range imaging device attached to the display. The range data is used to register static 3D medical imaging data with the patient body based on a surface matching algorithm. However, our previous prototype was based on the Microsoft Kinect camera and thus required a cable connection to acquire color and depth data. The contribution of this paper is two-fold. Firstly, we replace the Kinect with the Structure Sensor - a novel cable-free range imaging device - to improve handling and user experience and show that the resulting accuracy (target registration error: 4.8+/-1.5 mm) is comparable to that achieved with the Kinect. Secondly, a new approach to visualizing complex 3D anatomy based on this device, as well as 3D printed models of anatomical surfaces, is presented. We demonstrate that our concept can be applied to in vivo data and to a 3D printed skull of a forensic case. Our new device is the next step towards clinical integration and shows that the concept cannot only be applied during autopsy but also for presentation of forensic data to laypeople in court or medical education.

  15. Java-based mobile agent platforms for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Carbone, A.; Fortino, G.; Galzarano, S.; Ganzha, M.; Paprzycki, M.

    2010-01-01

    This paper proposes an overview and comparison of mobile agent platforms for the development of wireless sensor network applications. In particular, the architecture, programming model and basic performance of two Java-based agent platforms, Mobile Agent Platform for Sun SPOT (MAPS) and Agent

  16. An Orientation Sensor for Mobile Robots Using Differentials

    Directory of Open Access Journals (Sweden)

    Wei-Chen Lee

    2013-02-01

    Full Text Available Without access to external guidance, such as landmarks or beacons, indoor mobile robots usually orientate themselves by using magnetic compasses or gyroscopes. However, compasses face interference from steel furniture, and gyroscopes suffer from zero drift errors. This paper proposes an orientation sensor that can be used on differentially driven mobile robots to resolve these issues. The sensor innovatively combines the general differentials and an optical encoder so that it can provide only the orientation information. Such a sensor has not been described in any known literature and is cost-efficient compared to the common method of using two encoders for differentially driven mobile robots. The kinematic analysis and the mechanical design of this sensor are presented in this paper. The maximum mean error of the proposed orientation sensor was about 0.7° during the component tests. The application of the sensor on a vacuum cleaning robot was also demonstrated. The use of the proposed sensor may provide less uncertain orientation data for an indoor differentially driven mobile robot.

  17. Robotic and Sensor Technologies for Mobility in Older People.

    Science.gov (United States)

    Penteridis, Lazaros; D'Onofrio, Grazia; Sancarlo, Daniele; Giuliani, Francesco; Ricciardi, Francesco; Cavallo, Filippo; Greco, Antonio; Trochidis, Ilias; Gkiokas, Alexander

    2017-10-01

    Maintaining independent mobility is fundamental to independent living and to the quality of life of older people. Robotic and sensor technologies may offer a lot of potential and can make a significant difference in the lives of older people and to their primary caregivers. The aim of this study was to provide a presentation of the methods that are used up till now for analysis and evaluation of human mobility utilizing sensor technologies and to give the state of the art in robotic platforms for supporting older people with mobility limitations. The literature was reviewed and systematic reviews of cohort studies and other authoritative reports were identified. The selection criteria included (1) patients with age ≥60 years; (2) patients with unstable gait, with or without recurrent falls; (3) patients with slow movements, short strides, and little trunk movement; (4) sensor technologies that are currently used for mobility evaluation; and (5) robotic technologies that can serve as a supporting companion for older people with mobility limitations. One hundred eighty-one studies published up until February 2017 were identified, of which 36 were included. Two categories of research were identified from the review regarding the robot and sensor technologies: (1) sensor technologies for mobility analysis and (2) robots for supporting older people with mobility limitations. Potential for robotic and sensor technologies can be taken advantage of for evaluation and support at home for elder persons with mobility limitations in an automated way without the need of the physical presence of any medical personnel, reducing the stress of caregivers.

  18. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Science.gov (United States)

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  19. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Marwah Almasri

    2015-12-01

    Full Text Available Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  20. Mobile trap algorithm for zinc detection using protein sensors

    International Nuclear Information System (INIS)

    Inamdar, Munish V.; Lastoskie, Christian M.; Fierke, Carol A.; Sastry, Ann Marie

    2007-01-01

    We present a mobile trap algorithm to sense zinc ions using protein-based sensors such as carbonic anhydrase (CA). Zinc is an essential biometal required for mammalian cellular functions although its intracellular concentration is reported to be very low. Protein-based sensors like CA molecules are employed to sense rare species like zinc ions. In this study, the zinc ions are mobile targets, which are sought by the mobile traps in the form of sensors. Particle motions are modeled using random walk along with the first passage technique for efficient simulations. The association reaction between sensors and ions is incorporated using a probability (p 1 ) upon an ion-sensor collision. The dissociation reaction of an ion-bound CA molecule is modeled using a second, independent probability (p 2 ). The results of the algorithm are verified against the traditional simulation techniques (e.g., Gillespie's algorithm). This study demonstrates that individual sensor molecules can be characterized using the probability pair (p 1 ,p 2 ), which, in turn, is linked to the system level chemical kinetic constants, k on and k off . Further investigations of CA-Zn reaction using the mobile trap algorithm show that when the diffusivity of zinc ions approaches that of sensor molecules, the reaction data obtained using the static trap assumption differ from the reaction data obtained using the mobile trap formulation. This study also reveals similar behavior when the sensor molecule has higher dissociation constant. In both the cases, the reaction data obtained using the static trap formulation reach equilibrium at a higher number of complex molecules (ion-bound sensor molecules) compared to the reaction data from the mobile trap formulation. With practical limitations on the number sensors that can be inserted/expressed in a cell and stochastic nature of the intracellular ionic concentrations, fluorescence from the number of complex sensor molecules at equilibrium will be the measure

  1. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-09-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  2. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-06-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  3. Radio Sensor for Monitoring of UMTS Mobile Terminals

    Directory of Open Access Journals (Sweden)

    F. Kozak

    2014-06-01

    Full Text Available Relatively simple and low-cost radio sensor for monitoring of 3rd generation (3G UMTS mobile terminals (i.e., phones has been designed and practically tested. The main purpose of this sensor is to serve as an extending module that can be installed into systems used for monitoring of standard 2nd generation (2G GSM and DCS mobile phones in highly guarded buildings and areas. Since the transmitted powers of UMTS mobile terminals can be very low in relation to GSM and DCS specifications, the new UMTS sensor is based on a highly sensitive receiver and additional signal processing. The radio sensor was practically tested in several scenarios representing worst-case mobile terminal - base station relations. The measured detection ranges attain values from approx. 11 m inside of rooms to more than 30 m in corridors, which seems to be sufficient for the expected application. Results of all performed tests correspond fairly well with the presented theoretical descriptions. An extended version of the radio sensor can be used for monitoring of mobile terminals of all existing voice or data formats.

  4. Localization with a mobile beacon in underwater acoustic sensor networks.

    Science.gov (United States)

    Lee, Sangho; Kim, Kiseon

    2012-01-01

    Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.

  5. Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangho Lee

    2012-04-01

    Full Text Available Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB. The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node’s location and then the node’s location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.

  6. Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks.

    Science.gov (United States)

    Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei

    2017-01-13

    WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator's mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost.

  7. Data Compression by Shape Compensation for Mobile Video Sensors

    Directory of Open Access Journals (Sweden)

    Ben-Shung Chow

    2009-04-01

    Full Text Available Most security systems, with their transmission bandwidth and computing power both being sufficient, emphasize their automatic recognition techniques. However, in some situations such as baby monitors and intruder avoidance by mobile sensors, the decision function sometimes can be shifted to the concerned human to reduce the transmission and computation cost. We therefore propose a binary video compression method in low resolution to achieve a low cost mobile video communication for inexpensive camera sensors. Shape compensation as proposed in this communication successfully replaces the standard Discrete Cosine Transformation (DCT after motion compensation.

  8. Biomedical sensor technologies on the platform of mobile phones

    Science.gov (United States)

    Liu, Lin; Liu, Jing

    2011-06-01

    Biomedical sensors have been widely used in various areas of biomedical practices, which play an important role in disease detection, diagnosis, monitoring, treatment, health management, and so on. However, most of them and their related platforms are generally not easily accessible or just too expensive or complicated to be kept at home. As an alternative, new technologies enabled from the mobile phones are gradually changing such situations. As can be freely available to almost everyone, mobile phone offers a unique way to improve the conventional medical care through combining with various biomedical sensors. Moreover, the established systems will be both convenient and low cost. In this paper, we present an overview on the state-of-art biomedical sensors, giving a brief introduction of the fundamental principles and showing several new examples or concepts in the area. The focus was particularly put on interpreting the technical strategies to innovate the biomedical sensor technologies based on the platform of mobile phones. Some challenging issues, including feasibility, usability, security, and effectiveness, were discussed. With the help of electrical and mechanical technologies, it is expected that a full combination between the biomedical sensors and mobile phones will bring a bright future for the coming pervasive medical care.

  9. Sensor proxy mobile IPv6 (SPMIPv6)--a novel scheme for mobility supported IP-WSNs.

    Science.gov (United States)

    Islam, Md Motaharul; Huh, Eui-Nam

    2011-01-01

    IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly.

  10. Double hit of NEMO gene in preeclampsia.

    Directory of Open Access Journals (Sweden)

    Agata Sakowicz

    Full Text Available The precise etiology of preeclampsia is unknown. Family studies indicate that both genetic and environmental factors influence its development. One of these factors is NFkB, whose activation depends on NEMO (NFkB essential modulator. This is the first study to investigate the association between the existence of single nucleotide variant of the NEMO gene and the appearance of preeclampsia. A total of 151 women (72 preeclamptic women and 79 controls and their children were examined. Sanger sequencing was performed to identify variants in the NEMO gene in the preeclamptic mothers. The maternal identified variants were then sought in the studied groups of children, and in the maternal and child controls, using RFLP-PCR. Real-time RT-PCR was performed to assess NEMO gene expression in maternal blood, umbilical cord blood and placentas. The sequencing process indicated the existence of two different variants in the 3'UTR region of the NEMO gene of preeclamptic women (IKBKG:c.*368C>A and IKBKG:c.*402C>T. The simultaneous occurrence of the TT genotype in the mother and the TT genotype in the daughter or a T allele in the son increased the risk of preeclampsia development 2.59 fold. Additionally, we found that the configuration of maternal/fetal genotypes (maternal TT/ daughter TT or maternal TT/son T of IKBKG:c.*402C/T variant is associated with the level of NEMO gene expression. Our results showed that, the simultaneous occurrence of the maternal TT genotype (IKBKG:c.*402C>T variants and TT genotype in the daughter or T allele in the son correlates with the level of NEMO gene expression and increases the risk of preeclampsia development. Our observations may offer a new insight into the genetic etiology and pathogenesis of preeclampsia.

  11. PERANCANGAN DAN IMPLEMENTASI SENSOR PARKIR PADA MOBIL MENGGUNAKAN SENSOR ULTRASONIK

    Directory of Open Access Journals (Sweden)

    Rudy Susanto

    2007-05-01

    Full Text Available A car driver often had trouble to park his car a narrow location, caused by a narrow parking area on the wane.Also, cars had often crashed the electric pillar or scratched the car on the wall while retreat. The problem was the driverdidn’t know condition behind vehicle because of limited of view. The research aimed to make a system that can easily helpdriver in parking his car, by using of ultrasonic parking sensor. The method used in sensor scheme parks is ultrasonicisensor to detect and measure car and balk distance by utilising of 851 family microcontroller as the main system. Theresult indicates that ultrasonic censor effective deep measurement was on distance of 2 cm – 30 m. It is that enoughultrasonic censor is effective to be implemented on censor parks.

  12. Social-Driven Information Dissemination for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Basim MAHMOOD

    2015-06-01

    Full Text Available As we move into the so-called Internet of Things (IoT, the boundary between sensor networks and social networks is likely to disappear. Moreover, previous works argue that mobility in sensor networks may become a consequence of human movement making the understanding of human mobility crucial to the design of sensor networks. When people carry sensors, they become able to use concepts from social networks in the design of sensor network infrastructures. However, to this date, the utilization of social networks in designing protocols for wireless sensor networks has not received much attention. In this paper, we focus on the concept of information dissemination in a framework where sensors are carried by people who, like most of us, are part of a social network. We propose two social-based forwarding approaches for what has been called Social Network of Sensors (SNoS. To this end, we exploit two important characteristics of ties in social networks, namely strong ties and weak ties. The former is used to achieve rapid dissemination to nearby sensors while the latter aims at dissemination to faraway sensors. We compared our results against two well-known approaches in the literature: Epidemic and PRoPHET protocols. We evaluate our approaches according to four criteria: information-dissemination distance, information-dissemination coverage area, the number of messages exchanged, and information delivery time. We believe this is the first work that investigates the issues of information-dissemination distance and information-dissemination coverage area using an approach inspired on social network concepts.

  13. Sensor Fusion and Model Verification for a Mobile Robot

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Vinther, Dennis; Østergaard, Kasper Zinck

    2005-01-01

    This paper presents the results of modeling, sensor fusion and model verification for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The model derived for the robot describes the actuator and wheel dynamics and the vehicle kinematics, and includes friction terms...

  14. Adapting Mobile Beacon-Assisted Localization in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2009-04-01

    Full Text Available The ability to automatically locate sensor nodes is essential in many Wireless Sensor Network (WSN applications. To reduce the number of beacons, many mobile-assisted approaches have been proposed. Current mobile-assisted approaches for localization require special hardware or belong to centralized localization algorithms involving some deterministic approaches due to the fact that they explicitly consider the impreciseness of location estimates. In this paper, we first propose a range-free, distributed and probabilistic Mobile Beacon-assisted Localization (MBL approach for static WSNs. Then, we propose another approach based on MBL, called Adapting MBL (A-MBL, to increase the efficiency and accuracy of MBL by adapting the size of sample sets and the parameter of the dynamic model during the estimation process. Evaluation results show that the accuracy of MBL and A-MBL outperform both Mobile and Static sensor network Localization (MSL and Arrival and Departure Overlap (ADO when both of them use only a single mobile beacon for localization in static WSNs.

  15. Adapting mobile beacon-assisted localization in wireless sensor networks.

    Science.gov (United States)

    Teng, Guodong; Zheng, Kougen; Dong, Wei

    2009-01-01

    The ability to automatically locate sensor nodes is essential in many Wireless Sensor Network (WSN) applications. To reduce the number of beacons, many mobile-assisted approaches have been proposed. Current mobile-assisted approaches for localization require special hardware or belong to centralized localization algorithms involving some deterministic approaches due to the fact that they explicitly consider the impreciseness of location estimates. In this paper, we first propose a range-free, distributed and probabilistic Mobile Beacon-assisted Localization (MBL) approach for static WSNs. Then, we propose another approach based on MBL, called Adapting MBL (A-MBL), to increase the efficiency and accuracy of MBL by adapting the size of sample sets and the parameter of the dynamic model during the estimation process. Evaluation results show that the accuracy of MBL and A-MBL outperform both Mobile and Static sensor network Localization (MSL) and Arrival and Departure Overlap (ADO) when both of them use only a single mobile beacon for localization in static WSNs.

  16. Tracking Mobile Robot in Indoor Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2014-01-01

    Full Text Available This work addresses the problem of tracking mobile robots in indoor wireless sensor networks (WSNs. Our approach is based on a localization scheme with RSSI (received signal strength indication which is used widely in WSN. The developed tracking system is designed for continuous estimation of the robot’s trajectory. A WSN, which is composed of many very simple and cheap wireless sensor nodes, is deployed at a specific region of interest. The wireless sensor nodes collect RSSI information sent by mobile robots. A range-based data fusion scheme is used to estimate the robot’s trajectory. Moreover, a Kalman filter is designed to improve tracking accuracy. Experiments are provided to assess the performance of the proposed scheme.

  17. An Intelligent Cooperative Visual Sensor Network for Urban Mobility.

    Science.gov (United States)

    Leone, Giuseppe Riccardo; Moroni, Davide; Pieri, Gabriele; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea; Marino, Francesco

    2017-11-10

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities.

  18. An Intelligent Cooperative Visual Sensor Network for Urban Mobility

    Directory of Open Access Journals (Sweden)

    Giuseppe Riccardo Leone

    2017-11-01

    Full Text Available Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities.

  19. An Intelligent Cooperative Visual Sensor Network for Urban Mobility

    Science.gov (United States)

    Leone, Giuseppe Riccardo; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea

    2017-01-01

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities. PMID:29125535

  20. Animals as Mobile Biological Sensors for Forest Fire Detection

    Directory of Open Access Journals (Sweden)

    Yasar Guneri Sahin

    2007-12-01

    Full Text Available This paper proposes a mobile biological sensor system that can assist in earlydetection of forest fires one of the most dreaded natural disasters on the earth. The main ideapresented in this paper is to utilize animals with sensors as Mobile Biological Sensors(MBS. The devices used in this system are animals which are native animals living inforests, sensors (thermo and radiation sensors with GPS features that measure thetemperature and transmit the location of the MBS, access points for wireless communicationand a central computer system which classifies of animal actions. The system offers twodifferent methods, firstly: access points continuously receive data about animals’ locationusing GPS at certain time intervals and the gathered data is then classified and checked tosee if there is a sudden movement (panic of the animal groups: this method is called animalbehavior classification (ABC. The second method can be defined as thermal detection(TD: the access points get the temperature values from the MBS devices and send the datato a central computer to check for instant changes in the temperatures. This system may beused for many purposes other than fire detection, namely animal tracking, poachingprevention and detecting instantaneous animal death.

  1. A Reliable Handoff Mechanism for Mobile Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Jian; Yang, Dong; Zhang, Hongke; Gidlund, Mikael

    2017-08-04

    With the prevalence of low-power wireless devices in industrial applications, concerns about timeliness and reliability are bound to continue despite the best efforts of researchers to design Industrial Wireless Sensor Networks (IWSNs) to improve the performance of monitoring and control systems. As mobile devices have a major role to play in industrial production, IWSNs should support mobility. However, research on mobile IWSNs and practical tests have been limited due to the complicated resource scheduling and rescheduling compared with traditional wireless sensor networks. This paper proposes an effective mechanism to guarantee the performance of handoff, including a mobility-aware scheme, temporary connection and quick registration. The main contribution of this paper is that the proposed mechanism is implemented not only in our testbed but in a real industrial environment. The results indicate that our mechanism not only improves the accuracy of handoff triggering, but also solves the problem of ping-pong effect during handoff. Compared with the WirelessHART standard and the RSSI-based approach, our mechanism facilitates real-time communication while being more reliable, which can help end-to-end packet delivery remain an average of 98.5% in the scenario of mobile IWSNs.

  2. Design of automatic mobile trolley using ultrasonic sensors

    Science.gov (United States)

    Dodi Suryanto, Eka; Siagian, Hendrik; Perangin-Angin, Despaleri; Sashanti, Rahayu; Yogen, Suthes

    2018-04-01

    An automatic mobile trolley was a prototype of wheel robot that serves as a trolley or shopping cart. This paper proposed an automatic mobile trolley using ultrasonic sensors. It can follow human movement automatically. It did not need to be encouraged or withdrawn. It would make an easier shopping for people as customers. The trolley controlled by a microcontroller module unit. It can stop, turn right, turn left, forward and backward. It can follow wherever they go, during they were in range. Based on the test results, the trolley succeeded to move forward by 80%, move backward 80%, turn left, 70%, turn right 70%, and stop 80%.

  3. Wireless Sensor/Actuator Network Design for Mobile Control Applications

    Directory of Open Access Journals (Sweden)

    Youxian Sung

    2007-10-01

    Full Text Available Wireless sensor/actuator networks (WSANs are emerging as a new generationof sensor networks. Serving as the backbone of control applications, WSANs will enablean unprecedented degree of distributed and mobile control. However, the unreliability ofwireless communications and the real-time requirements of control applications raise greatchallenges for WSAN design. With emphasis on the reliability issue, this paper presents anapplication-level design methodology for WSANs in mobile control applications. Thesolution is generic in that it is independent of the underlying platforms, environment,control system models, and controller design. To capture the link quality characteristics interms of packet loss rate, experiments are conducted on a real WSAN system. From theexperimental observations, a simple yet efficient method is proposed to deal withunpredictable packet loss on actuator nodes. Trace-based simulations give promisingresults, which demonstrate the effectiveness of the proposed approach.

  4. Mobility-aware Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Random mobility of node causes the frequent changes in the network dynamics causing the increased cost in terms of energy and bandwidth. It needs the additional efforts to synchronize the activities of nodes during data collection and transmission in Wireless Sensor Networks (WSNs). A key challenge...... in maintaining the effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Mobility-aware Hybrid Synchronization Algorithm (MHS) which works on the formation of cluster based on spanning tree mechanism (SPT). Nodes used...... for formation of the network have random mobility and heterogeneous in terms of energy with static sink. The nodes in the cluster and cluster heads in the network are synchronized with the notion of global time scale. In the initial stage, the algorithm establishes the hierarchical structure of the network...

  5. Sensor fusion-based map building for mobile robot exploration

    International Nuclear Information System (INIS)

    Ribo, M.

    2000-01-01

    To carry out exploration tasks in unknown or partially unknown environments, a mobile robot needs to acquire and maintain models of its environment. In doing so, several sensors of same nature and/or heterogeneous sensor configurations may be used by the robot to achieve reliable performances. However, this in turn poses the problem of sensor fusion-based map building: How to interpret, combine and integrate sensory information in order to build a proper representation of the environment. Specifically, the goal of this thesis is to probe integration algorithms for Occupancy Grid (OG) based map building using odometry, ultrasonic rangefinders, and stereo vision. Three different uncertainty calculi are presented here which are used for sensor fusion-based map building purposes. They are based on probability theory, Dempster-Shafer theory of evidence, and fuzzy set theory. Besides, two different sensor models are depicted which are used to translate sensing data into range information. Experimental examples of OGs built from real data recorded by two robots in office-like environment are presented. They show the feasibility of the proposed approach for building both sonar and visual based OGs. A comparison among the presented uncertainty calculi is performed in a sonar-based framework. Finally, the fusion of both sonar and visual information based of the fuzzy set theory is depicted. (author)

  6. A Spectrum Handoff Scheme for Optimal Network Selection in NEMO Based Cognitive Radio Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2017-01-01

    Full Text Available When a mobile network changes its point of attachments in Cognitive Radio (CR vehicular networks, the Mobile Router (MR requires spectrum handoff. Network Mobility (NEMO in CR vehicular networks is concerned with the management of this movement. In future NEMO based CR vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. The CR vehicular node may have the capability to make call for two or more types of nonsafety services such as voice, video, and best effort simultaneously. Hence, it becomes difficult for MR to select optimal network for the spectrum handoff. This can be done by performing spectrum handoff using Multiple Attributes Decision Making (MADM methods which is the objective of the paper. The MADM methods such as grey relational analysis and cost based methods are used. The application of MADM methods provides wider and optimum choice among the available networks with quality of service. Numerical results reveal that the proposed scheme is effective for spectrum handoff decision for optimal network selection with reduced complexity in NEMO based CR vehicular networks.

  7. Mobility-based Time References for Wireless Sensor Networks

    CERN Document Server

    Sebastiano, Fabio; Makinwa, Kofi A A

    2013-01-01

     This book describes the use of low-power low-cost and extremely small radios to provide essential time reference for wireless sensor networks.  The authors explain how to integrate such radios in a standard CMOS process to reduce both cost and size, while focusing on the challenge of designing a fully integrated time reference for such radios. To enable the integration of the time reference, system techniques are proposed and analyzed, several kinds of integrated time references are reviewed, and mobility-based references are identified as viable candidates to provide the required accuracy at low-power consumption. Practical implementations of a mobility-based oscillator and a temperature sensor are also presented, which demonstrate the required accuracy over a wide temperature range, while drawing 51-uW from a 1.2-V supply in a 65-nm CMOS process. Provides system analysis to understand requirements for time/frequency accuracy in wireless sensor networks; Describes system optimization for time references i...

  8. Low background techniques for SuperNEMO

    International Nuclear Information System (INIS)

    Liu, Xin Ran; Mott, James

    2015-01-01

    The UK contribution to achieving the ultra-low background conditions required inside the detectors of the SuperNEMO experiment are described. A dedicated facility has been established for the screening and selection of materials through gamma ray spectroscopy using germanium detectors. Initial results from two detectors are shown. The radon level inside the SuperNEMO detector must be less than 150 μBq/m 3 in order to achieve the target sensitivity. A Radon Concentration Line (RnCL) has been developed capable of measuring radon levels in large gas volumes down to 5 μBq/m 3 , improving on standard state-of-the-art radon detectors by 3 orders of magnitude. The development, commissioning and first measurements of radon content using the RnCL are also presented. (paper)

  9. Decentralized coverage control problems for mobile robotic sensor and actuator networks

    CERN Document Server

    Savkin, A; Xi, Z; Javed, F; Matveev, A; Nguyen, H

    2015-01-01

    This book introduces various coverage control problems for mobile sensor networks including barrier, sweep and blanket. Unlike many existing algorithms, all of the robotic sensor and actuator motion algorithms developed in the book are fully decentralized or distributed, computationally efficient, easily implementable in engineering practice and based only on information on the closest neighbours of each mobile sensor and actuator and local information about the environment. Moreover, the mobile robotic sensors have no prior information about the environment in which they operation. These various types of coverage problems have never been covered before by a single book in a systematic way. Another topic of this book is the study of mobile robotic sensor and actuator networks. Many modern engineering applications include the use of sensor and actuator networks to provide efficient and effective monitoring and control of industrial and environmental processes. Such mobile sensor and actuator networks are abl...

  10. Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

    Energy Technology Data Exchange (ETDEWEB)

    Argyriades, J. [LAL, Universite Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Arnold, R. [IPHC, Universite de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg (France); Augier, C. [LAL, Universite Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Baker, J. [INL, Idaho Falls, 83415 (United States); Barabash, A.S. [Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Bongrand, M.; Broudin-Bay, G. [LAL, Universite Paris-Sud, CNRS/IN2P3, F-91405 Orsay (France); Brudanin, V.B. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Caffrey, A.J. [INL, Idaho Falls, 83415 (United States); Cebrian, S. [University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza (Spain); Chapon, A. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, F-14032 Caen (France); Chauveau, E. [CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, F-33175 Gradignan (France); Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR 5797, F-33175 Gradignan (France); Dafni, Th. [University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza (Spain); Daraktchieva, Z. [University College London, WC1E 6BT London (United Kingdom); Diaz, J. [IFIC, CSIC - Universidad de Valencia, Valencia (Spain); Durand, D. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, F-14032 Caen (France); Egorov, V.G. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Evans, J.J. [University College London, WC1E 6BT London (United Kingdom); Fatemi-Ghomi, N. [University of Manchester, M13 9PL Manchester (United Kingdom); Flack, R. [University College London, WC1E 6BT London (United Kingdom)

    2011-01-01

    We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of {sup 207}Bi and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.

  11. Adaptive Data Gathering in Mobile Sensor Networks Using Speedy Mobile Elements

    Science.gov (United States)

    Lai, Yongxuan; Xie, Jinshan; Lin, Ziyu; Wang, Tian; Liao, Minghong

    2015-01-01

    Data gathering is a key operator for applications in wireless sensor networks; yet it is also a challenging problem in mobile sensor networks when considering that all nodes are mobile and the communications among them are opportunistic. This paper proposes an efficient data gathering scheme called ADG that adopts speedy mobile elements as the mobile data collector and takes advantage of the movement patterns of the network. ADG first extracts the network meta-data at initial epochs, and calculates a set of proxy nodes based on the meta-data. Data gathering is then mapped into the Proxy node Time Slot Allocation (PTSA) problem that schedules the time slots and orders, according to which the data collector could gather the maximal amount of data within a limited period. Finally, the collector follows the schedule and picks up the sensed data from the proxy nodes through one hop of message transmissions. ADG learns the period when nodes are relatively stationary, so that the collector is able to pick up the data from them during the limited data gathering period. Moreover, proxy nodes and data gathering points could also be timely updated so that the collector could adapt to the change of node movements. Extensive experimental results show that the proposed scheme outperforms other data gathering schemes on the cost of message transmissions and the data gathering rate, especially under the constraint of limited data gathering period. PMID:26389903

  12. Adaptive Data Gathering in Mobile Sensor Networks Using Speedy Mobile Elements.

    Science.gov (United States)

    Lai, Yongxuan; Xie, Jinshan; Lin, Ziyu; Wang, Tian; Liao, Minghong

    2015-09-15

    Data gathering is a key operator for applications in wireless sensor networks; yet it is also a challenging problem in mobile sensor networks when considering that all nodes are mobile and the communications among them are opportunistic. This paper proposes an efficient data gathering scheme called ADG that adopts speedy mobile elements as the mobile data collector and takes advantage of the movement patterns of the network. ADG first extracts the network meta-data at initial epochs, and calculates a set of proxy nodes based on the meta-data. Data gathering is then mapped into the Proxy node Time Slot Allocation (PTSA) problem that schedules the time slots and orders, according to which the data collector could gather the maximal amount of data within a limited period. Finally, the collector follows the schedule and picks up the sensed data from the proxy nodes through one hop of message transmissions. ADG learns the period when nodes are relatively stationary, so that the collector is able to pick up the data from them during the limited data gathering period. Moreover, proxy nodes and data gathering points could also be timely updated so that the collector could adapt to the change of node movements. Extensive experimental results show that the proposed scheme outperforms other data gathering schemes on the cost of message transmissions and the data gathering rate, especially under the constraint of limited data gathering period.

  13. Sleep Scheduling Schemes Based on Location of Mobile User in Sensor-Cloud

    OpenAIRE

    N. Mahendran; R. Priya

    2016-01-01

    The mobile cloud computing (MCC) with wireless sensor networks (WSNs) technology gets more attraction by research scholars because its combines the sensors data gathering ability with the cloud data processing capacity. This approach overcomes the limitation of data storage capacity and computational ability of sensor nodes. Finally, the stored data are sent to the mobile users when the user sends the request. The most of the integrated sensor-cloud schemes fail to observe the following crite...

  14. Maximizing Lifetime of Wireless Sensor Networks with Mobile Sink Nodes

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2014-01-01

    Full Text Available In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.

  15. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6

    Directory of Open Access Journals (Sweden)

    Ananthi Jebaseeli Samuelraj

    2015-01-01

    Full Text Available Proxy Mobile IPV6 (PMIPV6 is a network based mobility management protocol which supports node’s mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node’s mobility should be modified to support group nodes’ mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point.

  16. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6.

    Science.gov (United States)

    Samuelraj, Ananthi Jebaseeli; Jayapal, Sundararajan

    2015-01-01

    Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point.

  17. Simulation and Data Analytics for Mobile Road Weather Sensors

    Science.gov (United States)

    Chettri, S. R.; Evans, J. D.; Tislin, D.

    2016-12-01

    Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based weather observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface weather parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of weather parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects weather readings from the National Weather Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical experiments. The simulator's MoPED-like weather data stream enables studies like the following: Experimenting with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface weather - such as dry lines, sudden changes in humidity that accompany severe weather - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the

  18. P2P Data Management in Mobile Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Nida Sahar Sayeda

    2013-04-01

    Full Text Available The rapid growth in wireless technologies has made wireless communication an important source for transporting data across different domains. In the same way, there are possibilities of many potential applications that can be deployed using WSNs (Wireless Sensor Networks. However, very limited applications are deployed in real life due to the uncertainty and dynamics of the environment and scare resources. This makes data management in WSN a challenging area to find an approach that suits its characteristics. Currently, the trend is to find efficient data management schemes using evolving technologies, i.e. P2P (Peer-to-Peer systems. Many P2P approaches have been applied in WSNs to carry out the data management due to similarities between WSN and P2P. With the similarities, there are differences too that makes P2P protocols inefficient in WSNs. Furthermore, to increase the efficiency and to exploit the delay tolerant nature of WSNs, where ever possible, the mobile WSNs are gaining importance. Thus, creating a three dimensional problem space to consider, i.e. mobility, WSNs and P2P. In this paper, an efficient algorithm is proposed for data management using P2P techniques for mobile WSNs. The real world implementation and deployment of proposed algorithm is also presented

  19. Coverage Improvement for Wireless Sensor Networks using Grid Quorum based Node Mobility

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2012-01-01

    Coverage of wireless sensor networks (WSNs) is an important quality of service (QoS) metric and often the desired coverage is not attainable at the initial deployment, but node mobility can be used to improve the coverage by relocating sensor nodes. Unconstrained node mobility is considered infea...

  20. Joint Transmit Antenna Selection and Power Allocation for ISDF Relaying Mobile-to-Mobile Sensor Networks.

    Science.gov (United States)

    Xu, Lingwei; Zhang, Hao; Gulliver, T Aaron

    2016-02-19

    The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated to determine the optimal division of transmit power between the broadcast and relay phases. The OP performance under different conditions is evaluated via numerical simulation to verify the analysis. These results show that the optimal TAS scheme has better OP performance than the suboptimal scheme. Further, the power allocation parameter has a significant influence on the OP performance.

  1. An Effective Collaborative Mobile Weighted Clustering Schemes for Energy Balancing in Wireless Sensor Networks.

    Science.gov (United States)

    Tang, Chengpei; Shokla, Sanesy Kumcr; Modhawar, George; Wang, Qiang

    2016-02-19

    Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By adopting a weighted mobile sensing scheme, the adaptive collaborative clustering protocol can realize an even distribution of energy load among the mobile sensor nodes in each round, and make the best use of battery energy. A detailed theoretical analysis and experimental results revealed that the proposed protocol is an energy efficient collaborative strategy such that the sensor nodes can communicate with a fusion center and produce high power gain.

  2. [A mobile sensor for remote detection of natural gas leakage].

    Science.gov (United States)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Kan, Rui-feng; Ruan, Jun; Wang, Li-ming; Yu, Dian-qiang; Dong, Jin-ting; Han, Xiao-lei; Cui, Yi-ben; Liu, Jian-guo

    2012-02-01

    The detection of natural gas pipeline leak becomes a significant issue for body security, environmental protection and security of state property. However, the leak detection is difficult, because of the pipeline's covering many areas, operating conditions and complicated environment. A mobile sensor for remote detection of natural gas leakage based on scanning wavelength differential absorption spectroscopy (SWDAS) is introduced. The improved soft threshold wavelet denoising was proposed by analyzing the characteristics of reflection spectrum. And the results showed that the signal to noise ratio (SNR) was increased three times. When light intensity is 530 nA, the minimum remote sensitivity will be 80 ppm x m. A widely used SWDAS can make quantitative remote sensing of natural gas leak and locate the leak source precisely in a faster, safer and more intelligent way.

  3. Self-stabilizing Synchronization in Mobile Sensor Networks with Covering

    Science.gov (United States)

    Beauquier, Joffroy; Burman, Janna

    Synchronization is widely considered as an important service in distributed systems which may simplify protocol design. Phase clock is a general synchronization tool that provides a form of a logical time. This paper presents a self-stabilizing (a tolerating state-corrupting transient faults) phase clock algorithm suited to the model of population protocols with covering. This model has been proposed recently for sensor networks with a very large, possibly unknown number of anonymous mobile agents having small memory. Agents interact in pairs in an asynchronous way subject to the constraints expressed in terms of the cover times of agents. The cover time expresses the "frequency" of an agent to communicate with all the others and abstracts agent's communication characteristics (e.g. moving speed/patterns, transmitting/receiving capabilities). We show that a phase clock is impossible in the model with only constant-state agents. Hence, we assume an existence of resource-unlimited agent - the base station.

  4. RoCoMAR: Robots’ Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Seokhoon Yoon

    2013-07-01

    Full Text Available In a practical deployment, mobile sensor network (MSN suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots’ Controllable Mobility Aided Routing that uses robotic nodes’ controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  5. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Science.gov (United States)

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  6. Mobile user identity sensing using the motion sensor

    Science.gov (United States)

    Zhao, Xi; Feng, Tao; Xu, Lei; Shi, Weidong

    2014-05-01

    Employing mobile sensor data to recognize user behavioral activities has been well studied in recent years. However, to adopt the data as a biometric modality has rarely been explored. Existing methods either used the data to recognize gait, which is considered as a distinguished identity feature; or segmented a specific kind of motion for user recognition, such as phone picking-up motion. Since the identity and the motion gesture jointly affect motion data, to fix the gesture (walking or phone picking-up) definitively simplifies the identity sensing problem. However, it meanwhile introduces the complexity from gesture detection or requirement on a higher sample rate from motion sensor readings, which may draw the battery fast and affect the usability of the phone. In general, it is still under investigation that motion based user authentication in a large scale satisfies the accuracy requirement as a stand-alone biometrics modality. In this paper, we propose a novel approach to use the motion sensor readings for user identity sensing. Instead of decoupling the user identity from a gesture, we reasonably assume users have their own distinguishing phone usage habits and extract the identity from fuzzy activity patterns, represented by a combination of body movements whose signals in chains span in relative low frequency spectrum and hand movements whose signals span in relative high frequency spectrum. Then Bayesian Rules are applied to analyze the dependency of different frequency components in the signals. During testing, a posterior probability of user identity given the observed chains can be computed for authentication. Tested on an accelerometer dataset with 347 users, our approach has demonstrated the promising results.

  7. Sensor Proxy Mobile IPv6 (SPMIPv6)—A Novel Scheme for Mobility Supported IP-WSNs

    Science.gov (United States)

    Islam, Md. Motaharul; Huh, Eui-Nam

    2011-01-01

    IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly. PMID:22319386

  8. Sensor Proxy Mobile IPv6 (SPMIPv6—A Novel Scheme for Mobility Supported IP-WSNs

    Directory of Open Access Journals (Sweden)

    Md. Motaharul Islam

    2011-02-01

    Full Text Available IP based Wireless Sensor Networks (IP-WSNs are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6. We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly.

  9. Self-deployable mobile sensor networks for on-demand surveillance

    Science.gov (United States)

    Miao, Lidan; Qi, Hairong; Wang, Feiyi

    2005-05-01

    This paper studies two interconnected problems in mobile sensor network deployment, the optimal placement of heterogeneous mobile sensor platforms for cost-efficient and reliable coverage purposes, and the self-organizable deployment. We first develop an optimal placement algorithm based on a "mosaicked technology" such that different types of mobile sensors form a mosaicked pattern uniquely determined by the popularity of different types of sensor nodes. The initial state is assumed to be random. In order to converge to the optimal state, we investigate the swarm intelligence (SI)-based sensor movement strategy, through which the randomly deployed sensors can self-organize themselves to reach the optimal placement state. The proposed algorithm is compared with the random movement and the centralized method using performance metrics such as network coverage, convergence time, and energy consumption. Simulation results are presented to demonstrate the effectiveness of the mosaic placement and the SI-based movement.

  10. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...

  11. Human movement activity classification approaches that use wearable sensors and mobile devices

    Science.gov (United States)

    Kaghyan, Sahak; Sarukhanyan, Hakob; Akopian, David

    2013-03-01

    Cell phones and other mobile devices become part of human culture and change activity and lifestyle patterns. Mobile phone technology continuously evolves and incorporates more and more sensors for enabling advanced applications. Latest generations of smart phones incorporate GPS and WLAN location finding modules, vision cameras, microphones, accelerometers, temperature sensors etc. The availability of these sensors in mass-market communication devices creates exciting new opportunities for data mining applications. Particularly healthcare applications exploiting build-in sensors are very promising. This paper reviews different approaches of human activity recognition.

  12. Collaborative Area Monitoring Using Wireless Sensor Networks with Stationary and Mobile Nodes

    Directory of Open Access Journals (Sweden)

    Theofanis P. Lambrou

    2009-01-01

    Full Text Available Monitoring a large area with stationary sensor networks requires a very large number of nodes which with current technology implies a prohibitive cost. The motivation of this work is to develop an architecture where a set of mobile sensors will collaborate with the stationary sensors in order to reliably detect and locate an event. The main idea of this collaborative architecture is that the mobile sensors should sample the areas that are least covered (monitored by the stationary sensors. Furthermore, when stationary sensors have a “suspicion” that an event may have occurred, they report it to a mobile sensor that can move closer to the suspected area and can confirm whether the event has occurred or not. An important component of the proposed architecture is that the mobile nodes autonomously decide their path based on local information (their own beliefs and measurements as well as information collected from the stationary sensors in a neighborhood around them. We believe that this approach is appropriate in the context of wireless sensor networks since it is not feasible to have an accurate global view of the state of the environment.

  13. TinyMAPS : a lightweight Java-based mobile agent system for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Fortino, G.; Galzarano, S.; Vittorioso, A.; Brazier, F.M.T.; Nieuwenhuis, K.; Pavlin, G.; Warnier, M.; Badica, C.

    2012-01-01

    In the context of the development of wireless sensor network (WSN) applications, effective programming frameworks and middlewares for rapid and efficient prototyping of resource-constrained applications are highly required. Mobile agents are an effective distributed programming paradigm that is

  14. Accessing data transfer reliability for duty cycled mobile wireless sensor network

    International Nuclear Information System (INIS)

    Shaikh, F.K.

    2014-01-01

    Mobility in WSNs (Wireless Sensor Networks) introduces significant challenges which do not arise in static WSNs. Reliable data transport is an important aspect of attaining consistency and QoS (Quality of Service) in several applications of MWSNs (Mobile Wireless Sensor Networks). It is important to understand how each of the wireless sensor networking characteristics such as duty cycling, collisions, contention and mobility affects the reliability of data transfer. If reliability is not managed well, the MWSN can suffer from overheads which reduce its applicability in the real world. In this paper, reliability assessment is being studied by deploying MWSN in different indoor and outdoor scenarios with various duty cycles of the motes and speeds of the mobile mote. Results show that the reliability is greatly affected by the duty cycled motes and the mobility using inherent broadcast mechanisms. (author)

  15. Design and Analysis of a Data Fusion Scheme in Mobile Wireless Sensor Networks Based on Multi-Protocol Mobile Agents

    Directory of Open Access Journals (Sweden)

    Chunxue Wu

    2017-11-01

    Full Text Available Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications.

  16. Design and Analysis of a Data Fusion Scheme in Mobile Wireless Sensor Networks Based on Multi-Protocol Mobile Agents.

    Science.gov (United States)

    Wu, Chunxue; Wu, Wenliang; Wan, Caihua; Bekkering, Ernst; Xiong, Naixue

    2017-11-03

    Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications.

  17. Opportunistic Mobility Support for Resource Constrained Sensor Devices in Smart Cities

    Directory of Open Access Journals (Sweden)

    Daniel Granlund

    2015-03-01

    Full Text Available A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.

  18. Opportunistic mobility support for resource constrained sensor devices in smart cities.

    Science.gov (United States)

    Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer

    2015-03-02

    A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.

  19. Mobile robot multi-sensor unit for unsupervised gas discrimination in uncontrolled environments

    OpenAIRE

    Xing, Yuxin; Vincent, Timothy A.; Cole, Marina; Gardner, Julian W.; Fan, Han; Hernandez Bennetts, Victor; Schaffernicht, Erik; Lilienthal, Achim

    2017-01-01

    In this work we present a novel multi-sensor unit to detect and discriminate unknown gases in uncontrolled environments. The unit includes three metal oxide (MOX) sensors with CMOS micro heaters, a plasmonic enhanced non-dispersive infra-red (NDIR) sensor, a commercial temperature humidity sensor, and a flow sensor. The proposed sensing unit was evaluated with plumes of gases (propanol, ethanol and acetone) in both, a laboratory setup on a gas testing bench and on-board a mobile robot operati...

  20. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  1. Mobility and Heterogeneity Aware Cluster-Based Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    Internet of things (IoT) is the modern era, which offers a variety of novel applications for mobile targets and opens the new domains for the distributed data aggregations using Wireless Sensor Networks (WSNs). However, low cost tiny sensors used for network formation generate the large amount...

  2. Operation of remote mobile sensors for security of drinking water distribution systems.

    Science.gov (United States)

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Evaluation of Opportunistic Routing Algorithms on Opportunistic Mobile Sensor Networks with Infrastructure Assistance

    NARCIS (Netherlands)

    Le Viet Duc, L Duc; Scholten, Johan; Havinga, Paul J.M.

    2012-01-01

    Recently the increasing number of sensors integrated in smartphones, especially the iPhone and Android phones, has motivated the development of routing algorithms for Opportunistic Mobile Sensor Networks (OppMSNs). Although there are many existing opportunistic routing algorithms, researchers still

  4. Multi-Sensor Based State Prediction for Personal Mobility Vehicles.

    Directory of Open Access Journals (Sweden)

    Jamilah Abdur-Rahim

    Full Text Available This paper presents a study on multi-modal human emotional state detection while riding a powered wheelchair (PMV; Personal Mobility Vehicle in an indoor labyrinth-like environment. The study reports findings on the habituation of human stress response during self-driving. In addition, the effects of "loss of controllability", change in the role of the driver to a passenger, are investigated via an autonomous driving modality. The multi-modal emotional state detector sensing framework consists of four sensing devices: electroencephalograph (EEG, heart inter-beat interval (IBI, galvanic skin response (GSR and stressor level lever (in the case of autonomous riding. Physiological emotional state measurement characteristics are organized by time-scale, in terms of capturing slower changes (long-term and quicker changes from moment-to-moment. Experimental results with fifteen participants regarding subjective emotional state reports and commercial software measurements validated the proposed emotional state detector. Short-term GSR and heart signal characterizations captured moment-to-moment emotional state during autonomous riding (Spearman correlation; ρ = 0.6, p < 0.001. Short-term GSR and EEG characterizations reliably captured moment-to-moment emotional state during self-driving (Classification accuracy; 69.7. Finally, long-term GSR and heart characterizations were confirmed to reliably capture slow changes during autonomous riding and also of emotional state during participant resting state. The purpose of this study and the exploration of various algorithms and sensors in a structured framework is to provide a comprehensive background for multi-modal emotional state prediction experiments and/or applications. Additional discussion regarding the feasibility and utility of the possibilities of these concepts are given.

  5. Cost Benefit Analysis of Utilising Mobile Nodes in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2015-01-01

    Mobile nodes have been found useful for improving performance of network parameters such as coverage, data latency and load balancing in wireless sensor networks (WSNs). In spite of the benets which mobile nodes could oer when used in WSNs, they have been often stated as infeasible for use...

  6. An efficient schedule based data aggregation using node mobility for wireless sensor network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Pawar, Pranav M.; Prasad, Neeli R.

    2014-01-01

    In the Wireless Sensor Networks, (WSNs) a key challenge is to schedule the activities of the mobile node for improvement in throughput, energy consumption and delay. This paper proposes efficient schedule based data aggregation algorithm using node mobility (SDNM). It considers the cluster...

  7. A Multiple Mobility Support Approach (MMSA Based on PEAS for NCW in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Bong-Joo Koo

    2011-01-01

    Full Text Available Wireless Sensor Networks (WSNs can be implemented as one of sensor systems in Network Centric Warfare (NCW. Mobility support and energy efficiency are key concerns for this application, due to multiple mobile users and stimuli in real combat field. However, mobility support approaches that can be adopted in this circumstance are rare. This paper proposes Multiple Mobility Support Approach (MMSA based on Probing Environment and Adaptive Sleeping (PEAS to support the simultaneous mobility of both multiple users and stimuli by sharing the information of stimuli in WSNs. Simulations using Qualnet are conducted, showing that MMSA can support multiple mobile users and stimuli with good energy efficiency. It is expected that the proposed MMSA can be applied to real combat field.

  8. Probabilistic Location-based Routing Protocol for Mobile Wireless Sensor Networks with Intermittent Communication

    Directory of Open Access Journals (Sweden)

    Sho KUMAGAI

    2015-02-01

    Full Text Available In a sensor network, sensor data messages reach the nearest stationary sink node connected to the Internet by wireless multihop transmissions. Recently, various mobile sensors are available due to advances of robotics technologies and communication technologies. A location based message-by-message routing protocol, such as Geographic Distance Routing (GEDIR is suitable for such mobile wireless networks; however, it is required for each mobile wireless sensor node to know the current locations of all its neighbor nodes. On the other hand, various intermittent communication methods for a low power consumption requirement have been proposed for wireless sensor networks. Intermittent Receiver-driven Data Transmission (IRDT is one of the most efficient methods; however, it is difficult to combine the location based routing and the intermittent communication. In order to solve this problem, this paper proposes a probabilistic approach IRDT-GEDIR with the help of one of the solutions of the secretaries problem. Here, each time a neighbor sensor node wakes up from its sleep mode, an intermediate sensor node determines whether it forwards its buffered sensor data messages to it or not based on an estimation of achieved pseudo speed of the messages. Simulation experiments show that IRDT-GEDIR achieves higher pseudo speed of sensor data message transmissions and shorter transmission delay than achieves shorter transmission delay than the two naive combinations of IRDT and GEDIR in sensor networks with mobile sensor nodes and a stationary sink node. In addition, the guideline of the estimated numbers of the neighbor nodes of each intermediate sensor node is provided based on the results of the simulation experiments to apply the probabilistic approach IRDT-GEDIR.

  9. VIBRATION SENSORS AND MICROELECTROMECHANICAL SYSTEM FOR MOBILE DEVICES SUCH AS ANALOGS, FOR EVALUATION OF VIBRATION OF ROTARY MACHINES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper carried out a comparison of vibration sensors used to measure the vibration condition units with gas turbine engines, with motion sensors, microelectromechanical systems used in modern mobile devices (for example, devices on the platform "Android". It provides opinions on the possibility of assessment of vibration, using sensors of mobile devices.

  10. Strategies for a better performance of RPL under mobility in wireless sensor networks

    Science.gov (United States)

    Latib, Z. A.; Jamil, A.; Alduais, N. A. M.; Abdullah, J.; Audah, L. H. M.; Alias, R.

    2017-09-01

    A Wireless Sensor Network (WSN) is usually stationary, which the network comprises of static nodes. The increase demand for mobility in various applications such as environmental monitoring, medical, home automation, and military, raises the question how IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) would perform under these mobility applications. This paper aims to understand performance of RPL and come out with strategies for a better performance of RPL in mobility scenarios. Because of this, this paper evaluates the performance of the RPL protocol under three different scenarios: sink and sensor nodes are static, static sink and mobile sensor nodes, and sink and sensor nodes are mobile. The network scenarios are implemented in Cooja simulator. A WSN consists of 25 sensor nodes and one sink node is configured in the simulation environment. The simulation is varied over different packet rates and ContikiMAC's Clear Channel Assessment (CCA) rate. As the performance metric, RPL is evaluated in term of packet delivery ratio (PDR), power consumption and packet rates. The simulation results show RPL provides a poor PDR in the mobility scenarios when compared to the static scenario. In addition, RPL consumes more power and increases duty-cycle rate to support mobility when compared to the static scenario. Based on the findings, we suggest three strategies for a better performance of RPL in mobility scenarios. First, RPL should operates at a lower packet rates when implemented in the mobility scenarios. Second, RPL should be implemented with a higher duty-cycle rate. Lastly, the sink node should be positioned as much as possible in the center of the mobile network.

  11. Path Planning and Navigation for Mobile Robots in a Hybrid Sensor Network without Prior Location Information

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-03-01

    Full Text Available In a hybrid wireless sensor network with mobile and static nodes, which have no prior geographical knowledge, successful navigation for mobile robots is one of the main challenges. In this paper, we propose two novel navigation algorithms for outdoor environments, which permit robots to travel from one static node to another along a planned path in the sensor field, namely the RAC and the IMAP algorithms. Using this, the robot can navigate without the help of a map, GPS or extra sensor modules, only using the received signal strength indication (RSSI and odometry. Therefore, our algorithms have the advantage of being cost-effective. In addition, a path planning algorithm to schedule mobile robots' travelling paths is presented, which focuses on shorter distances and robust paths for robots by considering the RSSI-Distance characteristics. The simulations and experiments conducted with an autonomous mobile robot show the effectiveness of the proposed algorithms in an outdoor environment.

  12. Time response for sensor sensed to actuator response for mobile robotic system

    Science.gov (United States)

    Amir, N. S.; Shafie, A. A.

    2017-11-01

    Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.

  13. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity.

    Science.gov (United States)

    Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral

    2016-09-20

    In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.

  14. A Comprehensive Study of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks

    Science.gov (United States)

    Khan, Abdul Waheed; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Bangash, Javed Iqbal

    2014-01-01

    Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink. PMID:24504107

  15. Sensor Sharing in Mobile Ad-Hoc Networks

    Science.gov (United States)

    Mitra, Pramita

    2013-01-01

    Today's modern mobile devices (such as smartphones and tablets) present great potential for growth of many novel, powerful, but also highly demanding applications. However, most mobile devices/users operate in isolation from one another, i.e., they are not aware of the presence of other devices in their proximity. There are numerous situations…

  16. Rancang Bangun Aplikasi Perepresentasian Data Perilaku Pengemudi Mobil Berbasis Android Menggunakan Sensor Accelerometer dan Orientation

    Directory of Open Access Journals (Sweden)

    Muhammad Dery Rahma

    2017-01-01

    Full Text Available Semakin meningkatnya popularitas smartphone dari tahun ke tahun, semakin meningkat pula jumlah aplikasi perangkat bergerak yang berkaitan dengan keamanan dalam berkemudi. Oleh karena itu, diperlukan aplikasi perangkat bergerak lain yang dapat mendeteksi pergerakan mobil yang normal dan berbahaya menggunakan sensor accelerometer dan orientation yang berasal dari smartphone serta tanpa memerlukan sensor hardware tambahan. Arsitektur aplikasi perangkat bergerak ini berbasis client-server, dimana web service melayani permintaan dari aplikasi client berbasis Android. Aplikasi ini juga menggabungkan beberapa teknologi lain seperti Geolocation API, Geocoding API, dan Android Sensor API. Teknologi-teknologi tersebut digunakan untuk mengetahui kecepatan mobil, lokasi terkini dari pengemudi, dan merekam pola gerakan mobil melalui representasi nilai-nilai sensor accelerometer dan orientation.Tujuan dari dikembangkannya aplikasi perangkat bergerak untuk tugas akhir ini adalah untuk membantu pihak kepolisian lalu lintas dalam mendapatkan data pergerakan mobil berupa raw data 2-axis yang direkam oleh sensor accelerometer dan orientation pada smartphone Android ketika pengemudi mengendarai mobil. Data-data tersebut nantinya digunakan untuk membantu mendeteksi riwayat pola berkendara seorang pengemudi.

  17. Hop-by-HopWorm Propagation with Carryover Epidemic Model in Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun-Won Ho

    2015-10-01

    Full Text Available In the internet, a worm is usually propagated in a random multi-hop contact manner. However, the attacker will not likely select this random multi-hop propagation approach in a mobile sensor network. This is because multi-hop worm route paths to random vulnerable targets can be often breached due to node mobility, leading to failure of fast worm spread under this strategy. Therefore, an appropriate propagation strategy is needed for mobile sensor worms. To meet this need, we discuss a hop-by-hop worm propagation model in mobile sensor networks. In a hop-by-hop worm propagation model, benign nodes are infected by worm in neighbor-to-neighbor spread manner. Since worm infection occurs in hop-by-hop contact, it is not substantially affected by a route breach incurred by node mobility. We also propose the carryover epidemic model to deal with the worm infection quota deficiency that might occur when employing an epidemic model in a mobile sensor network. We analyze worm infection capability under the carryover epidemic model. Moreover, we simulate hop-by-hop worm propagation with carryover epidemic model by using an ns-2 simulator. The simulation results demonstrate that infection quota carryovers are seldom observed where a node’s maximum speed is no less than 20 m/s.

  18. A Mobile Sensor Network to Map CO2 in Urban Environments

    Science.gov (United States)

    Lee, J.; Christen, A.; Nesic, Z.; Ketler, R.

    2014-12-01

    Globally, an estimated 80% of all fuel-based CO2 emissions into the atmosphere are attributable to cities, but there is still a lack of tools to map, visualize and monitor emissions to the scales at which emissions reduction strategies can be implemented - the local and urban scale. Mobile CO2 sensors, such as those attached to taxis and other existing mobile platforms, may be a promising way to observe and map CO2 mixing ratios across heterogenous urban environments with a limited number of sensors. Emerging modular open source technologies, and inexpensive compact sensor components not only enable rapid prototyping and replication, but also are allowing for the miniaturization and mobilization of traditionally fixed sensor networks. We aim to optimize the methods and technologies for monitoring CO2 in cities using a network of CO2 sensors deployable on vehicles and bikes. Our sensor technology is contained in a compact weather-proof case (35.8cm x 27.8cm x 11.8cm), powered independently by battery or by car, and includes the Li-Cor Li-820 infrared gas analyzer (Licor Inc, lincoln, NB, USA), Arduino Mega microcontroller (Arduino CC, Italy) and Adafruit GPS (Adafruit Technologies, NY, USA), and digital air temperature thermometer which measure CO2 mixing ratios (ppm), geolocation and speed, pressure and temperature, respectively at 1-second intervals. With the deployment of our sensor technology, we will determine if such a semi-autonomous mobile approach to monitoring CO2 in cities can determine excess urban CO2 mixing ratios (i.e. the 'urban CO2 dome') when compared to values measured at a fixed, remote background site. We present results from a pilot study in Vancouver, BC, where the a network of our new sensors was deployed both in fixed network and in a mobile campaign and examine the spatial biases of the two methods.

  19. DE-Sync: A Doppler-Enhanced Time Synchronization for Mobile Underwater Sensor Networks.

    Science.gov (United States)

    Zhou, Feng; Wang, Qi; Nie, DongHu; Qiao, Gang

    2018-05-25

    Time synchronization is the foundation of cooperative work among nodes of underwater sensor networks; it takes a critical role in the research and application of underwater sensor networks. Although numerous time synchronization protocols have been proposed for terrestrial wireless sensor networks, they cannot be directly applied to underwater sensor networks. This is because most of them typically assume that the propagation delay among sensor nodes is negligible, which is not the case in underwater sensor networks. Time synchronization is mainly affected by a long propagation delay among sensor nodes due to the low propagation speed of acoustic signals. Furthermore, sensor nodes in underwater tend to experience some degree of mobility due to wind or ocean current, or some other nodes are on self-propelled vehicles, such as autonomous underwater vehicles (AUVs). In this paper, we propose a Doppler-enhanced time synchronization scheme for mobile underwater sensor networks, called DE-Sync. Our new scheme considers the effect of the clock skew during the process of estimating the Doppler scale factor and directly substitutes the Doppler scale factor into linear regression to achieve the estimation of the clock skew and offset. Simulation results show that DE-Sync outperforms existing time synchronization protocols in both accuracy and energy efficiency.

  20. Development of quantum device simulator NEMO-VN1

    Science.gov (United States)

    Hien, Dinh Sy; Thi Luong, Nguyen; Hoang Minh, Le; Tien Phuc, Tran; Thanh Trung, Pham; Dong, Bui An; Thu Thao, Huynh Lam; Van Le Thanh, Nguyen; Tuan, Thi Tran Anh; Hoang Trung, Huynh; Thi Thanh Nhan, Nguyen; Viet Nga, Dinh

    2009-09-01

    We have developed NEMO-VN1 (NanoElectronic MOdelling), a new modelling tool that simulates a wide variety of quantum devices including Quantum Dot (QD), Resonant Tunneling Diode (RTD), Resonant Tunneling Transistor (RTT), Single Electron Transistor (SET), Molecular FET (MFET), Carbon Nanotube FET (CNTFET), Spin FET (SPINFET). It has a collection of models that allow user to trade off between calculation speed and accuracy. NEMO-VN1 also includes a graphic user interface of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods.

  1. Development of quantum device simulator NEMO-VN1

    International Nuclear Information System (INIS)

    Dinh Sy Hien; Nguyen Thi Luong; Le Hoang Minh; Tran Tien Phuc; Pham Thanh Trung; Bui An Dong; Huynh Lam Thu Thao; Nguyen Van Le Thanh; Thi Tran Anh Tuan; Huynh Hoang Trung; Nguyen Thi Thanh Nhan; Dinh Viet Nga

    2009-01-01

    We have developed NEMO-VN1 (NanoElectronic MOdelling), a new modelling tool that simulates a wide variety of quantum devices including Quantum Dot (QD), Resonant Tunneling Diode (RTD), Resonant Tunneling Transistor (RTT), Single Electron Transistor (SET), Molecular FET (MFET), Carbon Nanotube FET (CNTFET), Spin FET (SPINFET). It has a collection of models that allow user to trade off between calculation speed and accuracy. NEMO-VN1 also includes a graphic user interface of Matlab that enables parameter entry, calculation control, intuitive display of calculation results, and in-situ data analysis methods.

  2. Neutrino Physics without Neutrinos: Recent results from the NEMO-3 experiment and plans for SuperNEMO

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The observation of neutrino oscillations has proved that neutrinos have mass. This discovery has renewed and strengthened the interest in neutrinoless double beta decay experiments which provide the only practical way to determine whether neutrinos are Majorana or Dirac particles. The recently completed NEMO-3 experiment, located in the Laboratoire Souterrain de Modane in the Frejus Tunnel, was an experiment searching for neutrinoless double beta decays using a powerful technique for detecting a two-electron final state by employing an apparatus combining tracking, calorimetry, and the time-of-flight measurements. We will present latest results from NEMO-3 and will discuss the status of SuperNEMO, the next generation experiment that will exploit the same experimental technique to extend the sensitivity of the current search.

  3. Distributed Opportunistic Sensing in Mobile Phone Sensor Networks

    NARCIS (Netherlands)

    Le Viet Duc, L Duc

    2013-01-01

    The advantages of smartphones such as integrated sensors, programmability, scalability and cloud servers have enabled low-cost and efficient public safety applications. However, designing such applications has to face daunting challenges, for instance, short battery life, low computing capability

  4. Efficient Information Dissemination in Wireless Sensor Networks using Mobile Sinks

    National Research Council Canada - National Science Library

    Vincze, Zoltan; Vidacs, Attila; Vida, Rolland

    2006-01-01

    ...; therefore, relaying information between sensors and a sink node, possibly over multiple wireless hops, in an energy-efficient manner is a challenging task that preoccupies the research community for some time now...

  5. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    International Nuclear Information System (INIS)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A

    2013-01-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses. (paper)

  6. A quantitative analysis of coupled oscillations using mobile accelerometer sensors

    Science.gov (United States)

    Castro-Palacio, Juan Carlos; Velázquez-Abad, Luisberis; Giménez, Fernando; Monsoriu, Juan A.

    2013-05-01

    In this paper, smartphone acceleration sensors were used to perform a quantitative analysis of mechanical coupled oscillations. Symmetric and asymmetric normal modes were studied separately in the first two experiments. In the third, a coupled oscillation was studied as a combination of the normal modes. Results indicate that acceleration sensors of smartphones, which are very familiar to students, represent valuable measurement instruments for introductory and first-year physics courses.

  7. Navigation system for a mobile robot with a visual sensor using a fish-eye lens

    Science.gov (United States)

    Kurata, Junichi; Grattan, Kenneth T. V.; Uchiyama, Hironobu

    1998-02-01

    Various position sensing and navigation systems have been proposed for the autonomous control of mobile robots. Some of these systems have been installed with an omnidirectional visual sensor system that proved very useful in obtaining information on the environment around the mobile robot for position reckoning. In this article, this type of navigation system is discussed. The sensor is composed of one TV camera with a fish-eye lens, using a reference target on a ceiling and hybrid image processing circuits. The position of the robot, with respect to the floor, is calculated by integrating the information obtained from a visual sensor and a gyroscope mounted in the mobile robot, and the use of a simple algorithm based on PTP control for guidance is discussed. An experimental trial showed that the proposed system was both valid and useful for the navigation of an indoor vehicle.

  8. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones

    Science.gov (United States)

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-01-01

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters. PMID:26690439

  9. Cooperative Cloud Service Aware Mobile Internet Coverage Connectivity Guarantee Protocol Based on Sensor Opportunistic Coverage Mechanism

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2015-01-01

    Full Text Available In order to improve the Internet coverage ratio and provide connectivity guarantee, based on sensor opportunistic coverage mechanism and cooperative cloud service, we proposed the coverage connectivity guarantee protocol for mobile Internet. In this scheme, based on the opportunistic covering rules, the network coverage algorithm of high reliability and real-time security was achieved by using the opportunity of sensor nodes and the Internet mobile node. Then, the cloud service business support platform is created based on the Internet application service management capabilities and wireless sensor network communication service capabilities, which is the architecture of the cloud support layer. The cooperative cloud service aware model was proposed. Finally, we proposed the mobile Internet coverage connectivity guarantee protocol. The results of experiments demonstrate that the proposed algorithm has excellent performance, in terms of the security of the Internet and the stability, as well as coverage connectivity ability.

  10. Evaluating a Novel Cellular Automata-Based Distributed Power Management Approach for Mobile Wireless Sensor Networks

    Science.gov (United States)

    Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali

    According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.

  11. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones.

    Science.gov (United States)

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-12-10

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.

  12. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2015-12-01

    Full Text Available Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.

  13. Performance Analysis of SINEMO: Seamless IP-diversity Based Network Mobility

    National Research Council Canada - National Science Library

    Chowdhury, Pulak K; Reaz, Abu S; Atiquzzaman, Mohammed; Ivancic, William

    2007-01-01

    ...) to support network mobility. NEMO BSP inherits all the drawbacks of Mobile IPv6, such as inefficient routing path, single point of failure, high handover latency and packet loss, and high packet overhead...

  14. Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study

    Science.gov (United States)

    Saeb, Sohrab; Zhang, Mi; Karr, Christopher J; Schueller, Stephen M; Corden, Marya E; Kording, Konrad P

    2015-01-01

    Background Depression is a common, burdensome, often recurring mental health disorder that frequently goes undetected and untreated. Mobile phones are ubiquitous and have an increasingly large complement of sensors that can potentially be useful in monitoring behavioral patterns that might be indicative of depressive symptoms. Objective The objective of this study was to explore the detection of daily-life behavioral markers using mobile phone global positioning systems (GPS) and usage sensors, and their use in identifying depressive symptom severity. Methods A total of 40 adult participants were recruited from the general community to carry a mobile phone with a sensor data acquisition app (Purple Robot) for 2 weeks. Of these participants, 28 had sufficient sensor data received to conduct analysis. At the beginning of the 2-week period, participants completed a self-reported depression survey (PHQ-9). Behavioral features were developed and extracted from GPS location and phone usage data. Results A number of features from GPS data were related to depressive symptom severity, including circadian movement (regularity in 24-hour rhythm; r=-.63, P=.005), normalized entropy (mobility between favorite locations; r=-.58, P=.012), and location variance (GPS mobility independent of location; r=-.58, P=.012). Phone usage features, usage duration, and usage frequency were also correlated (r=.54, P=.011, and r=.52, P=.015, respectively). Using the normalized entropy feature and a classifier that distinguished participants with depressive symptoms (PHQ-9 score ≥5) from those without (PHQ-9 score mobile phone sensor data, including GPS and phone usage, provided behavioral markers that were strongly related to depressive symptom severity. While these findings must be replicated in a larger study among participants with confirmed clinical symptoms, they suggest that phone sensors offer numerous clinical opportunities, including continuous monitoring of at-risk populations with

  15. In/Out Status Monitoring in Mobile Asset Tracking with Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kwangsoo Kim

    2010-03-01

    Full Text Available A mobile asset with a sensor node in a mobile asset tracking system moves around a monitoring area, leaves it, and then returns to the region repeatedly. The system monitors the in/out status of the mobile asset. Due to the continuous movement of the mobile asset, the system may generate an error for the in/out status of the mobile asset. When the mobile asset is inside the region, the system might determine that it is outside, or vice versa. In this paper, we propose a method to detect and correct the incorrect in/out status of the mobile asset. To solve this problem, our approach uses data about the connection state transition and the battery lifetime of the mobile node attached to the mobile asset. The connection state transition is used to classify the mobile node as normal or abnormal. The battery lifetime is used to predict a valid working period for the mobile node. We evaluate our method using real data generated by a medical asset tracking system. The experimental results show that our method, by using the estimated battery life time or by using the invalid connection state, can detect and correct most cases of incorrect in/out statuses generated by the conventional approach.

  16. In/out status monitoring in mobile asset tracking with wireless sensor networks.

    Science.gov (United States)

    Kim, Kwangsoo; Chung, Chin-Wan

    2010-01-01

    A mobile asset with a sensor node in a mobile asset tracking system moves around a monitoring area, leaves it, and then returns to the region repeatedly. The system monitors the in/out status of the mobile asset. Due to the continuous movement of the mobile asset, the system may generate an error for the in/out status of the mobile asset. When the mobile asset is inside the region, the system might determine that it is outside, or vice versa. In this paper, we propose a method to detect and correct the incorrect in/out status of the mobile asset. To solve this problem, our approach uses data about the connection state transition and the battery lifetime of the mobile node attached to the mobile asset. The connection state transition is used to classify the mobile node as normal or abnormal. The battery lifetime is used to predict a valid working period for the mobile node. We evaluate our method using real data generated by a medical asset tracking system. The experimental results show that our method, by using the estimated battery life time or by using the invalid connection state, can detect and correct most cases of incorrect in/out statuses generated by the conventional approach.

  17. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    Science.gov (United States)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  18. An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.

    Science.gov (United States)

    Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran

    2017-02-01

    In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.

  19. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Directory of Open Access Journals (Sweden)

    Anton Kos

    2016-04-01

    Full Text Available Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models.

  20. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Science.gov (United States)

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-01-01

    Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models. PMID:27049391

  1. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  2. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    Science.gov (United States)

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  3. Method for Reading Sensors and Controlling Actuators Using Audio Interfaces of Mobile Devices

    Science.gov (United States)

    Aroca, Rafael V.; Burlamaqui, Aquiles F.; Gonçalves, Luiz M. G.

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks. PMID:22438726

  4. Method for reading sensors and controlling actuators using audio interfaces of mobile devices.

    Science.gov (United States)

    Aroca, Rafael V; Burlamaqui, Aquiles F; Gonçalves, Luiz M G

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks.

  5. Routing in Mobile Wireless Sensor Networks: A Leader-Based Approach.

    Science.gov (United States)

    Burgos, Unai; Amozarrain, Ugaitz; Gómez-Calzado, Carlos; Lafuente, Alberto

    2017-07-07

    This paper presents a leader-based approach to routing in Mobile Wireless Sensor Networks (MWSN). Using local information from neighbour nodes, a leader election mechanism maintains a spanning tree in order to provide the necessary adaptations for efficient routing upon the connectivity changes resulting from the mobility of sensors or sink nodes. We present two protocols following the leader election approach, which have been implemented using Castalia and OMNeT++. The protocols have been evaluated, besides other reference MWSN routing protocols, to analyse the impact of network size and node velocity on performance, which has demonstrated the validity of our approach.

  6. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    Science.gov (United States)

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  7. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2014-08-01

    Full Text Available Traffic patterns in wireless sensor networks (WSNs usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  8. RGB-D, Laser and Thermal Sensor Fusion for People following in a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Loreto Susperregi

    2013-06-01

    Full Text Available Detecting and tracking people is a key capability for robots that operate in populated environments. In this paper, we used a multiple sensor fusion approach that combines three kinds of sensors in order to detect people using RGB-D vision, lasers and a thermal sensor mounted on a mobile platform. The Kinect sensor offers a rich data set at a significantly low cost, however, there are some limitations to its use in a mobile platform, mainly that the Kinect algorithms for people detection rely on images captured by a static camera. To cope with these limitations, this work is based on the combination of the Kinect and a Hokuyo laser and a thermopile array sensor. A real-time particle filter system merges the information provided by the sensors and calculates the position of the target, using probabilistic leg and thermal patterns, image features and optical flow to this end. Experimental results carried out with a mobile platform in a Science museum have shown that the combination of different sensory cues increases the reliability of the people following system.

  9. Privacy-preserving data aggregation in two-tiered wireless sensor networks with mobile nodes.

    Science.gov (United States)

    Yao, Yonglei; Liu, Jingfa; Xiong, Neal N

    2014-11-10

    Privacy-preserving data aggregation in wireless sensor networks (WSNs) with mobile nodes is a challenging problem, as an accurate aggregation result should be derived in a privacy-preserving manner, under the condition that nodes are mobile and have no pre-specified keys for cryptographic operations. In this paper, we focus on the SUM aggregation function and propose two privacy-preserving data aggregation protocols for two-tiered sensor networks with mobile nodes: Privacy-preserving Data Aggregation against non-colluded Aggregator and Sink (PDAAS) and Privacy-preserving Data Aggregation against Colluded Aggregator and Sink (PDACAS). Both protocols guarantee that the sink can derive the SUM of all raw sensor data but each sensor's raw data is kept confidential. In PDAAS, two keyed values are used, one shared with the sink and the other shared with the aggregator. PDAAS can protect the privacy of sensed data against external eavesdroppers, compromised sensor nodes, the aggregator or the sink, but fails if the aggregator and the sink collude. In PDACAS, multiple keyed values are used in data perturbation, which are not shared with the aggregator or the sink. PDACAS can protect the privacy of sensor nodes even the aggregator and the sink collude, at the cost of a little more overhead than PDAAS. Thorough analysis and experiments are conducted, which confirm the efficacy and efficiency of both schemes.

  10. BAHAN AJAR MENULIS CERITA FABEL DENGAN STIMULUS FILM FINDING NEMO

    Directory of Open Access Journals (Sweden)

    Lia Noviana Qostantia

    2017-03-01

    Full Text Available This research objectives were (1 describing instructional material of writing fable story using stimulus of finding nemo movie and (2 describing instructional material feasibility of writing fable story using stimulus of Finding Nemo movie that obtained from expert test and practitioner (teacher and student test. The developed instructional material was complementary book of writing fable story for students with material, language, and book display that adjusted with student’s needs. Those objectives could be made as guidance in developing the instructional material which including material content feasibility, language, and complementary book display aspect. Tujuan penelitian ini adalah (1 mengembangkan bahan ajar menulis cerita fabel dengan stimulus film finding nemo, (2 mendeskripsikan kelayakan bahan ajar menulis cerita fabel dengan stimulus film Finding Nemo yang diperoleh dari uji ahli, uji praktisi guru, dan siswa. Bahan ajar yang dikembangkan berupa buku pelengkap menulis cerita fabel untuk siswa dengan materi, bahasa, dan penyajian buku yang disesuaikan dengan kebutuhan siswa. Tujuan tersebut dapat dijadikan panduan dalam mengembangkan bahan ajar yang mencakup aspek kelayakan isi materi, bahasa, dan penyajian buku pelengkap.

  11. NEMO-SMO acoustic array: A deep-sea test of a novel acoustic positioning system for a km3-scale underwater neutrino telescope

    Science.gov (United States)

    Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C. D.; NEMO Collaboration; SMO Collaboration

    2013-10-01

    Within the activities of the NEMO project, the installation of a 8-floors tower (NEMO-Phase II) at a depth of 3500 m is foreseen in 2012. The tower will be installed about 80 km off-shore Capo Passero, in Sicily. On board the NEMO tower, an array of 18 acoustic sensors will be installed, permitting acoustic detection of biological sources, studies for acoustic neutrino detection and primarily acoustic positioning of the underwater structures. For the latter purpose, the sensors register acoustic signals emitted by five acoustic beacons anchored on the sea-floor. The data acquisition system of the acoustic sensors is fully integrated with the detector data transport system and is based on an “all data to shore” philosophy. Signals coming from hydrophones are continuously sampled underwater at 192 kHz/24 bit and transmitted to shore through an electro-optical cable for real-time analysis. A novel technology for underwater GPS time-stamping of data has been implemented and tested. The operation of the acoustic array will permit long-term test of sensors and electronics technologies that are proposed for the acoustic positioning system of KM3NeT.

  12. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Suleiman Zubair

    2016-01-01

    Full Text Available The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage, PU signal protection (by the introduction of a mobility-induced guard (mguard distance and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput. It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.

  13. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-29

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.

  14. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks

    Science.gov (United States)

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-01

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works. PMID:26840312

  15. A Multiobjective Fuzzy Inference System based Deployment Strategy for a Distributed Mobile Sensor Network

    Directory of Open Access Journals (Sweden)

    Amol P. Bhondekar

    2010-03-01

    Full Text Available Sensor deployment scheme highly governs the effectiveness of distributed wireless sensor network. Issues such as energy conservation and clustering make the deployment problem much more complex. A multiobjective Fuzzy Inference System based strategy for mobile sensor deployment is presented in this paper. This strategy gives a synergistic combination of energy capacity, clustering and peer-to-peer deployment. Performance of our strategy is evaluated in terms of coverage, uniformity, speed and clustering. Our algorithm is compared against a modified distributed self-spreading algorithm to exhibit better performance.

  16. Range-Based Localization in Mobile Sensor Networks

    NARCIS (Netherlands)

    Dil, B.J.; Dil, B.; Dulman, S.O.; Havinga, Paul J.M.; Romer, K.; Karl, H.; Mattern, F.

    2006-01-01

    Localization schemes for wireless sensor networks can be classified as range-based or range-free. They differ in the information used for localization. Range-based methods use range measurements, while range-free techniques only use the content of the messages. None of the existing algorithms

  17. Opportunistic data dissemination in mobile phone sensor networks

    NARCIS (Netherlands)

    Türkes, Okan

    Situated communication technologies in emergencies are subject to decay or fail because of their inadequate services. With the advances in tiny-sensor technologies and ubiquity of smart phones, public awareness on urgent situations can be raised in more efficient and distributed ways. We center on

  18. Design and Development of a Mobile Sensor Based the Blind Assistance Wayfinding System

    Science.gov (United States)

    Barati, F.; Delavar, M. R.

    2015-12-01

    The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  19. DESIGN AND DEVELOPMENT OF A MOBILE SENSOR BASED THE BLIND ASSISTANCE WAYFINDING SYSTEM

    Directory of Open Access Journals (Sweden)

    F. Barati

    2015-12-01

    Full Text Available The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  20. Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    Directory of Open Access Journals (Sweden)

    Malin Premaratne

    2009-01-01

    Full Text Available Measurement losses adversely affect the performance of target tracking. The sensor network’s life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node’s path. First, we assume that the mobile sink node’s position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods’ performance.

  1. Automatic Attendance and Mobile Learning System in Sensor ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    means to ameliorate that. In today's digital era we can use latest technologies to improve student .... Figure 1: Students location tracking using GPS. For class .... Droid X, and the Apple”, iPhone for vehicle Tracking Freesim _Mobile “, 14th IEEE.

  2. Leader Election Protocol for Energy Efficient Mobile Sensor Networks (EYES)

    NARCIS (Netherlands)

    Dulman, S.O.; Havinga, Paul J.M.; Hurink, Johann L.

    In this paper we develop and analyze a wireless wave leader election protocol (WWLE) for wireless mobile ad hoc networks, with emphasis on the resulting energy consumption. Within the operating system of the EYES architecture we apply a power model to schedule tasks in order to minimize energy

  3. ALAT PENDETEKSI KEBOCORAN GAS BERACUN CO PADA MOBIL DENGAN ARRAY SENSOR MENGGUNAKAN FUZZY CONTROLLER

    Directory of Open Access Journals (Sweden)

    Slamet Widodo

    2016-03-01

    Full Text Available Perkembangan teknologi otomotif sekarang ini semakin pesat yaitu dengan fasilitas accessories mobil yang semakin lengkap. Namun berbagai fasilitas yang terdapat dalam mobil tanpa disadari menyimpan ancaman bahaya bagi pengguna mobil salah satunya ketika system pada AC (Air Conditioner terjadi kebocoran maka gas CO (karbon monoksida akan memenuhi ruang mobil yang tertutup. Gas CO ini sangat berbahaya karena gas ini tidak berwarna, tidak berbau, dan tidak berasa sehingga sulit untuk dideteksi yang dapat menyebabkan orang yang ada didalam mobil menjadi mati lemas tanpa disadari karena menghirup gas CO yang bocor. Dengan fenomena tersebut dibutuhkan sebuah alat yang dapat mendeteksi dan mengontrol kebocoran gas CO untuk memberikan rasa aman kepada pengguna mobil. Alat ini menggunakan kendali logika fuzzy sebagai proses pengambilan keputusan sebagai hasil nilai dari inferensi kerja array sensor. Pengendali utama pada sistem menggunakan mikrokontroller ATmega32. Ketika array sensor yaitu TGS2442 dan TGS2600 mendeteksi kadar gas CO >29,0 ppm berarti dalam status bahaya sehingga buzzer akan aktif diikuti motor DC yang menggerakkan kaca mobil agar terbuka. Berdasarkan lima kali pengujian yang dilakukan didapatkanlah rata-rata selisih error output gas sebesar 0.29 ppm disaat kondisi aman dan 3.87 ppm disaat kondisi bahaya.

  4. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chuan Zhu

    2014-01-01

    Full Text Available This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.

  5. LPTA: location predictive and time adaptive data gathering scheme with mobile sink for wireless sensor networks.

    Science.gov (United States)

    Zhu, Chuan; Wang, Yao; Han, Guangjie; Rodrigues, Joel J P C; Lloret, Jaime

    2014-01-01

    This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.

  6. Attention-based navigation in mobile robots using a reconfigurable sensor

    NARCIS (Netherlands)

    Maris, M.

    2001-01-01

    In this paper, a method for visual attentional selection in mobile robots is proposed, based on amplification of the selected stimulus. Attention processing is performed on the vision sensor, which is integrated on a silicon chip and consists of a contrast sensitive retina with the ability to change

  7. Body sensor networks for Mobile Health Monitoring: Experience in Europe and Australia

    NARCIS (Netherlands)

    Jones, Valerie M.; Gay, Valerie; Leijdekkers, Peter

    2009-01-01

    Remote ambulatory monitoring is widely seen as playing a key part in addressing the impending crisis in health care provision. We describe two mobile health solutions, one developed in the Netherlands and one in Australia. In both cases a patient’s biosignals are measured by means of a body sensor

  8. Data Transmission Scheme Using Mobile Sink in Static Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Awais Ahmad

    2015-01-01

    Full Text Available Multihop communication in wireless sensor network (WSN brings new challenges in reliable data transmission. Recent work shows that data collection from sensor nodes using mobile sink minimizes multihop data transmission and improves energy efficiency. However, due to continuous movements, mobile sink has limited communication time to collect data from sensor nodes, which results in rapid depletion of node’s energy. Therefore, we propose a data transmission scheme that addresses the aforementioned constraints. The proposed scheme first finds out the group based region on the basis of localization information of the sensor nodes and predefined trajectory information of a mobile sink. After determining the group region in the network, selection of master nodes is made. The master nodes directly transmit their data to the mobile sink upon its arrival at their group region through restricted flooding scheme. In addition, the agent node concept is introduced for swapping of the role of the master nodes in each group region. The master node when consuming energy up to a certain threshold, neighboring node with second highest residual energy is selected as an agent node. The mathematical analysis shows that the selection of agent node maximizes the throughput while minimizing transmission delay in the network.

  9. The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor

    Science.gov (United States)

    Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.

    2015-08-01

    Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  10. THE PERFORMANCE ANALYSIS OF AN INDOOR MOBILE MAPPING SYSTEM WITH RGB-D SENSOR

    Directory of Open Access Journals (Sweden)

    G. J. Tsai

    2015-08-01

    Full Text Available Over the years, Mobile Mapping Systems (MMSs have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM. The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU, the Kinect RGB-D sensor and light detection, ranging (LIDAR and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  11. Truck-based mobile wireless sensor networks for the experimental observation of vehicle–bridge interaction

    International Nuclear Information System (INIS)

    Kim, Junhee; Lynch, Jerome P; Lee, Jong-Jae; Lee, Chang-Geun

    2011-01-01

    Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as vehicle–bridge interaction. In recent years, interest in vehicle–bridge interaction has grown because a deeper understanding of the phenomena can lead to improvements in bridge design methods while enhancing the accuracy of structural health monitoring techniques. The mobility of wireless sensors can be leveraged to directly monitor the dynamic coupling between the moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring system is designed to interact with a static, permanent wireless monitoring system installed on the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge's wireless sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic pitching measurements of the vehicle are combined with bridge accelerations to create a time-synchronized vehicle–bridge response dataset. In addition to observing the vehicle vibrations, Kalman filtering is adopted to accurately track the vehicle position using the measured horizontal acceleration of the vehicle and positioning information derived from piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system. Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle–bridge wireless monitoring system is conducted. Experimental results verify the reliability of the wireless system and the accuracy of the vehicle positioning algorithm

  12. Mobile Device Based Dynamic Key Management Protocols for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chin-Ling Chen

    2015-01-01

    Full Text Available In recent years, wireless sensor network (WSN applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.

  13. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications

    Science.gov (United States)

    Zhao, Yu; Liu, Yide; Lai, Ivan K. W.; Zhang, Hongfeng; Zhang, Yi

    2016-01-01

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand) relationships. PMID:26999155

  14. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM of Mobile Sensor Computing Applications

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2016-03-01

    Full Text Available As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude, engagement and electronic word of mouth (eWOM behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand relationships.

  15. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications.

    Science.gov (United States)

    Zhao, Yu; Liu, Yide; Lai, Ivan K W; Zhang, Hongfeng; Zhang, Yi

    2016-03-18

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human-computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users' compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user's compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user-product (brand) relationships.

  16. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    International Nuclear Information System (INIS)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F.

    2013-01-01

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing

  17. HUMS: An Autonomous Moving Strategy for Mobile Sinks in Data-Gathering Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yanzhong Bi

    2007-06-01

    Full Text Available Sink mobility has attracted much research interest in recent years because it can improve network performance such as energy efficiency and throughput. An energy-unconscious moving strategy is potentially harmful to the balance of the energy consumption among sensor nodes so as to aggravate the hotspot problem of sensor networks. In this paper, we propose an autonomous moving strategy for the mobile sinks in data-gathering applications. In our solution, a mobile sink approaches the nodes with high residual energy to force them to forward data for other nodes and tries to avoid passing by the nodes with low energy. We performed simulation experiments to compare our solution with other three data-gathering schemes. The simulation results show that our strategy cannot only extend network lifetime notably but also provides scalability and topology adaptability.

  18. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F., E-mail: c.hogan@latrobe.edu.au

    2013-08-06

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing.

  19. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization

  20. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    Science.gov (United States)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  1. Quantification of cellular NEMO content and its impact on NF-κB activation by genotoxic stress.

    Directory of Open Access Journals (Sweden)

    Byounghoon Hwang

    Full Text Available NF-κB essential modulator, NEMO, plays a key role in canonical NF-κB signaling induced by a variety of stimuli, including cytokines and genotoxic agents. To dissect the different biochemical and functional roles of NEMO in NF-κB signaling, various mutant forms of NEMO have been previously analyzed. However, transient or stable overexpression of wild-type NEMO can significantly inhibit NF-κB activation, thereby confounding the analysis of NEMO mutant phenotypes. What levels of NEMO overexpression lead to such an artifact and what levels are tolerated with no significant impact on NEMO function in NF-κB activation are currently unknown. Here we purified full-length recombinant human NEMO protein and used it as a standard to quantify the average number of NEMO molecules per cell in a 1.3E2 NEMO-deficient murine pre-B cell clone stably reconstituted with full-length human NEMO (C5. We determined that the C5 cell clone has an average of 4 x 10(5 molecules of NEMO per cell. Stable reconstitution of 1.3E2 cells with different numbers of NEMO molecules per cell has demonstrated that a 10-fold range of NEMO expression (0.6-6x10(5 molecules per cell yields statistically equivalent NF-κB activation in response to the DNA damaging agent etoposide. Using the C5 cell line, we also quantified the number of NEMO molecules per cell in several commonly employed human cell lines. These results establish baseline numbers of endogenous NEMO per cell and highlight surprisingly normal functionality of NEMO in the DNA damage pathway over a wide range of expression levels that can provide a guideline for future NEMO reconstitution studies.

  2. Sistem Monitoring Parkir Mobil menggunakan Sensor Infrared berbasis RASPBERRY PI

    Directory of Open Access Journals (Sweden)

    DECY NATALIANA

    2016-02-01

    Full Text Available ABSTRAK Masalah yang selalu timbul dalam sistem perparkiran adalah kurangnya informasi mengenai status ketersediaan lahan parkir, untuk itu diperlukan sebuah sistem monitoring parkir. Tujuan penelitian ini adalah merancang dan merealisasikan model sistem monitoring perparkiran dengan fasilitas pemilihan area parkir dengan berbasiskan Raspberry Pi serta pemanfaatan infrared sebagai sensor. Sistem ini mampu menampilkan status ketersediaan dari area parkir yang ditampilkan pada display serta dilengkapi dengan perhitungan tarif parkir. Pada sistem yang dirancang dilengkapi dengan tombol untuk memilih area parkir, 2 buah sensor pada masing-masing area parkir untuk mendeteksi kendaraan, kamera untuk kemanan dan lampu LED sebagai indikator ketersediaan area parkir. Perangkat lunak yang digunakan pada sistem ini dirancang dengan menggunakan bahasa Python 2 dan untuk sistem database digunakan SQLite3. Pengujian dilakukan secara simulasi pada miniatur perparkiran. Hasil pengujian model sistem perparkiran dapat menampilkan kondisi dari masing-masing area parkir yang ditampilkan pada display. Kedua buah LED berhasil menjadi indikator ada tidaknya lahan parkir yang masih kosong. Untuk sistem perhitungan tarif parkir telah sesuai dengan perhitungan lamanya parkir. Kata kunci : Parkir, Raspberry Pi , Infrared, Python 2, Monitoring. ABSTRACT The problem which always happens in parking system is the lack of information about the parking area. That’s why we need parking monitoring system. The purposes of this project are to devise and create parking monitoring system which has fitur for ordering parking area. The system based on Raspberry Pi. The system use infra red as sensor. Beside show the availability status of parking area in a display, this system also calculates the price of using the parking area. The System equipped with button for ordering parking area, 2 infrared sensors for each area, web camera for security and 2 LED lamps for availability

  3. Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems

    KAUST Repository

    Suresh, M. Agumbe; Smith, L.; Rasekh, A.; Stoleru, R.; Banks, M.K.; Shihada, Basem

    2014-01-01

    Leak and backflow detection are essential aspects of Water Distribution System (WDS) monitoring. Most existing solutions for leak/backflow detection in WDSs focus on the placement of expensive static sensors located strategically. In contrast to these, we propose a solution whereby mobile sensors (i.e., their movement aided only by the inherent water flow in the system) detect leaks/backflow. Information about the leaks/backflow is collected from the sensors either by physically capturing them, or through wireless communication. Specifically, we propose models to maximize leak/backflow detection given a cost constraint (a limit on the number of sensors). Through extensive simulations, we demonstrate the superior performance of our proposed solution when compared with the state of the art solutions (e.g., algorithms/protocols and analysis).

  4. Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems

    KAUST Repository

    Suresh, M. Agumbe

    2014-05-01

    Leak and backflow detection are essential aspects of Water Distribution System (WDS) monitoring. Most existing solutions for leak/backflow detection in WDSs focus on the placement of expensive static sensors located strategically. In contrast to these, we propose a solution whereby mobile sensors (i.e., their movement aided only by the inherent water flow in the system) detect leaks/backflow. Information about the leaks/backflow is collected from the sensors either by physically capturing them, or through wireless communication. Specifically, we propose models to maximize leak/backflow detection given a cost constraint (a limit on the number of sensors). Through extensive simulations, we demonstrate the superior performance of our proposed solution when compared with the state of the art solutions (e.g., algorithms/protocols and analysis).

  5. Efficient Hybrid Detection of Node Replication Attacks in Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ze Wang

    2017-01-01

    Full Text Available The node replication attack is one of the notorious attacks that can be easily launched by adversaries in wireless sensor networks. A lot of literatures have studied mitigating the node replication attack in static wireless sensor networks. However, it is more difficult to detect the replicas in mobile sensor networks because of their node mobility. Considering the limitations of centralized detection schemes for static wireless sensor networks, a few distributed solutions have been recently proposed. Some existing schemes identified replicated attacks by sensing mobile nodes with identical ID but different locations. To facilitate the discovery of contradictory conflicts, we propose a hybrid local and global detection method. The local detection is performed in a local area smaller than the whole deployed area to improve the meeting probability of contradictory nodes, while the distant replicated nodes in larger area can also be efficiently detected by the global detection. The complementary two levels of detection achieve quick discovery by searching of the replicas with reasonable overhead.

  6. Context-Aware Mobile Sensors for Sensing Discrete Events in Smart Environment

    Directory of Open Access Journals (Sweden)

    Awais Ahmad

    2016-01-01

    Full Text Available Over the last few decades, several advancements in the field of smart environment gained importance, so the experts can analyze ideas for smart building based on embedded systems to minimize the expense and energy conservation. Therefore, propelling the concept of smart home toward smart building, several challenges of power, communication, and sensors’ connectivity can be seen. Such challenges distort the interconnectivity between different technologies, such as Bluetooth and ZigBee, making it possible to provide the continuous connectivity among different objects such as sensors, actuators, home appliances, and cell phones. Therefore, this paper presents the concept of smart building based on embedded systems that enhance low power mobile sensors for sensing discrete events in embedded systems. The proposed scheme comprises system architecture that welcomes all the mobile sensors to communicate with each other using a single platform service. The proposed system enhances the concept of smart building in three stages (i.e., visualization, data analysis, and application. For low power mobile sensors, we propose a communication model, which provides a common medium for communication. Finally, the results show that the proposed system architecture efficiently processes, analyzes, and integrates different datasets efficiently and triggers actions to provide safety measurements for the elderly, patients, and others.

  7. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  8. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  9. Spatial Search Techniques for Mobile 3D Queries in Sensor Web Environments

    Directory of Open Access Journals (Sweden)

    James D. Carswell

    2013-03-01

    Full Text Available Developing mobile geo-information systems for sensor web applications involves technologies that can access linked geographical and semantically related Internet information. Additionally, in tomorrow’s Web 4.0 world, it is envisioned that trillions of inexpensive micro-sensors placed throughout the environment will also become available for discovery based on their unique geo-referenced IP address. Exploring these enormous volumes of disparate heterogeneous data on today’s location and orientation aware smartphones requires context-aware smart applications and services that can deal with “information overload”. 3DQ (Three Dimensional Query is our novel mobile spatial interaction (MSI prototype that acts as a next-generation base for human interaction within such geospatial sensor web environments/urban landscapes. It filters information using “Hidden Query Removal” functionality that intelligently refines the search space by calculating the geometry of a three dimensional visibility shape (Vista space at a user’s current location. This 3D shape then becomes the query “window” in a spatial database for retrieving information on only those objects visible within a user’s actual 3D field-of-view. 3DQ reduces information overload and serves to heighten situation awareness on constrained commercial off-the-shelf devices by providing visibility space searching as a mobile web service. The effects of variations in mobile spatial search techniques in terms of query speed vs. accuracy are evaluated and presented in this paper.

  10. Detecting unknown attacks in wireless sensor networks that contain mobile nodes.

    Science.gov (United States)

    Banković, Zorana; Fraga, David; Moya, José M; Vallejo, Juan Carlos

    2012-01-01

    As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.

  11. iShake: Mobile Phones as Seismic Sensors (Invited)

    Science.gov (United States)

    Dashti, S.; Reilly, J.; Bray, J. D.; Bayen, A. M.; Glaser, S. D.; Mari, E.

    2010-12-01

    Emergency responders must “see” the effects of an earthquake clearly and rapidly so that they can respond effectively to the damage it has produced. Great strides have been made recently in developing methodologies that deliver rapid and accurate post-earthquake information. However, shortcomings still exist. The iShake project is an innovative use of cell phones and information technology to bridge the gap between the high quality, but sparse, ground motion instrument data that are used to help develop ShakeMap and the low quality, but large quantity, human observational data collected to construct a “Did You Feel It?” (DYFI)-based map. Rather than using people as measurement “devices” as is being done through DYFI, the iShake project is using their cell phones to measure ground motion intensity parameters and automatically deliver the data to the U.S. Geological Survey (USGS) for processing and dissemination. In this participatory sensing paradigm, quantitative shaking data from numerous cellular phones will enable the USGS to produce shaking intensity maps more accurately than presently possible. The phone sensor, however, is an imperfect device with performance variations among phones of a given model as well as between models. The sensor is the entire phone, not just the micro-machined transducer inside. A series of 1-D and 3-D shaking table tests were performed at UC San Diego and UC Berkeley, respectively, to evaluate the performance of a class of cell phones. In these tests, seven iPhones and iPod Touch devices that were mounted at different orientations were subjected to 124 earthquake ground motions to characterize their response and reliability as seismic sensors. The testing also provided insight into the seismic response of unsecured and falling instruments. The cell phones measured seismic parameters such as peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), and 5% damped spectral accelerations well

  12. Impaired bed mobility: quantitative torque analysis with axial inertial sensors.

    Science.gov (United States)

    Bhidayasiri, Roongroj; Sringean, Jirada; Thanawattano, Chusak

    2017-08-01

    Difficulty in turning in bed is rated as the most troublesome night-time symptom among Parkinson's disease (PD) patients. To develop a practical objective method for home assessment of a patient's ability to turn in bed. Nocturnal parameters and torque of self-turning in bed from 17 PD couples were assessed and compared using a wearable axial sensor for two nights in their homes. The torque of axial rotation which indicates the ability of PD patients to turn in bed was significantly less than their spouses (p turning in bed and total unified Parkinson's Disease Rating Scale score (r = 0.71; p = 0.001), and total Nocturnal Akinesia Dystonia and Cramp score (r = 0.634; p = 0.006). Our study confirms a decreased ability in turning in PD.

  13. The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration

    Science.gov (United States)

    Zhao, Ming; Han, Baoling

    2016-11-01

    The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.

  14. Sensor-based supporting mobile system Parkinson disease clinical tests utilising biomedical and RFID technologies

    Directory of Open Access Journals (Sweden)

    Chmielewski Mariusz

    2017-01-01

    Full Text Available This paper discusses method and tool for assisting clinical tests of pharmaceutical drugs utilising sensors and mobile technologies. Emerging sensor and mobile technologies deliver new opportunities to gather and process medical data. Presented analytical approach implements such observations and delivers new, convenient means for remote patient monitoring. Clinical tests are highly specialised process requiring methodology and tools to support such research. Currently available methods rely mostly on analogue approach (booklets, requiring the clinical test participant to fill in health state daily. Such approach often can be biased by unpunctual, not precise reporting. The mobile device can support this process by automatic scheduling and recording an actual time of reports and most of all it can record the inertial and biometric sensor data during the survey process. Presented analytical method (tremors recognition and mobile tool offers consistent approach to clinical test assistance transforming and Android smartphone into remote reporting and notification tool. The tool offers additionally features for sensor based diagnostics support for PD tremor recognition as well as specific clonic and tonic symptoms (dedicated for further system extensions towards epilepsy. Capabilities of the system delivers also RFID mechanisms for efficient on-site clinical test authorisation and configuration. This feature simplifies application installation and automatic set-up considering the participant, clinical test configuration, schedule, smartphone and sensor data. Such a composition delivers convenient and reliable tool which can assist patients and medical staff during the process objectifying the clinical tests results and helping to ensure good quality of the data, quickly available and easily accessible.

  15. Validation Techniques for Sensor Data in Mobile Health Applications

    Directory of Open Access Journals (Sweden)

    Ivan Miguel Pires

    2016-01-01

    Full Text Available Mobile applications have become a must in every user’s smart device, and many of these applications make use of the device sensors’ to achieve its goal. Nevertheless, it remains fairly unknown to the user to which extent the data the applications use can be relied upon and, therefore, to which extent the output of a given application is trustworthy or not. To help developers and researchers and to provide a common ground of data validation algorithms and techniques, this paper presents a review of the most commonly used data validation algorithms, along with its usage scenarios, and proposes a classification for these algorithms. This paper also discusses the process of achieving statistical significance and trust for the desired output.

  16. Supervisory control of mobile sensor networks: math formulation, simulation, and implementation.

    Science.gov (United States)

    Giordano, Vincenzo; Ballal, Prasanna; Lewis, Frank; Turchiano, Biagio; Zhang, Jing Bing

    2006-08-01

    This paper uses a novel discrete-event controller (DEC) for the coordination of cooperating heterogeneous wireless sensor networks (WSNs) containing both unattended ground sensors (UGSs) and mobile sensor robots. The DEC sequences the most suitable tasks for each agent and assigns sensor resources according to the current perception of the environment. A matrix formulation makes this DEC particularly useful for WSN, where missions change and sensor agents may be added or may fail. WSN have peculiarities that complicate their supervisory control. Therefore, this paper introduces several new tools for DEC design and operation, including methods for generating the required supervisory matrices based on mission planning, methods for modifying the matrices in the event of failed nodes, or nodes entering the network, and a novel dynamic priority assignment weighting approach for selecting the most appropriate and useful sensors for a given mission task. The resulting DEC represents a complete dynamical description of the WSN system, which allows a fast programming of deployable WSN, a computer simulation analysis, and an efficient implementation. The DEC is actually implemented on an experimental wireless-sensor-network prototyping system. Both simulation and experimental results are presented to show the effectiveness and versatility of the developed control architecture.

  17. Addressing practical challenges in utility optimization of mobile wireless sensor networks

    Science.gov (United States)

    Eswaran, Sharanya; Misra, Archan; La Porta, Thomas; Leung, Kin

    2008-04-01

    This paper examines the practical challenges in the application of the distributed network utility maximization (NUM) framework to the problem of resource allocation and sensor device adaptation in a mission-centric wireless sensor network (WSN) environment. By providing rich (multi-modal), real-time information about a variety of (often inaccessible or hostile) operating environments, sensors such as video, acoustic and short-aperture radar enhance the situational awareness of many battlefield missions. Prior work on the applicability of the NUM framework to mission-centric WSNs has focused on tackling the challenges introduced by i) the definition of an individual mission's utility as a collective function of multiple sensor flows and ii) the dissemination of an individual sensor's data via a multicast tree to multiple consuming missions. However, the practical application and performance of this framework is influenced by several parameters internal to the framework and also by implementation-specific decisions. This is made further complex due to mobile nodes. In this paper, we use discrete-event simulations to study the effects of these parameters on the performance of the protocol in terms of speed of convergence, packet loss, and signaling overhead thereby addressing the challenges posed by wireless interference and node mobility in ad-hoc battlefield scenarios. This study provides better understanding of the issues involved in the practical adaptation of the NUM framework. It also helps identify potential avenues of improvement within the framework and protocol.

  18. Coordinator Role Mobility Method for Increasing the Life Expectancy of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jurenoks Aleksejs

    2017-05-01

    Full Text Available The general problem of wireless sensor network nodes is the low-power batteries that significantly limit the life expectancy of a network. Nowadays the technical solutions related to energy resource management are being rapidly developed and integrated into the daily lives of people. The energy resource management systems use sensor networks for receiving and processing information during the realia time. The present paper proposes using a coordinator role mobility method for controlling the routing processes for energy balancing in nodes, which provides dynamic network reconfiguration possibilities. The method is designed to operate fully in the background and can be integrated into any exiting working system.

  19. Influence of Mobility Models in Precision Spray Aided by Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Gonçalves, L B L; Neves, L A; Zafalon, G F D; Costa, F G; Ueyama, J; Montez, C; Pinto, A S R

    2015-01-01

    Precision Spray is a technique to increase performance of Precision Agriculture. This spray technique may be aided by a Wireless Sensor Network, however, for such approach, the communication between the agricultural input applicator vehicle and network is critical due to its proper functioning. Thus, this work analyzes how the number of nodes in a wireless sensor network, its type of distribution and different areas of scenario affects the performance of communication. We performed simulations to observe system's behavior changing to find the most fitted non-controlled mobility model to the system

  20. Hierarchical Self Organizing Map for Novelty Detection using Mobile Robot with Robust Sensor

    International Nuclear Information System (INIS)

    Sha'abani, M N A H; Miskon, M F; Sakidin, H

    2013-01-01

    This paper presents a novelty detection method based on Self Organizing Map neural network using a mobile robot. Based on hierarchical neural network, the network is divided into three networks; position, orientation and sensor measurement network. A simulation was done to demonstrate and validate the proposed method using MobileSim. Three cases of abnormal events; new, missing and shifted objects are employed for performance evaluation. The result of detection was then filtered for false positive detection. The result shows that the inspection produced less than 2% false positive detection at high sensitivity settings

  1. A Mobile Localization Strategy for Wireless Sensor Network in NLOS Conditions

    Institute of Scientific and Technical Information of China (English)

    Long Cheng; Yan Wang; Xingming Sun; Nan Hu; Jian Zhang

    2016-01-01

    The problem of mobile localization for wireless sensor network has attracted considerable attention in recent years.The localization accuracy will drastically grade in non-line of sight (NLOS) conditions.In this paper,we propose a mobile localization strategy based on Kalman filter.The key technologies for the proposed method are the NLOS identification and mitigation.The proposed method does not need the prior knowledge of the NLOS error and it is independent of the physical measurement ways.Simulation results show that the proposed method owns the higher localization accuracy when compared with other methods.

  2. Distance-Constraint k-Nearest Neighbor Searching in Mobile Sensor Networks.

    Science.gov (United States)

    Han, Yongkoo; Park, Kisung; Hong, Jihye; Ulamin, Noor; Lee, Young-Koo

    2015-07-27

    The κ-Nearest Neighbors ( κNN) query is an important spatial query in mobile sensor networks. In this work we extend κNN to include a distance constraint, calling it a l-distant κ-nearest-neighbors (l-κNN) query, which finds the κ sensor nodes nearest to a query point that are also at or greater distance from each other. The query results indicate the objects nearest to the area of interest that are scattered from each other by at least distance l. The l-κNN query can be used in most κNN applications for the case of well distributed query results. To process an l-κNN query, we must discover all sets of κNN sensor nodes and then find all pairs of sensor nodes in each set that are separated by at least a distance l. Given the limited battery and computing power of sensor nodes, this l-κNN query processing is problematically expensive in terms of energy consumption. In this paper, we propose a greedy approach for l-κNN query processing in mobile sensor networks. The key idea of the proposed approach is to divide the search space into subspaces whose all sides are l. By selecting κ sensor nodes from the other subspaces near the query point, we guarantee accurate query results for l-κNN. In our experiments, we show that the proposed method exhibits superior performance compared with a post-processing based method using the κNN query in terms of energy efficiency, query latency, and accuracy.

  3. Fuzzy Mobile-Robot Positioning in Intelligent Spaces Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    David Herrero

    2011-11-01

    Full Text Available This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using Wireless Sensor Networks (WSNs. The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  4. The KCLBOT: Exploiting RGB-D Sensor Inputs for Navigation Environment Building and Mobile Robot Localization

    Directory of Open Access Journals (Sweden)

    Evangelos Georgiou

    2011-09-01

    Full Text Available This paper presents an alternative approach to implementing a stereo camera configuration for SLAM. The approach suggested implements a simplified method using a single RGB-D camera sensor mounted on a maneuverable non-holonomic mobile robot, the KCLBOT, used for extracting image feature depth information while maneuvering. Using a defined quadratic equation, based on the calibration of the camera, a depth computation model is derived base on the HSV color space map. Using this methodology it is possible to build navigation environment maps and carry out autonomous mobile robot path following and obstacle avoidance. This paper presents a calculation model which enables the distance estimation using the RGB-D sensor from Microsoft .NET micro framework device. Experimental results are presented to validate the distance estimation methodology.

  5. Distributed estimation and control for mobile sensor networks with coupling delays.

    Science.gov (United States)

    Su, Housheng; Chen, Xuan; Chen, Michael Z Q; Wang, Lei

    2016-09-01

    This paper deals with the issue of distributed estimation and control for mobile sensor networks with coupling delays. Based on the Kalman-Consensus filter and the flocking algorithm, all mobile sensors move to a target to increase the quality of gathered data, and achieve consensus on the estimation values of the target in the presence of time-delay and noises. By applying an effective cascading Lyapunov method and matrix theory, stability analysis is carried out. Furthermore, a necessary condition for the convergence is presented via the boundary conditions of feedback coefficients. Some numerical examples are provided to validate the effectiveness of theoretical results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks.

    Science.gov (United States)

    Khan, Majid I; Gansterer, Wilfried N; Haring, Guenter

    2013-05-15

    Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax , the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar , the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar . The main contribution of this paper is to provide a simulation-based analysis of the energy efficiency of WSNs with static and mobile sinks. The focus is on two important configuration parameters: mobility path of the sink and duty cycling value of the nodes. On the one hand, it is well known that in the case of a mobile sink with fixed trajectory the choice of the mobility path influences energy efficiency. On the other hand, in some types of applications sensor nodes spend a rather large fraction of their total lifetime in idle mode, and therefore higher energy efficiency can be achieved by using the concept of reduced duty cycles. In particular, we quantitatively analyze the influence of duty cycling and the mobility radius of the sink as well as their interrelationship in terms of energy consumption for a well-defined model scenario. The analysis starts from general load considerations and is refined into a geometrical model. This model is validated by simulations which are more realistic in terms of duty cycling than previous work. It is illustrated that over all possible configuration scenarios in terms of duty cycle and mobility radius of the sink the energy dissipation in the WSN can vary up to a factor of nine in terms of Emax and up to a factor of 17 in terms of Ebar. It turns out that in general the choice of the duty cycle value is more important for achieving energy

  7. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.

    Science.gov (United States)

    Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar

    2017-08-15

    The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    OpenAIRE

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Fi...

  9. Optimized Charging Scheduling with Single Mobile Charger for Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qihua Wang

    2017-11-01

    Full Text Available Due to the rapid development of wireless charging technology, the recharging issue in wireless rechargeable sensor network (WRSN has been a popular research problem in the past few years. The weakness of previous work is that charging route planning is not reasonable. In this work, a dynamic optimal scheduling scheme aiming to maximize the vacation time ratio of a single mobile changer for WRSN is proposed. In the proposed scheme, the wireless sensor network is divided into several sub-networks according to the initial topology of deployed sensor networks. After comprehensive analysis of energy states, working state and constraints for different sensor nodes in WRSN, we transform the optimized charging path problem of the whole network into the local optimization problem of the sub networks. The optimized charging path with respect to dynamic network topology in each sub-network is obtained by solving an optimization problem, and the lifetime of the deployed wireless sensor network can be prolonged. Simulation results show that the proposed scheme has good and reliable performance for a small wireless rechargeable sensor network.

  10. Energy and round time estimation method for mobile wireless sensor networks

    International Nuclear Information System (INIS)

    Ismat, M.; Qureshi, R.; Imam, M.U.

    2018-01-01

    Clustered WSN (Wireless Sensor Networks) is a hierarchical network structure that conserves energy by distributing the task of sensing and data transfer to destination among the non-CH (Cluster-Head) and CH (Cluster Head) node in a cluster. In clustered MWSN (Mobile Wireless Sensor Network), cluster maintenance to increase at a reception at the destination during communication operation is difficult due to the movement of CHs and non-CH nodes in and out of the cluster. To conserve energy and increased data transfer to the destination, it is necessary to find the duration after which sensor node’s role should be changed from CH to non-CH and vice-versa. In this paper, we have proposed an energy independent round time scheme to identify the duration after which re-clustering procedure should be invoked for changing roles of sensor nodes as CHs and associated nodes to conserve energy and increased data delivery. This depends on the dissemination interval of the sensor nodes rather than sensor node’s energy. We have also provided a complete analytical estimate of network energy consumption with energy consumed in every phase of a around. (author)

  11. A small, lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources

    Science.gov (United States)

    Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and integrated sampler system for use on mobile applications including tethered balloons ...

  12. Mobile Music, Sensors, Physical Modeling, and Digital Fabrication: Articulating the Augmented Mobile Instrument

    Directory of Open Access Journals (Sweden)

    Romain Michon

    2017-12-01

    Full Text Available Two concepts are presented, extended, and unified in this paper: mobile device augmentation towards musical instruments design and the concept of hybrid instruments. The first consists of using mobile devices at the heart of novel musical instruments. Smartphones and tablets are augmented with passive and active elements that can take part in the production of sound (e.g., resonators, exciter, etc., add new affordances to the device, or change its global aesthetics and shape. Hybrid instruments combine physical/acoustical and “physically informed” virtual/digital elements. Recent progress in physical modeling of musical instruments and digital fabrication is exploited to treat instrument parts in a multidimensional way, allowing any physical element to be substituted with a virtual one and vice versa (as long as it is physically possible. A wide range of tools to design mobile hybrid instruments is introduced and evaluated. Aesthetic and design considerations when making such instruments are also presented through a series of examples.

  13. Mobile health: the power of wearables, sensors, and apps to transform clinical trials.

    Science.gov (United States)

    Munos, Bernard; Baker, Pamela C; Bot, Brian M; Crouthamel, Michelle; de Vries, Glen; Ferguson, Ian; Hixson, John D; Malek, Linda A; Mastrototaro, John J; Misra, Veena; Ozcan, Aydogan; Sacks, Leonard; Wang, Pei

    2016-07-01

    Mobile technology has become a ubiquitous part of everyday life, and the practical utility of mobile devices for improving human health is only now being realized. Wireless medical sensors, or mobile biosensors, are one such technology that is allowing the accumulation of real-time biometric data that may hold valuable clues for treating even some of the most devastating human diseases. From wearable gadgets to sophisticated implantable medical devices, the information retrieved from mobile technology has the potential to revolutionize how clinical research is conducted and how disease therapies are delivered in the coming years. Encompassing the fields of science and engineering, analytics, health care, business, and government, this report explores the promise that wearable biosensors, along with integrated mobile apps, hold for improving the quality of patient care and clinical outcomes. The discussion focuses on groundbreaking device innovation, data optimization and validation, commercial platform integration, clinical implementation and regulation, and the broad societal implications of using mobile health technologies. © 2016 New York Academy of Sciences.

  14. An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-11-04

    In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.

  15. Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices.

    Science.gov (United States)

    Morak, Jürgen; Kumpusch, Hannes; Hayn, Dieter; Modre-Osprian, Robert; Schreier, Günter

    2012-01-01

    Utilization of information and communication technologies such as mobile phones and wireless sensor networks becomes more and more common in the field of telemonitoring for chronic diseases. Providing elderly people with a mobile-phone-based patient terminal requires a barrier-free design of the overall user interface including the setup of wireless communication links to sensor devices. To easily manage the connection between a mobile phone and wireless sensor devices, a concept based on the combination of Bluetooth and near-field communication technology has been developed. It allows us initiating communication between two devices just by bringing them close together for a few seconds without manually configuring the communication link. This concept has been piloted with a sensor device and evaluated in terms of usability and feasibility. Results indicate that this solution has the potential to simplify the handling of wireless sensor networks for people with limited technical skills.

  16. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.

    Science.gov (United States)

    Han, Changcai; Yang, Jinsheng

    2017-10-30

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.

  17. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity

    Directory of Open Access Journals (Sweden)

    Dayan Adionel Guimarães

    2016-09-01

    Full Text Available In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.

  18. Mobile Mapping of Sporting Event Spectators Using Bluetooth Sensors: Tour of Flanders 2011

    Directory of Open Access Journals (Sweden)

    Frederik van Bossche

    2012-10-01

    Full Text Available Accurate spatiotemporal information on crowds is a necessity for a better management in general and for the mitigation of potential security risks. The large numbers of individuals involved and their mobility, however, make generation of this information non-trivial. This paper proposes a novel methodology to estimate and map crowd sizes using mobile Bluetooth sensors and examines to what extent this methodology represents a valuable alternative to existing traditional crowd density estimation methods. The proposed methodology is applied in a unique case study that uses Bluetooth technology for the mobile mapping of spectators of the Tour of Flanders 2011 road cycling race. The locations of nearly 16,000 cell phones of spectators along the race course were registered and detailed views of the spatiotemporal distribution of the crowd were generated. Comparison with visual head counts from camera footage delivered a detection ratio of 13.0 ± 2.3%, making it possible to estimate the crowd size. To our knowledge, this is the first study that uses mobile Bluetooth sensors to count and map a crowd over space and time.

  19. A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Su; Moon, Woo Sung; Seo, Woo Jin; Baek, Kwang Ryul [Pusan National University, Busan (Korea, Republic of)

    2011-11-15

    Inertial navigation systems (INS) are composed of inertial sensors, such as accelerometers and gyroscopes. An INS updates its orientation and position automatically; it has an acceptable stability over the short term, however this stability deteriorates over time. Odometry, used to estimate the position of a mobile robot, employs encoders attached to the robot's wheels. However, errors occur caused by the integrative nature of the rotating speed and the slippage between the wheel and the ground. In this paper, we discuss mobile robot position estimation without using external signals in indoor environments. In order to achieve optimal solutions, a Kalman filter that estimates the orientation and velocity of mobile robots has been designed. The proposed system combines INS and odometry and delivers more accurate position information than standalone odometry.

  20. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Directory of Open Access Journals (Sweden)

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground-based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well-suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory-oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego-motion makes use of the Fourier-Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real-world data from a vehicle moving at 30 km/h over a 2.5 km course.

  1. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.

    Science.gov (United States)

    Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-11-08

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .

  2. Energy-Efficient Region Shift Scheme to Support Mobile Sink Group in Wireless Sensor Networks.

    Science.gov (United States)

    Yim, Yongbin; Kim, Kyong Hoon; Aldwairi, Monther; Kim, Ki-Il

    2017-12-30

    Mobile sink groups play crucial roles to perform their own missions in many wireless sensor network (WSN) applications. In order to support mobility of such sink groups, it is important to design a mechanism for effective discovery of the group in motion. However, earlier studies obtain group region information by periodic query. For that reason, the mechanism leads to significant signaling overhead due to frequent flooding for the query regardless of the group movement. Furthermore, the mechanism worsens the problem by the flooding in the whole expected area. To deal with this problem, we propose a novel mobile sink group support scheme with low communication cost, called Region-Shift-based Mobile Geocasting Protocol (RSMGP). In this study, we utilize the group mobility feature for which members of a group have joint motion patterns. Thus, we could trace group movement by shifting the region as much as partial members move out of the previous region. Furthermore, the region acquisition is only performed at the moment by just deviated members without collaboration of all members. Experimental results validate the improved signaling overhead of our study compared to the previous studies.

  3. Development of a mobile sensor for robust assessment of river bed grain forces

    Science.gov (United States)

    Maniatis, G.; Hoey, T.; Sventek, J.; Hodge, R. A.

    2013-12-01

    The forces experienced by sediment grains at entrainment and during transport, and those exerted on river beds, are significant for the development of river systems and landscape evolution. The assessment of local grain forces has been approached using two different methodologies. The first approach uses static impact sensors at points or cross-sections to measure velocity and/or acceleration. A second approach uses mobile natural or artificial 'smart' pebbles instrumented with inertia micro-sensors for directly measuring the local forces experienced by individual grains. The two approaches have yielded significantly different magnitudes of impact forces. Static sensors (piezoelectric plates connected to accelerometers) temporally smooth the impacts from several grains and infrequently detect the higher forces (up to ×100g) generated by direct single-grain impacts. The second method is currently unable to record the full range of impacts in real rivers due to the low measurement range of the deployed inertia sensors (×3g). Laboratory applications have required only low-range accelerometers, so excluding the magnitude of natural impacts from the design criteria. Here we present the first results from the development of a mobile sensor, designed for the purpose of measuring local grain-forces in a natural riverbed. We present two sets of measurements. The first group presents the calibration of a wide range micro-accelerometer from a set of vertical drop experiments (gravitational acceleration) and further experiments on a shaking table moving with pre-defined acceleration. The second group of measurements are from incipient motion experiments performed in a 9m x0.9m flume (slope 0.001 to 0.018) under steadily increasing discharge. Initially the spherical sensor grain was placed on an artificial surface of hemispheres of identical diameter to the sensor (111mm). Incipient motion was assessed under both whole and half-diameter exposure for each slope. Subsequently

  4. Study of the background neutron and gamma components of the ββ(0ν) decay in the NEMO2 prototype detector. Consequences for the NEMO3 detector

    International Nuclear Information System (INIS)

    Marquet, Christine

    1999-01-01

    Neutrinoless double beta decay ββ(0ν) is a test of physics beyond the Standard Model by involving the existence of a massive Majorana neutrino (ν = ν-bar). To try to observe such a process with a sensitivity of 0.1 eV on the neutrino effective mass ( ν >), NEMO collaboration build the NEMO3 detector, able to measure half-lives greater than 10 24 years, corresponding to a few detected events per year. For that, it is necessary to know and master all background sources. This work was first dedicated to the study of external (to the double beta source) background with crossing electrons recorded with NEMO2 prototype detector and then to the simulation of this background in NEMO3 detector. Comparison between NEMO2 data and results of gamma and neutron simulations for different shieldings, with and without neutron source, has allowed to determine background contributions of radon, thoron, 208 Tl contaminations in materials, photon flux produced in laboratory and neutrons. This study, which has required improvements in the MICAP neutron simulation code by developing a photon generator, proved that radiative capture of fast neutrons thermalized in the detector was the source of events in the energy domain of the ββ(0ν) signal. In order to reach the required sensitivity on ν > mass, it has been shown that both a neutron shielding and magnetic field are necessary for NEMO3 detector. (author) [fr

  5. Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Gianluca Dini

    2012-02-01

    Full Text Available Methodologies and algorithms are presented for the secure cooperation of a team of autonomous mobile underwater sensors, connected through an acoustic communication network, within surveillance and patrolling applications. In particular, the work proposes a cooperative algorithm in which the mobile underwater sensors (installed on Autonomous Underwater Vehicles—AUVs respond to simple local rules based on the available information to perform the mission and maintain the communication link with the network (behavioral approach. The algorithm is intrinsically robust: with loss of communication among the vehicles the coverage performance (i.e., the mission goal is degraded but not lost. The ensuing form of graceful degradation provides also a reactive measure against Denial of Service. The cooperative algorithm relies on the fact that the available information from the other sensors, though not necessarily complete, is trustworthy. To ensure trustworthiness, a security suite has been designed, specifically oriented to the underwater scenario, and in particular with the goal of reducing the communication overhead introduced by security in terms of number and size of messages. The paper gives implementation details on the integration between the security suite and the cooperative algorithm and provides statistics on the performance of the system as collected during the UAN project sea trial held in Trondheim, Norway, in May 2011.

  6. Obstacle negotiation control for a mobile robot suspended on overhead ground wires by optoelectronic sensors

    Science.gov (United States)

    Zheng, Li; Yi, Ruan

    2009-11-01

    Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  7. Energy Efficient and Safe Weighted Clustering Algorithm for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Amine Dahane

    2015-01-01

    Full Text Available The main concern of clustering approaches for mobile wireless sensor networks (WSNs is to prolong the battery life of the individual sensors and the network lifetime. For a successful clustering approach the need of a powerful mechanism to safely elect a cluster head remains a challenging task in many research works that take into account the mobility of the network. The approach based on the computing of the weight of each node in the network is one of the proposed techniques to deal with this problem. In this paper, we propose an energy efficient and safe weighted clustering algorithm (ES-WCA for mobile WSNs using a combination of five metrics. Among these metrics lies the behavioral level metric which promotes a safe choice of a cluster head in the sense where this last one will never be a malicious node. Moreover, the highlight of our work is summarized in a comprehensive strategy for monitoring the network, in order to detect and remove the malicious nodes. We use simulation study to demonstrate the performance of the proposed algorithm.

  8. A distance-aware replica adaptive data gathering protocol for Delay Tolerant Mobile Sensor Networks.

    Science.gov (United States)

    Feng, Yong; Gong, Haigang; Fan, Mingyu; Liu, Ming; Wang, Xiaomin

    2011-01-01

    In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node's limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes.

  9. NEMO binds ubiquitinated TANK-binding kinase 1 (TBK1 to regulate innate immune responses to RNA viruses.

    Directory of Open Access Journals (Sweden)

    Lingyan Wang

    Full Text Available RIG-I-like receptors (RLR are intracellular sensors utilized by nearly all cell types for recognition of viral RNA, initiation of antiviral defense, and induction of type I interferons (IFN. TBK1 is a critical kinase implicated in RLR-dependent IFN transcription. Posttranslational modification of TBK1 by K63-linked ubiquitin is required for RLR driven signaling. However, the TBK1 ubiquitin acceptor sites and the function of ubiquitinated TBK1 in the signaling cascade are unknown. We now show that TBK1 is ubiquitinated on residues K69, K154, and K372 in response to infection with RNA virus. The K69 and K154 residues are critical for innate antiviral responses and IFN production. Ubiquitinated TBK1 recruits the downstream adaptor NEMO through ubiquitin binding domains. The assembly of the NEMO/TBK1 complex on the mitochondrial protein MAVS leads to activation of TBK1 kinase activity and phosphorylation of the transcription factor, interferon response factor 3. The combined results refine current views of RLR signaling, define the role of TBK1 polyubiquitination, and detail the mechanisms involved in signalosome assembly.

  10. Cooperative Control of Mobile Sensor Networks for Environmental Monitoring: An Event-Triggered Finite-Time Control Scheme.

    Science.gov (United States)

    Lu, Qiang; Han, Qing-Long; Zhang, Botao; Liu, Dongliang; Liu, Shirong

    2017-12-01

    This paper deals with the problem of environmental monitoring by developing an event-triggered finite-time control scheme for mobile sensor networks. The proposed control scheme can be executed by each sensor node independently and consists of two parts: one part is a finite-time consensus algorithm while the other part is an event-triggered rule. The consensus algorithm is employed to enable the positions and velocities of sensor nodes to quickly track the position and velocity of a virtual leader in finite time. The event-triggered rule is used to reduce the updating frequency of controllers in order to save the computational resources of sensor nodes. Some stability conditions are derived for mobile sensor networks with the proposed control scheme under both a fixed communication topology and a switching communication topology. Finally, simulation results illustrate the effectiveness of the proposed control scheme for the problem of environmental monitoring.

  11. mSieve: Differential Behavioral Privacy in Time Series of Mobile Sensor Data.

    Science.gov (United States)

    Saleheen, Nazir; Chakraborty, Supriyo; Ali, Nasir; Mahbubur Rahman, Md; Hossain, Syed Monowar; Bari, Rummana; Buder, Eugene; Srivastava, Mani; Kumar, Santosh

    2016-09-01

    Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. But the accuracy requirement on inferences drawn from physiological data, together with well-established limits within which these data values occur, render traditional privacy mechanisms inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 participants and demonstrate that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors.

  12. Design and research of intelligent mobile robot environment detection system based on multi-sensor technology

    International Nuclear Information System (INIS)

    Chen Yu; Wen Xinling

    2007-01-01

    The intelligent mobile robot environment detection system is researched based on SCM MC68HC908GP3 as core of control system. The four groups of detection systems constituted by ultrasonic sensors and infrared sensors gather information of forward, behind, left and right different directions, solve the problem of blind spot, and make up each other shortage. The distance measurement precision is improved rapidly and the detection precision is less than ±1% through using the way of the pulse shooting, the signal chooses circuit, and the temperature compensation. The system design method and the hardware circuit are introduced in detail. Simultaneity, the system adopts the single chip control technology, it makes the system possess favorable expansibility and gains the practicability in engineering field. (authors)

  13. Mobile Phone Based Falling Detection Sensor and Computer-Aided Algorithm for Elderly People

    Directory of Open Access Journals (Sweden)

    Lee Jong-Ha

    2016-01-01

    Full Text Available Falls are dangerous for the elderly population; therefore many fall detection systems have been developed. However, previous methods are bulky for elderly people or only use a single sensor to isolate falls from daily living activities, which makes a fall difficult to distinguish. In this paper, we present a cost-effective and easy-to-use portable fall-detection sensor and algorithm. Specifically, to detect human falls, we used a three-axis accelerator and a three-axis gyroscope in a mobile phone. We used the Fourier descriptor-based frequency analysis method to classify both normal and falling status. From the experimental results, the proposed method detects falling status with 96.14% accuracy.

  14. A wearable mobility device for the blind using retina-inspired dynamic vision sensors.

    Science.gov (United States)

    Ghaderi, Viviane S; Mulas, Marcello; Pereira, Vinicius Felisberto Santos; Everding, Lukas; Weikersdorfer, David; Conradt, Jorg

    2015-01-01

    Proposed is a prototype of a wearable mobility device which aims to assist the blind with navigation and object avoidance via auditory-vision-substitution. The described system uses two dynamic vision sensors and event-based information processing techniques to extract depth information. The 3D visual input is then processed using three different strategies, and converted to a 3D output sound using an individualized head-related transfer function. The performance of the device with different processing strategies is evaluated via initial tests with ten subjects. The outcome of these tests demonstrate promising performance of the system after only very short training times of a few minutes due to the minimal encoding of outputs from the vision sensors which are translated into simple sound patterns easily interpretable for the user. The envisioned system will allow for efficient real-time algorithms on a hands-free and lightweight device with exceptional battery life-time.

  15. Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Arain

    2015-03-01

    Full Text Available The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.

  16. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    Science.gov (United States)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  17. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Yu-Hua Li

    2011-07-01

    Full Text Available A land-based mobile mapping system (MMS is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS. The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters. In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  18. Direct sensor orientation of a land-based mobile mapping system.

    Science.gov (United States)

    Rau, Jiann-Yeou; Habib, Ayman F; Kersting, Ana P; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  19. MHBCDA: Mobility and Heterogeneity aware Bandwidth Efficient Cluster based Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2013-01-01

    Wireless Sensor Network (WSN) offers a variety of novel applications for mobile targets. It generates the large amount of redundant sensing data. The data aggregation techniques are extensively used to reduce the energy consumption and increase the network lifetime, although it has the side effect...... efficient. It exploits correlation of data packets generated by varying the packet generation rate. It prevents transmission of redundant data packets by improving energy consumption by 4.11% and prolongs the network life by 34.45% as compared with state-of-the-art solutions.......-based Data Aggregation (MHBCDA) algorithm for the randomly distributed nodes. It considers the mobile sink based packet aggregation for the heterogeneous WSN. It uses predefined region for the aggregation at cluster head to minimize computation and communication cost. The MHBCDA is energy and bandwidth...

  20. Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility.

    Science.gov (United States)

    Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios

    2016-03-19

    Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability.

  1. Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility

    Directory of Open Access Journals (Sweden)

    Mariam Akbar

    2016-03-01

    Full Text Available Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS, i.e., an autonomous underwater vehicle (AUV, and also courier nodes (CNs, to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability.

  2. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiao Xu

    2009-04-01

    Full Text Available Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.

  3. Anchor-free localization method for mobile targets in coal mine wireless sensor networks.

    Science.gov (United States)

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.

  4. Data Collection Method for Mobile Control Sink Node in Wireless Sensor Network Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ling Yongfa

    2016-01-01

    Full Text Available The paper proposes a mobile control sink node data collection method in the wireless sensor network based on compressive sensing. This method, with regular track, selects the optimal data collection points in the monitoring area via the disc method, calcu-lates the shortest path by using the quantum genetic algorithm, and hence determines the data collection route. Simulation results show that this method has higher network throughput and better energy efficiency, capable of collecting a huge amount of data with balanced energy consumption in the network.

  5. Naval EarthMap Observer (NEMO) science and naval products

    Science.gov (United States)

    Davis, Curtiss O.; Kappus, Mary E.; Gao, Bo-Cai; Bissett, W. Paul; Snyder, William A.

    1998-11-01

    A wide variety of applications of imaging spectrometry have been demonstrated using data from aircraft systems. Based on this experience the Navy is pursuing the Hyperspectral Remote Sensing Technology (HRST) Program to use hyperspectral imagery to characterize the littoral environment, for scientific and environmental studies and to meet Naval needs. To obtain the required space based hyperspectral imagery the Navy has joined in a partnership with industry to build and fly the Naval EarthMap Observer (NEMO). The NEMO spacecraft has the Coastal Ocean Imaging Spectrometer (COIS) a hyperspectral imager with adequate spectral and spatial resolution and a high signal-to- noise ratio to provide long term monitoring and real-time characterization of the coastal environment. It includes on- board processing for rapid data analysis and data compression, a large volume recorder, and high speed downlink to handle the required large volumes of data. This paper describes the algorithms for processing the COIS data to provide at-launch ocean data products and the research and modeling that are planned to use COIS data to advance our understanding of the dynamics of the coastal ocean.

  6. Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas

    Directory of Open Access Journals (Sweden)

    Ze Wang

    2015-09-01

    Full Text Available Network security is one of the most important issues in mobile sensor networks (MSNs. Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA is proposed to resist malicious attacks by using mobile nodes’ dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.

  7. Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas.

    Science.gov (United States)

    Wang, Ze; Zhang, Haijuan; Wu, Luqiang; Zhou, Chang

    2015-09-25

    Network security is one of the most important issues in mobile sensor networks (MSNs). Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA) is proposed to resist malicious attacks by using mobile nodes' dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.

  8. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  9. Modeling the energy performance of event-driven wireless sensor network by using static sink and mobile sink.

    Science.gov (United States)

    Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.

  10. Modeling the Energy Performance of Event-Driven Wireless Sensor Network by Using Static Sink and Mobile Sink

    Science.gov (United States)

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503

  11. Robust and Cost-Efficient Communication Based on SNMP in Mobile Networks

    Science.gov (United States)

    Ryu, Sang-Hoon; Baik, Doo-Kwon

    A main challenge in the design of this mobile network is the development of dynamic routing protocols that can efficiently find routes between two communicating nodes. Multimedia streaming services are receiving considerable interest in the mobile network business. An entire mobile network may change its point of attachment to the Internet. The mobile network is operated by a basic specification to support network mobility called Network Mobility (NEMO) Basic Support. However, NEMO basic Support mechanism has some problem in continuous communication. In this paper, we propose robust and cost-efficient algorithm. And we simulate proposed method and conclude some remarks.

  12. Rancang Bangun Prototype Counter Mobil Menggunakan Sensor Giant Magnetic Resistance (Gmr Berbasis Mikrokontroler

    Directory of Open Access Journals (Sweden)

    Adnan Ardiansyah

    2017-06-01

    Full Text Available Kapadatan lalu lintas salah satunya diakibatkan pertambahan jumlah mobil yang tidak seimbang dengan pertambahan panjang jalan. Data kepadatan lalu lintas dapat menjadi informasi yang berguna untuk statistik pengembangan jalan dan pengguna jalan. Data tersebut didapatkan dengan cara menghitung manual ataupun dengan detektor yang ditanam pada jalan atau kamera CCTV. Namun, cara tersebut tidak efisien karena data yang didapat membutuhkan sumber daya manusia dan sumber dana yang besar. Pada penelitian ini, telah dirancang sistem sederhana yang dapat mendeteksi frekuensi atau jumlah kepadatan mobil tiap satuan waktu. Data diperoleh dengan mikrokontroler berbasis arduino yang menggunakan sensor magnet GMR sebagai input. Ketika kendaraan diatas telah melewati sistem, mikrokontroler memproses sinyal yang diterima dari sensor untuk mendapatkan data jumlah kendaraan. Serta LCD karakter 2x16 sebagai penampil data. Data yang diperoleh kemudian dapat digunakan untuk otomatisasi penggukur kemacetan dan sistem kontrol lalu lintas lainnya, menggantikan sistem detektor yang ditanam pada jalan raya dan video kamera dimalam hari dan untuk menutupi daerah yang tidak terjangkau. Hasil penelitian menujukan bahwa sensor mempunyai tingkat akurasi pengukuran 94,66%, serta mempunyai tingkat presisi yang cukup baik. Traffic data frequency can be beneficial for statistic extended road method and road user. Data may be found from manual counter or using detector implanted to the road or CCTV camera. However, that method not efficient because need operator in order to obtained the data and expensive cost. In this research, already planned a simple systemtraffic vehicle counter or vehicle quantity by the time. Data obtained by microcontroller Arduino UNO with magnetic sensor (GMR attached as input. When a vehicle passes above the circuit system, a microcontroller processes signal of sensor to obtain data quantity of vehicle. And also character LCD 2x16 as display data

  13. SOMM: A new service oriented middleware for generic wireless multimedia sensor networks based on code mobility.

    Science.gov (United States)

    Faghih, Mohammad Mehdi; Moghaddam, Mohsen Ebrahimi

    2011-01-01

    Although much research in the area of Wireless Multimedia Sensor Networks (WMSNs) has been done in recent years, the programming of sensor nodes is still time-consuming and tedious. It requires expertise in low-level programming, mainly because of the use of resource constrained hardware and also the low level API provided by current operating systems. The code of the resulting systems has typically no clear separation between application and system logic. This minimizes the possibility of reusing code and often leads to the necessity of major changes when the underlying platform is changed. In this paper, we present a service oriented middleware named SOMM to support application development for WMSNs. The main goal of SOMM is to enable the development of modifiable and scalable WMSN applications. A network which uses the SOMM is capable of providing multiple services to multiple clients at the same time with the specified Quality of Service (QoS). SOMM uses a virtual machine with the ability to support mobile agents. Services in SOMM are provided by mobile agents and SOMM also provides a t space on each node which agents can use to communicate with each other.

  14. An Energy-aware Routing Scheme in Delay Tolerant Mobile Sensor Networking

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2014-08-01

    Full Text Available In Delay Tolerant Mobile Sensor Networking (DTMSN, mobile sensor nodes are usually limited to their energy capacity, one important concern in routing design of DTMSN is energy consumption. This paper presents a number of variations of the Epidemic Routing Protocol (ERP to extend the DTMSN lifetime. It introduces the analytical model for ERP, after introducing the concepts behind the Target Delivery Probability and Minimum Delivery Probability, it defines the network lifetime. In this paper, it firstly studies many variations of the Epidemic Routing Protocol to extend the lifetime of the DTMSN. Secondly, based on the Epidemic Routing Protocol, three schemes are introduced. Those schemes rely on the limiting the times of message allowed for propagation (LT scheme, directly controlling the number of the copies (LC scheme, split the copies to the residual energies of the nodes (LE scheme. Finally, with the experiment and the validation of the simulation, the LE scheme can significantly maximize the lifetime of DTMSN, because it minimizes the number of copies and that shifts the generation of the copies to the nodes with larger residual energy.

  15. Recognizing the degree of human attention using EEG signals from mobile sensors.

    Science.gov (United States)

    Liu, Ning-Han; Chiang, Cheng-Yu; Chu, Hsuan-Chin

    2013-08-09

    During the learning process, whether students remain attentive throughout instruction generally influences their learning efficacy. If teachers can instantly identify whether students are attentive they can be suitably reminded to remain focused, thereby improving their learning effects. Traditional teaching methods generally require that teachers observe students' expressions to determine whether they are attentively learning. However, this method is often inaccurate and increases the burden on teachers. With the development of electroencephalography (EEG) detection tools, mobile brainwave sensors have become mature and affordable equipment. Therefore, in this study, whether students are attentive or inattentive during instruction is determined by observing their EEG signals. Because distinguishing between attentiveness and inattentiveness is challenging, two scenarios were developed for this study to measure the subjects' EEG signals when attentive and inattentive. After collecting EEG data using mobile sensors, various common features were extracted from the raw data. A support vector machine (SVM) classifier was used to calculate and analyze these features to identify the combination of features that best indicates whether students are attentive. Based on the experiment results, the method proposed in this study provides a classification accuracy of up to 76.82%. The study results can be used as a reference for learning system designs in the future.

  16. Center of excellence for mobile sensor data-to-knowledge (MD2K).

    Science.gov (United States)

    Kumar, Santosh; Abowd, Gregory D; Abraham, William T; al'Absi, Mustafa; Beck, J Gayle; Chau, Duen Horng; Condie, Tyson; Conroy, David E; Ertin, Emre; Estrin, Deborah; Ganesan, Deepak; Lam, Cho; Marlin, Benjamin; Marsh, Clay B; Murphy, Susan A; Nahum-Shani, Inbal; Patrick, Kevin; Rehg, James M; Sharmin, Moushumi; Shetty, Vivek; Sim, Ida; Spring, Bonnie; Srivastava, Mani; Wetter, David W

    2015-11-01

    Mobile sensor data-to-knowledge (MD2K) was chosen as one of 11 Big Data Centers of Excellence by the National Institutes of Health, as part of its Big Data-to-Knowledge initiative. MD2K is developing innovative tools to streamline the collection, integration, management, visualization, analysis, and interpretation of health data generated by mobile and wearable sensors. The goal of the big data solutions being developed by MD2K is to reliably quantify physical, biological, behavioral, social, and environmental factors that contribute to health and disease risk. The research conducted by MD2K is targeted at improving health through early detection of adverse health events and by facilitating prevention. MD2K will make its tools, software, and training materials widely available and will also organize workshops and seminars to encourage their use by researchers and clinicians. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A Mobile Anchor Assisted Localization Algorithm Based on Regular Hexagon in Wireless Sensor Networks

    Science.gov (United States)

    Rodrigues, Joel J. P. C.

    2014-01-01

    Localization is one of the key technologies in wireless sensor networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH) in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution. PMID:25133212

  18. Development of mobile sensor for volcanic observation "HOMURA": Test campaigns for a long-term operation

    Science.gov (United States)

    Kaneko, K.; Iwahori, K.; Ito, K.; Sagi, H.

    2016-12-01

    Unmanned robots are useful to observe volcanic phenomena near active volcanic vents, to learn symptoms and transitions of eruptions, and to mitigate volcanic disasters. We have been trying to develop a practical UGV robot for flexible observation of active volcanic vents. We named this system "Homura". In this presentation, we report results of test campaigns of Homura for observation in a volcanic field. We have developed a prototype of Homura, which is a small robot vehicle with six wheels (75 x 43 x 31 cm and a weight of about 12 kg). It is remotely controlled with mobile phone radio waves; it can move in volcanic fields and send real time data of sensors (camera and gas sensors) equipped in the vehicle to the base station. Homura has a small solar panel (4 W). Power consumption of Homura is about 4 W in operation of sensors and less than 0.1 W in idle state, so that Homura can work outdoors for a long time by intermittent operation.We carried out two test campaigns of Homura at Iwo-yama to examine if Homura can work for a few month in natural volcanic fields (however, it had no solar panel in these campaigns). Iwo-yama is one of craters in the Kirishima volcanic field, SW Japan; the area within 1 km from the crater was an off-limit area from Oct., 2014 to May, 2015 and from Feb. to Mar., 2016 because of strong volcanic seismicity. On Feb. 19th, 2015 and Mar. 7th, 2016, we carried and put Homura at the rim of the crater. Unfortunately, mobile phone connectivity was not entirely stable around Iwo-yama. Then, we did not move Homura and only obtain real time data of the sensors. In the two campaigns, we operated Homura at our office for a few hours every day for 49 and 37 days, respectively. Although the weather was often bad (rain, fog, or cold temperature) during the campaigns, Homura perfectly worked. The results of these campaigns indicate that Homura is useful as s simple monitoring station in volcanic fields where mobile phone connection is available.

  19. Open Source Based Sensor Platform for Mobile Environmental Monitoring and Data Acquisition

    Science.gov (United States)

    Schima, Robert; Goblirsch, Tobias; Misterek, René; Salbach, Christoph; Schlink, Uwe; Francyk, Bogdan; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    The impact of global change, urbanization and complex interactions between humans and the environment show different effects on different scales. However, the desire to obtain a better understanding of ecosystems and process dynamics in nature accentuates the need for observing these processes in higher temporal and spatial resolutions. Especially with regard to the process dynamics and heterogeneity of urban areas, a comprehensive monitoring of these effects remains to be a challenging issue. Open source based electronics and cost-effective sensors are offering a promising approach to explore new possibilities of mobile data acquisition and innovative strategies and thereby support a comprehensive ad-hoc monitoring and the capturing of environmental processes close to real time. Accordingly, our project aims the development of new strategies for mobile data acquisition and real-time processing of user-specific environmental data, based on a holistic and integrated process. To this end, the concept of our monitoring system covers the data collection, data processing and data integration as well as the data provision within one infrastructure. This ensures a consistent data stream and a rapid data processing. However, the overarching goal is the provision of an integrated service instead of lengthy and arduous data acquisition by hand. Therefore, the system also serves as a data acquisition assistant and gives guidance during the measurements. In technical terms, our monitoring system consists of mobile sensor devices, which can be controlled and managed by a smart phone app (Android). At the moment, the system is able to acquire temperature and humidity in space (GPS) and time (real-time clock) as a built in function. In addition, larger system functionality can be accomplished by adding further sensors for the detection of e.g. fine dust, methane or dissolved organic compounds. From the IT point of view, the system includes a smart phone app and a web service for

  20. A mobile sensor network to map carbon dioxide emissions in urban environments

    Science.gov (United States)

    Lee, Joseph K.; Christen, Andreas; Ketler, Rick; Nesic, Zoran

    2017-03-01

    A method for directly measuring carbon dioxide (CO2) emissions using a mobile sensor network in cities at fine spatial resolution was developed and tested. First, a compact, mobile system was built using an infrared gas analyzer combined with open-source hardware to control, georeference, and log measurements of CO2 mixing ratios on vehicles (car, bicycles). Second, two measurement campaigns, one in summer and one in winter (heating season) were carried out. Five mobile sensors were deployed within a 1 × 12. 7 km transect across the city of Vancouver, BC, Canada. The sensors were operated for 3.5 h on pre-defined routes to map CO2 mixing ratios at street level, which were then averaged to 100 × 100 m grid cells. The averaged CO2 mixing ratios of all grids in the study area were 417.9 ppm in summer and 442.5 ppm in winter. In both campaigns, mixing ratios were highest in the grid cells of the downtown core and along arterial roads and lowest in parks and well vegetated residential areas. Third, an aerodynamic resistance approach to calculating emissions was used to derive CO2 emissions from the gridded CO2 mixing ratio measurements in conjunction with mixing ratios and fluxes collected from a 28 m tall eddy-covariance tower located within the study area. These measured emissions showed a range of -12 to 226 CO2 ha-1 h-1 in summer and of -14 to 163 kg CO2 ha-1 h-1 in winter, with an average of 35.1 kg CO2 ha-1 h-1 (summer) and 25.9 kg CO2 ha-1 h-1 (winter). Fourth, an independent emissions inventory was developed for the study area using buildings energy simulations from a previous study and routinely available traffic counts. The emissions inventory for the same area averaged to 22.06 kg CO2 ha-1 h-1 (summer) and 28.76 kg CO2 ha-1 h-1 (winter) and was used to compare against the measured emissions from the mobile sensor network. The comparison on a grid-by-grid basis showed linearity between CO2 mixing ratios and the emissions inventory (R2 = 0. 53 in summer and R

  1. Observing the Context of Use of a Media Player on Mobile Phones using Embedded and Virtual Sensors

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Petersen, Michael Kai; Handler, Rasmus

    2010-01-01

    In this paper, we discuss how contextual data acquired from multiple embedded mobile phone sensors can provide insights into the mobile user experience. We report from two field studies where contextual information were obtained from N=21 mobile phone users in a 2–8 week duration, to derive...... information about participant context. In the second study our focus was on observing mobile interaction with a media player application over time and we discuss how the captured contextual data can lead to a better understanding of the context in which mobile applications and devices are used. We argue...... that this information can provide valuable insights to the design of mobile applications and user interfaces....

  2. Motion-sensor fusion-based gesture recognition and its VLSI architecture design for mobile devices

    Science.gov (United States)

    Zhu, Wenping; Liu, Leibo; Yin, Shouyi; Hu, Siqi; Tang, Eugene Y.; Wei, Shaojun

    2014-05-01

    With the rapid proliferation of smartphones and tablets, various embedded sensors are incorporated into these platforms to enable multimodal human-computer interfaces. Gesture recognition, as an intuitive interaction approach, has been extensively explored in the mobile computing community. However, most gesture recognition implementations by now are all user-dependent and only rely on accelerometer. In order to achieve competitive accuracy, users are required to hold the devices in predefined manner during the operation. In this paper, a high-accuracy human gesture recognition system is proposed based on multiple motion sensor fusion. Furthermore, to reduce the energy overhead resulted from frequent sensor sampling and data processing, a high energy-efficient VLSI architecture implemented on a Xilinx Virtex-5 FPGA board is also proposed. Compared with the pure software implementation, approximately 45 times speed-up is achieved while operating at 20 MHz. The experiments show that the average accuracy for 10 gestures achieves 93.98% for user-independent case and 96.14% for user-dependent case when subjects hold the device randomly during completing the specified gestures. Although a few percent lower than the conventional best result, it still provides competitive accuracy acceptable for practical usage. Most importantly, the proposed system allows users to hold the device randomly during operating the predefined gestures, which substantially enhances the user experience.

  3. Adaptive Energy-Efficient Target Detection Based on Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tengyue Zou

    2017-05-01

    Full Text Available Target detection is a widely used application for area surveillance, elder care, and fire alarms; its purpose is to find a particular object or event in a region of interest. Usually, fixed observing stations or static sensor nodes are arranged uniformly in the field. However, each part of the field has a different probability of being intruded upon; if an object suddenly enters an area with few guardian devices, a loss of detection will occur, and the stations in the safe areas will waste their energy for a long time without any discovery. Thus, mobile wireless sensor networks may benefit from adaptation and pertinence in detection. Sensor nodes equipped with wheels are able to move towards the risk area via an adaptive learning procedure based on Bayesian networks. Furthermore, a clustering algorithm based on k-means++ and an energy control mechanism is used to reduce the energy consumption of nodes. The extended Kalman filter and a voting data fusion method are employed to raise the localization accuracy of the target. The simulation and experimental results indicate that this new system with adaptive energy-efficient methods is able to achieve better performance than the traditional ones.

  4. An FPGA-Based Omnidirectional Vision Sensor for Motion Detection on Mobile Robots

    Directory of Open Access Journals (Sweden)

    Jones Y. Mori

    2012-01-01

    Full Text Available This work presents the development of an integrated hardware/software sensor system for moving object detection and distance calculation, based on background subtraction algorithm. The sensor comprises a catadioptric system composed by a camera and a convex mirror that reflects the environment to the camera from all directions, obtaining a panoramic view. The sensor is used as an omnidirectional vision system, allowing for localization and navigation tasks of mobile robots. Several image processing operations such as filtering, segmentation and morphology have been included in the processing architecture. For achieving distance measurement, an algorithm to determine the center of mass of a detected object was implemented. The overall architecture has been mapped onto a commercial low-cost FPGA device, using a hardware/software co-design approach, which comprises a Nios II embedded microprocessor and specific image processing blocks, which have been implemented in hardware. The background subtraction algorithm was also used to calibrate the system, allowing for accurate results. Synthesis results show that the system can achieve a throughput of 26.6 processed frames per second and the performance analysis pointed out that the overall architecture achieves a speedup factor of 13.78 in comparison with a PC-based solution running on the real-time operating system xPC Target.

  5. Adaptive Energy-Efficient Target Detection Based on Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Zou, Tengyue; Li, Zhenjia; Li, Shuyuan; Lin, Shouying

    2017-05-04

    Target detection is a widely used application for area surveillance, elder care, and fire alarms; its purpose is to find a particular object or event in a region of interest. Usually, fixed observing stations or static sensor nodes are arranged uniformly in the field. However, each part of the field has a different probability of being intruded upon; if an object suddenly enters an area with few guardian devices, a loss of detection will occur, and the stations in the safe areas will waste their energy for a long time without any discovery. Thus, mobile wireless sensor networks may benefit from adaptation and pertinence in detection. Sensor nodes equipped with wheels are able to move towards the risk area via an adaptive learning procedure based on Bayesian networks. Furthermore, a clustering algorithm based on k -means++ and an energy control mechanism is used to reduce the energy consumption of nodes. The extended Kalman filter and a voting data fusion method are employed to raise the localization accuracy of the target. The simulation and experimental results indicate that this new system with adaptive energy-efficient methods is able to achieve better performance than the traditional ones.

  6. Data transport and management in P2P Data Management in Mobile Wireless Sensor Network

    International Nuclear Information System (INIS)

    Sahar, S.; Shaikh, F.K.

    2013-01-01

    The rapid growth in wireless technologies has made wireless communication an important source for transporting data across different domains. In the same way, there are possibilities of many potential applications that can be deployed using WSNs (Wireless Sensor Networks). However, very limited applications are deployed in real life due to the uncertainty and dynamics of the environment and scare resources. This makes data management in WSN a challenging area to find an approach that suits its characteristics. Currently, the trend is to find efficient data management schemes using evolving technologies, i.e. P2P (Peer-to-Peer) systems. Many P2P approaches have been applied in WSNs to carry out the data management due to similarities between WSN and P2P. With the similarities, there are differences too that makes P2P protocols inefficient in WSNs. Furthermore, to increase the efficiency and to exploit the delay tolerant nature of WSNs, where ever possible, the mobile WSNs are gaining importance. Thus, creating a three dimensional problem space to consider, i.e. mobility, WSNs and P2P. In this paper, an efficient algorithm is proposed for data management using P2P techniques for mobile WSNs. The real world implementation and deployment of proposed algorithm is also presented. (author)

  7. Beyond where to how: a machine learning approach for sensing mobility contexts using smartphone sensors.

    Science.gov (United States)

    Guinness, Robert E

    2015-04-28

    This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU) time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in smartphones, both in terms of performance and computational complexity.

  8. Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility

    Directory of Open Access Journals (Sweden)

    Klaus Moessner

    2013-10-01

    Full Text Available This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines.

  9. Adaptive multi-node multiple input and multiple output (MIMO) transmission for mobile wireless multimedia sensor networks.

    Science.gov (United States)

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-10-02

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase.

  10. Nor-ursodeoxycholic acid reverses hepatocyte-specific nemo-dependent steatohepatitis.

    Science.gov (United States)

    Beraza, Naiara; Ofner-Ziegenfuss, Lisa; Ehedego, Haksier; Boekschoten, Mark; Bischoff, Stephan C; Mueller, Michael; Trauner, Michael; Trautwein, Christian

    2011-03-01

    Hepatocyte-specific NEMO/NF-κB deleted mice (NEMO(Δhepa)) develop spontaneous non-alcoholic steatohepatitis (NASH). Free fatty acids and bile acids promote DR5 expression. TRAIL/NK cell-mediated activation of TRAIL-R2/DR5 plays an important role during acute injury in NEMO(Δhepa) mice. To inhibit the progression of NASH in the absence of hepatocyte-NEMO/NF-kB signaling. NEMOf/f and NEMO(Δhepa) mice were fed with a low-fat diet, and with two anticholestatic diets; UDCA and NorUDCA. The impact of these treatments on the progression of NASH was evaluated. We show that high expression of DR5 in livers from NEMO(Δhepa) mice is accompanied by an abundant presence of bile acids (BAs), misregulation of BA transporters and significant alteration of lipid metabolism-related genes. Additionally, mice lacking NEMO in hepatocytes spontaneously showed ductular response at young age. Unexpectedly, feeding of NEMO(Δhepa) mice with low-fat diet failed to improve chronic liver injury. Conversely, anti-cholestatic treatment with nor-ursodeoxycholic acid (NorUDCA), but not with ursodeoxycholic acid (UDCA), led to a significant attenuation of liver damage in NEMO(Δhepa) mice. The strong therapeutic effect of NorUDCA relied on a significant downregulation of LXR-dependent lipogenesis and the normalisation of BA metabolism through mechanisms involving cross-talk between Cyp7a1 and SHP. This was associated with the significant improvement of liver histology, NEMO(Δhepa)/NorUDCA-treated mice showed lower apoptosis and reduced CyclinD1 expression, indicating attenuation of the compensatory proliferative response to hepatocellular damage. Finally, fibrosis and ductular reaction markers were significantly reduced in NorUDCA-treated NEMO(Δhepa) mice. Overall, our work demonstrates the contribution of bile acids metabolism to the progression of NASH in the absence of hepatocyte-NF-kB through mechanisms involving DR5-apoptosis, inflammation and fibrosis. Our work suggests a potential

  11. Online variational Bayesian filtering-based mobile target tracking in wireless sensor networks.

    Science.gov (United States)

    Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei

    2014-11-11

    The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer-Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying.

  12. GeNemo: a search engine for web-based functional genomic data.

    Science.gov (United States)

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-07-08

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Fast decision algorithms in low-power embedded processors for quality-of-service based connectivity of mobile sensors in heterogeneous wireless sensor networks.

    Science.gov (United States)

    Jaraíz-Simón, María D; Gómez-Pulido, Juan A; Vega-Rodríguez, Miguel A; Sánchez-Pérez, Juan M

    2012-01-01

    When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration.

  14. Adaptive Opportunistic Cooperative Control Mechanism Based on Combination Forecasting and Multilevel Sensing Technology of Sensors for Mobile Internet of Things

    Directory of Open Access Journals (Sweden)

    Yong Jin

    2014-01-01

    Full Text Available In mobile Internet of Things, there are many challenges, including sensing technology of sensors, how and when to join cooperative transmission, and how to select the cooperative sensors. To address these problems, we studied the combination forecasting based on the multilevel sensing technology of sensors, building upon which we proposed the adaptive opportunistic cooperative control mechanism based on the threshold values such as activity probability, distance, transmitting power, and number of relay sensors, in consideration of signal to noise ratio and outage probability. More importantly, the relay sensors would do self-test real time in order to judge whether to join the cooperative transmission, for maintaining the optimal cooperative transmission state with high performance. The mathematical analyses results show that the proposed adaptive opportunistic cooperative control approach could perform better in terms of throughput ratio, packet error rate and delay, and energy efficiency, compared with the direct transmission and opportunistic cooperative approaches.

  15. A novel method of range measuring for a mobile robot based on multi-sensor information fusion

    International Nuclear Information System (INIS)

    Zhang Yi; Luo Yuan; Wang Jifeng

    2005-01-01

    The traditional measuring range for a mobile robot is based on a sonar sensor. Because of different working environments, it is very difficult to obtain high precision by using just one single method of range measurement. So, a hybrid sonar sensor and laser scanner method is put forward to overcome these shortcomings. A novel fusion model is proposed based on basic theory and a method of information fusion. An optimal measurement result has been obtained with information fusion from different sensors. After large numbers of experiments and performance analysis, a conclusion can be drawn that the laser scanner and sonar sensor method with multi-sensor information fusion have a higher precision than the single method of sonar. It can also be the same with different environments

  16. FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Taegwon Jeong

    2011-05-01

    Full Text Available Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP, the Weighted-based Adaptive Clustering Algorithm (WACA, and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM. The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  17. FRCA: a fuzzy relevance-based cluster head selection algorithm for wireless mobile ad-hoc sensor networks.

    Science.gov (United States)

    Lee, Chongdeuk; Jeong, Taegwon

    2011-01-01

    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  18. A Performance Evaluation Model for Mobile Ad Hoc Networks and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Heng LUO

    2014-03-01

    Full Text Available Potential applications in areas such as military sites and disaster relief fields that are characterized by absence of prefixed infrastructure justify the development of mobile ad hoc networks (MANETs and wireless sensor networks (WSNs. However, unfavorable wireless links and dynamic topology are still challenging, leading to the proposal of a collection of routing protocols for MANETs and WSNs. Nevertheless the performance of algorithms may vary with deployment scenario due to the application dependent philosophy behind algorithms. In this paper, the performance evaluation problem for MANETs and WSNs is investigated and a novel performance ranking model, termed AHP-SAW, is proposed. For simplicity but without loss of generality, the performance of two routing protocols DSDV and DSR are studies based on which ranking results are provided. Extensive simulations show that an overall 37.2 %, at most, gain may be achieved based on the AHP-SAW model.

  19. SENSOR-TOPOLOGY BASED SIMPLICIAL COMPLEX RECONSTRUCTION FROM MOBILE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    S. Guinard

    2018-05-01

    Full Text Available We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles from 3D point clouds from Mobile Laser Scanning (MLS. Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.

  20. Sensor-Topology Based Simplicial Complex Reconstruction from Mobile Laser Scanning

    Science.gov (United States)

    Guinard, S.; Vallet, B.

    2018-05-01

    We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D point clouds from Mobile Laser Scanning (MLS). Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.

  1. Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations

    KAUST Repository

    Canepa, Edward S.; Claudel, Christian G.

    2017-01-01

    Nowadays, traffic management has become a challenge for urban areas, which are covering larger geographic spaces and facing the generation of different kinds of traffic data. This article presents a robust traffic estimation framework for highways modeled by a system of Lighthill Whitham Richards equations that is able to assimilate different sensor data available. We first present an equivalent formulation of the problem using a Hamilton–Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton–Jacobi equation are linear ones. We then pose the problem of estimating the traffic density given incomplete and inaccurate traffic data as a Mixed Integer Program. We then extend the density estimation framework to highway networks with any available data constraint and modeling junctions. Finally, we present a travel estimation application for a small network using real traffic measurements obtained obtained during Mobile Century traffic experiment, and comparing the results with ground truth data.

  2. Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations

    KAUST Repository

    Canepa, Edward S.

    2017-06-19

    Nowadays, traffic management has become a challenge for urban areas, which are covering larger geographic spaces and facing the generation of different kinds of traffic data. This article presents a robust traffic estimation framework for highways modeled by a system of Lighthill Whitham Richards equations that is able to assimilate different sensor data available. We first present an equivalent formulation of the problem using a Hamilton–Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton–Jacobi equation are linear ones. We then pose the problem of estimating the traffic density given incomplete and inaccurate traffic data as a Mixed Integer Program. We then extend the density estimation framework to highway networks with any available data constraint and modeling junctions. Finally, we present a travel estimation application for a small network using real traffic measurements obtained obtained during Mobile Century traffic experiment, and comparing the results with ground truth data.

  3. Formal reconstruction of attack scenarios in mobile ad hoc and sensor networks

    Directory of Open Access Journals (Sweden)

    Rekhis Slim

    2011-01-01

    Full Text Available Abstract Several techniques of theoretical digital investigation are presented in the literature but most of them are unsuitable to cope with attacks in wireless networks, especially in Mobile Ad hoc and Sensor Networks (MASNets. In this article, we propose a formal approach for digital investigation of security attacks in wireless networks. We provide a model for describing attack scenarios in a wireless environment, and system and network evidence generated consequently. The use of formal approaches is motivated by the need to avoid ad hoc generation of results that impedes the accuracy of analysis and integrity of investigation. We develop an inference system that integrates the two types of evidence, handles incompleteness and duplication of information in them, and allows possible and provable actions and attack scenarios to be generated. To illustrate the proposal, we consider a case study dealing with the investigation of a remote buffer overflow attack.

  4. Guaranteed cost control of mobile sensor networks with Markov switching topologies.

    Science.gov (United States)

    Zhao, Yuan; Guo, Ge; Ding, Lei

    2015-09-01

    This paper investigates the consensus seeking problem of mobile sensor networks (MSNs) with random switching topologies. The network communication topologies are composed of a set of directed graphs (or digraph) with a spanning tree. The switching of topologies is governed by a Markov chain. The consensus seeking problem is addressed by introducing a global topology-aware linear quadratic (LQ) cost as the performance measure. By state transformation, the consensus problem is transformed to the stabilization of a Markovian jump system with guaranteed cost. A sufficient condition for global mean-square consensus is derived in the context of stochastic stability analysis of Markovian jump systems. A computational algorithm is given to synchronously calculate both the sub-optimal consensus controller gains and the sub-minimum upper bound of the cost. The effectiveness of the proposed design method is illustrated by three numerical examples. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco

    2016-07-07

    In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles.

  6. Disulfide-mediated stabilization of the IκB kinase binding domain of NF-κB essential modulator (NEMO).

    Science.gov (United States)

    Zhou, Li; Yeo, Alan T; Ballarano, Carmine; Weber, Urs; Allen, Karen N; Gilmore, Thomas D; Whitty, Adrian

    2014-12-23

    Human NEMO (NF-κB essential modulator) is a 419 residue scaffolding protein that, together with catalytic subunits IKKα and IKKβ, forms the IκB kinase (IKK) complex, a key regulator of NF-κB pathway signaling. NEMO is an elongated homodimer comprising mostly α-helix. It has been shown that a NEMO fragment spanning residues 44-111, which contains the IKKα/β binding site, is structurally disordered in the absence of bound IKKβ. Herein we show that enforcing dimerization of NEMO1-120 or NEMO44-111 constructs through introduction of one or two interchain disulfide bonds, through oxidation of the native Cys54 residue and/or at position 107 through a Leu107Cys mutation, induces a stable α-helical coiled-coil structure that is preorganized to bind IKKβ with high affinity. Chemical and thermal denaturation studies showed that, in the context of a covalent dimer, the ordered structure was stabilized relative to the denatured state by up to 3 kcal/mol. A full-length NEMO-L107C protein formed covalent dimers upon treatment of mammalian cells with H2O2. Furthermore, NEMO-L107C bound endogenous IKKβ in A293T cells, reconstituted TNF-induced NF-κB signaling in NEMO-deficient cells, and interacted with TRAF6. Our results indicate that the IKKβ binding domain of NEMO possesses an ordered structure in the unbound state, provided that it is constrained within a dimer as is the case in the constitutively dimeric full-length NEMO protein. The stability of the NEMO coiled coil is maintained by strong interhelix interactions in the region centered on residue 54. The disulfide-linked constructs we describe herein may be useful for crystallization of NEMO's IKKβ binding domain in the absence of bound IKKβ, thereby facilitating the structural characterization of small-molecule inhibitors.

  7. An Energy-Efficient Secure Routing and Key Management Scheme for Mobile Sinks in Wireless Sensor Networks Using Deployment Knowledge

    Directory of Open Access Journals (Sweden)

    Le Xuan Hung

    2008-12-01

    Full Text Available For many sensor network applications such as military or homeland security, it is essential for users (sinks to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODEplus. It is a significant extension of our previous study in five aspects: (1 Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2 The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3 The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4 Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5 No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODEplus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully.

  8. Escape and evade control policies for ensuring the physical security of nonholonomic, ground-based, unattended mobile sensor nodes

    Science.gov (United States)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-06-01

    In order to realize the wide-scale deployment of high-endurance, unattended mobile sensing technologies, it is vital to ensure the self-preservation of the sensing assets. Deployed mobile sensor nodes face a variety of physical security threats including theft, vandalism and physical damage. Unattended mobile sensor nodes must be able to respond to these threats with control policies that facilitate escape and evasion to a low-risk state. In this work the Precision Immobilization Technique (PIT) problem has been considered. The PIT maneuver is a technique that a pursuing, car-like vehicle can use to force a fleeing vehicle to abruptly turn ninety degrees to the direction of travel. The abrupt change in direction generally causes the fleeing driver to lose control and stop. The PIT maneuver was originally developed by law enforcement to end vehicular pursuits in a manner that minimizes damage to the persons and property involved. It is easy to imagine that unattended autonomous convoys could be targets of this type of action by adversarial agents. This effort focused on developing control policies unattended mobile sensor nodes could employ to escape, evade and recover from PIT-maneuver-like attacks. The development of these control policies involved both simulation as well as small-scale experimental testing. The goal of this work is to be a step toward ensuring the physical security of unattended sensor node assets.

  9. Energy-Aware Computation Offloading of IoT Sensors in Cloudlet-Based Mobile Edge Computing.

    Science.gov (United States)

    Ma, Xiao; Lin, Chuang; Zhang, Han; Liu, Jianwei

    2018-06-15

    Mobile edge computing is proposed as a promising computing paradigm to relieve the excessive burden of data centers and mobile networks, which is induced by the rapid growth of Internet of Things (IoT). This work introduces the cloud-assisted multi-cloudlet framework to provision scalable services in cloudlet-based mobile edge computing. Due to the constrained computation resources of cloudlets and limited communication resources of wireless access points (APs), IoT sensors with identical computation offloading decisions interact with each other. To optimize the processing delay and energy consumption of computation tasks, theoretic analysis of the computation offloading decision problem of IoT sensors is presented in this paper. In more detail, the computation offloading decision problem of IoT sensors is formulated as a computation offloading game and the condition of Nash equilibrium is derived by introducing the tool of a potential game. By exploiting the finite improvement property of the game, the Computation Offloading Decision (COD) algorithm is designed to provide decentralized computation offloading strategies for IoT sensors. Simulation results demonstrate that the COD algorithm can significantly reduce the system cost compared with the random-selection algorithm and the cloud-first algorithm. Furthermore, the COD algorithm can scale well with increasing IoT sensors.

  10. A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qiuhua Wang

    2017-02-01

    Full Text Available Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.

  11. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    Science.gov (United States)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  12. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform.

    Science.gov (United States)

    Mehta, Daryush D; Zañartu, Matías; Feng, Shengran W; Cheyne, Harold A; Hillman, Robert E

    2012-11-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior, referred to generically as vocal hyperfunction. An ongoing goal in clinical voice assessment is the development and use of noninvasively derived measures to quantify and track the daily status of vocal hyperfunction so that the diagnosis and treatment of such behaviorally based voice disorders can be improved. This paper reports on the development of a new, versatile, and cost-effective clinical tool for mobile voice monitoring that acquires the high-bandwidth signal from an accelerometer sensor placed on the neck skin above the collarbone. Using a smartphone as the data acquisition platform, the prototype device provides a user-friendly interface for voice use monitoring, daily sensor calibration, and periodic alert capabilities. Pilot data are reported from three vocally normal speakers and three subjects with voice disorders to demonstrate the potential of the device to yield standard measures of fundamental frequency and sound pressure level and model-based glottal airflow properties. The smartphone-based platform enables future clinical studies for the identification of the best set of measures for differentiating between normal and hyperfunctional patterns of voice use.

  13. A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Wang, Qiuhua

    2017-02-04

    Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.

  14. A Study of Mobile Robot Control using EEG Emotiv Epoch Sensor

    Directory of Open Access Journals (Sweden)

    Victorio Yasin Timothius

    2018-01-01

    Full Text Available The study was using an EEG Emotiv Epoc+ sensor to recognize brain activity for controlling a mobile robot's movement. The study used Emotiv Control Panel software for EEG command identification. The commands will be interfaced inside Mind Your OSCs software and processing software which processed inside an Arduino Controller. The output of the Arduino is a movement command (ie. forward, backward, turn left, and turn right. The training methods of the system composed of three sets of thinking mode. First, thinking with doing facial expressions. Second, thinking with visual help. Third, thinking mentally without any help. In the first set, there are two configurations thinking with facial expression help as command of the mobile robot. Final results of the system are the second facial expressions configuration as the best facial expressions method with success rate 88.33 %. The second facial expression configuration has overall response time 1.60175 s faster than the first facial expressions configuration. In these two methods have dominant signals on the frontal lobe. The second facial expressions method have overall respond time 6.12 and 9.53 s faster than thinking with visual, and thinking without help respectively.

  15. Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network.

    Science.gov (United States)

    Ahmed, Farwa; Wadud, Zahid; Javaid, Nadeem; Alrajeh, Nabil; Alabed, Mohamad Souheil; Qasim, Umar

    2018-04-02

    The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs). The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio.

  16. Toward a Nationwide Mobile-Based Public Healthcare Service System with Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chien-wen Shen

    2016-01-01

    Full Text Available This paper describes the development of a nationwide public healthcare service system with the integration of cloud technology, wireless sensor networks, and mobile technology to provide citizens with convenient and professional healthcare services. The basic framework of the system includes the architectures for the user end of wireless physiological examinations, for the regional healthcare cloud, and for national public healthcare service system. Citizens with chronic conditions or elderly people who are living alone can use the wireless physiological sensing devices to keep track of their health conditions and get warning if the system detects abnormal signals. Through mobile devices, citizens are able to get real-time health advice, prompt warning, health information, feedback, personalized support, and intervention ubiquitously. With the long-term tracking data for physiological sensing, reliable prediction models for epidemic diseases and chronic diseases can be developed for the government to respond to and control diseases immediately. Besides, such a nationwide approach enables government to have a holistic understanding of the public health information in real time, which is helpful to establish effective policies or strategies to prevent epidemic diseases or chronic diseases.

  17. Sparse Localization with a Mobile Beacon Based on LU Decomposition in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunhui Zhao

    2015-09-01

    Full Text Available Node localization is the core in wireless sensor network. It can be solved by powerful beacons, which are equipped with global positioning system devices to know their location information. In this article, we present a novel sparse localization approach with a mobile beacon based on LU decomposition. Our scheme firstly translates node localization problem into a 1-sparse vector recovery problem by establishing sparse localization model. Then, LU decomposition pre-processing is adopted to solve the problem that measurement matrix does not meet the re¬stricted isometry property. Later, the 1-sparse vector can be exactly recovered by compressive sensing. Finally, as the 1-sparse vector is approximate sparse, weighted Cen¬troid scheme is introduced to accurately locate the node. Simulation and analysis show that our scheme has better localization performance and lower requirement for the mobile beacon than MAP+GC, MAP-M, and MAP-MN schemes. In addition, the obstacles and DOI have little effect on the novel scheme, and it has great localization performance under low SNR, thus, the scheme proposed is robust.

  18. Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Farwa Ahmed

    2018-04-01

    Full Text Available The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs. The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio.

  19. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-01-01

    Full Text Available In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  20. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei

    2016-01-29

    In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  1. Towards the Robotic “Avatar”: An Extensive Survey of the Cooperation between and within Networked Mobile Sensors

    Directory of Open Access Journals (Sweden)

    Aydan M. Erkmen

    2010-09-01

    Full Text Available Cooperation between networked mobile sensors, wearable and sycophant sensor networks with parasitically sticking agents, and also having human beings involved in the loop is the “Avatarization” within the robotic research community, where all networks are connected and where you can connect/disconnect at any time to acquire data from a vast unstructured world. This paper extensively surveys the networked robotic foundations of this robotic biological “Avatar” that awaits us in the future. Cooperation between networked mobile sensors as well as cooperation of nodes within a network are becoming more robust, fault tolerant and enable adaptation of the networks to changing environment conditions. In this paper, we survey and comparatively discuss the current state of networked robotics via their critical application areas and their design characteristics. We conclude by discussing future challenges.

  2. Bayesian prediction and adaptive sampling algorithms for mobile sensor networks online environmental field reconstruction in space and time

    CERN Document Server

    Xu, Yunfei; Dass, Sarat; Maiti, Tapabrata

    2016-01-01

    This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive di...

  3. Approach for the Development of a Framework for the Identification of Activities of Daily Living Using Sensors in Mobile Devices

    Science.gov (United States)

    Pombo, Nuno

    2018-01-01

    Sensors available on mobile devices allow the automatic identification of Activities of Daily Living (ADL). This paper describes an approach for the creation of a framework for the identification of ADL, taking into account several concepts, including data acquisition, data processing, data fusion, and pattern recognition. These concepts can be mapped onto different modules of the framework. The proposed framework should perform the identification of ADL without Internet connection, performing these tasks locally on the mobile device, taking in account the hardware and software limitations of these devices. The main purpose of this paper is to present a new approach for the creation of a framework for the recognition of ADL, analyzing the allowed sensors available in the mobile devices, and the existing methods available in the literature. PMID:29466316

  4. Reprint of: Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F., E-mail: c.hogan@latrobe.edu.au

    2013-11-25

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing.

  5. Reprint of: Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    International Nuclear Information System (INIS)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F.

    2013-01-01

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing

  6. Approach for the Development of a Framework for the Identification of Activities of Daily Living Using Sensors in Mobile Devices.

    Science.gov (United States)

    Pires, Ivan Miguel; Garcia, Nuno M; Pombo, Nuno; Flórez-Revuelta, Francisco; Spinsante, Susanna

    2018-02-21

    Sensors available on mobile devices allow the automatic identification of Activities of Daily Living (ADL). This paper describes an approach for the creation of a framework for the identification of ADL, taking into account several concepts, including data acquisition, data processing, data fusion, and pattern recognition. These concepts can be mapped onto different modules of the framework. The proposed framework should perform the identification of ADL without Internet connection, performing these tasks locally on the mobile device, taking in account the hardware and software limitations of these devices. The main purpose of this paper is to present a new approach for the creation of a framework for the recognition of ADL, analyzing the allowed sensors available in the mobile devices, and the existing methods available in the literature.

  7. Beyond Where to How: A Machine Learning Approach for Sensing Mobility Contexts Using Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Robert E. Guinness

    2015-04-01

    Full Text Available This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers, geospatial information (points of interest, such as bus stops and train stations and machine learning (ML to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user’s mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (<5 s. We investigated a wide range of supervised learning techniques for classification, including decision trees (DT, support vector machines (SVM, naive Bayes classifiers (NB, Bayesian networks (BN, logistic regression (LR, artificial neural networks (ANN and several instance-based classifiers (KStar, LWLand IBk. Applying ten-fold cross-validation, the best performers in terms of correct classification rate (i.e., recall were DT (96.5%, BN (90.9%, LWL (95.5% and KStar (95.6%. In particular, the DT-algorithm RandomForest exhibited the best overall performance. After a feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB required about five-times the amount of CPU time as the fastest classifier (SVM. The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in

  8. An energy-efficient and secure hybrid algorithm for wireless sensor networks using a mobile data collector

    Science.gov (United States)

    Dayananda, Karanam Ravichandran; Straub, Jeremy

    2017-05-01

    This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.

  9. A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions

    Directory of Open Access Journals (Sweden)

    Nabil Sabor

    2017-01-01

    Full Text Available Introducing mobility to Wireless Sensor Networks (WSNs puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs. Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

  10. Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.

    Science.gov (United States)

    Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob

    2017-11-01

    Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. A State-of-the-Art Review on Mapping and Localization of Mobile Robots Using Omnidirectional Vision Sensors

    Directory of Open Access Journals (Sweden)

    L. Payá

    2017-01-01

    Full Text Available Nowadays, the field of mobile robotics is experiencing a quick evolution, and a variety of autonomous vehicles is available to solve different tasks. The advances in computer vision have led to a substantial increase in the use of cameras as the main sensors in mobile robots. They can be used as the only source of information or in combination with other sensors such as odometry or laser. Among vision systems, omnidirectional sensors stand out due to the richness of the information they provide the robot with, and an increasing number of works about them have been published over the last few years, leading to a wide variety of frameworks. In this review, some of the most important works are analysed. One of the key problems the scientific community is addressing currently is the improvement of the autonomy of mobile robots. To this end, building robust models of the environment and solving the localization and navigation problems are three important abilities that any mobile robot must have. Taking it into account, the review concentrates on these problems; how researchers have addressed them by means of omnidirectional vision; the main frameworks they have proposed; and how they have evolved in recent years.

  12. NEMO 2 - Be aware: Wind and solar are coming

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Finnish research and development is well placed with respect to new renewable energy technologies in that there exists considerable expertise in specialized areas. For example, over 20 % of all power transmission equipment and generators used in wind energy systems world-wide are manufactured in Finland, while advanced instruments for monitoring wind speed are also highly regarded internationally. Moreover, unique wind technology for complex windy and freezing conditions have been developed. Finland has a 10 % share in the European photovoltaic market, and has competitive advantages in photovoltaic systems and applications, thin film solar cells, and automated electronic controlling systems. A unique solar energy storage system based on hydrogen technology demonstrates skills on overcoming the summer-winter syndrome of large-scale solar energy utilization. The annual turnover of the Finnish industries on solar and wind energy has increased from 5 million ECU in 1988 to almost 50 million ECU in 1996. The national R and D and D from 1988 onwards has played an important role in this context. Most of the research and development into new and renewable energy technologies in Finland has been carried out through the Advanced New Energy Systems and Technologies Research Programme (NEMO2) of Tekes

  13. Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO.

    Science.gov (United States)

    Zhu, Xinyu; Fang, Liurong; Wang, Dang; Yang, Yuting; Chen, Jiyao; Ye, Xu; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-02-01

    Porcine deltacoronavirus (PDCoV) causes acute enteric disease and mortality in seronegative neonatal piglets. Previously we have demonstrated that PDCoV infection suppresses the production of interferon-beta (IFN-β), while the detailed mechanisms are poorly understood. Here, we demonstrate that nonstructural protein 5 (nsp5) of PDCoV, the 3C-like protease, significantly inhibits Sendai virus (SEV)-induced IFN-β production by targeting the NF-κB essential modulator (NEMO), confirmed by the diminished function of NEMO cleaved by PDCoV. The PDCoV nsp5 cleavage site in the NEMO protein was identified as glutamine 231, and was identical to the porcine epidemic diarrhea virus nsp5 cleavage site, revealing the likelihood of a common target in NEMO for coronaviruses. Furthermore, this cleavage impaired the ability of NEMO to activate the IFN response and downstream signaling. Taken together, our findings reveal PDCoV nsp5 to be a newly identified IFN antagonist and enhance the understanding of immune evasion by deltacoronaviruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Nemo-3 experiment assets and limitations. Perspective for the double β physics

    International Nuclear Information System (INIS)

    Augier, C.

    2005-06-01

    After an introduction to this report in Chapter 1, I present a status of our knowledge in neutrino physics in Chapter 2. Then, I detail in Chapter 3 all the choices made for the design and realisation of the NEMO 3 detector for the research of double beta decay process. Performance of the detector is presented, concerning both the capacity of the detector to identify the backgrounds and the ability to study all the ββ process. I also explain the methods chosen by the NEMO collaboration to reduce the radon activity inside the detector and to make this background negligible today. This chapter, which is written in English, is the 'Technical report of the NEMO 3 detector' and forms an independent report for the NEMO collaborators. I finish this report in Chapter 4 with a ten years prospect for experimental projects in physics, with both the SuperNEMO project and its experiment program, and also by comparing the most interesting experiments, CUORE and GERDA, showing as an example the effect of nuclear matrix elements on the neutrino effective mass measurement. (author)

  15. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor.

    Science.gov (United States)

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-04-05

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.

  16. Cooperative Transmission in Mobile Wireless Sensor Networks with Multiple Carrier Frequency Offsets: A Double-Differential Approach

    Directory of Open Access Journals (Sweden)

    Kun Zhao

    2014-01-01

    Full Text Available As a result of the rapidly increasing mobility of sensor nodes, mobile wireless sensor networks (MWSNs would be subject to multiple carrier frequency offsets (MCFOs, which result in time-varying channels and drastically degrade the network performance. To enhance the performance of such MWSNs, we propose a relay selection (RS based double-differential (DD cooperative transmission scheme, termed RSDDCT, in which the best relay sensor node is selected to forward the source sensor node’s signals to the destination sensor node with the detect-and-forward (DetF protocol. Assuming a Rayleigh fading environment, first, exact closed-form expressions for the outage probability and average bit error rate (BER of the RSDDCT scheme are derived. Then, simple and informative asymptotic outage probability and average BER expressions at the large signal-to-noise ratio (SNR regime are presented, which reveal that the RSDDCT scheme can achieve full diversity. Furthermore, the optimum power allocation strategy in terms of minimizing the average BER is investigated, and simple analytical solutions are obtained. Simulation results demonstrate that the proposed RSDDCT scheme can achieve excellent performance over fading channels in the presence of unknown random MCFOs. It is also shown that the proposed optimum power allocation strategy offers substantial average BER performance improvement over the equal power allocation strategy.

  17. Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD.

    Science.gov (United States)

    Fletcher, Richard Ribón; Tam, Sharon; Omojola, Olufemi; Redemske, Richard; Kwan, Joyce

    2011-01-01

    We present a wearable sensor platform designed for monitoring and studying autonomic nervous system (ANS) activity for the purpose of mental health treatment and interventions. The mobile sensor system consists of a sensor band worn on the ankle that continuously monitors electrodermal activity (EDA), 3-axis acceleration, and temperature. A custom-designed ECG heart monitor worn on the chest is also used as an optional part of the system. The EDA signal from the ankle bands provides a measure sympathetic nervous system activity and used to detect arousal events. The optional ECG data can be used to improve the sensor classification algorithm and provide a measure of emotional "valence." Both types of sensor bands contain a Bluetooth radio that enables communication with the patient's mobile phone. When a specific arousal event is detected, the phone automatically presents therapeutic and empathetic messages to the patient in the tradition of Cognitive Behavioral Therapy (CBT). As an example of clinical use, we describe how the system is currently being used in an ongoing study for patients with drug-addiction and post-traumatic stress disorder (PTSD).

  18. Validation and User Evaluation of a Sensor-Based Method for Detecting Mobility-Related Activities in Older Adults.

    Directory of Open Access Journals (Sweden)

    Hilde A E Geraedts

    Full Text Available Regular physical activity is essential for older adults to stay healthy and independent. However, daily physical activity is generally low among older adults and mainly consists of activities such as standing and shuffling around indoors. Accurate measurement of this low-energy expenditure daily physical activity is crucial for stimulation of activity. The objective of this study was to assess the validity of a necklace-worn sensor-based method for detecting time-on-legs and daily life mobility related postures in older adults. In addition user opinion about the practical use of the sensor was evaluated. Twenty frail and non-frail older adults performed a standardized and free movement protocol in their own home. Results of the sensor-based method were compared to video observation. Sensitivity, specificity and overall agreement of sensor outcomes compared to video observation were calculated. Mobility was assessed based on time-on-legs. Further assessment included the categories standing, sitting, walking and lying. Time-on-legs based sensitivity, specificity and percentage agreement were good to excellent and comparable to laboratory outcomes in other studies. Category-based sensitivity, specificity and overall agreement were moderate to excellent. The necklace-worn sensor is considered an acceptable valid instrument for assessing home-based physical activity based upon time-on-legs in frail and non-frail older adults, but category-based assessment of gait and postures could be further developed.

  19. A Secure Automated Elevator Management System and Pressure Sensor based Floor Estimation for Indoor Mobile Robot Transportation

    Directory of Open Access Journals (Sweden)

    Ali Abduljalil Abdulla

    2017-08-01

    Full Text Available In this paper, a secure elevator handling system is presented to enable a flexible movement of wheeled mobile robots among laboratories distributed in different floors. The automated handling system consists mainly of an ADAM module which has the ability to call the elevator to the robot’s current floor and to request the destination floor. The LPS25HP pressure sensor attached to an STM32F411 microcontroller is utilized as a height measurement system to estimate the robot’s current floor inside the elevator. The ultrasonic sensor is used to recognize the elevator’s door status. Many challenges have to be solved to realize a stable height measurement system based on pressure sensor readings. The difference of the pressure sensor readings before and after soldering is realized by comparing the reading after soldering with an accurate barometric reading. In addition, the sensor output signal shows oscillation and wide variation of the same floor pressure sensor readings at different times. The oscillation in the output signal has been handled using a first order FIR smoothing filter. The first order filter was selected to balance between the stability and the elapsed time to receive the updated values. An auto-calibration stage is established to maintain the wide variation in the atmospheric pressure readings by calibrating the sensor readings with the robot’s current floor before entering the elevator. An error handling management system is utilized to guarantee a stable automated elevator management system performance. Many experiments to assess and verify the performance of the automated elevator management system and robot’s current floor estimation are reported. The experimental results show that the proposed methods and sub-systems developed for the mobile robot are effective and efficient in providing a transportation service in multiple-floor life sciences laboratories.

  20. Automated Water Quality Survey and Evaluation Using an IoT Platform with Mobile Sensor Nodes.

    Science.gov (United States)

    Li, Teng; Xia, Min; Chen, Jiahong; Zhao, Yuanjie; de Silva, Clarence

    2017-07-28

    An Internet of Things (IoT) platform with capabilities of sensing, data processing, and wireless communication has been deployed to support remote aquatic environmental monitoring. In this paper, the design and development of an IoT platform with multiple Mobile Sensor Nodes (MSN) for the spatiotemporal quality evaluation of surface water is presented. A survey planner is proposed to distribute the Sampling Locations of Interest (SLoIs) over the study area and generate paths for MSNs to visit the SLoIs, given the limited energy and time budgets. The SLoIs are chosen based on a cellular decomposition that is composed of uniform hexagonal cells. They are visited by the MSNs along a path ring generated by a planning approach that uses a spanning tree. For quality evaluation, an Online Water Quality Index (OLWQI) is developed to interpret the large quantities of online measurements. The index formulations are modified by a state-of-the-art index, the CCME WQI, which has been developed by the Canadian Council of Ministers of Environment (CCME) for off-line indexing. The proposed index has demonstrated effective and reliable performance in online indexing a large volume of measurements of water quality parameters. The IoT platform is deployed in the field, and its performance is demonstrated and discussed in this paper.

  1. An Energy Efficient Simultaneous-Node Repositioning Algorithm for Mobile Sensor Networks

    Science.gov (United States)

    Hasbullah, Halabi; Nazir, Babar; Khan, Imran Ali

    2014-01-01

    Recently, wireless sensor network (WSN) applications have seen an increase in interest. In search and rescue, battlefield reconnaissance, and some other such applications, so that a survey of the area of interest can be made collectively, a set of mobile nodes is deployed. Keeping the network nodes connected is vital for WSNs to be effective. The provision of connectivity can be made at the time of startup and can be maintained by carefully coordinating the nodes when they move. However, if a node suddenly fails, the network could be partitioned to cause communication problems. Recently, several methods that use the relocation of nodes for connectivity restoration have been proposed. However, these methods have the tendency to not consider the potential coverage loss in some locations. This paper addresses the concerns of both connectivity and coverage in an integrated way so that this gap can be filled. A novel algorithm for simultaneous-node repositioning is introduced. In this approach, each neighbour of the failed node, one by one, moves in for a certain amount of time to take the place of the failed node, after which it returns to its original location in the network. The effectiveness of this algorithm has been verified by the simulation results. PMID:25152924

  2. Joint Mobile Data Collection and Wireless Energy Transfer in Wireless Rechargeable Sensor Networks.

    Science.gov (United States)

    Zhong, Ping; Li, Ya-Ting; Liu, Wei-Rong; Duan, Gui-Hua; Chen, Ying-Wen; Xiong, Neal

    2017-08-16

    In wireless rechargeable sensor networks (WRSNs), there is a way to use mobile vehicles to charge node and collect data. It is a rational pattern to use two types of vehicles, one is for energy charging, and the other is for data collecting. These two types of vehicles, data collection vehicles (DCVs) and wireless charging vehicles (WCVs), are employed to achieve high efficiency in both data gathering and energy consumption. To handle the complex scheduling problem of multiple vehicles in large-scale networks, a twice-partition algorithm based on center points is proposed to divide the network into several parts. In addition, an anchor selection algorithm based on the tradeoff between neighbor amount and residual energy, named AS-NAE, is proposed to collect the zonal data. It can reduce the data transmission delay and the energy consumption for DCVs' movement in the zonal. Besides, we design an optimization function to achieve maximum data throughput by adjusting data rate and link rate of each node. Finally, the effectiveness of proposed algorithm is validated by numerical simulation results in WRSNs.

  3. Asymmetric Propagation Delay-Aware TDMA MAC Protocol for Mobile Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2018-06-01

    Full Text Available The propagation delay in mobile underwater acoustic sensor network (MUASN is asymmetric because of its low sound propagation speed, and this asymmetry grows with the increase in packet travel time, which damages the collision avoidance mechanism of the spatial reuse medium access control (MAC protocols for MUASN. We propose an asymmetric propagation delay-aware time division multiple access (APD-TDMA for a MUASN in which periodic data packet transmission is required for a sink node (SN. Collisions at the SN are avoided by deferring data packet transmission after reception of a beacon packet from the SN, and data packets are arrived at the SN in a packet-train manner. The time-offset, which is the time for a node to wait before the transmission of a data packet after reception of a beacon packet, is determined by estimating the propagation delay over two consecutive cycles such that the idle interval at the SN is minimized, and this time-offset is announced by the beacon packet. Simulation results demonstrate that the APD-TDMA improves the channel access delay and the channel utilization by approximately 20% and 30%, respectively, compared with those of the block time bounded TDMA under the given network conditions.

  4. A Mobile Motion Analysis System Using Intertial Sensors for Analysis of Lower Limb Prosthetics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, John Kyle P [ORNL; Ericson, Milton Nance [ORNL; Farquhar, Ethan [ORNL; Lind, Randall F [ORNL; Evans III, Boyd Mccutchen [ORNL

    2011-01-01

    Soldiers returning from the global war on terror requiring lower leg prosthetics generally have different concerns and requirements than the typical lower leg amputee. These subjects are usually young, wish to remain active and often desire to return to active military duty. As such, they demand higher performance from their prosthetics, but are at risk for chronic injury and joint conditions in their unaffected limb. Motion analysis is a valuable tool in assessing the performance of new and existing prosthetic technologies as well as the methods in fitting these devices to both maximize performance and minimize risk of injury for the individual soldier. We are developing a mobile, low-cost motion analysis system using inertial measurement units (IMUs) and two custom force sensors that detect ground reaction forces and moments on both the unaffected limb and prosthesis. IMUs were tested on a robot programmed to simulate human gait motion. An algorithm which uses a kinematic model of the robot and an extended Kalman filter (EKF) was used to convert the rates and accelerations from the gyro and accelerometer into joint angles. Compared to encoder data from the robot, which was considered the ground truth in this experiment, the inertial measurement system had a RMSE of <1.0 degree. Collecting kinematic and kinetic data without the restrictions and expense of a motion analysis lab could help researchers, designers and prosthetists advance prosthesis technology and customize devices for individuals. Ultimately, these improvements will result in better prosthetic performance for the military population.

  5. High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Aida Barreiro-Alonso

    2016-01-01

    Full Text Available Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB proteins have been previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein. This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.

  6. Deadlock Avoidance Policy in Mobile Wireless Sensor Networks with Free Choice Resource Routing

    Directory of Open Access Journals (Sweden)

    Prasanna Ballal

    2008-09-01

    Full Text Available Efficient control schemes are required for effective cooperation of robot teams in a mobile wireless sensor network. If the robots (resources are also in charge of executing multiple simultaneous missions, then risks of deadlocks due to the presence of shared resources among different missions increase and have to be tackled. Discrete event control with deadlock avoidance has been used in the past for robot team coordination for the case of multi reentrant flowline models with shared resources. In this paper we present an analysis of deadlock avoidance for a generalized case of multi reentrant flow line systems (MRF called the Free Choice Multi Reentrant Flow Line systems (FMRF. In FMRF, some tasks have multiple resource choices; hence routing decisions have to be made and current results in deadlock avoidance for MRF do not hold. This analysis is based on the so-called Circular Waits (CW of the resources in the system. For FMRF, the well known notions of Critical Siphons and Critical Subsystems must be generalized and we redefine these objects for such systems. Our second contribution provides a matrix formulation that efficiently computes the objects required for deadlock avoidance in FMRF systems. A MAXWIP dispatching policy is formulated for deadlock avoidance in FMRF systems. According to this policy, deadlock in FMRF is avoided by limiting the work in progress (WIP in the critical subsystems of each CW. Implemented results of the proposed scheme in a WSN test-bed is presented in the paper.

  7. Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks.

    Science.gov (United States)

    Guo, Kehua; Zhang, Ping; Ma, Jianhua

    2016-04-23

    Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss.

  8. An energy-efficient MAC protocol using dynamic queue management for delay-tolerant mobile sensor networks.

    Science.gov (United States)

    Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua

    2011-01-01

    Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.

  9. Sensors Fusion based Online Mapping and Features Extraction of Mobile Robot in the Road Following and Roundabout

    International Nuclear Information System (INIS)

    Ali, Mohammed A H; Yussof, Wan Azhar B.; Hamedon, Zamzuri B; Yussof, Zulkifli B.; Majeed, Anwar P P; Mailah, Musa

    2016-01-01

    A road feature extraction based mapping system using a sensor fusion technique for mobile robot navigation in road environments is presented in this paper. The online mapping of mobile robot is performed continuously in the road environments to find the road properties that enable the robot to move from a certain start position to pre-determined goal while discovering and detecting the roundabout. The sensors fusion involving laser range finder, camera and odometry which are installed in a new platform, are used to find the path of the robot and localize it within its environments. The local maps are developed using camera and laser range finder to recognize the roads borders parameters such as road width, curbs and roundabout. Results show the capability of the robot with the proposed algorithms to effectively identify the road environments and build a local mapping for road following and roundabout. (paper)

  10. Development and radiation evaluation of mobile station for personnel monitoring system based on indigenous plastic scintillator sensor rods

    International Nuclear Information System (INIS)

    Chaudhary, H.S.; Parihar, A.; Senwar, K.R.; Prakash, V.; Rathore, A.S.

    2018-01-01

    The Mobile Station for Personnel Monitoring (MSPM) system has been designed and developed for rapid screening of personnel with respect to radiation contamination during nuclear or radiological emergency; it can also be used for prevention of illicit movement of radioactive sources. The objective was to develop a modular, transportable and easily deployable gamma portal monitoring system based on indigenous DLJ developed plastic scintillator sensors. The Gamma radiation response of the system is presented here

  11. Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Shawn S. [McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705 (United States); Medical Scientist Training Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 (United States); Cellular and Molecular Biology Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 (United States); Oberley, Christopher [McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705 (United States); Hooper, Christopher P. [McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705 (United States); Cellular and Molecular Biology Program, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 (United States); Grindle, Kreg [Department of Medicine, Division of Hematology and Oncology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 (United States); Wuerzberger-Davis, Shelly [McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705 (United States); Wolff, Jared [Department of Medicine, Division of Hematology and Oncology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 (United States); and others

    2015-02-01

    The NF-κB family of transcription factors regulates numerous cellular processes, including cell proliferation and survival responses. The constitutive activation of NF-κB has also emerged as an important oncogenic driver in many malignancies, such as activated B-cell like diffuse large B cell lymphoma, among others. In this study, we investigated the impact and mechanisms of action of Withaferin A, a naturally produced steroidal lactone, against both signal-inducible as well as constitutive NF-κB activities. We found that Withaferin A is a robust inhibitor of canonical and constitutive NF-κB activities, leading to apoptosis of certain lymphoma lines. In the canonical pathway induced by TNF, Withaferin A did not disrupt RIP1 polyubiquitination or NEMO–IKKβ interaction and was a poor direct IKKβ inhibitor, but prevented the formation of TNF-induced NEMO foci which colocalized with TNF ligand. While GFP-NEMO efficiently formed TNF-induced foci, a GFP-NEMO{sup Y308S} mutant that is defective in binding to polyubiquitin chains did not form foci. Our study reveals that Withaferin A is a novel type of IKK inhibitor which acts by disrupting NEMO reorganization into ubiquitin-based signaling structures in vivo. - Highlights: • Withaferin A, a NF-κB inhibitor, disrupts signaling induced NEMO localization, a novel point of inhibition. • NEMO can be localized to distinct signaling foci after treatment with TNF. • ABC-type DLCBL cells can be sensitized to apoptosis after treatment with Withaferin A.

  12. Architecture and Protocol of a Semantic System Designed for Video Tagging with Sensor Data in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Alvaro Suarez

    2012-02-01

    Full Text Available Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper.

  13. Architecture and Protocol of a Semantic System Designed for Video Tagging with Sensor Data in Mobile Devices

    Science.gov (United States)

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper. PMID:22438753

  14. PhysioDroid: combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring.

    Science.gov (United States)

    Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.

  15. Architecture and protocol of a semantic system designed for video tagging with sensor data in mobile devices.

    Science.gov (United States)

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper.

  16. A source-initiated on-demand routing algorithm based on the Thorup-Zwick theory for mobile wireless sensor networks.

    Science.gov (United States)

    Mao, Yuxin; Zhu, Ping

    2013-01-01

    The unreliability and dynamics of mobile wireless sensor networks make it hard to perform end-to-end communications. This paper presents a novel source-initiated on-demand routing mechanism for efficient data transmission in mobile wireless sensor networks. It explores the Thorup-Zwick theory to achieve source-initiated on-demand routing with time efficiency. It is able to find out shortest routing path between source and target in a network and transfer data in linear time. The algorithm is easy to be implemented and performed in resource-constrained mobile wireless sensor networks. We also evaluate the approach by analyzing its cost in detail. It can be seen that the approach is efficient to support data transmission in mobile wireless sensor networks.

  17. Background constrains of the SuperNEMO experiment for neutrinoless double beta-decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, Pavel P.

    2017-02-11

    The SuperNEMO experiment is a new generation of experiments dedicated to the search for neutrinoless double beta-decay, which if observed, would confirm the existence of physics beyond the Standard Model. It is based on the tracking and calorimetry techniques, which allow the reconstruction of the final state topology, including timing and kinematics of the double beta-decay transition events, offering a powerful tool for background rejection. While the basic detection strategy of the SuperNEMO detector remains the same as of the NEMO-3 detector, a number of improvements were accomplished for each of detector main components. Upgrades of the detector technologies and development of low-level counting techniques ensure radiopurity control of construction parts of the SuperNEMO detector. A reference material made of glass pellets has been developed to assure quality management and quality control of radiopurity measurements. The first module of the SuperNEMO detector (Demonstrator) is currently under construction in the Modane underground laboratory. No background event is expected in the neutrinoless double beta-decay region in 2.5 years of its operation using 7 kg of {sup 82}Se. The half-life sensitivity of the Demonstrator is expected to be >6.5·10{sup 24} y, corresponding to an effective Majorana neutrino mass sensitivity of |0.2−0.4| eV (90% C.L.). The full SuperNEMO experiment comprising of 20 modules with 100 kg of {sup 82}Se source should reach an effective Majorana neutrino mass sensitivity of |0.04−0.1| eV, and a half-life limit 1·10{sup 26} y. - Highlights: • SuperNEMO detector for 2β0ν-decay of {sup 82}Se should reach half-life limit of 10{sup 26} y. • Radiopurity of the SuperNEMO internal detector parts was checked down to 0.1 mBq/kg. • Reference material of glass pellets was developed for underground γ-spectrometry.

  18. Strategy of HPGe screening measurements in the SuperNEMO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Frédéric [Université de Bordeaux, Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Chemin du Solarium, Le Haut-Vigneau, BP120, F-33175 Gradignan, France and CNRS/IN2P3, Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797 (France); Collaboration: SuperNEMO Collaboration

    2013-08-08

    SuperNEMO is a double beta decay experiment that will use a tracko-calorimeter technique. The goal is to reach a sensitivity of T{sub 1/2}(0ν)>10{sup 26} y corresponding to an effective Majorana neutrino mass of 0.04-0.11 eV with 100 kg of {sup 82}Se. The general strategy of the HPGe screening measurements is described for the materials of the SuperNEMO demonstrator, regarding their radiopurity and their location. The two platforms, PRISNA and LSM, used for this screening are also briefly described.

  19. NEMO. Netherlands Energy demand MOdel. A top-down model based on bottom-up information

    International Nuclear Information System (INIS)

    Koopmans, C.C.; Te Velde, D.W.; Groot, W.; Hendriks, J.H.A.

    1999-06-01

    The title model links energy use to other production factors, (physical) production, energy prices, technological trends and government policies. It uses a 'putty-semiputty' vintage production structure, in which new investments, adaptations to existing capital goods (retrofit) and 'good-housekeeping' are discerned. Price elasticities are relatively large in the long term and small in the short term. Most predictions of energy use are based on either econometric models or on 'bottom-up information', i.e. disaggregated lists of technical possibilities for and costs of saving energy. Typically, one predicts more energy-efficiency improvements using bottom-up information than using econometric ('top-down') models. We bridged this so-called 'energy-efficiency gap' by designing our macro/meso model NEMO in such a way that we can use bottom-up (micro) information to estimate most model parameters. In our view, reflected in NEMO, the energy-efficiency gap arises for two reasons. The first is that firms and households use a fairly high discount rate of 15% when evaluating the profitability of energy-efficiency improvements. The second is that our bottom-up information ('ICARUS') for most economic sectors does not (as NEMO does) take account of the fact that implementation of new, energy-efficient technology in capital stock takes place only gradually. Parameter estimates for 19 sectors point at a long-term technological energy efficiency improvement trend in Netherlands final energy use of 0.8% per year. The long-term price elasticity is estimated to be 0.29. These values are comparable to other studies based on time series data. Simulations of the effects of the oil price shocks in the seventies and the subsequent fall of oil prices show that the NEMO's price elasticities are consistent with historical data. However, the present pace at which new technologies become available (reflected in NEMO) appears to be lower than in the seventies and eighties. This suggests that it

  20. Achieving Real-Time Tracking Mobile Wireless Sensors Using SE-KFA

    Science.gov (United States)

    Kadhim Hoomod, Haider, Dr.; Al-Chalabi, Sadeem Marouf M.

    2018-05-01

    Nowadays, Real-Time Achievement is very important in different fields, like: Auto transport control, some medical applications, celestial body tracking, controlling agent movements, detections and monitoring, etc. This can be tested by different kinds of detection devices, which named "sensors" as such as: infrared sensors, ultrasonic sensor, radars in general, laser light sensor, and so like. Ultrasonic Sensor is the most fundamental one and it has great impact and challenges comparing with others especially when navigating (as an agent). In this paper, concerning to the ultrasonic sensor, sensor(s) detecting and delimitation by themselves then navigate inside a limited area to estimating Real-Time using Speed Equation with Kalman Filter Algorithm as an intelligent estimation algorithm. Then trying to calculate the error comparing to the factual rate of tracking. This paper used Ultrasonic Sensor HC-SR04 with Arduino-UNO as Microcontroller.

  1. Smart multi-level tool for remote patient monitoring based on a wireless sensor network and mobile augmented reality.

    Science.gov (United States)

    González, Fernando Cornelio Jiménez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa

    2014-09-16

    Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.

  2. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink.

    Science.gov (United States)

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-04-26

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.

  3. Mobilities

    DEFF Research Database (Denmark)

    to social networks, personal identities, and our relationship to the built environment. The omnipresence of mobilities within everyday life, high politics, technology, and tourism (to mention but a few) all point to a key insight harnessed by the ‘mobilities turn’. Namely that mobilities is much more than......The world is on the move. This is a widespread understanding by many inhabitants of contemporary society across the Globe. But what does it actually mean? During over one decade the ‘mobilities turn’ within the social sciences have provided a new set of insights into the repercussions of mobilities...... and environmental degradation. The spaces and territories marked by mobilities as well as the sites marked by the bypassing of such are explored. Moreover, the architectural and technological dimensions to infrastructures and sites of mobilities will be included as well as the issues of power, social exclusion...

  4. Towards a Mobile Ecogenomic sensor: the Third Generation Environmental Sample Processor (3G-ESP).

    Science.gov (United States)

    Birch, J. M.; Pargett, D.; Jensen, S.; Roman, B.; Preston, C. M.; Ussler, W.; Yamahara, K.; Marin, R., III; Hobson, B.; Zhang, Y.; Ryan, J. P.; Scholin, C. A.

    2016-02-01

    platforms. This presentation will focus on results from early deployments of the prototype 3G-ESP/LRAUV, the challenges encountered in cartridge design, ESP/LRAUV integration, and operational capabilities that show the potential of mobile, ecogenomic sensors in the ocean sciences.

  5. Teleoperated Marsupial Mobile Sensor Platform Pair for Telepresence Insertion Into Challenging Structures

    Science.gov (United States)

    Krasowski, Michael J.; Prokop, Norman F.; Greer, Lawrence C.

    2011-01-01

    A platform has been developed for two or more vehicles with one or more residing within the other (a marsupial pair). This configuration consists of a large, versatile robot that is carrying a smaller, more specialized autonomous operating robot(s) and/or mobile repeaters for extended transmission. The larger vehicle, which is equipped with a ramp and/or a robotic arm, is used to operate over a more challenging topography than the smaller one(s) that may have a more limited inspection area to traverse. The intended use of this concept is to facilitate the insertion of a small video camera and sensor platform into a difficult entry area. In a terrestrial application, this may be a bus or a subway car with narrow aisles or steep stairs. The first field-tested configuration is a tracked vehicle bearing a rigid ramp of fixed length and width. A smaller six-wheeled vehicle approximately 10 in. (25 cm) wide by 12 in. (30 cm) long resides at the end of the ramp within the larger vehicle. The ramp extends from the larger vehicle and is tipped up into the air. Using video feedback from a camera atop the larger robot, the operator at a remote location can steer the larger vehicle to the bus door. Once positioned at the door, the operator can switch video feedback to a camera at the end of the ramp to facilitate the mating of the end of the ramp to the top landing at the upper terminus of the steps. The ramp can be lowered by remote control until its end is in contact with the top landing. At the same time, the end of the ramp bearing the smaller vehicle is raised to minimize the angle of the slope the smaller vehicle has to climb, and further gives the operator a better view of the entry to the bus from the smaller vehicle. Control is passed over to the smaller vehicle and, using video feedback from the camera, it is driven up the ramp, turned oblique into the bus, and then sent down the aisle for surveillance. The demonstrated vehicle was used to scale the steps leading to

  6. A ToF-Camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera's performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  7. Coverage improvement in clustered wireless sensor networks by relocating mobile nodes based on waypoints

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2013-01-01

    by clusters with relocation of mobile nodes between the clusters. Mobile nodes are guided by waypoints between source and destination clusters without use of localization services. The simulation results have been presented which state the effectiveness of the proposed approach. Mobile node relocation has...

  8. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    Science.gov (United States)

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  9. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    Directory of Open Access Journals (Sweden)

    Zhiling Hong

    Full Text Available Based on the traditional Fast Retina Keypoint (FREAK feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  10. Secure IP mobility management for VANET

    CERN Document Server

    Taha, Sanaa

    2013-01-01

    This brief presents the challenges and solutions for VANETs' security and privacy problems occurring in mobility management protocols including Mobile IPv6 (MIPv6), Proxy MIPv6 (PMIPv6), and Network Mobility (NEMO). The authors give an overview of the concept of the vehicular IP-address configurations as the prerequisite step to achieve mobility management for VANETs, and review the current security and privacy schemes applied in the three mobility management protocols. Throughout the brief, the authors propose new schemes and protocols to increase the security of IP addresses within VANETs in

  11. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-02-01

    Full Text Available Due to their special environment, Underwater Wireless Sensor Networks (UWSNs are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  12. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei

    2016-02-06

    Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object's mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  13. Advanced energy systems and technologies (NEMO 2). Final report 1993-1998

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.; Konttinen, P. [eds.

    1998-12-31

    NEMO2 has been the major Finnish energy research programme on advanced energy systems and technologies during 1993-1998. The main objective of the programme has been to support industrial technology development but also to increase the utilisation of wind and solar energy in Finland. The main technology fields covered are wind and solar energy. In addition, the programme has supported projects on energy storage and other small-scale energy technologies such as fuel cells that support the main technology fields chosen. NEMO2 is one of the energy research programmes of the Technology Development Centre of Finland (TEKES). The total R and D funding over the whole programme period was FIM 130 million (ECU 22 million). The public funding of the total programme costs has been 43 %. The industrial participation has been strong. International co-operation has been an important aspect in NEMO2: the programme has stimulated 24 EU-projects and participation in several IEA co-operative tasks. International funding adds nearly 20 % to the NEMO2 R and D funding. (orig.)

  14. AlignNemo: a local network alignment method to integrate homology and topology.

    Directory of Open Access Journals (Sweden)

    Giovanni Ciriello

    Full Text Available Local network alignment is an important component of the analysis of protein-protein interaction networks that may lead to the identification of evolutionary related complexes. We present AlignNemo, a new algorithm that, given the networks of two organisms, uncovers subnetworks of proteins that relate in biological function and topology of interactions. The discovered conserved subnetworks have a general topology and need not to correspond to specific interaction patterns, so that they more closely fit the models of functional complexes proposed in the literature. The algorithm is able to handle sparse interaction data with an expansion process that at each step explores the local topology of the networks beyond the proteins directly interacting with the current solution. To assess the performance of AlignNemo, we ran a series of benchmarks using statistical measures as well as biological knowledge. Based on reference datasets of protein complexes, AlignNemo shows better performance than other methods in terms of both precision and recall. We show our solutions to be biologically sound using the concept of semantic similarity applied to Gene Ontology vocabularies. The binaries of AlignNemo and supplementary details about the algorithms and the experiments are available at: sourceforge.net/p/alignnemo.

  15. Advanced energy systems and technologies (NEMO 2). Final report 1993-1998

    International Nuclear Information System (INIS)

    Lund, P.; Konttinen, P.

    1998-01-01

    NEMO2 has been the major Finnish energy research programme on advanced energy systems and technologies during 1993-1998. The main objective of the programme has been to support industrial technology development but also to increase the utilisation of wind and solar energy in Finland. The main technology fields covered are wind and solar energy. In addition, the programme has supported projects on energy storage and other small-scale energy technologies such as fuel cells that support the main technology fields chosen. NEMO2 is one of the energy research programmes of the Technology Development Centre of Finland (TEKES). The total R and D funding over the whole programme period was FIM 130 million (ECU 22 million). The public funding of the total programme costs has been 43 %. The industrial participation has been strong. International co-operation has been an important aspect in NEMO2: the programme has stimulated 24 EU-projects and participation in several IEA co-operative tasks. International funding adds nearly 20 % to the NEMO2 R and D funding. (orig.)

  16. Cellular automaton and elastic net for event reconstruction in the NEMO-2 experiment

    International Nuclear Information System (INIS)

    Kovalenko, V.

    1997-01-01

    A cellular automaton for track searching and an elastic net for charged particle trajectory fitting are presented. The advantages of the methods are: simplicity of the algorithms, fast and stable convergence to real tracks, and a reconstruction efficiency close to 100%. Demonstration programs are available at http://nuweb.jinr.dubna.su/LNP/NEMO using a Java enabled browser. (orig.)

  17. NEMO educational kit on micro-optics at the secondary school

    Science.gov (United States)

    Flores-Arias, M. T.; Bao-Varela, Carmen

    2014-07-01

    NEMO was the "Network of Excellence in Micro-Optics" granted in the "Sixth Framework Program" of the European Union. It aimed at providing Europe with a complete Micro-Optics food-chain, by setting up centers for optical modeling and design; measurement and instrumentation; mastering, prototyping and replication; integration and packaging and reliability and standardization. More than 300 researchers from 30 groups in 12 countries participated in the project. One of the objectives of NEMO was to spread excellence and disseminate knowledge on micro-optics and micro-photonics. To convince pupils, already from secondary school level on, about the crucial role of light and micro-optics and the opportunities this combination holds, several partners of NEMO had collaborate to create this Educational Kit. In Spain the partner involved in this aim was the "Microoptics and GRIN Optics Group" at the University of Santiago of Compostela (USC). The educational kits provided to the Secondary School were composed by two plastic cards with the following microoptical element: different kinds of diffractive optical elements or DOES and refractive optical elements or ROEs namely arrays of micro-lenses. The kit also included a DVD with a handbook for performing the experiments as well as a laser pointer source. This kit was distributed free of charge in the countries with partners in NEMO. In particular in Spain was offered to around 200 Secondary School Centers and only 80 answered accepting evaluate the kit.

  18. Multi-sensors multi-baseline mapping system for mobile robot using stereovision camera and laser-range device

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-06-01

    Full Text Available Countless applications today are using mobile robots, including autonomous navigation, security patrolling, housework, search-and-rescue operations, material handling, manufacturing, and automated transportation systems. Regardless of the application, a mobile robot must use a robust autonomous navigation system. Autonomous navigation remains one of the primary challenges in the mobile-robot industry; many control algorithms and techniques have been recently developed that aim to overcome this challenge. Among autonomous navigation methods, vision-based systems have been growing in recent years due to rapid gains in computational power and the reliability of visual sensors. The primary focus of research into vision-based navigation is to allow a mobile robot to navigate in an unstructured environment without collision. In recent years, several researchers have looked at methods for setting up autonomous mobile robots for navigational tasks. Among these methods, stereovision-based navigation is a promising approach for reliable and efficient navigation. In this article, we create and develop a novel mapping system for a robust autonomous navigation system. The main contribution of this article is the fuse of the multi-baseline stereovision (narrow and wide baselines and laser-range reading data to enhance the accuracy of the point cloud, to reduce the ambiguity of correspondence matching, and to extend the field of view of the proposed mapping system to 180°. Another contribution is the pruning the region of interest of the three-dimensional point clouds to reduce the computational burden involved in the stereo process. Therefore, we called the proposed system multi-sensors multi-baseline mapping system. The experimental results illustrate the robustness and accuracy of the proposed system.

  19. DRO: domain-based route optimization scheme for nested mobile networks

    Directory of Open Access Journals (Sweden)

    Chuang Ming-Chin

    2011-01-01

    Full Text Available Abstract The network mobility (NEMO basic support protocol is designed to support NEMO management, and to ensure communication continuity between nodes in mobile networks. However, in nested mobile networks, NEMO suffers from the pinball routing problem, which results in long packet transmission delays. To solve the problem, we propose a domain-based route optimization (DRO scheme that incorporates a domain-based network architecture and ad hoc routing protocols for route optimization. DRO also improves the intra-domain handoff performance, reduces the convergence time during route optimization, and avoids the out-of-sequence packet problem. A detailed performance analysis and simulations were conducted to evaluate the scheme. The results demonstrate that DRO outperforms existing mechanisms in terms of packet transmission delay (i.e., better route-optimization, intra-domain handoff latency, convergence time, and packet tunneling overhead.

  20. Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    L. S. Sindhuja

    2016-01-01

    Full Text Available Security of Mobile Wireless Sensor Networks is a vital challenge as the sensor nodes are deployed in unattended environment and they are prone to various attacks. One among them is the node replication attack. In this, the physically insecure nodes are acquired by the adversary to clone them by having the same identity of the captured node, and the adversary deploys an unpredictable number of replicas throughout the network. Hence replica node detection is an important challenge in Mobile Wireless Sensor Networks. Various replica node detection techniques have been proposed to detect these replica nodes. These methods incur control overheads and the detection accuracy is low when the replica is selected as a witness node. This paper proposes to solve these issues by enhancing the Single Hop Detection (SHD method using the Clonal Selection algorithm to detect the clones by selecting the appropriate witness nodes. The advantages of the proposed method include (i increase in the detection ratio, (ii decrease in the control overhead, and (iii increase in throughput. The performance of the proposed work is measured using detection ratio, false detection ratio, packet delivery ratio, average delay, control overheads, and throughput. The implementation is done using ns-2 to exhibit the actuality of the proposed work.

  1. Trail-Based Search for Efficient Event Report to Mobile Actors in Wireless Sensor and Actor Networks.

    Science.gov (United States)

    Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong

    2017-10-27

    In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor's mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay.

  2. Trail-Based Search for Efficient Event Report to Mobile Actors in Wireless Sensor and Actor Networks †

    Science.gov (United States)

    Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong

    2017-01-01

    In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor’s mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay. PMID:29077017

  3. Recognizing Academic Performance, Sleep Quality, Stress Level, and Mental Health using Personality Traits, Wearable Sensors and Mobile Phones.

    Science.gov (United States)

    Sano, Akane; Phillips, Andrew J; Yu, Amy Z; McHill, Andrew W; Taylor, Sara; Jaques, Natasha; Czeisler, Charles A; Klerman, Elizabeth B; Picard, Rosalind W

    2015-06-01

    What can wearable sensors and usage of smart phones tell us about academic performance, self-reported sleep quality, stress and mental health condition? To answer this question, we collected extensive subjective and objective data using mobile phones, surveys, and wearable sensors worn day and night from 66 participants, for 30 days each, totaling 1,980 days of data. We analyzed daily and monthly behavioral and physiological patterns and identified factors that affect academic performance (GPA), Pittsburg Sleep Quality Index (PSQI) score, perceived stress scale (PSS), and mental health composite score (MCS) from SF-12, using these month-long data. We also examined how accurately the collected data classified the participants into groups of high/low GPA, good/poor sleep quality, high/low self-reported stress, high/low MCS using feature selection and machine learning techniques. We found associations among PSQI, PSS, MCS, and GPA and personality types. Classification accuracies using the objective data from wearable sensors and mobile phones ranged from 67-92%.

  4. A Lifetime Optimization Algorithm Limited by Data Transmission Delay and Hops for Mobile Sink-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2017-01-01

    Full Text Available To improve the lifetime of mobile sink-based wireless sensor networks and considering that data transmission delay and hops are limited in actual system, a lifetime optimization algorithm limited by data transmission delay and hops (LOA_DH for mobile sink-based wireless sensor networks is proposed. In LOA_DH, some constraints are analyzed, and an optimization model is proposed. Maximum capacity path routing algorithm is used to calculate the energy consumption of communication. Improved genetic algorithm which modifies individuals to meet all constraints is used to solve the optimization model. The optimal solution of sink node’s sojourn grid centers and sojourn times which maximizes network lifetime is obtained. Simulation results show that, in three node distribution scenes, LOA_DH can find the movement solution of sink node which covers all sensor nodes. Compared with MCP_RAND, MCP_GMRE, and EASR, the solution improves network lifetime and reduces average amount of node discarded data and average energy consumption of nodes.

  5. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    Science.gov (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  6. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO

    Science.gov (United States)

    Reffray, G.; Bourdalle-Badie, R.; Calone, C.

    2015-01-01

    Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.

  7. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  8. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  9. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    International Nuclear Information System (INIS)

    Schivo, Michael; Kenyon, Nicholas J; Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E

    2011-01-01

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  10. Recognition and automatic tracking of weld line in fringe welding by autonomous mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Saito, Keishin; Ishii, Hideaki.

    1994-01-01

    An autonomous mobile robot with visual sensor and four driving axes for welding of pipe and fringe was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to perform welding automatically, the tip of welding torch can track the weld line of the joint by rotating the robot head. In the case of welding of pipe and fringe, the robot can detect the contact angle between the two base metals to be welded, and the torch angle changes according to the contact angle. As the result of tracking test by the robot system, it was made clear that the recognition of geometry of the joint by the laser lighting method and automatic tracking of weld line were possible. The average tracking error was ±0.3 mm approximately and the torch angle could be always kept at the optimum angle. (author)

  11. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Schivo, Michael; Kenyon, Nicholas J [Division of Pulmonary and Critical Care Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, CA 95616 (United States); Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E, E-mail: cedavis@ucdavis.edu [Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, CA 95616 (United States)

    2011-10-29

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  12. Devices for measuring the capacitance of micromechanical sensors of mobile robots navigation systems and its deviation from the nominal value

    Directory of Open Access Journals (Sweden)

    Rudyk A.V.

    2016-12-01

    Full Text Available The article describes methods of constructing devices for measuring the capacitance of micromechanical sensors (accelerometers and gyros mobile robots navigation systems and its deviation from the nominal value. A modified diagram of a sigma-delta modulator is offered. It realizes a direct connection capacitive sensor connection to the sigma-delta converter, as a result increased resolution, accuracy and linearity of the conversion. This interface is insensitive to the value of capacitance between the sensor leads and common wire or leakage current to a common wire. Variants of expansion as the nominal of the test capacity and the range of conversion of the relative deviation of the nominal capacity using two integrators are offered. The versions of circuit implementation devices for measuring the capacitance deviation of a micromechanical sensor from the nominal value are designed on the basis of the completed integrated circuit AD7745 / AD7746 and AD7747 of Analog Devices, CAV414 / 424 firm Analog Microelectronics and precision analog microcontroller ADuCM360 / CM361 company ARM Limited.

  13. Mobile Sensor System AGaMon for Breath Control: Numerical Signal Analysis of Ternary Gas Mixtures and First Field Tests

    Directory of Open Access Journals (Sweden)

    Rolf Seifert

    2018-01-01

    Full Text Available An innovative mobile sensor system for breath control in the exhaled air is introduced. In this paper, the application of alcohol control in the exhaled air is considered. This sensor system operates semiconducting gas sensor elements with respect to the application in a thermo-cyclic operation mode. This operation mode leads to so-called conductance-over-time-profiles (CTPs, which are fingerprints of the gas mixture under consideration and can be used for substance identification and concentration determination. Especially for the alcohol control in the exhaled air, ethanol is the leading gas component to be investigated. But, there are also other interfering gas components in the exhaled air, like H2 and acetone, which may influence the measurement results. Therefore, a ternary ethanol-H2-acetone gas mixture was investigated. The establishing of the mathematical calibration model and the data analysis was performed with a newly developed innovative calibration and evaluation procedure called ProSens 3.0. The analysis of ternary ethanol-H2-acetone gas samples with ProSens 3.0 shows a very good substance identification performance and a very good concentration determination of the leading ethanol component. The relative analysis errors for the leading component ethanol were in all considered samples less than 9 %. First field test performed with the sensor system AGaMon shows very promising results.

  14. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Eva González-Parada

    2017-01-01

    Full Text Available Autonomous mobile nodes in mobile wireless sensor networks (MWSN allow self-deployment and self-healing. In both cases, the goals are: (i to achieve adequate coverage; and (ii to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.

  15. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks.

    Science.gov (United States)

    González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina

    2017-01-09

    Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.

  16. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    Science.gov (United States)

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-01-01

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628

  18. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-03-18

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  19. A Greedy Scanning Data Collection Strategy for Large-Scale Wireless Sensor Networks with a Mobile Sink.

    Science.gov (United States)

    Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J P C

    2016-09-06

    Mobile sink is widely used for data collection in wireless sensor networks. It can avoid 'hot spot' problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios.

  20. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shaobo Wu

    2018-03-01

    Full Text Available Wireless sensor networks (WSNs involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  1. Detecting Pedestrian Flocks by Fusion of Multi-Modal Sensors in Mobile Phones

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Wirz, Martin; Roggen, Daniel

    2012-01-01

    derived from multiple sensor modalities of modern smartphones. Automatic detection of flocks has several important applications, including evacuation management and socially aware computing. The novelty of this paper is, firstly, to use data fusion techniques to combine several sensor modalities (WiFi...

  2. Data dissemination of emergency messages in mobile multi-sink wireless sensor networks

    NARCIS (Netherlands)

    Erman-Tüysüz, A.; Havinga, Paul J.M.

    In wireless sensor networks (WSNs), data dissemination is generally performed from sensor nodes to a static sink. If the data under consideration is an emergency message such as a fire alarm, it must be transmitted as fast and reliably as possible towards the sink of WSN. In such mission critical

  3. Handheld and mobile hyperspectral imaging sensors for wide-area standoff detection of explosives and chemical warfare agents

    Science.gov (United States)

    Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.

    2016-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.

  4. An Energy-Efficient MAC Protocol Using Dynamic Queue Management for Delay-Tolerant Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yugui Qu

    2011-02-01

    Full Text Available Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.

  5. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees

    Directory of Open Access Journals (Sweden)

    Paula Jimena Ramos Giraldo

    2017-04-01

    Full Text Available Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: (i Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and (ii Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  6. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees.

    Science.gov (United States)

    Giraldo, Paula Jimena Ramos; Aguirre, Álvaro Guerrero; Muñoz, Carlos Mario; Prieto, Flavio Augusto; Oliveros, Carlos Eugenio

    2017-04-06

    Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas) to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: ( i ) Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and ( ii ) Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  7. HeadsUp: Keeping Pedestrian Phone Addicts from Dangers Using Mobile Phone Sensors

    OpenAIRE

    Zhou, Zhengjuan

    2015-01-01

    Walking while staring at the mobile phone is dangerous, and the danger mainly arises from distraction. While watching the mobile phone, one could fall into a deep well without noticing the manhole cover was missing, one could be hit by a rushing car without observing the traffic light, and so forth. Some mobile phone users are already aware of the crisis, and they keep looking up and down to allocate some focus to danger spying; however, the statistics data revealed by US government make such...

  8. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Tuvshinjargal, Doopalam; Lee, Deok Jin [Kunsan National University, Gunsan (Korea, Republic of)

    2015-06-15

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

  9. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    International Nuclear Information System (INIS)

    Tuvshinjargal, Doopalam; Lee, Deok Jin

    2015-01-01

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments

  10. Semi-flocking algorithm for motion control of mobile sensors in large-scale surveillance systems.

    Science.gov (United States)

    Semnani, Samaneh Hosseini; Basir, Otman A

    2015-01-01

    The ability of sensors to self-organize is an important asset in surveillance sensor networks. Self-organize implies self-control at the sensor level and coordination at the network level. Biologically inspired approaches have recently gained significant attention as a tool to address the issue of sensor control and coordination in sensor networks. These approaches are exemplified by the two well-known algorithms, namely, the Flocking algorithm and the Anti-Flocking algorithm. Generally speaking, although these two biologically inspired algorithms have demonstrated promising performance, they expose deficiencies when it comes to their ability to maintain simultaneous robust dynamic area coverage and target coverage. These two coverage performance objectives are inherently conflicting. This paper presents Semi-Flocking, a biologically inspired algorithm that benefits from key characteristics of both the Flocking and Anti-Flocking algorithms. The Semi-Flocking algorithm approaches the problem by assigning a small flock of sensors to each target, while at the same time leaving some sensors free to explore the environment. This allows the algorithm to strike balance between robust area coverage and target coverage. Such balance is facilitated via flock-sensor coordination. The performance of the proposed Semi-Flocking algorithm is examined and compared with other two flocking-based algorithms once using randomly moving targets and once using a standard walking pedestrian dataset. The results of both experiments show that the Semi-Flocking algorithm outperforms both the Flocking algorithm and the Anti-Flocking algorithm with respect to the area of coverage and the target coverage objectives. Furthermore, the results show that the proposed algorithm demonstrates shorter target detection time and fewer undetected targets than the other two flocking-based algorithms.

  11. Atmospheric muons in the NEMO Phase 1 detector at the Catania test site

    International Nuclear Information System (INIS)

    Margiotta, Annarita

    2006-01-01

    The NEMO Collaboration is involved in a long term R and D activity towards the construction of a km 3 telescope in the Mediterranean sea. It has dedicated special efforts in the development of technologies for a km 3 detector and in the search, characterization and monitoring of a deep sea site adequate for the installation of the Mediterranean km 3 . Now the NEMO Collaboration is involved in the Phase 1 of the project, planning to install a fully equipped deep-sea facility to test prototypes and develop new technologies for the detector. A full Monte Carlo simulation has been performed to analyse the response of a reduced-size detector to the passage of atmospheric muons. Preliminary steps of the simulation are presented in this work

  12. Development of high performance and very low radioactivity scintillation counters for the SuperNEMO calorimeter

    International Nuclear Information System (INIS)

    Chauveau, E.

    2010-11-01

    SuperNEMO is a next generation double beta decay experiment which will extend the successful 'tracko-calo' technique employed in NEMO 3. The main characteristic of this type of detector is to identify not only double beta decays, but also to measure its own background components. The project aims to reach a sensitivity up to 10 26 years on the half-life of 82 Se. One of the main challenge of the Research and Development is to achieve an unprecedented energy resolution for the electron calorimeter, better than 8 % FWHM at 1 MeV. This thesis contributes to improve scintillators and photomultipliers performances and reduce their radioactivity, including in particular the development of a new photomultiplier in collaboration with Photonis. (author)

  13. Probing new physics models of neutrinoless double beta decay with SuperNEMO

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R. [CNRS/IN2P3, IPHC, Universite de Strasbourg, Strasbourg (France); Augier, C.; Bongrand, M.; Garrido, X.; Jullian, S.; Sarazin, X.; Simard, L. [CNRS/IN2P3, LAL, Universite Paris-Sud 11, Orsay (France); Baker, J.; Caffrey, A.J.; Horkley, J.J.; Riddle, C.L. [INL, Idaho Falls, ID (United States); Barabash, A.S.; Konovalov, S.I.; Umatov, V.I.; Vanyushin, I.A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Basharina-Freshville, A.; Evans, J.J.; Flack, R.; Holin, A.; Kauer, M.; Richards, B.; Saakyan, R.; Thomas, J.; Vasiliev, V.; Waters, D. [University College London, London (United Kingdom); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Timkin, V.; Tretyak, V.; Vasiliev, R. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cebrian, S.; Dafni, T.; Irastorza, I.G.; Gomez, H.; Iguaz, F.J.; Luzon, G.; Rodriguez, A. [University of Zaragoza, Zaragoza (Spain); Chapon, A.; Durand, D.; Guillon, B.; Mauger, F. [Universite de Caen, LPC Caen, ENSICAEN, Caen (France); Chauveau, E.; Hubert, P.; Hugon, C.; Lutter, G.; Marquet, C.; Nachab, A.; Nguyen, C.H.; Perrot, F.; Piquemal, F.; Ricol, J.S. [UMR 5797, Universite de Bordeaux, Centre d' Etudes Nucleaires de Bordeaux Gradignan, Gradignan (France); UMR 5797, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, Gradignan (France); Deppisch, F.F.; Jackson, C.M.; Nasteva, I.; Soeldner-Rembold, S. [Univ. of Manchester (United Kingdom); Diaz, J.; Monrabal, F.; Serra, L.; Yahlali, N. [CSIC - Univ. de Valencia, IFIC (Spain); Fushima, K.I. [Tokushima Univ., Tokushima (Japan); Holy, K.; Povinec, P.P.; Simkovic, F. [Comenius Univ., FMFI, Bratislava (Slovakia); Ishihara, N. [KEK, Tsukuba, Ibaraki (Japan); Kovalenko, V. [CNRS/IN2P3, IPHC, Univ. de Strasbourg (France); Joint Inst. for Nuclear Research, Dubna (Russian Federation); Lamhamdi, T. [USMBA, Fes (Morocco); Lang, K.; Pahlka, R.B. [Univ. of Texas, Austin, TX (United States)] (and others)

    2010-12-15

    The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double {beta} decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double {beta} decay by measuring the decay half-life and the electron angular and energy distributions. (orig.)

  14. Cellular automaton and elastic net for event reconstruction in the NEMO-2 experiment

    International Nuclear Information System (INIS)

    Kisel, I.; Kovalenko, V.; Laplanche, F.

    1997-01-01

    A cellular automaton for track searching combined with an elastic net for charged particle trajectory fitting is presented. The advantages of the methods are: the simplicity of the algorithms, the fast and stable convergency to real tracks, and a good reconstruction efficiency. The combination of techniques have been used with success for event reconstruction on the data of the NEMO-2 double-beta (ββ) decay experiments. (orig.)

  15. NEMO-SN-1 the first 'real-time' seafloor observatory of ESONET

    International Nuclear Information System (INIS)

    Favali, Paolo; Beranzoli, Laura; D'Anna, Giuseppe; Gasparoni, Francesco; Gerber, Hans W.

    2006-01-01

    The fruitful collaboration between Italian Research Institutions, particularly Istituto Nazionale di Fisica Nucleare (INFN) and Istituto Nazionale di Geofisica e Vulcanologia (INGV) together with Marine Engineering Companies, led to the development of NEMO-SN-1, the first European cabled seafloor multiparameter observatory. This observatory, deployed at 2060 m w.d. about 12 miles off-shore the Eastern coasts of Sicily (Southern Italy), is in real-time acquisition since January 2005 and addressed to different set of measurements: geophysical and oceanographic. In particular the SN-1 seismological data are integrated in the INGV land-based national seismic network, and they arrive in real-time to the Operative Centre in Rome. In the European Commission (EC) European Seafloor Observatory NETwork (ESONET) project, in connection to the Global Monitoring for Environment and Security (GMES) action plan, the NEMO-SN-1 site has been proposed as an European key area, both for its intrinsic importance for geo-hazards and for the availability of infrastructure as a stepwise development in GMES program. Presently, NEMO-SN-1 is the only ESONET site operative. The paper gives a description of SN-1 observatory with examples of data

  16. Development of an optical simulation for the SuperNEMO calorimeter

    Science.gov (United States)

    Huber, Arnaud; SuperNEMO Collaboration

    2017-09-01

    The SuperNEMO double beta decay project is a modular tracker-calorimeter based experiment. The aim of this project is to reach a sensitivity of the order of 1026 years concerning the neutrinoless double beta decay half-life, corresponding to a Majorana neutrino mass of 50-100 meV. The main calorimeter of the SuperNEMO demonstrator is based on 520 Optical Modules made of large volume plastic scintillators (10L) coupled with large area photomultipliers (Hamamatsu R5912-MOD and R6594). The design of the calorimeter is optimized for the double beta decay detection and allows gamma tagging for background rejection. In large volumes of scintillators, a similar deposited energy by electrons or photons will give different visible energy and signal shapes due to different interactions inside the scintillator. The aim of the optical simulation, developed for SuperNEMO, is to model the Optical Module response on the energy and time performances, regarding the particle type.

  17. Distributed data fusion across multiple hard and soft mobile sensor platforms

    Science.gov (United States)

    Sinsley, Gregory

    One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions. This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods. The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion

  18. Decoding mobile-phone image sensor rolling shutter effect for visible light communications

    Science.gov (United States)

    Liu, Yang

    2016-01-01

    Optical wireless communication (OWC) using visible lights, also known as visible light communication (VLC), has attracted significant attention recently. As the traditional OWC and VLC receivers (Rxs) are based on PIN photo-diode or avalanche photo-diode, deploying the complementary metal-oxide-semiconductor (CMOS) image sensor as the VLC Rx is attractive since nowadays nearly every person has a smart phone with embedded CMOS image sensor. However, deploying the CMOS image sensor as the VLC Rx is challenging. In this work, we propose and demonstrate two simple contrast ratio (CR) enhancement schemes to improve the contrast of the rolling shutter pattern. Then we describe their processing algorithms one by one. The experimental results show that both the proposed CR enhancement schemes can significantly mitigate the high-intensity fluctuations of the rolling shutter pattern and improve the bit-error-rate performance.

  19. Development from the seafloor to the sea surface of the cabled NEMO-SN1 observatory in the Western Ionian Sea

    Science.gov (United States)

    Sparnocchia, Stefania; Beranzoli, Laura; Borghini, Mireno; Durante, Sara; Favali, Paolo; Giovanetti, Gabriele; Italiano, Francesco; Marinaro, Giuditta; Meccia, Virna; Papaleo, Riccardo; Riccobene, Giorgio; Schroeder, Katrin

    2015-04-01

    A prototype of cabled deep-sea observatory has been operating in real-time since 2005 in Southern Italy (East Sicily, 37°30' N - 15°06'E), at 2100 m water depth, 25 km from the harbor of the city of Catania. It is the first-established real-time node of the "European Multidisciplinary Seafloor and water column Observatory" (EMSO, http://www.emso-eu.org) a research infrastructure of the Sector Environment of ESFRI. In the present configuration it consists of two components: the multi-parametric station NEMO-SN1 (TSN branch) equipped with geophysical and environmental sensors for measurements at the seafloor, and the NEMO-OνDE station (TSS branch) equipped with 4 wideband hydrophones. A 28 km long electro-optical cable connects the observatory to a shore laboratory in the Catania harbor, hosting the data acquisition system and supplying power and data transmission to the underwater instrumentation. The NEMO-SN1 observatory is located in an area particularly suited to multidisciplinary studies. The site is one of the most seismically active areas of the Mediterranean (some of the strongest earthquakes occurred in 1169, 1693 and 1908, also causing very intense tsunami waves) and is close to Mount Etna, one of the largest and most active volcanoes in Europe. The deployment area is also a key site for monitoring deep-water dynamics in the Ionian Sea, connecting the Levantine basin to the southern Adriatic basin where intermediate and deep waters are formed, and finally to the western Mediterranean Sea via the Strait of Sicily. The observatory is being further developed under EMSO MedIT (http://www.emso-medit.it/en/), a structural enhancement project contributing to the consolidation and enhancement of the European research infrastructure EMSO in Italian Convergence Regions. In this framework, a new Junction Box will be connected to the TSN branch and will provide wired and wireless (acoustic connections) for seafloor platforms and moorings. This will allow the

  20. A Spawn Mobile Agent Itinerary Planning Approach for Energy-Efficient Data Gathering in Wireless Sensor Networks.

    Science.gov (United States)

    Qadori, Huthiafa Q; Zulkarnain, Zuriati A; Hanapi, Zurina Mohd; Subramaniam, Shamala

    2017-06-03

    Mobile agent (MA), a part of the mobile computing paradigm, was recently proposed for data gathering in Wireless Sensor Networks (WSNs). The MA-based approach employs two algorithms: Single-agent Itinerary Planning (SIP) and Multi-mobile agent Itinerary Planning (MIP) for energy-efficient data gathering. The MIP was proposed to outperform the weakness of SIP by introducing distributed multi MAs to perform the data gathering task. Despite the advantages of MIP, finding the optimal number of distributed MAs and their itineraries are still regarded as critical issues. The existing MIP algorithms assume that the itinerary of the MA has to start and return back to the sink node. Moreover, each distributed MA has to carry the processing code (data aggregation code) to collect the sensory data and return back to the sink with the accumulated data. However, these assumptions have resulted in an increase in the number of MA's migration hops, which subsequently leads to an increase in energy and time consumption. In this paper, a spawn multi-mobile agent itinerary planning (SMIP) approach is proposed to mitigate the substantial increase in cost of energy and time used in the data gathering processes. The proposed approach is based on the agent spawning such that the main MA is able to spawn other MAs with different tasks assigned from the main MA. Extensive simulation experiments have been conducted to test the performance of the proposed approach against some selected MIP algorithms. The results show that the proposed SMIP outperforms the counterpart algorithms in terms of energy consumption and task delay (time), and improves the integrated energy-delay performance.

  1. A Sensor Based Navigation Algorithm for a Mobile Robot using the DVFF Approach

    Directory of Open Access Journals (Sweden)

    A. OUALID DJEKOUNE

    2009-06-01

    Full Text Available Often autonomous mobile robots operate in environment for which prior maps are incomplete or inaccurate. They require the safe execution for a collision free motion to a goal position. This paper addresses a complete navigation method for a mobile robot that moves in unknown environment. Thus, a novel method called DVFF combining the Virtual Force Field (VFF obstacle avoidance approach and global path planning based on D* algorithm is proposed. While D* generates global path information towards a goal position, the VFF local controller generates the admissible trajectories that ensure safe robot motion. Results and analysis from a battery of experiments with this new method implemented on a ATRV2 mobile robot are shown.

  2. Development of mobile sensor for volcanic observation "HOMURA": Test campaign at Kirishima Iwo-yama, SW Japan

    Science.gov (United States)

    Kaneko, K.; Ito, K.; Iwahori, K.; Anbe, Y.

    2015-12-01

    Monitoring volcanoes near active craters is important to know symptoms and transitions of volcanic eruptions. In order to observe volcanic phenomena near craters according to the circumstance, monitoring system with unmanned robots are useful. We have been trying to develop a practical UGV-type robot, and have completed a prototype, which we named "Homura". Homura is a small-sized, vehicle-type robot with six wheels (750 x 430 x 310 mm in dimensions and a weight of about 12 kg). Homura is remotely controlled with mobile phone radio waves; it can move in volcanic fields and send real time data of sensors equipped in the vehicle to the base station. We carried out a test campaign of Homura from Feb. 19th to Apr. 8th, 2015 at Iwo-yama to examine if Homura can work for a few month in natural volcanic fields. Iwo-yama is one of craters in the Kirishima volcanic field, SW Japan; the area within 1 km from the crater was an off-limit area from Oct. 24th, 2014 to May 5th, 2015 because volcanic seismicity there was active and eruption might occur. On Feb. 19th, we carried and put Homura at the rim of the crater. Unfortunately, mobile phone connectivity was not entirely stable around Iwo-yama. Then, we decided not to move Homura and only to obtain real time data of the sensors (a camera, CO2 gas sensor, and thermometer). After we returned to our office, we operated Homura for one to two hours every day until Apr. 8th. Although the weather was often bad (rain, fog, or cold temperature) during the test campaign, we could completely operate Homura without any trouble. On Apr. 8th, the battery in Homura ran down. After we collected Homura from Iwo-yama and recharged the battery, Homura perfectly worked again. The results of this campaign indicate that Homura stably operates for a long time in volcanic field. Homura is useful as simple monitoring station in volcanic fields where mobile phone connection is available.

  3. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES`s share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  4. Advanced energy systems and technologies research in Finland. NEMO 2 annual report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Advanced energy technologies were linked to the national energy research in beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry set up many energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on technological solutions. In the beginning of the 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies such as energy storage and hydrogen technology. Resources has been focused on three specific areas: Arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). It seems that in Finland the growth of the new energy technology industry is focused on these areas. The sales of the industry have been growing considerable due to the national research activities and support of technology development. The sales have increased 6 - 7 times compared to the year 1987 and is now over 200 million FIM. The support to industries and their involvement in the program has grown more than 15 times compared to 1988. The total funding of the NEMO 2 program me was 30 million FIM in 1994 and 21 million FIM in 1995. The programme consists of 20 research projects, 15 joint development projects, and 5 EU projects. In this report, the essential research projects of the programme in 1994-1995 are described. The total funding for these projects was about 25 million FIM, of which the TEKES`s share was about half. When the research projects and joint development projects are

  5. Advanced energy systems and technologies research in Finland. NEMO-2 Programme Annual Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    Advanced energy technologies were linked to the national energy research in the beginning of 1988 when energy research was reorganised in Finland. The Ministry of Trade and Industry established several energy research programmes and NEMO was one of them. Major objectives of the programme were to assess the potential of new energy systems for the national energy supply system and to promote industrial activities. Within the NEMO 2 programme for the years 1993-1998, research was focused on a few promising technological solutions. In the beginning of 1995, the national energy research activities were passed on to the Technology Development Centre TEKES. The NEMO 2 programme is directed towards those areas that have particular potential for commercial exploitation or development. Emphasis is placed particularly on solar and wind energy, as well as supporting technologies, such as energy storage and hydrogen technology. Resources have been focused on three specific areas: arctic wind technology, wind turbine components, and the integration of solar energy into applications (including thin film solar cells). In Finland, the growth of the new energy technology industry is concentrated on these areas. The turnover of the Finnish industry has been growing considerably due to the national research activities and support of technology development. The sales have increased more than 10 times compared with the year 1987 and is now over 300 million FIM. The support to industries and their involvement in the program has grown considerably. In this report, the essential research projects of the programme during 1996-1997 are described. The total funding for these projects was about 30 million FIM per year, of which the TEKES's share was about 40 per cent. The programme consists of 10 research projects, some 15 joint development projects, and 9 EU projects. In case the research projects and joint development projects are acting very closely, the description of the project is

  6. On the development of mobile agent systems for wireless sensor networks : issues and solutions

    NARCIS (Netherlands)

    Fortino, G.; Galzarano, S.; Ganzha, M.; Jain, L.C.

    2013-01-01

    Due to the growing exploitation of wireless sensor networks (WSNs) for enhancing all major conventional application domains and enabling brand new application domains, the development of applications based on WSNs has recently gained a significant focus. Thus, design methods, middleware and

  7. Multi-sink mobile wireless sensor networks: dissemination protocols, design and evaluation

    NARCIS (Netherlands)

    Erman-Tüysüz, A.

    2011-01-01

    In pervasive systems, as they are getting smaller and smaller, computers can be found just about everywhere, but their presence is not noticed because the technologies are often embedded within items. One of the smallest and well known embedded computers is a wireless sensor node, which is a passive

  8. Mobile and static sensors in a citizen-based observatory of water

    Science.gov (United States)

    Brauchli, Tristan; Weijs, Steven V.; Lehning, Michael; Huwald, Hendrik

    2014-05-01

    Understanding and forecasting water resources and components of the water cycle require spatially and temporally resolved observations of numerous water-related variables. Such observations are often obtained from wireless networks of automated weather stations. The "WeSenseIt" project develops a citizen- and community-based observatory of water to improve the water and risk management at the catchment scale and to support decision-making of stakeholders. It is implemented in three case studies addressing various questions related to flood, drought, water resource management, water quality and pollution. Citizens become potential observers and may transmit water-related measurements and information. Combining the use of recent technologies (wireless communication, internet, smartphone) with the development of innovative low cost sensors enables the implementation of heterogeneous observatories, which (a) empower citizens and (b) expand and complement traditional operational sensing networks. With the goal of increasing spatial coverage of observations and decreasing cost for sensors, this study presents the examples of measuring (a) flow velocity in streams using smartphones and (b) sensible heat flux using simple sensors at the nodes of wireless sensor networks.

  9. An analysis of java-based mobile agent platforms for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Fortino, G.; Galzarano, S.; Gravina, R.; Guerrieri, A.

    2011-01-01

    Wireless sensor networks (WSNs) represent a new form of pervasive and ubiquitous computing systems successfully exploited in many different application areas within which they will play an increasingly important role in future. However, the development of applications for WSNs is an extremely

  10. Implementation of a multi-modal mobile sensor system for surface and subsurface assessment of roadways

    Science.gov (United States)

    Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar

    2015-03-01

    There are more than 4 million miles of roads and 600,000 bridges in the United States alone. On-going investments are required to maintain the physical and operational quality of these assets to ensure public's safety and prosperity of the economy. Planning efficient maintenance and repair (M&R) operations must be armed with a meticulous pavement inspection method that is non-disruptive, is affordable and requires minimum manual effort. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project developed a technology able to cost- effectively monitor the condition of roadway systems to plan for the right repairs, in the right place, at the right time. VOTERS technology consists of an affordable, lightweight package of multi-modal sensor systems including acoustic, optical, electromagnetic, and GPS sensors. Vehicles outfitted with this technology would be capable of collecting information on a variety of pavement-related characteristics at both surface and subsurface levels as they are driven. By correlating the sensors' outputs with the positioning data collected in tight time synchronization, a GIS-based control center attaches a spatial component to all the sensors' measurements and delivers multiple ratings of the pavement every meter. These spatially indexed ratings are then leveraged by VOTERS decision making modules to plan the optimum M&R operations and predict the future budget needs. In 2014, VOTERS inspection results were validated by comparing them to the outputs of recent professionally done condition surveys of a local engineering firm for 300 miles of Massachusetts roads. Success of the VOTERS project portrays rapid, intelligent, and comprehensive evaluation of tomorrow's transportation infrastructure to increase public's safety, vitalize the economy, and deter catastrophic failures.

  11. I Sensed It Was You: Authenticating Mobile Users with Sensor-enhanced Keystroke Dynamics

    NARCIS (Netherlands)

    Giuffrida, C.; Majdanik, K.; Conti, M.; Bos, H.J.

    2014-01-01

    Mobile devices have become an important part of our everyday life, harvesting more and more confidential user information. Their portable nature and the great exposure to security attacks, however, call out for stronger authentication mechanisms than simple password-based identification. Biometric

  12. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer.

    Science.gov (United States)

    Jia, Xiuling; Chen, Dunjun; Bin, Liu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-06-09

    A novel ion-imprinted electrochemical sensor based on AlGaN/GaN high electron mobility transistors (HEMTs) was developed to detect trace amounts of phosphate anion. This sensor combined the advantages of the ion sensitivity of AlGaN/GaN HEMTs and specific recognition of ion imprinted polymers. The current response showed that the fabricated sensor is highly sensitive and selective to phosphate anions. The current change exhibited approximate linear dependence for phosphate concentration from 0.02 mg L(-1) to 2 mg L(-1), the sensitivity and detection limit of the sensor is 3.191 μA/mg L(-1) and 1.97 μg L(-1), respectively. The results indicated that this AlGaN/GaN HEMT-based electrochemical sensor has the potential applications on phosphate anion detection.

  13. Monitoring and classifying animal behavior using ZigBee-based mobile ad hoc wireless sensor networks and artificial neural networks

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Nyholm Jørgensen, Rasmus; Blanes-Vidal, Victoria

    2012-01-01

    Animal welfare is an issue of great importance in modern food production systems. Because animal behavior provides reliable information about animal health and welfare, recent research has aimed at designing monitoring systems capable of measuring behavioral parameters and transforming them...... into their corresponding behavioral modes. However, network unreliability and high-energy consumption have limited the applicability of those systems. In this study, a 2.4-GHz ZigBee-based mobile ad hoc wireless sensor network (MANET) that is able to overcome those problems is presented. The designed MANET showed high...... communication reliability, low energy consumption and low packet loss rate (14.8%) due to the deployment of modern communication protocols (e.g. multi-hop communication and handshaking protocol). The measured behavioral parameters were transformed into the corresponding behavioral modes using a multilayer...

  14. Kinect Technology Game Play to Mimic Quake Catcher Network (QCN) Sensor Deployment During a Rapid Aftershock Mobilization Program (RAMP)

    Science.gov (United States)

    Kilb, D. L.; Yang, A.; Rohrlick, D.; Cochran, E. S.; Lawrence, J.; Chung, A. I.; Neighbors, C.; Choo, Y.

    2011-12-01

    The Kinect technology allows for hands-free game play, greatly increasing the accessibility of gaming for those uncomfortable using controllers. How it works is the Kinect camera transmits invisible near-infrared light and measures its "time of flight" to reflect off an object, allowing it to distinguish objects within 1 centimeter in depth and 3 mm in height and width. The middleware can also respond to body gestures and voice commands. Here, we use the Kinect Windows SDK software to create a game that mimics how scientists deploy seismic instruments following a large earthquake. The educational goal of the game is to allow the players to explore 3D space as they learn about the Quake Catcher Network's (QCN) Rapid Aftershock Mobilization Program (RAMP). Many of the scenarios within the game are taken from factual RAMP experiences. To date, only the PC platform (or a Mac running PC emulator software) is available for use, but we hope to move to other platforms (e.g., Xbox 360, iPad, iPhone) as they become available. The game is written in programming language C# using Microsoft XNA and Visual Studio 2010, graphic shading is added using High Level Shader Language (HLSL), and rendering is produced using XNA's graphics libraries. Key elements of the game include selecting sensor locations, adequately installing the sensor, and monitoring the incoming data. During game play aftershocks can occur unexpectedly, as can other problems that require attention (e.g., power outages, equipment failure, and theft). The player accrues points for quickly deploying the first sensor (recording as many initial aftershocks as possible), correctly installing the sensors (orientation with respect to north, properly securing, and testing), distributing the sensors adequately in the region, and troubleshooting problems. One can also net points for efficient use of game play time. Setting up for game play in your local environment requires: (1) the Kinect hardware ( $145); (2) a computer

  15. Integrated multi-sensor fusion for mapping and localization in outdoor environments for mobile robots

    Science.gov (United States)

    Emter, Thomas; Petereit, Janko

    2014-05-01

    An integrated multi-sensor fusion framework for localization and mapping for autonomous navigation in unstructured outdoor environments based on extended Kalman filters (EKF) is presented. The sensors for localization include an inertial measurement unit, a GPS, a fiber optic gyroscope, and wheel odometry. Additionally a 3D LIDAR is used for simultaneous localization and mapping (SLAM). A 3D map is built while concurrently a localization in a so far established 2D map is estimated with the current scan of the LIDAR. Despite of longer run-time of the SLAM algorithm compared to the EKF update, a high update rate is still guaranteed by sophisticatedly joining and synchronizing two parallel localization estimators.

  16. Activity Recognition Using Fusion of Low-Cost Sensors on a Smartphone for Mobile Navigation Application

    Directory of Open Access Journals (Sweden)

    Sara Saeedi

    2015-08-01

    Full Text Available Low-cost inertial and motion sensors embedded on smartphones have provided a new platform for dynamic activity pattern inference. In this research, a comparison has been conducted on different sensor data, feature spaces and feature selection methods to increase the efficiency and reduce the computation cost of activity recognition on the smartphones. We evaluated a variety of feature spaces and a number of classification algorithms from the area of Machine Learning, including Naive Bayes, Decision Trees, Artificial Neural Networks and Support Vector Machine classifiers. A smartphone app that performs activity recognition is being developed to collect data and send them to a server for activity recognition. Using extensive experiments, the performance of various feature spaces has been evaluated. The results showed that the Bayesian Network classifier yields recognition accuracy of 96.21% using four features while requiring fewer computations.

  17. Wireless sensor and mobile ad-hoc networks vehicular and space applications

    CERN Document Server

    Al-Fuqaha, Ala

    2015-01-01

    This book describes the practical perspectives in using wireless sensor networks (WSN) to develop real world applications that can be used for space exploration. These applications include sensor interfaces, remote wireless vehicles, space crew health monitoring and instrumentation. The material discusses how applications of WSN originally developed for space travel and exploration are being applied and used in multiple real world applications, allowing for the development of smart systems that have characteristics such as self-healing, self-diagnosis, and emergency healthcare notification. This book also: ·         Discusses how multidisciplinary fields can be implemented in a single application ·         Reviews exhaustively the state-of-the-art research in WSN for space and vehicular applications ·         Covers smart systems that have self-healing, self-diagnosis, and emergency healthcare notification

  18. Improving control and estimation for distributed parameter systems utilizing mobile actuator-sensor network.

    Science.gov (United States)

    Mu, Wenying; Cui, Baotong; Li, Wen; Jiang, Zhengxian

    2014-07-01

    This paper proposes a scheme for non-collocated moving actuating and sensing devices which is unitized for improving performance in distributed parameter systems. By Lyapunov stability theorem, each moving actuator/sensor agent velocity is obtained. To enhance state estimation of a spatially distributes process, two kinds of filters with consensus terms which penalize the disagreement of the estimates are considered. Both filters can result in the well-posedness of the collective dynamics of state errors and can converge to the plant state. Numerical simulations demonstrate that the effectiveness of such a moving actuator-sensor network in enhancing system performance and the consensus filters converge faster to the plant state when consensus terms are included. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Mobile point sensors and actuators in the controllability theory of partial differential equations

    CERN Document Server

    Khapalov, Alexander Y

    2017-01-01

    This book presents a concise study of controllability theory of partial differential equations when they are equipped with actuators and/or sensors that are finite dimensional at every moment of time. Based on the author’s extensive research in the area of controllability theory, this monograph specifically focuses on the issues of controllability, observability, and stabilizability for parabolic and hyperbolic partial differential equations. The topics in this book also cover related applied questions such as the problem of localization of unknown pollution sources based on information obtained from point sensors that arise in environmental monitoring. Researchers and graduate students interested in controllability theory of partial differential equations and its applications will find this book to be an invaluable resource to their studies.

  20. Pembuatan Penghitung Jumlah Mobil Otomatis Berbasis Mikrokontroler ATMega 8535 Menggunakan Sensor Ultrasonik

    Directory of Open Access Journals (Sweden)

    Riko Dede Hardiyanto

    2015-04-01

    Full Text Available Car drivers often experience difficulties to park their cars in the parking lot there is a slot or an empty space with a limited number. For example, some parking places such as shopping centers, apartments and hotels. To determine the state of the parking spaces have been filled or not it is necessary to update the conditions in the room. The purpose of this thesis is to create a functioning device calculates and displays the number of entrances. A number of automatically calculating devices have been made. General description of the device is designed to use the SRF04 ultrasonic sensor, microcontroller ATMega8535, and buzzer. SRF04 ultrasonic sensors as detecting obstructions between the ends of the door with the barrier wall and counting. With the existence of this device in the state of the room can be determined easily and saves time.

  1. Optimized Routing of Intelligent, Mobile Sensors for Dynamic, Data-Driven Sampling

    Science.gov (United States)

    2016-09-27

    a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Adobe Professional 7.0...in the domain, as further illustrated in [58, 53]. Traveling as fast as possible may not be the best solu- tion, however, for a nonstationary field...Application I: Wake Estimation and Formation Control 3.1 Aerodynamic Model This section illustrates the DDDAS concept using an observability-based sensor

  2. Detection of Hidden Hostile/Terrorist Groups in Harsh Territories by Using Animals as Mobile Biological Sensors.

    Science.gov (United States)

    Sahin, Yasar Guneri; Ercan, Tuncay

    2008-07-25

    Terrorism is the greatest threat to national security and cannot be defeated by conventional military force alone. In critical areas such as Iraq, Afghanistan and Turkey, regular forces cannot reach these hostile/terrorist groups, the instigators of terrorism. These groups have a clear understanding of the relative ineffectiveness of counter-guerrilla operations and rely on guerrilla warfare to avoid major combat as their primary means of continuing the conflict with the governmental structures. In Internal Security Operations, detection of terrorist and hostile groups in their hiding places such as caves, lairs, etc. can only be achieved by professionally trained people such as Special Forces or intelligence units with the necessary experience and tools suitable for collecting accurate information in these often harsh, rugged and mountainous countries. To assist these forces, commercial micro-sensors with wireless interfaces could be utilized to study and monitor a variety of phenomena and environments from a certain distance for military purposes. In order to locate hidden terrorist groups and enable more effective use of conventional military resources, this paper proposes an active remote sensing model implanted into animals capable of living in these environments. By using these mobile sensor devices, improving communications for data transfer from the source, and developing better ways to monitor and detect threats, terrorist ability to carry out attacks can be severely disrupted.

  3. Detection of Hidden Hostile/Terrorist Groups in Harsh Territories by Using Animals as Mobile Biological Sensors

    Directory of Open Access Journals (Sweden)

    Tuncay Ercan

    2008-07-01

    Full Text Available Terrorism is the greatest threat to national security and cannot be defeated by conventional military force alone. In critical areas such as Iraq, Afghanistan and Turkey, regular forces cannot reach these hostile/terrorist groups, the instigators of terrorism. These groups have a clear understanding of the relative ineffectiveness of counter-guerrilla operations and rely on guerrilla warfare to avoid major combat as their primary means of continuing the conflict with the governmental structures. In Internal Security Operations, detection of terrorist and hostile groups in their hiding places such as caves, lairs, etc. can only be achieved by professionally trained people such as Special Forces or intelligence units with the necessary experience and tools suitable for collecting accurate information in these often harsh, rugged and mountainous countries. To assist these forces, commercial micro-sensors with wireless interfaces could be utilized to study and monitor a variety of phenomena and environments from a certain distance for military purposes. In order to locate hidden terrorist groups and enable more effective use of conventional military resources, this paper proposes an active remote sensing model implanted into animals capable of living in these environments. By using these mobile sensor devices, improving communications for data transfer from the source, and developing better ways to monitor and detect threats, terrorist ability to carry out attacks can be severely disrupted.

  4. Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson's disease assessment.

    Science.gov (United States)

    Eskofier, Bjoern M; Lee, Sunghoon I; Daneault, Jean-Francois; Golabchi, Fatemeh N; Ferreira-Carvalho, Gabriela; Vergara-Diaz, Gloria; Sapienza, Stefano; Costante, Gianluca; Klucken, Jochen; Kautz, Thomas; Bonato, Paolo

    2016-08-01

    The development of wearable sensors has opened the door for long-term assessment of movement disorders. However, there is still a need for developing methods suitable to monitor motor symptoms in and outside the clinic. The purpose of this paper was to investigate deep learning as a method for this monitoring. Deep learning recently broke records in speech and image classification, but it has not been fully investigated as a potential approach to analyze wearable sensor data. We collected data from ten patients with idiopathic Parkinson's disease using inertial measurement units. Several motor tasks were expert-labeled and used for classification. We specifically focused on the detection of bradykinesia. For this, we compared standard machine learning pipelines with deep learning based on convolutional neural networks. Our results showed that deep learning outperformed other state-of-the-art machine learning algorithms by at least 4.6 % in terms of classification rate. We contribute a discussion of the advantages and disadvantages of deep learning for sensor-based movement assessment and conclude that deep learning is a promising method for this field.

  5. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Madhumathy Perumal

    2015-01-01

    Full Text Available Data gathering and optimal path selection for wireless sensor networks (WSN using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS. This protocol finds the rendezvous point for optimal transmission of data using a “splitting tree” technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the “Biased Random Walk” model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  6. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance.

    Science.gov (United States)

    Mukundarajan, Haripriya; Hol, Felix Jan Hein; Castillo, Erica Araceli; Newby, Cooper; Prakash, Manu

    2017-10-31

    The direct monitoring of mosquito populations in field settings is a crucial input for shaping appropriate and timely control measures for mosquito-borne diseases. Here, we demonstrate that commercially available mobile phones are a powerful tool for acoustically mapping mosquito species distributions worldwide. We show that even low-cost mobile phones with very basic functionality are capable of sensitively acquiring acoustic data on species-specific mosquito wingbeat sounds, while simultaneously recording the time and location of the human-mosquito encounter. We survey a wide range of medically important mosquito species, to quantitatively demonstrate how acoustic recordings supported by spatio-temporal metadata enable rapid, non-invasive species identification. As proof-of-concept, we carry out field demonstrations where minimally-trained users map local mosquitoes using their personal phones. Thus, we establish a new paradigm for mosquito surveillance that takes advantage of the existing global mobile network infrastructure, to enable continuous and large-scale data acquisition in resource-constrained areas.

  7. Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions.

    Science.gov (United States)

    Bae, Sangwon; Chung, Tammy; Ferreira, Denzil; Dey, Anind K; Suffoletto, Brian

    2017-11-27

    Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions. 38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men). Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed). Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. NEMO-SN1 observatory developments in view of the European Research Infrastructures EMSO and KM3NET

    Energy Technology Data Exchange (ETDEWEB)

    Favali, Paolo, E-mail: emsopp@ingv.i [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect. Roma 2, Via di Vigna Murata 605, 00143 Roma (Italy); Beranzoli, Laura [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect. Roma 2, Via di Vigna Murata 605, 00143 Roma (Italy); Italiano, Francesco [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect. Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Migneco, Emilio; Musumeci, Mario; Papaleo, Riccardo [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud, Via di S. Sofia 62, 95125 Catania (Italy)

    2011-01-21

    NEMO-SN1 (Western Ionian Sea off Eastern Sicily), the first real-time multiparameter observatory operating in Europe since 2005, is one of the nodes of the upcoming European ESFRI large-scale research infrastructure EMSO (European Multidisciplinary Seafloor Observatory), a network of seafloor observatories placed at marine sites on the European Continental Margin. NEMO-SN1 constitutes also an important test-site for the study of prototypes of Kilometre Cube Neutrino Telescope (KM3NeT), another European ESFRI large-scale research infrastructure. Italian resources have been devoted to the development of NEMO-SN1 facilities and logistics, as with the PEGASO project, while the EC project ESONET-NoE is funding a demonstration mission and a technological test. EMSO and KM3NeT are presently in the Preparatory Phase as projects funded under the EC-FP7.

  9. A comprehensive remote automated mobile robot framework for deployment of compact radiation sensors and campaign management

    International Nuclear Information System (INIS)

    Mukherjee, J.K.

    2005-01-01

    Remote controlled on-line sensing with compact radiation sensors for interactive, fast contamination mapping and source localization needs integrated command control and machine intelligence supported operation. The combination of remote operation capability and automation of sensing needs a comprehensive framework encompassing precision real-time remote controlled agent, reliable remote communication techniques for unified command and sensory data exchange with optimized bandwidth allocation between the real time low volume as well as moderate speed bulk data transfer and data abstraction for seamless multi-domain abstraction in single environment. The paper describes an indigenously developed comprehensive framework that achieves vertical integration of layered services complex functions, explains its implementation and details its operation with examples of on-line application sessions. Several important features like precise remote control of sensor trajectory generation in real time by digital signal processing, prediction and visualization of remote agent locus and attitude, spatial modeling of fixed features of the monitored region and localization of activity source over mapped region have been dealt with. (author)

  10. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.

    Science.gov (United States)

    Ravi, Daniele; Wong, Charence; Lo, Benny; Yang, Guang-Zhong

    2017-01-01

    The increasing popularity of wearable devices in recent years means that a diverse range of physiological and functional data can now be captured continuously for applications in sports, wellbeing, and healthcare. This wealth of information requires efficient methods of classification and analysis where deep learning is a promising technique for large-scale data analytics. While deep learning has been successful in implementations that utilize high-performance computing platforms, its use on low-power wearable devices is limited by resource constraints. In this paper, we propose a deep learning methodology, which combines features learned from inertial sensor data together with complementary information from a set of shallow features to enable accurate and real-time activity classification. The design of this combined method aims to overcome some of the limitations present in a typical deep learning framework where on-node computation is required. To optimize the proposed method for real-time on-node computation, spectral domain preprocessing is used before the data are passed onto the deep learning framework. The classification accuracy of our proposed deep learning approach is evaluated against state-of-the-art methods using both laboratory and real world activity datasets. Our results show the validity of the approach on different human activity datasets, outperforming other methods, including the two methods used within our combined pipeline. We also demonstrate that the computation times for the proposed method are consistent with the constraints of real-time on-node processing on smartphones and a wearable sensor platform.

  11. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  12. Hypohidrotic ectodermal dysplasia and immunodeficiency with coincident NEMO and EDA Mutations

    Directory of Open Access Journals (Sweden)

    Michael D. Keller

    2011-11-01

    Full Text Available Ectodermal dysplasias (ED are uncommon genetic disorders resulting in abnormalities in ectodermally-derived structures. Though many ED-associated genes have been described, the NF-κB Essential Modulator (NEMO encoded by the IKBKG gene is unique in that mutations also result in severe humoral and cellular immunologic defects. We describe three unrelated kindreds with defects in both EDA and IKBKG resulting from an X-chromosome crossover. This demonstrates the importance of thorough immunologic consideration of patients with ED even when an EDA etiology is confirmed, and raises the possibility of a specific phenotype arising from coincident mutations in EDA and IKBKB.

  13. A sensor network to iPhone interface separating continuous and sporadic processes in mobile telemedicine.

    Science.gov (United States)

    D'Angelo, Lorenzo T; Schneider, Michael; Neugebauer, Paul; Lueth, Tim C

    2011-01-01

    In this contribution, a new concept for interfacing sensor network nodes (motes) and smartphones is presented for the first time. In the last years, a variety of telemedicine applications on smartphones for data reception, display and transmission have been developed. However, it is not always practical or possible to have a smartphone application running continuously to accomplish these tasks. The presented system allows receiving and storing data continuously using a mote and visualizing or sending it on the go using the smartphone as user interface only when desired. Thus, the processes of data reception and storage run on a safe system consuming less energy and the smartphone's potential along with its battery are not demanded continuously. Both, system concept and realization with an Apple iPhone are presented.

  14. Effect of a mobile health, sensor-driven asthma management platform on asthma control.

    Science.gov (United States)

    Barrett, Meredith A; Humblet, Olivier; Marcus, Justine E; Henderson, Kelly; Smith, Ted; Eid, Nemr; Sublett, J Wesley; Renda, Andrew; Nesbitt, LaQuandra; Van Sickle, David; Stempel, David; Sublett, James L

    2017-11-01

    Asthma inflicts a significant health and economic burden in the United States. Self-management approaches to monitoring and treatment can be burdensome for patients. To assess the effect of a digital health management program on asthma outcomes. Residents of Louisville, Kentucky, with asthma were enrolled in a single-arm pilot study. Participants received electronic inhaler sensors that tracked the time, frequency, and location of short-acting β-agonist (SABA) use. After a 30-day baseline period during which reference medication use was recorded by the sensors, participants received access to a digital health intervention designed to enhance self-management. Changes in outcomes, including mean daily SABA use, symptom-free days, and asthma control status, were compared among the initial 30-day baseline period and all subsequent months of the intervention using mixed-model logistic regressions and χ 2 tests. The mean number of SABA events per participant per day was 0.44 during the control period and 0.27 after the first month of the intervention, a 39% reduction. The percentage of symptom-free days was 77% during the baseline period and 86% after the first month, a 12% improvement. Improvement was observed throughout the study; each intervention month demonstrated significantly lower SABA use and higher symptom-free days than the baseline month (P asthma during the baseline period, 67% during the first month of the intervention. Each intervention month demonstrated significantly higher percentages than the baseline month (P asthma management intervention demonstrated significant reductions in SABA use, increased number of symptom-free days, and improvements in asthma control. ClinicalTrials.gov Identifier: NCT02162576. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Hardware/Software Codesign in a Compact Ion Mobility Spectrometer Sensor System for Subsurface Contaminant Detection

    Directory of Open Access Journals (Sweden)

    Gribb MollyM

    2008-01-01

    Full Text Available Abstract A field-programmable-gate-array-(FPGA- based data acquisition and control system was designed in a hardware/software codesign environment using an embedded Xilinx Microblaze soft-core processor for use with a subsurface ion mobility spectrometer (IMS system, designed for detection of gaseous volatile organic compounds (VOCs. An FPGA is used to accelerate the digital signal processing algorithms and provide accurate timing and control. An embedded soft-core processor is used to ease development by implementing nontime critical portions of the design in software. The design was successfully implemented using a low-cost, off-the-shelf Xilinx Spartan-III FPGA and supporting digital and analog electronics.

  16. Cooperating Mobile GIS and Wireless Sensor Networks for Managing Transportation Infrastructures in Urban areas

    Directory of Open Access Journals (Sweden)

    R. Shad

    2013-10-01

    Full Text Available Time management is a major subject which, in order to optimize trip conditions, emphasizes on interpreting processes and classifying individual's information. In this paper, with the aim of providing an optimal system for urban commuting in proper time in Mashhad, each user using SMS and introducing some of his/her mental priorities to the system, will be able to select the best option depending on the timing of movement of the available public transport system. The present study adopts a newly developed method of time management which is evaluated for urban transportation considering dynamic conditions of a spatial database. For this purpose, regarding time management, processed data such as bus lines, taxi networks, and the subway system are combined in a spatial framework of a designed Mobile GIS based on a wireless network. So, multiple potential paths which end to a desirable destination.

  17. Radiation sensors based on the generation of mobile protons in organic dielectrics.

    Science.gov (United States)

    Kapetanakis, Eleftherios; Douvas, Antonios M; Argitis, Panagiotis; Normand, Pascal

    2013-06-26

    A sensing scheme based on mobile protons generated by radiation, including ionizing radiation (IonR), in organic gate dielectrics is investigated for the development of metal-insulator-semiconductor (MIS)-type dosimeters. Application of an electric field to the gate dielectric moves the protons and thereby alters the flat band voltage (VFB) of the MIS device. The shift in the VFB is proportional to the IonR-generated protons and, therefore, to the IonR total dose. Triphenylsulfonium nonaflate (TPSNF) photoacid generator (PAG)-containing poly(methyl methacrylate) (PMMA) polymeric films was selected as radiation-sensitive gate dielectrics. The effects of UV (249 nm) and gamma (Co-60) irradiations on the high-frequency capacitance versus the gate voltage (C-VG) curves of the MIS devices were investigated for different total dose values. Systematic improvements in sensitivity can be accomplished by increasing the concentration of the TPSNF molecules embedded in the polymeric matrix.

  18. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    Directory of Open Access Journals (Sweden)

    Luis Pallarés Puerto

    2011-05-01

    Full Text Available The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

  19. Use of Mobile Phones as Intelligent Sensors for Sound Input Analysis and Sleep State Detection

    Directory of Open Access Journals (Sweden)

    Dalibor Janckulik

    2011-06-01

    Full Text Available Sleep is not just a passive process, but rather a highly dynamic process that is terminated by waking up. Throughout the night a specific number of sleep stages that are repeatedly changing in various periods of time take place. These specific time intervals and specific sleep stages are very important for the wake up event. It is far more difficult to wake up during the deep NREM (2–4 stage of sleep because the rest of the body is still sleeping. On the other hand if we wake up during the mild (REM, NREM1 sleep stage it is a much more pleasant experience for us and for our bodies. This problem led the authors to undertake this study and develop a Windows Mobile-based device application called wakeNsmile. The wakeNsmile application records and monitors the sleep stages for specific amounts of time before a desired alarm time set by users. It uses a built-in microphone and determines the optimal time to wake the user up. Hence, if the user sets an alarm in wakeNsmile to 7:00 and wakeNsmile detects that a more appropriate time to wake up (REM stage is at 6:50, the alarm will start at 6:50. The current availability and low price of mobile devices is yet another reason to use and develop such an application that will hopefully help someone to wakeNsmile in the morning. So far, the wakeNsmile application has been tested on four individuals introduced in the final section.

  20. Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2015-06-01

    Full Text Available The Indoor Environmental Quality (IEQ refers to the quality of the environment in relation to the health and well-being of the occupants. It is a holistic concept, which considers several categories, each related to a specific environmental parameter. This article describes a low-cost and open-source hardware architecture able to detect the indoor variables necessary for the IEQ calculation as an alternative to the traditional hardware used for this purpose. The system consists of some sensors and an Arduino board. One of the key strengths of Arduino is the possibility it affords of loading the script into the board’s memory and letting it run without interfacing with computers, thus granting complete independence, portability and accuracy. Recent works have demonstrated that the cost of scientific equipment can be reduced by applying open-source principles to their design using a combination of the Arduino platform and a 3D printer. The evolution of the 3D printer has provided a new means of open design capable of accelerating self-directed development. The proposed nano Environmental Monitoring System (nEMoS instrument is shown to have good reliability and it provides the foundation for a more critical approach to the use of professional sensors as well as for conceiving new scenarios and potential applications.

  1. Design and development of nEMoS, an all-in-one, low-cost, web-connected and 3D-printed device for environmental analysis.

    Science.gov (United States)

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-06-04

    The Indoor Environmental Quality (IEQ) refers to the quality of the environment in relation to the health and well-being of the occupants. It is a holistic concept, which considers several categories, each related to a specific environmental parameter. This article describes a low-cost and open-source hardware architecture able to detect the indoor variables necessary for the IEQ calculation as an alternative to the traditional hardware used for this purpose. The system consists of some sensors and an Arduino board. One of the key strengths of Arduino is the possibility it affords of loading the script into the board's memory and letting it run without interfacing with computers, thus granting complete independence, portability and accuracy. Recent works have demonstrated that the cost of scientific equipment can be reduced by applying open-source principles to their design using a combination of the Arduino platform and a 3D printer. The evolution of the 3D printer has provided a new means of open design capable of accelerating self-directed development. The proposed nano Environmental Monitoring System (nEMoS) instrument is shown to have good reliability and it provides the foundation for a more critical approach to the use of professional sensors as well as for conceiving new scenarios and potential applications.

  2. A novel flexible capacitive load sensor for use in a mobile unicompartmental knee replacement bearing: An in vitro proof of concept study.

    Science.gov (United States)

    Mentink, M J A; Van Duren, B H; Murray, D W; Gill, H S

    2017-08-01

    Instrumented knee replacements can provide in vivo data quantifying physiological loads acting on the knee. To date instrumented mobile unicompartmental knee replacements (UKR) have not been realised. Ideally instrumentation would be embedded within the polyethylene bearing. This study investigated the feasibility of an embedded flexible capacitive load sensor. A novel flexible capacitive load sensor was developed which could be incorporated into standard manufacturing of compression moulded polyethylene bearings. Dynamic experiments were performed to determine the characteristics of the sensor on a uniaxial servo-hydraulic material testing machine. The instrumented bearing was measured at sinusoidal frequencies between 0.1 and 10Hz, allowing for measurement of typical gait load magnitudes and frequencies. These correspond to frequencies of interest in physiological loading. The loads that were applied were a static load of 390N, corresponding to an equivalent body weight load for UKR, and a dynamic load of ±293N. The frequency transfer response of the sensor suggests a low pass filter response with a -3dB frequency of 10Hz. The proposed embedded capacitive load sensor was shown to be applicable for measuring in vivo loads within a polyethylene mobile UKR bearing. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Intelligent Mobile Sensor System for drum inspection and monitoring - Volume 2. Final report, October 1, 1993 - April 22, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The objective of the Intelligent Mobile Sensor System (IMSS) project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort was a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The system has an integrated sensor suite for problem-drum detection, and creates and maintains a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort was separated into three phases of which phase three is now complete. The first phase demonstrated an integrated system (maturity level IVa) for monitoring and inspection activities for waste storage facility operations. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype employed an integrated design that considered operational requirements, hardware costs, maintenance, safety, and robustness. The final phase has demonstrated the commercial viability of the vehicle in operating waste storage facilities at Fernald, Ohio and the Idaho National Engineering Laboratory (INEL). This report summarizes the system upgrades performed in phase 3 and the evaluation of the IMSS Phase 3 system and vehicle

  4. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor.

    Science.gov (United States)

    Lachenmeier, Dirk W; Godelmann, Rolf; Steiner, Markus; Ansay, Bob; Weigel, Jürgen; Krieg, Gunther

    2010-03-23

    Ever since Gay-Lussac's time, the alcoholic strength by volume (% vol) has been determined by using densimetric measurements. The typical reference procedure involves distillation followed by pycnometry, which is comparably labour-intensive and therefore expensive. At present, infrared (IR) spectroscopy in combination with multivariate regression is widely applied as a screening procedure, which allows one to determine alcoholic strength in less than 2 min without any sample preparation. The disadvantage is the relatively large investment for Fourier transform (FT) IR or near-IR instruments, and the need for matrix-dependent calibration. In this study, we apply a much simpler device consisting of a patented multiple-beam infrared sensor in combination with a flow-through cell for automated alcohol analysis, which is available in a portable version that allows for on-site measurements. During method validation, the precision of the infrared sensor was found to be equal to or better than densimetric or FTIR methods. For example, the average repeatability, as determined in 6 different wine samples, was 0.05% vol and the relative standard deviation was below 0.2%. Accuracy was ensured by analyzing 260 different alcoholic beverages in comparison to densimetric or FTIR results. The correlation was linear over the entire range from alcohol-free beers up to high-proof spirits, and the results were in substantial agreement (R = 0.99981, p wines during fermentation, and for the determination of unrecorded alcohol (i.e. non-commercial or illicit products). The flow-through infrared device is much easier to handle than typical reference procedures, while time-consuming sample preparation steps such as distillation are not necessary. Therefore, the alcoholic strength can be economically and quickly controlled (requiring less than 60 s per sample). The device also gives the opportunity for mobile on-site control in the context of labelling control of wine, beer and spirits, the

  5. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor

    Directory of Open Access Journals (Sweden)

    Ansay Bob

    2010-03-01

    Full Text Available Abstract Background Ever since Gay-Lussac's time, the alcoholic strength by volume (% vol has been determined by using densimetric measurements. The typical reference procedure involves distillation followed by pycnometry, which is comparably labour-intensive and therefore expensive. At present, infrared (IR spectroscopy in combination with multivariate regression is widely applied as a screening procedure, which allows one to determine alcoholic strength in less than 2 min without any sample preparation. The disadvantage is the relatively large investment for Fourier transform (FT IR or near-IR instruments, and the need for matrix-dependent calibration. In this study, we apply a much simpler device consisting of a patented multiple-beam infrared sensor in combination with a flow-through cell for automated alcohol analysis, which is available in a portable version that allows for on-site measurements. Results During method validation, the precision of the infrared sensor was found to be equal to or better than densimetric or FTIR methods. For example, the average repeatability, as determined in 6 different wine samples, was 0.05% vol and the relative standard deviation was below 0.2%. Accuracy was ensured by analyzing 260 different alcoholic beverages in comparison to densimetric or FTIR results. The correlation was linear over the entire range from alcohol-free beers up to high-proof spirits, and the results were in substantial agreement (R = 0.99981, p Conclusions The flow-through infrared device is much easier to handle than typical reference procedures, while time-consuming sample preparation steps such as distillation are not necessary. Therefore, the alcoholic strength can be economically and quickly controlled (requiring less than 60 s per sample. The device also gives the opportunity for mobile on-site control in the context of labelling control of wine, beer and spirits, the process monitoring of fermentations, or the evaluation of

  6. Intelligent mobile sensor system for drum inspection and monitoring: Topical report, October 1, 1993--April 22, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    The objective of the Intelligent Mobile Sensor System (IMSS) project is to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The system has an integrated sensor suite for problem-drum detection, and is linked to a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase two is now complete. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project. This report summarizes the design and evaluation of the new IMSS Phase 2 system and vehicle. Several parts of the IMSS Phase 1 Topical (Final) Report, which describes the requirements, design guidelines, and detailed design of the Phase 1 IMSS vehicle, are incorporated here, with modifications to reflect the changes in the design and the new elements added during the Phase 2 work

  7. Intelligent Mobile Sensor System for drum inspection and monitoring - Volume 1. Final report, October 1, 1993 - April 22, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    The objective of the Intelligent Mobile Sensor System (IMSS) project is to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in the narrow free aisle space between rows of stacked drums. The system has an integrated sensor suite for problem-drum detection, and is linked to a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which portions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 96% of drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase two is now complete. The first phase demonstrated an integrated system (maturity level IVa) for monitoring and inspection activities for waste storage facility operations. The second phase demonstrated a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project. This report summarizes the design and evaluation of the new IMSS Phase 2 system and vehicle

  8. Modelling and precision of the localization of the robotic mobile platforms for constructions with laser tracker and SmartTrack sensor

    Science.gov (United States)

    Dima, M.; Francu, C.

    2016-08-01

    This paper presents a way to expand the field of use of the laser tracker and SmartTrack sensor localization device used in lately for the localisation of the end effector of the industrial robots to the localization of the mobile construction robots. The research paper presents the equipment along with its characteristics, determines the relationships for the localization coordinates by comparison to the forward kinematics of the industrial robot's spherical arm (positioning mechanism in spherical coordinates) and the orientation mechanism with three revolute axes. In the end of the paper the accuracy of the mobile robot's localization is analysed.

  9. A new approach to self-localization for mobile robots using sensor data fusion

    International Nuclear Information System (INIS)

    Moshiri, B.; Asharif, M.; Hoseim Nezhad, R.

    2002-01-01

    This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMB mark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such as ultrasonic or laser range finders for automatic calibration. Manual measurement is necessary in the case of the robots that are not equipped with long-range detectors or such smart encoder trailer. Our proposed approach uses an environment map that is created by fusion of proximity data, in order to calibrate the odometry error automatically. In the new approach, the systematic part of the error is adaptively estimated and compensated by an efficient and incremental maximum likelihood algorithm. Actually, environment map data are fused with the odometry and current sensory data in order to acquire the maximum likelihood estimation. The advantages of the proposed approach are demonstrated in some experiments with Khepera robot. It is shown that the amount of pose estimation error is reduced by a percentage of more than 80%

  10. Ergonomic analysis of construction worker's body postures using wearable mobile sensors.

    Science.gov (United States)

    Nath, Nipun D; Akhavian, Reza; Behzadan, Amir H

    2017-07-01

    Construction jobs are more labor-intensive compared to other industries. As such, construction workers are often required to exceed their natural physical capability to cope with the increasing complexity and challenges in this industry. Over long periods of time, this sustained physical labor causes bodily injuries to the workers which in turn, conveys huge losses to the industry in terms of money, time, and productivity. Various safety and health organizations have established rules and regulations that limit the amount and intensity of workers' physical movements to mitigate work-related bodily injuries. A precursor to enforcing and implementing such regulations and improving the ergonomics conditions on the jobsite is to identify physical risks associated with a particular task. Manually assessing a field activity to identify the ergonomic risks is not trivial and often requires extra effort which may render it to be challenging if not impossible. In this paper, a low-cost ubiquitous approach is presented and validated which deploys built-in smartphone sensors to unobtrusively monitor workers' bodily postures and autonomously identify potential work-related ergonomic risks. Results indicates that measurements of trunk and shoulder flexions of a worker by smartphone sensory data are very close to corresponding measurements by observation. The proposed method is applicable for workers in various occupations who are exposed to WMSDs due to awkward postures. Examples include, but are not limited to industry laborers, carpenters, welders, farmers, health assistants, teachers, and office workers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Radon emanation chamber: High sensitivity measurements for the SuperNEMO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soulé, B. [Université Bordeaux 1, Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Chemin du Solarium, Le Haut-Vigneau, BP120, F-33175 Gradignan (France); Collaboration: SuperNEMO Collaboration; and others

    2013-08-08

    Radon is a well-known source of background in ββ0ν experiments due to the high Q{sub β} value of one of its daughter nucleus, {sup 214}Bi. The SuperNEMO collaboration requires a maximum radon contamination of 0.1 mBq/m{sup 3} inside its next-generation double beta decay detector. To reach such a low activity, a drastic screening process has been set for the selection of the detector's materials. In addition to a good radiopurity, a low emanation rate is required. To test this parameter, a Radon Emanation Setup is running at CENBG. It consists in a large emanation chamber connected to an electrostatic detector. By measuring large samples and having a low background level, this setup reaches a sensitivity of a few μ Bq. m{sup −2}. d{sup −1} and is able to qualify materials used in the construction of the SuperNEMO detector.

  12. A New Terrain Classification Framework Using Proprioceptive Sensors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    2017-01-01

    Full Text Available Mobile robots that operate in real-world environments interact with the surroundings to generate complex acoustics and vibration signals, which carry rich information about the terrain. This paper presents a new terrain classification framework that utilizes both acoustics and vibration signals resulting from the robot-terrain interaction. As an alternative to handcrafted domain-specific feature extraction, a two-stage feature selection method combining ReliefF and mRMR algorithms was developed to select optimal feature subsets that carry more discriminative information. As different data sources can provide complementary information, a multiclassifier combination method was proposed by considering a priori knowledge and fusing predictions from five data sources: one acoustic data source and four vibration data sources. In this study, four conceptually different classifiers were employed to perform the classification, each with a different number of optimal features. Signals were collected using a tracked robot moving at three different speeds on six different terrains. The new framework successfully improved classification performance of different classifiers using the newly developed optimal feature subsets. The greater improvement was observed for robot traversing at lower speeds.

  13. Intelligent mobile sensor system for drum inspection and monitoring: Phase 1

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of this project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in narrow aisles and interpolating the free aisle space between rows of stacked drums. The system has an integrated sensor suite for leak detection, and is interfaced with a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which positions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 90% of all drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase one is now complete. The first phase has demonstrated an integrated system for monitoring and inspection activities for waste storage facility operations. This demonstration system was quickly fielded and evaluated by leveraging technologies developed from previous NASA and DARPA contracts and internal research. The second phase will demonstrate a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project

  14. Novel hypomorphic mutation in IKBKG impairs NEMO-ubiquitylation causing ectodermal dysplasia, immunodeficiency, incontinentia pigmenti, and immune thrombocytopenic purpura.

    Science.gov (United States)

    Ramírez-Alejo, Noé; Alcántara-Montiel, Julio C; Yamazaki-Nakashimada, Marco; Duran-McKinster, Carola; Valenzuela-León, Paola; Rivas-Larrauri, Francisco; Cedillo-Barrón, Leticia; Hernández-Rivas, Rosaura; Santos-Argumedo, Leopoldo

    2015-10-01

    NF-κB essential modulator (NEMO) is a component of the IKK complex, which participates in the activation of the NF-κB pathway. Hypomorphic mutations in the IKBKG gene result in different forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males without affecting carrier females. Here, we describe a hypomorphic and missense mutation, designated c.916G>A (p.D306N), which affects our patient, his mother, and his sister. This mutation did not affect NEMO expression; however, an immunoprecipitation assay revealed reduced ubiquitylation upon CD40-stimulation in the patient's cells. Functional studies have demonstrated reduced phosphorylation and degradation of IκBα, affecting NF-κB recruitment into the nucleus. The patient presented with clinical features of ectodermal dysplasia, immunodeficiency, and immune thrombocytopenic purpura, the latter of which has not been previously reported in a patient with NEMO deficiency. His mother and sister displayed incontinentia pigmenti indicating that, in addition to amorphic mutations, hypomorphic mutations in NEMO can affect females. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Study of tracking detector of NEMO3 experiment - simulation of the measurement of the ultra low {sup 208}Tl radioactivity in the source foils used as neutrinoless double beta decay emitters in NEMO3 experiment; Etude du detecteur de traces de l'experience NEMO3. Simulation de la mesure de l'ultra-faible radioactivite en {sup 208}Tl des sources de l'experience NEMO3 candidates a la double desintegration {beta} sans emission de neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Errahmane, K

    2001-04-01

    The purpose of NEMO3 experiment is the research of the neutrinoless double beta decay. This low energy process can sign the massive and Majorana nature of neutrino. This experiment, with a very low radioactive background and containing 10 kg of enriched isotopes, studies mainly {sup 100}Mo. Installed at the Frejus underground laboratory, NEMO3 is a cylindrical detector, which consists in very thin central source foils, in a tracking detector made up of vertical drift cells operating in Geiger mode, in a calorimeter and in a suitable shielding. This thesis is divided in two different parts. The first part is a full study of the features of the tracking detector. With a prototype composed of 9 drift cells, we characterised the longitudinal and transverse reconstruction of position of the ionisation created by a LASER. With the first 3 modules under operation, we used radioactive external neutron sources to measure the transverse resolution of ionisation position in a drift cell for high energy electrons. To study the vertex reconstruction on the source foil, sources of {sup 207}Bi, which produced conversion electrons, were used inside the 3 modules. The second part of this thesis, we show, with simulations, that we can measure, with NEMO3 detector itself, the ultra low level of contamination in {sup 208}Tl of the source foil, which comes from the natural radioactive chain of thorium. Using electron-photons channels, we can obtain the {sup 208}Tl activity in the sources. With an analysis on the energy and on the time of flight of particles, NEMO3 is able to reach a sensitivity of 20{mu}Bq/kg after only 2 months of measurement. This sensitivity is the maximum {sup 208}Tl activity, which we accepted for the sources in the NEMO3 proposal. (author)

  16. Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges

    Directory of Open Access Journals (Sweden)

    George M. Woodall

    2017-09-01

    Full Text Available The US Environmental Protection Agency (EPA and other federal agencies face a number of challenges in interpreting and reconciling short-duration (seconds to minutes readings from mobile and handheld air sensors with the longer duration averages (hours to days associated with the National Ambient Air Quality Standards (NAAQS for the criteria pollutants-particulate matter (PM, ozone, carbon monoxide, lead, nitrogen oxides, and sulfur oxides. Similar issues are equally relevant to the hazardous air pollutants (HAPs where chemical-specific health effect reference values are the best indicators of exposure limits; values which are often based on a lifetime of continuous exposure. A multi-agency, staff-level Air Sensors Health Group (ASHG was convened in 2013. ASHG represents a multi-institutional collaboration of Federal agencies devoted to discovery and discussion of sensor technologies, interpretation of sensor data, defining the state of sensor-related science across each institution, and provides consultation on how sensors might effectively be used to meet a wide range of research and decision support needs. ASHG focuses on several fronts: improving the understanding of what hand-held sensor technologies may be able to deliver; communicating what hand-held sensor readings can provide to a number of audiences; the challenges of how to integrate data generated by multiple entities using new and unproven technologies; and defining best practices in communicating health-related messages to various audiences. This review summarizes the challenges, successes, and promising tools of those initial ASHG efforts and Federal agency progress on crafting similar products for use with other NAAQS pollutants and the HAPs. NOTE: The opinions expressed are those of the authors and do not necessary represent the opinions of their Federal Agencies or the US Government. Mention of product names does not constitute endorsement.

  17. Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study.

    Science.gov (United States)

    Sano, Akane; Taylor, Sara; McHill, Andrew W; Phillips, Andrew Jk; Barger, Laura K; Klerman, Elizabeth; Picard, Rosalind

    2018-06-08

    Wearable and mobile devices that capture multimodal data have the potential to identify risk factors for high stress and poor mental health and to provide information to improve health and well-being. We developed new tools that provide objective physiological and behavioral measures using wearable sensors and mobile phones, together with methods that improve their data integrity. The aim of this study was to examine, using machine learning, how accurately these measures could identify conditions of self-reported high stress and poor mental health and which of the underlying modalities and measures were most accurate in identifying those conditions. We designed and conducted the 1-month SNAPSHOT study that investigated how daily behaviors and social networks influence self-reported stress, mood, and other health or well-being-related factors. We collected over 145,000 hours of data from 201 college students (age: 18-25 years, male:female=1.8:1) at one university, all recruited within self-identified social groups. Each student filled out standardized pre- and postquestionnaires on stress and mental health; during the month, each student completed twice-daily electronic diaries (e-diaries), wore two wrist-based sensors that recorded continuous physical activity and autonomic physiology, and installed an app on their mobile phone that recorded phone usage and geolocation patterns. We developed tools to make data collection more efficient, including data-check systems for sensor and mobile phone data and an e-diary administrative module for study investigators to locate possible errors in the e-diaries and communicate with participants to correct their entries promptly, which reduced the time taken to clean e-diary data by 69%. We constructed features and applied machine learning to the multimodal data to identify factors associated with self-reported poststudy stress and mental health, including behaviors that can be possibly modified by the individual to improve

  18. Design and assembly of the optical modules for phase-2 of the NEMO project

    Energy Technology Data Exchange (ETDEWEB)

    Leonora, E., E-mail: emanuele.leonora@ct.infn.it; Aiello, S.

    2013-10-11

    The NEMO collaboration team has undertaken a Phase-2 project, which aims at the realization and installation of a new infrastructure at the Capo Passero (Italy) deep-sea site at a depth of 3500 m. With this objective in mind, a fully equipped tower with 8-storey hosting two optical modules at each end is under construction. Following a well established procedure, 32 optical modules have been assembled. The optical module consists of a large area photomultiplier tube enclosed in a pressure resistant glass sphere with a diameter of 13 in. The photomultiplier is a R7081 type, produced by Hamamatsu, with a photocathode area with a diameter of 10 in. and 10 dynodes. Mechanical and optical contacts between the front of the photomultiplier tube and the glass surface are ensured by an optical bi-component silicone gel. A mu-metal cage is used to shield the photomultiplier against the influence of the Earth's magnetic field.

  19. Jules Verne's Captain Nemo and French Revolutionary Gustave Flourens:A Hidden Character Model?

    Directory of Open Access Journals (Sweden)

    Leonidas Kallivretakis

    2005-01-01

    Full Text Available This article treats the recent assumption made by Vernian specialist William Butcher that Jules Verne's most famous character, Captain Nemo, is based on the French revolutionary intellectual Gustave Flourens (1838-1871, son of the eminent physiologist J. P. M. Flourens. Gustave Flourens fought in the Cretan insurrection of 1866-1868, later participated in the republican opposition against Napoleon III's imperial regime, eventually became a friend of Karl Marx and was finally killed as a general of the Paris Commune. By comparing step-by-step Verne's inspiration and writing procedures with Flourens' unfolding activities and fame, it is concluded that there is little basis for such an assumption. The article includes also a brief account of the Cretan question in the nineteenth century and of the deep discord between Marx's and Flourens' respective analyses of the Eastern Question.

  20. NEMO. A novel techno-economic tool suite for simulating and optimizing solutions for grid integration of electric vehicles and charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Erge, Thomas; Stillahn, Thies; Dallmer-Zerbe, Kilian; Wille-Haussmann, Bernhard [Frauenhofer Institut for Solar Energy Systems ISE, Freiburg (Germany)

    2013-07-01

    With an increasing use of electric vehicles (EV) grid operators need to predict energy flows depending on electromobility use profiles to accordingly adjust grid infrastructure and operation control accordingly. Tools and methodologies are required to characterize grid problems resulting from the interconnection of EV with the grid. The simulation and optimization tool suite NEMO (Novel E-MObility grid model) was developed within a European research project and is currently being tested using realistic showcases. It is a combination of three professional tools. One of the tools aims at a combined techno-economic design and operation, primarily modeling plants on contracts or the spot market, at the same time participating in balancing markets. The second tool is designed for planning grid extension or reinforcement while the third tool is mainly used to quickly discover potential conflicts of grid operation approaches through load flow analysis. The tool suite is used to investigate real showcases in Denmark, Germany and the Netherlands. First studies show that significant alleviation of stress on distribution grid lines could be achieved by few but intelligent restrictions to EV charging procedures.

  1. NEMO. A novel techno-economic tool suite for simulating and optimizing solutions for grid integration of electric vehicles and charging stations

    International Nuclear Information System (INIS)

    Erge, Thomas; Stillahn, Thies; Dallmer-Zerbe, Kilian; Wille-Haussmann, Bernhard

    2013-01-01

    With an increasing use of electric vehicles (EV) grid operators need to predict energy flows depending on electromobility use profiles to accordingly adjust grid infrastructure and operation control accordingly. Tools and methodologies are required to characterize grid problems resulting from the interconnection of EV with the grid. The simulation and optimization tool suite NEMO (Novel E-MObility grid model) was developed within a European research project and is currently being tested using realistic showcases. It is a combination of three professional tools. One of the tools aims at a combined techno-economic design and operation, primarily modeling plants on contracts or the spot market, at the same time participating in balancing markets. The second tool is designed for planning grid extension or reinforcement while the third tool is mainly used to quickly discover potential conflicts of grid operation approaches through load flow analysis. The tool suite is used to investigate real showcases in Denmark, Germany and the Netherlands. First studies show that significant alleviation of stress on distribution grid lines could be achieved by few but intelligent restrictions to EV charging procedures.

  2. NEMO: Extraction and normalization of organization names from PubMed affiliations.

    Science.gov (United States)

    Jonnalagadda, Siddhartha Reddy; Topham, Philip

    2010-10-04

    Today, there are more than 18 million articles related to biomedical research indexed in MEDLINE, and information derived from them could be used effectively to save the great amount of time and resources spent by government agencies in understanding the scientific landscape, including key opinion leaders and centers of excellence. Associating biomedical articles with organization names could significantly benefit the pharmaceutical marketing industry, health care funding agencies and public health officials and be useful for other scientists in normalizing author names, automatically creating citations, indexing articles and identifying potential resources or collaborators. Large amount of extracted information helps in disambiguating organization names using machine-learning algorithms. We propose NEMO, a system for extracting organization names in the affiliation and normalizing them to a canonical organization name. Our parsing process involves multi-layered rule matching with multiple dictionaries. The system achieves more than 98% f-score in extracting organization names. Our process of normalization that involves clustering based on local sequence alignment metrics and local learning based on finding connected components. A high precision was also observed in normalization. NEMO is the missing link in associating each biomedical paper and its authors to an organization name in its canonical form and the Geopolitical location of the organization. This research could potentially help in analyzing large social networks of organizations for landscaping a particular topic, improving performance of author disambiguation, adding weak links in the co-author network of authors, augmenting NLM's MARS system for correcting errors in OCR output of affiliation field, and automatically indexing the PubMed citations with the normalized organization name and country. Our system is available as a graphical user interface available for download along with this paper.

  3. NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration

    Directory of Open Access Journals (Sweden)

    C. Maraldi

    2013-08-01

    Full Text Available This work describes the design and validation of a high-resolution (1/36° ocean forecasting model over the "Iberian–Biscay–Irish" (IBI area. The system has been set-up using the NEMO model (Nucleus for European Modelling of the Ocean. New developments have been incorporated in NEMO to make it suitable to open- as well as coastal-ocean modelling. In this paper, we pursue three main objectives: (1 to give an overview of the model configuration used for the simulations; (2 to give a broad-brush account of one particular aspect of this work, namely consistency verification; this type of validation is conducted upstream of the implementation of the system before it is used for production and routinely validated; it is meant to guide model development in identifying gross deficiencies in the modelling of several key physical processes; and (3 to show that such a regional modelling system has potential as a complement to patchy observations (an integrated approach to give information on non-observed physical quantities and to provide links between observations by identifying broader-scale patterns and processes. We concentrate on the year 2008. We first provide domain-wide consistency verification results in terms of barotropic tides, transports, sea surface temperature and stratification. We then focus on two dynamical subregions: the Celtic shelves and the Bay of Biscay slope and deep regions. The model–data consistency is checked for variables and processes such as tidal currents, tidal fronts, internal tides and residual elevation. We also examine the representation in the model of a seasonal pattern of the Bay of Biscay circulation: the warm extension of the Iberian Poleward Current along the northern Spanish coast (Navidad event in the winter of 2007–2008.

  4. Dynamic Wireless Sensor Network Based on Mobile Base Station%基于移动基站的动态无线传感器网络

    Institute of Scientific and Technical Information of China (English)

    周小佳; 吴侠; 闫斌

    2011-01-01

    针对无线传感器网络(WSN)中的“路由热点”问题,提出了在簇头移动的前提下基于事件驱动的基站簇头混合移动策略BS-CH HMS(base station-cluster head hybrid mobile strategy).该策略根据CH(cluster head)移动时的能量损耗确定CH的移动轨迹,制定基站的协作移动策略.理论分析和仿真结果表明:采用所提出的混合移动策略,簇头的能量消耗比采用单独移动CH的路由策略节省30%,提高了移动簇头的能量效率,延长了网络的生命周期.%In order to investigate the route hotspot problem in wireless sensor network ( WSN), a BS-CH (base station-cluster head) hybrid mobile strategy based on event-driven, BS-CH HMS (base station-cluster head hybrid mobile strategy) , was proposed on the assumption of CH mobility. In this strategy, the mobile path of CH ( cluster head ) is determined and the cooperative mobile strategy of the base station is designed in light of the energy consumption of moving CH. The theoretical analysis and simulation results show that using the BS-CH HMS compared with using a single CH mobile strategy, CH energy consumption is decreased by 30% to enhance the energy efficiency of moving CH and prolong the lifetime of WSN.

  5. A Comparative Study on Two Typical Schemes for Securing Spatial-Temporal Top-k Queries in Two-Tiered Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Xingpo; Liu, Xingjian; Liang, Junbin; Li, Yin; Li, Ran; Ma, Wenpeng; Qi, Chuanda

    2018-03-15

    A novel network paradigm of mobile edge computing, namely TMWSNs (two-tiered mobile wireless sensor networks), has just been proposed by researchers in recent years for its high scalability and robustness. However, only a few works have considered the security of TMWSNs. In fact, the storage nodes, which are located at the upper layer of TMWSNs, are prone to being attacked by the adversaries because they play a key role in bridging both the sensor nodes and the sink, which may lead to the disclosure of all data stored on them as well as some other potentially devastating results. In this paper, we make a comparative study on two typical schemes, EVTopk and VTMSN, which have been proposed recently for securing Top- k queries in TMWSNs, through both theoretical analysis and extensive simulations, aiming at finding out their disadvantages and advancements. We find that both schemes unsatisfactorily raise communication costs. Specifically, the extra communication cost brought about by transmitting the proof information uses up more than 40% of the total communication cost between the sensor nodes and the storage nodes, and 80% of that between the storage nodes and the sink. We discuss the corresponding reasons and present our suggestions, hoping that it will inspire the researchers researching this subject.

  6. Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate.

    Science.gov (United States)

    Chu, Byung Hwan; Kang, Byoung Sam; Hung, Sheng Chun; Chen, Ke Hung; Ren, Fan; Sciullo, Andrew; Gila, Brent P; Pearton, Stephen J

    2010-01-01

    Immobilized aluminum gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) have shown great potential in the areas of pH, chloride ion, and glucose detection in exhaled breath condensate (EBC). HEMT sensors can be integrated into a wireless data transmission system that allows for remote monitoring. This technology offers the possibility of using AlGaN/GaN HEMTs for extended investigations of airway pathology of detecting glucose in EBC without the need for clinical visits. HEMT structures, consisting of a 3-microm-thick undoped GaN buffer, 30-A-thick Al(0.3)Ga(0.7)N spacer, and 220-A-thick silicon-doped Al(0.3)Ga(0.7)N cap layer, were used for fabricating the HEMT sensors. The gate area of the pH, chloride ion, and glucose detection was immobilized with scandium oxide (Sc(2)O(3)), silver chloride (AgCl) thin film, and zinc oxide (ZnO) nanorods, respectively. The Sc(2)O(3)-gated sensor could detect the pH of solutions ranging from 3 to 10 with a resolution of approximately 0.1 pH. A chloride ion detection limit of 10(-8) M was achieved with a HEMT sensor immobilized with the AgCl thin film. The drain-source current of the ZnO nanorod-gated AlGaN/GaN HEMT sensor immobilized with glucose oxidase showed a rapid response of less than 5 seconds when the sensor was exposed to the target glucose in a buffer with a pH value of 7.4. The sensor could detect a wide range of concentrations from 0.5 nM to 125 microM. There is great promise for using HEMT-based sensors to enhance the detection sensitivity for glucose detection in EBC. Depending on the immobilized material, HEMT-based sensors can be used for sensing different materials. These electronic detection approaches with rapid response and good repeatability show potential for the investigation of airway pathology. The devices can also be integrated into a wireless data transmission system for remote monitoring applications. This sensor technology could use the exhaled breath condensate to measure the

  7. Development and deployment of a low-cost, mobile-ready, air quality sensor system: progress toward distributed networks and autonomous aerial sampling

    Science.gov (United States)

    Hersey, S. P.; DiVerdi, R.; Gadtaula, P.; Sheneman, T.; Flores, K.; Chen, Y. H.; Jayne, J. T.; Cross, E. S.

    2017-12-01

    Throughout the 2016-2017 academic year, a new partnership between Olin College of Engineering and Aerodyne Research, Inc. developed an affordable, self-contained air quality monitoring instrument called Modulair. The Modulair instrument is based on the same operating principles as Aerodyne's newly-developed ARISense integrated sensor system, employing electrochemical sensors for gas-phase measurements of CO, NO, NO2, and O3 and an off-the-shelf optical particle counter for particle concentration, number, and size distribution information (0.4 backend with a mobile, cloud-based data management system for real-time data posting and analysis. Open source tools and software were utilized in the development of the instrument. All initial work was completed by a team of undergraduate students as part of the Senior Capstone Program in Engineering (SCOPE) at Olin College. Deployment strategies for Modulair include distributed, mobile measurements and drone-based aerial sampling. Design goals for the drone integration include maximizing airborne sampling time and laying the foundation for software integration with the drone's autopilot system to allow for autonomous plume sampling across concentration gradients. Modulair and its flexible deployments enable real-time mapping of air quality data at exposure-relevant spatial scales, as well as regular, autonomous characterization of sources and dispersion of atmospheric pollutants. We will present an overview of the Modulair instrument and results from benchtop and field validation, including mobile and drone-based plume sampling in the Boston area.

  8. Mobile Sensors Environmental Assessment

    Science.gov (United States)

    2005-09-26

    rhinoceros auklet; red-winged blackbird; red-tailed hawk; great horned owl; and golden eagle have also been spotted. (U.S. Department of the Air Force...Coleoptera ( beetles ). (WILC Supplemental EA, 1999) The main predators on the island include feral cats and rats. Skinks and geckos (introduced

  9. Agriculture/Hydroaquaoponic Bioscience Sensor - Mobile App with Simulations and Software for Industry and Science Education Curriculum Module

    OpenAIRE

    Christine M. Yukech

    2015-01-01

    There is a lot of technological buzz over the past few years regarding taking care of lettuce and hydroponic greenhouse plants and fish. We first review and discuss the recent technologies in the field of hydroponics, especially the hydroponic sensor curriculum project. The College of Engineering at The University of Akron developed a sensor that can detect hydrology, ph, electrical conductivity, nutrient levels, and temperature of hydroponic plants and aquaponic systems. The sensor can optim...

  10. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea

    Science.gov (United States)

    Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari

    2017-08-01

    The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.

  11. Oceanographic conditions in the NEMO region during the KM3NeT project (April 2006-May 2009)

    International Nuclear Information System (INIS)

    Sparnocchia, Stefania; Pietro Gasparini, Gian; Schroeder, Katrin; Borghini, Mireno

    2011-01-01

    An intense observational activity was conducted in the NEMO region, western Ionian Sea, 40 nm south-east of Capo Passero (Sicily), in the framework of the KM3NeT project. Several oceanographic cruises were performed from 2006 to 2009 and current measurements carried out. The new data describe the present status of the deep layer and its evolution after the occurrence of a notable change that affected the Eastern Mediterranean water masses and circulation during the 1990's. In particular, they evidence the presence of a newly formed water mass in the abyssal layer of the Ionian Sea, coming likely from the Adriatic. Deep currents in the region are quite energetic, as already known, and highly variable both spatially and in strength. They are organized in a cyclonic circuit, with a prevalent north-west direction corresponding to the NEMO site.

  12. Capturing the sensitivity of land-use regression models to short-term mobile monitoring campaigns using air pollution micro-sensors.

    Science.gov (United States)

    Minet, L; Gehr, R; Hatzopoulou, M

    2017-11-01

    The development of reliable measures of exposure to traffic-related air pollution is crucial for the evaluation of the health effects of transportation. Land-use regression (LUR) techniques have been widely used for the development of exposure surfaces, however these surfaces are often highly sensitive to the data collected. With the rise of inexpensive air pollution sensors paired with GPS devices, we witness the emergence of mobile data collection protocols. For the same urban area, can we achieve a 'universal' model irrespective of the number of locations and sampling visits? Can we trade the temporal representation of fixed-point sampling for a larger spatial extent afforded by mobile monitoring? This study highlights the challenges of short-term mobile sampling campaigns in terms of the resulting exposure surfaces. A mobile monitoring campaign was conducted in 2015 in Montreal; nitrogen dioxide (NO 2 ) levels at 1395 road segments were measured under repeated visits. We developed LUR models based on sub-segments, categorized in terms of the number of visits per road segment. We observe that LUR models were highly sensitive to the number of road segments and to the number of visits per road segment. The associated exposure surfaces were also highly dissimilar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A virtual infrastructure based on honeycomb tessellation for data dissemination in multi-sink mobile wireless sensor networks

    NARCIS (Netherlands)

    Erman-Tüysüz, A.; Dilo, Arta; Havinga, Paul J.M.

    2012-01-01

    A new category of intelligent sensor network applications emerges where motion is a fundamental characteristic of the system under consideration. In such applications, sensors are attached to vehicles, or people that move around large geographic areas. For instance, in mission critical applications

  14. Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores

    Directory of Open Access Journals (Sweden)

    Youngmin Kim

    2017-12-01

    Full Text Available In wireless sensor networks (WSNs, sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods.

  15. Long term monitoring of the optical background in the Capo Passero deep-sea site with the NEMO tower prototype

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Saldana, M.; Aiello, S.; Giordano, V.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sipala, V.; Ventura, C.; Ameli, F.; Biagioni, A.; De Bonis, G.; Fermani, P.; Lonardo, A.; Nicolau, C.A.; Simeone, F.; Vicini, P.; Anghinolfi, M.; Hugon, C.; Musico, P.; Orzelli, A.; Sanguineti, M.; Barbarino, G.; Barbato, F.C.T.; De Rosa, G.; Di Capua, F.; Garufi, F.; Vivolo, D.; Barbarito, E.; Beverini, N.; Calamai, M.; Maccioni, E.; Marinelli, A.; Terreni, G.; Biagi, S.; Cacopardo, G.; Cali, C.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; De Luca, V.; Distefano, C.; Gmerk, A.; Grasso, R.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismueller, K.P.; Litrico, P.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pulvirenti, S.; Riccobene, G.; Rovelli, A.; Sapienza, P.; Sciacca, V.; Speziale, F.; Spitaleri, A.; Trovato, A.; Viola, S.; Bouhadef, B.; Flaminio, V.; Raffaelli, F.; Bozza, C.; Grella, G.; Stellacci, S.M.; Calvo, D.; Real, D.; Capone, A.; Masullo, R.; Perrina, C.; Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I.; Chiarusi, T.; D'Amico, A.; Deniskina, N.; Migliozzi, P.; Mollo, C.M.; Enzenhoefer, A.; Lahmann, R.; Ferrara, G.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Lo Presti, D.; Pugliatti, C.; Martini, A.; Trasatti, L.; Morganti, M.; Pellegriti, M.G.; Piattelli, P.; Taiuti, M.

    2016-01-01

    The NEMO Phase-2 tower is the first detector which was operated underwater for more than 1 year at the ''record'' depth of 3500 m. It was designed and built within the framework of the NEMO (NEutrino Mediterranean Observatory) project. The 380 m high tower was successfully installed in March 2013 80 km offshore Capo Passero (Italy). This is the first prototype operated on the site where the Italian node of the KM3NeT neutrino telescope will be built. The installation and operation of the NEMO Phase-2 tower has proven the functionality of the infrastructure and the operability at 3500 m depth. A more than 1 year long monitoring of the deep water characteristics of the site has been also provided. In this paper the infrastructure and the tower structure and instrumentation are described. The results of long term optical background measurements are presented. The rates show stable and low baseline values, compatible with the contribution of 40 K light emission, with a small percentage of light bursts due to bioluminescence. All these features confirm the stability and good optical properties of the site. (orig.)

  16. Long term monitoring of the optical background in the Capo Passero deep-sea site with the NEMO tower prototype

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Saldana, M. [Universitat Politecnica de Valencia, Instituto de Investigacion para la Gestion Integrada de las Zonas Costeras, Gandia (Spain); Aiello, S.; Giordano, V.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sipala, V.; Ventura, C. [INFN Sezione Catania, Catania (Italy); Ameli, F.; Biagioni, A.; De Bonis, G.; Fermani, P.; Lonardo, A.; Nicolau, C.A.; Simeone, F.; Vicini, P. [INFN Sezione Roma, Rome (Italy); Anghinolfi, M.; Hugon, C.; Musico, P.; Orzelli, A.; Sanguineti, M. [INFN Sezione Genova, Genoa (Italy); Barbarino, G.; Barbato, F.C.T.; De Rosa, G.; Di Capua, F.; Garufi, F.; Vivolo, D. [INFN Sezione Napoli, Naples (Italy); Dipartimento di Scienze Fisiche Universita di Napoli, Naples (Italy); Barbarito, E. [INFN Sezione Bari, Bari (Italy); Dipartimento Interateneo di Fisica Universita di Bari, Bari (Italy); Beverini, N.; Calamai, M.; Maccioni, E.; Marinelli, A.; Terreni, G. [INFN Sezione Pisa, Polo Fibonacci, Pisa (Italy); Dipartimento di Fisica Universita di Pisa, Polo Fibonacci, Pisa (Italy); Biagi, S.; Cacopardo, G.; Cali, C.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D' Amato, C.; De Luca, V.; Distefano, C.; Gmerk, A.; Grasso, R.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismueller, K.P.; Litrico, P.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pulvirenti, S.; Riccobene, G.; Rovelli, A.; Sapienza, P.; Sciacca, V.; Speziale, F.; Spitaleri, A.; Trovato, A.; Viola, S. [INFN Laboratori Nazionali del Sud, Catania (Italy); Bouhadef, B.; Flaminio, V.; Raffaelli, F. [INFN Sezione Pisa, Polo Fibonacci, Pisa (Italy); Bozza, C.; Grella, G.; Stellacci, S.M. [INFN Gruppo Collegato di Salerno, Fisciano (Italy); Dipartimento di Fisica Universita di Salerno, Fisciano (Italy); Calvo, D.; Real, D. [CSIC-Universitat de Valencia, IFIC-Instituto de Fisica Corpuscular, Valencia (Spain); Capone, A.; Masullo, R.; Perrina, C. [INFN Sezione Roma, Rome (Italy); Dipartimento di Fisica Universita ' ' Sapienza' ' , Rome (Italy); Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I. [INFN Sezione Bari, Bari (Italy); Chiarusi, T. [INFN Sezione Bologna, Bologna (Italy); D' Amico, A. [INFN Laboratori Nazionali del Sud, Catania (Italy); Nikhef, Science Park, Amsterdam (Netherlands); Deniskina, N.; Migliozzi, P.; Mollo, C.M. [INFN Sezione Napoli, Naples (Italy); Enzenhoefer, A.; Lahmann, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Ferrara, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia Universita di Catania, Catania (Italy); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M. [INFN Sezione Bologna, Bologna (Italy); Dipartimento di Fisica ed Astronomia Universita di Bologna, Bologna (Italy); Lo Presti, D.; Pugliatti, C. [INFN Sezione Catania, Catania (Italy); Dipartimento di Fisica e Astronomia Universita di Catania, Catania (Italy); Martini, A.; Trasatti, L. [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Morganti, M. [INFN Sezione Pisa, Polo Fibonacci, Pisa (Italy); Accademia Navale di Livorno, Livorno (Italy); Pellegriti, M.G. [INFN Laboratori Nazionali del Sud, Catania (IT); Piattelli, P. [INFN Laboratori Nazionali del Sud, Catania (IT); Taiuti, M. [INFN Sezione Genova, Genoa (IT); Dipartimento di Fisica Universita di Genova, Genoa (IT)

    2016-02-15

    The NEMO Phase-2 tower is the first detector which was operated underwater for more than 1 year at the ''record'' depth of 3500 m. It was designed and built within the framework of the NEMO (NEutrino Mediterranean Observatory) project. The 380 m high tower was successfully installed in March 2013 80 km offshore Capo Passero (Italy). This is the first prototype operated on the site where the Italian node of the KM3NeT neutrino telescope will be built. The installation and operation of the NEMO Phase-2 tower has proven the functionality of the infrastructure and the operability at 3500 m depth. A more than 1 year long monitoring of the deep water characteristics of the site has been also provided. In this paper the infrastructure and the tower structure and instrumentation are described. The results of long term optical background measurements are presented. The rates show stable and low baseline values, compatible with the contribution of {sup 40}K light emission, with a small percentage of light bursts due to bioluminescence. All these features confirm the stability and good optical properties of the site. (orig.)

  17. Evaluation of the coupled COSMO-CLM+NEMO-Nordic model with focus on North and Baltic seas

    Science.gov (United States)

    Lenhardt, J.; Pham, T. V.; Früh, B.; Brauch, J.

    2017-12-01

    The region east of the Baltic Sea has been identified as a hot-spot of climate change by Giorgi, 2006, on the base of temperature and precipitation variability. For this purpose, the atmosphere model COSMO-CLM has been coupled to the ocean model NEMO, including the sea ice model LIM3, via the OASIS3-MCT coupler (Pham et al., 2014). The coupler interpolates heat, fresh water, momentum fluxes, sea level pressure and the fraction of sea ice at the interface in space and time. Our aim is to find an optimal configuration of the already existing coupled regional atmospheric-ocean model COSMO-CLM+NEMO-Nordic. So far results for the North- and Baltic seas show that the coupled run has large biases compared with the E-OBS reference data. Therefore, additional simulation evaluations are planned by the use of independent satellite observation data (e.g. Copernicus, EURO4M). We have performed a series of runs with the coupled COSMO-CLM+NEMO-Nordic model to find out about differences of model outputs due to different coupling time steps. First analyses of COSMO-CLM 2m temperatures let presume that different coupling time steps have an impact on the results of the coupled model run. Additional tests over a longer period of time are conducted to understand whether the signal-to-noise ratio could influence the bias. The results will be presented in our poster.

  18. Control Design and Digital Implementation of a Fast 2-Degree-of-Freedom Translational Optical Image Stabilizer for Image Sensors in Mobile Camera Phones.

    Science.gov (United States)

    Wang, Jeremy H-S; Qiu, Kang-Fu; Chao, Paul C-P

    2017-10-13

    This study presents design, digital implementation and performance validation of a lead-lag controller for a 2-degree-of-freedom (DOF) translational optical image stabilizer (OIS) installed with a digital image sensor in mobile camera phones. Nowadays, OIS is an important feature of modern commercial mobile camera phones, which aims to mechanically reduce the image blur caused by hand shaking while shooting photos. The OIS developed in this study is able to move the imaging lens by actuating its voice coil motors (VCMs) at the required speed to the position that significantly compensates for imaging blurs by hand shaking. The compensation proposed is made possible by first establishing the exact, nonlinear equations of motion (EOMs) for the OIS, which is followed by designing a simple lead-lag controller based on established nonlinear EOMs for simple digital computation via a field-programmable gate array (FPGA) board in order to achieve fast response. Finally, experimental validation is conducted to show the favorable performance of the designed OIS; i.e., it is able to stabilize the lens holder to the desired position within 0.02 s, which is much less than previously reported times of around 0.1 s. Also, the resulting residual vibration is less than 2.2-2.5 μm, which is commensurate to the very small pixel size found in most of commercial image sensors; thus, significantly minimizing image blur caused by hand shaking.

  19. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  20. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    Directory of Open Access Journals (Sweden)

    Lusheng Wang

    2015-09-01

    Full Text Available With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI. In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG, forming a congestion game with ICI (CGI and a congestion game with capacity (CGC. For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE. Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell is profoundly revealed, and the collapse points are identified.

  1. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    Science.gov (United States)

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-09-18

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.

  2. On detection and automatic tracking of butt weld line in thin wall pipe welding by a mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Ishii, Hideaki; Muto, Akifumi

    1992-01-01

    An automatic pipe welding mobile robot system with visual sensor was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to make an automatic welding, the welding torch can track the butt weld line of the pipes at a constant speed by rotating the robot head. Main results obtained are summarized as follows: 1) Using a proper lighting fixed in front of the CCD camera, the butt weld line of thin wall pipes can be recongnized stably. In this case, the root gap should be approximately 0.5 mm. 2) In order to detect the weld line stably during moving along the pipe, a brightness distribution measured by the CCD camera should be subjected to smoothing and differentiating and then the weld line is judged by the maximum and minimum values of the differentials. 3) By means of the basic robot system with a visual sensor controlled by a personal computer, the detection and in-process automatic tracking of a weld line are possible. The average tracking error was approximately 0.2 mm and maximum error 0.5 mm and the welding speed was held at a constant value with error of about 0.1 cm/min. (author)

  3. Mobilities Mobilities

    Directory of Open Access Journals (Sweden)

    César Pompeyo

    2011-12-01

    Full Text Available Urry, John (2007 Mobilities.Oxford: Polity Press.Urry, John (2007 Mobilities.Oxford: Polity Press.John Urry (1946-, profesor en la Universidad de Lancaster, es un sociólogo de sobra conocido y altamente reputado en el panorama internacional de las ciencias sociales. Su dilatada carrera, aparentemente dispersa y diversificada, ha seguido senderos bastante bien definidos dejando tras de sí un catálogo extenso de obras sociológicas de primer nivel. Sus primeros trabajos se centraban en el campo de la teoría social y la filosofía de las ciencias sociales o de la sociología del poder [...

  4. A Cellular Bonding and Adaptive Load Balancing Based Multi-Sim Gateway for Mobile Ad Hoc and Sensor Networks

    OpenAIRE

    Francesco Beritelli; Aurelio La Corte; Corrado Rametta; Francesco Scaglione

    2018-01-01

    As it is well known, the QoS(quality of service) provided by mobile Internet access point devices is far from the QoS level offered by the common ADSL modem-router due to several reasons: in fact, mobile Internet access networks are not designed to support real-time data traffic because of several drawbacks concerning the wireless medium such as resource sharing, traffic congestion, radio link coverage etc., which impact directly such parameters as delay, jitter, and packet loss rate that are...

  5. Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection with Supervised Learning

    Science.gov (United States)

    Santoyo-Ramón, José Antonio

    2018-01-01

    This paper describes a wearable Fall Detection System (FDS) based on a body-area network consisting of four nodes provided with inertial sensors and Bluetooth wireless interfaces. The signals captured by the nodes are sent to a smartphone which simultaneously acts as another sensing point. In contrast to many FDSs proposed by the literature (which only consider a single sensor), the multisensory nature of the prototype is utilized to investigate the impact of the number and the positions of the sensors on the effectiveness of the production of the fall detection decision. In particular, the study assesses the capability of four popular machine learning algorithms to discriminate the dynamics of the Activities of Daily Living (ADLs) and falls generated by a set of experimental subjects, when the combined use of the sensors located on different parts of the body is considered. Prior to this, the election of the statistics that optimize the characterization of the acceleration signals and the efficacy of the FDS is also investigated. As another important methodological novelty in this field, the statistical significance of all the results (an aspect which is usually neglected by other works) is validated by an analysis of variance (ANOVA). PMID:29642638

  6. Development and Pre-Operational Validation of NEMO Based Eddy Ressolving Regional Configuration for Gulf of Finland

    Science.gov (United States)

    Sofina, Ekaterina; Vankevich, Roman; Tatiana, Eremina

    2014-05-01

    At the present day RSHU the Operational Oceanographic System for the Gulf of Finland (GULFOOS) is in a trial operation. For the future development of the operational system, the quality of which also strongly depends on the hydrothermodynamic model spatial resolution. The new model configuration has been implemented, based on the international project NEMO (Nucleus for European Modelling of the Ocean). Based on NEMO toolbox a new eddy permitting z-coordinated configuration realized with horizontal resolution 30x15'' (~500 m) and 1 m vertical step. Chosen horizontal resolution enough to resolve typical submesoscale eddies in this basin where the internal Rossby radius is usually 2-4 km [1]. Verification performed with use all available measurements including vessel, ferry boxes, autonomous profilers, satellite SST. It was shown that submesoscale eddies and filaments generated by baroclinic instability of fronts in upper layers of the Gulf can change vertical stratification and deepening of the mixed layer. Increase in the model resolution leads to a clear improvement of the representation of the key hydro-physical fields: filaments propagation, local eddies. Obtained results confirm that model adequately reproduce general circulation and seasonal evolution of vertical water structure. It is shown that NEMO model initially designed for a global ocean can be used in regional operational application in case of highly stratified shallow basin with complex bathymetry. Computation efficiency of the system including 3DVar assimilation was enough for 24x7 operational task on 12 nodes of Intel based cluster. Proposed regional modeling system has potential to give information on non-observed physical quantities and to provide links between observations by identifying small-scale patterns and processes. References 1. Alenius P., Nekrasov A., Myrberg, K. The baroclinic Rossby-radius in the Gulf of Finland. Continental Shelf Research, 2003, 23, 563-573.

  7. Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Directory of Open Access Journals (Sweden)

    P. Mathiot

    2017-07-01

    Full Text Available Ice-shelf–ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean–sea ice model NEMO (Nucleus for European Modelling of the Ocean currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface, inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.

  8. Guideline-based decision support for the mobile patient incorporating data streams from a body sensor network

    NARCIS (Netherlands)

    Fung, L.S.N.; Jones, Valerie M.; Bults, Richard G.A.; Hermens, Hermanus J.

    2014-01-01

    We present a mobile decision support system (mDSS) which helps patients adhere to best clinical practice by providing pervasive and evidence-based health guidance via their smartphones. Similar to some existing clinical DSSs, the mDSS is designed to execute clinical guidelines, but it operates on

  9. Advances in mobile mapping technology

    CERN Document Server

    Tao; Li, Jonathan

    2007-01-01

    With the increasing availability of low-cost and portable sensors, mobile mapping has become more dynamic, and even pervasive. The book addresses a wide variety of research issues in the mobile mapping community, ranging from system development to sensor integration, imaging algorithms and mobile GIS applications.

  10. Failure of the Nemo trial: bumetanide is a promising agent to treat many brain disorders but not newborn seizures

    Directory of Open Access Journals (Sweden)

    Yehezkel eBen-Ari

    2016-04-01

    Full Text Available The diuretic bumetanide failed to treat acute seizures due to hypoxic ischemic encephalopathy (HIE in newborn babies and was associated with hearing loss (NEMO trial; 1. On the other hand, clinical and experimental observations suggest that the diuretic might provide novel therapy for many brain disorders including autistic spectrum disorder, schizophrenia, Rett syndrome and Parkinson disease. Here, we discuss the differences between the pathophysiology of severe recurrent seizures in the neonates and neurological and psychiatric disorders stressing the uniqueness of severe seizures in newborn in comparison to other disorders.

  11. South Atlantic meridional transports from NEMO-based simulations and reanalyses

    Science.gov (United States)

    Mignac, Davi; Ferreira, David; Haines, Keith

    2018-02-01

    The meridional heat transport (MHT) of the South Atlantic plays a key role in the global heat budget: it is the only equatorward basin-scale ocean heat transport and it sets the northward direction of the global cross-equatorial transport. Its strength and variability, however, are not well known. The South Atlantic transports are evaluated for four state-of-the-art global ocean reanalyses (ORAs) and two free-running models (FRMs) in the period 1997-2010. All products employ the Nucleus for European Modelling of the Oceans (NEMO) model, and the ORAs share very similar configurations. Very few previous works have looked at ocean circulation patterns in reanalysis products, but here we show that the ORA basin interior transports are consistently improved by the assimilated in situ and satellite observations relative to the FRMs, especially in the Argo period. The ORAs also exhibit systematically higher meridional transports than the FRMs, which is in closer agreement with observational estimates at 35 and 11° S. However, the data assimilation impact on the meridional transports still greatly varies among the ORAs, leading to differences up to ˜ 8 Sv and 0.4 PW in the South Atlantic Meridional Overturning Circulation and the MHTs, respectively. We narrow this down to large inter-product discrepancies in the western boundary currents (WBCs) at both upper and deep levels explaining up to ˜ 85 % of the inter-product differences in MHT. We show that meridional velocity differences, rather than temperature differences, in the WBCs drive ˜ 83 % of this MHT spread. These findings show that the present ocean observation network and data assimilation schemes can be used to consistently constrain the South Atlantic interior circulation but not the overturning component, which is dominated by the narrow western boundary currents. This will likely limit the effectiveness of ORA products for climate or decadal prediction studies.

  12. Intestinal exposure to PCB 153 induces inflammation via the ATM/NEMO pathway.

    Science.gov (United States)

    Phillips, Matthew C; Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M; Burgueño, Juan; Lang, Jessica K; Toborek, Michal; Abreu, Maria T

    2018-01-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that adversely affect human health. PCBs bio-accumulate in organisms important for human consumption. PCBs accumulation in the body leads to activation of the transcription factor NF-κB, a major driver of inflammation. Despite dietary exposure being one of the main routes of exposure to PCBs, the gut has been widely ignored when studying the effects of PCBs. We investigated the effects of PCB 153 on the intestine and addressed whether PCB 153 affected intestinal permeability or inflammation and the mechanism by which this occurred. Mice were orally exposed to PCB 153 and gut permeability was assessed. Intestinal epithelial cells (IECs) were collected and evaluated for evidence of genotoxicity and inflammation. A human IEC line (SW480) was used to examine the direct effects of PCB 153 on epithelial function. NF-кB activation was measured using a reporter assay, DNA damage was assessed, and cytokine expression was ascertained with real-time PCR. Mice orally exposed to PCB 153 had an increase in intestinal permeability and inflammatory cytokine expression in their IECs; inhibition of NF-кB ameliorated both these effects. This inflammation was associated with genotoxic damage and NF-кB activation. Exposure of SW480 cells to PCB 153 led to similar effects as seen in vivo. We found that activation of the ATM/NEMO pathway by genotoxic stress was upstream of NF-kB activation. These results demonstrate that oral exposure to PCB 153 is genotoxic to IECs and induces downstream inflammation and barrier dysfunction in the intestinal epithelium. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A Novel Energy-Aware Distributed Clustering Algorithm for Heterogeneous Wireless Sensor Networks in the Mobile Environment.

    Science.gov (United States)

    Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong

    2015-12-10

    In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network's running and the degree of candidate nodes' effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime.

  14. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees

    OpenAIRE

    Ramos Giraldo, Paula Jimena; Guerrero Aguirre, ?lvaro; Mu?oz, Carlos Mario; Prieto, Flavio Augusto; Oliveros, Carlos Eugenio

    2017-01-01

    Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas) to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: (i)...

  15. Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control

    International Nuclear Information System (INIS)

    McGovern, Scott; Alici, Gursel; Spinks, Geoffrey; Truong, Van-Tan

    2009-01-01

    This paper presents the development of an autonomously powered and controlled robotic fish that incorporates an active flexural joint tail fin, activated through conducting polymer actuators based on polypyrrole (PPy). The novel electromaterial muscle oscillator (NEMO) tail fin assembly on the fish could be controlled wirelessly in real time by varying the frequency and duty cycle of the voltage signal supplied to the PPy bending-type actuators. Directional control was achieved by altering the duty cycle of the voltage input to the NEMO tail fin, which shifted the axis of oscillation and enabled turning of the robotic fish. At low speeds, the robotic fish had a turning circle as small as 15 cm (or 1.1 body lengths) in radius. The highest speed of the fish robot was estimated to be approximately 33 mm s −1 (or 0.25 body lengths s −1 ) and was achieved with a flapping frequency of 0.6–0.8 Hz which also corresponded with the most hydrodynamically efficient mode for tail fin operation. This speed is approximately ten times faster than those for any previously reported artificial muscle based device that also offers real-time speed and directional control. This study contributes to previously published studies on bio-inspired functional devices, demonstrating that electroactive polymer actuators can be real alternatives to conventional means of actuation such as electric motors

  16. Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control

    Science.gov (United States)

    McGovern, Scott; Alici, Gursel; Truong, Van-Tan; Spinks, Geoffrey

    2009-09-01

    This paper presents the development of an autonomously powered and controlled robotic fish that incorporates an active flexural joint tail fin, activated through conducting polymer actuators based on polypyrrole (PPy). The novel electromaterial muscle oscillator (NEMO) tail fin assembly on the fish could be controlled wirelessly in real time by varying the frequency and duty cycle of the voltage signal supplied to the PPy bending-type actuators. Directional control was achieved by altering the duty cycle of the voltage input to the NEMO tail fin, which shifted the axis of oscillation and enabled turning of the robotic fish. At low speeds, the robotic fish had a turning circle as small as 15 cm (or 1.1 body lengths) in radius. The highest speed of the fish robot was estimated to be approximately 33 mm s-1 (or 0.25 body lengths s-1) and was achieved with a flapping frequency of 0.6-0.8 Hz which also corresponded with the most hydrodynamically efficient mode for tail fin operation. This speed is approximately ten times faster than those for any previously reported artificial muscle based device that also offers real-time speed and directional control. This study contributes to previously published studies on bio-inspired functional devices, demonstrating that electroactive polymer actuators can be real alternatives to conventional means of actuation such as electric motors.

  17. NBodyLab: A Testbed for Undergraduates Utilizing a Web Interface to NEMO and MD-GRAPE2 Hardware

    Science.gov (United States)

    Johnson, V. L.; Teuben, P. J.; Penprase, B. E.

    An N-body simulation testbed called NBodyLab was developed at Pomona College as a teaching tool for undergraduates. The testbed runs under Linux and provides a web interface to selected back-end NEMO modeling and analysis tools, and several integration methods which can optionally use an MD-GRAPE2 supercomputer card in the server to accelerate calculation of particle-particle forces. The testbed provides a framework for using and experimenting with the main components of N-body simulations: data models and transformations, numerical integration of the equations of motion, analysis and visualization products, and acceleration techniques (in this case, special purpose hardware). The testbed can be used by students with no knowledge of programming or Unix, freeing such students and their instructor to spend more time on scientific experimentation. The advanced student can extend the testbed software and/or more quickly transition to the use of more advanced Unix-based toolsets such as NEMO, Starlab and model builders such as GalactICS. Cosmology students at Pomona College used the testbed to study collisions of galaxies with different speeds, masses, densities, collision angles, angular momentum, etc., attempting to simulate, for example, the Tadpole Galaxy and the Antenna Galaxies. The testbed framework is available as open-source to assist other researchers and educators. Recommendations are made for testbed enhancements.

  18. Agriculture/Hydroaquaoponic Bioscience Sensor - Mobile App with Simulations and Software for Industry and Science Education Curriculum Module

    Directory of Open Access Journals (Sweden)

    Christine M. Yukech

    2015-02-01

    Full Text Available There is a lot of technological buzz over the past few years regarding taking care of lettuce and hydroponic greenhouse plants and fish. We first review and discuss the recent technologies in the field of hydroponics, especially the hydroponic sensor curriculum project. The College of Engineering at The University of Akron developed a sensor that can detect hydrology, ph, electrical conductivity, nutrient levels, and temperature of hydroponic plants and aquaponic systems. The sensor can optimize the healthy monitoring of plants and fish in greenhouses, homes, schools, and universities anywhere in the world. The goal is to provide sustainable monitoring for growing healthy greenhouse foods 24/7. In this paper, we propose a sustainable solution for optimizing plant growth by using computer simulations and smart phone applications for plant growers and fisheries to access data in real-time and provide guidance on how to manage healthy environments for plants, such as "electric conductivity is lower than the standard for the tomato, so please add 5ml of nutrients". The app will be extended to social media connection, which is enabled by the web access features, where the user can network with hydroponic and aquarium user groups to share information (how to grow a lettuce, ask questions (where can I buy seeds, and gaming for virtual fish and plant growing. The app can be used on a computer, a smart phone or a tablet and provides numerous features that currently need many separate apps, especially in emerging areas such as hydroponics and aquaponics. The data visualization component in the app can enhance the analysis of the variables and data collection. Using the app