WorldWideScience

Sample records for nematodes heterorhabditis indica

  1. Application technology for the entomopathogenic nematodes Heterorhabditis indica and Steinernema sp. (Rhabditida: Heterorhabditidae and Steinernematidae) to control Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in corn

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Luiz C.; Raetano, Carlos G. [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas. Dept. de Producao Vegetal - Defesa Fitossanitaria]. E-mails: lcgarcia@fca.unesp.br; raetano@fca.unesp.br; Leite, Luis G. [Instituto Biologico, Campinas, SP (Brazil). Lab. de Controle Biologico]. E-mail: lgleite@biologico.sp.gov.br

    2008-05-15

    The effects of different application technologies were evaluated on the concentration, viability, and efficiency of infective juveniles of the nematodes Heterorhabditis indica Poinar, Karunakar and David and Steinernema sp. (IBCB-n6) to control Spodoptera frugiperda Smith on corn plants. Two hundred and eighty infective juveniles of Steinernema sp. were required to kill 100% third-instar fall army worms in petri dishes, as compared to 400 infective juveniles of the H. indica nematode to obtain 75% fall army worm control. It is possible to spray entomopathogenic nematodes without significant loss in their concentration and viability, with equipment that produces electrical charges to the spraying mix, and with those using hydraulic and rotary nozzle tips. The concentrations of infective juveniles of H. indica and Steinernema sp. nematodes were reduced by 28% and 53%, respectively, when hydraulic spraying nozzles that require 100-mesh filtrating elements were used. Tensoactive agents of the organo silicone and ethoxylate groups did not affect the viability of infective juveniles of Steinernema sp. juveniles. Spraying corn plants (V6 growth stage) with up to 288 million infective juveniles of Steinernema sp. per hectare, diluted in the spraying mix up to 800 L ha{sup -1}, with 0.01% ethoxylate tensoactive agent, or at the same volume followed by artificial rain (6 mm water depth) was not sufficient to control S. frugiperda in a controlled environment. (author)

  2. Application technology for the entomopathogenic nematodes Heterorhabditis indica and Steinernema sp. (Rhabditida: Heterorhabditidae and Steinernematidae) to control Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in corn

    International Nuclear Information System (INIS)

    Garcia, Luiz C.; Raetano, Carlos G.; Leite, Luis G.

    2008-01-01

    The effects of different application technologies were evaluated on the concentration, viability, and efficiency of infective juveniles of the nematodes Heterorhabditis indica Poinar, Karunakar and David and Steinernema sp. (IBCB-n6) to control Spodoptera frugiperda Smith on corn plants. Two hundred and eighty infective juveniles of Steinernema sp. were required to kill 100% third-instar fall army worms in petri dishes, as compared to 400 infective juveniles of the H. indica nematode to obtain 75% fall army worm control. It is possible to spray entomopathogenic nematodes without significant loss in their concentration and viability, with equipment that produces electrical charges to the spraying mix, and with those using hydraulic and rotary nozzle tips. The concentrations of infective juveniles of H. indica and Steinernema sp. nematodes were reduced by 28% and 53%, respectively, when hydraulic spraying nozzles that require 100-mesh filtrating elements were used. Tensoactive agents of the organo silicone and ethoxylate groups did not affect the viability of infective juveniles of Steinernema sp. juveniles. Spraying corn plants (V6 growth stage) with up to 288 million infective juveniles of Steinernema sp. per hectare, diluted in the spraying mix up to 800 L ha -1 , with 0.01% ethoxylate tensoactive agent, or at the same volume followed by artificial rain (6 mm water depth) was not sufficient to control S. frugiperda in a controlled environment. (author)

  3. Ecological characterisation of the Colombian entomopathogenic nematode Heterorhabditis sp. SL0708.

    Science.gov (United States)

    Mejia-Torres, M C; Sáenz, A

    2013-05-01

    The entomopathogenic nematode Heterorhabditis sp. SL0708 (Rhabditida: Heterorhabditidae) isolated from soil in Alcalá, Valle del Cauca (Colombia) was characterised ecologically using Galleria mellonella larvae (L) (Pyralidae: Galleriinae) as hosts. The effect of temperature on the viability, infectivity and reproduction, and of moisture on infectivity and storage in liquid were evaluated in infective juveniles (IJs). Significant differences were found in the viability, infectivity and reproduction of the IJs at different temperatures. No nematodes were recovered at 5 °C and 10 °C, and at 35 °C no infectivity was observed. Average daily nematode recovery was best at 25 °C, and survival of the IJs was low in substrates presenting 13% moisture. The optimal storage temperature for Heterorhabditis sp. SL0708 was between 20 °C and 30 °C, keeping its infectivity for up to 8 weeks.

  4. Heterorhabditis sp. (Nematoda: Heterorhabditidae): A Nematode Parasite Isolated from the Banded Cucumber Beetle Diabrotica balteata

    Science.gov (United States)

    Creighton, C. S.; Fassuliotis, G.

    1985-01-01

    A nematode identified as Heterorhabditis sp. was discovered in June 1982 in larval cadavers of the banded cucumber beetle, Diabrotica balteata, in soil on wooded land. Effective beetle control (over 95%) was obtained when larvae were exposed to potted soil containing infective stage nematode juveniles or infected larval cadavers. The nematode was propagated in vivo on larvae of D. balteata, Diaphania nitidalis (the pickleworm), and Galleria mellonella (the greater wax moth). This Heterorhabditis sp. has promising potential as a biocontrol agent for the banded cucumber beetle. PMID:19294074

  5. In vitro susceptibility of the pea leafminer liriomyza huidobrensis pupae to entomopathogenic heterorhabditis indica and beauveria

    International Nuclear Information System (INIS)

    Noujeim, E.; Sakr, J.; El Sayegh, D.; Nemer, N.

    2015-01-01

    Given the substantial economic losses associated with various aspects of Liriomyza huidobrensis Blanchard feeding on different crops in Lebanon as well as the ability of this pest to rapidly develop resistance to insecticides, the current study attempted to use biological control agents in vitro to manage this pest. For this reason,sensibility of L. huido brensis pupae was tested against indigeneous entomopathogenic nematode (Heterorhabditis indica) and fungus(Beauveria bassiana). Entomopathogenic nematode solution at 1000IJs per mL was placed in contact with Liriomyza pupae on one hand and pupae of L. huido brensis in direct contact with B. bassianaat the rate of 5000, 500, 50 and 5spores/pupa on the other hand. Results showed a mortality of 53±1.5% for the Liriomyza pupae following the application of entomopathogenic nematodes characterized by a red color and bioluminescence without any emergence of infective juvenile nematodes, one month following the infestation. Treatments with B. bassiana were able to kill 73-97% of the pupae and similarly treatments with B. bassiana and the surfactant Tween 80 were able to kill 73-93% of the pupae. Tween 80 demonstrated to increase the sporulation rate during the first 7 days following the application of the spores of B. bassiana. (author)

  6. Two symbiotic bacteria of the entomopathogenic nematode Heterorhabditis spp. against Galleria mellonella.

    Science.gov (United States)

    Liao, Chunli; Gao, Along; Li, Bingbing; Wang, Mengjun; Shan, Linna

    2017-03-01

    The entomopathogenic nematode Heterorhabditis spp. is considered a promising agent in the biocontrol of injurious insects of agriculture. However, different symbiotic bacteria associated with the nematode usually have different specificity and virulence toward their own host. In this study, two symbiotic bacteria, LY2W and NK, were isolated from the intestinal canals of two entomopathogenic nematode Heterorhabditis megidis 90 (PDSj1 and PDSj2) from Galleria mellonela, separately. To determine their species classification, we carried out some investigations on morphology, culture, biochemistry, especially 16S rDNA sequence analyses. As a result, both of them belong to Enterobacter spp., showing the closest relatedness with Enterobacter gergoviae (LY2W) and Enterobacter cloacae (NK), respectively. Moreover, the toxicity to Galleria mellonella was examined using both the metabolites and washed cells (primary and secondary) of these two strains. The results indicated both metabolites and cells of the primary-type bacteria could cause high mortalities (up to 97%) to Galleria mellonella, while those of the primary-type bacteria only killed 20%. These findings would provide new symbiotic bacteria and further references for biological control of the agricultural pest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. ISOLASI NEMATODA PATOGEN SERANGGA STEINERNEMA DAN HETERORHABDITIS

    Directory of Open Access Journals (Sweden)

    Chaerani, Y. Suryadi, T.P. Priyatno, D. Koswanudin1, U. Rahmat , Sujatmo, Yusuf, dan C.T. Griffin.

    2012-02-01

    Full Text Available Isolation of Entomopathogenic Nematodes Steinernema and Heterorhabditis. Entomopathogenic nematodes from the genus Steinernema and Heterorhabditis (Rhabditida: Steinernematidae and Heterorhabditidae are promising biological control agent of insect pests. Indigenous nematodes have been isolated and collected for the use in local biological control program of important insect pests. The nematodes were isolated using soil baiting method with insect larvae. Laboratory tests have shown that the mealworm larvae Tenebrio molitor (Coleoptera: Tenebrionidae served as a good alternative to the standard insect bait, the greater wax moth larvae Galleria mellonella (Lepidoptera: Galleriidae for isolation and maintenance of nematodes. Both nematodes were successfully isolated using T. molitor larvae from 13% soil samples (26 out of a total of 207 collected from 14 locations in West and Central Java and Lampung provinces in the period of 1993 until 2006. Heterorhabditis (9% was more prevalent than Steinernema (4%. Both nematodes were successfully propagated on mealworm larvae.

  8. Characterization of Biocontrol Traits in Heterorhabditis floridensis: A Species with Broad Temperature Tolerance.

    Science.gov (United States)

    Shapiro-Ilan, David I; Blackburn, Dana; Duncan, Larry; El-Borai, Fahiem E; Koppenhöfer, Heather; Tailliez, Patrick; Adams, Byron J

    2014-12-01

    Biological characteristics of two strains of the entomopathogenic nematode, Heterorhabditis floridensis (332 isolated in Florida and K22 isolated in Georgia) were described. The identity of the nematode's symbiotic bacteria was elucidated and found to be Photorhabdus luminescens subsp. luminescens. Beneficial traits pertinent to biocontrol (environmental tolerance and virulence) were characterized. The range of temperature tolerance in the H. floridensis strains was broad and showed a high level of heat tolerance. The H. floridensis strains caused higher mortality or infection in G. mellonella at 30°C and 35°C compared with S. riobrave (355), a strain widely known to be heat tolerant, and the H. floridensis strains were also capable of infecting at 17°C whereas S. riobrave (355) was not. However, at higher temperatures (37°C and 39°C), though H. floridensis readily infected G. mellonella, S. riobrave strains caused higher levels of mortality. Desiccation tolerance in H. floridensis was similar to Heterorhabditis indica (Hom1) and S. riobrave (355) and superior to S. feltiae (SN). H. bacteriophora (Oswego) and S. carpocapsae (All) exhibited higher desiccation tolerance than the H. floridensis strains. The virulence of H. floridensis to four insect pests (Aethina tumida, Conotrachelus nenuphar, Diaprepes abbreviatus, and Tenebrio molitor) was determined relative to seven other nematodes: H. bacteriophora (Oswego), H. indica (Hom1), S. carpocapsae (All), S. feltiae (SN), S. glaseri (4-8 and Vs strains), and S. riobrave (355). Virulence to A. tumida was similar among the H. floridensis strains and other nematodes except S. glaseri (Vs), S. feltiae, and S. riobrave failed to cause higher mortality than the control. Only H. bacteriophora, H. indica, S. feltiae, S. riobrave, and S. glaseri (4-8) caused higher mortality than the control in C. nenuphar. All nematodes were pathogenic to D. abbreviatus though S. glaseri (4-8) and S. riobrave (355) were the most virulent

  9. Assessing the Role of Environmental Conditions on Efficacy Rates of Heterorhabditis indica (Nematoda: Heterorhabditidae) for Controlling Aethina tumida (Coleoptera: Nitidulidae) in Honey Bee (Hymenoptera: Apidae) Colonies: a Citizen Science Approach.

    Science.gov (United States)

    Hill, Elizabeth S; Smythe, Ashleigh B; Delaney, Deborah A

    2016-02-01

    Certain species of entomopathogenic nematodes, such as Heterorhabditis indica Poinar, Karunakar & David, have the potential to be effective controls for Aethina tumida (Murray), or small hive beetles, when applied to the soil surrounding honey bee (Apis mellifera L.) hives. Despite the efficacy of H. indica, beekeepers have struggled to use them successfully as a biocontrol. It is believed that the sensitivity of H. indica to certain environmental conditions is the primary reason for this lack of success. Although research has been conducted to explore the impact of specific environmental conditions--such as soil moisture or soil temperature-on entomopathogenic nematode infectivity, no study to date has taken a comprehensive approach that considers the impact of multiple environmental conditions simultaneously. In exploring this, a multivariate logistic regression model was used to determine what environmental conditions resulted in reductions of A. tumida populations in honey bee colonies. To obtain the sample sizes necessary to run a multivariate logistic regression, this study utilized citizen scientist beekeepers and their hives from across the mid-Atlantic region of the United States. Results suggest that soil moisture, soil temperatures, sunlight exposure, and groundcover contribute to the efficacy of H. indica in reducing A. tumida populations in A. mellifera colonies. The results of this study offer direction for future research on the environmental preferences of H. indica and can be used to educate beekeepers about methods for better utilizing H. indica as a biological control. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Association between entomopathogenic nematodes and fungi for control of Rhipicephalus microplus (Acari: Ixodidae).

    Science.gov (United States)

    Monteiro, Caio Márcio Oliveira; Araújo, Laryssa Xavier; Matos, Renata Silva; da Silva Golo, Patrícia; Angelo, Isabele Costa; de Souza Perinotto, Wendell Marcelo; Coelho Rodrigues, Camila Aparecida; Furlong, John; Bittencourt, Vânia Rita Elias Pinheiro; Prata, Márcia Cristina Azevedo

    2013-10-01

    The aim of the study was to assess the effect of the association of entomopathogenic nematodes and fungi on Rhipicephalus microplus. The nematodes used were Heterorhabditis bacteriophora HP88 and Heterorhabditis indica LPP1 and the fungi were Metarhizium anisopliae IBCB 116 and Beauveria bassiana ESALQ 986. In the groups treated with the fungi, the females were immersed for 3 min in a conidial suspension, while in the groups treated with the nematodes, the ticks were exposed to infective juveniles. To evaluate the interaction between entomopathogens, the females were first immersed in a conidial suspension and then exposed to the nematodes. The egg mass weight and hatching percentage values of the groups treated with M. anisopliae IBCB 116 and B. bassiana ESALQ 986 in the two experiments were statistically similar (p > 0.05) to the values of the control group. In the groups treated only with nematodes, there was a significant reduction (p fungus M. anisopliae IBCB 116.

  11. Biological control of Otiorhynchus sulcatus by insect parasitic nematodes, Heterorhabditis spp., at low temperatures : a systems analytical approach

    NARCIS (Netherlands)

    Westerman, P.R.

    1997-01-01

    The black vine weevil, Otiorhynchus sulcatus, is an important pest in ornamentals and nursery stock in The Netherlands. The larvae, which feed on the root system of the plant, can be controlled by insect parasitic nematodes, Heterorhabditis.

  12. PRELIMINARY SURVEY OF ENTOMOPATHOGENIC NEMATODES IN UPPER NORTHERN THAILAND.

    Science.gov (United States)

    Vitta, Apichat; Fukruksa, Chamaiporn; Yimthin, Thatcha; Deelue, Kitsakorn; Sarai, Chutima; Polseela, Raxsina; Thanwisai, Aunchalee

    2017-01-01

    Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are used as biocontrol agents for insect pests. Survey of indigenous EPNs provides not only the diversity aspects but also the contribution in pest management in local areas. The objective of this study was to survey EPNs in upper northern Thailand. Nine hundred seventy soil samples were obtained from 194 sites in upper northern region of Thailand; of these 60 (6.2%) had EPNs in 2 genera: Steinernema (32 isolates) and Heterorhabditis (28 isolates). Most EPNs were isolated from loam with a soil temperature of 24-38°C, a pH of 1.5-7.0 and a soil moisture content of 0.5-6.8%. Molecular identification based on sequencing of a partial region of an internal transcribed spacer was performed for Heterorhabditis and the 28S rDNA for Steinernema. A BLASTN search of known sequence EPNs revealed 24 isolates of S. websteri and one isolate of S. scarabaei were identified; closely related to S. websteri (accession no. JF503100) and S. scarabaei (accession no. AY172023). The Heterorhabditis species identified were: H. indica (11 isolates), H. gerrardi (2 isolates) and Heterorhabditis sp (8 isolates). Phylogenetic analysis revealed 11 isolates of Heterorhabditis were related to H. indica; 2 isolates were related to Heterorhabditis gerrardi and 8 isolates were closely related to Heterorhabditis sp SGmg3. The study results show the genetic diversity of EPNs and describe a new observation of S. scarabaei and H. gerrardi in Thailand. This finding is new and provides important information for further study on using native EPNs in biological control.

  13. Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1

    Directory of Open Access Journals (Sweden)

    Spieth John

    2009-04-01

    Full Text Available Abstract Background The entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium, Photorhabdus luminescens, are important biological control agents of insect pests. This nematode-bacterium-insect association represents an emerging tripartite model for research on mutualistic and parasitic symbioses. Elucidation of mechanisms underlying these biological processes may serve as a foundation for improving the biological control potential of the nematode-bacterium complex. This large-scale expressed sequence tag (EST analysis effort enables gene discovery and development of microsatellite markers. These ESTs will also aid in the annotation of the upcoming complete genome sequence of H. bacteriophora. Results A total of 31,485 high quality ESTs were generated from cDNA libraries of the adult H. bacteriophora TTO1 strain. Cluster analysis revealed the presence of 3,051 contigs and 7,835 singletons, representing 10,886 distinct EST sequences. About 72% of the distinct EST sequences had significant matches (E value H. bacteriophora, among which are those encoding F-box-like/WD-repeat protein theromacin, Bax inhibitor-1-like protein, and PAZ domain containing protein. Gene Ontology terms were assigned to 6,685 of the 10,886 ESTs. A total of 168 microsatellite loci were identified with primers designable for 141 loci. Conclusion A total of 10,886 distinct EST sequences were identified from adult H. bacteriophora cDNA libraries. BLAST searches revealed ESTs potentially involved in parasitism, RNA interference, defense responses, stress responses, and dauer-related processes. The putative microsatellite markers identified in H. bacteriophora ESTs will enable genetic mapping and population genetic studies. These genomic resources provide the material base necessary for genome annotation, microarray development, and in-depth gene functional analysis.

  14. Effectiveness of the Entomopathogenic Nematodes Heterorhabditis bacteriophora and Steinernema feltiae against Tenebrio molitor (Yellow Mealworm) Larvae in Different Soil Types at Different Temperatures

    OpenAIRE

    SUSURLUK, Alper

    2014-01-01

    The efficiency of the entomopathogenic nematodes Steinernema feltiae Tur-S3 and Heterorhabditis bacteriophora Tur-H2, isolated in Turkey, against larvae of Tenebrio molitor L. was investigated in different soil type and temperature conditions. Sterilized and non-sterilized silver sand, clay-loam soil, and compost soil were tested, each at 12, 18, and 24 ºC. Temperature had the greatest effect on the mortality of T. molitor larvae caused by both nematode species. The efficiency of the 2 nemato...

  15. Efektivitas Nematoda Patogenik Serangga (Rhabditida: Steinernema dan Heterorhabditis) terhadap Penggerek Batang Padi Putih (Scirpophaga innotata)

    OpenAIRE

    Chaerani, Chaerani; Nurbaeti, Bebet

    2006-01-01

    White rice stem borer (Scirpophaga innotata) is a destructive insect pest which is difficult to control with various tactics. The possibility of the use of non-endemic natural enemies such as entomopathogenic nematodes (Rhabditida: Steinernema and Heterorhabditis) has been investigated in green house trials. Test of 12 isolates and species of Steinernema and Heterorhabditis originated from local and exotic sources revealed that H. indicus INA H4 was the most efficacious nematode by causing 74...

  16. Uji Efektivitas Nematoda Entomopatogen (Rhabditida: Steinernema Dan Heterorhabditis) Sebagai Musuh Alami Non-endemik Penggerek Batang Padi Kuning (Scirpophaga Incertulas)

    OpenAIRE

    Chaerani dan Bebet Nurbaeti

    2007-01-01

    Efficacy Tests of Entomopathogenic Nematodes (Rhabditida:  Steinernema dan Heterorhabditis) as Non-endemic Natural Enemies of Yellow Rice stem Borer (Scirpophaga incertulas). Yellow rice stem borer (Scirpophaga incertulas) is a chronic insect pests of irrigated rice and difficult to control.  Entomopathogenic nematodes from the genus Steinernema and Heterorhabditis are promising biological control agents for this pest as their infective juveniles (IJs) are capable of seeking and infecting ins...

  17. Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) on developmental stages of house fly, Musca domestica.

    Science.gov (United States)

    Archana, M; D'Souza, Placid E; Patil, Jagadeesh

    2017-09-01

    The housefly, Musca domestica is a major domestic, medical and veterinary pest. The management of these flies reliance on insecticide, causes environmental constraints, insecticide resistance and residues in the meat, skin. Therefore one of the eco-friendly alternate methods is by using biological agents such as entomopathogenic nematodes (EPN). In the present study evaluated the survival of EPN species Steinernema feltiae , Heterorhabditis indica , S. carpocapsae , S. glaseri and S. abbasi in poultry manure and also their efficacy against different developmental stages of house fly. After exposing to poultry manure, S. feltiae showed more survival as followed by H. indica , S. carpocapsae , S. glaseri and S. abbasi in all exposition period. When the exposition period extended to 96 h, all nematode species survivability was drastically reduced. After exposing these nematodes to poultry manure at 24 h their virulence capacity against wax moth, Galleria mellonella showed all the nematode species were able cause 100% mortality. However their progeny production was significantly reduced. Fly eggs and pupae were refractory to these nematode infection. Petri dish without artificial diet assay showed that, second and 3rd-instar larvae were highly susceptible to EPNs as compared to larvae provided with artificial diet. H. indica showed high virulence capacity compared to other nematodes tested. Poultry manure assay revealed that, H. indica and S. carpocapsae caused minimal mortality where as S. feltiae , S. glaseri and S. abbasi did not cause any mortality. This may be because of poor survival and limited movement of nematodes in poultry manure which may be due to ammonia, other toxic substances in poultry manure. The decrease in larval mortality in manure suggests that biocontrol of housefly by using EPNs is unlikely.

  18. Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): improved timing of dauer juvenile inoculation.

    Science.gov (United States)

    Johnigk, S-A; Ecke, F; Poehling, M; Ehlers, R-U

    2004-06-01

    Heterorhabditis bacteriophora is used in biological control of soil-borne insect pests in horticulture and turf. Mass production is carried out in monoxenic liquid cultures pre-incubated with the symbiont of the nematodes, the bacterium Photorhabdus luminescens, before nematode dauer juveniles (DJ) are inoculated. As a response to bacterial food signals, the DJ recover from the developmentally arrested dauer stage, grow to adults and produce DJ offspring. Variable DJ recovery after inoculation into cultures of P. luminescens often causes process failure due to low numbers of adult nematodes in the medium. In order to enhance DJ recovery, improve nematode population management and increase yields, the optimal timing for DJ inoculation was sought. The process parameter pH and respiration quotient (RQ) were recorded in order to test whether changes can be used to identify the best moment for DJ inoculation. When DJ were inoculated during the lag and early logarithmic growth phases of P. luminescens cultures, DJ recovery was low and almost no nematode reproduction was obtained. High populations of P. luminescens phase variants were recorded. Recovery and yields increased when DJ were inoculated during the latter log phase during which the RQ dropped to values <0.8 and the pH reached a maximum. The highest DJ recovery and yields were observed in cultures that were inoculated during the late stationary growth phase. This period started with the increase of the pH after its distinct minimum at pH <8.0. Thus optimal timing for DJ inoculation can be defined through monitoring of the pH in the P. luminescens culture.

  19. Efektivitas Nematoda Patogenik Serangga (Rhabditida: Steinernema dan Heterorhabditis terhadap Penggerek Batang Padi Putih (Scirpophaga innotata

    Directory of Open Access Journals (Sweden)

    Chaerani Chaerani

    2006-12-01

    Full Text Available White rice stem borer (Scirpophaga innotata is a destructive insect pest which is difficult to control with various tactics. The possibility of the use of non-endemic natural enemies such as entomopathogenic nematodes (Rhabditida: Steinernema and Heterorhabditis has been investigated in green house trials. Test of 12 isolates and species of Steinernema and Heterorhabditis originated from local and exotic sources revealed that H. indicus INA H4 was the most efficacious nematode by causing 74% larval and pupal mortality within rice stems. Reduction in plant damage due to nematode application could not be demonstrated as the experiment was limited to potted plants. Subsequent test using H. indicus INA H4 showed that increasing nematode concentration from 0.5 to 2.0x10^4 IJs/ml did not significantly affect insect mortality. The survival ability of H. indicus INA H4 infective juveniles on rice plant was less than 96 hours. Improvement of nematode application strategies including repeated spray, addition of antidesiccant, increasing spray volume and application at plant damage threshold or plant critical stage are therefore necessary to increase nematode effectiveness and simultaneously to reduce plant damage in field.

  20. Interactions between the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae) and the saprobic fungus Fusarium oxysporum (Ascomycota: Hypocreales).

    Science.gov (United States)

    Navarro, P D; McMullen, J G; Stock, S P

    2014-01-01

    In this study, we assessed the effect of the saprobic fungus, Fusarium oxysporum (Ascomycota: Hypocreales) on the fitness of the entomopathogenic nematode Heterorhabditis sonorensis (Caborca strain). Sand column assays were considered to evaluate the effect of fungal mycelia on infective juvenile (IJ) movement and host access. Additionally, we investigated the effect of fungal spores on the nematodes' ability to search for a host, its virulence, penetration efficiency and reproduction. Three application timings were considered to assess interactions between the fungus and the nematodes. In vitro assays were also considered to determine the effect of fungal extracts on the nematode's symbiotic bacteria. Our observations indicate that presence and age of fungal mycelia significantly affect IJ movement in the sand columns and their ability to establish in the host. These results were also reflected in a reduced insect mortality. In particular, treatments with the 15 days old mycelia showed a significant reduction in insect mortality and penetration efficiency. Presence of fungal spores also impacted nematode virulence and reproduction. In particular, two of the application timings tested (simultaneous [EPN and fungal spores applied at the same time] and alternate I [EPN applied first, fungus applied 24h later]) resulted in antagonistic interactions. Moreover, IJ progeny was reduced to half in the simultaneous application. In vitro assays revealed that fungal extracts at the highest concentration tested (10mg/ml) inhibited the growth of the symbiotic bacteria. Overall, these results suggest that saprobic fungi may play an important role in regulating. EPN populations in the soil, and that they may be one of the factors that impact nematode survival in the soil and their access to insect hosts. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. First report of Heterorhabditis amazonensis from Venezuela and characterization of three populations

    Czech Academy of Sciences Publication Activity Database

    Morales, N.; Morales-Montero, P.; Půža, Vladimír; San-Blas, E.

    2016-01-01

    Roč. 48, č. 3 (2016), s. 139-147 ISSN 0022-300X Institutional support: RVO:60077344 Keywords : biogeography * entomopathogenic nematode * Heterorhabditis amazonensis Subject RIV: EH - Ecology, Behaviour Impact factor: 1.087, year: 2016 http://journals.fcla.edu/jon/issue/view/4275

  2. Basic and applied research: Entomopathogenic nematodes

    Science.gov (United States)

    Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema kill arthropods with the aid of their bacterial symbionts. These nematodes are potent microbial control agents that have been widely commercialized for control of economically important insect pests. Biocontrol efficacy relies...

  3. UJI EFEKTIVITAS NEMATODA ENTOMOPATOGEN (RHABDITIDA: Steinernema DAN Heterorhabditis SEBAGAI MUSUH ALAMI NON-ENDEMIK PENGGEREK BATANG PADI KUNING (Scirpophaga incertulas

    Directory of Open Access Journals (Sweden)

    Chaerani dan Bebet Nurbaeti .

    2012-02-01

    Full Text Available Efficacy Tests of Entomopathogenic Nematodes (Rhabditida:  Steinernema dan Heterorhabditis as Non-endemic Natural Enemies of Yellow Rice stem Borer (Scirpophaga incertulas. Yellow rice stem borer (Scirpophaga incertulas is a chronic insect pests of irrigated rice and difficult to control.  Entomopathogenic nematodes from the genus Steinernema and Heterorhabditis are promising biological control agents for this pest as their infective juveniles (IJs are capable of seeking and infecting insect living in moist, cryptic habitat such as galleries created by stem borer larvae. Thirteen indigenous and exotic Steinernema and Heterorhabditis sprayed to rice seedlings in laboratory with nematodes at concentrations of 0.5 or 2.0×104 IJs ml-1 water caused larval mortality between 7–93%.  Further test in greenhouse on nematodes that had >50%  efficacy showed that an indigenous isolate, H. indicus INA H17, was the most effective among the tested nematodes in killing larvae or pupae (78%.  Reduction in plant damage caused by the insects could not be demonstrated as the trials was limited to potted plants. The survival ability of nematodes on rice plants was evaluated by using INA H4 as an example. A low percentage of INA H4 IJs (0.5% persisted in inner leaf sheath until 7 days post application, while IJs on leaf surface and outer leaf sheath survived only until 2 and 48 hours post application, respectively. Improvement of application strategies including repeated spray, addition of antidessicant and adjusment of spray volume and application at damage threshold or plant critical period are deemed necessary to enhance nematode efficacy and reduce plant damage in the field.

  4. Effects of host nutrition on virulence and fitness of entomopathogenic nematodes: Lipid- and protein-based supplements in Tenebrio molitor diets

    Science.gov (United States)

    Shapiro-Ilan, David; Rojas, M. Guadalupe; Morales-Ramos, Juan A.; Lewis, Edwin E.; Tedders, W. Louis

    2008-01-01

    Entomopathogenic nematodes, Heterorhabditis indica and Steinernema riobrave, were tested for virulence and reproductive yield in Tenebrio molitor that were fed wheat bran diets with varying lipid- and protein-based supplements. Lipid supplements were based on 20% canola oil, peanut, pork or salmon, or a low lipid control (5% canola). Protein treatments consisted of basic supplement ingredients plus 0, 10, or 20% egg white; a bran-only control was also included. Some diet supplements had positive effects on nematode quality, whereas others had negative or neutral effects. All supplements with 20% lipids except canola oil caused increased T. molitor susceptibility to H. indica, whereas susceptibility to S. riobrave was not affected. Protein supplements did not affect host susceptibility, and neither lipid nor protein diet supplements affected reproductive capacity of either nematode species. Subsequently, we determined the pest control efficacy of progeny of nematodes that had been reared through T. molitor from different diets against Diaprepes abbreviatus and Otiorhynchus sulcatus. All nematode treatments reduced insect survival relative to the control (water only). Nematodes originating from T. molitor diets with the 0% or 20% protein exhibited lower efficacy versus D. abbreviatus than the intermediate level of protein (10%) or bran-only treatments. Nematodes originating from T. molitor lipid or control diets did not differ in virulence. Our research indicates that nutritional content of an insect host diet can affect host susceptibility to entomopathogenic nematodes and nematode fitness; therefore, host media could conceivably be optimized to increase in vivo nematode production efficiency. PMID:19259513

  5. Susceptibility of irradiated Galleria mellonella F1Larvae to Entomopathogenic Nematodes

    International Nuclear Information System (INIS)

    Salem, H.M.; Rizk, S.A.; Sayed, R.M.; Hussein, M.A; Hafez, S.E

    2008-01-01

    Combined effect of substerilizing doses of gamma radiation (40 and 100 Gy) and different concentrations of entomopathogenic nematodes (20, 40, 60, and 80 IJs) on the greater wax moth, Galleria mellonella was studied. The 4th larval instar resulted from irradiated male parent pupae mated with normal female were tested for susceptibility to Heterorhabditis bacteriophora BA1 and Steinernema carpocapsae BA2. The mortality rate of the larvae increased by increrasing radiation dose and nematode concentrations. The reproduction of both nematode strains decreased significantly with increasing the treatments (radiation dose and nematode concentrations). In addition, exposure to gamma radiation and entomopathogenic nematodes significantly decreased the total haemocyte count (THC) of the larvae with increasing radiation doses (40 and 100 Gy) and both nematode strains concentrations (20 and 40 IJs) and reached the minimal count at the combiend effect. Finally, larvae were more susceptible to Steinernema carpocapsa than Heterorhabditis bacteriophora. (author)

  6. The influence of Photorhabdus luminescens strains and form variants on the reproduction and bacterial retention of Heterorhabditis megidis

    NARCIS (Netherlands)

    Gerritsen, L.J.M.; Smits, P.H.

    1997-01-01

    The preference of nematodes for feeding on, and retention of strains and form variants of symbionts was tested. Heterorhabditis megidis strains DH-SH1 (= HSH) and NLH-E87.3 (= HE) could multiply on the primary forms of both symbionts. Photorhabdus luminescens strains PSH/1 and PE/1, respectively,

  7. Use of the entomopathogenic nematode Heterorhabditis atacamensis CIA- NE07 in the control of banana weevil Cosmopolites sordidus in vitro

    Directory of Open Access Journals (Sweden)

    Marianela Amador

    2015-11-01

    Full Text Available Among the species of banana borers, black weevil (Cosmopolites sordidus is the most economically important pest in Costa Rica and worldwide. The control of C. sordidus in intensive production systems is mainly based on application of insecticides; therefore the search for biological alternatives, such as the use of entomopathogenic nematodes (EPN, is needed. The susceptibility of Cosmopolites sordidus to Heterorhabditis atacamensis CIANE07 was evaluated. The effect of inoculating H. atacamensis on larvae and adults of C. sordidus, in vitro and in artificially infected corms, was evaluated. Larvae inoculated with EPN had a mortality of 88% on the second day and 100% on the third day; no mortality was observed in adults. The treatments of 100, 500 and 1000 IJ.larvae-1 showed statistically significant differences from the control and theLD50 was 52 IJ.larvae-1. When the larvae were placed within the corms the LD50 increased to 375 IJ.larvae-1. The results indicate that the strain H. atacamensis CIA-NE07 is capable of locating and infecting weevil larvae within the banana corm and reach infection levels over 80%, 10 days after inoculation at doses of 1000 and 2000 IJ.larvae-1. The entomopathogenic nematodes are a viable alternative to be considered in the Integrated Pest Management programs of black weevil, in crops such us banana and plantain.

  8. In Vivo Production of Entomopathogenic Nematodes.

    Science.gov (United States)

    Shapiro-Ilan, David I; Morales-Ramos, Juan A; Rojas, M Guadalupe

    2016-01-01

    In nature, entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are obligate parasites of insects. The nematodes are used widely as biopesticides for suppression of insect pests. More than a dozen entomopathogenic nematode species have been commercialized for use in biological control. Most nematodes intended for commercial application are produced in artificial media via solid or liquid fermentation. However, for laboratory research and small greenhouse or field trials, in vivo production of entomopathogenic nematodes is the common method of propagation. Additionally, small companies continue to produce nematodes using in vivo methods for application in niche markets. Advances in mechanization and alternative production routes (e.g., production geared toward application of nematodes in infected host cadavers) can improve efficiency and economy of scale. The objective of this chapter is to describe basic and advanced procedures for in vivo production of entomopathogenic nematodes.

  9. Activity changes of antioxidant and detoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae).

    Science.gov (United States)

    Li, Xingyue; Liu, Qizhi; Lewis, Edwin E; Tarasco, Eustachio

    2016-12-01

    Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are lethal parasites of many insect species. To investigate defensive mechanisms towards EPNs in relation to antioxidative and detoxifying enzymes, we chose Tenebrio molitor (Coleoptera: Tenebrionidae) as experimental insect. We studied the activity changes of superoxide dismutases (SODs), peroxidases (PODs), and catalases (CATs), as well as tyrosinase (TYR), acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S-transferase (GSTs) for 40 h in T. molitor larvae infected with Heterorhabditis beicherriana infective juveniles (IJs) at 5 rates (0, 20, 40, 80, and 160 IJs/larva). We found that when T. molitor larvae infected with H. beicherriana at higher rates (80 and 160 IJs/larva), SOD activity quickly increased to more than 70 % higher than that control levels. The activities of POD and CAT increased after 24 h. TYR activity increased slowly at lower rates of infection for 16 h, followed by a slight decrease, and then increasing from 32 to 40 h. The other detoxifying enzymes (GST, CarE, and AChE) were enhanced at lower infection rates, but were inhibited at higher rates. Our results suggested that host antioxidative response and detoxification reactions played a central role in the defensive reaction to EPNs, and that this stress which was reflected by the higher level enzymes activity contributed to the death of hosts. Further study should explore the exact function of these enzymes using different species of EPNs and investigate the links between enzyme activity and host susceptibility to EPNs.

  10. Laboratory susceptibility tests of Aedes aegypti and Culex quinquefasciatus larvae to the entomopathogenic nematode Heterorhabditis bacteriophora

    Directory of Open Access Journals (Sweden)

    Carolina Ulvedal

    2017-03-01

    Conclusion: The susceptibility of these mosquito species to parasitism of an indigenous isolate of H. bacteriophora in the laboratory was demonstrated. Heterorhabditis bacteriophora N4 could be an efficient biological control agent.

  11. PEMBIAKAN NEMATODA PATOGEN SERANGGA (Rhabditida: Heterorhabditis DAN Steinernema PADA MEDIA SEMI PADAT

    Directory of Open Access Journals (Sweden)

    . Chaerani

    2011-11-01

    Full Text Available Field application of entomopathogenic nematodes (EPN is still hampered by inefficient mass production. The aim of this study was to compare three published in vitro media (medium Wouts, Bedding and Han for mass propagation of three indigenous EPNs (Heterorhabditis indicus PLR2, H. indicus isolate 5, and Steinernema T96 and one commercial strain (S. carpocapsae #25. The media were impregnated in shredded polyurethane sponge, pre-inoculated with symbiotic bacteria of each nematode and inoculated with the respective infective juveniles (Ijs of the nematode. Nematode yields at three weeks after nematode inoculation were inconsistent accross replications and experiments and generally not significantly influenced by the kind of media tested. Average yields showed that the highest IJ productions were obtained on medium Han for  H. indicus PLR2 (0,4×105 Ijs/g medium and for S. carpocapsae #25  (2.2×105 IJs/g medium, and on  medium Wouts for H. indicus  isolate 5 (6.5×105 Ijs/g medium and Steinernema T96 (1.5×105 IJs/g medium. The Ijs’ body were significantly shorter than those of in vivo propagated, which may impair the nematode pathogenicity. Modifications of the propagation technique and media formulation are needed to improve the quantity and quality of Ijs.

  12. The first report of Xenorhabdus indica from Steinernema pakistanense: co-phylogenetic study suggests co-speciation between X. indica and its steinernematid nematodes.

    Science.gov (United States)

    Bhat, A H; Chaubey, A K; Půža, V

    2018-01-17

    During a survey in agricultural fields of the sub-humid region of Meerut district, India, two strains of entomopathogenic nematodes, labelled CS31 and CS32, were isolated using the Galleria baiting technique. Based on morphological and morphometric studies, and molecular data, the nematodes were identified as Steinernema pakistanense, making this finding the first report of this species from India. For the first time, we performed a molecular and biochemical characterization of the bacterial symbiont of S. pakistanense. Furthermore, a co-phylogenetic analysis of the bacteria from the monophyletic clade containing a symbiont of S. pakistanense, together with their nematode hosts, was conducted, to test the degree of nematode-bacteria co-speciation. Both isolates were also tested in a laboratory assay for pathogenicity against two major pests, Helicoverpa armigera and Spodoptera litura. The morphology of the Indian isolates corresponds mainly to the original description, with the only difference being the absence of a mucron in first-generation females and missing epiptygmata in the second generation. The sequences of bacterial recA and gyrB genes have shown that the symbiont of S. pakistanense is closely related to Xenorhabdus indica, which is associated with some other nematodes from the 'bicornutum' group. Co-phylogenetic analysis has shown a remarkable congruence between the nematode and bacterial phylogenies, suggesting that, in some lineages within the Steinernema / Xenorhabdus complex, the nematodes and bacteria have undergone co-speciation. In the virulence assay, both strains caused a 100% mortality of both tested insects after 48 h, even at the lowest doses of 25 infective juveniles per insect, suggesting that S. pakistanense could be considered for use in the biocontrol of these organisms in India.

  13. Freezing and desiccation tolerance in entomopathogenic nematodes: diversity and correlation of traits.

    Science.gov (United States)

    Shapiro-Ilan, David I; Brown, Ian; Lewis, Edwin E

    2014-03-01

    The ability of entomopathogenic nematodes to tolerate environmental stress such as desiccating or freezing conditions, can contribute significantly to biocontrol efficacy. Thus, in selecting which nematode to use in a particular biocontrol program, it is important to be able to predict which strain or species to use in target areas where environmental stress is expected. Our objectives were to (i) compare inter- and intraspecific variation in freeze and desiccation tolerance among a broad array of entomopathogenic nematodes, and (ii) determine if freeze and desiccation tolerance are correlated. In laboratory studies we compared nematodes at two levels of relative humidity (RH) (97% and 85%) and exposure periods (24 and 48 h), and nematodes were exposed to freezing temperatures (-2°C) for 6 or 24 h. To assess interspecific variation, we compared ten species including seven that are of current or recent commercial interest: Heterorhabditis bacteriophora (VS), H. floridensis, H. georgiana, (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All), S. feltiae (SN), S. glaseri (VS), S. rarum (17C&E), and S. riobrave (355). To assess intraspecific variation we compared five strains of H. bacteriophora (Baine, Fl1-1, Hb, Oswego, and VS) and four strains of S. carpocapsae (All, Cxrd, DD136, and Sal), and S. riobrave (355, 38b, 7-12, and TP). S. carpocapsae exhibited the highest level of desiccation tolerance among species followed by S. feltiae and S. rarum; the heterorhabditid species exhibited the least desiccation tolerance and S. riobrave and S. glaseri were intermediate. No intraspecific variation was observed in desiccation tolerance; S. carpocapsae strains showed higher tolerance than all H. bacteriophora or S. riobrave strains yet there was no difference detected within species. In interspecies comparisons, poor freeze tolerance was observed in H. indica, and S. glaseri, S. rarum, and S. riobrave whereas H. georgiana and S. feltiae exhibited the

  14. Survival and Movement of Insect Parasitic Nematodes in Poultry Manure and Their Infectivity Against Musca domestica

    OpenAIRE

    Georgis, Ramon; Mullens, Bradley A.; Meyer, Jeffery A.

    1987-01-01

    Survival, infectivity, and movement of three insect parasitic nematodes (Steinernema feltiae All strain, S. bibionis SN strain, and Heterorhabditis heliothidis NC strain) in poultry manure were tested under laboratory conditions. The majority (70-100%) of the nematodes died within 18 hours after exposure to the manure. Nematodes exposed to manure slurry for 6 hours killed at least 95% of the house fly larvae, Musca domestica, but nematodes exposed for 12 hours achieved less than 40% larval mo...

  15. The Effects of Different Fungicides on the Viability of Entomopathogenic Nematodes Steinernema feltiae (Filipjev, S. carpocapsae Weiser, and Heterorhabditis downesi Stock, Griffin & Burnell (Nematoda: Rhabditida under Laboratory Conditions Efecto de Diferentes Fungicidas en la Viabilidad de Nemátodos Entomopatógenos Steinernema feltiae (Filipjev, S. carpocapsae Weiser, and Heterorhabditis downesi Stock, Griffin & Burnell (Nematoda: Rhabditida bajo Condiciones de Laboratorio

    Directory of Open Access Journals (Sweden)

    Žiga Laznik

    2012-03-01

    Full Text Available To increase our knowledge on the susceptibility of entomopathogenic nematodes (EPN species to agrochemicals, the compatibility of the infective juveniles (IJ of the entomopathogenic nematodes Steinernema feltiae, S. carpocapsae, and Heterorhabditis downesi with 15 chemical fungicides was investigated under laboratory conditions. The effect of direct IJ exposure to fungicides for 24 h was tested in a petri dish at 15, 20, and 25 °C. The results showed that the compatibility of S. feltiae with azoxystrobin was high, and similar findings were obtained for S. carpocapsae (strain C67 and all of the tested fungicides, except for tebuconazole + spiroxamine + triadimenol, maneb, dinocap, and copper (II hydroxide + metalaxil-M. Nematode H. downesi (strain 3173 suffered the highest mortality rate when infective juveniles were mixed with tebuconazole + spiroxamine + triadimenol. The integration of the aforementioned agents into a pest management program is also discussed.Para aumentar nuestro conocimiento sobre la susceptibilidad de especies de nematodos entomopatogénicos (EPN, se estudió la compatibilidad de los juveniles infectivos (IJ de los EPN Steinernema feltiae, S. carpocapsae, y Heterorhabditis downesi con 15 fungicidas químicos bajo condiciones de laboratorio. El efecto de exposición directa de IJ a fungicidas por 24 h se evaluó en una placa Petri a 15, 20 y 25 °C. Los resultados mostraron que la compatibilidad de S. feltiae con azoxystrobin fue alta, y hallazgos similares se obtuvieron para S. carpocapsae (cepa C67 y todos los fungicidas probados, excepto para tebuconazole + spiroxamina + triadimenol, maneb, dinocap, y cobre (II hidróxido + metalaxil-M. El nematodo H. downesi (cepa 3173 presentó la mayor tasa de mortalidad cuando los IJ fueron tratados con tebuconazole + spiroxamina + triadimenol. También se discute la integración de los agentes antes mencionados en un programa de manejo integral de plagas.

  16. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii.

    Science.gov (United States)

    Cuthbertson, Andrew G S; Audsley, Neil

    2016-06-09

    Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B); Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed.

  17. Virulence comparisons of high-temperature-adapted Heterorhabditis bacteriophora, Steinernema feltiae and S. carpocapsae

    Directory of Open Access Journals (Sweden)

    Susurluk I. A.

    2015-06-01

    Full Text Available Entomopathogenic nematodes (EPNs are environmentally safe alternative control agents. Nematodes in the Heterorhabditidae and Steinernematidae families are widely used in biological control frameworks, especially for soil-inhabiting insect pests. In this experiment, Heterorhabditis bacteriophora (Poinar, 1976, Steinernema feltiae (Filipjev, 1934 and S. carpocapsae (Weiser, 1955 adapted at high temperature were assessed in order to detect differences in virulence between adapted and non-adapted populations. All species were exposed to 38 °C for 2 h. After this treatment, live infective juveniles (IJs were used to infect to last instar Galleria mellonella (Linnaeus, 1758. larvae at the following doses: 1, 2, 3, 4 and 5 IJs/larva. The LD50 and LD90 were obtained for these species. Non-adapted populations of the nematode species were used as controls for this experiment. The results indicated that differences in S. feltiae and S. carpocapsae virulence between the adapted and non-adapted populations were significant; no significant difference was observed between the adapted and non-adapted H. bacteriophora populations.

  18. Viability and Virulence of Entomopathogenic Nematodes Exposed to Ultraviolet Radiation.

    Science.gov (United States)

    Shapiro-Ilan, David I; Hazir, Selcuk; Lete, Luis

    2015-09-01

    Entomopathogenic nematodes (EPNs) can be highly effective biocontrol agents, but their efficacy can be reduced due to exposure to environmental stress such as from ultraviolet (UV) radiation. Our objectives were to 1) compare UV tolerance among a broad array of EPN species, and 2) investigate the relationship between reduced nematode viability (after exposure to UV) and virulence. Nematodes exposed to a UV radiation (254 nm) for 10 or 20 min were assessed separately for viability (survival) and virulence to Galleria mellonella. We compared 9 different EPN species and 15 strains: Heterorhabditis bacteriophora (Baine, fl11, Oswego, and Vs strains), H. floridensis (332), H. georgiana (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All, Cxrd, DD136, and Sal strains), S. feltiae (SN), S. rarum (17C&E), and S. riobrave (355). In viability assessments, steinernematids, particularly strains of S. carpocapsae, generally exhibited superior UV tolerance compared with the heterorhabditids. However, some heterorhabditids tended to be more tolerant than others, e.g., H. megidis and H. bacteriophora (Baine) were most susceptible and H. bacteriophora (Vs) was the only heterorhabditid that did not exhibit a significant effect after 10 min of exposure. All heterorhabditids experienced reduced viability after 20 min exposure though several S. carpocapsae strains did not. In total, after 10 or 20 min exposure, the viability of seven nematode strains did not differ from their non-UV exposed controls. In virulence assays, steinernematids (particularly S. carpocapsae strains) also tended to exhibit higher UV tolerance. However, in contrast to the viability measurements, all nematodes experienced a reduction in virulence relative to their controls. Correlation analysis revealed that viability among nematode strains is not necessarily related to virulence. In conclusion, our results indicate that the impact of UV varies substantially among EPNs, and viability alone

  19. The entomopathogenic nematode Heterorhabditis megidis: host searching behaviour, infectivity and reproduction

    NARCIS (Netherlands)

    Boff, M.I.C.

    2001-01-01

    Entomopathogenic nematodes in the families Heterorhabditidae and Steinernematidae have considerable potential as biological control agents of soil-inhabiting insect pests. Attributes making these nematodes ideal biological control agents include their broad host range, high virulence,

  20. Effects of storage temperature on survival and infectivity of three indigenous entomopathogenic nematodes strains (Steinernematidae and Heterorhabditidae) from Meghalaya, India.

    Science.gov (United States)

    Lalramliana; Yadav, Arun K

    2016-12-01

    Three locally isolated strains of entomopathogenic nematodes (EPNs), viz. Heterorhabditis indica , Steinernema thermophilum and Steinernema glaseri , from Meghalaya, India were characterized in terms of storage temperature and survival and infectivity of their infective juveniles (IJs). The survival and infectivity of nematode IJs was studied at, 5 ± 2 and 25 ± 2 °C, for a period of 120 days, using deionized water as storage medium. The viability of nematode IJs was checked by mobility criterion at different storage periods, while the infectivity of nematode IJs was ascertained on the basis of establishment of IJs, using Galleria mellonella larva mortality tests in petridishes. The results of this study revealed that storage temperature markedly affects the survival as well as the establishment of nematode IJs of the three EPN species. At 5 °C, comparatively higher rate of IJ's survival (i.e. 74-86 %) was observed for 15 days of storage, but the same reduced drastically to 28-32 % after 30 days of storage for H. indica and S. thermophilum . On the other hand, at 25 °C, the survival of nematode IJs was observed till 120 days for all the three studied EPNs. In case of S. thermophilum and S. glaseri , higher rate of IJs survival (>75 %) was observed respectively at 15 and 30 days of observation. The study also showed that the establishment of IJs of the three EPN species declines with increase in storage periods, at both the test temperatures. In general, the nematodes stored at 25 °C showed comparatively better establishment than those stored at 5 °C. Among the three EPN studied, the establishment of S. glaseri was comparatively better than the rest of the species at both the temperatures and for different storage durations. In conclusion, our study adds further valuable information about the effect of storage temperature on survival and infectivity of three indigenous EPN species of Meghalaya, India which appears to be promising biocontrol

  1. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii

    Directory of Open Access Journals (Sweden)

    Andrew G. S. Cuthbertson

    2016-06-01

    Full Text Available Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B; Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p < 0.001 reduced population development of D. suzukii from infested berries. All nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed.

  2. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth.

    Science.gov (United States)

    Malan, Antoinette P; Knoetze, Rinus; Moore, Sean D

    2011-10-01

    A survey was conducted to determine the diversity and frequency of endemic entomopathogenic nematodes (EPN) in citrus orchards in the Western Cape, Eastern Cape and Mpumalanga provinces of South Africa. The main aim of the survey was to obtain nematodes as biological control agents against false codling moth (FCM), Thaumatotibia leucotreta, a key pest of citrus in South Africa. From a total of 202 samples, 35 (17%) tested positive for the presence of EPN. Of these, four isolates (11%) were found to be steinernematids, while 31 (89%) were heterorhabditids. Sequencing and characterisation of the internal transcribed spacer (ITS) region was used to identify all nematode isolates to species level. Morphometrics, morphology and biology of the infective juvenile (IJ) and the first-generation male were used to support molecular identification and characterisation. The Steinernema spp. identified were Steinernema khoisanae, Steinernema yirgalemense and Steinernema citrae. This is the first report of S. yirgalemense in South Africa, while for S. citrae it is the second new steinernematid to be identified from South Africa. Heterorhabditis species identified include Heterorhabditis bacteriophora, Heterorhabditis zealandica and an unknown species of Heterorhabditis. Laboratory bioassays, using 24-well bioassay disks, have shown isolates of all six species found during the survey, to be highly virulent against the last instar of FCM larvae. S. yirgalemense, at a concentration of 50IJs/FCM larva caused 100% mortality and 74% at a concentration of 200IJs/pupa. Using a sand bioassay, S. yirgalemense gave 93% control of cocooned pupae and emerging moths at a concentration of 20IJs/cm(2). This is the first report on the potential use of EPN to control the soil-borne life stages of FCM, which includes larvae, pupae and emerging moths. It was shown that emerging moths were infected with nematodes, which may aid in control and dispersal. Copyright © 2011 Elsevier Inc. All rights

  3. Biocontrol of ticks by entomopathogenic nematodes. Research update.

    Science.gov (United States)

    Samish, M; Alekseev, E; Glazer, I

    2000-01-01

    Entomopathogenic nematodes (EPNs) are lethal to ticks even though they do not use their normal propagation cycle within tick cadavers. The tick Boophilus annulatus was found to be far more susceptible to EPNs than Hyalomma excavatum, Rhipicephalus bursa, or Rhipicephalus sanguineus. Ticks seem to be less susceptible to nematodes when feeding on a host. Preimaginal tick stages were less susceptible to nematodes than adult ticks. The mortality rate of unfed females was highest, followed by unfed males, and engorged females. The virulence of nematodes to ticks varied greatly among different nematode strains. In most cases, the Heterorhabditis sp. strains were the most virulent strains tested in petri dishes. In buckets containing sandy soil sprayed with 50 nematodes/cm2 and engorged B. annulatus females, the LT50 of the ticks was less than five days. The addition of manure to soil or a manure extract to petri dishes reduced nematode virulence. Since ticks spend most of their life cycle in the upper humid layer of the ground, and many nematode strains share this same ecological niche, the use of EPNs for biocontrol of ticks appears promising.

  4. Practical application of insect-parasitic nematodes and sterile flies

    International Nuclear Information System (INIS)

    Galle, F.; Loosjes, M.

    1987-01-01

    The company 'de Groene Vlieg' started with commercial control of the onion fly by means of the sterile insect technique. At the moment 10 per cent of the Dutch spring sown onions are treated with this method. The mass-rearing, the estimations of populations and the repeated releases of sterilized flies make it a rather complicated method. It can be applied economically per field, but only in areas with a concentration of onion growing. For export we see no possibilities yet. In principle the sterile insect technique can be applied also to other flies (carrot rust fly, cabbage root fly), but a suitable artificial diet is still lacking. Since some years we also rear the insect parasitic nematodes Heterorhabditis sp. and Neoaplectana bibionis. The later is experimentally used with success against Agrotis segetum caterpillars in lettuce. Research will yield more applications of nematodes against different pests. We use Heterorhabditis sp. in practice against the black vine weevil (Otiorhynchus sulcatus), a serious pest in glass houses, tree nurseries and gardens. Good control is achieved with a dose of one half to one million nematodes per square meter in moist soil and with temperatures above 12 degrees C. The application is similar to that of a chemical insecticide. The pest is killed by symbiontic bacteria, released by the nematodes after penetrating into the body cavity of the larvae. The nematodes are delivered by mail. If cooled they can be kept alive for over four weeks in the package. We export already to Switzerland and plan to export also to Western Germany. At this moment a possible admittance is under investigation in the Netherlands for application of a nuclear polyhedrosis virus against Spodoptera exigua caterpillars

  5. Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens.

    LENUS (Irish Health Repository)

    Easom, Catherine A

    2010-01-01

    ABSTRACT: BACKGROUND: Photorhabdus are Gram negative entomopathogenic bacteria that also have a mutualistic association with nematodes from the family Heterorhabditis. An essential part of this symbiosis is the ability of the bacterium to colonize the gut of the freeliving form of the nematode called the infective juvenile (IJ). Although the colonization process (also called transmission) has been described phenomonologically very little is known about the underlying molecular mechanisms. Therefore, in this study, we were interested in identifying genes in Photorhabdus that are important for IJ colonization. RESULTS: In this work we genetically tagged P. luminescens TT01 with gfp and constructed a library containing over 3200 mutants using the suicide vector, pUT-Km2. Using a combination of in vitro symbiosis assays and fluorescent microscopy we screened this library for mutants that were affected in their ability to colonize the IJ i.e. with decreased transmission frequencies. In total 8 mutants were identified with transmission frequencies of <\\/= 30% compared to wild-type. These mutants were mapped to 6 different genetic loci; the pbgPE operon, galE, galU, proQ, asmA and hdfR. The pbgPE, galE and galU mutants were all predicted to be involved in LPS biosynthesis and, in support of this, we have shown that these mutants are avirulent and sensitive to the cationic antimicriobial peptide, polymyxin B. On the other hand the proQ, asmA and hdfR mutants were not affected in virulence and were either as resistant (proQ) or slightly more sensitive (asmA, hdfR) to polymyxin B than the wild-type (WT). CONCLUSIONS: This is the first report describing the outcome of a comprehensive screen looking for transmission mutants in Photorhabdus. In total 6 genetic loci were identified and we present evidence that all of these loci are involved in the assembly and\\/or maintenance of LPS and other factors associated with the cell surface. Interestingly several, but not all, of the

  6. Foraging behavior and virulence of some entomopathogenic nematodes

    Directory of Open Access Journals (Sweden)

    Manana A. Lortkipanidze

    2016-06-01

    Full Text Available At present the biological control as a pest control technology is becoming more desirable. Biological formulations on basis of entomopathogenic nematodes are one of the effective means for the protection of agricultural and forest plants from harmful insects. Nowadays, the use of entomopathogenic nematodes as biological control agents is a key component in IPM system. The foraging strategies of entomopathogenic nematodes (EPNs vary between species. This variation is consistent with use of different foraging strategies between ambush, cruise and intermediate to find their host insects. In order to ambush prey, some species of EPNs nictate, or raise their bodies of the soil surface so they are better poised to attach passing insects, other species adopt a cruising strategy and rarely nictate. Some species adopt an intermediate strategy between ambush and cruise. We compared in laboratory the foraging strategies of the entomopathogenic nematode species: Steinernema carpocapsae, Heterorhabditis bacteriophora and the recently described species Steinernema tbilisiensis and assessed their virulence against mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae. The tests showed that S. tbilisiensis adopts both foraging strategies.

  7. Interspecific nematode signals regulate dispersal behavior.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2 of plant parasitic Meloidogyne spp. and infective juveniles (IJs of entomopathogenic nematodes (EPN, e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs.Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9. A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9 and C. elegans (ascr#2 dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers.Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.

  8. Practical application of insect-parasitic nematodes and sterile flies; Praktische Anwendung insektenparasitischer Nematoden und sterilisierter Fliegen

    Energy Technology Data Exchange (ETDEWEB)

    Galle, F. [Bayerisches Staatsministerium fuer Ernaehrung, Landwirtschaft und Forsten, Muenchen (Germany); Loosjes, M. [De Groene Vlieg, Nieuwe Tonge (Netherlands)

    1987-07-01

    The company 'de Groene Vlieg' started with commercial control of the onion fly by means of the sterile insect technique. At the moment 10 per cent of the Dutch spring sown onions are treated with this method. The mass-rearing, the estimations of populations and the repeated releases of sterilized flies make it a rather complicated method. It can be applied economically per field, but only in areas with a concentration of onion growing. For export we see no possibilities yet. In principle the sterile insect technique can be applied also to other flies (carrot rust fly, cabbage root fly), but a suitable artificial diet is still lacking. Since some years we also rear the insect parasitic nematodes Heterorhabditis sp. and Neoaplectana bibionis. The later is experimentally used with success against Agrotis segetum caterpillars in lettuce. Research will yield more applications of nematodes against different pests. We use Heterorhabditis sp. in practice against the black vine weevil (Otiorhynchus sulcatus), a serious pest in glass houses, tree nurseries and gardens. Good control is achieved with a dose of one half to one million nematodes per square meter in moist soil and with temperatures above 12 degrees C. The application is similar to that of a chemical insecticide. The pest is killed by symbiontic bacteria, released by the nematodes after penetrating into the body cavity of the larvae. The nematodes are delivered by mail. If cooled they can be kept alive for over four weeks in the package. We export already to Switzerland and plan to export also to Western Germany. At this moment a possible admittance is under investigation in the Netherlands for application of a nuclear polyhedrosis virus against Spodoptera exigua caterpillars.

  9. Challenges for mass production of nematodes in submerged culture.

    Science.gov (United States)

    de la Torre, Mayra

    2003-08-01

    Nematodes of Steinernema and Heterorhabditis genera are used as agents in insect biocontrol programs. They are associated with specific bacteria which are also involved in the mechanism of pathogenicity and which are consumed by nematodes as living food. S. feltiae has various developmental stages in its life cycle, including four juvenile stages, adults and the free living form. During mating, males coil themselves around the female, which is around 1 cm long. Successful commercialization of nematode-bacteria biocontrol products depends on the ability to produce sufficient quantities of these products at competitive prices for a full pest control program. This could be feasible if high cell density submerged cultures are designed and implemented; however, major problems related to nematodes mass production in a bioreactor remain unsolved due to the lack of knowledge about the physiological aspects of the nematode, bacteria and nematode-bacteria association, interaction between the three phases present in the bioreactor (liquid, gas, nematodes-bacteria), possibility of mating under hydrodynamic stress conditions, etc. We have found that the two most important engineering aspects to take into account the mass propagation of nematodes are oxygen transfer rate and hydrodynamics to allow mating and to avoid mechanical damage of juveniles in stage 2. This article focuses on several aspects related to the fermentation system such as kinetics of growth, shear stress, hydrodynamics fields in the bioreactor and oxygen demand. Also, results published by other groups, together with those of our own, will be discussed in relation to the main challenges found during the fermentation process.

  10. A survey of entomopathogenic nematode species in continental Portugal.

    Science.gov (United States)

    Valadas, V; Laranjo, M; Mota, M; Oliveira, S

    2014-09-01

    Entomopathogenic nematodes (EPN) are lethal parasites of insects, used as biocontrol agents. The objectives of this work were to survey the presence of EPN in continental Portugal and to characterize the different species. Of the 791 soil samples collected throughout continental Portugal, 53 were positive for EPN. Steinernema feltiae and Heterorhabditis bacteriophora were the two most abundant species. Analysis of EPN geographical distribution revealed an association between nematode species and vegetation type. Heterorhabditis bacteriophora was mostly found in the Alentejo region while S. feltiae was present in land occupied by agriculture with natural vegetation, broadleaved forest, mixed forest and transitional woodland-shrub, agro-forestry areas, complex cultivated patterns and non-irrigated arable land. Although no clear association was found between species and soil type, S. feltiae was typically recovered from cambisols and H. bacteriophora was more abundant in lithosols. Sequencing of the internal transcribed spacer (ITS) region indicated that S. feltiae was the most abundant species, followed by H. bacteriophora. Steinernema intermedium and S. kraussei were each isolated from one site and Steinernema sp. from two sites. Phylogenetic analyses of ITS, D2D3 expansion region of the 28S rRNA gene, as well as mitochondrial cytochrome c oxidase subunit I (COXI) and cytochrome b (cytb) genes, was performed to evaluate the genetic diversity of S. feltiae and H. bacteriophora. No significant genetic diversity was found among H. bacteriophora isolates. However, COXI seems to be the best marker to study genetic diversity of S. feltiae. This survey contributes to the understanding of EPN distribution in Europe.

  11. Risk assessment of the biological plant protection products Nemasys G and Nemasys H with the active organism Heterorhabditis Bacteriophora. Opinion of the Panel on Plant Protection Products of the Norwegian Scientific Committee for Food Safety

    OpenAIRE

    Källqvist, Torsten; Borgå, Katrine; Dirven, Hubert; Eklo, Ole Martin; Grung, Merete; Lyche, Jan Ludvig; Låg, Marit; Nilsen, Asbjørn Magne; Sverdrup, Line Emilie

    2014-01-01

    Nemasys G and Nemasys H with the nematode Heterorhabditis bacteriophora as the active organism is applied for as a plant protection product in Norway. Nemasys G is intended for use against the garden chafer (Phyllopertha horticola) in lawns and Nemasys H against black vine weevil (Otiorhynchus sulcatus) in strawberries and ornamentals. VKM was requested by the Norwegian Food Safety Authority to consider the possible health and environmental risk related to the properties of Nemasys G and Nema...

  12. Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes.

    Science.gov (United States)

    Shapiro-Ilan, David; Raymond, Ben

    2016-03-01

    Cooperative secretion of virulence factors by pathogens can lead to social conflict when cheating mutants exploit collective secretion, but do not contribute to it. If cheats outcompete cooperators within hosts, this can cause loss of virulence. Insect parasitic nematodes are important biocontrol tools that secrete a range of significant virulence factors. Critically, effective nematodes are hard to maintain without live passage, which can lead to virulence attenuation. Using experimental evolution, we tested whether social cheating might explain unstable virulence in the nematode Heterorhabditis floridensis by manipulating relatedness via multiplicity of infection (MOI), and the scale of competition. Passage at high MOI, which should reduce relatedness, led to loss of fitness: virulence and reproductive rate declined together and all eight independent lines suffered premature extinction. As theory predicts, relatedness treatments had more impact under stronger global competition. In contrast, low MOI passage led to more stable virulence and increased reproduction. Moreover, low MOI lineages showed a trade-off between virulence and reproduction, particularly for lines under stronger between-host competition. Overall, this study indicates that evolution of virulence theory is valuable for the culture of biocontrol agents: effective nematodes can be improved and maintained if passage methods mitigate possible social conflicts.

  13. Entomopathogenic nematodes in agricultural areas in Brazil.

    Science.gov (United States)

    de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro E; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano

    2017-04-06

    Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.

  14. The potential use of entomopathogenic nematodes against Typhaea stercorea

    DEFF Research Database (Denmark)

    Svendsen, Tina Stendal; Steenberg, Tove

    2000-01-01

    bait traps, biological control, broiler houses, checken litter and manure, hairy fungus beetle, Heterorhabditis bacteriophora, Heterorhabditis megidis, Salmonella spp., Steinernema carpocapsae,......bait traps, biological control, broiler houses, checken litter and manure, hairy fungus beetle, Heterorhabditis bacteriophora, Heterorhabditis megidis, Salmonella spp., Steinernema carpocapsae,...

  15. Variation in the susceptibility of Drosophila to different entomopathogenic nematodes.

    Science.gov (United States)

    Peña, Jennifer M; Carrillo, Mayra A; Hallem, Elissa A

    2015-03-01

    Entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are lethal parasites of insects that are of interest as models for understanding parasite-host interactions and as biocontrol agents for insect pests. EPNs harbor a bacterial endosymbiont in their gut that assists in insect killing. EPNs are capable of infecting and killing a wide range of insects, yet how the nematodes and their bacterial endosymbionts interact with the insect immune system is poorly understood. Here, we develop a versatile model system for understanding the insect immune response to parasitic nematode infection that consists of seven species of EPNs as model parasites and five species of Drosophila fruit flies as model hosts. We show that the EPN Steinernema carpocapsae, which is widely used for insect control, is capable of infecting and killing D. melanogaster larvae. S. carpocapsae is associated with the bacterium Xenorhabdus nematophila, and we show that X. nematophila induces expression of a subset of antimicrobial peptide genes and suppresses the melanization response to the nematode. We further show that EPNs vary in their virulence toward D. melanogaster and that Drosophila species vary in their susceptibilities to EPN infection. Differences in virulence among different EPN-host combinations result from differences in both rates of infection and rates of postinfection survival. Our results establish a powerful model system for understanding mechanisms of host-parasite interactions and the insect immune response to parasitic nematode infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Evaluation of entomopathogenic nematodes and the supernatants of the in vitro culture medium of their mutualistic bacteria for the control of the root-knot nematodes Meloidogyne incognita and M. arenaria.

    Science.gov (United States)

    Kepenekci, Ilker; Hazir, Selcuk; Lewis, Edwin E

    2016-02-01

    The suppressive effects of various formulations of four entomopathogenic nematode (EPN) species and the supernatants of their mutualistic bacteria on the root-knot nematodes (RKNs) Meloidogyne incognita and M. arenaria in tomato roots were evaluated. The EPNs Steinernema carpocapsae, S. feltiae, S. glaseri and Heterorhabditis bacteriophora were applied as either live infective juveniles (IJs) or infected insect cadavers. Spent medium from culturing the bacterial symbionts Xenorhabdus bovienii and Photorhabdus luminescens kayaii with the cells removed was also applied without their nematode partners. The aqueous suspensions of IJs, infected cadaver applications of EPNs and especially treatments of X. bovienii supernatant suppressed the negative impact of RKNs on tomatoes. Specific responses to treatment were reduced RKN egg masses, increased plant height and increased fresh and dry weights compared with the control where only RKNs were applied. Among the treatments tested, the plant-dipping method of X. bovienii into bacterial culture fluid may be the most practical and effective method for M. incognita and M. arenaria control. © 2015 Society of Chemical Industry.

  17. Effectiveness of different species of entomopathogenic nematodes for biocontrol of the Mediterranean flatheaded rootborer, Capnodis tenebrionis (Linné) (Coleoptera: Buprestidae) in potted peach tree.

    Science.gov (United States)

    Morton, Ana; Del Pino, Fernando García

    2008-02-01

    The susceptibility of larvae of the Mediterranean flatheaded rootborer (Capnodis tenebrionis) to 13 isolates of entomopathogenic nematodes was examined using GF-677 potted trees (peachxalmond hybrid) as the host plant. The nematode strains tested included nine Steinernema feltiae, one S. affine, one S. carpocapsae and two Heterorhabditis bacteriophora. Nematodes showed the ability to locate and kill larvae of C. tenebrionis just after they enter into the roots of the tree. S. feltiae strains provided an efficacy ranging from 79.68% to 88.24%. H. bacteriophora strains resulted in control of 71.66-76.47%. S. carpocapsae (B14) and S. affine (Gspe3) caused lower control of C. tenebrionis larvae (62.03% and 34.76%, respectively). The influence of foraging strategy and the use of autochthonous nematodes to control C. tenebrionis larvae inside the roots is discussed.

  18. Larvicidal Activities of Indigenous Bacillus thuringiensis Isolates and Nematode Symbiotic Bacterial Toxins against the Mosquito Vector, Culex pipiens (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Ashraf M Ahmed

    2017-06-01

    Full Text Available Background: The incidence of mosquito-borne diseases and the resistance of mosquitoes to conventional pesticides have recently caused a panic to the authorities in the endemic countries. This study was conducted to identify native larvicidal biopesticides against Culex pipiens for utilization in the battle against mosquito-borne diseases.Methods: Larvicidal activities of new indigenous Bacillus thuringiensis isolates and crude toxin complexes (TCs of two nematode bacterial-symbionts, Photorhabdus luminescens akhurstii (HRM1 and Ph. luminescens akhurstii (HS1 that tested against Cx. pipiens. B. thuringiensis isolates were recovered from different environmental samples in Saudi Arabia, and the entomopathogenic nematodes, Heterorhabditis indica (HRM1 and He. sp (HS1 were iso­lated from Egypt. Larvicidal activities (LC50 and LC95 of the potentially active B. thuringiensis strains or TCs were then evaluated at 24 and 48h post-treatment.Results: Three B. thuringiensis isolates were almost as active as the reference B. thuringiensis israelensis (Bti-H14, and seven isolates were 1.6–5.4 times more toxic than Bti-H14. On the other hand, the TCs of the bacterial sym­bionts, HRM1 and HS1, showed promising larvicidal activities. HS1 showed LC50 of 2.54 folds that of HRM1 at 24h post-treatment. Moreover, histopathological examinations of the HS1-treated larvae showed deformations in midgut epithelial cells at 24h post-treatment.Conclusion: Synergistic activity and molecular characterization of these potentially active biocontrol agents are currently being investigated. These results may lead to the identification of eco-friend mosquito larvicidal product(s that could contribute to the battle against mosquito-borne diseases.

  19. Susceptibility of Dalotia coriaria (Kraatz (Coleoptera: Staphylinidae to Entomopathogenic Nematodes (Rhabditida: Heterorhabditidae and Steinernematidae

    Directory of Open Access Journals (Sweden)

    Joseph Tourtois

    2015-03-01

    Full Text Available Dalotia coriaria (Kraatz (Coleoptera: Staphylinidae and entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae are two soil-dwelling biological control agents used to manage western flower thrips, Frankliniella occidentalis (Pergande (Thysanoptera: Thripidae and fungus gnats Bradysis spp. (Diptera: Sciaridae in glasshouses. Growers often use multiple natural enemies to achieve economic control, but knowledge of interactions among natural enemies is lacking. We conducted a laboratory bioassay to test the pathogenicity of four commercially available nematode species—Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhbditidae, Steinernema carpocapsae (Weiser (Rhabditida: Steinernematidae, S. feltiae (Filipjev, and S. riobrave Cabanillas et al.—to third instar and adult D. coriaria. Third instars were three times more susceptible than the adults to the entomopathogenic nematodes. Mortality for D. coriaria adults and third instars treated with S. feltiae and H. bacteriophora was lower than the mortality for D. coriaria adults and third instars treated with S. carpocapsae and S. riobrave. Neither infective juvenile foraging behavior nor size correlates with D. coriaria mortality. Dalotia coriaria appears to be most likely compatible with applications of S. feltiae and H. bacteriophora.

  20. (BST) and some bioassays using Neem ( Azadirachta indica A. Juss )

    African Journals Online (AJOL)

    The leaves of Neem (Azadirachta indica A.Juss) and Wild custard-apple (Annona senegalensis Pers) were extracted using ethanol and extracts were screened for bioactivity against brine shrimp larvae. The bioactive extracts in the brine shrimp test (BST) were investigated for correlation with aphid nematode and ...

  1. Successful application of entomopathogenic nematodes for the biological control of western corn rootworm larvae in Europe – a mini review

    Directory of Open Access Journals (Sweden)

    Toepfer, Stefan

    2014-02-01

    Full Text Available 10 years of joint efforts in research and development have led to a nematode-based biological control solution for one of the most destructive maize pests, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae. Commercially mass-produced Heterorhabditis species of beneficial entomopathogenic nematodes are ready to use. They can be applied into the soil during sowing of maize for controlling the subsequently hatching larvae of D. virgifera virgifera thus preventing root feeding and damage to maize. Policy bodies, decision makers and farmers are advised to consider biological control as one of the alternatives to synthetic pesticides in maize production, and according to the EC Directive on the sustainable use of pesticides and implementation of integrated pest management.

  2. Ovicidal and larvicidal activity of extracts of Opuntia ficus-indica against gastrointestinal nematodes of naturally infected sheep.

    Science.gov (United States)

    Féboli, Aline; Laurentiz, Antonio C; Soares, Suelen C S; Augusto, Jeferson G; Anjos, Luciano A; Magalhães, Lizandra G; Filardi, Rosemeire S; Laurentiz, Rosangela S

    2016-08-15

    This study describes the in vitro anthelmintic activity of extracts from Opuntia ficus indica against gastrointestinal nematodes of sheep. The anthelmintic activity was evaluated by inhibition of egg hatching, larval development and larval migration assays. The residual aqueous fractions from cladodes and fruits showed higher ovicidal activity with EC50 values of 7.2mg/mL and 1.5mg/mL, respectively. The aqueous, hexane, and ethyl acetate fractions from fruits and the aqueous fraction from cladodes inhibited 100% of larval development at the lowest concentration tested (1.56mg/mL). The crude cladode and fruit ethanolic extracts inhibited larval migration and showed EC50 values of 0.74mg/mL and 0.27mg/mL, respectively. Phytochemical screening detected high concentrations of alkaloids, tannins, flavonoids, and saponins in the fruits and cladodes. The results demonstrated that O. ficus exhibits anthelmintic activity in vitro, suggesting that, beyond its nutritional potential, this plant can also be an ally for parasite control in sheep. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Compatibility of entomopathogenic nematodes and aqueous plant extracts aiming at the control of fruit fly Ceratitis capitata (Wiedemann (Diptera: TephritidaeCompatibilidade de nematóides entomopatogênicos e extratos vegetais aquosos visando o controle da mosca-das-frutas Ceratitis capitata (Wiedemann (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Cristhiane Rohde

    2013-06-01

    Full Text Available Currently, the fruit fly Ceratitis capitata (Diptera: Tephritidae has been controlled mainly by the chemical method, which is responsible for environmental and public health impacts. It has often been ineffective due to development of resistant insect populations. Thus, it has necessary to research new effective and less impacting control forms. In this sense, the use of entomopathogenic nematodes and plant extracts has been effective for controlling this pest. However, studies are needed to assess the compatibility between these methods, aiming at their use in integrated management programs for this pest. The aim of this study was to evaluate the compatibility of the nematodes Steinernema carpocapsae ALL and Heterorhabditis sp. JPM4 with aqueous extracts prepared from dried plant of cinnamon leaf, twig and fruit (Melia azedarach, rue leaf (Ruta graveolens, ginger (Zingiber officinale and garlic (Allium sativum for the control of C. capitata. The bioassay was carried out in completely randomized design with four replicates per treatment. Each replication consisted of a glass tube containing 1 mL of plant extract 40% w/v and 1 mL suspension of entomopathogenic nematodes with 1800 JI/mL for S. carpocapsae ALL and 600 JI/mL for Heterorhabditis sp. JPM4. The viability and infectivity of this nematode were evaluated on C. capitata larvae after 48 and 120 hours. It was found that all extracts reduced the viability and infectivity of both nematodes and they were incompatible after 120 hours of exposure. The nematode Heterorhabditis sp. JPM4 was more sensitive than the S. carpocapsae ALL as it showed, in the first 48 hours, a reduction in the viability and infectivity of more than 80 and 75%, respectively, when exposed to all the extracts except the ginger.A mosca-das-frutas Ceratitis capitata (Diptera: Tephritidae tem sido controlada, principalmente, pelo método químico, que é o responsável por impactos ambientais e na saúde pública e, muitas

  4. Evaluation of efficacy of entomopathogenic nematodes against larvae of Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae).

    Science.gov (United States)

    Tóth, Erika M; Márialigeti, K; Fodor, A; Lucskai, A; Farkas, R

    2005-01-01

    The blowfly Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae) is the primary agent of cutaneous myiasis of sheep in northern Europe, southern Africa, Australia and New Zealand. As the application of chemicals has several disadvantages, alternative control measures of traumatic myiasis of livestock must be developed. In this study, the use of entomopathogenic nematodes (EPNs) as potential biocontrol agents against second instar larvae of Lucilia sericata was considered. The following nematode species were tested: Heterorhabditis bacteriophora (IS 5, HHU 1, Hmol, HNC 1, HAZ 36, Hbrecon, HHU 2, HAZ 29, HHP 88, HHU 3, HHU 4 and HGua), Steinernema intermedia, NC513 strain of S. glaserii, S. anomali, S. riobrave, Steinernema sp. and 5 strains of S. feltiae (22, Vija Norway, HU 1, scp, and IS 6). None of the examined EPN species or strains showed larvicidal efficacy at 37 degrees C (no killing effect was observed in the case of the two heat-tolerant strains--H. bacteriophora and S.feltiae) against L. sericata larvae. At lower temperatures (20 degrees C and 25 degrees C) only strains of S. feltiae were found to be active. The overall odds ratios calculated for L. sericata maggots to contract S. feltiae nematode infection show significant (p nematode occurred in the cadavers.

  5. A new threat to bees? Entomopathogenic nematodes used in biological pest control cause rapid mortality in Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Alexandrea Dutka

    2015-11-01

    Full Text Available There is currently a great deal of concern about population declines in pollinating insects. Many potential threats have been identified which may adversely affect the behaviour and health of both honey bees and bumble bees: these include pesticide exposure, and parasites and pathogens. Whether biological pest control agents adversely affect bees has been much less well studied: it is generally assumed that biological agents are safer for wildlife than chemical pesticides. The aim of this study was to test whether entomopathogenic nematodes sold as biological pest control products could potentially have adverse effects on the bumble bee Bombus terrestris. One product was a broad spectrum pest control agent containing both Heterorhabditis sp. and Steinernema sp., the other product was specifically for weevil control and contained only Steinernema kraussei. Both nematode products caused ≥80% mortality within the 96 h test period when bees were exposed to soil containing entomopathogenic nematodes at the recommended field concentration of 50 nematodes per cm2 soil. Of particular concern is the fact that nematodes from the broad spectrum product could proliferate in the carcasses of dead bees, and therefore potentially infect a whole bee colony or spread to the wider environment.

  6. Bio-insecticides and mating disruption in cranberries

    Science.gov (United States)

    Surveys of native entomopathogenic nematodes in Wisconsin have produced a new bio-insecticide involving two particular nematode species (Oscheius onirici and Heterorhabditis georgiana). In field studies, these nematodes have shown high virulence against flea beetles; in the laboratory, these nematod...

  7. Effect of Entomopathogenic Nematodes on Mesocriconema xenoplax Populations in Peach and Pecan

    Science.gov (United States)

    Nyczepir, A. P.; Shapiro-Ilan, D. I.; Lewis, E. E.; Handoo, Z. A.

    2004-01-01

    The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm³ soil to the soil surface of each pot, 50 infective juveniles/cm² soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P ≤ 0.05) in the presence of either S. riobrave or H. bacteriophora 180 days following ring nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm² were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave. PMID:19262805

  8. Effect of Entomopathogenic Nematodes on Mesocriconema xenoplax Populations in Peach and Pecan.

    Science.gov (United States)

    Nyczepir, A P; Shapiro-Ilan, D I; Lewis, E E; Handoo, Z A

    2004-06-01

    The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm(3) soil to the soil surface of each pot, 50 infective juveniles/cm(2) soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm(2) were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave.

  9. A nematode that can manipulate the behaviour of slugs.

    Science.gov (United States)

    Morris, Alex; Green, Michael; Martin, Hayley; Crossland, Katie; Swaney, William T; Williamson, Sally M; Rae, Robbie

    2018-06-01

    The ability of parasites to manipulate the behaviour of their hosts has evolved multiple times, and has a clear fitness benefit to the parasite in terms of facilitating growth, reproduction and transfer to suitable hosts. The mechanisms by which these behavioural changes are induced are poorly understood, but in many cases parasite manipulation of serotonergic signalling in the host brain is implicated. Here we report that Phasmarhabditis hermaphrodita, a parasite of terrestrial gastropod molluscs, can alter the behaviour of slugs. Uninfected slugs (Deroceras panormitanum, Arion subfuscus and Arion hortensis) avoid areas where P. hermaphrodita is present, but slugs infected with P. hermaphrodita are more likely to be found where the nematodes are present. This ability is specific to P. hermaphrodita and other nematodes (Steinernema carpocapsae and Heterorhabditis bacteriophora) do not induce this behavioural change. To investigate how P. hermaphrodita changes slug behaviour we exposed slugs to fluoxetine (a selective serotonin reuptake inhibitor) and cyproheptadine (a serotonin receptor antagonist). Uninfected slugs fed fluoxetine no longer avoided areas where P. hermaphrodita was present; and conversely, infected slugs fed cyproheptadine showed no increased attraction to areas with nematodes. These findings suggest that a possible mechanism by which P. hermaphrodita is able to manipulate parasite avoidance behaviour in host slugs is by manipulating serotonergic signalling in the brain, and that increased serotonin levels are potentially associated with a reduction in parasite avoidance. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Behavioural response of Heterorhabditis megidis towards plant roots and insect larvae

    NARCIS (Netherlands)

    Boff, M.I.C.; Tol, van R.W.H.M.; Smits, P.H.

    2002-01-01

    The behavioural response of infective juveniles (IJs) of Heterorhabditis megidis (strain NLH-E87.3) to cues from roots of strawberry (Fragaria x ananassa Duch.), thuja (Thuja occidentalis L.) and to larvae of the black vine weevil, Otiorhynchus sulcatus, was studied. Choice assays were conducted in

  11. Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: traits contributing to nematode fitness and biocontrol efficacy.

    Science.gov (United States)

    Griffin, Christine T

    2012-06-01

    The entomopathogenic nematodes (EPN) Heterorhabditis and Steinernema are widely used for the biological control of insect pests and are gaining importance as model organisms for studying parasitism and symbiosis. In this paper recent advances in the understanding of EPN behavior are reviewed. The "foraging strategy" paradigm (distinction between species with ambush and cruise strategies) as applied to EPN is being challenged and alternative paradigms proposed. Infection decisions are based on condition of the potential host, and it is becoming clear that already-infected and even long-dead hosts may be invaded, as well as healthy live hosts. The state of the infective juvenile (IJ) also influences infection, and evidence for a phased increase in infectivity of EPN species is mounting. The possibility of social behavior - adaptive interactions between IJs outside the host - is discussed. EPNs' symbiotic bacteria (Photorhabdus and Xenorhabdus) are important for killing the host and rendering it suitable for nematode reproduction, but may reduce survival of IJs, resulting in a trade-off between survival and reproduction. The symbiont also contributes to defence of the cadaver by affecting food-choice decisions of insect and avian scavengers. I review EPN reproductive behavior (including sperm competition, copulation and evidence for attractive and organizational effects of pheromones), and consider the role of endotokia matricida as parental behavior exploited by the symbiont for transmission.

  12. Effect of mini-sprinkler irrigation system on Heterorhabditis baujardi LPP7 (Nematoda: Heterorhabditidae infective juvenile Efeito do sistema de irrigação por microaspersão em juvenis infectantes de Heterorhabditis baujardi LPP7 (Nematoda: Heterorhabditidae

    Directory of Open Access Journals (Sweden)

    Juan Carlos Lara

    2008-01-01

    Full Text Available Entomopathogenic nematodes (EPNs are currently being used as successful biological control agents of soil-dwelling insect pests. Previous field and greenhouse studies demonstrated that application techniques and non-biotic factors (temperature and pressure have a significant effect on EPNs efficacy. The objective of this study was to evaluate the influence of an irrigation spray application system on the viability, infectivity and host search capability of Heterorhabditis baujardi LPP7 (Nematoda: Heterorhabditidae infective juveniles (IJ. Two assays were proposed. Their viability was evaluated under the microscope after the IJ passed through the irrigation system. Infectivity on Galleria mellonella larvae, and host search capability, as evidenced by larval mortality, were evaluated in containers (Experiment 1. In the field (Experiment 2, mortality of G. mellonella larvae was evaluated under different nematode concentrations (0, 100,000, 300,000 and 500,000 IJ per tree. No differences were recorded on the viability, infectivity and host search capability of the IJ in Experiment 1. In Experiment 2, differences were recorded among the different concentrations used (p Nematóides entomopatogênicos (NEPs vêm sendo usados com sucesso como agentes do controle biológico de pragas de solo. Estudos anteriores mostraram que técnicas de aplicação e fatores abióticos (temperatura e pressão afetam a eficiência dos NEPs em testes de campo e casa-de-vegetação. O objetivo deste trabalho foi avaliar a influência de condições geradas por um sistema de irrigação por microaspersão, na viabilidade, infectividade e na capacidade de busca de hospedeiros nos juvenis infectantes (JI de Heterorhabditis baujardi LPP7 (Nematoda: Heterorhabditidae. Dois experimentos foram propostos. A viabilidade dos juvenis infectantes (JI foi avaliada no microscópio imediatamente após sua passagem pelo sistema de irrigação. A infectividade e a capacidade de busca pelo

  13. An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds.

    Science.gov (United States)

    Laznik, Z; Trdan, S

    2013-07-01

    Entomopathogenic nematodes (EPNs) respond to a variety of stimuli when foraging. In a laboratory investigation, we tested the chemotactic responses of 8 EPN strains (Steinernema and Heterorhabditis) to three mechanically damaged maize root compounds (linalool, α-caryophyllene and β-caryophyllene). We hypothesized that the EPN directional response to the tested volatile compounds would vary among the species and volatile compound and may be related to foraging strategies. The nematodes with an intermediate foraging strategy (Steinernema feltiae) proved to be less active in their movement toward volatile compounds in a comparison with the ambushers (Steinernema carpocapsae) and cruisers (Steinernema kraussei and Heterorhabditis bacteriophora); β-caryophyllene was found to be the most attractive substance in our experiment. The results of our investigation showed that the cruisers were more attracted to β-caryophyllene than the ambushers and intermediates. The foraging strategy did not affect the movement of the IJs toward the other tested volatile compounds or the control. Our results suggest that the response to different volatile cues is more a strain-specific characteristic than a different host-searching strategy. Only S. carpocapsae strain B49 displayed an attraction to linalool, whereas S. kraussei showed a retarded reaction to β-caryophyllene and α-caryophyllene in our experiment. The EPN strains showed only a weak attraction to α-caryophyllene, suggesting that this volatile compound could not have an important role in the orientation of IJs to the damaged roots of maize plants. These results expand our knowledge of volatile compounds as the cues that may be used by EPNs for finding hosts or other aspects of navigation in the soil. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Effect of entomopathogenic nematodes on Plectrodera scalator (Fabricius) (Coleoptera: Cerambycidae)

    Science.gov (United States)

    Declan J. Fallon; Leellen F. Solter; Leah S. Bauer; Deborah L. Miller; James R. Cate; Michael L. McManus

    2006-01-01

    Entomopathogenic nematodes were screened for efficacy against the cottonwood borer, Plectrodera scalator (Fabricius). Steinernema feltiae SN and S. carpocapsae All killed 58 and 50% of larvae, respectively, in Wlter paper bioassays but less than 10% in diet cup bioassays. S. glaseri NJ, S. riobrave TX, and H. indica MG-13 killed less than 10% of larvae in both assays....

  15. Susceptibility of larvae of Aedes aegypti (Linnaeus (Diptera: Culicidae to entomopathogenic nematode Heterorhabditis bacteriophora (Poinar (Rhabditida: Heterorhabditidae

    Directory of Open Access Journals (Sweden)

    María L. PESCHIUTTA

    2014-01-01

    Full Text Available Aedes aegypti (Linnaeus (Diptera: Culicidae es vector de los agentes etiológicos de la fiebre amarilla y del dengue. Una alternativa al control químico de este vector es el uso de agentes biológicos. Los nematodos entomopatógenos son efectivos en el control de plagas. La infectividad y el ciclo de vida de un aislado argentino de Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae en larvas de A. aegypti se registró por primera vez bajo condiciones de laborato - rio. Para cada unidad experimental, 30 larvas de mosquito de segundo estadio fueron expuestas a 8 dosis del nematodo (0:1, 1:1, 5:1, 15:1, 100:1, 500:1, 750:1, 1500:1. Los juveniles infectivos (JIs utilizados fueron multiplicados sobre Galleria mellonella (Lepidoptera: Pyralidae. La continuidad infectiva de los JIs obtenidos de A. aegypti fue probada aplicándolos en una dosis de 100:1 sobre larvas del mosquito . Las tasas de mortalidad fueron de 0% a 84%. El número de nematodos desarrollados dentro de la larva de mosquito, la mortalidad larval y los nuevos JIs se incrementaron con el aumento de la dosis de nematodos. Los resultados indican que H. bacteriophora es capaz de infectar larvas de A. aegypti , se desarrolla y produce nuevos JIs, permitiendo la continuidad de su ciclo de vida.

  16. Effect of Soil Moisture and a Surfactant on Entomopathogenic Nematode Suppression of the Pecan Weevil, Curculio caryae

    Science.gov (United States)

    Shapiro-Ilan, David I.; Cottrell, Ted E.; Brown, Ian; Gardner, Wayne A.; Hubbard, Robert K.; Wood, Bruce W.

    2006-01-01

    Our overall goal was to investigate several aspects of pecan weevil, Curculio caryae, suppression with entomopathogenic nematodes. Specifically, our objectives were to: 1) determine optimum moisture levels for larval suppression, 2) determine suppression of adult C. caryae under field conditions, and 3) measure the effects of a surfactant on nematode efficacy. In the laboratory, virulence of Heterorhabditis megidis (UK211) and Steinernema carpocapsae (All) were tested in a loamy sand at gravimetric water contents of negative 0.01, 0.06, 0.3, 1.0, and 15 bars. Curculio caryae larval survival decreased as moisture levels increased. The nematode effect was most pronounced at –0.06 bars. At –0.01 bars, larval survival was ≤5% regardless of nematode presence, thus indicating that intense irrigation alone might reduce C. caryae populations. Overall, our results indicated no effect of a surfactant (Kinetic) on C. caryae suppression with entomopathogenic nematodes. In a greenhouse test, C. caryae larval survival was lower in all nematode treatments compared with the control, yet survival was lower in S. carpocapsae (Italian) and S. riobrave (7–12) treatments than in S. carpocapsae (Agriotos), S. carpocapsae (Mexican), and S. riobrave (355) treatments (survival was reduced to approximately 20% in the S. riobrave [7–12] treatment). A mixture of S. riobrave strains resulted in intermediate larval survival. In field experiments conducted over two consecutive years, S. riobrave (7–12) applications resulted in no observable control, and, although S. carpocapsae (Italian) provided some suppression, treatment effects were generally only detectable one day after treatment. Nematode strains possessing both high levels of virulence and a greater ability to withstand environmental conditions in the field need to be developed and tested. PMID:19259466

  17. Diversity and distribution of entomopathogenic nematodes (Nematoda: Steinernematidae, Heterorhabditidae) and their bacterial symbionts (gamma-Proteobacteria: Enterobacteriaceae) in Jordan.

    Science.gov (United States)

    Stock, S Patricia; Al Banna, Luma; Darwish, Rula; Katbeh, Ahmad

    2008-06-01

    Until now, only a few systematic surveys of entomopathogenic nematodes (EPN) have been conducted in Middle Eastern countries. Many of the recovered EPN species in this region have shown to own distinctive qualities that enable their survival in unique environments, such as high temperatures and low moisture levels tolerance. These new species and strains, with unique environmental tolerances, are more suitable for their consideration in pest management programs in xerophytic regions. With this background in mind, we recently conducted a survey of EPN in Jordan. This study records for the first time the diversity and distribution of these nematodes and their bacterial symbionts in this country. Jordan's three geographic regions: (1) the highlands, (2) Jordan valley and (3) the desert region were sampled. Within each region, natural habitats and agricultural regions characteristic to each region were considered for sampling purposes. Four EPN species including three Steinernema and one Heterorhabditis were recovered. Nematodes were identified using a combination of molecular markers and classic morphological diagnostic tools. Bacterial symbionts were identified by analysis of 16S rRNA sequences. Abiotic characteristics such as soil type, soil pH, and elevation were also recorded. We herein report the diversity of EPN species in Jordan and discuss their potential in Biocontrol and IPM programs for this country.

  18. A realistic appraisal of methods to enhance desiccation tolerance of entomopathogenic nematodes.

    Science.gov (United States)

    Perry, Roland N; Ehlers, Ralf-Udo; Glazer, Itamar

    2012-06-01

    Understanding the desiccation survival attributes of infective juveniles of entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis, is central to evaluating the reality of enhancing the shelf-life and field persistence of commercial formulations. Early work on the structural and physiological aspects of desiccation survival focused on the role of the molted cuticle in controlling the rate of water loss and the importance of energy reserves, particularly neutral lipids. The accumulation of trehalose was also found to enhance desiccation survival. Isolation of natural populations that can survive harsh environments, such as deserts, indicated that some populations have enhanced abilities to survive desiccation. However, survival abilities of EPN are limited compared with those of some species of plant-parasitic nematodes inhabiting aerial parts of plants. Research on EPN stress tolerance has expanded on two main lines: i) to select strains of species, currently in use commercially, which have increased tolerance to environmental extremes; and ii) to utilize molecular information, including expressed sequence tags and genome sequence data, to determine the underlying genetic factors that control longevity and stress tolerance of EPN. However, given the inherent limitations of EPN survival ability, it is likely that improved formulation will be the major factor to enhance EPN longevity and, perhaps, increase the range of applications.

  19. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria.

    Science.gov (United States)

    Darsouei, Reyhaneh; Karimi, Javad; Ghadamyari, Mohammad; Hosseini, Mojtaba

    2017-08-01

    The expression of antimicrobial peptides (AMPs) as the main humoral defense reactions of insects during infection by entomopathogenic nematodes (EPNs) and their symbiont is addressed herein. Three AMPs, attacin, cecropin, and spodoptericin, were evaluated in the fifth instar larvae of Spodoptera exigua Hübner (beet armyworm) when challenged with Steinernema carpocapsae or Heterorhabditis bacteriophora. The results indicated that attacin was expressed to a greater extent than either cecropin or spodoptericin. While spodoptericin was expressed to a much lesser extent, this AMP was induced against Gram-positive bacteria, and thus not expressed after penetration of Xenorhabdus nematophila and Photorhabdus luminescens. Attacin and cecropin in the larvae treated with S. carpocapsae at 8 hr post-injection (PI) attained the maximum expression levels and were 138.42-fold and 65.84-fold greater than those of larvae infected with H. bacteriophora, respectively. Generally, the ability of H. bacteriophora to suppress attacin, cecropin, and spodoptericin was greater than that of S. carpocapsae. According to the results, the expression of AMPs by Sp. exigua larvae against S. carpocapsae was determined in the 4 statuses of monoxenic nematode, axenic nematode, live symbiotic bacterium, and dead symbiotic bacterium. The expression of attacin in larvae treated with a monoxenic nematode and live bacterium at 8 and 2 hr PI, respectively, were increased to the maximum amount. Live X. nematophila was the strongest agent for the suppression of attacin. The expression of cecropin against monoxenic nematodes and live symbiotic bacteria at 8 and 4 hr PI, respectively, reached the maximum amount while the expression levels of attacin and cecropin for axenic nematodes were lesser and stable. The results highlighted that the ability of P. luminescens in AMPs suppression was much more than X. nematophila. The results also showed that the effect of symbiotic bacterium in suppressing attacin and

  20. Combined effect of Azadirachta indica and the entomopathogenic nematode Steinernema glaseri against subterranean termite, Reticulitermes flavipes

    Directory of Open Access Journals (Sweden)

    Kadarkarai Murugan

    2011-08-01

    Full Text Available Laboratory study has been conducted on the bioactivities of entomopathogenic nematodes and neem seed kernel extract (NSKE against worker termites of Reticulitermes flavipes. Neem at various concentrations did not affect the survivability of nematodes, whereas neem had considerable impact on the survivability of worker termites and this may be due to the presence of active neem compounds (Azadirachtin, salanin etc.. Mortality was 40% on 4th day at lower concentration of 1.0% NSKE treatment; whereas mortality has been increased to 70% at higher concentration (4.0% on 4th day. There was 100% mortality after the combined treatment with 4.0% NSKE + 600 infective juvenile Steinernema glaseri, even at the first day of the experiment. In the present experiment, neem extract does not affected the survival of the nematodes. Hence, nematode and neem extract can be used for soil-insect control particularly for the subterranean termites.

  1. Pathogenicity of Two Species of Entomopathogenic Nematodes Against the Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in Laboratory and Greenhouse Experiments.

    Science.gov (United States)

    Rezaei, Nastaran; Karimi, Javad; Hosseini, Mojtaba; Goldani, Morteza; Campos-Herrera, Raquel

    2015-03-01

    The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm(2)); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm(2) on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.

  2. Lab-on-a-chip and SDS-PAGE analysis of hemolymph protein profile from Rhipicephalus microplus (Acari: Ixodidae) infected with entomopathogenic nematode and fungus.

    Science.gov (United States)

    Golo, Patrícia Silva; Dos Santos, Alessa Siqueira de Oliveira; Monteiro, Caio Marcio Oliveira; Perinotto, Wendell Marcelo de Souza; Quinelato, Simone; Camargo, Mariana Guedes; de Sá, Fillipe Araujo; Angelo, Isabele da Costa; Martins, Marta Fonseca; Prata, Marcia Cristina de Azevedo; Bittencourt, Vânia Rita Elias Pinheiro

    2016-09-01

    In the present study, lab-on-a-chip electrophoresis (LoaC) was suggested as an alternative method to the conventional polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) to analyze raw cell-free tick hemolymph. Rhipicephalus microplus females were exposed to the entomopathogenic fungus Metarhizium anisopliae senso latu IBCB 116 strain and/or to the entomopathogenic nematode Heterorhabditis indica LPP1 strain. Hemolymph from not exposed or exposed ticks was collected 16 and 24 h after exposure and analyze by SDS-PAGE or LoaC. SDS-PAGE yielded 15 bands and LoaC electrophoresis 17 bands. Despite the differences in the number of bands, when the hemolymph protein profiles of exposed or unexposed ticks were compared in the same method, no suppressing or additional bands were detected among the treatments regardless the method (i.e., SDS-PAGE or chip electrophoresis using the Protein 230 Kit®). The potential of LoaC electrophoresis to detect protein bands from tick hemolymph was considered more efficient in comparison to the detection obtained using the traditional SDS-PAGE method, especially when it comes to protein subunits heavier than 100 KDa. LoaC electrophoresis provided a very good reproducibility, and is much faster than the conventional SDS-PAGE method, which requires several hours for one analysis. Despite both methods can be used to analyze tick hemolymph composition, LoaC was considered more suitable for cell-free hemolymph protein separation and detection. LoaC hemolymph band percent data reported changes in key proteins (i.e., HeLp and vitellogenin) exceptionally important for tick embryogenesis. This study reported, for the first time, tick hemolymph protein profile using LoaC.

  3. The influence of organic matter content and media compaction on the dispersal of entomopathogenic nematodes with different foraging strategies.

    Science.gov (United States)

    Kapranas, Apostolos; Maher, Abigail M D; Griffin, Christine T

    2017-12-01

    In laboratory experiments, we investigated how media with varying ratio of peat:sand and two levels of compaction influence dispersal success of entomopathogenic nematode (EPN) species with different foraging strategies: Steinernema carpocapsae (ambusher), Heterorhabditis downesi (cruiser) and Steinernema feltiae (intermediate). Success was measured by the numbers of nematodes moving through a 4 cm column and invading a wax moth larva. We found that both compaction and increasing peat content generally decreased EPN infective juvenile (IJ) success for all three species. Of the three species, H. downesi was the least affected by peat content, and S. carpocapsae was the most adversely influenced by compaction. In addition, sex ratios of the invading IJs of the two Steinernema species were differentially influenced by peat content, and in the case of S. feltiae, sex ratio was also affected by compaction. This indicates that dispersal of male and female IJs is differentially affected by soil parameters and that this differentiation is species-specific. In conclusion, our study shows that organic matter: sand ratio and soil compaction have a marked influence on EPN foraging behaviour with implications for harnessing them as biological pest control agents.

  4. Divergent thermal specialisation of two South African entomopathogenic nematodes

    Directory of Open Access Journals (Sweden)

    Matthew P. Hill

    2015-07-01

    Full Text Available Thermal physiology of entomopathogenic nematodes (EPN is a critical aspect of field performance and fitness. Thermal limits for survival and activity, and the ability of these limits to adjust (i.e., show phenotypic flexibility depending on recent thermal history, are generally poorly established, especially for non-model nematode species. Here we report the acute thermal limits for survival, and the thermal acclimation-related plasticity thereof for two key endemic South African EPN species, Steinernema yirgalemense and Heterorhabditis zealandica. Results including LT50 indicate S. yirgalemense (LT50 = 40.8 ± 0.3 °C has greater high temperature tolerance than H. zealandica (LT50 = 36.7 ± 0.2 °C, but S. yirgalemense (LT50 = −2.4 ± 0 °C has poorer low temperature tolerance in comparison to H. zealandica (LT50 = −9.7 ± 0.3 °C, suggesting these two EPN species occupy divergent thermal niches to one another.Acclimation had both negative and positive effects on temperature stress survival of both species, although the overall variation meant that many of these effects were non-significant. There was no indication of a consistent loss of plasticity with improved basal thermal tolerance for either species at upper lethal temperatures. At lower temperatures measured for H. zealandica, the 5 °C acclimation lowered survival until below −12.5 °C, where after it increased survival. Such results indicate that the thermal niche breadth of EPN species can differ significantly depending on recent thermal conditions, and should be characterized across a broad range of species to understand the evolution of thermal limits to performance and survival in this group.

  5. Divergent thermal specialisation of two South African entomopathogenic nematodes.

    Science.gov (United States)

    Hill, Matthew P; Malan, Antoinette P; Terblanche, John S

    2015-01-01

    Thermal physiology of entomopathogenic nematodes (EPN) is a critical aspect of field performance and fitness. Thermal limits for survival and activity, and the ability of these limits to adjust (i.e., show phenotypic flexibility) depending on recent thermal history, are generally poorly established, especially for non-model nematode species. Here we report the acute thermal limits for survival, and the thermal acclimation-related plasticity thereof for two key endemic South African EPN species, Steinernema yirgalemense and Heterorhabditis zealandica. Results including LT50 indicate S. yirgalemense (LT50 = 40.8 ± 0.3 °C) has greater high temperature tolerance than H. zealandica (LT50 = 36.7 ± 0.2 °C), but S. yirgalemense (LT50 = -2.4 ± 0 °C) has poorer low temperature tolerance in comparison to H. zealandica (LT50 = -9.7 ± 0.3 °C), suggesting these two EPN species occupy divergent thermal niches to one another. Acclimation had both negative and positive effects on temperature stress survival of both species, although the overall variation meant that many of these effects were non-significant. There was no indication of a consistent loss of plasticity with improved basal thermal tolerance for either species at upper lethal temperatures. At lower temperatures measured for H. zealandica, the 5 °C acclimation lowered survival until below -12.5 °C, where after it increased survival. Such results indicate that the thermal niche breadth of EPN species can differ significantly depending on recent thermal conditions, and should be characterized across a broad range of species to understand the evolution of thermal limits to performance and survival in this group.

  6. Effect of storage time and temperature on infectivity, reproduction and development of Heterorhabditis megidis in Galleria mellonella

    NARCIS (Netherlands)

    Boff, M.I.C.; Wiegers, G.L.; Smits, P.H.

    2000-01-01

    The effect of temperature, dose and storage period on the infectivity and development of Heterorhabditis megidis (strain NLH-E 87.3) infective juveniles (IJ) was studied in the laboratory. IJ were stored at 5, 10, 15 and 20°C for a period of up to 70 days (10 weeks). Every second week, mortality,

  7. Efecto de cinco Dosis de Heterorhabditis indica Poinat cepa P2M sobre la broca del café (Hypothenemus hampei Ferrari).

    OpenAIRE

    Yander Fernández Cancio; Marcos Tulio García González; Manuel Rodríguez González

    2015-01-01

    Con el objetivo de evaluar el efecto de Heterorhaditis indica cepa P2M en el manejo de la broca del café (Hypotenemushampei Ferrari) se realizó la investigación en condiciones controladas en el Laboratorio Provincial de Sanidad Vegetal de Sancti Spíritus con cinco dosis del patógeno: 20, 45, 75, 100 y 200 individuos juveniles infestiles/adulto (iji/adulto). Se diseñaron dos experimentos: variante 1 con aplicaciones directa sobre los adultos del insecto en placas Petri con siete repeticiones y...

  8. Nematodes

    International Nuclear Information System (INIS)

    Suzuki, Kenshi; Ishii, Naoaki

    1977-01-01

    Utilization of nematodes for a study of radiation biology was considered. Structure, generation, rearing method, and genetic nature of nematodes (Caenorhabditis elegans, Turbatri acetic, etc.) were given an outline. As the advantage of a study using nematodes as materials, shortness of one generation time, simplicity in structure, and smallness of the whole cells, specific regular movement, and heliotaxis to chemical substances and light were mentioned. Effect of x-ray on survival rate of nematodes and effect of ultraviolet on nematodes and their eggs were described. It was suggested that nematodes was useful for studies on aging and radiation biology, and a possibility existed that nematodes would be used in studies of cancer and malformation. (Serizawa, K.)

  9. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): A nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Larger black flour beetles (LBFB), Cynaeus angustus, feed on saprophytic fungi found in gin trash piles, and become nuisance pests in homes and businesses. We examined the dose-response of three entomopathogenic nematode species (Steinernema carpocapsae, S. feltiae, and Heterorhabditis bacteriophora...

  10. Conjoint effect of oil-seed cakes and Pseudomonas fluorescens on the growth of chickpea in relation to the management of plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Rose Rizvi

    2012-12-01

    Full Text Available Soil application of organics has been explored as an alternative means of organic management of plant-parasitic nematodes. Efficiency of different oil-seed cakes of neem (Azadirachta indica, castor (Ricinus communis, groundnut (Arachis hypogaea, linseed (Linum usitatissimum, sunflower (Helianthus annuus and soybean (Glycine max were evaluated in field conditions with association of Pseudomonas fluorescens in relation to growth parameters of chickpea and population of plant-parasitic nematodes. Their efficacious nature was highly effective in reducing the population of these dominant soil nematodes. Significant improvement was observed in plant-growth parameters such as plant weight, percent pollen fertility, pod numbers, root-nodulation and chlorophyll content of chickpea, seemed to be due to reduction in disease incidence and might be due to growth promoting substances secreted by P. fluorescens. The multiplication rate of nematodes was less in the presence of P. fluorescens as compared to its absence. Most effective combination of P. fluorescens was observed with neem cake.

  11. An insect pathogenic symbiosis between a Caenorhabditis and Serratia

    Science.gov (United States)

    Morrison, Julie; Cooper, Vaughn; Thomas, W. Kelley

    2011-01-01

    We described an association between a strain of the nematode Caenorhabditis briggsae, i.e. KT0001, and the bacteria Serratia sp. SCBI (South African Caenorhabditis briggsae isolate), which was able to kill the insect Galleria (G. mellonella). Here we show that the Serratia sp. SCBI lines the gut of the nematode, similar to the Heterorhabditis-Photorhabdus complex, indicating that the association is possibly internal. We also expand on the relevance of this tripartite, i.e. insect-nematode-bacteria, interaction in the broader evolutionary context and Caenorhabditis natural history. PMID:21389770

  12. Complete genome sequence of Beijerinckia indica subsp. indica.

    Science.gov (United States)

    Tamas, Ivica; Dedysh, Svetlana N; Liesack, Werner; Stott, Matthew B; Alam, Maqsudul; Murrell, J Colin; Dunfield, Peter F

    2010-09-01

    Beijerinckia indica subsp. indica is an aerobic, acidophilic, exopolysaccharide-producing, N(2)-fixing soil bacterium. It is a generalist chemoorganotroph that is phylogenetically closely related to facultative and obligate methanotrophs of the genera Methylocella and Methylocapsa. Here we report the full genome sequence of this bacterium.

  13. The potential use of entomopathogenic nematodesagainst Typhaea stercorea

    DEFF Research Database (Denmark)

    Svendsen, Tina Stendal; Steenberg, Tove

    2000-01-01

    Four entomopathogenic nematode species, Steinernema carpocapsae, S. feltiae, Heterorhabditis bacteriophora and H. megidis, were tested in a petri dish assay against larvae and , were tested in a petri dish assay against larvae and adults of the hairy fungus beetle Typhaea stercorea. In general...

  14. Review Of Usability Of Azadirachta Indica As A Biopesticide For Better Organic Farming

    Directory of Open Access Journals (Sweden)

    Vasant Rambhau Damal

    2017-08-01

    Full Text Available Azadirachta Indica Neem has some sort of well-developed root system that may well extract nutrients with lower soil levels which makes a crucial agent with erosion Control because it can be virtually drought-resistant. As these it can be effective as some sort of dune fixation tree. Indian farmers use Neem cake as a natural manure together with soil amendment the idea expands the productivity of nitrogen fertilizers just by limiting the charge of nitrification together with hampering pests these as nematodes fungi together with insects. This paper provides the brief assessment of literature to know the biopesticide benefits together with functions of Neem.

  15. Genetic and proteomic characterization of rpoB mutations and their effect on nematicidal activity in Photorhabdus luminescens LN2.

    Directory of Open Access Journals (Sweden)

    Xuehong Qiu

    Full Text Available Rifampin resistant (Rif(R mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode Heterorhabditis indica LN2 were genetically and proteomically characterized. The Rif(R mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 Rif(R mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing Rif(R mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 Rif(R mutants. The rpoB (P564L mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s. The non-nematicidal-producing Rif(R mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and Rif(R mutants, or between nematicidal-producing and non nematicidal-producing mutants. At least 7 putative proteins including DsbA, HlpA, RhlE, RplC, NamB (a protein from T3SS, and 2 hypothetical proteins (similar to unknown protein YgdH and YggE of Escherichia coli respectively were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregulated dsbA. These results indicate that the rpoB mutations greatly influence the

  16. Entomopathogens Isolated from Invasive Ants and Tests of Their Pathogenicity

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Miori de Zarzuela

    2012-01-01

    Full Text Available Some ant species cause severe ecological and health impact in urban areas. Many attempts have been tested to control such species, although they do not always succeed. Biological control is an alternative to chemical control and has gained great prominence in research, and fungi and nematodes are among the successful organisms controlling insects. This study aimed to clarify some questions regarding the biological control of ants. Invasive ant species in Brazil had their nests evaluated for the presence of entomopathogens. Isolated entomopathogens were later applied in colonies of Monomorium floricola under laboratory conditions to evaluate their effectiveness and the behavior of the ant colonies after treatment. The entomopathogenic nematodes Heterorhabditis sp. and Steinernema sp. and the fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces sp. were isolated from the invasive ant nests. M. floricola colonies treated with Steinernema sp. and Heterorhabditis sp. showed a higher mortality of workers than control. The fungus Beauveria bassiana caused higher mortality of M. floricola workers. However, no colony reduction or elimination was observed in any treatment. The defensive behaviors of ants, such as grooming behavior and colony budding, must be considered when using fungi and nematodes for biological control of ants.

  17. Azadirachta Indica

    African Journals Online (AJOL)

    Fine Print

    ABSTRACT. Medicinal plants are part of human society to combat diseases. Azadirachta indica evidently has great medicinal potentials. This work was undertaken to investigate the morphological and some enzymatic effect of A. indica extract on the tissues of the liver. Twenty four (24) adult Wistar rats of both sexes, ...

  18. Entomopathogenic nematodes for the control of the codling moth (Cydia pomonella L.) in field and laboratory trials.

    Science.gov (United States)

    Odendaal, D; Addison, M F; Malan, A P

    2016-09-01

    Three commercially available entomopathogenic nematode (EPN) strains (Steinernema feltiae and Heterorhabditis bacteriophora Hb1 and Hb2) and two local species (S. jeffreyense and S. yirgalemense) were evaluated for the control of the codling moth (Cydia pomonella). In field spray trials, the use of S. jeffreyense resulted in the most effective control (67%), followed by H. bacteriophora (Hb1) (42%) and S. yirgalemense (41%). Laboratory bioassays using spray application in simulated field conditions indicate S. feltiae to be the most virulent (67%), followed by S. yirgalemense (58%). A laboratory comparison of the infection and penetration rate of the different strains showed that, at 14°C, all EPN strains resulted in slower codling moth mortality than they did at 25°C. After 48 h, 98% mortality was recorded for all species involved. However, the washed codling moth larvae, cool-treated (at 14°C) with S. feltiae or S. yirgalemense, resulted in 100% mortality 24 h later at room temperature, whereas codling moth larvae treated with the two H. bacteriophora strains resulted in 68% and 54% control, respectively. At 14°C, S. feltiae had the highest average penetration rate of 20 IJs/larva, followed by S. yirgalemense, with 14 IJs/larva. At 25°C, S. yirgalemense had the highest penetration rate, with 39 IJs/larva, followed by S. feltiae, with 9 IJs/larva. This study highlights the biocontrol potential of S. jeffreyense, as well as confirming that S. feltiae is a cold-active nematode, whereas the other three EPN isolates tested prefer warmer temperatures.

  19. Perbandingan Aktivitas Antioksidan Campuran Ekstrak-Etanol A.indica dan C.asiatica terhadap Ekstrak-Etanol A.indica

    Directory of Open Access Journals (Sweden)

    Kemas R Notariza

    2017-09-01

    Full Text Available Radikal bebas, dalam kadar rendah atau menengah, mempunyai peran fisiologis bagi kehidupan sel tubuh. Pada konsentrasi tinggi, radikal-bebas dapat memicu stres oksidatif yang menjadi dasar patogenesis berbagai penyakit. Suplai antioksidan eksogen dibutuhkan untuk membantu kinerja antioksidan endogen dalam menangkal stres oksidatif. Ekstrak-etanol Acalypha indica dan Centella asiatica masing-masing diketahui memiliki aktivitas antioksidan. Penelitian ini bertujuan untuk mengetahui perbandingan aktivitas antioksidan campuran ekstrak-etanol Acalypha indica dan Centella asiatica terhadap ekstrak-etanol Acalypha indica. Kombinasi ekstrak diharapkan mampu meningkatkan aktivitas antioksidan yang dihasilkan dan menurunkan dosis yang digunakan. Aktivitas antioksidan ekstrak diukur dengan metode spektrofotometri melalui uji DPPH. Kandungan fitokimia ekstrak juga diuji secara kualitatif. Hasil uji kualitatif menunjukkan bahwa ekstrak-etanol Acalypha indica maupun campuran ekstrak-etanol Acalypha indica dan Centella asiatica positif mengandung fitokimia berupa flavonoid dan steroid. Hasil pengukuran aktivitas antioksidan menunjukkan bahwa Vitamin C yang menjadi kontrol positif menunjukkan nilai EC50 sebesar 0,012 mg/mL. Nilai EC50 ekstrak-etanol Acalypha indica adalah 13,68 mg/mL, sedangkan nilai EC50 campuran ekstrak-etanol Acalypha indica dan Centella asiatica adalah 39,65 mg/mL. Nilai EC50 yang lebih kecil mengindikasikan aktivitas antioksidan yang lebih tinggi. Dengan demikian, aktivitas antioksidan campuran ekstrak-etanol Acalypha indica dan Centella asiatica lebih rendah dibandingkan dengan ekstrak-etanol Acalypha indica.   Kata kunci: Acalypha indica; aktivitas antioksidan; Centella asiatica Normal 0 false false false EN-US X-NONE X-NONE

  20. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).

    Science.gov (United States)

    Hirao, A; Ehlers, R-U

    2009-08-01

    The rhabditid nematodes Steinernema carpocapsae and Steinernema feltiae are used in biological control of insect pests. Mass production is done in liquid culture media pre-incubated with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, before nematode dauer juveniles (DJs) are inoculated. As a response to food signals produced by the bacterial symbionts, the DJs exit from the developmentally arrested dauer stage (they recover development) and grow to adults, which produce DJ offspring. Variable DJ recovery after inoculation often causes process failure due to non-synchronous population development and low numbers of adult nematodes. This contribution investigated the influence of the bacterial cell density on DJ recovery and development to adults. At higher density of 10(10) bacterial cells ml(-1), a higher percentage of DJ recovery was induced, and adults occurred earlier in both Steinernema spp. than at lower density of 10(9) and 10(8) cells ml(-1). Xenorhabdus symbionts produce phase variants. Recovery in bacteria-free supernatants was lower than in supernatants containing bacterial cells for both primary and secondary phase Xenorhabdus spp. and lower in secondary than in primary phase supernatants or cell suspensions. In general, recovery was lower for Steinernema feltiae and the time at which 50% of the population had recovered after exposure to the food signal was longer (RT(50) = 17.1 h) than for Steinernema carpocapsae (RT(50) = 6.6 h). Whereas >90% S. carpocapsae DJs recovered in hemolymph serum of the lepidopteran insect Galleria mellonella, recovery of S. feltiae only reached 31%. Penetration into a host insect prior to exposure to the insect's food signal did not enhance DJ recovery. Consequences for liquid culture mass production of the nematodes and differences between species of the genera Steinernema and Heterorhabditis are discussed.

  1. Virulencia, producción y desplazamiento de nematodos entomopatógenos sobre larvas del picudo de la guayaba Conotrachelus psidii Marshall (Coleoptera: Curculionidae en laboratorio.

    Directory of Open Access Journals (Sweden)

    Adriana Sáenz Aponte

    2012-12-01

    Full Text Available The guava weevil Conotrach­elus psidii Marshall is a major pest affecting guava cultiva­tion in Santander, Colombia; it causes serious losses in the quality and the volume of fruit produced. Biological control is a viable option for pest management; entomo­pathogenic nematodes (EPNs, particularly, have shown good results (63-90% mortality in controlling fourth in­star larvae of the guava weevil. In this study we evaluated the effect of seven species of EPNs isolated in Colom­bia: Steinernema websteri JCL006, Steinernema sp. 1 JCL024, Steinernema sp. 2 JCL007, Steinernema sp. 3 JCL027, S. co­lombiense SNI0198, Heterorhabditis bacteriophora HNI0100 and Heterorhabditis sp. SL0708 on fourth instar larvae of the guava weevil in laboratory conditions, and measured the production and the displacement of the most viru­lent. Heterorhabditis sp. SL0708 induced mortality of 85%, Steinernema sp. 1 JCL024 75% and S. colombiense SNI0198 55%, the other species of EPNs, less than 25% mortality. Increased production of JI by weevil larva was recorded in Heterorhabditis sp. SL0708, which also showed greater recognition capability when the host was C. psidii.

  2. Entomopathogens Associated to Citrus and Their Pathogenicity on Compsus viridivittatus Guérin-Méneville (Coleoptera: Curculionidae: Entiminae

    Directory of Open Access Journals (Sweden)

    Paola Andrea Zuluaga Cárdenas

    2015-07-01

    Full Text Available C. viridivittatus, citrus weevil distributed throughoutthe coffee maker and Andean region of Colombia. Thelarvae feed on roots and adults on leaves and flowers. On three citrus farms of the Valley were isolate and evaluated fungi and entompathogenic nematodes M. anisopliaeand B. bassiana and Steinernema sp. and Heterorabditis sp. on larvae of C. viridivittatus 26, 36, 48 and 53 days of age. In 120 from 132 soil samples were found 21 fungi and none nematodes. Commercial B. bassiana B9 and B10 caused 100 % adult mortality in a time of 4.3 and 4 days. M. anisopliae M6 y M7 caused 94 % and 97 % of mortality to the 4.3 and 5 days. Steinernema sp. UNS09 caused 65 % of mortality on larvae of 48 and 53 days of age, seven days later. No were differences between UNS09 Steinernema and Heterorhabditis UNH16. Steinernema sp. UNS09 caused 85.7 % of mortality on 53 days larvae and 81.9 % and 81.1 % to larvae of 36 and 26 days. Heterorhabditis sp. UNH16 killed larvae of 36, 26 and 56 days was 79 %, 81 % and 75.4 % seven days later. In conclusion, fungi and nematodes can be an alternative to management of C. viridivittatus larvae.

  3. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  4. Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin.

    Science.gov (United States)

    Vidal-Diez de Ulzurrun, Guillermo; Hsueh, Yen-Ping

    2018-05-01

    Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.

  5. Antibacterial Activity of Azadirachta indica, Pongamia pinnata, Psidium guajava, and Mangifera indica and their mechanism of action against Streptococcus mutans.

    Science.gov (United States)

    Bodiba, Dikonketso Cathrine; Prasad, Preety; Srivastava, Ajay; Crampton, Brigdet; Lall, Namrita Sharan

    2018-01-01

    Curative plants have reportedly been used to make chewing sticks/toothbrushes intended for the treatment of oral diseases. The in vitro antibacterial activities of Azadirachta indica , Pongamia pinnata , Psidium guajava , and Mangifera indica were evaluated against Streptococcus mutans , along with the cytotoxicity and antioxidant and synergistic potentials. The effect of M. indica on the expression of crucial virulence genes spaP and gtfB of S. mutans was determined. The antibacterial activity was determined using a modified microdilution method. The antioxidant potential was evaluated using diphenyl picrylhydrazyl (DPPH), Griess reagent, and nitroblue tetrazolium calorimetric assays. The synergistic activity was investigated using a modified checkerboard method, while the cytotoxicity was determined according to a cell proliferation 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay. Reverse transcription was the chosen method for determining the difference in expression of the spaP and gtfB genes after treatment with the plant sample. M. indica and A. indica had the highest antibacterial activity at concentrations of 0.3 mg/ml and 6.25 mg/ml, respectively. A. indica had the best free radical scavenging of DPPH, exhibiting 50% inhibition at 28.72 μg/ml; while M. indica showed better superoxide scavenging potential than the positive control quercetin. Both M. indica and A. indica had adequate activity against the nitric oxide-free radical (12.87 and 18.89 μg/ml, respectively). M. indica selectively reduced the expression of the gtfB gene, indicating a mechanism involving Glucotranferases, specifically targeting bacterial attachment. Mangifera indica and Azadirachta indica had very good antibacterial activity against Streptococcus mutans and moderate toxicity against Vero cells M. indica had the best antioxidant capacity overall M. indica reduced the expression of gtfB gene at 0.5 mg/ml. Abbreviations used : AA: Ascorbic acid; BHI

  6. Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: Implications for their natural distribution in Swiss agricultural soils.

    Science.gov (United States)

    Campos-Herrera, Raquel; Půža, Vladimir; Jaffuel, Geoffrey; Blanco-Pérez, Rubén; Čepulytė-Rakauskienė, Rasa; Turlings, Ted C J

    2015-11-01

    Entomopathogenic nematodes (EPN) are excellent biological control agents to fight soil-dwelling insect pests. In a previous survey of agricultural soils of Switzerland, we found mixtures of free-living nematodes (FLN) in the genus Oscheius, which appeared to be in intense competition with EPN. As this may have important implications for the long-term persistence of EPN, we studied this intraguild competition in detail. We hypothesized that (i) Oscheius spp. isolates act as scavengers rather than entomopathogens, and (ii) cadavers with relatively small numbers of EPN are highly suitable resources for Oscheius spp. reproduction. To study this, we identified Oscheius spp. isolated from Swiss soils, quantified the outcome of EPN/Oscheius competition in laboratory experiments, developed species-specific primers and probe for quantitative real-time PCR, and evaluated their relative occurrence in the field in the context of the soil food web. Molecular analysis (ITS/D2D3) identified MG-67/MG-69 as Oscheius onirici and MG-68 as O. tipulae (Dolichura-group). Oscheius spp. indeed behaved as scavengers, reproducing in ∼64% of frozen-killed cadavers from controlled experiments. Mixed infection in the laboratory by Oscheius spp. with low (3 IJs) or high (20 IJs) initial EPN numbers revealed simultaneous reproduction in double-exposed cadavers which resulted in a substantial reduction in the number of EPN progeny from the cadaver. This effect depended on the number of EPN in the initial inoculum and differed by EPN species; Heterorhabditis megidis was better at overcoming competition. This study reveals Oscheius spp. as facultative kleptoparasites that compete with EPN for insect cadavers. Using real-time qPCR, we were able to accurately quantify this strong competition between FLN and EPN in cadavers that were recovered after soil baiting (∼86% cadavers with >50% FLN production). The severe competition within the host cadavers and the intense management of the soils in

  7. Susceptibility of Asian longhorned beetle, Anoplophora glabripennis (Motchulsky) (Coleoptera: Cerambycidae) to entomopathogenic nematodes

    Science.gov (United States)

    Declan J. Fallon; Leellen F. Solter; Melody Keena; Michael McManus; James R. Cate; Lawrence M. Hanks

    2004-01-01

    Isolates of Steinernema feltiae SN from France, Steinernema glaseri NJ from New Jersey, Steinernema riobrave TX from Texas, Steinernema carpocapsaeSal from Indiana, S. carpocapsae All from Georgia, and Heterorhabditis marelata IN from Indiana...

  8. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  9. Heterorhabditis bacteriophora effect on coffe berry borer in the Algarrobo locality, Trinidad, Cuba

    Directory of Open Access Journals (Sweden)

    Delvis Valdés Zayas

    2016-11-01

    Full Text Available Hypothenemus hampei Ferrari, coffee berry borer is considered the pest that bigger causes damage, to coffee production all over the world. It is an insect of difficult handling with the traditional control methods by mean of insecticides. For this reason the Strategy of Integrated Handling of this Plague take into consideration since manual collection of the insect up the employment of biological controls. The last alternative is one of the more appealed by coffee farmers due to the minor cost. That’s why with the realization of this work the levels of effectiveness of several doses of Heterorhabditis bacteriophora on the control of H. hampei were evaluated. There were not significant differences between the three doses evaluated so it is suggested the employment of the dose of 500 million for hectare for the control of the plague because it is the most economic dose.

  10. Phylogency and Evolution of Nematodes

    NARCIS (Netherlands)

    Bert, W.; Karssen, G.; Helder, J.

    2011-01-01

    Many plant-parasitic nematodes including members of the genera Meloidogyne (root-knot nematodes), Heterodera and Globodera (cyst nematodes) and Pratylenchus (lesion nematodes) are studied as they cause major damage to crops such as potato, tomato, soybean and sugar beet. Both for fundamental reasons

  11. Control of Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) with entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae) in peach orchards.

    Science.gov (United States)

    de Carvalho Barbosa Negrisoli, Carla Ruth; Negrisoli, Aldomario Santo; Garcia, Mauro Silveira; Dolinski, Claudia; Bernardi, Daniel

    2013-10-01

    Oriental fruit moth Grapholita molesta (Busck, 1916) (Lepidoptera: Tortricidae) is considered a major pest in temperate fruit trees, such as peach and apple. Entomopathogenic nematodes (EPNs) are regarded as viable for pest management control due to their efficiency against tortricid in these trees. The objective of this study was to evaluate the effectiveness of native EPNs from Rio Grande do Sul state against pre-pupae of G. molesta under laboratory and field conditions. In the laboratory, pre-pupae of G. molesta were placed in corrugated cardboard sheets inside glass tubes and exposed to 17 different EPNs strains at concentrations of 6, 12, 24, 48 and 60 IJs/cm(2) and maintained at 25 °C, 70 ± 10% RH and photophase of 16 h. Insect mortality was recorded 72 h after inoculation of EPNs. Steinernema rarum RS69 and Heterorhabditis bacteriophora RS33 were the most virulent strains and selected for field application (LC95 of 70.5 and 53.8 IJs/cm(2), respectively). Both strains were highly efficient under field conditions when applied in aqueous suspension directed to larvae on peach tree trunk, causing mortality of 94 and 97.0%, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Modulation of eosinophil generation and migration by Mangifera indica L. extract (Vimang).

    Science.gov (United States)

    Sá-Nunes, Anderson; Rogerio, Alexandre P; Medeiros, Alexandra I; Fabris, Viciany E; Andreu, Gilberto P; Rivera, Dagmar G; Delgado, René; Faccioli, Lúcia H

    2006-09-01

    The effects of Vimang, an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae), on cell migration in an experimental model of asthma was investigated. In vivo treatment of Toxocara canis-infected BALB/c mice for 18 days with 50 mg/kg Vimang reduced eosinophil migration into the bronchoalveolar space and peritoneal cavity. Also, eosinophil generation in bone marrow and blood eosinophilia were inhibited in infected mice treated with Vimang. This reduction was associated with inhibition of IL-5 production in serum and eotaxin in lung homogenates. In all these cases the effects of Vimang were more selective than those observed with dexamethasone. Moreover, Vimang treatment is not toxic for the animals, as demonstrated by the normal body weight increase during infection. These data confirm the potent anti-inflammatory effect of Vimang and support its potential use as an alternative therapeutic drug to the treatment of eosinophilic disorders including those caused by nematodes and allergic diseases.

  13. Olfactory circuits and behaviors of nematodes.

    Science.gov (United States)

    Rengarajan, Sophie; Hallem, Elissa A

    2016-12-01

    Over one billion people worldwide are infected with parasitic nematodes. Many parasitic nematodes actively search for hosts to infect using volatile chemical cues, so understanding the olfactory signals that drive host seeking may elucidate new pathways for preventing infections. The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: because sensory neuroanatomy is conserved across nematode species, an understanding of the microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes that lays the groundwork for future studies of their olfactory microcircuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants

    Directory of Open Access Journals (Sweden)

    Silvestre A.

    2004-06-01

    Full Text Available In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control ? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole. Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial : it is not possible to avoid it, but only to delay its development in farm animal industry.

  15. Biocontrol Potential of Steinernema thermophilum and Its Symbiont Xenorhabdus indica Against Lepidopteran Pests: Virulence to Egg and Larval Stages.

    Science.gov (United States)

    Kalia, Vinay; Sharma, Garima; Shapiro-Ilan, David I; Ganguly, Sudershan

    2014-03-01

    Under laboratory conditions, the biocontrol potential of Steinernema thermophilum was tested against eggs and larval stages of two important lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura (polyphagous pests), as well as Galleria mellonella (used as a model host). In terms of host susceptibility of lepidopteran larvae to S. thermophilum, based on the LC50 36 hr after treatment, G. mellonella (LC50 = 16.28 IJ/larva) was found to be more susceptible than S. litura (LC50 = 85 IJ/larva), whereas neither host was found to be significantly different from H. armigera (LC50 = 54.68 IJ/larva). In addition to virulence to the larval stages, ovicidal activity up to 84% was observed at 200 IJ/50 and 100 eggs of H. armigera and S. litura, respectively. To our knowledge this is the first report of entomopathogenic nematode pathogenicity to lepidopteran eggs. Production of infective juvenile (IJ) nematodes/insect larva was also measured and found to be positively correlated with rate of IJ for H. armigera (r = 0.990), S. litura (r = 0.892), as well as G. mellonella (r = 0.834). Both Phase I and Phase II of symbiotic bacteria Xenorhabdus indica were tested separately against neonates of H. armigera and S. litura by feeding assays and found to be virulent to the target pests; phase variation did not affect the level of virulence. Thus S. thermophilum as well as the nematode's symbiotic bacteria applied separately have the potential to be developed as biocontrol agents for key lepidopteran pests.

  16. Molecular aspects of cyst nematodes.

    Science.gov (United States)

    Lilley, Catherine J; Atkinson, Howard J; Urwin, Peter E

    2005-11-01

    SUMMARY Taxonomy: Superkingdom Eukaryota; kingdom Metazoa; phylum Nematoda; class Chromadorea; order Tylenchida; suborder Tylenchina; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; main genera Heterodera and Globodera. Cyst nematodes comprise approximately 100 known species in six genera. They are pathogens of temperate, subtropical and tropical plant species and the host range of many species is narrow. The most economically important species are within the Globodera and Heterodera genera. Globodera pallida and G. rostochiensis are important pathogens of potato crops. There are many economic species in the Heterodera genus, including Heterodera glycines (soybean cyst nematode), H. avenae (cereal cyst nematode) and H. schachtii (sugar beet cyst nematode), the last of which attacks a range of Chenopodiaceae and Cruciferae, including Arabidopsis thaliana. Disease symptoms: Field symptoms of severe cyst nematode infection are often stunting, wilting and chlorosis, but considerable yield loss can occur without obvious symptoms. The only unique indicator of cyst nematode infection is the presence of adult female nematodes attached to host roots after several weeks of parasitism. Disease control: This is usually achieved by using integrated pest management involving cultural practices such as crop rotation, resistant cultivars if available and chemical control when economically justified.

  17. Exploring the scope for improving biocontrol of black vine weevil, Otiorhynchus sulcatus, with Heterorhabditis spp. at low temperatures: a simulation study.

    NARCIS (Netherlands)

    Westerman, P.R.; Werf, van der W.

    1998-01-01

    Control success with heterorhabditid nematodes varies with nematode species, isolate, production and storage conditions, and environmental conditions after application. These factors affect nematode behaviour. A model was developed that simulates movement of a nematode population in space and time

  18. The evolutionary position of nematodes

    Directory of Open Access Journals (Sweden)

    Gojobori Takashi

    2002-04-01

    Full Text Available Abstract Background The complete genomes of three animals have been sequenced by global research efforts: a nematode worm (Caenorhabditis elegans, an insect (Drosophila melanogaster, and a vertebrate (Homo sapiens. Remarkably, their relationships have yet to be clarified. The confusion concerns the enigmatic position of nematodes. Traditionally, nematodes have occupied a basal position, in part because they lack a true body cavity. However, the leading hypothesis now joins nematodes with arthropods in a molting clade, Ecdysozoa, based on data from several genes. Results We tested the Ecdysozoa hypothesis with analyses of more than 100 nuclear protein alignments, under conditions that would expose biases, and found that it was not supported. Instead, we found significant support for the traditional hypothesis, Coelomata. Our result is robust to different rates of sequence change among genes and lineages, different numbers of taxa, and different species of nematodes. Conclusion We conclude that insects (arthropods are genetically and evolutionarily closer to humans than to nematode worms.

  19. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes.

    Science.gov (United States)

    Shah, Syed Jehangir; Anjam, Muhammad Shahzad; Mendy, Badou; Anwer, Muhammad Arslan; Habash, Samer S; Lozano-Torres, Jose L; Grundler, Florian M W; Siddique, Shahid

    2017-12-16

    When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Biosorptive behavior of Mango (Mangifera indica) and Neem (Azadirachta indica) barks for Cs-134 from aqueous solutions: A radiotracer study

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Diwakar Tiwari; Prasad, S.K.; Dubey, R.S.; Manisha Mishra

    2005-01-01

    The role of dead biomasses in the removal of heavy metal toxic ions has received an increased attention due to their large abundance and low cost solids. In line with much interest we tried to employ such solids viz., Mango (Mangifera indica) and Neem (Azadirachta indica) bark samples in the removal of one of the important fission fragment viz., strontium and indeed these are found to be quite promishing for such studies. In addition to their good uptake behavior, these solids are also found to be fairly stable towards ionizing radiations. Here, an attempt has been made to study for the removal behavior of Mangifera indica and Azadirachta indica bark samples for 134 Cs. The barks of Mangifera indica and Azadirachta indica were obtained from the vast region of Banaras Hindu University campus. Bark samples were dried at room temperature and then crushed and washed repeatedly by double distilled water and again dried at room temperature. The sorption of Cs(I) on these bark samples were carried out as a function of sorptive concentration (1.0 x 10 -2 to 1.0 x 10 -8 mol dm -3 ) at constant temperature 298 K and pH∼6.0. Quantitatively, it was observed that the amount of Cs(I) adsorbed on these solids increased from 0.175 x 10 -9 to 0.051 x 10 -3 mol g -1 for Mangifera indica and from 0.310 x 10 -9 to 0.102 x 10 -3 mol g -1 for Azadirachta indica with the increase in sorptive concentration from 1.0 x 10 -8 to 1.0 x 10 -2 mol dm -3 . However, the percent sorption decreased from 17.5 to 5.1% for Magifera indica and from 31.0 to 10.2% for Azadirachta indica for the corresponding increase in sorptive concentration. This decrease in percent sorption is likely due to the lesser number of surface active sites, available for higher number of sorptive species. Further, the concentration dependence data were utilized for analysing the adsorption isotherm and it was found that these are fitted well for Freundlich adsorption isotherm to its linearized logarithmic form (Log a e

  1. Epidemiological studies of nematodes in fishes

    International Nuclear Information System (INIS)

    Qamar, M.F.; Butt, K.; Qureshi, N.A.

    2014-01-01

    Three hundred fresh water fishes of six species were collected from six different fish farms of Lahore for the prevalence of nematodes. Out of 300 fishes examined, 12 were found to be infected with the helminthes, majority of them were isolated from the stomach and intestines. The following two species of nematodes were recorded; Capillaria spp. and Eustrongylides spp. The overall prevalence of intestinal nematodes was recorded as 4%(12/300). The prevalence of nematodes was recorded on monthly basis which ranged from 0-8%. The highest prevalence of nematodes was 8% (4/50) during March, while the lowest prevalence was noted in June 0%.Singharee (Sperata sawari) showed the maximum infestation of nematodes of 8% (4/50), whereas in Silver Carp (Hypopthaimichthys molitrix) minimum prevalence of nematode (0%) was noted. The prevalence of different nematode in a particular fish specie was also recorded, and it was stated that overall prevalence of capillaria spp. was 6% in Rahu (Labeo rohita) and Saul (Channa marullius). Similarly overall infestation of Eustrongylides sp. was recorded as 4% in Singharee (Sperata sawari) and Silver carp (Hypopthaimichthys molitrix). The nematode intensity might be linked with the genetic makeup, intestinal vigor, and other managemental and environmental factors. (author)

  2. Nematode communities in contaminated river sediments

    International Nuclear Information System (INIS)

    Heininger, Peter; Hoess, Sebastian; Claus, Evelyn; Pelzer, Juergen; Traunspurger, Walter

    2007-01-01

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure

  3. Nematode communities in contaminated river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Heininger, Peter [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Hoess, Sebastian [Ecossa - Ecological Sediment and Soil Assessment, Thierschstr. 43, 80538 Munich (Germany); Claus, Evelyn [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Pelzer, Juergen [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Traunspurger, Walter [University of Bielefeld, Department of Animal Ecology, Morgenbreede 45, 33615 Bielefeld (Germany)]. E-mail: traunspurger@uni-bielefeld.de

    2007-03-15

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure.

  4. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  5. RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi.

    Science.gov (United States)

    Pandit, Ramesh; Patel, Reena; Patel, Namrata; Bhatt, Vaibhav; Joshi, Chaitanya; Singh, Pawan Kumar; Kunjadia, Anju

    2017-04-01

    Nematode-trapping fungi are well known for their inherent potential to trap and kill nematodes using specialized trapping devices. However, the molecular mechanisms underlying the trapping and subsequent processes are still unclear. Therefore, in this study, we examined differential genes expression in two nematode-trapping fungi after baiting with nematode extracts. In Arthrobotrys conoides, 809 transcripts associated with diverse functions such as signal transduction, morphogenesis, stress response and peroxisomal proteins, proteases, chitinases and genes involved in the host-pathogen interaction showed differential expression with fold change (>±1.5 fold) in the presence of nematode extract with FDR (p-value nematode-trapping fungi for its host. The findings illustrate the molecular mechanism of fungal parasitism in A. conoides which may be helpful in developing a potential biocontrol agent against parasitic nematodes.

  6. POTENCIALIDADES DE Heterorhabditis bacteriophora Poinar CEPA HC1 PARA EL MANEJO DEHypothenemus hampei Ferr . II. COMPATIBILIDAD CON Beauveria bassiana (Balsamo ) Vuillemin y Endosulfan

    OpenAIRE

    Sánchez, Lourdes; Rodríguez, MayraG

    2008-01-01

    Heterorhabditis bacteriophora cepa HC1 ha demostrado ser un efectivo agente de control biológico para importantes plagas en las condiciones de Cuba, mostrando también potencialidades para el manejo de la broca del café. Con los objetivos de estudiar el tipo de relaciones que puede establecer con Beauveria bassiana , organismo de amplio uso a escala internacional para el manejo de la broca en condiciones de producción y el insecticida Endosulfan , se ejecutó este trabajo. H. bacteriophora cepa...

  7. Effects of single and combined applications of entomopathogenic fungi and nematodes against Rhynchophorus ferrugineus (Olivier)

    Science.gov (United States)

    This study was carried out to investigate the insecticidal properties of Beauveria bassiana and Metarhizium anisopliae, and Heterorhabditis bacteriophora Poinar for their virulence against 2nd, 4th and 6th instar larvae of Rhynchophorus ferrugineus (Olivier). Both fungi were either applied alone or ...

  8. Nematode cholinergic pharmacology

    International Nuclear Information System (INIS)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe [ 3 H]N-methylscopolamine ([ 3 H]NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs

  9. Small RNAs and extracellular vesicles in filarial nematodes: From nematode development to diagnostics.

    Science.gov (United States)

    Quintana, J F; Babayan, S A; Buck, A H

    2017-02-01

    Parasitic nematodes have evolved sophisticated mechanisms to communicate with their hosts in order to survive and successfully establish an infection. The transfer of RNA within extracellular vesicles (EVs) has recently been described as a mechanism that could contribute to this communication in filarial nematodes. It has been shown that these EVs are loaded with several types of RNAs, including microRNAs, leading to the hypothesis that parasites could actively use these molecules to manipulate host gene expression and to the exciting prospect that these pathways could result in new diagnostic and therapeutic strategies. Here, we review the literature on the diverse RNAi pathways that operate in nematodes and more specifically our current knowledge of extracellular RNA (exRNA) and EVs derived from filarial nematodes in vitro and within their hosts. We further detail some of the issues and questions related to the capacity of RNA-mediated communication to function in parasite-host interactions and the ability of exRNA to enable us to distinguish and detect different nematode parasites in their hosts. © 2016 The Authors. Parasite Immunology published by John Wiley & Sons Ltd.

  10. Plant-parasitic nematodes in Hawaiian agriculture

    Science.gov (United States)

    Hawaii’s diverse and mild climate allows for the cultivation of many crops. The introduction of each crop plant brought along its associated nematode pests. These plant-parasitic nematodes became established and are now endemic to the islands. Plantation agriculture determined the major nematode ...

  11. opuntia ficus-indica

    African Journals Online (AJOL)

    15], the composition of phenolic compounds of cladodes of O. ficus-indica is found to be: total ... hydroxide and ascorbic acid (BDH, England); D-catechin, hydrochloric acid, ... on the reduction of phosphotungstate-phosphomolybdate complex by ...

  12. How do humans affect wildlife nematodes?

    Science.gov (United States)

    Weinstein, Sara B.; Lafferty, Kevin D.

    2015-01-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host–parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.

  13. [Effect of the soil contamination with a potato cyst-forming nematode on the community structure of soil-inhabiting nematodes].

    Science.gov (United States)

    Gruzdeva, L I; Suzhchuk, A A

    2008-01-01

    Nematode community structure of the potato fields with different infection levels of potato cyst-forming nematode (PCN) such as 10, 30 and 214 cysts per 100 g of soil has been investigated. The influence of specialized parasite on nematode fauna and dominance character of different ecological-trophic groups were described. Parasitic nematode genera in natural meadow biocenosis and agrocenoses without PCN are Paratylenchus, Tylenchorhynchus, and Helicotylenchus. It is established, that Paratylenchus nanus was the prevalent species among plant parasites at low infection level. Larvae of Globodera prevailed in the soil with middle and high infection levels and substituted individuals of other genera of parasitic nematodes. The fact of increase in number of hyphal-feeding nematode Aphelenchus avenae was revealed.

  14. Different Aluminum Tolerance among Indica, Japonica and Hybrid Rice Varieties

    Directory of Open Access Journals (Sweden)

    Shu Chang

    2015-05-01

    Full Text Available Hydroponic cultures were conducted to compare the aluminum (Al tolerance among different rice (Oryza sativa L. varieties, including indica, japonica and their hybrids. The results showed that the root growth of rice plant was inhibited in different degrees among Al treated varieties. The Al tolerance observed through relative root elongation indicated that five japonica varieties including Longjing 9, Dharial, LGC 1, Ribenyou and Koshihikari were relatively more tolerant than indica varieties. Most indica varieties in this study, such as Aus 373 and 9311 (awnless, were sensitive to Al toxicity. The Al tolerance of most progenies from japonica × indica or indica × japonica crosses was constantly consistent with indica parents. The differences of Al tolerance among Longjing 9 (japonica, Yangdao 6 (indica and Wuyunjing 7 (japonica were studied. Biomass and the malondial-dehyde content of Yangdao 6 under Al exposure decreased and increased, respectively, while there was no significant effect on those of Longjing 9 and Wuyunjing 7. Remarkable reduction of root activities was observed in all these three rice varieties. Significantly higher Al content in roots was found in Yangdao 6 compared to Longjing 9 or Wuyunjing 7.

  15. An improved method for generating axenic entomopathogenic nematodes.

    Science.gov (United States)

    Yadav, Shruti; Shokal, Upasana; Forst, Steven; Eleftherianos, Ioannis

    2015-09-19

    Steinernema carpocapsae are parasitic nematodes that invade and kill insects. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila and together form an excellent model to study pathogen infection processes and host anti-nematode/antibacterial immune responses. To determine the contribution of S. carpocapsae and their associated X. nematophila to the successful infection of insects as well as to investigate the interaction of each mutualistic partner with the insect immune system, it is important to develop and establish robust methods for generating nematodes devoid of their bacteria. To produce S. carpocapsae nematodes without their associated X. nematophila bacteria, we have modified a previous method, which involves the use of a X. nematophila rpoS mutant strain that fails to colonize the intestine of the worms. We confirmed the absence of bacteria in the nematodes using a molecular diagnostic and two rounds of an axenicity assay involving appropriate antibiotics and nematode surface sterilization. We used axenic and symbiotic S. carpocapsae to infect Drosophila melanogaster larvae and found that both types of nematodes were able to cause insect death at similar rates. Generation of entomopathogenic nematodes lacking their mutualistic bacteria provides an excellent tool to dissect the molecular and genetic basis of nematode parasitism and to identify the insect host immune factors that participate in the immune response against nematode infections.

  16. Fungi associated with free-living soil nematodes in Turkey

    Directory of Open Access Journals (Sweden)

    Karabörklü Salih

    2015-01-01

    Full Text Available Free-living soil nematodes have successfully adapted world-wide to nearly all soil types from the highest to the lowest of elevations. In the current study, nematodes were isolated from soil samples and fungi associated with these free-living soil nematodes were determined. Large subunit (LSU rDNAs of nematode-associated fungi were amplified and sequenced to construct phylogenetic trees. Nematode-associated fungi were observed in six nematode strains belonging to Acrobeloides, Steinernema and Cephalobus genera in different habitats. Malassezia and Cladosporium fungal strains indicated an association with Acrobeloides and Cephalobus nematodes, while Alternaria strains demonstrated an association with the Steinernema strain. Interactions between fungi and free-living nematodes in soil are discussed. We suggest that nematodes act as vectors for fungi.

  17. Mechanisms of host seeking by parasitic nematodes.

    Science.gov (United States)

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Entomopathogenic nematodes for the biocontrol of ticks.

    Science.gov (United States)

    Samish, M; Glazer, I

    2001-08-01

    Entomopathogenic steinemematid and heterorhabditid nematodes are increasingly used to control insect pests of economically important crops. Laboratory and field simulation trials show that ticks are also susceptible to these nematodes. The authors review the potential of entomogenous nematodes for the control of ticks.

  19. Top 10 plant-parasitic nematodes in molecular plant pathology.

    Science.gov (United States)

    Jones, John T; Haegeman, Annelies; Danchin, Etienne G J; Gaur, Hari S; Helder, Johannes; Jones, Michael G K; Kikuchi, Taisei; Manzanilla-López, Rosa; Palomares-Rius, Juan E; Wesemael, Wim M L; Perry, Roland N

    2013-12-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  20. Development of the system nematode, Ditylenchus Dipsaci (Kuehn) Filipjev, and the potato tuber nematode, D. Destructor thore, after gamma irradiation

    International Nuclear Information System (INIS)

    Ignatowicz, S.; Karnkowski, W.

    1996-01-01

    Juvenile and adult nematodes emerged from onion and garlic samples on the 3 rd week after irradiation with doses up to 0.5 kGy and from potato treated with doses up to 2.0 kGy. However, irradiation of onion infected with Ditylenchus dipsaci caused the inhibition of the development and growth of juvenile nematodes to mature forms. Doses of gamma radiation ranging from 0.1 to 0.5 kGy had only a slight effect, if any, on the development and growth of D. dipsaci nematodes infecting garlic, but they increased juvenile mortality. Gamma radiation at doses up to 2.0 kGy induced increased mortality of nematode juveniles of the potato tuber nematode, D. destructor but less so inhibited their development to mature forms. Nematodes were found to be resistant to irradiation treatment. Therefore the use of gamma irradiation for nematode disinfestation of agricultural products seems to be impractical, if the aim of the treatment is to kill these pests within a few weeks. The level of radiation required to kill nematodes in infected plants would damage plant tissues so that the further storage of vegetables will be impossible. (author). 22 refs, 3 figs, 2 tabs

  1. Plant nematodes in South Africa. 11. Checklist of plant nematodes of the protected areas of KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    Mariette Marais

    2013-03-01

    Full Text Available Nematodes are some of the most abundant soil organisms and are an essential part of soil ecology. These organisms are used as indicator organisms and can be linked to soil health. Biological collections contain vast amounts of data, with the National Collection of Nematodes housed at the Plant Protection Research Institute, Agricultural Research Council being no different. During the digitising of the collection a number of unpublished records of plant nematodes reported from protected areas in KwaZulu-Natal were found in the South African Plant-Parasitic Nematode Survey database. A total of 222 plant nematode species belonging to 39 genera were reported from the province, with only 94 of these species reported from the protected areas and 172 and 159 species reported from uncultivated (outside the protected areas and cultivated areas, respectively. Only nine species, Criconema silvum, Criconema talanum, Helicotylenchus marethae, Ogma dracomontanum, Ogma louisi, Ogma ueckermanni, Paralongidorus deborae, Trichodorus rinae and Xiphinemella marindae were described from protected areas, whilst O. dracomontanum, P. deborae and T. rinae were subsequently also reported from other provinces. Conservation implications: A higher degree of diversity of nematodes was observed in the unprotected areas of the province. The observation suggests that nematode fauna, and by implication also other invertebrates, are not adequately protected.

  2. Plant nematodes in South Africa. 11. Checklist of plant nematodes of the protected areas of KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    Mariette Marais

    2013-02-01

    Full Text Available Nematodes are some of the most abundant soil organisms and are an essential part of soil ecology. These organisms are used as indicator organisms and can be linked to soil health. Biological collections contain vast amounts of data, with the National Collection of Nematodes housed at the Plant Protection Research Institute, Agricultural Research Council being no different. During the digitising of the collection a number of unpublished records of plant nematodes reported from protected areas in KwaZulu-Natal were found in the South African Plant-Parasitic Nematode Survey database. A total of 222 plant nematode species belonging to 39 genera were reported from the province, with only 94 of these species reported from the protected areas and 172 and 159 species reported from uncultivated (outside the protected areas and cultivated areas, respectively. Only nine species, Criconema silvum, Criconema talanum, Helicotylenchus marethae, Ogma dracomontanum, Ogma louisi, Ogma ueckermanni, Paralongidorus deborae, Trichodorus rinae and Xiphinemella marindae were described from protected areas, whilst O. dracomontanum, P. deborae and T. rinae were subsequently also reported from other provinces. Conservation implications: A higher degree of diversity of nematodes was observed in the unprotected areas of the province. The observation suggests that nematode fauna, and by implication also other invertebrates, are not adequately protected.

  3. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  4. Complete Genome Sequence of Beijerinckia indica subsp. indica▿

    Science.gov (United States)

    Tamas, Ivica; Dedysh, Svetlana N.; Liesack, Werner; Stott, Matthew B.; Alam, Maqsudul; Murrell, J. Colin; Dunfield, Peter F.

    2010-01-01

    Beijerinckia indica subsp. indica is an aerobic, acidophilic, exopolysaccharide-producing, N2-fixing soil bacterium. It is a generalist chemoorganotroph that is phylogenetically closely related to facultative and obligate methanotrophs of the genera Methylocella and Methylocapsa. Here we report the full genome sequence of this bacterium. PMID:20601475

  5. Nematode neuropeptides as transgenic nematicides.

    Directory of Open Access Journals (Sweden)

    Neil D Warnock

    2017-02-01

    Full Text Available Plant parasitic nematodes (PPNs seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  6. Is a Combine Therapy of Aqueous Extract of Azadirachta indica Leaf ...

    African Journals Online (AJOL)

    Background: Herbal medication is commonly employed in treatment of diseases. Aqueous extract of Azadirachta indica leaf (A. indica) is commonly used in treatment of malaria by Nigerians. Most often, aqueous extract of A. indica leaf is taken in combination with chloroquine in order to cure malaria infection without ...

  7. Unexpected variation in neuroanatomy among diverse nematode species

    Directory of Open Access Journals (Sweden)

    Ziduan eHan

    2016-01-01

    Full Text Available Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and Ascaris suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research, had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapse, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent

  8. Enhancing the efficacy of entomopathogenic nematodes by gamma radiation in controlling Spodoptera littoralis larvae

    Directory of Open Access Journals (Sweden)

    R.M. Sayed

    2017-04-01

    Full Text Available Nowadays, finding a safe control program is the aim of all researchers. The goal of this work is to investigate the effect of gamma radiation on the Entomopathogenic nematodes, Steinernema scapterisci and Heterorhabditis bacteriophora Poinar (HP88 efficacy were tested against larvae of cotton leaf worm, Spodoptera littoralis (Boisd. under laboratory conditions. Results showed that 2 Gy irradiated S. scapterisci and H. bacteriophora were substantially effective in controlling S. littoralis larvae, while H. bacteriophora was more potent in controlling insect larvae. The results revealed that total protein concentration was significantly decreased (P < 0.05 after treatment with normal or irradiated H. bacteriophora or S. scapterisci. In addition, larvae infected with normal S. scapterisci or H. bacteriophora showed a significant elevation in phenoloxidase activity and represented significant reduce after treatment with 2 Gy irradiated S. scapterisci or H. bacteriophora as compared to control group. Also, lysozyme activity was significantly decreased after treatment with irradiated H. bacteriophora, but there was no significance with irradiated S. scapterisci, when compared with control. LDH activity was significantly high (p<0.05 in the haemolymph of larvae treated with normal or irradiated H. bacteriophora or S. scapterisci, as compared to control group. Furthermore among all treatments, 2 Gy irradiated H. bacteriophora was the most potent and efficient in the biomarkers changes. Therefore, it could be concluded that 2 Gy irradiated S. scapterisci and H. bacteriophora can serve within an integrated pest management (IPM program in an agroecosystem.

  9. WormBase: Annotating many nematode genomes.

    Science.gov (United States)

    Howe, Kevin; Davis, Paul; Paulini, Michael; Tuli, Mary Ann; Williams, Gary; Yook, Karen; Durbin, Richard; Kersey, Paul; Sternberg, Paul W

    2012-01-01

    WormBase (www.wormbase.org) has been serving the scientific community for over 11 years as the central repository for genomic and genetic information for the soil nematode Caenorhabditis elegans. The resource has evolved from its beginnings as a database housing the genomic sequence and genetic and physical maps of a single species, and now represents the breadth and diversity of nematode research, currently serving genome sequence and annotation for around 20 nematodes. In this article, we focus on WormBase's role of genome sequence annotation, describing how we annotate and integrate data from a growing collection of nematode species and strains. We also review our approaches to sequence curation, and discuss the impact on annotation quality of large functional genomics projects such as modENCODE.

  10. Management of Root-Nematode (Meloidogyne SPP)

    International Nuclear Information System (INIS)

    Miano, D.W

    2002-01-01

    Greenhouse and field experiments were undertaken to determine the possibility of using soil amendments with different C:N levels or applied at different rates and times in the control of root-knot nematodes (Meloidogyne spp.)in tomato c.v Cal J.A naturally infested field was used while artificial inoculation was done in the greenhouse. Root galling was rated on a scale of 0-10, nematode population was estimated by counting second stage juveniles extracted from 200 cm 3 soil and fruit yields were recorded at the end of the season. Nematode population densities and galling indices were significantly (P< or=0.05) lower in amended soils compared to the control. Application of the amendments also resulted in significant (P< or=0.05) increase in yields. Chicken manure, compost manure, neem products and pig manure were were the most effective amendments. Fresh chicken manure had a more suppressive effect on nematode than when the manure was decomposed within or outside a nematode infested field. A general decrease in juvenile populations and galling was observed with increase of organic amendments applied

  11. The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes.

    Science.gov (United States)

    Hiltpold, Ivan; Jaffuel, Geoffrey; Turlings, Ted C J

    2015-02-01

    To defend themselves against herbivores and pathogens, plants produce numerous secondary metabolites, either constitutively or de novo in response to attacks. An intriguing constitutive example is the exudate produced by certain root-cap cells that can induce a state of reversible quiescence in plant-parasitic nematodes, thereby providing protection against these antagonists. The effect of such root exudates on beneficial entomopathogenic nematodes (EPNs) remains unclear, but could potentially impair their use in pest management programmes. We therefore tested how the exudates secreted by green pea (Pisum sativum) root caps affect four commercial EPN species. The exudates induced reversible quiescence in all EPN species tested. Quiescence levels varied with the green pea cultivars tested. Notably, after storage in root exudate, EPN performance traits were maintained over time, whereas performances of EPNs stored in water rapidly declined. In sharp contrast to high concentrations, lower concentrations of the exudate resulted in a significant increase in EPN activity and infectiousness, but still reduced the activity of two plant-parasitic nematode species. Our study suggests a finely tuned dual bioactivity of the exudate from green pea root caps. Appropriately formulated, it can favour long-term storage of EPNs and boost their infectiousness, while it may also be used to protect plants from plant-parasitic nematodes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Eleusine indica resistance to Accase inhibitors

    OpenAIRE

    Vidal, Ribas Antonio; Portes, Emerson da Silva; Lamego, Fabiane Pinto; Trezzi, Michelangelo Muzell

    2006-01-01

    Dentre as causas da ineficácia no controle de plantas daninhas destaca-se a resistência delas aos herbicidas. Os objetivos deste trabalho foram avaliar a suspeita de resistência de Eleusine indica a inibidores de acetil-CoA carboxilase (ACCase) e investigar a ocorrência de resistência cruzada entre os inibidores de ACCase. Biótipo de Eleusine indica originado do Mato Grosso com suspeita de resistência aos herbicidas inibidores de ACCase foi avaliado em casa de vegetação na sua suscetibilidade...

  13. The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT01

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-06-01

    Full Text Available Abstract Background Photorhabdus are Gram negative bacteria that are pathogenic to insect larvae whilst also having a mutualistic interaction with nematodes from the family Heterorhabditis. Iron is an essential nutrient and bacteria have different mechanisms for obtaining both the ferrous (Fe2+ and ferric (Fe3+ forms of this metal from their environments. In this study we were interested in analyzing the role of Fe3+ and Fe2+ iron uptake systems in the ability of Photorhabdus to interact with its invertebrate hosts. Results We constructed targeted deletion mutants of exbD, feoABC and yfeABCD in P. luminescens TT01. The exbD mutant was predicted to be crippled in its ability to obtain Fe3+ and we show that this mutant does not grow well in iron-limited media. We also show that this mutant was avirulent to the insect but was unaffected in its symbiotic interaction with Heterorhabditis. Furthermore we show that a mutation in feoABC (encoding a predicted Fe2+ permease was unaffected in both virulence and symbiosis whilst the divalent cation transporter encoded by yfeABCD is required for virulence in the Tobacco Hornworm, Manduca sexta (Lepidoptera but not in the Greater Wax Moth, Galleria mellonella (Lepidoptera. Moreover the Yfe transporter also appears to have a role during colonization of the IJ stage of the nematode. Conclusion In this study we show that iron uptake (via the TonB complex and the Yfe transporter is important for the virulence of P. luminescens to insect larvae. Moreover this study also reveals that the Yfe transporter appears to be involved in Mn2+-uptake during growth in the gut lumen of the IJ nematode. Therefore, the Yfe transporter in P. luminescens TT01 is important during colonization of both the insect and nematode and, moreover, the metal ion transported by this pathway is host-dependent.

  14. Resistência de Eleusine indica aos inibidores de ACCase Eleusine indica resistance to ACCase inhibitors

    Directory of Open Access Journals (Sweden)

    R.A. Vidal

    2006-01-01

    Full Text Available Dentre as causas da ineficácia no controle de plantas daninhas destaca-se a resistência delas aos herbicidas. Os objetivos deste trabalho foram avaliar a suspeita de resistência de Eleusine indica a inibidores de acetil-CoA carboxilase (ACCase e investigar a ocorrência de resistência cruzada entre os inibidores de ACCase. Biótipo de Eleusine indica originado do Mato Grosso com suspeita de resistência aos herbicidas inibidores de ACCase foi avaliado em casa de vegetação na sua suscetibilidade para diversos produtos do grupo dos ariloxifenoxipropionatos e cicloexanodionas. Estudos de resposta à dose confirmaram que o biótipo era 18 vezes mais insensível ao sethoxydim do que biótipo suscetível nunca aspergido com herbicidas. Também se constatou resistência cruzada ao fenoxaprop, cyhalofop, propaquizafop e butroxydim. Não se observou resistência cruzada aos produtos fluazifop, haloxyfop, quizalofop e clethodim.Among the causes for weed control inefficacy, the worst one is resistance to herbicides. The objectives of this work were to evaluate an Eleusine indica biotype suspected of resistance to ACCase inhibitors and to investigate the occurrence of cross- resistance to several ACCase inhibitors. One biotype of Eleusine indica originated from Mato Grosso with suspected resistance to ACCase inhibitors was evaluated in a greenhouse in relation to its susceptibility to several products of the ariloxyphenoxypropionate and cyclohexanedione groups. Studies on dose response confirmed that the suspected biotype was 18 times more insensitive to sethoxydim than the susceptible biotype that had never been treated with herbicides. Cross-resistance was confirmed for fenoxaprop, cyhalofop, propaquizafop and butroxydim. No cross-resistance was observed with fluazifop, haloxyfop, quizalofop, and clethodim.

  15. Multifaceted effects of host plants on entomopathogenic nematodes.

    Science.gov (United States)

    Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn

    2016-03-01

    The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs. Copyright © 2016

  16. Targeted mutagenesis in a human-parasitic nematode

    Science.gov (United States)

    Gang, Spencer S.; Castelletto, Michelle L.

    2017-01-01

    Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites. PMID:29016680

  17. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  18. Microbial ecology and nematode control in natural ecosystems

    NARCIS (Netherlands)

    Costa, S.R.; Van der Putten, W.H.; Kerry, B.R.

    2011-01-01

    Plant-parasitic nematodes have traditionally been studied in agricultural systems, where they can be pests of importance on a wide range of crops. Nevertheless, nematode ecology in natural ecosystems is receiving increasing interest because of the role of nematodes in soil food webs, nutrient

  19. Opportunity to use native nematodes for pest control

    Science.gov (United States)

    We have surveyed wild cranberry bogs in WI and found three isolates of native nematodes. We have been testing these nematodes as potential biological control agents in for cranberry insect pests including sparganothis fruitworm and flea beetle. The nematodes seem to be effective at finding and killi...

  20. The prevalence of gastrointestinal nematode infection and their ...

    African Journals Online (AJOL)

    GIN infection was associated with 1.4 litres per cow per day less milk and this ... Gastrointestinal nematode (GIN) infections in cattle are of considerable economic importance .... Table 2. Mean faecal egg counts of gastrointestinal nematodes and the 95% confidence ... 3.2 Gastrointestinal nematode species. The pooled ...

  1. Antidiarrhoeal efficacy of Mangifera indica seed kernel on Swiss albino mice.

    Science.gov (United States)

    Rajan, S; Suganya, H; Thirunalasundari, T; Jeeva, S

    2012-08-01

    To examine the antidiarrhoeal activity of alcoholic and aqueous seed kernel extract of Mangifera indica (M. indica) on castor oil-induced diarrhoeal activity in Swiss albino mice. Mango seed kernels were processed and extracted using alcohol and water. Antidiarrhoeal activity of the extracts were assessed using intestinal motility and faecal score methods. Aqueous and alcoholic extracts of M. indica significantly reduced intestinal motility and faecal score in Swiss albino mice. The present study shows the traditional claim on the use of M. indica seed kernel for treating diarrhoea in Southern parts of India. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Cryopreservation of roe deer abomasal nematodes for morphological identification.

    Science.gov (United States)

    Beraldo, Paola; Pascotto, Ernesto

    2014-02-01

    Conventional methods to preserve adult nematodes for taxonomic purposes involve the use of fixative or clearing solutions (alcohol, formaldehyde, AFA and lactophenol), which cause morphological alterations and are toxic. The aim of this study is to propose an alternative method based on glycerol-cryopreservation of nematodes for their subsequent identification. Adults of trichostrongylid nematodes from the abomasum of roe deer (Capreolus capreolus Linnaeus) were glycerol-cryopreserved and compared with those fixed in formaldehyde, fresh and frozen without cryoprotectans. Morphology, transparency and elasticity of the anterior and posterior portion of male nematodes were compared, especially the caudal cuticular bursa and genital accessories. The method presented is quick and easy to use, and the quality of nematode specimens is better than that of nematodes fixed by previously used fixatives. Moreover, glycerol cryopreserved nematodes can be stored for a long time at -20 degrees C in perfect condition and they could be suitable for further analyses, such as histological or ultrastructural examinations.

  3. Azadirachta indica Mediated Bioactive Lyocell Yarn: Chemical and Colour Characterization

    Directory of Open Access Journals (Sweden)

    B. H. Patel

    2014-01-01

    Full Text Available The study deals with preparing aesthetic textiles using methanolic extract of Azadirachta indica leaves. The extract with metallic and natural mordents was utilized to create various shades on lyocell yarn using exhaust technique of dyeing. Aesthetic values of dyed yarns were analyzed in terms of colourimetric parameters, that is, CIE L*  a*  b* and colour fastness. The attachment of Azadirachta indica compounds has been confirmed by using infrared spectroscopy (IR analysis. The dyed samples exhibit moderate to good fastness properties. The study showed that lyocell yarn treated at 15% (owf methanolic extract of Azadirachta indica leaves can be utilized as effective bioactive textiles. Azadirachta indica is an alternative to synthetic antimicrobial agents. This bioactive yarn can be used in fashion as well as in medicinal industry.

  4. Anthelminthic and antiallergic activities of Mangifera indica L. stem bark components Vimang and mangiferin.

    Science.gov (United States)

    García, D; Escalante, M; Delgado, R; Ubeira, F M; Leiro, J

    2003-12-01

    This study investigated the antiallergic and anthelmintic properties of Vimang (an aqueous extract of Mangifera indica family stem bark) and mangiferin (the major polyphenol present in Vimang) administered orally to mice experimentally infected with the nematode, Trichinella spiralis. Treatment with Vimang or mangiferin (500 or 50 mg per kg body weight per day, respectively) throughout the parasite life cycle led to a significant decline in the number of parasite larvae encysted in the musculature; however, neither treatment was effective against adults in the gut. Treatment with Vimang or mangiferin likewise led to a significant decline in serum levels of specific anti-Trichinella IgE, throughout the parasite life cycle. Finally, oral treatment of rats with Vimang or mangiferin, daily for 50 days, inhibited mast cell degranulation as evaluated by the passive cutaneous anaphylaxis test (sensitization with infected mouse serum with a high IgE titre, then stimulation with the cytosolic fraction of T. spiralis muscle larvae). Since IgE plays a key role in the pathogenesis of allergic diseases, these results suggest that Vimang and mangiferin may be useful in the treatment of diseases of this type. Copyright 2003 John Wiley & Sons, Ltd.

  5. Reciprocal Interactions between Nematodes and Their Microbial Environments.

    Science.gov (United States)

    Midha, Ankur; Schlosser, Josephine; Hartmann, Susanne

    2017-01-01

    Parasitic nematode infections are widespread in nature, affecting humans as well as wild, companion, and livestock animals. Most parasitic nematodes inhabit the intestines of their hosts living in close contact with the intestinal microbiota. Many species also have tissue migratory life stages in the absence of severe systemic inflammation of the host. Despite the close coexistence of helminths with numerous microbes, little is known concerning these interactions. While the environmental niche is considerably different, the free-living nematode Caenorhabditis elegans ( C. elegans ) is also found amongst a diverse microbiota, albeit on decaying organic matter. As a very well characterized model organism that has been intensively studied for several decades, C. elegans interactions with bacteria are much more deeply understood than those of their parasitic counterparts. The enormous breadth of understanding achieved by the C. elegans research community continues to inform many aspects of nematode parasitology. Here, we summarize what is known regarding parasitic nematode-bacterial interactions while comparing and contrasting this with information from work in C. elegans . This review highlights findings concerning responses to bacterial stimuli, antimicrobial peptides, and the reciprocal influences between nematodes and their environmental bacteria. Furthermore, the microbiota of nematodes as well as alterations in the intestinal microbiota of mammalian hosts by helminth infections are discussed.

  6. Biocontrol: Fungal Parasites of Female Cyst Nematodes

    OpenAIRE

    Kerry, Brian

    1980-01-01

    Three species of fungi, Catenaria auxiliarls (Kühn) Tribe, Nematophthora gynophila Kerry and Crump, and a Lagenidiaceous fungus have been found attacking female cyst nematodes. All are zoosporic fungi which parasitize females on the root surface, cause the breakdown of the nematode cuticle, and prevent cyst formation. Their identification and some aspects of their biology are reviewed. N. gynophila is widespread in Britain and reduces populations of the cereal cyst nematode, Heterodera avenae...

  7. Strengthening of antioxidant defense by Azadirachta indica in alloxan-diabetic rat tissues

    Directory of Open Access Journals (Sweden)

    Sweta Shailey

    2012-01-01

    Full Text Available Background: Azadirachta indica has been reported to correct altered glycaemia in diabetes. Objective: The aqueous extract of A. indica leaf and bark has been evaluated for its effect on antioxidant status of alloxan diabetic rats and compared with insulin treatment. Materials and Methods: The oral effective dose of A. indica leaf (500 mg/kg body weight and A. indica bark (100 mg/kg body weight were given once daily for 21 days to separate groups of diabetic rats. At the end of the experimental period blood glucose level and activity of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione reductase (GR, glucose-6-phosphate dehydrogenase (G-6-PD, and membrane lipid peroxidation were determined in different fractions of liver and kidney tissues. Results: Diabetic rats showed high blood glucose (P<0.01, increased level of malondialdehyde (P<0.05 and a significant decrease in the activity of antioxidant enzymes. Treatment with insulin, A. indica leaf extract (AILE, and A. indica bark extract (AIBE restored the above altered parameters close to the control ones. Conclusions: Both AILE and AIBE were found significantly effective in reducing hyperglycemia-induced oxidative stress. The findings suggest further investigations for the possible use of A. indica as alternative medicine to prevent long-term complications of diabetes.

  8. Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance

    Directory of Open Access Journals (Sweden)

    Atul Kakrana

    2017-12-01

    Full Text Available The root-knot nematode (RKN, Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.

  9. from an aqueous solution using Azadirachta indica leaf powder

    African Journals Online (AJOL)

    Azadirachta indica (neem) leaf powder was used as an adsorbent for the removal of textile dye from aqueous solution. The adsorption of dye on A. indica was found to be dependent on contact time, dye concentration and amount of adsorbent. Spectrophotometric technique was used for the measurement of concentration of ...

  10. Entomogenous nematode Neoaplectana carpocapsae: radiation and mammalian safety

    International Nuclear Information System (INIS)

    Gaugler, R.R.

    1978-01-01

    Infective-stage juveniles of Neoaplacetana carpocapsae were acutely sensitive to short uv radiation (254 nm) and natural sunlight. High nematode mortality, although delayed, accompanied uv exposure. Irradiation rapidly reduced nematode pathogenicity, so that nematodes exposed for 7 min were unable to cause lethal infections in Galleria mallonella larvae. Moreover, the median survival time of Galleria larvae increased progressively as nematode exposure to uv was lengthened. Inhibition of nematode reproduction and development was noted at exposure periods more than 2.45 and 5 min, respectively. However, irradiation did not appear to affect juvenile motility. Exposure to direct sunlight also reduced pathogenicity, in a range from 6.9 to 94.9% at 30 and 60 min of exposure, respectively. Long uv (366 nm) did not affect juveniles at the exposures tested

  11. Transgenic Strategies for Enhancement of Nematode Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-05-01

    Full Text Available Plant parasitic nematodes (PPNs are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  12. Venereal worms: sexually transmitted nematodes in the decorated cricket.

    Science.gov (United States)

    Luong, L T; Platzer, E G; Zuk, M; Giblin-Davis, R M

    2000-06-01

    The nematode, Mehdinema alii, occurs in the alimentary canal of the decorated cricket Gryllodes sigillatus. Adult nematodes occur primarily in the hindgut of mature male crickets, whereas juvenile nematodes are found in the genital chambers of mature male and female crickets. Here, we present experimental evidence for the venereal transmission of M. alii in G. sigillatus. Infectivity experiments were conducted to test for transmission via oral-fecal contamination, same-sex contact, and copulation. The infective dauers of the nematode are transferred from male to female crickets during copulation. Adult female crickets harboring infective dauers subsequently transfer the nematode to their next mates. Thus, M. alii is transmitted sexually during copulation.

  13. Genome Evolution of Plant-Parasitic Nematodes.

    Science.gov (United States)

    Kikuchi, Taisei; Eves-van den Akker, Sebastian; Jones, John T

    2017-08-04

    Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.

  14. Extended phenotype: nematodes turn ants into bird-dispersed fruits

    DEFF Research Database (Denmark)

    Hughes, D P; Kronauer, D J C; Boomsma, J J

    2008-01-01

    A recent study has discovered a novel extended phenotype of a nematode which alters its ant host to resemble ripe fruit. The infected ants are in turn eaten by frugivorous birds that disperse the nematode's eggs.......A recent study has discovered a novel extended phenotype of a nematode which alters its ant host to resemble ripe fruit. The infected ants are in turn eaten by frugivorous birds that disperse the nematode's eggs....

  15. Biocontrol: The Potential of Entomophilic Nematodes in Insect Management

    OpenAIRE

    Webster, John M.

    1980-01-01

    A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management.

  16. The FMRFamide-like peptide family in nematodes

    Directory of Open Access Journals (Sweden)

    Katleen ePeymen

    2014-06-01

    Full Text Available In the three decades since the FMRFamide peptide was isolated from the mollusk Macrocallista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have been identified across the animal kingdom. FMRFamide-like peptides (FLPs represent the largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least 32 flp genes are classified, making the FLP system of nematodes unusually complex. The diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed in the majority of the 302 C. elegans neurons including interneurons, sensory and motor neurons. The vast expression of FLPs is reflected in the broad functional repertoire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects on locomotory activity, reproduction, feeding, and behavior. In contrast to the many identified nematode FLPs, only few peptides have been assigned a receptor and there is the need to clarify the pathway components and working mechanisms of the FLP signaling network. Here, we review the diversity, distribution, and functions of FLPs in nematodes.

  17. Molecular identification of Mango, Mangifera indica L.var. totupura

    Science.gov (United States)

    Jagarlamudi, Sankar; G, Rosaiah; Kurapati, Ravi Kumar; Pinnamaneni, Rajasekhar

    2011-01-01

    Mango (>Mangifera indica) belonging to Anacardiaceae family is a fruit that grows in tropical regions. It is considered as the King of fruits. The present work was taken up to identify a tool in identifying the mango species at the molecular level. The chloroplast trnL-F region was amplified from extracted total genomic DNA using the polymerase chain reaction (PCR) and sequenced. Sequence of the dominant DGGE band revealed that Mangifera indica in tested leaves was Mangifera indica (100% similarity to the ITS sequences of Mangifera indica). This sequence was deposited in NCBI with the accession no. GQ927757. Abbreviations AFLP - Amplified fragment length polymorphism , cpDNA - Chloroplast DNA, DDGE - Denaturing gradient gel electrophoresis, DNA - Deoxyribo nucleic acid, EDTA - Ethylenediamine tetraacetic acid, HCl - Hydrochloric acid, ISSR - Inter simple sequence repeats, ITS - Internal transcribed spacer, MATAB - Methyl Ammonium Bromide, Na2SO3 - Sodium sulphite, NaCl - Sodium chloride, NCBI - National Centre for Biotechnology Information, PCR - Polymerase chain reaction, PEG - Polyethylene glycol, RAPD - Randomly amplified polymorphic DNA, trnL-F - Transfer RNA genes start codon- termination codon. PMID:21423885

  18. RICD: A rice indica cDNA database resource for rice functional genomics

    Directory of Open Access Journals (Sweden)

    Zhang Qifa

    2008-11-01

    Full Text Available Abstract Background The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Results Rice Indica cDNA Database (RICD is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. Conclusion The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.

  19. Conserving and enhancing biological control of nematodes.

    Science.gov (United States)

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  20. Mercury in parasitic nematodes and trematodes and their double-crested cormorant hosts: Bioaccumulation in the face of sequestration by nematodes

    International Nuclear Information System (INIS)

    Robinson, Stacey A.; Forbes, Mark R.; Hebert, Craig E.

    2010-01-01

    Endoparasites can alter their host's heavy metal concentrations by sequestering metals in their own tissues. Contracaecum spp. (a nematode), but not Drepanocephalus spathans (a trematode), were bioaccumulating mercury to concentrations 1.5 times above cormorant hosts. Nematodes did not have significantly greater stable nitrogen isotope values (δ 15 N) than their hosts, which is contradictory to prey-predator trophic enrichment studies, but is in agreement with other endoparasite-host relationships. However, Contracaecum spp. δ 13 C values were significantly greater than their hosts, which suggest that nematodes were consuming host tissues. Nematodes were accumulating and thus sequestering some of their cormorant hosts' body burden of methyl mercury; however, they were not dramatically reducing their hosts' accumulation of methyl mercury.

  1. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection.

    Science.gov (United States)

    Yadav, Shruti; Frazer, Joanna; Banga, Ashima; Pruitt, Katherine; Harsh, Sneh; Jaenike, John; Eleftherianos, Ioannis

    2018-01-01

    Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms.

  2. NemaPath: online exploration of KEGG-based metabolic pathways for nematodes

    Directory of Open Access Journals (Sweden)

    Wang Zhengyuan

    2008-11-01

    Full Text Available Abstract Background Nematode.net http://www.nematode.net is a web-accessible resource for investigating gene sequences from parasitic and free-living nematode genomes. Beyond the well-characterized model nematode C. elegans, over 500,000 expressed sequence tags (ESTs and nearly 600,000 genome survey sequences (GSSs have been generated from 36 nematode species as part of the Parasitic Nematode Genomics Program undertaken by the Genome Center at Washington University School of Medicine. However, these sequencing data are not present in most publicly available protein databases, which only include sequences in Swiss-Prot. Swiss-Prot, in turn, relies on GenBank/Embl/DDJP for predicted proteins from complete genomes or full-length proteins. Description Here we present the NemaPath pathway server, a web-based pathway-level visualization tool for navigating putative metabolic pathways for over 30 nematode species, including 27 parasites. The NemaPath approach consists of two parts: 1 a backend tool to align and evaluate nematode genomic sequences (curated EST contigs against the annotated Kyoto Encyclopedia of Genes and Genomes (KEGG protein database; 2 a web viewing application that displays annotated KEGG pathway maps based on desired confidence levels of primary sequence similarity as defined by a user. NemaPath also provides cross-referenced access to nematode genome information provided by other tools available on Nematode.net, including: detailed NemaGene EST cluster information; putative translations; GBrowse EST cluster views; links from nematode data to external databases for corresponding synonymous C. elegans counterparts, subject matches in KEGG's gene database, and also KEGG Ontology (KO identification. Conclusion The NemaPath server hosts metabolic pathway mappings for 30 nematode species and is available on the World Wide Web at http://nematode.net/cgi-bin/keggview.cgi. The nematode source sequences used for the metabolic pathway

  3. root nematode control and crop yield

    African Journals Online (AJOL)

    SARAH

    2016-05-31

    May 31, 2016 ... The relationship between cost and benefit of the nematicide applications was also estimated. ... based on nematode threshold (100 nematodes per g of fresh root) which resulted in two applications; ..... France. Araya M, 2004. Situación actual del manejo de nematodos en banano (Musa AAA) y plátano.

  4. 77 FR 22185 - Golden Nematode; Removal of Regulated Areas

    Science.gov (United States)

    2012-04-13

    ...-0036] Golden Nematode; Removal of Regulated Areas AGENCY: Animal and Plant Health Inspection Service..., without change, an interim rule that amended the golden nematode regulations by removing the townships of... that the fields in these two townships are free of golden nematode, and we determined that regulation...

  5. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    Science.gov (United States)

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes.

  6. Caenorhabditis elegans: nature and nurture gift to nematode parasitologists.

    Science.gov (United States)

    Salinas, Gustavo; Risi, Gastón

    2017-12-06

    The free-living nematode Caenorhabditis elegans is the simplest animal model organism to work with. Substantial knowledge and tools have accumulated over 50 years of C. elegans research. The use of C. elegans relating to parasitic nematodes from a basic biology standpoint or an applied perspective has increased in recent years. The wealth of information gained on the model organism, the use of the powerful approaches and technologies that have advanced C. elegans research to parasitic nematodes and the enormous success of the omics fields have contributed to bridge the divide between C. elegans and parasite nematode researchers. We review key fields, such as genomics, drug discovery and genetics, where C. elegans and nematode parasite research have convened. We advocate the use of C. elegans as a model to study helminth metabolism, a neglected area ready to advance. How emerging technologies being used in C. elegans can pave the way for parasitic nematode research is discussed.

  7. Unraveling flp-11/flp-32 dichotomy in nematodes.

    Science.gov (United States)

    Atkinson, Louise E; Miskelly, Iain R; Moffett, Christy L; McCoy, Ciaran J; Maule, Aaron G; Marks, Nikki J; Mousley, Angela

    2016-10-01

    FMRFamide-like peptide (FLP) signalling systems are core to nematode neuromuscular function. Novel drug discovery efforts associated with nematode FLP/FLP receptor biology are advanced through the accumulation of basic biological data that can reveal subtle complexities within the neuropeptidergic system. This study reports the characterisation of FMRFamide-like peptide encoding gene-11 (flp-11) and FMRFamide-like peptide encoding gene-32 (flp-32), two distinct flp genes which encode the analogous peptide, AMRN(A/S)LVRFamide, in multiple nematode species - the only known example of this phenomenon within the FLPergic system of nematodes. Using bioinformatics, in situ hybridisation, immunocytochemistry and behavioural assays we show that: (i) flp-11 and -32 are distinct flp genes expressed individually or in tandem across multiple nematode species, where they encode a highly similar peptide; (ii) flp-11 does not appear to be the most widely expressed flp in Caenorhabditis elegans; (iii) in species expressing both flp-11 and flp-32, flp-11 displays a conserved, restricted expression pattern across nematode clades and lifestyles; (iv) in species expressing both flp-11 and flp-32, flp-32 expression is more widespread and less conserved than flp-11; (v) in species expressing only flp-11, the flp-11 expression profile is more similar to the flp-32 profile observed in species expressing both; and (vi) FLP-11 peptides inhibit motor function in multiple nematode species. The biological significance and evolutionary origin of flp-11 and -32 peptide duplication remains unclear despite attempts to identify a common ancestor; this may become clearer as the availability of genomic data improves. This work provides insight into the complexity of the neuropeptidergic system in nematodes, and begins to examine how nematodes may compensate for structural neuronal simplicity. From a parasite control standpoint, this work underscores the importance of basic biological data, and has

  8. indica rice (Oryza sativa L.)

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... fresh weight, regeneration, proline level and total protein content in salt sensitive indica rice cv. IR 64. For callus ... INTRODUCTION. Salinity is one of the ... Proline is reported to reduce the enzyme denaturation caused due.

  9. Adhering Pasteuria penetrans endospores affect movements of root-knot nematode juveniles

    Directory of Open Access Journals (Sweden)

    Ioannis VAGELAS

    2013-01-01

    Full Text Available Pasteuria penetrans is a biological control agent of root-knot nematodes (Meloidogyne spp., preventing root invasion by second-stage juveniles (J2s, and eventually causing females sterility and death. greatest control effects for P. penetrans depend on the numbers of endospores attached to nematode cuticles. a method based on digital image analysis was used to record the effects of endospore attachment on the movements of juvenile root-knot nematodes, using a model based on the centroid point. Data showed that the numbers of endospores attached to the cuticle influenced nematode movement. At high endospore attachment levels (20‒30 per J2, nematodes did not show directional movement, whereas nematodes encumbered with five to eight spores showed limited directional movement, compared to those without endospores. nematode cephalic region turns were modelled using a markov chain, showing that P. penetrans endospores affected movements. Less nematodes invaded and established on tomato root systems when encumbered with low (five to eight or high numbers (20‒30 of P. penetrans endospores, compared with unencumbered nematodes.

  10. Novel RNA viruses within plant parasitic cyst nematodes.

    Science.gov (United States)

    Ruark, Casey L; Gardner, Michael; Mitchum, Melissa G; Davis, Eric L; Sit, Tim L

    2018-01-01

    The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.

  11. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents.

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W

    2016-11-04

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems.

  12. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  13. Manuel de zootechnie comparée Nord-Sud

    Directory of Open Access Journals (Sweden)

    Théwis, A.

    2005-01-01

    Full Text Available 'Diversity in Entomopathogenic Nematodes (Steinernema and Heterorhabditis spp. in Vietnam and Their Potential for the Biocontrol of Pest Insects'. Les problèmes de sous-alimentation et de malnutrition en milieu urbain poussent les populations à exploiter toutes les ressources alimentaires disponibles. Ce travail s'intéresse à la contribution au régime alimentaire de la population des fruits comestibles produits par les 19 espèces d'arbres trouvés à Kinshasa. Une enquête réalisée dans 1,09% des 18.475 parcelles de la commune de Limete a permis d'estimer à environ 47.000 pieds le nombre d'arbres plantés dans celles-ci et leur production annuelle à environ 4.087 tonnes. Les six espèces majeures (Mangifera indica, Persea americana, Elaeis guineensis, Carica papaya, Dacryodes edulis et Musa paradisiaca comptent à elles seules pour un total approximatif de 36.400 pieds. La contribution de ces espèces à l'alimentation de la population a été estimée respectivement à 10,9 g; 6,1 g; 4,5 g; 4,4 g; 1,8 g et 0,6 g de fruits par personne et par jour. La maîtrise de certaines écotechniques et l'éducation environnementale relative aux "arbres en ville" devraient accroître l'importance de cette contribution.

  14. 76 FR 60357 - Golden Nematode; Removal of Regulated Areas

    Science.gov (United States)

    2011-09-29

    .... APHIS-2011-0036] Golden Nematode; Removal of Regulated Areas AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule and request for comments. SUMMARY: We are amending the golden nematode... infested areas. Surveys have shown that the fields in these two townships are free of golden nematode, and...

  15. The pinewood nematode, Bursaphelenchus xylophilus

    OpenAIRE

    Mota, Manuel; Vieira, Paulo

    2004-01-01

    According to the European Plant Protection Organization, the pinewood nematode (PWN), Bursaphelenchus xylophilus is a quarantine organism at the top of the list of the pathogenic species. PWN may be found in North America (Canada, USA and Mexico) and in East Asia (Japan, Korea, China and Taiwan) and has a highly destructive capability towards conifers, in a relatively short time, causing serious economic damage in Japan, China and Korea. This nematode surveying is extremely imp...

  16. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    Science.gov (United States)

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  17. BASIDIOMYCETE-BASED METHOD FOR BIOCONTROL OF PHYTOPATHOGENIC NEMATODES

    Directory of Open Access Journals (Sweden)

    Tiberius BALAEŞ

    2015-12-01

    Full Text Available Phytopathogenic nematodes represent one of the most important groups of pathogens in crops. The use of chemical to control the nematodes attack in crops is decreasing every year due to the concern of the toxicity and side effects of such compounds. In the course for finding alternatives to the use of chemicals, biological control of nematodes is gaining much attention. Some saprotrophic fungi are able to feed on invertebrates, thus becoming efficient agents of control. In this study, three species of basidiomycetes were analyzed for their potential to be used as control agents of phytopathogenic nematodes. Through on in vitro investigation of these potential, one strain – Gymnopilus junonius was further selected for a pot test against Meloidogyne incognita, a very important phytopathogenic species of nematodes. The fungal treatment strongly decreased the M. incognita population on the tested pots, proving the potential of G. junonius strain to be used in biocontrol.

  18. Mercury in parasitic nematodes and trematodes and their double-crested cormorant hosts: Bioaccumulation in the face of sequestration by nematodes

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Stacey A., E-mail: srobinsc@connect.carleton.ca [Department of Biology, Carleton University, 209 Nesbitt Bldg, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada); Forbes, Mark R., E-mail: mforbes6@gmail.com [Department of Biology, Carleton University, 209 Nesbitt Bldg, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada); Hebert, Craig E., E-mail: Craig.Hebert@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1A 0H3 (Canada)

    2010-10-15

    Endoparasites can alter their host's heavy metal concentrations by sequestering metals in their own tissues. Contracaecum spp. (a nematode), but not Drepanocephalus spathans (a trematode), were bioaccumulating mercury to concentrations 1.5 times above cormorant hosts. Nematodes did not have significantly greater stable nitrogen isotope values ({delta}{sup 15}N) than their hosts, which is contradictory to prey-predator trophic enrichment studies, but is in agreement with other endoparasite-host relationships. However, Contracaecum spp. {delta}{sup 13}C values were significantly greater than their hosts, which suggest that nematodes were consuming host tissues. Nematodes were accumulating and thus sequestering some of their cormorant hosts' body burden of methyl mercury; however, they were not dramatically reducing their hosts' accumulation of methyl mercury.

  19. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    Science.gov (United States)

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  20. Efficacy of moxidectin against nematodes in naturally infected sheep.

    Science.gov (United States)

    Coles, G C; Giordano-Fenton, D J; Tritschler, J P

    1994-07-09

    The activity of an oral drench of moxidectin against nematodes in naturally infected sheep known to harbour Nematodirus species was evaluated at doses of 0.2 and 0.4 mg/kg bodyweight. Moxidectin was 100 per cent effective against nematodes in the abomasum and 100 per cent effective against nematodes in the small intestine except for adult Trichostrongylus species, against which its efficacy was 94 per cent. It was 100 per cent effective against nematodes in the large intestine except for Trichuris ovis, against which its efficacy was 83 per cent.

  1. Relationship between production, nematodes and "redness" in strawberries

    Directory of Open Access Journals (Sweden)

    Paula Nogueira Curi

    2016-08-01

    Full Text Available ABSTRACT: In recent years "redness" has increasingly appeared in strawberry plants with leaves taking on a reddish color. No causal agent has been associated with plants. Since strawberries presented problems due to the incidence of nematodes, the purpose of this study was to look at the relationship between production, resistance to the Meloidogyne hapla nematode and the "redness" symptom in strawberry cultivars. Two experiments were performed, both with the 'Camino Real', 'Festival', 'Oso Grande', 'Albion' and 'Camarosa' cultivars. The first experiment was performed in the field, where the following were evaluated: strawberry production, fruit quality, macro and micronutrient contents in fruit and leaves, percentage of plant survival, incidence of nematodes, quantity of eggs in the roots and juveniles in the soil, and the incidence of Botrytis cinerea . In the second experiment, the strawberries were transplanted into pots and filled with pinus bark-based commercial substrate. Half the pots were inocculated with Meloidogyne hapla . Cultivars presented differences in fruit production and also in the incidence of "redness". Lowest performance in production was related to the high incidence of the nematode Meloidogyne hapla. 'Oso Grande' and 'Albion' presented nematode-resistant behavior. It was possible find a relationship between the incidence of the Meloidogyne hapla nematode, and the incidence of "redness" only 'Camino Real' cultivar.

  2. The effect of aqueous extract of neem ( Azadirachta indica ) leaves ...

    African Journals Online (AJOL)

    Medicinal plants are part of human society to combat diseases. Azadirachta indica evidently has great medicinal potentials. This work was undertaken to investigate the morphological and some enzymatic effect of A. indica extract on the tissues of the liver. Twenty four (24) adult Wistar rats of both sexes, average weight, ...

  3. Herbicide effects on cuticle ultrastructure in Eleusine indica and Portulaca oleracea.

    Science.gov (United States)

    Malpassi, Rosana N

    2006-04-01

    Eleusine indica and Portulaca oleracea are two common weeds in peanut crops in southern Córdoba. Two chemicals are frequently used to control them, quizalofop for grasses and lactofen for dicots. The objective is to study the effects of quizalofop and lactofen on cuticle ultrastructure in E. indica and P. oleracea, respectively. In the lab, quizalofop was applied on E. indica and lactofen on P. oleracea. Three plant categories were analyzed in each species: 3, 1-2, and no tiller in E. indica, and 8, 6, and 2 nomophylls in P. oleracea. Leaf samples from both species were collected at 7 and 16 days post-application and were treated for scanning electron microscopy. E. indica cuticle treated with lethal dose shows areas where epicuticular waxes disappear, specially in the youngest individuals. These areas are located predominantly on periclinal walls of typical epidermic cells and subsidiary cells. On the other hand, P. oleracea shows cuticle discontinuities that may be caused by lactofen entry. They are smaller and less frequent in plants having 8 or more nomophylls. The remaining waxes act as a herbicide accumulation compartment and, therefore, would partially prevent the active ingredient entry to epidermic cells.

  4. Cyst nematode-induced changes in plant development

    NARCIS (Netherlands)

    Goverse, A.

    1999-01-01

    This thesis describes a first attempt to investigate the biological activity of cyst nematode secretions on plant cell proliferation and the molecular mechanisms underlying feeding cell development in plant roots upon cyst nematode infection.

    To investigate the role of

  5. Anthelmintic resistance in equine nematodes

    Directory of Open Access Journals (Sweden)

    Jacqueline B. Matthews

    2014-12-01

    Full Text Available Anthelmintics have been applied indiscriminately to control horse nematodes for over 40 years. Three broad-spectrum anthelmintic classes are currently registered for nematode control in horses: benzimidazoles (fenbendazole, oxibendazole, tetrahydropyrimidines (pyrantel and macrocyclic lactones (ivermectin, moxidectin. Generally, control strategies have focused on nematode egg suppression regimens that involve the frequent application of anthelmintics to all horses at intervals based on strongyle egg reappearance periods after treatment. The widespread use of such programmes has substantially reduced clinical disease, especially that associated with large strongyle species; however, high treatment frequency has led to considerable selection pressure for anthelmintic resistance, particularly in cyathostomin species. Field studies published over the last decade indicate that benzimidazole resistance is widespread globally in cyathostomins and there are also many reports of resistance to pyrantel in these worms. Cyathostomin resistance to macrocyclic lactone compounds is emerging, principally measured as a reduction in strongyle egg reappearance time observed after treatment. Ivermectin resistance is a further concern in the small intestinal nematode, Parascaris equorum, an important pathogen of foals. These issues indicate that horse nematodes must now be controlled using methods less dependent on anthelmintic use and more reliant on management practices designed to reduce the force of infection in the environment. Such strategies include improved grazing management integrated with targeted anthelmintic administration involving faecal egg count (FEC-directed treatments. The latter require that the supporting diagnostic tests available are robust and practically applicable. Recent research has focused on maximising the value of FEC analysis in horses and on optimizing protocols for anthelmintic efficacy testing. Other studies have sought to develop

  6. Changes in soil nematode communities under the impact of fertilizers

    Science.gov (United States)

    Gruzdeva, L. I.; Matveeva, E. M.; Kovalenko, T. E.

    2007-06-01

    Changes taking place in the communities of soil nematodes of an artificially sown meadow under the impact of annually applied mineral fertilizers have been studied in a field experiment for nine years. It is shown that changes in the species composition, trophic structure, and numbers of nematodes from different genera depend on the fertilizer applied and on the competitiveness of the plant species grown. The spectra of nematode genera sensitive to the complete mineral fertilizer (NPK) and to the particular nutrients have been identified with the use of a number of parameters, including the maturity index of nematode communities, the biotope preferences of the particular nematode genera, and the general pattern of nematode habitats. The results obtained in this study can be used to assess the effect of mineral fertilizers on the soil fauna and to suggest optimum application rates of mineral fertilizers ensuring the sustainable development of meadow herbs. The use of the data on the trophic structure of nematode communities for predicting the ways of organic matter decomposition in the soil is discussed.

  7. High-throughput sequencing of nematode communities from total soil DNA extractions

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    nematodes without the need for enrichment was developed. Using this strategy on DNA templates from a set of 22 agricultural soils, we obtained 64.4% sequences of nematode origin in total, whereas the remaining sequences were almost entirely from other metazoans. The nematode sequences were derived from...... in previous sequence-based studies are not nematode specific but also amplify other groups of organisms such as fungi and plantae, and thus require a nematode enrichment step that may introduce biases. Results: In this study an amplification strategy which selectively amplifies a fragment of the SSU from...... a broad taxonomic range and most sequences were from nematode taxa that have previously been found to be abundant in soil such as Tylenchida, Rhabditida, Dorylaimida, Triplonchida and Araeolaimida. Conclusions: Our amplification and sequencing strategy for assessing nematode diversity was able to collect...

  8. Benthic freshwater nematode community dynamics under conditions ...

    African Journals Online (AJOL)

    Studies of the influence of fish aquaculture on benthic freshwater nematode assemblages are scarce, but could provide a way of gauging environmental effects. The abundance and diversity of nematode assemblages in response to Oreochromis niloticus aquaculture were investigated in Kafr El-Sheikh Governorate, Egypt, ...

  9. Nematode taxonomy: from morphology to metabarcoding

    Science.gov (United States)

    Ahmed, M.; Sapp, M.; Prior, T.; Karssen, G.; Back, M.

    2015-11-01

    Nematodes represent a species rich and morphologically diverse group of metazoans inhabiting both aquatic and terrestrial environments. Their role as biological indicators and as key players in nutrient cycling has been well documented. Some groups of nematodes are also known to cause significant losses to crop production. In spite of this, knowledge of their diversity is still limited due to the difficulty in achieving species identification using morphological characters. Molecular methodology has provided very useful means of circumventing the numerous limitations associated with classical morphology based identification. We discuss herein the history and the progress made within the field of nematode systematics, the limitations of classical taxonomy and how the advent of high throughput sequencing is facilitating advanced ecological and molecular studies.

  10. Parasitic nematode interactions with mammals and plants.

    Science.gov (United States)

    Jasmer, Douglas P; Goverse, Aska; Smant, Geert

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent reinfection of host species. In addition, development of resistance to nematicides and anthelmintics by these parasites and reduced availability of some nematicides, for environmental protection, pose significant obstacles for current and future prospects of effective parasite control. Due to marked differences in host species, research on animal and plant parasitic nematodes often proceeds independently. Despite the differences between animals and plants, basic cellular properties are shared among these host organisms. Some common properties may be important for mechanisms [homologous or convergent (homoplastic)] by which nematodes successfully infect these diverse hosts or by which animal and plant hosts resist infections by these pathogens. Here we compare host/parasite interactions between plant parasitic nematodes (PPN) and animal parasitic nematodes, with an emphasis on mammalian hosts (MPN). Similarities and differences are considered in the context of progress on molecular dissection of these interactions. A comprehensive coverage is not possible in the space allotted. Instead, an illustrative approach is used to establish examples that, it is hoped, exemplify the value of the comparative approach.

  11. [Nematodes (Nematoda) from bats (Chiroptera) of the Samarskaya Luka Peninsula (Russia)].

    Science.gov (United States)

    Kirillova, N Iu; Kirillov, A A; Vekhnik, V P

    2008-01-01

    Fauna of parasitic nematodes from Chiroptera of the Samarskaya Luka has been studied. Seven nematode species has been recorded. Numbers of host specimens, indices of extensiveness and intensiveness of the invasion, parasite abundance, and brief characteristics of the nematode species are given. Some nematode species were for the first time recorded in bats of Russia.

  12. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants.

    Science.gov (United States)

    Ajjappala, Hemavathi; Chung, Ha Young; Sim, Joon-Soo; Choi, Inchan; Hahn, Bum-Soo

    2015-03-01

    The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.

  13. Nematode-bacterium symbioses--cooperation and conflict revealed in the "omics" age.

    Science.gov (United States)

    Murfin, Kristen E; Dillman, Adler R; Foster, Jeremy M; Bulgheresi, Silvia; Slatko, Barton E; Sternberg, Paul W; Goodrich-Blair, Heidi

    2012-08-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, "omics"' studies in nematode-bacterial systems, and the wider implications of the findings.

  14. Studies on Lasioseius scapulatus, a Mesostigmatid mite predaceous on nematodes

    OpenAIRE

    Imbriani, I.; Mankau, R.

    1983-01-01

    The life history and feeding habits of Lasioseius scapulatus, an ascid predator and potential biocontrol agent of nematodes, was examined. Reproduction was asexual, and the life cycle was 8-10 days at room temperature. Life history consisted of the egg, protonymph, deutonymph, and adult. Both nymphal stages and the adult captured and consumed nematodes. Two fungal genera and eight genera of nematodes were suitable food sources. Second-stage root-knot nematode juveniles were eaten, but eggs an...

  15. Identification and functional analysis of secreted effectors from phytoparasitic nematodes.

    Science.gov (United States)

    Rehman, Sajid; Gupta, Vijai K; Goyal, Aakash K

    2016-03-21

    Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant

  16. Tamarindus indica: Extent of explored potential.

    Science.gov (United States)

    Bhadoriya, Santosh Singh; Ganeshpurkar, Aditya; Narwaria, Jitendra; Rai, Gopal; Jain, Alok Pal

    2011-01-01

    Tamarindus is a monotypic genus and belongs to the subfamily Caesalpinioideae of the family Leguminosae (Fabaceae), Tamarindus indica L., commonly known as Tamarind tree is one of the most important multipurpose tropical fruit tree species in the Indian subcontinent. Tamarind fruit was at first thought to be produced by an Indian palm, as the name Tamarind comes from a Persian word "Tamar-I-hind," meaning date of India. Its name "Amlika" in Sanskrit indicates its ancient presence in the country. T.indica is used as traditional medicine in India, Africa, Pakistan, Bangladesh, Nigeria,and most of the tropical countries. It is used traditionally in abdominal pain, diarrhea and dysentery, helminthes infections, wound healing, malaria and fever, constipation, inflammation, cell cytotoxicity, gonorrhea, and eye diseases. It has numerous chemical values and is rich in phytochemicals, and hence the plant is reported to possess antidiabetic activity, antimicrobial activity, antivenomic activity, antioxidant activity, antimalarial activity, hepatoprotective activity, antiasthmatic activity, laxative activity, and anti-hyperlipidemic activity. Every part of the plant from root to leaf tips is useful for human needs. Thus the aim of the present review is to describe its morphology, and explore the phytochemical constituents, commercial utilization of the parts of the plant, and medicinal and pharmacologic activities so that T. indica's potential as multipurpose tree species can be understood.

  17. Diversity in Zanonia indica (Cucurbitaceae)

    NARCIS (Netherlands)

    Wilde, de W.J.J.O.; Duyfjes, B.E.E.

    2007-01-01

    A revision of the monotypic genus Zanonia L. is presented. The only and widely distributed species Z. indica comprises two subspecies, the typical one, and the newly described subsp. orientalis W.J. de Wilde & Duyfjes. Subspecies orientalis also contains a distinct variety, var. paludosa W.J. de

  18. Survey of nematodes associated with terrestrial slugs in Norway.

    Science.gov (United States)

    Ross, J L; Ivanova, E S; Hatteland, B A; Brurberg, M B; Haukeland, S

    2016-09-01

    A survey of nematodes associated with terrestrial slugs was conducted for the first time in Norway. A total of 611 terrestrial slugs were collected from 32 sample sites. Slugs were identified by means of morphological examination, dissection of genitalia and molecular analysis using mitochondrial DNA. Twelve slug species were identified, representing four different slug families. Internal nematodes were identified by means of morphological analysis and the sequencing of the 18S rRNA gene. Of the sample sites studied, 62.5% were found to be positive for nematode parasites, with 18.7% of all slugs discovered being infected. Five nematode species were identified in this study: Alloionema appendiculatum, Agfa flexilis, Angiostoma limacis, Angiostoma sp. and Phasmarhabditis hermaphrodita. Of these species, only one nematode was previously undescribed (Angiostoma sp.). This is the first record of the presence of A. appendiculatum, A. flexilis and A. limacis in Norway.

  19. The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny

    Science.gov (United States)

    2013-01-01

    Background Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages. Results We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement. Conclusions Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome

  20. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE

    Science.gov (United States)

    Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ESR(CLE)-like effector proteins. These proteins have been shown to act as ligand mimics of plant CLE peptides and are required for successful nematode infection; however, the receptors for nematode CLE-like peptides have not been identified. Her...

  1. Bacterial microbiome and nematode occurrence in different potato agricultural soils

    Science.gov (United States)

    Pratylenchus neglectus and Meloidogyne chitwoodi are the main plant-parasitic nematodes in potato crops of the San Luis Valley, Colorado. Bacterial microbiome (16S rRNA copies per gram of soil) and nematode communities (nematodes per 200 gr of soil) from five different potato farms were analyzed to ...

  2. 7 CFR 301.85-9 - Movement of live golden nematodes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live golden nematodes. 301.85-9 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Golden Nematode Quarantine and Regulations § 301.85-9 Movement of live golden nematodes. Regulations requiring a permit for and otherwise...

  3. Ecology of the Pinewood Nematode in Southern Pine Chip Piles

    Science.gov (United States)

    L. David Dwinell

    1986-01-01

    The optimum temperature range for pinewood nematodes in southern pine chips was 35 to 40° C. Nematode populations declined at temperatures of -20°C. at temperatures above 45°C. and in anaerobic environments. Wood moisture content and presence of bluestain fungus also influenced nematode populations.

  4. Mining the secretome of root-knot nematodes for cell wall modifying proteins

    NARCIS (Netherlands)

    Roze, E.H.A.

    2008-01-01

    The products of parasitism genes in nematodes must be secreted to reach their targets at the nematode-plant interface. These nematode secretory proteins are therefore recognised to play an important role in the nematode-plant interaction and as a result have been subject of intense study for years.

  5. Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-10-01

    Full Text Available Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.

  6. SYNTHESIS AND CHARACTERIZATION OF CANNABIS INDICA FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Amar Singh Singha

    2011-04-01

    Full Text Available This paper reports on the synthesis of Cannabis indica fiber-reinforced composites using Urea-Resorcinol-Formaldehyde (URF as a novel matrix through compression molding technique. The polycondensation between urea, resorcinol, and formaldehyde in different molar ratios was applied to the synthesis of the URF polymer matrix. A thermosetting matrix based composite, reinforced with lignocellulose from Cannabis indica with different fiber loadings 10, 20, 30, 40, and 50% by weight, was obtained. The mechanical properties of randomly oriented intimately mixed fiber particle reinforced composites were determined. Effects of fiber loadings on mechanical properties such as tensile, compressive, flexural strength, and wear resistance were evaluated. Results showed that mechanical properties of URF resin matrix increased considerably when reinforced with particles of Cannabis indica fiber. Thermal (TGA/DTA/DTG and morphological studies (SEM of the resin, fiber and polymer composite thus synthesized were carried out.

  7. PLANT-PARASITIC NEMATODES ON STONE FRUITS AND CITRUS IN LEBANON

    Directory of Open Access Journals (Sweden)

    Said K. Ibrahim

    2016-06-01

    Full Text Available Ibrahim Said K., Ibrahim Azar, Christian Naser, Badran Akikki and Ludmilla Ibrahim. 2016. Plant-parasitic nematodes on stone fruits and citrus in Lebanon. Lebanese Science Journal, 17(1: 9-24. This study aimed to determine the occurrence, distribution of plant parasitic nematodes on stone fruits in Lebanon and to determine the effect of plant extracts on the mortality of several nematode species. A total of 308 soil samples were collected from five different crops. Almost all surveyed areas showed infection with nematodes. The soil infestation rate with nematodes in collected soil samples from all 10 surveyed crops ranged from 66.6 to 100%. Eighteen out of 308 soil samples were free of nematodes (5.8%. All the collected soil samples from nectarine and plum orchards were infested with nematodes (100%, followed by citrus (97.6%, apple (88.7%, pear and quince (85.7%, and cherry (81.4%. The lowest infection (66.6% was detected on almond and apricot. The level of infestation varied from one area to another and ranged between 0.1 and 28 nematodes per 1 g of soil, with the highest number obtained on cherry. Several genera were identified based on morphological characters including: root-knot nematodes (Meloidogyne spp., Tylenchulus, Xiphinema, Rotylenchus, Pratylenchus, and Longidorus. Tylenchulus and Radopholus spp. were the most common on citrus trees, whereas Pratylechus and Meloidogyne spp. were detected almost in all the samples collected from all the crops. Six chopped aromatic plants were tested in pot experiments to control nematodes population densities. The results revealed that carbofuran (nematicide was the most effective (88.48% in comparison to the plant materials. Allium sativum gave the highest control (76.52% followed by Tageta patula (72.0%, Cucurbita maxima (71.84% and Inula viscosa (63.96%. Origanum syriacum (55.04% and Thymus (53.72% were less effective in comparison to the rest of tested plant materials.

  8. [Screening endophytic bacteria against plant-parasitic nematodes].

    Science.gov (United States)

    Peng, Shuang; Yan, Shuzhen; Chen, Shuanglin

    2011-03-01

    Plant-parasite nematode is one of the most important pathogens in plant. Our objective is to screen endophytic bacteria against plant-parasitic nematodes from plant. Endophytic bacteria were isolated and screened by testing their metabolite against Bursaphelenchus xylophilus in vitro. Those strains inhibiting B. xylophilus were selected to culture in liquid medium and fermentation conditions were optimized by orthogonal test. The stability of the antinematode substances was evaluated by various. In addition, four strains were identified by 16SrDNA sequence analysis. In total 13 strains of endophytic bacteria secreting antinematode metabolite were isolated from 6 species of plant. The supernatant of the fermentation broth of these endophytic bacteria gave 100% mortality of nematodes after treated as the follows: 1 ml each was mixed with 0.2 ml of the suspension of nematodes (2000 nematodes/ml) then incubated at 250C for 24 h, some of which could led to leakage or dissolution of nematodes. Among them, four strains, BCM2, SZ5, CCM7 and DP1, showed stronger activity than others. The supernatants diluted three times also gave not less than 95% mortality after 24 h treatment, and those from DP1 and SZ5 even gave 100% mortality. The fermentation conditions of the four strains were optimized and the antinematode activity grew up four times after optimization. The antinematode substances of these strains were found stable when treated with protease or heating or stored at 4 degrees C after 100 days, while instable when treated with acid or alkali. DP1 and CCM7 were identified to be Bacillus subtilis, while SZ5 and BCM2 to be Bacillus cereus. Endophytic bacteria secreting antinematode metabolite were found in economic crops. The metabolite of some strains showed strong and stable antinematode activity. Our results indicate the real potential of biocontrol by endophytic bacteria.

  9. PLANT-PARASITIC NEMATODES ON STONE FRUITS AND CITRUS IN LEBANON

    International Nuclear Information System (INIS)

    Ibrahim, S.K.; Azar, I.; Naser, CH.; Akikki, B; Ibrahim, L.

    2016-01-01

    This study aimed to determine the occurrence, distribution of plant parasitic nematodes on stone fruits in Lebanon and to determine the effect of plant extracts on the mortality of several nematode species. A total of 308 soil samples were collected from five different crops. Almost all surveyed areas showed infection with nematodes.The soil infestation rate with nematodes in collected soil samples from all 10 surveyed crops ranged from 66.6 to 100%. Eighteen out of 308 soil samples were free of nematodes (5.8%). All the collected soil samples from nectarine and plum orchards were infested with nematodes (100%), followed by citrus (97.6%), apple (88.7%), pear and quince (85.7%), and cherry (81.4%). The lowest infection (66.6%) was detected on almond and apricot. The level of infestation varied from one area to another and ranged between 0.1and 28 nematodes per 1 g of soil, with the highest number obtained on cherry. Several genera were identified based on morphological characters including:root-knot nematodes (Meloidogynespp.), Tylenchulus, Xiphinema, Rotylenchus, Pratylenchus, and Longidorus. Tylenchulus and Radopholus spp. were the most common on citrus trees, whereas Pratylechus and Meloidogyne spp. were detected almost in all the samples collected from all the crops. Six chopped aromatic plants were tested in pot experiments to control nematodes population densities. The results revealed that carbofuran (nematicide) was the most effective (88.48%) in comparison to the plant materials. Allium sativum gave the highest control (76.52%) followed by Tageta patula (72.0%), Cucurbita maxima (71.84%) and Inula viscosa (63.96%). Origanum syriacum (55.04%)d Thymus (53.72%) were less effective in comparison to the rest of tested plant materials. (author)

  10. Trait-mediated diversification in nematode predator–prey systems

    NARCIS (Netherlands)

    Mulder, C.; Helder, J.; Vervoort, M.T.W.; Vonk, J.A.

    2011-01-01

    Nematodes are presumably the most numerous Metazoans in terrestrial habitats. They are represented at all trophic levels and are known to respond to nutrient limitation, prey availability, and microbial resources. Predatory nematodes reside at the highest trophic level, and as such their feeding

  11. Book review: Systematics of Cyst Nematodes (Nematoda: Heteroderinae)

    Science.gov (United States)

    The cyst nematodes are an important group of plant-parasitic nematodes that cause billions of dollars in economic damage to crops every year. This article reviews a recently published, two-volume monograph that describes the morphological and molecular characteristics of these agriculturally signif...

  12. Nematode effector proteins: an emerging paradigm of parasitism

    Science.gov (United States)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  13. Infection Assay of Cyst Nematodes on Arabidopsis Roots.

    Science.gov (United States)

    Bohlmann, Holger; Wieczorek, Krzysztof

    2015-09-20

    Plant parasitic nematodes are devastating pests on many crops. Juveniles (J2) of cyst nematodes invade the roots to induce a syncytium. This feeding site is their only source of nutrients. Male nematodes leave the roots after the fourth molt to mate with females. The females stay attached to their syncytia throughout their life and produce hundreds of eggs, which are contained in their bodies. When the females die their bodies form the cysts, which protect the eggs. Cysts can survive for many years in the soil until favorable conditions induce hatching of the juveniles. The beet cyst nematode Heterodera schachtii ( H. schachtii )is a pathogen of sugar beet ( Beta vulgaris ) but can also complete its life cycle on Arabidopsis roots growing on agar plates under sterile conditions. We present here protocols for a stock culture of H. schachtii and an infection assay on agar plates.

  14. Generalists at the interface: Nematode transmission between wild and domestic ungulates.

    Science.gov (United States)

    Walker, Josephine G; Morgan, Eric R

    2014-12-01

    Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host-parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog) and 76% (for mouflon) of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse) and 77% (for llamas/alpacas) of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide evidence to answer this

  15. Generalists at the interface: Nematode transmission between wild and domestic ungulates

    Directory of Open Access Journals (Sweden)

    Josephine G. Walker

    2014-12-01

    Full Text Available Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host–parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog and 76% (for mouflon of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse and 77% (for llamas/alpacas of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide

  16. Eleusine indica L. possesses antioxidant activity and precludes carbon tetrachloride (CCl₄)-mediated oxidative hepatic damage in rats.

    Science.gov (United States)

    Iqbal, Mohammad; Gnanaraj, Charles

    2012-07-01

    The purpose of this study was to evaluate the ability of aqueous extract of Eleusine indica to protect against carbon tetrachloride (CCl₄)-induced hepatic injury in rats. The antioxidant activity of E. indica was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The total phenolic content of E. indica was also determined. Biochemical parameters [e.g. alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), glutathione (GSH), catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and quinone reductase] were used to evaluate hepatic damage in animals pretreated with E. indica and intoxicated with CCl₄. CCl₄-mediated hepatic damage was also evaluated by histopathologically. E. indica extract was able to reduce the stable DPPH level in a dose-dependent manner. The half maximal inhibitory concentration (IC₅₀) value was 2350 μg/ml. Total phenolic content was found to be 14.9 ± 0.002 mg/g total phenolic expressed as gallic acid equivalent per gram of extract. Groups pretreated with E. indica showed significantly increased activity of antioxidant enzymes compared to the CCl₄-intoxicated group (p indica pretreatment (p indica-pretreated groups as compared to the CCl₄-intoxicated group. The protective effect of E. indica was further evident through decreased histopathological alterations in the liver. The results of our study indicate that the hepatoprotective effects of E. indica might be ascribable to its antioxidant and free radical scavenging property.

  17. Remote Sensing of Parasitic Nematodes in Plants

    Science.gov (United States)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  18. First report of the spiral nematode Helicotylenchus microlobus infecting soybean in North Dakota

    Science.gov (United States)

    Spiral nematodes (Helicotylenchus spp.) are common plant-parasitic nematodes in fields of many crops. In June 2015, two soil samples were collected from a soybean field in Richland County, ND. Nematodes were extracted from soil using the sugar centrifugal flotation method. Plant-parasitic nematodes ...

  19. Mapping genetic factors controlling potato - cyst nematode interactions

    NARCIS (Netherlands)

    Rouppe van der Voort, J.N.A.M.

    1998-01-01

    The thesis describes strategies for genetic mapping of the genomes of the potato cyst nematode and potato. Mapping in cyst nematodes was achieved by AFLP genotyping of single cysts and subsequent segregation analysis in a family of sibling populations. The genetic map of Globodera

  20. 5 Spatial Distribution of Nematodes at Organic.cdr

    African Journals Online (AJOL)

    user

    in organic crop production fields can favour or inhibit nematode build-up. ... that nematode control strategies employed on the organic field might be less effective than expected. ... Method. Study site. Soil samples were collected from an organic vegetable field and a conventional ..... chemical analysis: a practical handbook.

  1. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Sagar Banerjee

    2017-05-01

    Full Text Available Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  2. Rhizosphere Colonization and Control of Meloidogyne spp. by Nematode-trapping Fungi

    Science.gov (United States)

    Persson, Christina; Jansson, Hans-Börje

    1999-01-01

    The ability of nematode-trapping fungi to colonize the rhizosphere of crop plants has been suggested to be an important factor in biological control of root-infecting nematodes. In this study, rhizosphere colonization was evaluated for 38 isolates of nematode-trapping fungi representing 11 species. In an initial screen, Arthrobotrys dactyloides, A. superba, and Monacrosporium ellipsosporum were most frequently detected in the tomato rhizosphere. In subsequent pot experiments these fungi and the non-root colonizing M. geophyropagum were introduced to soil in a sodium alginate matrix, and further tested both for establishment in the tomato rhizosphere and suppression of root-knot nematodes. The knob-forming M. ellipsosporum showed a high capacity to colonize the rhizosphere both in the initial screen and the pot experiments, with more than twice as many fungal propagules in the rhizosphere as in the root-free soil. However, neither this fungus nor the other nematode-trapping fungi tested reduced nematode damage to tomato plants. PMID:19270886

  3. Assessment of nematode community structure as a bioindicator in river monitoring

    International Nuclear Information System (INIS)

    Wu, H.C.; Chen, P.C.; Tsay, T.T.

    2010-01-01

    Nematode communities from river water and sediments were assessed for the abundance, feeding types, maturity indices and nematode channel ratio (NCR). The sampling sites studied included different levels of pollution and contamination from agricultural, industrial and sewage sources. The nematode abundance found in the sediment samples was more than that in the water samples. The lowest nematode abundance in sediment samples and the lowest NCR in water samples were both found at the industrial pollution site. Water samples showed positive correlation between the NCR and river pollution index (RPI). Mean maturity indices in sediment samples were inversely correlated with RPI. The pollutant source determined the relationship between NCR and pollution level, while maturity index always showed negative correlation with pollutant level regardless of the pollutant sources. The nematode abundance and its community structure were both reliable bioindicators for monitoring long-term river pollution in both qualitative and quantitative aspects. - Nematode community structure in rivers is related to the contamination source and level.

  4. Assessment of nematode community structure as a bioindicator in river monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.C.; Chen, P.C. [Department of Plant Pathology, National Chung Hsing University, 250 Kuo Kuan Rd, Taichung 402, Taiwan (China); Tsay, T.T., E-mail: tttsay@nchu.edu.t [Department of Plant Pathology, National Chung Hsing University, 250 Kuo Kuan Rd, Taichung 402, Taiwan (China)

    2010-05-15

    Nematode communities from river water and sediments were assessed for the abundance, feeding types, maturity indices and nematode channel ratio (NCR). The sampling sites studied included different levels of pollution and contamination from agricultural, industrial and sewage sources. The nematode abundance found in the sediment samples was more than that in the water samples. The lowest nematode abundance in sediment samples and the lowest NCR in water samples were both found at the industrial pollution site. Water samples showed positive correlation between the NCR and river pollution index (RPI). Mean maturity indices in sediment samples were inversely correlated with RPI. The pollutant source determined the relationship between NCR and pollution level, while maturity index always showed negative correlation with pollutant level regardless of the pollutant sources. The nematode abundance and its community structure were both reliable bioindicators for monitoring long-term river pollution in both qualitative and quantitative aspects. - Nematode community structure in rivers is related to the contamination source and level.

  5. Study on homologous series of induced early mutants in Indica rice Ⅱ. the relationship between the homologous series of early mutants induced and the ecotype in Indica rice

    International Nuclear Information System (INIS)

    Chen Xiulan; Yang Hefeng; He Zhentian; Han Yuepeng; Liu Xueyu

    2001-01-01

    The induced mutation in light sensitivity of the Indica rice leads to induction of the homologous series of early mutants along with the variation of ecological character and the ecoclimate. The induction of mutants was closely related to the ecotype of Indica rice, the homologous series of early mutants in different level were derived from the different ecotype of the Indica rice, otherwise, the similar homologous series of early mutants were derived from the same ecotypic variety. The induction of the early ecotypic variety derived from the homologous series of early mutants provides the basis and possibility for accelerating the development of the new cultivars. (authors)

  6. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Directory of Open Access Journals (Sweden)

    Krishnan Neeraja M

    2012-09-01

    Full Text Available Abstract Background The Azadirachta indica (neem tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides.

  7. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica

    Science.gov (United States)

    2012-01-01

    Background The Azadirachta indica (neem) tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach. Results The genome and transcriptomes of A. indica were sequenced using multiple sequencing platforms and libraries. The A. indica genome is AT-rich, bears few repetitive DNA elements and comprises about 20,000 genes. The molecular phylogenetic analyses grouped A. indica together with Citrus sinensis from the Rutaceae family validating its conventional taxonomic classification. Comparative transcript expression analysis showed either exclusive or enhanced expression of known genes involved in neem terpenoid biosynthesis pathways compared to other sequenced angiosperms. Genome and transcriptome analyses in A. indica led to the identification of repeat elements, nucleotide composition and expression profiles of genes in various organs. Conclusions This study on A. indica genome and transcriptomes will provide a model for characterization of metabolic pathways involved in synthesis of bioactive compounds, comparative evolutionary studies among various Meliaceae family members and help annotate their genomes. A better understanding of molecular pathways involved in the azadirachtin synthesis in A. indica will pave ways for bulk production of environment friendly biopesticides. PMID:22958331

  8. Native nematodes as new bio-insecticides for cranberries

    Science.gov (United States)

    In the summer of 2015, an effort was made in central Wisconsin to find an entomopathogenic nematode capable controlling Wisconsin’s cranberry pests. Using a standard baiting method, a nematode of the Oscheius genus was collected from the mossy, sandy, peat-filled soils of a wild cranberry marsh. Thi...

  9. Indica rice (Oryza sativa, BR29 and IR64).

    Science.gov (United States)

    Datta, Karabi; Datta, Swapan Kumar

    2006-01-01

    Rice is the world's most important food crop. Indica-type rice provides the staple food for more than half of the world population. To satisfy the growing demand of the ever-increasing population, more sustained production of indica-type rice is needed. In addition, because of the high per capita consumption of indica rice, improvement of any traits including its nutritive value may have a significant positive health outcome for the rice-consuming population. Rice yield productivity is greatly affected by different biotic stresses, like diseases and insect pests, and abiotic stresses like drought, cold, and salinity. Attempts to improve resistance in rice to these stresses by conventional breeding through introgression of traits have limited success owing to a lack of resistance germplasm in the wild relatives. Gene transfer technology with genes from other sources can be used to make rice plants resistant or tolerant to insect pests, diseases, and different environmental stresses. For improving the nutritional value of the edible endosperm part of the rice, genes for increasing iron, beta-carotene, or better quality protein can be introduced in rice plants by genetic engineering. Different crops have been transformed using various gene transfer methods, such as protoplast transformation, biolistic, and Agrobacterium-mediated transformation. This chapter describes the Agrobacterium-mediated transformation protocol for indica-type rice. The selectable marker genes used are hygromycin phosphotransferase (hpt), neomycin phosphotransferase (nptII), or phosphomannose isomerase (pmi), and, accordingly, the selection agents are hygromycin, kanamycin (G418), or mannose, respectively.

  10. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone

    International Nuclear Information System (INIS)

    Lecomte-Pradines, C.; Bonzom, J.-M.; Della-Vedova, C.; Beaugelin-Seiller, K.; Villenave, C.; Gaschak, S.; Coppin, F.; Dubourg, N.; Maksimenko, A.; Adam-Guillermin, C.; Garnier-Laplace, J.

    2014-01-01

    In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h −1 . These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H′). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h −1 . This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites. This might

  11. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Pradines, C., E-mail: catherine.lecomte-pradines@irsn.fr [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Bonzom, J.-M. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Della-Vedova, C. [Magelis, 6, rue Frederic Mistral, 84160 Cadenet (France); Beaugelin-Seiller, K. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LM2E, Building 159, Cadarache 13115 Saint Paul lez Durance cedex (France); Villenave, C. [ELISOL Environment, Building 12, Campus de la Gaillarde, 2 place Viala, 34060 Montpellier cedex 2 (France); Gaschak, S. [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Coppin, F. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, L2BT, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Dubourg, N. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, GARM Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Maksimenko, A. [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Adam-Guillermin, C. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Garnier-Laplace, J. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, Building 159, Cadarache 13115 Saint Paul lez Durance cedex (France)

    2014-08-15

    In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h{sup −1}. These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H′). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h{sup −1}. This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites

  12. Association of nematodes and dogwood cankers.

    Science.gov (United States)

    Self, L H; Bernard, E C

    1994-03-01

    Dogwood canker is a serious production problem of unknown etiology. From May 1985 through April 1989, cankers from 290 flowering dogwood trees in 15 separate nurseries were sampled for nematodes. Seventy-three percent (213) of the cankers contained nematodes. Panagrolaimus rigidus (Schneider) Thorne (115/290) and Aphelenchoides spp. (91/290) were the most frequently collected taxa. Panagrolaimus rigidus was reared on 2% water agar with unidentified bacteria as the food source. Aphelenchoides spp. were reared in antibiotic-amended agar culture with the fungus Glomerella cingulata (Stoneman) Spauld. &Schrenk as a food source. Repeated attempts to culture Aphelenchoides spp. on dogwood callus tissue were unsuccessful. Artificially created stem wounds inoculated with combinations of Aphelenchoides spp. and P. rigidus callused completely in 60 days with no indication of canker development. Very low numbers of nematodes were recovered from inoculated trees, but P. rigidus and one Aphelenchoides sp. were efficient dispersers and occurred in treatments other than those in which they were inoculated.

  13. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.

    Science.gov (United States)

    Zheng, Jinshui; Peng, Donghai; Chen, Ling; Liu, Hualin; Chen, Feng; Xu, Mengci; Ju, Shouyong; Ruan, Lifang; Sun, Ming

    2016-07-27

    Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans, the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants. © 2016 The Author(s).

  14. Nematode parasitism in adult dairy cows in Belgium

    NARCIS (Netherlands)

    Agneessens, J.; Claerebout, E.; Dorny, P.; Borgsteede, F.H.M.; Vercruysse, J.

    2000-01-01

    Over a period of 1 year, from November 1997 to October 1998, the abomasa, blood and faecal samples of 121 dairy cows in Belgium were collected and examined for nematode infections. Nematodes were present in the abomasa of 110 animals. Ostertagia was found in all 110, Trichostrongylus was seen in 65

  15. Antibacterial activity of fumaria indica (hausskn.) pugsley against selected bacterial strains

    International Nuclear Information System (INIS)

    Toor, Y.; Nawaz, K.; Hussain, K.

    2015-01-01

    Antibacterial properties of methanolic extracts of F. indica prepared in different doses against seven Gram-positive and Gram-negative bacterial strains i.e. Streptococcus pyogenes, Staphylococcus aureus (1), Staphylococcus aureus (2), Shigella sonnei, Escherichia coli (1), Escherichia coli (2) and Neisseria gonorrhoeae using agar well diffusion method (inhibition zone measurements) compared to gentamicin as standard antibiotic. Results showed significant activities against the test organisms with overall satisfactory statistics. Streptococcus pyogenes, Staphylococcus aureus strains as well as Neisseria gonorrhoeae showed more inhibition to methanolic extracts of F. indica. Minimum inhibitory as well as minimum bactericidal concentrations against all strains except Shigella sonnei were also recorded. Studies showed promising horizons for the use of F. indica as an active antibacterial component in modern drug formulations. (author)

  16. The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Iris Camehl

    2011-05-01

    Full Text Available Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1 gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H₂O₂ and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1. A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H₂O₂ formation is even reduced by the fungus. Importantly, phospholipase D (PLDα1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.

  17. Free-living Marine Nematodes. Part 1 British Enoplids

    African Journals Online (AJOL)

    This is the first of three volumes dealing with the most abundant group of animals on the sea-bed and sea-shore, the free-living marine nematodes, and is devoted to those marine nematodes belonging to the subclass Enoplia. Separate volumes will deal with the orders Chromadorida and. Monhysterida. To most marine ...

  18. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango)

    Science.gov (United States)

    2017-01-01

    Mangifera indica (family Anacardiaceae), commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described. PMID:29456572

  19. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango

    Directory of Open Access Journals (Sweden)

    Meran Keshawa Ediriweera

    2017-01-01

    Full Text Available Mangifera indica (family Anacardiaceae, commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described.

  20. Laboratory experiments on the infaunal activity of intertidal nematodes

    NARCIS (Netherlands)

    Steyaert, M.; Moodley, L.; Vanaverbeke, J.; Vandewiele, S.L.; Vincx, M.

    2005-01-01

    The impact of oxygen on the vertical distribution of an intertidal nematode community was investigated in a manipulation experiment with sediments collected from the Oosterschelde (The Netherlands). The vertical distribution of nematodes was examined in response to sediment inversion in perspex

  1. The importance, biology and management of cereal cyst nematodes (Heterodera spp.

    Directory of Open Access Journals (Sweden)

    F. Mokrini

    2018-01-01

    Full Text Available Cereals are exposed to biotic and abiotic stresses. Among the biotic stresses, plant-parasitic nematodes play an important role in decreasing crop yield. Cereal cyst nematodes (CCNs are known to be a major constraint to wheat production in several parts of the world. Significant economic losses due to CCNs have been reported. Recognition and identification of CCNs are the first steps in nematode management. This paper reviews the current distribution of CCNs in different parts of the world and the recent advances in nematode identification. The different approaches for managing CCNs are also discussed.

  2. Nematode community structure as a bioindicator in environmental monitoring

    NARCIS (Netherlands)

    Bongers, T.; Ferris, H.

    1999-01-01

    Four of every five multicellular animals on the planet are nematodes. They occupy any niche that provides an available source of organic carbon in marine, freshwater and terrestrial environments. Nematodes vary in sensitivity to pollutants and environmental disturbance. Recent development of indices

  3. Prevalence of Pasteuria SP. on Renfirom Nematode in a Georgia Cotton Field

    Science.gov (United States)

    Pasteuria species are bacterial parasites of nematodes and have been associated with suppression of root-knot, sting, and cyst nematode populations. Little is known about the Pasteuria sp. infecting the reniform nematode. While sampling a cotton field study near Cochran, GA, we found Pasteuria spo...

  4. Latitudinal variation in nematode diversity and ecological roles along the Chinese coast.

    Science.gov (United States)

    Wu, Jihua; Chen, Huili; Zhang, Youzheng

    2016-11-01

    To test changes in the phylogenetic relatedness, niche breadth, and life-history strategies of nematodes along a latitudinal gradient. Sixteen wetland locations along the Pacific coast of China, from 20°N to 40°N. Linear regression was used to relate nematode phylogenetic relatedness (average taxonomic distinctness (AvTD) and average phylogenetic diversity [AvPD]), life-history group (based on " c - p " colonizer-persister group classification), and dietary specificity (based on guild classification of feeding selectivity) to latitude. Wetland nematode taxonomic diversity (richness and Shannon diversity indices) decreased with increasing latitude along the Chinese coast. Phylogenetic diversity indices (AvTD and AvPD) significantly increased with increasing latitude. This indicates that at lower latitudes, species within the nematode community were more closely related. With increasing latitude, the nematode relative richness and abundance decreased for selective deposit feeders but increased for nonselective deposit feeders. The proportion of general opportunists decreased with increasing latitude, but persisters showed the opposite trend. The annual temperature range and the pH of sediments were more important than vegetation type in structuring nematode communities. Nematode niche breadth was narrower at lower latitudes with respect to dietary specificity. Higher latitudes with a more variable climate favor r over K life-history strategists. Nematode communities at lower latitudes contained more closely related species.

  5. Nutritional value of Opuntia ficus-indica cladodes from Portuguese ecotypes

    OpenAIRE

    Rodrigues, A.M.; Pitacas, F.I.; Reis, C.M.G.; Blasco, M.

    2016-01-01

    The use of Opuntia ficus-indica cladodes as a forage for ruminants has been very important in the semi-arid and arid regions of the world. O. ficus-indica cladodes can be fed to small ruminants especially in periods of the year when there is low quality and quantity of pasture. In Mediterranean regions like South of Portugal during the rainy season the availability of pasture is quantitatively and qualitatively satisfactory, but in critical times of the year the shortage and low nutr...

  6. Mangifera indica L. extract protects T cells from activation-induced cell death.

    Science.gov (United States)

    Hernández, Patricia; Delgado, Rene; Walczak, Henning

    2006-09-01

    The aqueous stem bark extract of Mangifera indica L. (Vimang) has been reported to have antioxidant properties. AIDS is characterized by up-regulation of CD95 ligand (CD95L) expression and enhancement of activation-induced cell death (AICD). Recent studies demonstrate oxidative signals combined with simultaneous calcium (Ca(2+)) influx into the cytosol are required for induction of CD95L expression. In this study we show that M. indica extract attenuated anti-CD3-induced accumulation of reactive oxygen species (ROS) and intracellular free Ca(2+) and consequently, downregulates CD95L mRNA expression and CD95-mediated AICD. In addition, TCR triggering caused an elevation in the antioxidant enzyme manganous superoxide dismutase (Mn-SOD) and the increase in c-Jun N-terminal kinase (JNK) phosphorylation, both effects being prevented by M. indica extract. We provide a number of evidences regarding how M. indica extract enhance T-cell survival by inhibiting AICD, a finding associated with a decrease in oxidative stress generated through the TCR signaling pathway in activated T cells.

  7. Identification of Virulence Factors in Nematode-Trapping Fungi - Insights from Genomics, Transcriptomics and Proteomics

    OpenAIRE

    Andersson, Karl-Magnus

    2013-01-01

    Nematode-trapping fungi are soil-living organisms with the unique ability to capture and infect free-living nematodes. The interest in studying these fungi arises from their potential use as biological control agents for plant- and animal-parasitic nematodes. To enter the parasitic stage, nematode-trapping fungi develop different kinds of trapping structures. In order to understand more about the evolution of parasitism in the nematode-trapping fungi and to identify virulence factors in these...

  8. Preformulación de tabletas de Tamarindus indica L. Preformulation of tablets from Tamarindus indica L.

    Directory of Open Access Journals (Sweden)

    Jesús Rafael Rodríguez Amado

    2011-12-01

    Full Text Available Se realizó un estudio de preformulación de tabletas partiendo del extracto blando de las hojas de la especie Tamarindus indica L. Se estudiaron posibles interacciones en mezclas binarias del extracto blando con los excipientes en relación 1:3 que puedan afectar la cantidad de polifenoles en la mezcla a temperaturas 30, 45 y 60 ºC. Se diseñaron 3 formulaciones preliminares de tabletas y se estudió en todos los casos la calidad de los granulados y de las tabletas. En conclusión, no se producen interacciones que afecten el color, el olor ni la concentración de polifenoles en las mezclas binarias extracto blando de tamarindo-excipientes a 30 ºC, y a temperaturas mayores se reduce la cantidad de polifenoles en las mezclas. La formulación preliminar número tres produce tabletas de calidad tecnológica y resulta adecuada para los subsecuentes estudios de formulación y optimización de tabletas de tamarindo.A pre-formulation study for tablet preparation using soft extract from Tamarindus indica L. leaves was conducted. Possible interactions in binary mixtures of Tamarindus indica L. soft extract and selected excipients in a 1:3 ratio, which may affect the amount of polyphenols in the mixture at 30°, 45° and 60 °C temperatures, were analyzed. Three preliminary tablet formulations were designed and then the quality of granules and tables were researched in all the cases. It was concluded that there were no interactions affecting the color, the smell and the polyphenol concentration in the evaluated binary mixtures at 30°. At higher temperatures, the amount of polyphenols decreased. Pre-formulation number 3 yielded the best technological quality in tablet production and thus can be used for future formulation and optimization studies of Tamarind tables.

  9. Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress

    Science.gov (United States)

    Bhatt, Laxit; Joshi, Viraj

    2017-01-01

    Aim: The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). Materials and Methods: Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. Results: The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. Conclusion: These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX. PMID:28894627

  10. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis

    NARCIS (Netherlands)

    Jones, J.T.; Reavy, B.; Smant, G.; Prior, A.E.

    2004-01-01

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for

  11. The cyst nematodes Heterodera and Globodera species in Egypt

    Science.gov (United States)

    Information concerning the occurrence and distribution of the cyst nematodes (Heterodera spp. and Globodera spp.) in Egypt is important to assess their potential to cause economic damage to many crop plants. A nematode survey was conducted in Alexandria, El Behera and Sohag governorates during 2012-...

  12. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis.

    Science.gov (United States)

    Jones, J T; Reavy, B; Smant, G; Prior, A E

    2004-01-07

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for secretion from animal cells while the other is predicted to be intracellular. Both genes are expressed in all parasite stages tested. The mRNA encoding the intracellular GpX is present throughout the nematode second stage juvenile and is particularly abundant in metabolically active tissues including the genital primordia. The mRNA encoding the secreted GpX is restricted to the hypodermis, the outermost cellular layer of the nematode, a location from which it is likely to be secreted to the parasite surface. Biochemical studies confirmed the secreted protein as a functional GpX and showed that, like secreted GpXs of other parasitic nematodes, it does not metabolise hydrogen peroxide but has a preference for larger hydroperoxide substrates. The intracellular protein is likely to have a role in metabolism of active oxygen species derived from internal body metabolism while the secreted protein may protect the parasite from host defences. Other functional roles for this protein are discussed.

  13. A model of nematode dynamics in the Westerschelde estuary

    NARCIS (Netherlands)

    Li, J.; Vincx, M.; Herman, P.M.J.

    1996-01-01

    We developed a time dynamic model to investigate the temporal dynamics of nematode community in the brackish zone of the Westerschelde Estuary. The biomass of four nematode feeding groups observed from March 1991 to February 1992 is used to calibrate the model. Using environmental data as the input,

  14. Statistical analysis of nematode counts from interlaboratory proficiency tests

    NARCIS (Netherlands)

    Berg, van den W.; Hartsema, O.; Nijs, Den J.M.F.

    2014-01-01

    A series of proficiency tests on potato cyst nematode (PCN; n=29) and free-living stages of Meloidogyne and Pratylenchus (n=23) were investigated to determine the accuracy and precision of the nematode counts and to gain insights into possible trends and potential improvements. In each test, each

  15. Absorption and translocation of 15N in Japonica (Hinohikari) and Indica (Hadsaduri) rice varieties

    International Nuclear Information System (INIS)

    Islam, N.; Inagaki, S.; Chishaki, N.; Horiguchi, T.

    1997-01-01

    The absorption and translocation of 15 N-labeled nitrogen (N) applied as three N levels of ammonium nitrate at the stages of panicle initiation (PI) and heading (HD) were compared between a japonica rice variety (var. Hinohikari) and a tall indica rice variety (var. Hadsaduri) by growing them hydroponically. With the supply of low N level, 15 N absorption by the japonica variety was larger, but at medium and high N levels, the tall indica variety absorbed larger amounts of 15 N at both stages. However, the amount of 15 N partitioned to the panicles at maturity was considerably smaller in the indica variety, since dry matter allocation to the panicles was also smaller in this variety. The tall indica variety showed a considerable loss of 15 N from heading to maturity at the high N-level unlike the japonica variety. (author)

  16. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  17. 'David and Goliath' of the soil food web - Flagellates that kill nematodes

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Rønn, Regin

    2008-01-01

    Nematodes and flagellates are important bacterial predators in soil and sediments. Generally, these organisms are considered to be competitors for bacterial food. We studied the interaction among flagellates and nematodes using axenic liquid cultures amended with heat-killed bacteria as food...... and showed for the first time that a small and common soil flagellate (Cercomonas sp.) is able to attack and kill the much larger nematode Caenorhabditis elegans. The killing process is not caused by soluble metabolites but requires direct contact between the flagellate cells and the nematode surface...... and occurs rapidly (within a few hours) at high flagellate density. At lower flagellate density, adult nematodes sometimes avoid attachment of flagellates, feed on them and become the dominant bacterial predator. Considering that bacterial feeders affect bacterial communities differently, and that one...

  18. COMPARATIVE EFFICACY OF NEEM (Azadirachta indica), FALSE ...

    African Journals Online (AJOL)

    Osondu

    Abstract. A study to evaluate the insecticidal properties of some plants was undertaken. Powder and aqueous extracts of Neem, Azadirachta indica, False sesame, Ceratotheca sesamoides and the Physic nut, Jatropha curcas were evaluated as grain protectants against the cowpea seed beetle, Callosobruchus maculatus.

  19. A Survey of Nematode Infection in Oreochromis niloticus (L ...

    African Journals Online (AJOL)

    The incidence and intensity of nematode infection was investigated in Nile tilapia Oreochromis niloticus from Lake Kyoga, Uganda and 11% of the 406 fish examined were parasitized by nematodes of the genus Contracaecum. The prevalence of these parasites was greatest in the smallest and largest size classes, but this ...

  20. Human Intraocular Filariasis Caused by Pelecitus sp. Nematode, Brazil

    Science.gov (United States)

    Bain, Odile; Diniz, Daniel G.; Nascimento dos Santos, Jeannie; Pinto de Oliveira, Norimar; Frota de Almeida, Izabela Negrão; Frota de Almeida, Rafael Negrão; Frota de Almeida, Luciana Negrão; Dantas-Torres, Filipe; Sobrinho, Edmundo Frota de Almeida

    2011-01-01

    A male nematode was extracted from iris fibers of a man from the Brazilian Amazon region. This nematode belonged to the genus Pelecitus but was distinct from the 16 known species in this genus. Similarities with Pelecitus spp. from neotropical birds suggested an avian origin for this species. PMID:21529397

  1. Influence of industrial heavy metal pollution on soil free-living nematode population

    International Nuclear Information System (INIS)

    Pen-Mouratov, Stanislav; Shukurov, Nosir; Steinberger, Yosef

    2008-01-01

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution

  2. Influence of industrial heavy metal pollution on soil free-living nematode population

    Energy Technology Data Exchange (ETDEWEB)

    Pen-Mouratov, Stanislav [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel); Shukurov, Nosir [Institute of Geology and Geophysics, Academy of Sciences, Tashkent 700041 (Uzbekistan); Steinberger, Yosef [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel)], E-mail: steinby@mail.biu.ac.il

    2008-03-15

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution.

  3. Discovery of genomic intervals that underlie nematode responses to benzimidazoles.

    Science.gov (United States)

    Zamanian, Mostafa; Cook, Daniel E; Zdraljevic, Stefan; Brady, Shannon C; Lee, Daehan; Lee, Junho; Andersen, Erik C

    2018-03-01

    Parasitic nematodes impose a debilitating health and economic burden across much of the world. Nematode resistance to anthelmintic drugs threatens parasite control efforts in both human and veterinary medicine. Despite this threat, the genetic landscape of potential resistance mechanisms to these critical drugs remains largely unexplored. Here, we exploit natural variation in the model nematodes Caenorhabditis elegans and Caenorhabditis briggsae to discover quantitative trait loci (QTL) that control sensitivity to benzimidazoles widely used in human and animal medicine. High-throughput phenotyping of albendazole, fenbendazole, mebendazole, and thiabendazole responses in panels of recombinant lines led to the discovery of over 15 QTL in C. elegans and four QTL in C. briggsae associated with divergent responses to these anthelmintics. Many of these QTL are conserved across benzimidazole derivatives, but others show drug and dose specificity. We used near-isogenic lines to recapitulate and narrow the C. elegans albendazole QTL of largest effect and identified candidate variants correlated with the resistance phenotype. These QTL do not overlap with known benzimidazole target resistance genes from parasitic nematodes and present specific new leads for the discovery of novel mechanisms of nematode benzimidazole resistance. Analyses of orthologous genes reveal conservation of candidate benzimidazole resistance genes in medically important parasitic nematodes. These data provide a basis for extending these approaches to other anthelmintic drug classes and a pathway towards validating new markers for anthelmintic resistance that can be deployed to improve parasite disease control.

  4. ESTIMACIÓN DE VARIABLES DE OPERACIÓN DE UN BIORREACTOR CON CÉLULAS DE Azadirachta indica A. Juss ESTIMATION OF OPERATION VARIABLES OF A BIOREACTOR WITH Azadirachta indica A. Juss. CELLS

    Directory of Open Access Journals (Sweden)

    Walter Muñoz Cruz

    2006-12-01

    Full Text Available Se estudiaron las variables de operación de un biorreactor de tanque agitado para el cultivo de células en suspensión de Azadirachta indica A. Juss. Se utilizó carboximetilcelulosa, CMC 0,7 % p/v, para estimar el coeficiente de transferencia de oxígeno, kLa, entre 120 - 400 rpm y entre 0,05 - 0,6 vvm, obteniéndose valores de 0,5 - 8,0 h-1. El kLa para suspensiones de A. indica en erlenmeyers fue de 0,6 - 1,2 h-1. Con los resultados anteriores se definieron las condiciones de operación del biorreactor y se evaluó el crecimiento de células de A. indica a 200 rpm y 0,2 vvm de aire, alcanzando 9,2 g cel secas/l. El crecimiento celular no fue limitado por el suministro de oxígeno. Los tamaños de aglomerados celulares cultivados en erlenmeyers con bafles agitados magnéticamente y en biorreactor fueron similares, pero menores que los obtenidos en erlemeyers con agitación orbital. El presente estudio establece parámetros para la operación de biorreactores con A. indica y confirma que los medios con CMC pueden utilizarse para estimar variables operacionales en biorreactores.Operation variables of a stirred tank bioreactor were studied in order to culture cell suspension of Azadirachta indica A. Juss Carboximethylcelulose, CMC 0,7 % w/v, was used to estimate the coefficient of oxygen transfer, kLa, between 120 - 400 rpm and 0,05 - 0,6 vvm, obtaining values of 0,5 - 8,0 h-1. The kLa for suspension cultures of A. indica in erlenmeyers was 0,6 - 1,2 h-1. Based upon the previous results, the operation conditions of the bioreactor were defined and cell growth of A. indica was evaluated at 200 rpm and 0,2 vvm of air, reaching 9,2 g dry cell/l. Celular growth was not limited by dissolved oxygen. The sizes of cell agglomerates magnetically stirred in erlemeyers with bafles and in the bioreactor were similar, but smaller that those obtained in erlenmeyers with orbital agitation. The present study establishes parameters for operation of bioreactors

  5. Phenolic content, antioxidant effect and cytotoxic activity of Leea indica leaves

    Directory of Open Access Journals (Sweden)

    Reddy Nidyaletchmy

    2012-08-01

    Full Text Available Abstract Background The leaves of Leea indica (Vitaceae, commonly known as ‘Huo Tong Shu’ in Malaysia, have been traditionally used as natural remedy in folk medicine by the locals. The current study reports the outcome of antioxidant and cytotoxic investigation of L. indica leaves. To the best of our knowledge, this is the first report of L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water for evaluation of total phenolic content, antioxidant effect and cytotoxic activity against colon cancer cell lines. Methods In the present study, L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water were firstly prepared prior to phenolic content, antioxidant effect and cytotoxic activity assessment. Folin-Ciocalteau’s method was used for the measurement of total phenolic content of the extracts. The antioxidant activity was measured by employing three different established testing systems, such as scavenging activity on DPPH (1,1-diphenyl-2-picrylhydrazyl radicals, reducing power assay and SOD (superoxide dismutase activity assay. The cytotoxic activity of the extracts were evaluated against three colon cancer cell lines with varying molecular characteristics (HT-29, HCT-15 and HCT-116 by MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay. Results The total phenolic content and antioxidant capabilities differed significantly among the L. indica leaf extracts. A strong correlation between total phenolic content and antioxidant properties was found, indicating that phenolic compounds are the major contributor to the antioxidant properties of these extracts. Among the crude ethanol and its fractionated extracts, fractionated water extract showed significantly the highest total phenolic content and strongest antioxidant effect in all the antioxidant testing systems employed in this study. All the four extracts exert no damage to the selected colon cancer

  6. The gastropod shell has been co-opted to kill parasitic nematodes.

    Science.gov (United States)

    Rae, R

    2017-07-06

    Exoskeletons have evolved 18 times independently over 550 MYA and are essential for the success of the Gastropoda. The gastropod shell shows a vast array of different sizes, shapes and structures, and is made of conchiolin and calcium carbonate, which provides protection from predators and extreme environmental conditions. Here, I report that the gastropod shell has another function and has been co-opted as a defense system to encase and kill parasitic nematodes. Upon infection, cells on the inner layer of the shell adhere to the nematode cuticle, swarm over its body and fuse it to the inside of the shell. Shells of wild Cepaea nemoralis, C. hortensis and Cornu aspersum from around the U.K. are heavily infected with several nematode species including Caenorhabditis elegans. By examining conchology collections I show that nematodes are permanently fixed in shells for hundreds of years and that nematode encapsulation is a pleisomorphic trait, prevalent in both the achatinoid and non-achatinoid clades of the Stylommatophora (and slugs and shelled slugs), which diverged 90-130 MYA. Taken together, these results show that the shell also evolved to kill parasitic nematodes and this is the only example of an exoskeleton that has been co-opted as an immune system.

  7. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone.

    Science.gov (United States)

    Lecomte-Pradines, C; Bonzom, J-M; Della-Vedova, C; Beaugelin-Seiller, K; Villenave, C; Gaschak, S; Coppin, F; Dubourg, N; Maksimenko, A; Adam-Guillermin, C; Garnier-Laplace, J

    2014-08-15

    In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h(-1). These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H'). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h(-1). This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites. This might

  8. The Role of Cytokinin During Infection of Arabidopsis thaliana by the Cyst Nematode Heterodera schachtii.

    Science.gov (United States)

    Shanks, Carly M; Rice, J Hollis; Zubo, Yan; Schaller, G Eric; Hewezi, Tarek; Kieber, Joseph J

    2016-01-01

    Plant-parasitic cyst nematodes induce the formation of hypermetabolic feeding sites, termed syncytia, as their sole source of nutrients. The formation of the syncytium is orchestrated by the nematode, in part, by modulation of phytohormone responses, including cytokinin. In response to infection by the nematode Heterodera schachtii, cytokinin signaling is transiently induced at the site of infection and in the developing syncytium. Arabidopsis lines with reduced cytokinin sensitivity show reduced susceptibility to nematode infection, indicating that cytokinin signaling is required for optimal nematode development. Furthermore, lines with increased cytokinin sensitivity also exhibit reduced nematode susceptibility. To ascertain why cytokinin hypersensitivity reduces nematode parasitism, we examined the transcriptomes in wild type and a cytokinin-hypersensitive type-A arr Arabidopsis mutant in response to H. schachtii infection. Genes involved in the response to biotic stress and defense response were elevated in the type-A arr mutant in the absence of nematodes and were hyperinduced following H. schachtii infection, which suggests that the Arabidopsis type-A arr mutants impede nematode development because they are primed to respond to pathogen infection. These results suggest that cytokinin signaling is required for optimal H. schachtii parasitism of Arabidopsis but that elevated cytokinin signaling triggers a heightened immune response to nematode infection.

  9. Development of Microsatellite Markers for Lagerstroemia indica (Lythraceae and Related Species

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2013-02-01

    Full Text Available Premise of the study: Microsatellite markers were developed and characterized to analyze genetic diversity within Lagerstroemia cultivars and related species. Methods and Results: Using simple sequence repeat (SSR-enriched libraries, 11 species-specific polymorphic genomic SSRs were developed from L. indica ‘Hong Die Fei Wu’. All primers were tested on 48 L. indica individuals from China, the United States, and France. The primers amplified four to 12 alleles per locus, including di-, tri-, and tetranucleotide repeats. Observed and expected heterozygosities ranged from 0.1875 to 0.7609 and 0.2836 to 0.8385, respectively. The primers were also highly cross-transferrable to L. subcostata, L. limii, L. fauriei, L. caudata, and L. speciosa. Conclusions: The new primers will enlarge the bank of SSRs available to genetic research of Lagerstroemia. These SSR markers will facilitate population genetics and molecular marker-assisted selection of L. indica.

  10. antibacterial properties of mangifera indica on staphylococcus aureus.

    African Journals Online (AJOL)

    boaz

    Antibacterial activity of Mangifera indica stem bark extracts was determined using disk ... In disk diffusion method, inhibition zone sizes were used to determine the ...... There is need for lead compounds ... pharmaceutical and cosmetics.

  11. Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using Real-Time PCR with SYBR green I dye.

    Science.gov (United States)

    Madani, Mehrdad; Subbotin, Sergei A; Moens, Maurice

    2005-04-01

    The potato cyst nematode Globodera pallida and the beet cyst nematode Heterodera schachtii are major nematode pests in world agriculture. Precise identification and knowledge about the number of nematodes in field soil are necessary to develop effective integrated pest control. Here we report the results of the Real-Time PCR assay for the rapid detection and quantification of G. pallida and H. schachtii. Using species specific primers and SYBR green I dye, we were able to detect a single second stage juvenile of cyst forming nematodes in samples. The specificity of the reaction was confirmed by the lack of amplification of DNAs from other Heterodera or Globodera species. Validation tests showed a rather high correlation between real numbers of second stage juveniles in a sample and expected numbers detected by Real-Time PCR. Reasons for observed differences in sensitivity and reliability of quantification detection for two species as well as other problems of Real-Time PCR are discussed. The Real-Time PCR assay with SYBR green I dye targeting fragments of the ITS-rDNA provided a sensitive means for the rapid and simultaneous detection and quantification of juveniles of these pests.

  12. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes.

    Science.gov (United States)

    Meyer, Susan L F; Halbrendt, John M; Carta, Lynn K; Skantar, Andrea M; Liu, Ting; Abdelnabby, Hazem M E; Vinyard, Bryan T

    2009-12-01

    The antibiotic 2,4-diacetylphloroglucinol (DAPG) is produced by some isolates of the beneficial bacterium Pseudomonas fluorescens. DAPG is toxic to many organisms, and crop yield increases have been reported after application of DAPG-producing P. fluorescens. This study was conducted to determine whether DAPG is toxic to selected nematodes. The plant-parasitic nematodes Heterodera glycines, Meloidogyne incognita, Pratylenchus scribneri and Xiphinema americanum, and the bacterial-feeding nematodes Caenorhabditis elegans, Pristionchus pacificus, and Rhabditis rainai, were immersed in concentrations ranging from 0 to 100 μg/ml DAPG. Egg hatch and viability of juveniles and adults were determined. DAPG was toxic to X. americanum adults, with an LD₅₀ of 8.3 μg/ml DAPG. DAPG decreased M. incognita egg hatch, but stimulated C. elegans hatch during the first hours of incubation. Viability of M. incognita J2 and of C. elegans J1 and adults was not affected. There were no observed effects on the other nematodes. The study indicated that DAPG is not toxic to all nematodes, and did not affect the tested species of beneficial bacterial-feeding nematodes. Augmentation of DAPG-producing P. fluorescens populations for nematode biocontrol could be targeted to specific nematode species known to be affected by this compound and by other antibiotics produced by the bacteria, or these bacteria could be used for other possible effects, such as induced plant resistance.

  13. contributory pharmacological effects of azadirachta indica leaf

    African Journals Online (AJOL)

    Three crude extracts from Azadirachta indica leaves were assessed on various signs and symptoms of infection in vivo and in vitro. The methanolic and diethylether extracts have significant antipyretic, analgesic, anti-inflammatory and anti-aggregatory activities, while the chloroform extract did not show appreciable effect.

  14. Differential Selection by Nematodes on an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil.

    Science.gov (United States)

    Kim, Tae Gwan; Knudsen, Guy R

    2018-03-15

    Trophic interactions of introduced biocontrol fungi with soil animals can bea key determinant in the fungal proliferation and activity.This study investigated trophic interaction of an introduced biocontrol fungus with soil nematodes. The biocontrol fungus Trichoderma harzianum ThzID1-M3 and the fungivorous nematode Aphelenchoides sp. (10 per gram of soil) were added to nonsterile soil, and microbial populations were monitored for 40 days. Similar results were obtained when the experiment was duplicated. ThzID1-M3 stimulated the population growth of indigenous nematodes ( p nematodes did not increase in number and the added Aphelenchoides sp. nematodes almost disappeared by day 10. With ThzID1-M3, population growth of nematodes was rapid between 5 and 10 days after treatment. ThzID1-M3 biomass peaked on day 5, dropped at day 10, and then almost disappeared at day 20, which was not influenced by the addition of nematodes.In contrast, a large quantity of ThzID1-M3 hyphae were present in a heat-treated soil in which nematodes were eliminated.Total fungal biomass in all treatments peaked on day 5 and subsequently decreased.Addition of nematodes increased the total fungal biomass ( p nematode population growth; however, hyphae of the introduced fungus when densely localized did.The results suggest that soil fungivorous nematodes are an important constraint onhyphal proliferation of fungal agents introduced into natural soils.

  15. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis

    KAUST Repository

    Kim, Dongjin; Abdelaziz, Mohamad E.; Ntui, Valentine Otang; Guo, Xiujie; Al-Babili, Salim

    2017-01-01

    Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.

  16. Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis

    KAUST Repository

    Kim, Dongjin

    2017-06-28

    Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.

  17. Biocontrol: Bacillus penetrans and Related Parasites of Nematodes

    OpenAIRE

    Sayre, R. M.

    1980-01-01

    Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, partic...

  18. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines.

    Science.gov (United States)

    Guo, Jie; Xu, Xiaomei; Li, Wentao; Zhu, Wenyin; Zhu, Haitao; Liu, Ziqiang; Luan, Xin; Dai, Ziju; Liu, Guifu; Zhang, Zemin; Zeng, Ruizhen; Tang, Guang; Fu, Xuelin; Wang, Shaokui; Zhang, Guiquan

    2016-06-01

    Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs.

  19. Response of Pinus ponderosa Seedlings to Stylet-Bearing Nematodes

    Science.gov (United States)

    Viglierchio, D. R.

    1979-01-01

    Of 12 stylet-bearing nematodes used for inoculations, Pratylenchus penetrans, P. brachyurus, P. vulnus, Ditylenchus destructor, Meloidogyne incognita, M. javanica, and M. hapla reproduced on Pinus ponderosa, while Xiphinema index, Aphelenchus avenae, Paratylenehus neoamblycephalus, Tylenchulus semipenetrans, and Macroposthonia xenoplax did not. P. vulnus, P. brachyurus, P. penetrans, A. avenae, D. destructor, T. semipenetrans, and P. neoamblycephalus significantly suppressed both the shoot and root wet weights of ponderosa pine seedlings obtained from stands in five different locations. X. index significantly suppressed root wet weights, M. xenoplax siguificantly suppressed shoot wet weight, and M. incognita, M. javanica, and M. hapla suppressed neither at the inoculation levels used. Injurious nematodes tended to suppress root growth more than shoot growth. Seedlings from two locations produced greater shoot growth wet weight than did seedlings from the other three locations. The more injurious nematodes tended to cause an increase in the water content of shoots. Frequency analyses of seedling population shoot-root ratios indicated that ponderosa pine seedlings could be selected for better shoot-root ratios as well as for resistance to several pathogenic nematodes. PMID:19300659

  20. Caracterización de la opuntia ficus-indica para su uso como coagulante natural

    OpenAIRE

    Villabona Ortíz, Angel; Paz, Isabel Cristina; Martínez García, Jasser

    2013-01-01

    Título en inglés: Characterization of Opuntia ficus-indica for using as a natural coagulantTítulo corto: Caracterización de Opuntia ficus-indica para coagulante naturalResumenActualmente municipios de la Costa Atlántica Colombiana no cuentan con suministro de agua potable. La aplicación artesanal de la Tuna (Opuntia ficus-indica)  como coagulante es una práctica tradicional en comunidades rurales. En esta investigación se realiza la caracterización del tallo de la Tuna que crece de manera sil...

  1. A SNARE-like protein and biotin are implicated in soybean cyst nematode virulence

    Science.gov (United States)

    Some phytoparasitic nematodes have the ability to infect and reproduce on plants that are normally considered resistant to nematode infection. Such nematodes are referred to as virulent and the mechanisms they use to evade or suppress host plant defenses are not well understood. Here, we report the ...

  2. Dissecting host plant manipulation by cyst and root-knot nematodes

    NARCIS (Netherlands)

    Karczmarek, A.

    2006-01-01

    Cyst ( Globodera spp. and Heterodera spp.) and root-knot nematodes ( Meloidogyne spp.), one of the most damaging crop pests, are a perfect example of highly adapted, sophisticated root parasites. These nematodes induces specialized feeding structures (cyst

  3. ANTIHEPATOTOXIC ACTICITY OF COCCINIA INDICA

    Science.gov (United States)

    Gopalakrishnan, V.; Rao, K.N.V.; Devi, M.; Padmaha, N.; Lakshmi, P. Manju; Srividya, T.; Vadivukarasi, G.

    2001-01-01

    Aqueous, light petroleum, chloroform, alcohol, benzene and acetone extracts of the leaves of Coccinia indica. (Family: Cucurbitaceae) were screened for antihepatotoxic activity. The extracts were given after the liver was damaged with Ccl4 Liver function was assessed based on liver to body weight ratio pentobarbitone sleep time, serum levels of transaminase (SGPT, SGOT), alkaline phosphatase (SALP and bilirubin. Alcohol and light petroleum was found to have good anti-hepatotoxic activity. PMID:22557027

  4. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect.

    Science.gov (United States)

    Elsen, A; Gervacio, D; Swennen, R; De Waele, D

    2008-07-01

    Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF-plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.

  5. Variation in estuarine littoral nematode populations over three spatial scales

    Science.gov (United States)

    Hodda, M.

    1990-04-01

    The population characteristics of the nematode fauna from five replicate cores taken over four seasons at nine sites within mangroves, at three different estuaries on the south-east coast of Australia, are compared. Using cluster analysis, principal co-ordinate analysis and other statistical techniques, the variation in nematode populations is identified as arising from several sources: temperature changes between the more northerly and southerly estuaries (5%); changes in grain size and organic content of the sediment between sites (22%); changes between sites in the frequency of samples containing certain types of food, particularly associated with pools of water and surface topography (30%); stochastic changes in nematode populations within individual samples, probably caused by small scale spatial and temporal variability in food sources (35%); and seasonal changes at all the sites and estuaries (8%). The implications of this pattern of variation for the biology of the nematodes is discussed.

  6. Biochemical and Molecular Characterization of Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    I.M. de O. Abrantes

    2004-08-01

    Full Text Available Nematologists need correct species identification to carry out research, teaching, extension and other activities. Therefore, nematode taxonomy must be pursued diligently at all levels. The identification of plant-parasitic nematodes is not always easy and that of some species is especially difficult. Most of the information that nematologists use when characterizing and identifying specimens is based on morphological and morphometrical characters. Although these characters are of primary importance, in the last three decades they have been supplemented by biochemical/ molecular characters. Biochemical approaches include the separation of proteins (general proteins and isozymes by one-dimensional gel electrophoresis, isoelectric focusing, two-dimensional gel electrophoresis, and sodium dodecyl sulphate-capillary gel electrophoresis. Serology has also been found effective in the identification and quantification of nematodes, monoclonal antibodies being a more useful immunological tool than polyclonal antibodies. Identification based on the direct examination of DNA is potentially a more powerful method to characterize inter- and intra-specific variability. The development of techniques such as the polymerase chain reaction, restriction fragment length polymorphism, randomly amplified polymorphic DNA, and amplified fragment length polymorphism has increased the accuracy and speed of nematode characterization/identification. Progress continues to be made and more and more nematologists are using molecular techniques for diagnostic purposes and to assess genetic variation.

  7. Nematode assemblages in the deep-sea benthos of the Norwegian Sea

    Science.gov (United States)

    Jensen, Preben

    1988-07-01

    The deep-sea benthos of the Norwegian Sea contains 20-204 nematodes per 10 cm 2 down to 3 cm depth at seven stations sampled between 970 and 3294 m water depth. The majority of nematodes occur in the uppermost cm. Biomass varies from 3 to 73 μg C per 10 cm 2. Individual adult weight of the most dominant species differs by a factor of almost 1000, i.e. from 3-4 ng C to 3400 ng C; however, the majority of the nematodes is small-sized. Species diversity and evenness are high at all stations and each station harbours its specific fauna with little overlap between stations. Analysis of trophic group composition suggests that microbial feeding types (deposit and epistrate feeders) prevail in the deep-sea benthos; predators and scavengers are scarce. It is concluded that the nematode assemblage at each station consists of a mosaic of many microhabitats. The small nematode body weight probably results from limited food supply and/or poor food quality.

  8. flp-32 Ligand/receptor silencing phenocopy faster plant pathogenic nematodes.

    Science.gov (United States)

    Atkinson, Louise E; Stevenson, Michael; McCoy, Ciaran J; Marks, Nikki J; Fleming, Colin; Zamanian, Mostafa; Day, Tim A; Kimber, Michael J; Maule, Aaron G; Mousley, Angela

    2013-02-01

    Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR.

  9. Nematode spatial and ecological patterns from tropical and temperate rainforests.

    Directory of Open Access Journals (Sweden)

    Dorota L Porazinska

    Full Text Available Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates, but not for microscopic organisms (e.g. nematodes. Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1 nematode communities were unique without even a single common species between the two rainforests, 2 nematode communities were unique among habitats in both rainforests, 3 total species richness was 300% more in the tropical than in the temperate rainforest, 4 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5 more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats and large (rainforests spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota.

  10. Nematode Spatial and Ecological Patterns from Tropical and Temperate Rainforests

    Science.gov (United States)

    Porazinska, Dorota L.; Giblin-Davis, Robin M.; Powers, Thomas O.; Thomas, W. Kelley

    2012-01-01

    Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. PMID:22984536

  11. flp-32 Ligand/receptor silencing phenocopy faster plant pathogenic nematodes.

    Directory of Open Access Journals (Sweden)

    Louise E Atkinson

    2013-02-01

    Full Text Available Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii migration rate increases in Gp-flp-32-silenced worms; (iv the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v a novel putative Gp-flp-32 receptor (Gp-flp-32R is expressed in G. pallida; and, (vi Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R. This is the first functional characterisation of a parasitic nematode FLP-GPCR.

  12. Communities of terrestrial nematodes after different approaches to heathland restoration

    Science.gov (United States)

    Radochova, Petra; Frouz, Jan

    2016-04-01

    Since the 20th century, the distribution of European heathlands rapidly decreased due to agricultural intensification, heavy use of artificial fertilizers or acidification (Aerts & Heil, 1993). Therefore, various attempts of heathland restoration are under way in these days. Analysis of nematode community composition can be one of the tools suitable for succession evaluation (Ferris et al., 2001). In 2011, 2013 and 2014, soil samples were collected from heathland restoration experiment (launched in 2011) where different restoration methods were applied in a 3 × 3 factorial experiment; existing heathlands were also sampled to identify the target community both in dry and wet heathland. A total of 60 samples of extracted nematodes were analysed for absolute abundance, trophic groups, and genera dominance. Various indices were calculated to describe the nematode community. We were able to prove faster development of wet heathlands towards the target community. However, because of large data variability, there was no significant difference between treatments. Development of wet and dry heathlands differed also in increased proportion of omniphagous nematodes in 2013 and predators in 2014 in dry heathlands. After three years of heathland restoration, nematode community has not yet reached parameters of the target community. References Aerts, R., Heil, G. W., 1993. Heathlands: patterns and processes in a changing environment, 1st ed, Geobotany: 20. Springer Netherlands, Dordrecht, p. 229. Ferris, H., Bongers, T., De Goede, R. G. M., 2001. A framework for soil food web diagnostics: Extension of the nematode faunal analysis oncept. Appl. Soil Ecol. 18, 13-29.

  13. Benthic-pelagic coupling: effects on nematode communities along southern European continental margins.

    Directory of Open Access Journals (Sweden)

    Ellen Pape

    Full Text Available Along a west-to-east axis spanning the Galicia Bank region (Iberian margin and the Mediterranean basin, a reduction in surface primary productivity and in seafloor flux of particulate organic carbon was mirrored in the in situ organic matter quantity and quality within the underlying deep-sea sediments at different water depths (1200, 1900 and 3000 m. Nematode standing stock (abundance and biomass and genus and trophic composition were investigated to evaluate downward benthic-pelagic coupling. The longitudinal decline in seafloor particulate organic carbon flux was reflected by a reduction in benthic phytopigment concentrations and nematode standing stock. An exception was the station sampled at the Galicia Bank seamount, where despite the maximal particulate organic carbon flux estimate, we observed reduced pigment levels and nematode standing stock. The strong hydrodynamic forcing at this station was believed to be the main cause of the local decoupling between pelagic and benthic processes. Besides a longitudinal cline in nematode standing stock, we noticed a west-to-east gradient in nematode genus and feeding type composition (owing to an increasing importance of predatory/scavenging nematodes with longitude governed by potential proxies for food availability (percentage of nitrogen, organic carbon, and total organic matter. Within-station variability in generic composition was elevated in sediments with lower phytopigment concentrations. Standing stock appeared to be regulated by sedimentation rates and benthic environmental variables, whereas genus composition covaried only with benthic environmental variables. The coupling between deep-sea nematode assemblages and surface water processes evidenced in the present study suggests that it is likely that climate change will affect the composition and function of deep-sea nematodes.

  14. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  15. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    Science.gov (United States)

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  16. THE PREVALENCE OF GASTROINTESTINAL NEMATODES OF BALI CATTLE BREEDERS IN NUSA PENIDA

    Directory of Open Access Journals (Sweden)

    Putu Agus Trisna Kusuma Antara

    2017-08-01

    Full Text Available Nusa Penida is a pure breeding area of bali cattle, in which the cattle are mainly kept in conventional maintenance system and potentially infected by parasite, especially gastrointestinal nematodes. This study aims were to determine the prevalence and type of gastrointestinal nematodes in bali cattle breeders in Nusa Penida. Fecal samples were taken from 50 bali cattle breeders kept in cages (simantri and another 50 samples were from cattle not kept in cage. The floating method was used for morphological examination and prevalence, the data was analyzed with descriptive analysis. The results showed, the prevalence of bovine gastrointestinal nematodes in Nusa Penida was 25%. The prevalence of nematode infection in bali cattle that kept cages was lower compared to the cattle that were not kept in cage. Strongyloides papillosus and Capillaria bovis were the gastrointestinal nematodes found in the infected cattle.

  17. Infestation of natural populations of earthworm cocoons by rhabditid and cephalobid nematodes

    DEFF Research Database (Denmark)

    Kraglund, HO; Ekelund, Flemming

    2002-01-01

    Nematodes infested 13 of 100 earthworm cocoons from a compost pile and 17 of 197 cocoons from a permanent pasture soil. Between one and 2000 nematodes were found within the infested cocoons. All nematodes found in cocoons from the compost pile belonged to the genus Rhabditis, while Rhabditis spp....... as well as members of Cephalobidae infested earthworm cocoons in the pasture soil. In cultures established from cocoons found in the pasture soil, at least five different types of nematodes belonging to the family Cephalobidae were found. Acrobeloides nanus was found in six cocoons, Cephalobus persegnis...... was found in four and Chiloplacus minimus was found in one cocoon. We suggest that earthworm - nematode interactions may be an important pathway for the transfer of carbon in terrestrial ecosystems, and that the inclusion of these pathways may lead to a better understanding of soil food web functioning....

  18. Molecular and genetic analyses of potato cyst nematode resistance loci

    NARCIS (Netherlands)

    Bakker, E.H.

    2003-01-01

    This thesis describes the genomic localisation and organisation of loci that harbour resistance to the potato cyst nematode species Globodera pallida and G. rostochiensis . Resistance to the potato cyst nematodes G. pallida and G. rostochiensis is an important aspect in potato breeding. To gain

  19. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita

    NARCIS (Netherlands)

    Abad, P.; Gouzy, J.; Aury, J.M.; Tytgat, T.O.G.; Smant, G.

    2008-01-01

    Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the

  20. Antibacterial effects of Pluchea indica Less leaf extract on E. faecalis and Fusobacterium nucleatum (in vitro

    Directory of Open Access Journals (Sweden)

    Agni Febrina Pargaputri

    2016-06-01

    Full Text Available Background: Enterococcus. faecalis (E. faecalis and Fusobacterium nucleatum (F. nucleatum are the most common bacteria found in infected tooth root canal. Most of these bacteria often cause failure in endodontic treatments. Pluchea indica Less leaf is a species of plants that has several chemical properties. It consists of flavonoids, tannins, polyphenols, and essensial oils which have been reported as antibacterial agents. Because of its benefits, the extract of Pluchea indica Less leaves may be potentially developed as one of root canal sterilization dressing. Purpose: This study aimed to determine antibacterial activity of Pluchea indica Less leaves extract against E. faecalis and F. nucleatum bacteria. Method: Dilution method was conducted first to show Minimum Inhibitory Concentration (MIC of the extract against E. faecalis and F. nucleatum. The antibacterial activity test on Pluchea indica Less leaves extract was performed on E. faecalis and F. nucleatum bacteria using agar diffusion method. The Pluchea indica Less leaves extract used for antibacterial activity test was at a concentrations of 100%, 50%, 25%, 12.5%, and 6.25%. Thirty-five petridiscs were used and divided into five groups based on the extract concentration. Result: The results showed strong and moderate antibacterial effects of the Pluchea indica Less leaves extract on E. faecalis at the concentrations of 100% and 50%, while on F. nucleatum only at the concentration of 100% with moderate effect. Conclusion: Pluchea indica Less leaves extract has antibacterial activity against E. faecalis and F. nucleatum bacteria with strong-moderate effect.

  1. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Directory of Open Access Journals (Sweden)

    Wim Grunewald

    2009-01-01

    Full Text Available Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  2. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Science.gov (United States)

    Grunewald, Wim; Cannoot, Bernard; Friml, Jirí; Gheysen, Godelieve

    2009-01-01

    Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  3. Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays

    International Nuclear Information System (INIS)

    Rane, Mansi; Bawskar, Manisha; Rathod, Dnyaneshwar; Nagaonkar, Dipali; Rai, Mahendra

    2015-01-01

    In this study, the arbuscular mycorrhizal fungus (G. mosseae) and endosymbiont (P. indica) colonized Zea mays were treated with calcium phosphate nanoparticles (CaPNPs) and evaluated for their plant growth promotion efficiency. It was observed that CaPNPs in combination with both G. mosseae and P. indica are more potent plant growth promoter than independent combinations of CaPNPs + G. mosseae, CaPNPs + P. indica or CaPNPs alone. The fluorimetric studies of treated plants revealed that CaPNPs alone and in combination with P. indica can enhance vitality of Zea mays by improving chlorophyll a content and performance index of treated plants. Hence, we conclude that CaPNPs exhibit synergistic growth promotion, root proliferation and vitality improvement properties along with endosymbiotic and arbuscular mycorrhizal fungi, which after further field trials can be developed as a cost-effective nanofertilizer with pronounced efficiency. (paper)

  4. Plant and soil nematodes from Lokchao Yangoupokpi Wildlife Sanctuary, Manipur, India

    OpenAIRE

    N. Mohilal; M. Pramodini; L. Bina

    2009-01-01

    In the present study soil samples were collected from Lokchao Yangoupokpi Wildlife Sanctuary to investigate about what nematode species are associated with different plant hosts. This study shows rich nematode diversity in the sanctuary.

  5. Azadirachtin powder for control of root-knot nematodes in tomato

    Science.gov (United States)

    USDA ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo St., Hilo, HI 96720. Root-knot nematodes cause root galling and yield reductions in many vegetable crops, including tomato. Three organic treatments to improve root growth and reduce nematode infestation were eval...

  6. Evaluation of tomato genotypes for resistance to root-knot nematodes

    African Journals Online (AJOL)

    Tomato (Solanum lycopersicum) is one of the most popular vegetable crops worldwide, owing to its high nutritive value and diversified use. Tomato production in Ghana is threatened by plant parasitic nematodes, especially the root knot nematodes (Meloidogyne spp.), which are responsible for huge economic yield losses.

  7. Potential Lipid-Lowering Effects of Eleusine indica (L) Gaertn. Extract on High-Fat-Diet-Induced Hyperlipidemic Rats.

    Science.gov (United States)

    Ong, Siew Ling; Nalamolu, Koteswara Rao; Lai, How Yee

    2017-01-01

    To date, anti-obesity agents based on natural products are tested for their potential using lipase inhibition assay through the interference of hydrolysis of fat by lipase resulting in reduced fat absorption without altering the central mechanisms. Previous screening study had indicated strong anti-obesity potential in Eleusine indica ( E. indica ), but to date, no pharmacologic studies have been reported so far. This study was performed to investigate the lipid-lowering effects of E. indica using both in vitro and in vivo models. The crude methanolic extract of E. indica was fractionated using hexane (H-Ei), dichloromethane (DCM-Ei), ethyl acetate (EA-Ei), butanol (B-Ei), and water (W-Ei). All the extracts were tested for antilipase activity using porcine pancreatic lipase. Because H-Ei showed the highest inhibition, it was further subjected to chemical profiling using high-performance liquid chromatography. Subsequently, oral toxicity analysis of H-Ei was performed [Organization for Economic Cooperation and Development guidelines using fixed dose procedure (No. 420)]; efficacy analysis was performed using high-fat diet (HFD)-induced hyperlipidemic female Sprague-Dawley rats. According to the toxicity and efficacy analyses, H-Ei did not demonstrate any noticeable biochemical toxicity or physiologic abnormalities and did not cause any tissue damage as per histologic analysis. Furthermore, H-Ei significantly reduced body weight and improved serum profile and did not show hepatotoxicity and nephrotoxicity based on the serum profile. Moreover, H-Ei alleviated HFD-induced hepatosteatosis and ameliorated induced adiposity in both visceral and subcutaneous adipose tissue. Our results demonstrate that H-Ei effectively improved hyperlipidemia. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted. Hexane extract of Eleusine indica (H-Ei) showed strong potential in the inhibition of porcine pancreatic lipase (27.01

  8. Effect of nematodes on rhizosphere colonization by seed-applied bacteria.

    Science.gov (United States)

    Knox, Oliver G G; Killham, Ken; Artz, Rebekka R E; Mullins, Chris; Wilson, Michael

    2004-08-01

    There is much interest in the use of seed-applied bacteria for biocontrol and biofertilization, and several commercial products are available. However, many attempts to use this strategy fail because the seed-applied bacteria do not colonize the rhizosphere. Mechanisms of rhizosphere colonization may involve active bacterial movement or passive transport by percolating water or plant roots. Transport by other soil biota is likely to occur, but this area has not been well studied. We hypothesized that interactions with soil nematodes may enhance colonization. To test this hypothesis, a series of microcosm experiments was carried out using two contrasting soils maintained under well-defined physical conditions where transport by mass water flow could not occur. Seed-applied Pseudomonas fluorescens SBW25 was capable of rhizosphere colonization at matric potentials of -10 and -40 kPa in soil without nematodes, but colonization levels were substantially increased by the presence of nematodes. Our results suggest that nematodes can have an important role in rhizosphere colonization by bacteria in soil.

  9. Potential Nematode Alarm Pheromone Induces Acute Avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Zhou, Ying; Loeza-Cabrera, Mario; Liu, Zheng; Aleman-Meza, Boanerges; Nguyen, Julie K; Jung, Sang-Kyu; Choi, Yuna; Shou, Qingyao; Butcher, Rebecca A; Zhong, Weiwei

    2017-07-01

    It is crucial for animal survival to detect dangers such as predators. A good indicator of dangers is injury of conspecifics. Here we show that fluids released from injured conspecifics invoke acute avoidance in both free-living and parasitic nematodes. Caenorhabditis elegans avoids extracts from closely related nematode species but not fruit fly larvae. The worm extracts have no impact on animal lifespan, suggesting that the worm extract may function as an alarm instead of inflicting physical harm. Avoidance of the worm extract requires the function of a cGMP signaling pathway that includes the cGMP-gated channel TAX-2/TAX-4 in the amphid sensory neurons ASI and ASK. Genetic evidence indicates that the avoidance behavior is modulated by the neurotransmitters GABA and serotonin, two common targets of anxiolytic drugs. Together, these data support a model that nematodes use a nematode-specific alarm pheromone to detect conspecific injury. Copyright © 2017 by the Genetics Society of America.

  10. Genetic identification of anisakid nematodes isolated from largehead hairtail (Trichiurus japonicus in Korea

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Kim

    2016-07-01

    Full Text Available Abstract Background The nematode species belonging to genus Anisakis occur at their third larval stage in numerous marine teleost fish species worldwide and known to cause accidental human infection through the ingestion of raw or undercooked fish or squids. They may also draw the attention of consumers because of the visual impact of both alive and dead worms. Therefore, the information on their geographical distribution and clear species identification is important for epidemiological survey and further prevention of human infection. Results For identification of anisakid nematodes species isolated from largehead hairtail (Trichiurus japonicus, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP analysis of internal transcribed spacers of ribosomal DNA were conducted. Mitochondrial cytochrome c oxidase subunit 2 gene was also sequenced, and phylogenetic analysis was conducted. From the largehead hairtail (n = 9, 1259 nematodes were isolated in total. Most of the nematodes were found encapsulated throughout the viscera (56.2 %, 708/1259 or moving freely in the body cavity (41.5 %, 523/1259, and only 0.3 % (4/1259 was found in the muscles. By PCR-RFLP, three different nematode species were identified. Anisakis pegreffii was the most dominantly found (98.7 %, 1243/1259 from the largehead hairtail, occupying 98.7 % (699/708 of the nematodes in the mesenteries and 98.1 % (513/523 in the body cavity. Hybrid genotype (Anisakis simplex × A. pegreffii occupied 0.5 %, and Hysterothylacium sp. occupied 0.2 % of the nematodes isolated in this study. Conclusions The largehead hairtail may not significantly contribute accidental human infection of anisakid nematode third stage larvae because most of the nematodes were found from the viscera or body cavity, which are not consumed raw. But, a high prevalence of anisakid nematode larvae in the largehead hairtail is still in concern because they may raise food safety

  11. Connection between the decline of spruce and occurrence of animal pests, especially nematodes

    Energy Technology Data Exchange (ETDEWEB)

    Timans, U.

    1986-12-01

    In various regions of Bavaria, affected by the decline of spruce, attack by insects and especially nematodes was examined on diseased and healthy spruces. A connection between harmful forest insects and the decline of spruce did not become evident, neither over wide areas nor by examination of single trees. Attack by nematodes was examined in soil and wood samples and also in fine feeder roots of diseased and healthy trees. Plant-parasitic nematodes were not found in the wood and in feeder roots. Although root-parasitic nematodes were present in soil samples, their density was too little to account for a direct damage to spruce. They occurred likewise in samples from healthy and diseased trees. Plant-parasitic nematodes can thus be excluded as a possible causal agent for the decline of spruce.

  12. [Mechanisms of subspecies differentiation in a filial generation of rice indica-japonica hybridization under different ecological conditions].

    Science.gov (United States)

    Wang, He-Tong; Jin, Feng; Jiang, Yi-Jun; Lin, Qing-Shan; Xu, Hai; Chen, Wen-Fu; Xu, Zheng-Jin

    2013-11-01

    Indica-japonica hybridization is one of the most important breeding methods in China, whereas identifying subspecies differentiation mechanisms is the key in indica-japonica hybridization breeding. By using InDels (Insert/Deletion) and ILPs (Intron Length Polymorphism), an analysis was made on the F6 populations derived from the hybridization of indica-japonica (Qishanzhan/Akihikari) planted in Liaoning and Guangdong provinces and generated by bulk harvesting (BM), single-seed descent methods (SSD), and pedigree method (PM). No segregation distortion was observed for the BM and SSD populations. The frequency distribution of japonica kinship percentage (Dj) was concentrated in 40%-60%. The PM populations in the two provinces presented indica-deviated distribution (30%-55%), with significant difference between Guangdong (38%) and Liaoning (42%). In addition, there was a significant positive correlation between the Dj and the kinship of functional gene regions in the BM and SSD populations. However, part of the positive correlation was broken in the PM populations that showed a regular distribution in the genotype patterns of indica and japonica loci. The above results demonstrated that artificial selection could be the main factor affecting the population differentiation in indica-japonica hybridization, and, with the synergistic effect of natural selection, induced the phenomenon of segregation distortion. There existed a close relationship between the differentiation of subspecies and the important agronomic traits, which could be the main reason why indica-japonica hybridiation breeding could not achieve the expected effect of combining the two subspecies advantages.

  13. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  14. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    Science.gov (United States)

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  15. Small-molecule pheromones and hormones controlling nematode development.

    Science.gov (United States)

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  16. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten.

    Science.gov (United States)

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo; Suh, Hong-Won

    2010-06-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect.

  17. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten

    Science.gov (United States)

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo

    2010-01-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect. PMID:22110339

  18. In vivo and in vitro anti-inflammatory activity of Mangifera indica L. extract (VIMANG).

    Science.gov (United States)

    Garrido, Gabino; González, Deyarina; Lemus, Yeny; García, Dagmar; Lodeiro, Lizt; Quintero, Gypsy; Delporte, Carla; Núñez-Sellés, Alberto J; Delgado, René

    2004-08-01

    A standard aqueous extract of Mangifera indica L., used in Cuba as an antioxidant under the brand name of VIMANG, was tested in vivo for its anti-inflammatory activity using commonly accepted assays. M. indica extract, administered topically (0.5-2 mg per ear), reduced ear edema induced by arachidonic acid (AA) and phorbol myristate acetate (PMA, ED50 = 1.1 mg per ear) in mice. In the PMA model, M. indica extract also reduced myeloperoxidase (MPO) activity. This extract p.o. administered also inhibited tumor necrosis factor alpha (TNFalpha) serum levels in both models of inflammation (AA, ED50 = 106.1 mg kg(-1) and PMA, ED50 = 58.2 mg kg(-1)). In vitro studies were performed using the macrophage cell line RAW264.7 stimulated with pro-inflammatory stimuli (LPS-IFNgamma or the calcium ionophore A23187) to determine PGE2 or LTB4 release, respectively. The extract inhibited the induction of PGE2 with IC50 = 64.1 microg ml(-1) and LTB4 IC50 = 22.9 microg ml(-1). M. indica extract also inhibited human synovial secretory phospholipase (PL)A2 with IC 50 = 0.7 microg ml(-1). These results represent an important contribution to the elucidation of the mechanism involved in the anti-inflammatory and anti-nociceptive effects reported by the standard M. indica extract VIMANG. Copyright 2004 Elsevier Ltd.

  19. 10406 EFFICACY OF CACTUS PEAR (Opuntia ficus-indica ...

    African Journals Online (AJOL)

    bdu

    Tigray, a region in north Ethiopia, is a semi-arid area with limited agricultural potential ..... ficus-indica recorded in South Africa by Hugh Mciteka [31]. Younger ... camel and equines feed on cactus varieties most, compared to goats and sheep.

  20. Plant and soil nematodes from Lokchao Yangoupokpi Wildlife Sanctuary, Manipur, India

    Directory of Open Access Journals (Sweden)

    N. Mohilal

    2009-03-01

    Full Text Available In the present study soil samples were collected from Lokchao Yangoupokpi Wildlife Sanctuary to investigate about what nematode species are associated with different plant hosts. This study shows rich nematode diversity in the sanctuary.

  1. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na + /K + homeostasis under salt stress conditions

    KAUST Repository

    Abdelaziz, Mohamed Ewis

    2017-07-13

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na+/K+ ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K+ channels KAT1 and KAT2, which play key roles in regulating Na+ and K+ homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na+/K+ ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na+ and K+ ion channels, which allows establishing a balanced ion homeostasis of Na+/K+ under salt stress conditions.

  2. EFFECT OF SOIL FERTILITY MANAGEMENT PRACTICES ON NEMATODE DESTROYING FUNGI IN TAITA, KENYA

    Directory of Open Access Journals (Sweden)

    Peter M Wachira

    2010-10-01

    Full Text Available The effect of soil fertility management practices on nematode destroying fungi was investigated for three seasons in Taita, Kenya. The study aimed at identifying soil fertility practice that promoted nematode destroying fungi in the soil. Field experiments were established in Taita district, the treatments comprised of Mavuno fertilizer, Triple super- phosphate and calcium ammonium nitrate (TSP+CAN, cow manure and a control where no amendments were applied. This experiment was replicated in ten farms and repeated in three planting seasons. Isolation of nematode destroying fungi carried out was using the soil sprinkle technique and the isolates were identified using the key described by Cooke and Godfrey (1964. There were significant difference (P= 1.705 x 10-06 in occurrence of the nematode destroying fungi between soil fertility treatments. The highest mean (1.6 occurrence of nematode destroying fungi was recorded in soils amended with cow manure and the least (0.7 was recorded in soils from the control plots. A mean of 0.78 was recorded in soils from both TSP+CAN and Mavuno fertilizers. Plots amended with cow manure presented the highest diversity of nematodes followed by the control, then TSP+CAN and least in Mavuno with shannon indices of 0.34, 0.15, 0.13 and 0.11 respectively. Sixty percent of all the isolated nematode destroying fungi genera were from plots treated with cow manure and only twenty percent were from plots amended with the inorganic fertilizer. The control plots recorded higher number of nematode destroying fungi compared to the soils that received inorganic fertilizers.

  3. Analysis of nematode motion using an improved light-scatter based system.

    Directory of Open Access Journals (Sweden)

    Chuck S Nutting

    2015-02-01

    Full Text Available The detailed assessment of nematode activity and viability still remains a relatively undeveloped area of biological and medical research. Computer-based approaches to assessing the motility of larger nematode stages have been developed, yet these lack the capability to detect and analyze the more subtle and important characteristics of the motion of nematodes. There is currently a need to improved methods of assessing the viability and health of parasitic worms.We describe here a system that converts the motion of nematodes through a light-scattering system into an electrical waveform, and allows for reproducible, and wholly non-subjective, assessment of alterations in motion, as well as estimation of the number of nematode worms of different forms and sizes. Here we have used Brugia sp. microfilariae (L1, infective larvae (L3 and adults, together with the free-living nematode Caenorhabditis elegans.The motion of worms in a small (200 ul volume can be detected, with the presence of immotile worms not interfering with the readings at practical levels (up to at least 500 L1 /200 ul. Alterations in the frequency of parasite movement following the application of the anti-parasitic drugs, (chloroquine and imatinib; the anti-filarial effect of the latter agent is the first demonstrated here for the first time. This system can also be used to estimate the number of parasites, and shortens the time required to estimate parasites numbers, and eliminates the need for microscopes and trained technicians to provide an estimate of microfilarial sample sizes up to 1000 parasites/ml. Alterations in the form of motion of the worms can also be depicted.This new instrument, named a "WiggleTron", offers exciting opportunities to further study nematode biology and to aid drug discovery, as well as contributing to a rapid estimate of parasite numbers in various biological samples.

  4. Outcrossing and crossbreeding recovers deteriorated traits in laboratory cultured Steinernema carpocapsae nematodes.

    Science.gov (United States)

    Chaston, John M; Dillman, Adler R; Shapiro-Ilan, David I; Bilgrami, Anwar L; Gaugler, Randy; Hopper, Keith R; Adams, Byron J

    2011-06-01

    The nematode Steinernema carpocapsae infects and kills many pest insects in agro-ecosystems and is commonly used in biocontrol of these pests. Growth of the nematodes prior to distribution for biocontrol commonly results in deterioration of traits that are essential for nematode persistence in field applications. To better understand the mechanisms underlying trait deterioration of the efficacy of natural parasitism in entomopathogenic nematodes, we explored the maintenance of fitness related traits including reproductive capacity, heat tolerance, virulence to insects and 'tail standing' (formerly called nictation) among laboratory-cultured lines derived from natural, randomly mating populations of S. carpocapsae. Laboratory cultured nematode lines with fitness-related trait values below wild-type levels regained wild-type levels of reproductive and heat tolerance traits when outcrossed with a non-deteriorated line, while virulence and 'tail standing' did not deteriorate in our experiments. Crossbreeding two trait-deteriorated lines with each other also resulted in restoration of trait means to wild-type levels in most crossbred lines. Our results implicate inbreeding depression as the primary cause of trait deterioration in the laboratory cultured S. carpocapsae. We further suggest the possibility of creating inbred lines purged of deleterious alleles as founders in commercial nematode growth. Copyright © 2011 Australian Society for Parasitology Inc. All rights reserved.

  5. 75 FR 11111 - Pale Cyst Nematode; Update of Quarantined Areas

    Science.gov (United States)

    2010-03-10

    ...] Pale Cyst Nematode; Update of Quarantined Areas AGENCY: Animal and Plant Health Inspection Service...: Background The pale cyst nematode (PCN, Globodera pallida) is a major pest of potato crops in cool... made changes to the area in the State of Idaho that is quarantined to prevent the spread of pale cyst...

  6. Nematodes from terrestrial and freshwater habitats in the Arctic

    Science.gov (United States)

    2014-01-01

    Abstract We present an updated list of terrestrial and freshwater nematodes from all regions of the Arctic, for which records of properly identified nematode species are available: Svalbard, Jan Mayen, Iceland, Greenland, Nunavut, Northwest territories, Alaska, Lena River estuary, Taymyr and Severnaya Zemlya and Novaya Zemlya. The list includes 391 species belonging to 146 genera, 54 families and 10 orders of the phylum Nematoda. PMID:25197239

  7. Nematode community structure along a central Chile margin transect influenced by the oxygen minimum zone

    Science.gov (United States)

    Neira, Carlos; King, Ian; Mendoza, Guillermo; Sellanes, Javier; De Ley, Paul; Levin, Lisa A.

    2013-08-01

    Nematodes are among the metazoans most tolerant of low-oxygen conditions and play major roles in seafloor ecosystem processes. Nematode communities were studied in sediments off Concepción, Central Chile, spanning the outer shelf within the OMZ (122 m) to the mid-lower continental slope (972 m) beneath the OMZ. The total density and biomass of nematodes (core depth 0-10 cm) ranged from 677 to 2006 ind. 10 cm-2, and 168.4 to 506.5 μg DW 10 cm-2, respectively. Among metazoan meiofaunal taxa, nematodes predominated at all sites both in terms of relative abundance (83.7-99.4%) and biomass (53.8-88.1%), followed by copepods, nauplii and polychaetes. Nematodes were represented by 33 genera distributed among 17 families, with densities greatest at low oxygen sites (122-364 m; ~2000 ind. 10 cm-2). Nematode generic and trophic diversity, and individual biomass were lowest, and Rank 1 dominance was highest, at the most oxygen-depleted site (122 m), despite the fact that the organic carbon content of the sediment was maximal at this depth. At the most oxygenated slope sites (827 and 972 m), all of Wieser's nematode feeding groups were represented. In contrast, at the lowest-oxygen site, only selective deposit (bacterial) feeders (1A) were present, indicating a reduction in trophic complexity. A large percentage of nematodes inhabited subsurface sediment layers (>1 cm). At deeper, more oxygenated sites (827 and 972 m), nematode individual biomass increased downcore, while within the OMZ, nematode biomass was low and remained relatively uniform through the sediment column. The concentration of nematodes in deeper sediment layers, the vertical distribution of the feeding groups, as well as the high nutritional quality of the deeper layers, suggest a differential resource partitioning of the food available, which may reduce interspecific competition.

  8. [Diversity of soil nematode communities in the subalpine and alpine forests of western Sichuan, China.

    Science.gov (United States)

    Chen, Ya; Yang, Wan Qin; Wu, Fu Zhong; Yang, Fan; Lan, Li Ying; Liu, Yu Wei; Guo, Cai Hong; Tan, Bo

    2017-10-01

    In order to understand the diversity of soil nematodes in the subalpine/alpine forests of the eastern Qinghai-Tibet Plateau, soil nematodes in the primary forest, mixed forest and secondary forest of Abies faxoniana were extracted by elutriation and sugar-centrifugation method in July 2015, and the composition and structure characteristics of soil nematode communities were studied in the three forests at different altitudes. A total of 37950 soil nematodes were collected, which belonged to 20 families and 27 genera, and the mean density was 4217 ind·100 g -1 dry soil. Filenchus was the dominant genus in the primary forest, and Filenchus and Pararotylenchus in the mixed forest and secondary forest, respectively. The individual number of each dominant genus was significantly affected by forest type. All nematode individuals were classified into the four trophic groups of bacterivores, fungivores, plant-parasites and omnivore-predators. The fungivores were dominant in the primary and secondary forest and the bacterivores in the mixed forest. The number of soil nematode c-p (colonizer-persister) groups of c-p 1, c-p 2, c-p 3 and c-p 4 accounted for 6.1%, 51.1%, 30.0% and 12.7% of the total nematode abundance, respectively. The maturity index (MI), the total maturity index (∑MI) and the plant parasitic index (PPI) of soil nematodes decreased gradually with the increase of altitude. The nematode channel ratio in the mixed forest was higher than 0.5, but that in the primary forest and secondary forest was below 0.5. The forest type significantly affected the soil nematode maturity index and channel ratio, but the forest type, soil layer and their interaction had no significant effect on the diversity index. There were obvious diffe-rences in the composition, nutrient structure and energy flow channel of soil nematodes in the subalpine/alpine forests of western Sichuan, providing an important reference for understanding the function of soil nematodes in soil processes

  9. Bioinformatic prediction of arthropod/nematode-like peptides in non-arthropod, non-nematode members of the Ecdysozoa.

    Science.gov (United States)

    Christie, Andrew E; Nolan, Daniel H; Garcia, Zachery A; McCoole, Matthew D; Harmon, Sarah M; Congdon-Jones, Benjamin; Ohno, Paul; Hartline, Niko; Congdon, Clare Bates; Baer, Kevin N; Lenz, Petra H

    2011-02-01

    The Onychophora, Priapulida and Tardigrada, along with the Arthropoda, Nematoda and several other small phyla, form the superphylum Ecdysozoa. Numerous peptidomic studies have been undertaken for both the arthropods and nematodes, resulting in the identification of many peptides from each group. In contrast, little is known about the peptides used as paracrines/hormones by species from the other ecdysozoan taxa. Here, transcriptome mining and bioinformatic peptide prediction were used to identify peptides in members of the Onychophora, Priapulida and Tardigrada, the only non-arthropod, non-nematode members of the Ecdysozoa for which there are publicly accessible expressed sequence tags (ESTs). The extant ESTs for each phylum were queried using 106 arthropod/nematode peptide precursors. Transcripts encoding calcitonin-like diuretic hormone and pigment-dispersing hormone (PDH) were identified for the onychophoran Peripatopsis sedgwicki, with transcripts encoding C-type allatostatin (C-AST) and FMRFamide-like peptide identified for the priapulid Priapulus caudatus. For the Tardigrada, transcripts encoding members of the A-type allatostatin, C-AST, insect kinin, orcokinin, PDH and tachykinin-related peptide families were identified, all but one from Hypsibius dujardini (the exception being a Milnesium tardigradum orcokinin-encoding transcript). The proteins deduced from these ESTs resulted in the prediction of 48 novel peptides, six onychophoran, eight priapulid and 34 tardigrade, which are the first described from these phyla. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Mangifera Indica (Mango)

    Science.gov (United States)

    Shah, K. A.; Patel, M. B.; Patel, R. J.; Parmar, P. K.

    2010-01-01

    Mangifera indica, commonly used herb in ayurvedic medicine. Although review articles on this plant are already published, but this review article is presented to compile all the updated information on its phytochemical and pharmacological activities, which were performed widely by different methods. Studies indicate mango possesses antidiabetic, anti-oxidant, anti-viral, cardiotonic, hypotensive, anti-inflammatory properties. Various effects like antibacterial, anti fungal, anthelmintic, anti parasitic, anti tumor, anti HIV, antibone resorption, antispasmodic, antipyretic, antidiarrhoeal, antiallergic, immunomodulation, hypolipidemic, anti microbial, hepatoprotective, gastroprotective have also been studied. These studies are very encouraging and indicate this herb should be studied more extensively to confirm these results and reveal other potential therapeutic effects. Clinical trials using mango for a variety of conditions should also be conducted. PMID:22228940

  11. Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion.

    Science.gov (United States)

    Liu, Peng; Martin, Richard J; Dong, Liang

    2013-02-21

    This paper reports on the development of a lens-less and image-sensor-less micro-electro-fluidic (MEF) approach for real-time monitoring of the locomotion of microscopic nematodes. The technology showed promise for overcoming the constraint of the limited field of view of conventional optical microscopy, with relatively low cost, good spatial resolution, and high portability. The core of the device was microelectrode grids formed by orthogonally arranging two identical arrays of microelectrode lines. The two microelectrode arrays were spaced by a microfluidic chamber containing a liquid medium of interest. As a nematode (e.g., Caenorhabditis elegans) moved inside the chamber, the invasion of part of its body into some intersection regions between the microelectrodes caused changes in the electrical resistance of these intersection regions. The worm's presence at, or absence from, a detection unit was determined by a comparison between the measured resistance variation of this unit and a pre-defined threshold resistance variation. An electronic readout circuit was designed to address all the detection units and read out their individual electrical resistances. By this means, it was possible to obtain the electrical resistance profile of the whole MEF grid, and thus, the physical pattern of the swimming nematode. We studied the influence of a worm's body on the resistance of an addressed unit. We also investigated how the full-frame scanning and readout rates of the electronic circuit and the dimensions of a detection unit posed an impact on the spatial resolution of the reconstructed images of the nematode. Other important issues, such as the manufacturing-induced initial non-uniformity of the grids and the electrotaxic behaviour of nematodes, were also studied. A drug resistance screening experiment was conducted by using the grids with a good resolution of 30 × 30 μm(2). The phenotypic differences in the locomotion behaviours (e.g., moving speed and oscillation

  12. 75 FR 54592 - Pale Cyst Nematode; Update of Quarantined Areas

    Science.gov (United States)

    2010-09-08

    ...] Pale Cyst Nematode; Update of Quarantined Areas AGENCY: Animal and Plant Health Inspection Service... made changes to the area in the State of Idaho that is quarantined to prevent the spread of pale cyst nematode. The description of the quarantined area was updated on April 26, 2010. As a result of these...

  13. Intoxicação em suínos pela ingestão de sementes de Aeschynomene indica (Leg.Papilionoideae Poisoning in swine from the ingestion of Aeschynomene indica (Leg.Papilionoideae seeds

    Directory of Open Access Journals (Sweden)

    Fabiano N. Oliveira

    2005-09-01

    Full Text Available Relata-se um surto espontâneo de intoxicação em suínos pela ingestão de sementes de Aeschynomene indica e a reprodução da doença nessa espécie animal. O surto espontâneo ocorreu numa propriedade de criação de suínos localizada na região central do Rio Grande do Sul. Nessa propriedade havia 100 suínos (20 matrizes e 80 suínos jovens de várias categorias. Os suínos eram alimentados com uma ração feita na propriedade pela mistura de 50% farelo de milho, 25% de farelo de soja, 5% de um suplemento vitamínico-mineral de origem comercial e 20% quirera de arroz contaminada por 40% de sementes de A. indica. Embora aparentemente todos os suínos tenham recebido a mesma ração, apenas os suínos de 45 dias de idade foram afetados; as taxas de morbidade, mortalidade e letalidade foram respectivamente 25%-40%, 8,5%-20% e 25%-66%. Os sinais clínicos apareceram cerca de 24 horas após o início da administração da ração contendo sementes de A. indica e incluíam vários graus de incoordenação no andar, quedas, decúbito esternal com membros pélvicos posicionados afastados entre si, decúbito lateral e morte. Não foi possível determinar quantos suínos se recuperaram e quanto tempo levou a recuperação. Um suíno foi submetido à eutanásia e necropsiado na propriedade. A doença foi reproduzida em 5 suínos jovens (A-E alimentados com uma ração contendo 10% (Suíno A, 15% (Suíno B e 20% (Suínos C-E de sementes de A. indica e em um suíno mais velho (Suíno F que recebeu uma ração com 16,5% de sementes de A. indica. Os sinais clínicos foram semelhantes aos observados nos suínos do surto espontâneo. Os Suínos A, B e F foram submetidos à eutanásia e os Suínos C-E morreram de uma doença aguda respectivamente 16, 21 e 24 horas após o início do experimento. Os achados de necropsia incluíam acentuada hiperemia das leptomeninges em todos os suínos, grandes quantidades de sementes de A. indica no estômago e

  14. Safety evaluation of neem (Azadirachta indica) derived pesticides

    NARCIS (Netherlands)

    Boeke, S.J.; Boersma, M.G.; Alink, G.M.; Loon, van J.J.A.; Huis, van A.; Dicke, M.; Rietjens, I.M.C.M.

    2004-01-01

    The neem tree, Azadirachta indica, provides many useful compounds that are used as pesticides and could be applied to protect stored seeds against insects. However in addition to possible beneficial health effects, such as blood sugar lowering properties, anti-parasitic, anti-inflammatory,

  15. Induction of mutations for nematode resistance in tomato

    International Nuclear Information System (INIS)

    Alameddine, A.

    1976-01-01

    The objective of this work is to develop resistance to root-knot nematodes in tomato by induction, selection and utilization of the newly created resistant strains. Seeds of two varieties of tomato Lycopersicon esculentum L., namely Amcopack and Supermarmande, were subjected to various doses of gamma rays ranging from 10 Krads to 40 Krads in an effort to gain resistance to Meloidogyne incognita Chitwood, the prevalent species of nematodes in Lebanon. The variety Supermarmande seemed not to be affected by irradiation while Amcopack gained some resistance with a corresponding increase in the dose of radiation. The data suggest that in a variety like Amcopack, irradiation may stimulate resistance while in others like Supermarmande, susceptibility is not reduced with a corresponding increase of dosage. Those alterations in reaction within varieties may be due to genetic differences which allow some varieties to acquire resistance to nematodes when exposed to certain dosages, while others to suffer seriously due to sensitivity. (author)

  16. Control of Pathogenicity Root-Knot Nematode (Meloidogyne Javanica by Earthworm Eisenia Feoetida-Based Products in Greenhouse

    Directory of Open Access Journals (Sweden)

    M. Rostami

    2016-06-01

    Full Text Available Introduction: Biocontrol of nematode agents in order to decrease the hazardous impacts of chemical pesticide application including problems of public health and environmental pollution is apriority. In this study, solid (Vermicompost and liquid products (Liquid Vermicompost, Vermiwash and Coelomic fluidof the earthworm species Eisenia fetida were tested against root-knot nematode, Meloidogyne javanica in greenhouse conditions. Materials and Methods: In this study, Solid (Vermicompost and Liquid products(Wormtea, Vermiwash, Coelomic fluid erthworms (Eisenia foetida were tested against Meloidogyne javanica and also the effect of Vermicompost was evaluated on Pathogenicity of various nematode initial inoculum in two stage greenhouse conditions. Earthworm-based products (Vermicompost, Wormtea, Vermiwash and Coelomic fluid were added to tomato pots. Various treatments of liquid as well as solid products and their combination were used in the greenhouse trial. The first Stage greenhouse experiment- Tomato seeds grown in 2 kg sterilized soil. In the treatments having Vermicompost, pots incorporated with 200 gr of this compost homogeneously mixed with soil. After plants reached at two leaf stage, to study the effects of liquid products (Wormtea, Vermiwash, and Coelomic fluid they added to the pots (500cc along with the irrigation water every week and after of 4 leaf stage, 5000 nematode eggs and larva inoculated to the tomato host plants. 90 days after nematode inoculation, plant and nematode growth indices separately measured and compared. The experiment conducted based on completely randomized design having four replicates. The second stage greenhouse experiment- Tomato seeds grown in 2 kg sterilized soil. In the treatments, pots incorporated with 200 gr of this compost homogeneously mixed with soil. After of 4 leaf stage, 0,1000,2000,4000 and 10000 nematode eggs and larva inoculated to the tomato host plants. 90 days after nematode inoculation, plant

  17. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L

    Science.gov (United States)

    Gururaja, G. M.; Mundkinajeddu, Deepak; Dethe, Shekhar M.; Sangli, Gopala K.; Abhilash, K.; Agarwal, Amit

    2015-01-01

    Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety) was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF) to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml. Conclusion: This study demonstrates that M. indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica. PMID:26692750

  18. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions.

    Science.gov (United States)

    Abdelaziz, Mohamed E; Kim, Dongjin; Ali, Shawkat; Fedoroff, Nina V; Al-Babili, Salim

    2017-10-01

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt stress conditions. Our results demonstrate that P. indica colonization increases plant biomass, lateral roots density, and chlorophyll content under both conditions. Colonization with P. indica under salt stress was accompanied by a lower Na + /K + ratio and less pronounced accumulation of anthocyanin, compared to control plants. Moreover, P. indica colonized roots under salt stress showed enhanced transcript levels of the genes encoding the high Affinity Potassium Transporter 1 (HKT1) and the inward-rectifying K + channels KAT1 and KAT2, which play key roles in regulating Na + and K + homeostasis. The effect of P. indica colonization on AtHKT1;1 expression was also confirmed in the Arabidopsis line gl1-HKT:AtHKT1;1 that expresses an additional AtHKT1;1 copy driven by the native promoter. Colonization of the gl1-HKT:AtHKT1;1 by P. indica also increased lateral roots density and led to a better Na + /K + ratio, which may be attributed to the observed increase in KAT1 and KAT2 transcript levels. Our findings demonstrate that P. indica colonization promotes Arabidopsis growth under salt stress conditions and that this effect is likely caused by modulation of the expression levels of the major Na + and K + ion channels, which allows establishing a balanced ion homeostasis of Na + /K + under salt stress conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Diversity and incidence of plant-parasitic nematodes in Belgian turf grass

    NARCIS (Netherlands)

    Vandenbossche, B.; Viaene, N.; Sutter, de N.; Maes, M.; Karssen, G.; Bert, W.

    2011-01-01

    Eleven golf courses and eight football pitches, located in Belgium, were surveyed for plant-parasitic nematodes. This revealed a remarkably high diversity: 52 different species/taxa were identified morphologically, belonging to 23 genera and nine families. Among the most prevalent nematodes on both

  20. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts.

    Science.gov (United States)

    Emelianoff, Vanya; Chapuis, Elodie; Le Brun, Nathalie; Chiral, Magali; Moulia, Catherine; Ferdy, Jean-Baptiste

    2008-04-01

    In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.

  1. Trophic position of soil nematodes in boreal forests as indicated by stable isotope analysis

    Science.gov (United States)

    Kudrin, Alexey; Tsurikov, Sergey

    2016-04-01

    Despite the well-developed trophic classification of soil nematodes, their position in soil food webs is still little understood. Observed deviations from the typical feeding strategy indicate that a simplified trophic classification probably does not fully reflect actual trophic interactions. Furthermore, the extent and functional significance of nematodes as prey for other soil animals remains unknown. Stable isotope analysis (SIA) is powerful tool for investigating the structure of soil food webs, but its application to the study of soil nematodes has been limited to only a few studies. We used stable isotope analysis to gain a better understanding of trophic links of several groups of soil nematodes in two boreal forests on albeluvisol. We investigated four taxonomic groups of nematodes: Mononchida, Dorylaimida, Plectidae and Tylenchidae (mostly from the genus Filenchus), that according to the conventional trophic classification represent predators, omnivores, bacterivores and root-fungal feeders, respectively. To assess the trophic position of nematodes, we used a comparison against a set of reference species including herbivorous, saprophagous and predatory macro-invertebrates, oribatid and mesostigmatid mites, and collembolans. Our results suggest that trophic position of the investigated groups of soil nematodes generally corresponds to the conventional classification. All nematodes were enriched in 13C relative to Picea abies roots and litter, and mycorrhizal fungal mycelium. Root-fungal feeders Tylenchidae had δ15N values similar to those of earthworms, enchytraeids and Entomobrya collembolans, but slightly lower δ13C values. Bacterivorous Plectidae were either equal or enriched in 15N compared with saprophagous macroinvertebrates and most mesofauna species. Omnivorous Dorylaimida and predatory Mononchida were further enriched in 15N and their isotopic signature was similar to that of predatory arthropods. These data confirm a clear separation of

  2. Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica.

    Directory of Open Access Journals (Sweden)

    Wei Ye

    Full Text Available Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of a wide range of host plants and establishes various benefits for the plants. In this work, we describe miRNAs which are upregulated in Oncidium orchid roots after colonization by the fungus. Growth promotion and vigorous root development were observed in Oncidium hybrid orchid, while seedlings were colonized by P. indica. We performed a genome-wide expression profiling of small RNAs in Oncidium orchid roots either colonized or not-colonized by P. indica. After sequencing, 24,570,250 and 24744,141 clean reads were obtained from two libraries. 13,736 from 17,036,953 unique sequences showed homology to either 86 miRNA families described in 41 plant species, or to 46 potential novel miRNAs, or to 51 corresponding miRNA precursors. The predicted target genes of these miRNAs are mainly involved in auxin signal perception and transduction, transcription, development and plant defense. The expression analysis of miRNAs and target genes demonstrated the regulatory functions they may participate in. This study revealed that growth stimulation of the Oncidium orchid after colonization by P. indica includes an intricate network of miRNAs and their targets. The symbiotic function of P. indica on Oncidium orchid resembles previous findings on Chinese cabbage. This is the first study on growth regulation and development of Oncidium orchid by miRNAs induced by the symbiotic fungus P. indica.

  3. Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan.

    Science.gov (United States)

    Dong, Ke; Moroenyane, Itumeleng; Tripathi, Binu; Kerfahi, Dorsaf; Takahashi, Koichi; Yamamoto, Naomichi; An, Choa; Cho, Hyunjun; Adams, Jonathan

    2017-06-08

    Little is known about how nematode ecology differs across elevational gradients. We investigated the soil nematode community along a ~2,200 m elevational range on Mt. Norikura, Japan, by sequencing the 18S rRNA gene. As with many other groups of organisms, nematode diversity showed a high correlation with elevation, and a maximum in mid-elevations. While elevation itself, in the context of the mid domain effect, could predict the observed unimodal pattern of soil nematode communities along the elevational gradient, mean annual temperature and soil total nitrogen concentration were the best predictors of diversity. We also found nematode community composition showed strong elevational zonation, indicating that a high degree of ecological specialization that may exist in nematodes in relation to elevation-related environmental gradients and certain nematode OTUs had ranges extending across all elevations, and these generalized OTUs made up a greater proportion of the community at high elevations - such that high elevation nematode OTUs had broader elevational ranges on average, providing an example consistent to Rapoport's elevational hypothesis. This study reveals the potential for using sequencing methods to investigate elevational gradients of small soil organisms, providing a method for rapid investigation of patterns without specialized knowledge in taxonomic identification.

  4. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars.

    Science.gov (United States)

    Fujita, Daisuke; Trijatmiko, Kurniawan Rudi; Tagle, Analiza Grubanzo; Sapasap, Maria Veronica; Koide, Yohei; Sasaki, Kazuhiro; Tsakirpaloglou, Nikolaos; Gannaban, Ritchel Bueno; Nishimura, Takeshi; Yanagihara, Seiji; Fukuta, Yoshimichi; Koshiba, Tomokazu; Slamet-Loedin, Inez Hortense; Ishimaru, Tsutomu; Kobayashi, Nobuya

    2013-12-17

    Increasing crop production is essential for securing the future food supply in developing countries in Asia and Africa as economies and populations grow. However, although the Green Revolution led to increased grain production in the 1960s, no major advances have been made in increasing yield potential in rice since then. In this study, we identified a gene, SPIKELET NUMBER (SPIKE), from a tropical japonica rice landrace that enhances the grain productivity of indica cultivars through pleiotropic effects on plant architecture. Map-based cloning revealed that SPIKE was identical to NARROW LEAF1 (NAL1), which has been reported to control vein pattern in leaf. Phenotypic analyses of a near-isogenic line of a popular indica cultivar, IR64, and overexpressor lines revealed increases in spikelet number, leaf size, root system, and the number of vascular bundles, indicating the enhancement of source size and translocation capacity as well as sink size. The near-isogenic line achieved 13-36% yield increase without any negative effect on grain appearance. Expression analysis revealed that the gene was expressed in all cell types: panicles, leaves, roots, and culms supporting the pleiotropic effects on plant architecture. Furthermore, SPIKE increased grain yield by 18% in the recently released indica cultivar IRRI146, and increased spikelet number in the genetic background of other popular indica cultivars. The use of SPIKE in rice breeding could contribute to food security in indica-growing regions such as South and Southeast Asia.

  5. Effect of the Entomogenous Nematode Nemplectana carpocapsae on the Tachinid Parasite Compsilura concinnata (Diptera: Tachinidae)

    Science.gov (United States)

    Kaya, Harry K.

    1984-01-01

    The entomogenous nematode Neoaplectana carpocapsae and its associated bacterium, Xenorhabdus nematophilus, could not infect the pupal stage of the tachinid Compsilura concinnata through the puparium. N. carpocapsae had an adverse effect on 1-, 2- and 3-day-old C. concinnata larvae within the armyworm host in petri dish tests. All 1-day-old larvae treated with nematodes died in their hosts, whereas 61% and 69% of 2- and 3-day-old larvae treated with nematodes, respectively, died. However, the survivors developed to adults. Nine to thirty-seven percent of adult tachinids which emerged from nematode-treated soil (50 nematodes/cm²) were infected with N. carpocapsae. The nematode adversely affects C. concinnata directly by the frank infection of the tachinid and indirectly by causing the premature death of the host which results in tachinid death. PMID:19295866

  6. On the track of transfer cell formation by specialized plant-parasitic nematodes.

    Science.gov (United States)

    Rodiuc, Natalia; Vieira, Paulo; Banora, Mohamed Youssef; de Almeida Engler, Janice

    2014-01-01

    Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  7. On the track of transfer cells formation by specialized plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Natalia eRodiuc

    2014-05-01

    Full Text Available Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structural, functional and morphogenetic characteristics function and formation of these specialized multinucleate cells that act as nutrient transfer cells to accumulate and synthesize components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  8. Nematode pests threatening soybean production in South Africa, with reference to Meloidogyne

    Directory of Open Access Journals (Sweden)

    Hendrika Fourie

    2015-09-01

    Full Text Available The area planted to soybean in South Africa has increased by 54% since the 2009 growing season, mainly as a result of the increasing demand for protein-rich food and fodder sources. Moreover, the introduction of advanced technology, namely the availability of genetically modified herbicide tolerant soybean cultivars also contributed towards increased soybean production. The omnipresence of plant-parasitic nematodes in local agricultural soils, however, poses a threat to the sustainable expansion and production of soybean and other rotation crops. Meloidogyne incognita and M. javanica are the predominant nematode pests in local soybean production areas and those where other grain-, legume- and/or vegetable crops are grown. The lack of registered nematicides for soybean locally, crop production systems that are conducive to nematode pest build-ups as well as the limited availability of genetic host plant resistance to root-knot nematode pests, complicate their management. Research aimed at various aspects related to soybean-nematode research, namely, audits of nematode assemblages associated with the crop, identification of genetic host plant resistance in soybean germplasm to M. incognita and M. javanica, the use of molecular markers that are linked to such genetic resistance traits as well as agronomic performance of pre-released cultivars that can be valuable to producers and the industry are accentuated in this review. Evaluation of synthetically-derived as well as biological-control agents are also discussed as complementary management tactics. It is important that lessons learned through extensive research on soybean-nematode interactions in South Africa be shared with researchers and industries in other countries as they might experience or expect similar problems and/or challenges.

  9. Screening of in vitro derived mutants of banana against nematodes ...

    African Journals Online (AJOL)

    The rest of the mutants namely Ro Im V4 6-1-2 and Si Im V4 6-2-5 were found to be susceptible to nematodes. The resistant and moderately resistant mutants of banana could be further used in breeding programmes as well as being recognized as potential cultivars of commerce. Key words: Banana, nematode, resistance, ...

  10. Antioxidant activity, fatty acid profile and tocopherols of Tamarindus indica L. seeds

    Directory of Open Access Journals (Sweden)

    Débora Maria Moreno Luzia

    2011-06-01

    Full Text Available This study aimed to characterize Tamarindus indica L. seeds regarding its composition and to evaluate its antioxidant potential, fatty acid profile and content of tocopherols. In order to obtain the extract, the dried and crushed seeds were extracted with ethanol for 30 minutes in a 1:3 seeds: ethanol ratio under continuous stirring at room temperature. After that, the mixtures were filtered and subjected to roto-evaporation at 40 ºC in order to determine, through direct weighing, the dry matter yields of the extracts. According to the results, Tamarindus indica L. seeds showed high content of total carbohydrates (71.91% and offered relevant content and antioxidant activity of phenolic compounds. Tamarindus indica L. seeds oil presents high oxidative stability (15.83 hours and significant total tocopherol content (57.77 mg.kg-1, besides presenting a higher percentage of unsaturated fatty acids - the main component being linolenic (59.61%, which is considered an essential fatty acid.

  11. Effects of midas® on nematodes in commercial floriculture production in Florida.

    Science.gov (United States)

    Kokalis-Burelle, Nancy; Rosskopf, Erin N; Albano, Joseph P; Holzinger, John

    2010-03-01

    Cut flower producers currently have limited options for nematode control. Four field trials were conducted in 2006 and 2007 to evaluate Midas® (iodomethane:chloropicrin 50:50) for control of root-knot nematodes (Meloidogyne arenaria) on Celosia argentea var. cristata in a commercial floriculture production field in southeastern Florida. Midas (224 kg/ha) was compared to methyl bromide:chloropicrin (98:2, 224 kg/ha), and an untreated control. Treatments were evaluated for effects on Meloidogyne arenaria J2 and free-living nematodes in soil through each season, and roots at the end of each season. Plant growth and root disease were also assessed. Population levels of nematodes isolated from soil were highly variable in all trials early in the season, and generally rebounded by harvest, sometimes to higher levels in fumigant treatments than in the untreated control. Although population levels of nematodes in soil were not significantly reduced during the growing season, nematodes in roots and galling at the end of the season were consistently reduced with both methyl bromide and Midas compared to the untreated control. Symptoms of phytotoxicity were observed in Midas treatments during the first year and were attributed to Fe toxicity. Fertilization was adjusted during the second year to investigate potential fumigant/fertilizer interactions. Interactions occurred at the end of the fourth trial between methyl bromide and fertilizers with respect to root-knot nematode J2 isolated from roots and galling. Fewer J2 were isolated from roots treated with a higher level of Fe (3.05%) in the form of Fe sucrate, and galling was reduced in methyl bromide treated plots treated with this fertilizer compared to Fe EDTA. Reduced galling was also seen with Midas in Fe sucrate fertilized plots compared to Fe EDTA. This research demonstrates the difficulty of reducing high root-knot nematode population levels in soil in subtropical conditions in production fields that have been

  12. The diversity and evolution of nematodes (Pharyngodonidae) infecting New Zealand lizards.

    Science.gov (United States)

    Mockett, Sarah; Bell, Trent; Poulin, Robert; Jorge, Fátima

    2017-04-01

    Host-parasite co-evolutionary studies can shed light on diversity and the processes that shape it. Molecular methods have proven to be an indispensable tool in this task, often uncovering unseen diversity. This study used two nuclear markers (18S rRNA and 28S rRNA) and one mitochondrial (cytochrome oxidase subunit I) marker to investigate the diversity of nematodes of the family Pharyngodonidae parasitizing New Zealand (NZ) lizards (lygosomine skinks and diplodactylid geckos) and to explore their co-evolutionary history. A Bayesian approach was used to infer phylogenetic relationships of the parasitic nematodes. Analyses revealed that nematodes parasitizing skinks, currently classified as Skrjabinodon, are more closely related to Spauligodon than to Skrjabinodon infecting NZ geckos. Genetic analyses also uncovered previously undetected diversity within NZ gecko nematodes and provided evidence for several provisionally cryptic species. We also examined the level of host-parasite phylogenetic congruence using a global-fit approach. Significant congruence was detected between gecko-Skrjabinodon phylogenies, but our results indicated that strict co-speciation is not the main co-evolutionary process shaping the associations between NZ skinks and geckos and their parasitic nematodes. However, further sampling is required to fully resolve co-phylogenetic patterns of diversification in this host-parasite system.

  13. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Directory of Open Access Journals (Sweden)

    Elise Courtot

    2015-12-01

    Full Text Available Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  14. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    Science.gov (United States)

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  15. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Science.gov (United States)

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  16. POTENTIALS OF TAMARINDUS INDICA (Linn) IN JAM ...

    African Journals Online (AJOL)

    S O Jimoh

    while some of the other metals are actually of high nutritional values. There are ... The fruit pulp is used for seasoning, as a food component and in juices. Its fruit is regarded ... crude and inefficient due to poor handling and lack of storage facilities. This has ..... Extract of the seed coat of Tamarindus indica inhibits nitric oxide.

  17. The effects of repeated applications of the molluscicide metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: a two-year study in north-west Spain.

    Science.gov (United States)

    Iglesias, Javier; Castillejo, José; Castro, Ramón

    2003-11-01

    Over two years, six consecutive field experiments were done in which the chemical molluscicide metaldehyde and the nematode biocontrol agent Phasmarhabditis hermaphrodita (Schneider) were applied at the standard field rates to replicated mini-plots successively planted with lettuce, Brussels sprouts, leaf beet and cabbage, to compare the effectiveness of different treatments in reducing slug damage to the crops. Soil samples from each plot were taken prior to the start of the experiments, and then monthly, to assess the populations of slugs, snails, earthworms, nematodes, acarids and collembolans. The experiments were done on the same site and each plot received the same treatment in the six experiments. The six treatments were: (1) untreated controls, (2) metaldehyde pellets, (3 and 4) nematodes applied to the planted area 3 days prior to planting without or with previous application of cow manure slurry, (5) nematodes applied to the area surrounding the planted area 3 days prior to planting, and (6) nematodes applied to the planted area once (only in the first of the six consecutive experiments). Only the metaldehyde treatment and the nematodes applied to the planted area at the beginning of each experiment without previous application of manure significantly reduced slug damage to the plants, and only metaldehyde reduced the number of slugs contaminating the harvested plants. The numbers of slugs, snails and earthworms in soil samples were compared among the six treatments tested: with respect to the untreated controls, the numbers of Deroceras reticulatum (Müller) were significantly affected only in the metaldehyde plots, and the numbers of Arion ater L only in the plots treated with nematodes applied to the planted area 3 days prior to planting without previous application of manure; numbers of snails (Ponentina ponentina (Morelet) and Oxychilus helveticus (Blum)) were not affected by the treatment. The total numbers of all earthworm species and of Lumbricus

  18. Immunity to gastrointestinal nematode infections

    DEFF Research Database (Denmark)

    Sorobetea, D.; Svensson Frej, M.; Grencis, R.

    2018-01-01

    Numerous species of nematodes have evolved to inhabit the gastrointestinal tract of animals and humans, with over a billion of the world's population infected with at least one species. These large multicellular pathogens present a considerable and complex challenge to the host immune system give...

  19. Modelling nematode movement using time-fractional dynamics.

    Science.gov (United States)

    Hapca, Simona; Crawford, John W; MacMillan, Keith; Wilson, Mike J; Young, Iain M

    2007-09-07

    We use a correlated random walk model in two dimensions to simulate the movement of the slug parasitic nematode Phasmarhabditis hermaphrodita in homogeneous environments. The model incorporates the observed statistical distributions of turning angle and speed derived from time-lapse studies of individual nematode trails. We identify strong temporal correlations between the turning angles and speed that preclude the case of a simple random walk in which successive steps are independent. These correlated random walks are appropriately modelled using an anomalous diffusion model, more precisely using a fractional sub-diffusion model for which the associated stochastic process is characterised by strong memory effects in the probability density function.

  20. Biosynthesis and characterization of gold nanoparticles using extracts of tamarindus indica L leaves

    International Nuclear Information System (INIS)

    Correa, S N; Naranjo, A M; Herrera, A P

    2016-01-01

    This study reports the biosynthesis of gold nanoparticles using an extract of Tamarindus indica L. leaves. Phenols, ketones and carboxyls were present in the leaves of T. indica. These organic compounds that allowed the synthesis of nanoparticles were identified by gas chromatography coupled to mass spectrometry (GC/MS) and High Pressure Liquid Chromatographic (HPLC). Synthesis of gold nanoparticles was performed with the extract of T. indica leaves and an Au +3 aqueous solutions (HAuCl 4 ) at room temperature with one hour of reaction time. Characterization of gold nanoparticles was performed by UV visible spectroscopy, scanning electron microscopy (SEM) and EDX. The results indicated the formation of gold nanoparticles with a wavelength of 576nm and an average size of 52±5nm. The EDX technique confirmed the presence of gold nanoparticles with 12.88% in solution. (paper)

  1. Biosynthesis and characterization of gold nanoparticles using extracts of tamarindus indica L leaves

    Science.gov (United States)

    Correa, S. N.; Naranjo, A. M.; Herrera, A. P.

    2016-02-01

    This study reports the biosynthesis of gold nanoparticles using an extract of Tamarindus indica L. leaves. Phenols, ketones and carboxyls were present in the leaves of T. indica. These organic compounds that allowed the synthesis of nanoparticles were identified by gas chromatography coupled to mass spectrometry (GC/MS) and High Pressure Liquid Chromatographic (HPLC). Synthesis of gold nanoparticles was performed with the extract of T. indica leaves and an Au+3 aqueous solutions (HAuCl4) at room temperature with one hour of reaction time. Characterization of gold nanoparticles was performed by UV visible spectroscopy, scanning electron microscopy (SEM) and EDX. The results indicated the formation of gold nanoparticles with a wavelength of 576nm and an average size of 52±5nm. The EDX technique confirmed the presence of gold nanoparticles with 12.88% in solution.

  2. Modulatory effect of Mangifera indica against carbon tetrachloride induced kidney damage in rats.

    Science.gov (United States)

    Awodele, Olufunsho; Adeneye, Adejuwon Adewale; Aiyeola, Sheriff Aboyade; Benebo, Adokiye Senibo

    2015-12-01

    There is little scientific evidence on the local use of Mangifera indica in kidney diseases. This study investigated the reno-modulatory roles of the aqueous stem bark extract of Mangifera indica (MIASE) against CCl4-induced renal damage. Rats were treated intragastrically with 125, 250 and 500 mg/kg/day MIASE for 7 days before and after the administration of CCl4 (3 ml/kg of 30% CCl4, i.p.). Serum levels of electrolytes (Na+, K+, Cl(-), HCO3(-)), urea and creatinine were determined. Renal tissue reduced glutathione (GSH), malondialdehyde (MDA), catalase (CAT), superoxide (SOD) activities were also assessed. The histopathological changes in kidneys were determined using standard methods. In CCl4 treated rats the results showed significant (pMangifera indica may present a great prospect for drug development in the management of kidney disease with lipid peroxidation as its etiology.

  3. field assessment of the nematicidal properties of neem (azadirachta

    African Journals Online (AJOL)

    iya beji

    AZADIRACHTA INDICA) ... yield of treated tomato plants. Key Words: Neem, Nematicidal Properties, Root Knot Nematode, Tomato. .... Means with the same letter in the same column do not differ significantly at P = 0.05 according to Duncan`s multiple ...

  4. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Science.gov (United States)

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  5. A SNARE-Like Protein and Biotin Are Implicated in Soybean Cyst Nematode Virulence.

    Directory of Open Access Journals (Sweden)

    Sadia Bekal

    Full Text Available Phytoparasitic nematodes that are able to infect and reproduce on plants that are considered resistant are referred to as virulent. The mechanism(s that virulent nematodes employ to evade or suppress host plant defenses are not well understood. Here we report the use of a genetic strategy (allelic imbalance analysis to associate single nucleotide polymorphisms (SNPs with nematode virulence genes in Heterodera glycines, the soybean cyst nematode (SCN. To accomplish this analysis, a custom SCN SNP array was developed and used to genotype SCN F3-derived populations grown on resistant and susceptible soybean plants. Three SNPs reproducibly showed allele imbalances between nematodes grown on resistant and susceptible plants. Two candidate SCN virulence genes that were tightly linked to the SNPs were identified. One SCN gene encoded biotin synthase (HgBioB, and the other encoded a bacterial-like protein containing a putative SNARE domain (HgSLP-1. The two genes mapped to two different linkage groups. HgBioB contained sequence polymorphisms between avirulent and virulent nematodes. However, the gene encoding HgSLP-1 had reduced copy number in virulent nematode populations and appears to produce multiple forms of the protein via intron retention and alternative splicing. We show that HgSLP-1 is an esophageal-gland protein that is secreted by the nematode during plant parasitism. Furthermore, in bacterial co-expression experiments, HgSLP-1 co-purified with the SCN resistance protein Rhg1 α-SNAP, suggesting that these two proteins physically interact. Collectively our data suggest that multiple SCN genes are involved in SCN virulence, and that HgSLP-1 may function as an avirulence protein and when absent it helps SCN evade host defenses.

  6. Short-term effects of forest disturbances on soil nematode communities in European mountain spruce forests.

    Science.gov (United States)

    Čerevková, A; Renčo, M; Cagáň, L

    2013-09-01

    The nematode communities in spruce forests were compared with the short-term effects of forest damage, caused by windstorm, wildfire and management practices of forest soils. Soil samples were collected in June and October from 2006 to 2008 in four different sites: (1) forest unaffected by the wind (REF); (2) storm-felled forest with salvaged timber (EXT); (3) modified forest affected by timber salvage (wood removal) and forest fire (FIR); and (4) storm-felled forest where timber had been left unsalvaged (NEX). Nematode analysis showed that the dominant species in all four investigated sites were Acrobeloides nanus and Eudorylaimus silvaticus. An increase of A. nanus (35% of the total nematode abundance) in the first year in the FIR site led to the highest total abundance of nematodes compared with other sites, where nematode abundance reached the same level in the third year. In the FIR site bacterial feeders appeared to be the most representative trophic group, although in the second and third year, after disturbance, the abundance of this trophic group gradually decreased. In the NEX site, the number of nematode species, population densities and Maturity Index were similar to that recorded for the FIR site. In EXT and NEX sites, the other dominant species was the plant parasitic nematode Paratylenchus microdorus. Analyses of nematodes extracted from different forest soil samples showed that the highest number of species and diversity index for species (H'spp) were in the REF site. Differences between the nematode fauna in REF and other localities were clearly depicted by cluster analysis. The greatest Structure Index and Enrichment Index values were also in REF. In the EXT site, the number of nematode species, their abundance, H'spp and Maturity Index were not significantly different from those recorded in the reference site.

  7. Soil Nematode Response to Biochar Addition in a Chinese Wheat Field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Ke; LI Qi; LIANG Wen-Ju; ZHANG Min; BAO Xue-Lian; XIE Zu-Bin

    2013-01-01

    While studies have focused on the use of biochar as soil amendment,little attention has been paid to its effect on soil fauna.The biochar was produced from slow pyrolysis of wheat straw in the present study.Four treatments,no addition (CK) and three rates of biochar addition at 2400 (B1),12000 (B5) and 48000 kg ha-1 (B20),were investigated to assess the effect of biochar addition to soil on nematode abundance and diversity in a microcosm trial in China.The B5 and B20 application significantly increased the total organic carbon and the C/N ratio.No significant difference in total nematode abundance was found among the treatments.The biochar addition to the soil significantly increased the abundance of fungivores,and decreased that of plant parasites.The diversity of soil nematodes was significantly increased by B1 compared to CK.Nematode trophic groups were more effectively indicative to biochar addition than total abundance.

  8. Influence of the Sting Nematode, Belonolaimus longicaudalus, on Young Citrus Trees.

    Science.gov (United States)

    Kaplan, D T

    1985-10-01

    The sting nematode, Belonolaimus longicaudatus, was associated with poor growth of citrus in a central Florida nursery. Foliage of trees was sparse and chlorotic. Affected rootstocks included Changsha and Cleopatra mandarin orange; Flying Dragon, Rubidoux, and Jacobsen trifoliate orange; Macrophylla and Milam lemon; Palestine sweet lime; sour orange; and the hybrids - Carrizo, Morton, and Rusk citrange and Swingle citrumelo. Root symptoms included apical swelling, development of swollen terminals containing 3-5 apical meristems and hyperplastic tissue, coarse roots, and a reduction in the number of fibrous roots. Population densities as high as 392 sting nematodes per liter soil were detected, with 80% of the population occurring in the top 30 cm of soil; however, nematodes were detected to 107 cm deep. Although an ectoparasite, the nematode was closely associated with citrus root systems and was transported with bare root nursery stock. Disinfestation was accomplished by hot water treatment (49 C for 5 minutes).

  9. Effect of cephalandra indica against advanced glycation end products, sorbitol accumulation and aldose reductase activity in homoeopathic formulation

    Directory of Open Access Journals (Sweden)

    Lalit Kishore

    2018-01-01

    Full Text Available Background: Extreme generation of free radicals leads to oxidative stress which has been apprehensive in several disease processes such as diabetic complications and vascular and neurodegenerative diseases. Objective: The present study was designed to evaluate the potential of homoeopathic preparations of Cephalandra indica L. against oxidative stress. Materials and Methods: Potencies of Cephalandra indica (mother tincture, 6C and 30C were procured from Dr. Willmar Schwabe India Pvt. Ltd. The antioxidant activity of Cephalandra indica was evaluated by employing various in vitro antioxidant methods. Results: The total phenol content was found to be 1905, 849 and 495 mg/g gallic acid equivalents in mother tincture, 6C and 30C of Cephalandra indica and total antioxidant capacity was found to be 2710, 759 and 510 μM/g ascorbic acid equivalents, respectively. Mother tincture, 6C and 30C of Cephalandra indica was found to have strong reducing power, 2,2-diphenyl-1-picrylhydrazyl radical, hydrogen peroxide, nitric oxide and superoxide radical scavenging activity. Percentage inhibition of AGEs formation by mother tincture, 6C and 30C of Cephalandra indica (10–50 μl was found to be 30.34%–91.77%, 29.98%–65.71% and 33.05%–57.75%, respectively. Mother tincture, 6C and 30C of Cephalandra indica showed inhibitory effect against sorbitol accumulation with IC50value of 26.12 μl, 203.10 μl and 897.3 μl, respectively, whereas, in aldose reductase inhibition assay, the IC50value was 32.54 μl, 175.02 μl and 834.34 μl, respectively. Conclusion: The results revealed that homoeopathic preparations of Cephalandra indica exhibit protective effect against oxidative stress.

  10. Antioxidative Characteristics of Anisomeles indica Extract and Inhibitory Effect of Ovatodiolide on Melanogenesis

    Directory of Open Access Journals (Sweden)

    Li-Ling Chang

    2012-05-01

    Full Text Available The purpose of the study was to investigate the antioxidant characteristics of Anisomeles indica methanol extract and the inhibitory effect of ovatodiolide on melanogenesis. In the study, the antioxidant capacities of A. indica methanol extract such as DPPH assay, ABTS radical scavenging assay, reducing capacity and metal ion chelating capacity as well as total phenolic content of the extract were investigated. In addition, the inhibitory effects of ovatodiolide on mushroom tyrosinase, B16F10 intracellular tyrosinase and melanin content were determined spectrophotometrically. Our results revealed that the antioxidant capacities of A. indica methanol extract increased in a dose-dependent pattern. The purified ovatodiolide inhibited mushroom tyrosinase activity (IC50 = 0.253 mM, the compound also effectively suppressed intracellular tyrosinase activity (IC50 = 0.469 mM and decreased the amount of melanin (IC50 = 0.435 mM in a dose-dependent manner in B16F10 cells. Our results concluded that A. indica methanol extract displays antioxidant capacities and ovatodiolide purified from the extract inhibited melanogenesis in B16F10 cells. Hence, A. indica methanol extract and ovatodiolide could be applied as a type of dermatological whitening agent in skin care products.

  11. FLUORIDE SORPTION USING MORRINGA INDICA-BASED ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    G. Karthikeyan, S. Siva Ilango

    2007-01-01

    Full Text Available Batch adsorption experiments using activated carbon prepared from Morringa Indica bark were conducted to remove fluoride from aqueous solution. A minimum contact time of 25 min was required for optimum fluoride removal. The influence of adsorbent, dose, pH, co-ions (cations and anions on fluoride removal by the activated carbon has been experimentally verified. The adsorption of fluoride was studied at 30 C, 40 C and 50 C. The kinetics of adsorption and adsorption isotherms at different temperatures were studied. The fluoride adsorption obeyed both Langmuir and Freundlich isotherms and followed a pseudo first order kinetic model. The thermodynamic studies revealed that the fluoride adsorption by Morringa Indica is an endothermic process indicating an increase in sorption rate at higher temperatures. The negative values of G indicate the spontaneity of adsorption. SEM and XRD studies confirmed the surface morphological characteristics of the adsorbent and the deposition of fluoride on the surface of the material.

  12. Low cost production of nematodes for biological control of insect pests

    Science.gov (United States)

    Entomopathogenic nematodes are produced in two ways: in artificial media using liquid or solid fermentation methods (in vitro) or by mass producing insect hosts to be artificially exposed to mass infection by nematodes (in vivo). The yellow mealworm (Tenebrio molitor) is a good host for in vivo nema...

  13. Nematodes as bioindicators of ecosystem recovery during phytoremediation of crude oil contaminated soil.

    Science.gov (United States)

    Savin, Mary C; Wolf, Duane C; Davis, K Jody; Gbur, Edward E; Thoma, Greg J

    2015-01-01

    Restoration of a weathered crude oil contaminated site undergoing phytoremediation was evaluated using nematodes as bioindicators. Samples were collected twice per year equating to spring and fall/winter. Mean annual total abundances ranged from 18-130 in the non-fertilized non-vegetated control (CTR) to 69-728 in tall fescue-ryegrass (FES) to 147-749 (100 g(-1)) in the fertilized bermudagrass-fescue (BER) treatment. Proportions of plant-parasitic (PP) and free-living (FL) nematodes were significantly impacted by treatment, but not year, with PP nematodes accounting for 27, 59, and 68% of CTR, FES, and BER communities, respectively. There was no significant year by season by treatment or treatment by year effect for total, PP, or FL nematode abundances. Diversity did not increase over time. The BER and FES treatments had more mature communities as indicated by higher plant-parasitic index (PPI) values. Phytoremediation accelerates petroleum degradation and alters the soil habitat which is reflected in the nematode community. However, low numbers and inconsistent presence of persister strategist omnivores and predators, and the lack in improvement over time in treatment effects for total and PP nematode abundances, PP and FL proportions, or PPI indicate the system is being rehabilitated but has not been restored after 69 months of phytoremediation.

  14. Micropropagation and genetic transformation of Tylophora indica (Burm. f.) Merr.: a review.

    Science.gov (United States)

    Teixeira da Silva, Jaime A; Jha, Sumita

    2016-11-01

    This review provides an in-depth and comprehensive overview of the in vitro culture of Tylophora species, which have medicinal properties. Tylophora indica (Burm. f.) Merr. is a climbing perennial vine with medicinal properties. The tissue culture and genetic transformation of T. indica, which has been extensively studied, is reviewed. Micropropagation using nodal explants has been reported in 25 % of all publications. Leaf explants from field-grown plants has been the explant of choice of independent research groups, which reported direct and callus-mediated organogenesis as well as callus-mediated somatic embryogenesis. Protoplast-mediated regeneration and callus-mediated shoot organogenesis has also been reported from stem explants, and to a lesser degree from root explants of micropropagated plants in vitro. Recent studies that used HPLC confirmed the potential of micropropagated plants to synthesize the major T. indica alkaloid tylophorine prior to and after transfer to field conditions. The genetic integrity of callus-regenerated plants was confirmed by RAPD in a few reports. Tissue culture is an essential base for genetic transformation studies. Hairy roots and transgenic T. indica plants have been shown to accumulate tylophorine suggesting that in vitro biology and transgenic methods are viable ways of clonally producing valuable germplasm and mass producing compounds of commercial value. Further studies that investigate the factors affecting the biosynthesis of Tylophora alkaloids and other secondary metabolites need to be conducted using non-transformed as well as transformed cell and organ cultures.

  15. Trematodes enhance the development of the nematode-trapping fungus Arthrobotrys (Duddingtonia) flagrans.

    Science.gov (United States)

    Arias, María Sol; Suárez, José; Cazapal-Monteiro, Cristiana Filipa; Francisco, Iván; López-Arellano, María Eugenia; Piñeiro, Pablo; Suárez, José Luis; Sánchez-Andrade, Rita; Mendoza de Gives, Pedro; Paz-Silva, Adolfo

    2013-01-01

    The capability of helminth (nematode and trematode) parasites in stimulating nematode trap and chlamydospore development of the nematophagous fungus Arthrobotrys (formerly Duddingtonia) flagrans was explored. Dead adult specimens of trematodes (the liver fluke Fasciola hepatica and the rumen fluke Calicophoron daubneyi) and nematodes (the ascarid Parascaris equorum and the strongylid Oesophagostomum spp.), as well as their secretory products, were placed onto corn meal agar plates concurrently inoculated with A. flagrans. Trapping organs were observed after 5 d and chlamydospores after 16 d, including in the control plates in the absence of parasitic stimulus. However, our data shows that both nematodes and trematodes increase trap and chlamydospore production compared with controls. We show for the first time that significantly higher numbers of traps and chlamydospores were observed in the cultures coinoculated with adult trematodes. We conclude that both the traps and chlamydospores formation are not only related to nematode-specific stimuli. The addition of secretory products of the trematode C. daubneyi to culture medium has potential for use in the large scale production of chlamydospores. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level.

    Science.gov (United States)

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-12-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial-microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner.

  17. Fast, automated measurement of nematode swimming (thrashing without morphometry

    Directory of Open Access Journals (Sweden)

    Sattelle David B

    2009-07-01

    Full Text Available Abstract Background The "thrashing assay", in which nematodes are placed in liquid and the frequency of lateral swimming ("thrashing" movements estimated, is a well-established method for measuring motility in the genetic model organism Caenorhabditis elegans as well as in parasitic nematodes. It is used as an index of the effects of drugs, chemicals or mutations on motility and has proved useful in identifying mutants affecting behaviour. However, the method is laborious, subject to experimenter error, and therefore does not permit high-throughput applications. Existing automation methods usually involve analysis of worm shape, but this is computationally demanding and error-prone. Here we present a novel, robust and rapid method of automatically counting the thrashing frequency of worms that avoids morphometry but nonetheless gives a direct measure of thrashing frequency. Our method uses principal components analysis to remove the background, followed by computation of a covariance matrix of the remaining image frames from which the interval between statistically-similar frames is estimated. Results We tested the performance of our covariance method in measuring thrashing rates of worms using mutations that affect motility and found that it accurately substituted for laborious, manual measurements over a wide range of thrashing rates. The algorithm used also enabled us to determine a dose-dependent inhibition of thrashing frequency by the anthelmintic drug, levamisole, illustrating the suitability of the system for assaying the effects of drugs and chemicals on motility. Furthermore, the algorithm successfully measured the actions of levamisole on a parasitic nematode, Haemonchus contortus, which undergoes complex contorted shapes whilst swimming, without alterations in the code or of any parameters, indicating that it is applicable to different nematode species, including parasitic nematodes. Our method is capable of analyzing a 30 s movie in

  18. The Transcriptome of Nacobbus aberrans Reveals Insights into the Evolution of Sedentary Endoparasitism in Plant-Parasitic Nematodes

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J.; Danchin, Etienne G. J.; Rancurel, Corinne; Cock, Peter J. A.; Urwin, Peter E.; Jones, John T.

    2014-01-01

    Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, “specific” have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes. PMID:25123114

  19. Control of Root-Knot Nematodes on Tomato by the Endoparasitic Fungus Meria coniospora

    OpenAIRE

    Jansson, Hans-Börje; Jeyaprakash, A.; Zuckerman, Bert M.

    1985-01-01

    The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol...

  20. Cytotoxicity of 5% Tamarindus indica extract and 3% hydrogen peroxide as root canal irrigation

    Directory of Open Access Journals (Sweden)

    Erawati Wulandari

    2008-09-01

    Full Text Available Background: Preparation of root canal is an important stage in endodontic treatment. During conducting preparation, it is always be followed with root canal irrigation that has aim to clean root canal from necrotic tissue remains, grind down dentin powder, micro organism, wet the root canal to make preparation process of root canal easier, and solute root canal content at area that can not be reached by equipment. Flesh of Tamarindus indica (pulpa tamarindorum is used as traditional medicine and it contains vitamin C (antioxidant, protein, fat, glucose, etc. Previous research shows that 5% tamarindus indica extract can clean smear layer but it is more cytotoxicity to cell line BHK–21 than sterilized aquabides. Purpose: This research is to compare cytotoxicity between 5% Tamarindus indica extract with 3% H2O2 as root canal irrigation material. Method: Four teen culture cell line BHK 21 divides into 2 groups. Group 1 is treated with 3% H2O2 and Group 2 is treated with 5% Tamarindus indica extract, for about 2.5 minutes in every group. Then, living and death cell percentage is measured. Data is analyzed with independent t test with significant level of 0.05%. Result: The research showed that death cell in group 1 was 29.3% and in group 2 was 21.1%. There was a significant different (p < 0.05 between group 1 and group 2. Conclusion: Cytotoxicity of 5% Tamarindus indica extract to the cell line BHK–21 is lower than 3% H2O2.

  1. Development of a nematode offspring counting assay for rapid and simple soil toxicity assessment.

    Science.gov (United States)

    Kim, Shin Woong; Moon, Jongmin; Jeong, Seung-Woo; An, Youn-Joo

    2018-05-01

    Since the introduction of standardized nematode toxicity assays by the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO), many studies have reported their use. Given that the currently used standardized nematode toxicity assays have certain limitations, in this study, we examined the use of a novel nematode offspring counting assay for evaluating soil ecotoxicity based on a previous soil-agar isolation method used to recover live adult nematodes. In this new assay, adult Caenorhabditis elegans were exposed to soil using a standardized toxicity assay procedure, and the resulting offspring in test soils attracted by a microbial food source in agar plates were counted. This method differs from previously used assays in terms of its endpoint, namely, the number of nematode offspring. The applicability of the bioassay was demonstrated using metal-spiked soils, which revealed metal concentration-dependent responses, and with 36 field soil samples characterized by different physicochemical properties and containing various metals. Principal component analysis revealed that texture fraction (clay, sand, and silt) and electrical conductivity values were the main factors influencing the nematode offspring counting assay, and these findings warrant further investigation. The nematode offspring counting assay is a rapid and simple process that can provide multi-directional toxicity assessment when used in conjunction with other standard methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Windstorms as mediator of soil nematode community changes: Evidence from European spruce forest

    Directory of Open Access Journals (Sweden)

    Renčo M.

    2017-03-01

    Full Text Available Nematode communities in a Norway spruce forest in High Tatra National Park, Slovakia were monitored for the period of several years (2006 and 2013. Unfortunately, in May 2014 natural windstorm damaged the forest. This disastrous event, together with preliminary obtained results allowed us to compare the direct impact of windstorm damage of forest habitat on soil nematode assemblages. The forest destruction by windstorm had a significant effect on the total nematode abundance, the abundance of omnivores and herbivores, as well as the nematode species diversity. The most dominant species, representing 55 % of the total nematode fauna, in the plot studied were Acrobeloides nanus followed by Malenchus exiguus, Filenchus vulgaris, Plectus communis, Plectus parvus and Tylencholaimus mirabilis. The abundance of bacterivorous signifi cantly increased after the windstorm, meanwhile the abundance of omnivores, fungivores, and herbivores ectoparasites and epidermal/root hair feeders showed an opposite trend. Of the evaluative indicators, Shannon species diversity (H’spp, maturity index (MI, maturity index 2-5 (MI2-5, sigma maturity index (ΣMI, enrichment index (EI and structure index (SI decreased significantly after windstorm. The EI and SI indexes characterized soil ecosystems before windstorm (2006 - 2013 as maturing with low or moderate disturbance, but soil ecosystems shortly after the windstorm (2014 were degraded and nutrient depleted. This also corresponded with graphical display of metabolic footprints characteristics of soil food web. Overall, the nematode communities differed significantly before and after forest damage. These results suggest the role of nematode communities as indicators of environment condition quality or its disruption.

  3. Investigation On Antidiarrhoeal Activity Of Aristolochia Indica Linn ...

    African Journals Online (AJOL)

    Background: The present study aimed at investigating the effect of ethanolic extract (EtAI), and aqueous extract (AqAI) of Aristolochia indica Linn roots on castor oil-induced diarrhoea and study on small intestinal transit. Phytochemical analysis of extracts was performed as per standard procedure. Materials and Methods: ...

  4. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation

    Directory of Open Access Journals (Sweden)

    Hawdon John

    2010-05-01

    Full Text Available Abstract Background Hookworm infection is one of the most important neglected diseases in developing countries, with approximately 1 billion people infected worldwide. To better understand hookworm biology and nematode parasitism, the present study generated a near complete transcriptome of the canine hookworm Ancylostoma caninum to a very high coverage using high throughput technology, and compared it to those of the free-living nematode Caenorhabditis elegans and the parasite Brugia malayi. Results The generated transcripts from four developmental stages, infective L3, serum stimulated L3, adult male and adult female, covered 93% of the A. caninum transcriptome. The broad diversity among nematode transcriptomes was confirmed, and an impact of parasitic adaptation on transcriptome diversity was inferred. Intra-population analysis showed that A. caninum has higher coding sequence diversity than humans. Examining the developmental expression profiles of A. caninum revealed major transitions in gene expression from larval stages to adult. Adult males expressed the highest number of selectively expressed genes, but adult female expressed the highest number of selective parasitism-related genes. Genes related to parasitism adaptation and A. caninum specific genes exhibited more expression selectivity while those conserved in nematodes tend to be consistently expressed. Parasitism related genes were expressed more selectively in adult male and female worms. The comprehensive analysis of digital expression profiles along with transcriptome comparisons enabled identification of a set of parasitism genes encoding secretory proteins in animal parasitic nematode. Conclusions This study validated the usage of deep sequencing for gene expression profiling. Parasitic adaptation of the canine hookworm is related to its diversity and developmental dynamics. This comprehensive comparative genomic and expression study substantially improves our understanding of

  5. Opuntia ficus indica (L.) Fruit Extract as Natural Indicator in Acid-Base Titration

    OpenAIRE

    Manoj A. Suva

    2014-01-01

    In routine experiments synthetic indicators are the choice of acid base titrations. But there are some limitations like environmental pollution, availability and higher cost which leads to search for natural compounds as an acid base indicator was started. The present work highlights theexploit of the methanolic and aqueous extract of the fruit of Opuntia ficus indica plants as a natural acid base indicator in acid base titrations. Opuntia ficus indica plant was identified and fruits were was...

  6. 78 FR 1713 - Golden Nematode; Removal of Regulated Areas in Livingston and Steuben Counties, NY

    Science.gov (United States)

    2013-01-09

    ...-0079] Golden Nematode; Removal of Regulated Areas in Livingston and Steuben Counties, NY AGENCY: Animal... are amending the golden nematode regulations by removing areas in Livingston and Steuben Counties in... areas in these two counties are free of golden nematode, and we have determined that regulation of these...

  7. Indicações e perfil epidemiológico dos pacientes submetidos à ceratoplastia

    Directory of Open Access Journals (Sweden)

    Augusto Adam Netto

    2014-06-01

    Full Text Available Objetivo: Avaliar o perfil epidemiológico dos pacientes submetidos à ceratoplastia no estado de Santa Catarina e as principais indicações para este procedimento. Métodos: Foi realizado estudo observacional, descritivo e retrospectivo com dados de 1161 pacientes transplantados entre janeiro de 2008 e dezembro de 2010, de acordo com os prontuários obtidos na Central de Notificação, Captação e Distribuição de Órgãos e Tecidos de Santa Catarina. As variáveis registradas foram: idade, sexo, procedência, data do transplante, indicação e olho operado. Resultados: A média de idade foi de 45,51 anos e o sexo masculino foi mais prevalente (54,05%. O ceratocone foi a doença mais frequente (36,09%, seguido por falência do enxerto (15,89%, leucoma (11,92%, ceratopatia bolhosa (11,06%, distrofias (7,77%, úlcera (5,36%, perfuração corneana (5,27%, descemetocele (4,66%, ceratite herpética (1,12% e ectasia corneana (0,86%. A região do estado com maior número de casos foi a Grande Florianópolis (23,75%, sendo o ceratocone a principal indicação (30,91%. Leucoma e perfuração foram as principais indicações em pacientes com idade inferior a 10 anos, ceratocone nos pacientes entre 11 e 50 anos, falência do enxerto entre 51 e 60 anos e ceratopatia bolhosa nos pacientes acima de 61 anos. Conclusão: O ceratocone é a principal indicação para ceratoplastia no estado de Santa Catarina, com a média de idade de 31 anos. A maioria dos pacientes é do sexo masculino e proveniente da Grande Florianópolis.

  8. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards.

    Science.gov (United States)

    Aballay, E; Prodan, S; Zamorano, A; Castaneda-Alvarez, C

    2017-07-01

    The action of metabolites and exoenzymes from rhizobacteria on different plant-parasitic nematodes has an influence on the nematicidal efficacy of the microbe. Seven rhizobacteria, divided into two bacterial groups, were evaluated in vitro for nematicidal activity on Meloidogyne ethiopica and Xiphinema index. The direct effect of their filtrates on egg hatching and juveniles of M. ethiopica as well as mobile stages of X. index was evaluated during a 72-h period. The production of four exoenzymes and two metabolites associated with nematode mortality was investigated. Molecular characterization of three isolates was performed, and the physiological profiles and lipase activity of all isolates were obtained using the BIOLOG EcoPlate system. While chitinase and collagenase were measured using the BIOLOG MT2 plate system, protease, hydrogen cyanide and hydrogen sulphide were directly determined in Petri dishes. Nematode mobile stages exposure to the bacterial filtrate revealed a nematicidal effect up to 93.7% on X. Index and up to 83.3% on M. ethiopica. The control of egg hatching varied between 35 and 85%. A positive correlation was found between the mortality of both nematode mobile stages and the concerted activities of the bacterial enzymes as well as the level of the volatile metabolites. The nematicidal effect of rhizobacteria strains varies by nematode genera and among the developmental stages evaluated.

  9. In vivo effects of Sainfoin (Onobrychis viciifolia) on parasitic nematodes in calves

    DEFF Research Database (Denmark)

    Desrues, Oliver; Pena-Espinoza, Miguel Angel; Hansen, T.V.A.

    Sainfoin (Onobrychis viciifolia) is a fodder legume containing condensed tannins known to improve protein self-sufficiency, animal health and environment. In addition, anthelmintic effects have been demonstrated in vitro against cattle nematodes, and in vivo against nematodes of small ruminants...

  10. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.

    Science.gov (United States)

    Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J

    2009-01-01

    Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.

  11. The feeding tube of cyst nematodes: characterisation of protein exclusion.

    Directory of Open Access Journals (Sweden)

    Sebastian Eves-van den Akker

    Full Text Available Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.

  12. The feeding tube of cyst nematodes: characterisation of protein exclusion.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Ault, James R; Ashcroft, Alison E; Jones, John T; Urwin, Peter E

    2014-01-01

    Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.

  13. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato.

    Science.gov (United States)

    Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K

    2006-07-01

    The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.

  14. Evaluation of different morphotypes of mango (mangifera indica l ...

    African Journals Online (AJOL)

    Evaluation of different morphotypes of mango (mangifera indica l.) ... Bayero Journal of Pure and Applied Sciences ... 2006/2007 wet season at the teaching and research farm of Faculty of Agriculture, Bayero University, Kano (110 58'N and 80 ...

  15. Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    2018-06-01

    Full Text Available Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, or not inoculated. After the microbiome was established, the root lesion nematode Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly reduced on soybean plants inoculated with the microbiome from maize or soybean compared to tomato or bulk soil, or the uninoculated control. In the analogous experiment with tomato plants inoculated with either P. penetrans or the root knot nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato reduced root invasion by P. penetrans and M. incognita compared to microbiomes from soybean or bulk soil. Reproduction of M. incognita on tomato followed the same trend, and it was best suppressed by the tomato rhizosphere microbiome. In split-root experiments with soybean and tomato plants, a systemic effect of the inoculated rhizosphere microbiomes on root invasion of P. penetrans was shown. Furthermore, some transplanted microbiomes slightly enhanced plant growth compared to uninoculated plants. The microbiomes from maize rhizosphere and bulk soil increased the fresh weights of roots and shoots of soybean plants, and microbiomes from soybean rhizosphere and bulk soil increased the fresh weights of roots and shoots of tomato plants. Nematode invasion did not affect plant growth in these short-term experiments. In

  16. Evolutionary history of nematodes associated with sweat bees.

    Science.gov (United States)

    McFrederick, Quinn S; Taylor, Douglas R

    2013-03-01

    Organisms that live in close association with other organisms make up a large part of the world's diversity. One driver of this diversity is the evolution of host-species specificity, which can occur via reproductive isolation following a host-switch or, given the correct circumstances, via cospeciation. In this study, we explored the diversity and evolutionary history of Acrostichus nematodes that are associated with halictid bees in North America. First, we conducted surveys of bees in Virginia, and found six halictid species that host Acrostichus. To test the hypothesis of cospeciation, we constructed phylogenetic hypotheses of Acrostichus based on three genes. We found Acrostichus puri and Acrostichus halicti to be species complexes comprising cryptic, host-specific species. Although several nodes in the host and symbiont phylogenies were congruent and tests for cospeciation were significant, the host's biogeography, the apparent patchiness of the association across the host's phylogeny, and the amount of evolution in the nematode sequence suggested a mixture of cospeciation, host switching, and extinction events instead of strict cospeciation. Cospeciation can explain the relationships between Ac. puri and its augochlorine hosts, but colonization of Halictus hosts is more likely than cospeciation. The nematodes are vertically transmitted, but sexual transmission is also likely. Both of these transmission modes may explain host-species specificity and congruent bee and nematode phylogenies. Additionally, all halictid hosts come from eusocial or socially polymorphic lineages, suggesting that sociality may be a factor in the suitability of hosts for Acrostichus. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. 78 FR 27856 - Golden Nematode; Removal of Regulated Areas in Livingston and Steuben Counties, NY

    Science.gov (United States)

    2013-05-13

    .... APHIS-2012-0079] Golden Nematode; Removal of Regulated Areas in Livingston and Steuben Counties, NY... nematode regulations by removing areas in Livingston and Steuben Counties in New York from the list of... nematode, and we determined that regulation of these areas was no longer necessary. As a result of that...

  18. Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction

    Science.gov (United States)

    Background: Plant parasitic nematodes (PPNs) are obligate parasites that feed on the roots of living host plants. Often, these nematodes can lay hundreds of eggs, each capable of surviving in the soil for as long as 12 years. When it comes to wreaking havoc on agricultural yield, few nematodes can c...

  19. Acute toxicity of Opuntia ficus indica and Pistacia lentiscus seed oils in mice.

    Science.gov (United States)

    Boukeloua, A; Belkhiri, A; Djerrou, Z; Bahri, L; Boulebda, N; Hamdi Pacha, Y

    2012-01-01

    Opuntia ficus indica and Pistacia lentiscus L. seeds are used in traditional medicine. The objective of this study was to investigate the toxicity of the fixed oil of Opuntia ficus indica and Pistacia lentiscus L. seeds in mice through determination of LD₅₀ values, and also the physicochemical characteristics of the fixed oil of these oils. The acute toxicity of their fixed oil were also investigated in mice using the method of Kabba and Berhens. The fixed oil of Pistacia lentiscus and Opuntia ficus indica seeds were extracted and analyzed for its chemical and physical properties such as acid value, free fatty acid percentage (% FFA), iodine index, and saponification value as well as refractive index and density. LD₅₀ values obtained by single doses, orally and intraperitoneally administered in mice, were respectively 43 ± 0,8 ;[40.7- 45.4 ] ml/kg body wt. p.o. and 2.72 ± 0,1 ;[2.52-2.92] ml/kg body wt. i.p. for Opuntia ficus indica ; and 37 ± 1 ;[34.4 - 39.8 ] ml/kg body wt. p.o. and 2.52 ± 0,2 ;[2.22 - 2.81 ] ml/kg body wt. i.p. for Pistacia lentiscus respectively. The yields of seed oil were respectively calculated as 20.25% and 10.41%. The acid and free fatty acid values indicated that the oil has a low acidity.

  20. The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Danchin, Etienne G J; Rancurel, Corinne; Cock, Peter J A; Urwin, Peter E; Jones, John T

    2014-08-13

    Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, "specific" have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi.

    Science.gov (United States)

    Chen, Qing; Rehman, S; Smant, G; Jones, John T

    2005-07-01

    RNA interference (RNAi) has been used widely as a tool for examining gene function and a method that allows its use with plant-parasitic nematodes recently has been described. Here, we use a modified method to analyze the function of secreted beta-1,4, endoglucanases of the potato cyst nematode Globodera rostochiensis, the first in vivo functional analysis of a pathogenicity protein of a plant-parasitic nematode. Knockout of the beta-1,4, endoglucanases reduced the ability of the nematodes to invade roots. We also use RNAi to show that gr-ams-1, a secreted protein of the main sense organs (the amphids), is essential for host location.

  2. Superoxide Dismutase as a Tool for the Mulacular Identification of Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    S. Molinari

    2004-08-01

    Full Text Available Superoxide dismutase (SOD is a constitutive family of enzymes produced by all aerobic organisms. Varying amounts of SOD activity have been found at all life stages of the most diffused plant parasitic nematodes. SOD is important to aerobic metabolism and parasitism of nematodes in that it catalyzes the first step of the neutralization of the highly toxic superoxide anion (O2 •-, which is largely produced in plant-nematode incompatible reactions. SOD has also been shown to be a significant tool to diagnose root-knot, cyst-, and longidorid nematodes. A high SOD polymorphism has been revealed by Native-Page on gradient polyacrylamide gels for Meloidogyne spp. and by isoelectrofocusing for Globodera, Xiphinema and Longidorus spp. The sensitivity of such procedures has been improved by using the PhastSystem (Amersham Biosciences, Piscata, NJ, USA, an automated equipment for electrophoresis. An accurate discrimination of species of all the nematode genera tested has been achieved and an attempt was made to group populations of the Xiphinema americanum-group and to detect Globodera rostochiensis and G. pallida pathotypes.

  3. Prevalence of intestinal nematodes in alcoholic patients

    Directory of Open Access Journals (Sweden)

    Zago-Gomes Maria P.

    2002-01-01

    Full Text Available We report the results of a retrospective study on the frequency of intestinal nematodes among 198 alcoholic and 440 nonalcoholic patients at the University Hospital Cassiano Antonio Moraes in Vitória, ES, Brazil. The control sample included 194 nonalcoholic patients matched according to age, sex and neighborhood and a random sample of 296 adults admitted at the same hospital. Stool examination by sedimentation method (three samples was performed in all patients. There was a significantly higher frequency of intestinal nematodes in alcoholics than in controls (35.3% and 19.2%, respectively, due to a higher frequency of Strongyloides stercoralis (21.7% and 4.1%, respectively. Disregarding this parasite, the frequency of the other nematodes was similar in both groups. The higher frequency of S. stercoralis infection in alcoholics could be explained by immune modulation and/or by some alteration in corticosteroid metabolism induced by chronic ethanol ingestion. Corticosteroid metabolites would mimic the worm ecdisteroids, that would in turn increase the fecundity of females in duodenum and survival of larvae. Consequently, the higher frequency of Strongyloides larvae in stool of alcoholics does not necessarily reflect an increased frequency of infection rate, but only an increased chance to present a positive stool examination using sedimentation methods.

  4. Improvement of Soil Properties, Growth of Cucumber and Protection against Fusarium Wilt by Piriformospora indica and Two Industrial Organic Wastes

    Directory of Open Access Journals (Sweden)

    Moustafa Hemdan Ahmed MOHARAM

    2017-12-01

    Full Text Available The current work was focused on characterizing bagasse ash (BA and press mud (PM as soil amendments and to study their effect in combination with the endophytic fungus Piriformospora indica on Fusarium wilt (FW of cucumber caused by Fusarium oxysporum f. sp. cucumerinum (Fo. Whereas BA and PM improved almost all physico-chemical properties of the soil evaluated, seed treatment with P. indica had no such effect. In shake culture in potato dextrose broth (PDB medium amended with aqueous extracts of BA and PM, alone or in combination, production mycelial mass of Fo was significantly decreased by PM extract, while production mycelial mass of P. indica was highly improved. The colonization rate of cucumber roots by P. indica as determined by microscopy was highly increased by increasing amounts of BA, PM and BA+PM added to the soil. Seed treatment of cucumber with P. indica before plant cultivation in non-amended soil significantly decreased the disease severity of FW and improved plant growth. When seed treated with P. indica was sown into soil amended with BA, PM or the combination of both, the disease severity was even more reduced than after seed treatment with P. indica alone. In this respect, amendment with PM was more effective than with BA, and the combinations were more effective than the single treatments. Hence, there is a scope to integrate PM and BA as soil amendments in combination with P. indica for eco-friendly FW management, improving soil properties and growth of cucumber plants.

  5. Can arbuscular mycorrhiza fungi and NPK fertilizer suppress nematodes and improve tuber yield of yam (Dioscorea rotundata ‘cv’ ewuru?

    Directory of Open Access Journals (Sweden)

    Gani Oladejo Kolawole

    2018-04-01

    Full Text Available Poor soil fertility and nematodes limit yam tuber yield and quality. Arbuscular mycorrhizal fungi (AMF and fertilizers may suppress nematodes and improve yam productivity. We evaluated the extent AMF and fertilizer suppressed nematodes and improved yam performance. Tuber weight, mycorrhizal colonization of roots and nematode populations were evaluated with eight treatments; Control (No amendments, 90-50-75, kg N- P2O5-K2O ha-1 (NPK, (AMF (2g/kg soil, nematodes (5000 juvenile/pot, and their combinations. Tuber weight was higher in NPK+AMF and NPK+nematode treatments than AMF+nematode. NPK+AMF improved tuber weight by 17.5% and 32% compared with sole NPK or AMF respectively. Compared with control, nematodes did not reduce tuber weight but, AMF+nematode reduced it by 49.4%. NPK reduced AMF colonization of roots and reduced nematode population on tuber, in roots and soil by 34%, 42.6% and 41% respectively. NPK+AMF treatment was superior to either NPK or AMF in improving tuber yield while NPK was superior to AMF in suppressing nematodes in roots, soil, and tuber.

  6. Constituents of Artemisia indica Willd. from Uttarakhand Himalaya: A source of davanone.

    Science.gov (United States)

    Haider, S Zafar; Mohan, Manindra; Andola, Harish Chandra

    2014-07-01

    The genus Artemisia is important due to its medicinal properties as well as vital aroma compounds of commercial value. The aim of the study was to explore the potential of the essential oil of Artemisia indica wildly growing in Uttarakhand. The aerial parts of Artemisia indica Willd. (Asteraceae), collected from wild growing habitat of Garhwal Himalaya, Uttarakhand (north of India) at full flowering stage were hydro-distilled and gave pale yellow oil with the yield of 0.8% (v/w). The obtained essential oil was analyzed by GC and GC-MS and identified 32 components, amounting 95.42% of the oil. Among detected compounds, the principal component was found to be davanone (30.80%), followed by β-pinene (15.30%) and germacrene-D (5.82%). To the best of our knowledge, this is the first report on A. indica from Himalayan region of India, which detected davanone as major component. The species, collected from a specific location, can be explored for isolation of davanone for its industrial utilization and as alternate source of Artemisia pallens, which have already established commercial value.

  7. Pengaruh Pemberian Ekstrak Daun Beluntas (Pluchea Indica L) terhadap Total Kolesterol Darah Broiler

    OpenAIRE

    Sukaryana, Yana; Priabudiman, Y

    2014-01-01

    The purpose of study was to determine the potential leaf extract Pluchea indica L at broiler in lowering cholesterol, as well as the exact time of administration so that the plant can be used as an alternative to veterinary medicinal plants without any negative effect on productivity. The experimental design used was a complete randomized design (CRD) consisting of 4 treatments with 6 replicates, each occupied by 4 broilers. P1 treatment was leaf extract Pluchea indica L for 3 weeks starting ...

  8. Acute Toxicity of Opuntia Ficus Indica and Pistacia Lentiscus Seed Oils in Mice

    OpenAIRE

    Boukeloua, A; Belkhiri, A; Djerrou, Z; Bahri, L; Boulebda, N; Pacha, Y Hamdi

    2012-01-01

    Opuntia ficus indica and Pistacia lentiscus L. seeds are used in traditional medicine. The objective of this study was to investigate the toxicity of the fixed oil of Opuntia ficus indica and Pistacia lentiscus L. seeds in mice through determination of LD50 values, and also the physicochemical characteristics of the fixed oil of these oils. The acute toxicity of their fixed oil were also investigated in mice using the method of Kabba and Berhens. The fixed oil of Pistacia lentiscus and Opunti...

  9. Pasteuria spp.: Systematics and Phylogeny of These Bacterial Parasites of Phytopathogenic Nematodes.

    Science.gov (United States)

    Preston, J F; Dickson, D W; Maruniak, J E; Nong, G; Brito, J A; Schmidt, L M; Giblin-Davis, R M

    2003-06-01

    Pasteuria spp. include endospore-forming bacterial pathogens of cladoceran crustaceans and plant-parasitic nematodes. Propagation of these nematode pathogens requires attachment of soilborne endospores to nematode hosts, infection, growth, sporulation, and release of endospores to repeat the cycle of infection and propagation. The ability of these bacteria to suppress the levels of plant-parasitic nematodes in the field has made them particularly promising candidates for biocontrol of nematode diseases of plants. Genes encoding 16S ribosomal RNA have been sequenced for the cladoceran (water flea) parasite and type species, Pasteuria ramosa, and for Pasteuria spp. isolated from root-knot (Meloidogyne arenaria race 1 and Meloidogyne sp.), soybean cyst (Heterodera glycines), and sting (Belonolaimus longicaudatus) nematodes. These have provided a phylogenetic basis for their designation to a distinct clade within the family Alicyclobacillaceae of the gram-positive endospore-forming bacteria. Two apparent biotypes of P. penetrans demonstrating a host preference for different Meloidogyne spp. showed identical 16S rDNA sequences, suggesting host-recognition evolves within a given species. The sequences of genes encoding sporulation transcription factors, sigE and sigF, from P. penetrans biotype P-20 show different phylogenetic relationships to other endospore-forming bacteria, supporting their application to further discriminate Pasteuria spp. and biotypes. Distribution of an adhesin-associated epitope on polypeptides from different Pasteuria isolates provides an immunochemical approach to differentiate species and biotypes with specific host preferences. Application of bioinformatics to genomic data, as well as further characterization of the biochemical basis for host recognition, will facilitate development of Pasteuria spp. as benign alternatives to chemical nematicides.

  10. Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress

    Directory of Open Access Journals (Sweden)

    Laxit Bhatt

    2017-09-01

    Conclusion: The present findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by doxorubicin. [J Complement Med Res 2017; 6(3.000: 284-289

  11. Lateral Dispersal and Foraging Behavior of Entomopathogenic Nematodes in the Absence and Presence of Mobile and Non-Mobile Hosts.

    Directory of Open Access Journals (Sweden)

    Harit K Bal

    Full Text Available Entomopathogenic nematodes have been classified into cruisers (active searchers and ambushers (sit and wait foragers. However, little is known about their dispersal and foraging behavior at population level in soil. We studied lateral dispersal of the ambush foraging Steinernema carpocapsae (ALL strain and cruise foraging Heterorhabditis bacteriophora (GPS11 strain from infected host cadavers in microcosms (0.05 m2 containing Wooster silt-loam soil (Oxyaquic fragiudalf and vegetation in the presence or absence of non-mobile and mobile hosts. Results showed that the presence of a non-mobile host (Galleria mellonella larva in a wire mesh cage enhanced H. bacteriophora dispersal for up to 24 hr compared with no-host treatment, but had no impact on S. carpocapsae dispersal. In contrast, presence of a mobile host (G. mellonella larvae increased dispersal of S. carpocapsae compared with no host treatment, but had no effect on H. bacteriophora dispersal. Also H. bacteriophora was better at infecting non-mobile than mobile hosts released into the microcosms and S. carpocapsae was better at infecting mobile than non-mobile hosts, thus affirming the established cruiser-ambusher theory. However, results also revealed that a large proportion of infective juveniles (IJs of both species stayed near (≤ 3.8 cm the source cadaver (88-96% S. carpocapsae; 67-79% H. bacteriophora, and the proportion of IJs reaching the farthest distance (11.4 cm was significantly higher for S. carpocapsae (1.4% than H. bacteriophora (0.4% in the presence of mobile hosts. S. carpocapsae also had higher average population displacement than H. bacteriophora in the presence of both the non-mobile (5.07 vs. 3.6 cm/day and mobile (8.06 vs. 5.3 cm/day hosts. We conclude that the two species differ in their dispersal and foraging behavior at the population level and this behavior is affected by both the presence and absence of hosts and by their mobility.

  12. Findings of Entomopathogenic Nematodes (Rhabditida, Steinernematidae in Nature Reserves in Ukraine

    Directory of Open Access Journals (Sweden)

    Yakovlev Ye. B.

    2014-07-01

    Full Text Available Findings of Entomopathogenic Nematodes (Rhabditida, Steinernematidae in Nature Reserves in-Ukraine. Yakovlev, Ye. B., Kharchenko, V. A., Mráček, Z. — Five strains of Steinernema Travassos, 1927 were isolated by live baiting method with last instar larvae of Tenebrio molitor Linnaeus, 1758 from the reserves of some central and southern oblasts of Ukraine and the Crimean AR. Entomopathogenic nematodes were recovered from 5 of 196 (2.6 % soil samples collected in 2010. Isolated nematodes were identified using a combination of molecular (ITS1-5.8S-ITS2 rDNA gene sequencing and morphological techniques. Four of the isolated strains were recognized as S. feltiae (Filipjev, 1934, one as S. arenarium (Artyukhovsky, 1967.

  13. Soil nematode community under the non-native trees in the Botanic Garden of Petrozavodsk State University

    Directory of Open Access Journals (Sweden)

    Sushchuk Anna

    2016-12-01

    Full Text Available The particularities of soil nematode communities of the rhizosphere of non-native trees were studied in the Botanic Garden of Petrozavodsk State University (Republic of Karelia. Taxonomic diversity, abundance, community structure and ecological indices derived from nematode fauna analysis were used as the evaluation parameters. Nematode fauna included 51 genera, 6 of them were plant parasitic. The dominant eco-trophic group in the nematode community structure of coniferous trees was bacterial feeders; fungal feeders in most cases were observed in the second numbers. The contribution of bacterial feeders was decreased and plant parasites were increased in eco-trophic structure of nematode communities of deciduous trees in compared with coniferous trees. Analysis of ecological indices showed that the state of soil nematode communities reflects complex, structured (stable soil food web in the biocenoses with deciduous trees, and degraded (basal food web – under coniferous trees.

  14. Nematodes as sentinels of heavy metals and organic toxicants in the soil

    NARCIS (Netherlands)

    Ekschmitt, K.; Korthals, G.W.

    2006-01-01

    Field and laboratory research has repeatedly shown that free-living soil nematodes differ in their sensitivity to soil pollution. In this paper, we analyze whether nematode genera proved sensitive or tolerant toward heavy metals and organic pollutants in six long-term field experiments. We discuss

  15. Morpho-anatomical and physicochemical studies of Fumaria indica (Hausskn.) Pugsley

    Institute of Scientific and Technical Information of China (English)

    Prakash Chandra Gupta; Ch V Rao

    2012-01-01

    To study morpho-anatomical characters and physicochemical analysis ofFumaria indica (F. indica) (Hausskn.) Pugsley, (Fumariaceae), an important medicinal plant used extensively for treating a variety of ailments in various system of indigenous medicine.Methods:Evaluation of the different parts of the plant was carried out to determine the morpho-anatomical, physicochemical, phytochemical and HPTLC fingerprinting profile of F. indica and other WHO recommended methods were performed for standardization. Results: Morpho-anatomical studies showed compound and pinnatifid leaf, 4 to 6 cm in length, linear and oblong in shape and anomocytic arrangement of stomata, thin walled parenchymatous cells, scattered, sclerenchymatous, capped vascular bundles and radiating medullary rays. Physicochemical studies showed foreign matter 0.2%, loss on drying 6.8%, total ash 16.77%, alcohol and water soluble extractives 8.92% and 20.26%, respectively, sugar 17.75%, starch 22.97% and tannins 2.37%. Phytochemical evaluation revealed the presence of carbohydrate, alkaloids, flavonoids, saponins, tannins and sterol. Thin layer chromatography was carried out with different solvents and the best solvent system was chloroform and methanol in 80:20 ratio and revealed 12 spots with different Rf value under UV light 366λ. Conclusions: The results of the study can serve as a valuable source of information and provide suitable standards for identification of this plant material for future investigations and applications.

  16. Morpho-anatomical and physicochemical studies of Fumaria indica(Hausskn.)Pugsley

    Institute of Scientific and Technical Information of China (English)

    Prakash; Chandra; Gupta; Ch; V; Rao

    2012-01-01

    Objective:To study morpho-anatomical characters and physicochemical analysis of Fumaria indica(F.indica)(Hausskn.)Pugsley,(Fumariaceae),an important medicinal plant used extensively for treating a variety of ailments in various system of indigenous medicine.Methods:Evaluation of the different parts of the plant was carried out to determine the morphoanatomical,physicochemical,phytochemical and HPTLC fingerprinting profile of F.indica and other WHO recommended methods were performed for standardization.Results:Morphoanatomical studies showed compound and pinnatifid leaf,4 to 6 cm in length,linear and oblong in shape and anomocytic arrangement of stomata,thin walled parenchymatous cells,scattered,sclerenchymatous,capped vascular bundles and radiating medullary rays.Physicochemical studies showed foreign matter 0.2%,loss on drying 6.8%,total ash 16.77%,alcohol and water soluble extractives 8.92%and 20.26%,respectively,sugar 17.75%,starch 22.97%and tannins 2.37%.Phytochemical evaluation revealed the presence of carbohydrate,alkaloids,flavonoids,saponins,tannins and sterol.Thin layer chromatography was carried out with different solvents and the best solvent system was chloroform and methanol in 80:20 ratio and revealed 12 spots with different R_f value under UV light 366λ.Conclusions:The results of the study can serve as a valuable source of information and provide suitable standards for identification of this plant material for future investigations and applications.

  17. Nematóides do Brasil. Parte V: nematóides de mamíferos Brazillan nematodes. Part V: nematodes of mammals

    Directory of Open Access Journals (Sweden)

    Joaquim Júlio Vicente

    1997-01-01

    Full Text Available A survey of nematode species parasitizing Brazilian mammals is presented, with enough data to provide their specific identification. The tirst section refers to the survey ofthe species, related to 21 superfamilies, 45 families, 160 genera and 495 species that are illustrated and measurement tables are given. The second section is concerned to the catalogue ofhost mammals which includes 34 families, 176 species and their respective parasite nematodes. The identification of these helminths is achieved by means of keys to the superfamilies, families and genera. Specific determination is induced through the figures and tables as above mentioned.

  18. Hypoglycemic Effects Of Whole And Fractionated Azadirachta Indica ...

    African Journals Online (AJOL)

    Hypoglycemic Effects Of Whole And Fractionated Azadirachta Indica (Neem) Seed Oils On Alloxan-Induced Diabetes In New Zealand White Rabbits. ... The data suggests that the whole neem seed oil and the acidic portion of the neem seed oil could be of benefit in controlling the blood sugar in subjects presenting with ...

  19. Effect of tillage and crop residue management on nematode densities on corn.

    Science.gov (United States)

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P cover crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.

  20. Resistance and Resistant Reaction of Gossypium arboreum to the Reniform, Nematode, Rotylenchulus reniformis

    Science.gov (United States)

    Carter, William W.

    1981-01-01

    Gossypium arboreum 'Nanking CB 1402' possessed a high level of resistance to Rotylenchulus reniformis. Within 16 h, the nematode penetrated roots of resistant and susceptible cottons equally. After 36 h, significantly fewer nematodes were found in resistant roots. Larvae fed in either an endodermal or pericyclic cell and had no specificity for root tissue of a particular age. In roots of resistant G. arboreum '1402,' wall breakdown of pericyclic cells was evident after 3 d, endodermal and cortical cells collapsed, and the hypertrophied pericyclic cells disintegrated within 12 d. Cell walls immediately adjacent to the nematode's head were thickened and more safranin positive in resistant than in susceptible cotton cultivars. Several other cultivars of G. arboreum were also resistant to R. reniformis, based on nematode fecundity and percent egg reduction. PMID:19300777

  1. Evaluation of the Tolerance of Some Citrus Rootstocks to Citrus Nematode in Greenhouse (Tylenchulus semipenetrans

    Directory of Open Access Journals (Sweden)

    Y. Mohammad Alian

    2018-02-01

    Full Text Available Introduction: Citrus nematode is one of the most important damaging nematodes of citrus trees, spreading widely in most areas under citrus planting causing dieback, the gradual decline of trees and crop decrease in citrus orchards. Eighty citrus cultivars and species are sensitive to this nematode. From other nematode hosts, we can refer to olive, fig, medlar, persimmon, pear and grapevine. Surveys Full filled in Mazandaran province is indicative of the widespread of this nematode in citrus horticulture and the level of infection in some samples is so high, thus it is necessary to use different ways of controlling this parasite. Materials and Methods: This research was carried out for 2 successive years and the reaction of sin citrus rootstocks including Citromelo, Poncirus, Sour Orange, Bakraee, Rough lemon and Off-type to citrus nematode under controlled conditions in the greenhouse was evaluated. Three months years old plants of this rootstock Were planted in completely random design with 5 replications in pots containing the population of 40 larvae per cubic centimeter of soil and after six months, the level of infection of roots was investigated and then the most tolerable rootstock for nematode was introduced on the basis of the least population of young females and adult females injected in one gram of root volume. Results and Discussion: Experiment results on the basis of LSD test in two successive years indicated that there is a meaningful statistical difference between Citrumelo and poncirus Poncirus with the least population of nematode of adult female on the root and other treatments the results show that sour orange and off-type rootstocks are the most sensitive to citrus nematode, poncirus Poncirus and Citrumelo are the most tolerable to nematode Bakraee and Rough lemon are in the biotype group with average tolerance (relatively sensitive to citrus nematode. Purpose of this research is to assess the sensitivity level of six citrus

  2. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    Science.gov (United States)

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  3. Population Genetics of Hirsutella rhossiliensis, a Dominant Parasite of Cyst Nematode Juveniles on a Continental Scale.

    Science.gov (United States)

    Wang, Niuniu; Zhang, Yongjie; Jiang, Xianzhi; Shu, Chi; Hamid, M Imran; Hussain, Muzammil; Chen, Senyu; Xu, Jianping; Xiang, Meichun; Liu, Xingzhong

    2016-11-01

    Hirsutella rhossiliensis is a parasite of juvenile nematodes, effective against a diversity of plant-parasitic nematodes. Its global distribution on various nematode hosts and its genetic variation for several geographic regions have been reported, while the global population genetic structure and factors underlying patterns of genetic variation of H. rhossiliensis are unclear. In this study, 87 H. rhossiliensis strains from five nematode species (Globodera sp., Criconemella xenoplax, Rotylenchus robustus, Heterodera schachtii, and Heterodera glycines) in Europe, the United States, and China were investigated by multilocus sequence analyses. A total of 280 variable sites (frequency, 0.6%) at eight loci and six clustering in high accordance with geographic populations or host nematode-associated populations were identified. Although H. rhossiliensis is currently recognized as an asexual fungus, recombination events were frequently detected. In addition, significant genetic isolation by geography and nematode hosts was revealed. Overall, our analyses showed that recombination, geographic isolation, and nematode host adaptation have played significant roles in the evolutionary history of H. rhossiliensis IMPORTANCE: H. rhossiliensis has great potential for use as a biocontrol agent to control nematodes in a sustainable manner as an endoparasitic fungus. Therefore, this study has important implications for the use of H. rhossiliensis as a biocontrol agent and provides interesting insights into the biology of this species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. A novel 'green' synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract.

    Science.gov (United States)

    Singh, Susmita; Saikia, Jyoti P; Buragohain, Alak K

    2013-02-01

    In the present research we have defined a novel green method of silver nanoparticles synthesis using Dillenia indica fruit extract. D. indica is an edible fruit widely distributed in the foothills of Himalayas and known for its antioxidant and further predicted for cancer preventive potency. The maximum absorbance of the colloidal silver nanoparticle solution was observed at 421 nm when examined with UV-vis spectrophotometer. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Nematode Infections Are Risk Factors for Staphylococcal Infection in Children

    Directory of Open Access Journals (Sweden)

    Sandra F Moreira-Silva

    2002-04-01

    Full Text Available Nematode infection may be a risk factor for pyogenic liver abscess in children and we hypothesized that the immunomodulation induced by those parasites would be a risk factor for any staphylococcal infection in children. The present study was designed to compare, within the same hospital, the frequency of intestinal nematodes and Toxocara infection in children with and without staphylococcal infections. From October 1997 to February 1998, 80 children with staphylococcal infection and 110 children with other diseases were submitted to fecal examination, serology for Toxocara sp., evaluation of plasma immunoglobulin levels, and eosinophil counts. Mean age, gender distribution, birthplace, and socioeconomic conditions did not differ significantly between the two groups. Frequency of intestinal nematodes and positive serology for Toxocara, were remarkably higher in children with staphylococcal infections than in the non-staphylococcal group. There was a significant correlation between intestinal nematodes or Toxocara infection and staphylococcal infection in children, reinforced by higher eosinophil counts and higher IgE levels in these children than in the control group. One possible explanation for this association would be the enhancement of bacterial infection by the immunomodulation induced by helminth infections, due to strong activation of the Th2 subset of lymphocytes by antigens from larvae and adult worms.

  6. Mitochondrial genome diversity in dagger and needle nematodes (Nematoda: Longidoridae).

    Science.gov (United States)

    Palomares-Rius, J E; Cantalapiedra-Navarrete, C; Archidona-Yuste, A; Blok, V C; Castillo, P

    2017-02-02

    Dagger and needle nematodes included in the family Longidoridae (viz. Longidorus, Paralongidorus, and Xiphinema) are highly polyphagous plant-parasitic nematodes in wild and cultivated plants and some of them are plant-virus vectors (nepovirus). The mitochondrial (mt) genomes of the dagger and needle nematodes, Xiphinema rivesi, Xiphinema pachtaicum, Longidorus vineacola and Paralongidorus litoralis were sequenced in this study. The four circular mt genomes have an estimated size of 12.6, 12.5, 13.5 and 12.7 kb, respectively. Up to date, the mt genome of X. pachtaicum is the smallest genome found in Nematoda. The four mt genomes contain 12 protein-coding genes (viz. cox1-3, nad1-6, nad4L, atp6 and cob) and two ribosomal RNA genes (rrnL and rrnS), but the atp8 gene was not detected. These mt genomes showed a gene arrangement very different within the Longidoridae species sequenced, with the exception of very closely related species (X. americanum and X. rivesi). The sizes of non-coding regions in the Longidoridae nematodes were very small and were present in a few places in the mt genome. Phylogenetic analysis of all coding genes showed a closer relationship between Longidorus and Paralongidorus and different phylogenetic possibilities for the three Xiphinema species.

  7. Analysis of genetic diversity in mango ( Mangifera indica L.) using ...

    African Journals Online (AJOL)

    Analysis of genetic diversity in mango ( Mangifera indica L.) using isozymetic polymorphism. ... All the isozymes, used in the present study showed polymorphism for mango. A total of 25 different electrophoretic ... HOW TO USE AJOL.

  8. Anti-inflammatory effects of essential oils from Mangifera indica.

    Science.gov (United States)

    Oliveira, R M; Dutra, T S; Simionatto, E; Ré, N; Kassuya, C A L; Cardoso, C A L

    2017-03-16

    Mangifera indica is widely found in Brazil, and its leaves are used as an anti-inflammatory agent in folk medicine. The aim of this study is to perform composition analysis of essential oils from the M. indica varieties, espada (EOMIL1) and coração de boi (EOMIL2), and confirm their anti-inflammatory properties. Twenty-three volatile compounds were identified via gas chromatography-mass spectrometry (GC-MS) in two essential oils from the leaves. Paw edema and myeloperoxidase (MPO) activity were evaluated using the carrageenan-induced paw model, while leukocyte migration was analyzed using the pleurisy model. At oral doses of 100 and 300 mg/kg, the essential oils significantly reduced edema formation and the increase in MPO activity induced by carrageenan in rat paws. For a dose of 300 mg/kg EOMIL1, 62 ± 8% inhibition of edema was observed, while EOMIL2 led to 51 ± 7% inhibition of edema. At a dose of 100 mg/kg, the inhibition was 54 ± 9% for EOMIL1 and 37 ± 7% for EOMIL2. EOMIL1 and EOMIL2 significantly reduced MPO activity at doses of 100 mg/kg (47 ± 5 and 23 ± 8%, respectively) and 300 mg/kg (50 ± 9 and 31 ± 7%, respectively). In the pleurisy model, inhibitions were also observed for EOMIL1 and EOMIL2 in the leukocyte migration test. The results of the present study show that essential oils from M. indica differ in chemical composition and anti-inflammatory activity in rats.

  9. Exploitation of FTA cartridges for the sampling, long-term storage, and DNA-based analyses of plant-parasitic nematodes.

    Science.gov (United States)

    Marek, Martin; Zouhar, Miloslav; Douda, Ondřej; Maňasová, Marie; Ryšánek, Pavel

    2014-03-01

    The use of DNA-based analyses in molecular plant nematology research has dramatically increased over recent decades. Therefore, the development and adaptation of simple, robust, and cost-effective DNA purification procedures are required to address these contemporary challenges. The solid-phase-based approach developed by Flinders Technology Associates (FTA) has been shown to be a powerful technology for the preparation of DNA from different biological materials, including blood, saliva, plant tissues, and various human and plant microbial pathogens. In this work, we demonstrate, for the first time, that this FTA-based technology is a valuable, low-cost, and time-saving approach for the sampling, long-term archiving, and molecular analysis of plant-parasitic nematodes. Despite the complex structure and anatomical organization of the multicellular bodies of nematodes, we report the successful and reliable DNA-based analysis of nematode high-copy and low-copy genes using the FTA technology. This was achieved by applying nematodes to the FTA cards either in the form of a suspension of individuals, as intact or pestle-crushed nematodes, or by the direct mechanical printing of nematode-infested plant tissues. We further demonstrate that the FTA method is also suitable for the so-called "one-nematode-assay", in which the target DNA is typically analyzed from a single individual nematode. More surprisingly, a time-course experiment showed that nematode DNA can be detected specifically in the FTA-captured samples many years after initial sampling occurs. Collectively, our data clearly demonstrate the applicability and the robustness of this FTA-based approach for molecular research and diagnostics concerning phytonematodes; this research includes economically important species such as the stem nematode (Ditylenchus dipsaci), the sugar beet nematode (Heterodera schachtii), and the Northern root-knot nematode (Meloidogyne hapla).

  10. PATHOGENICITY, DEVELOPMENT AND REPRODUCTION OF THE ENTOMOPATHOGENIC NEMATODE Steinernema sp., IN MEALWORM Tenebrio molitor

    Directory of Open Access Journals (Sweden)

    Yuliantoro Baliadi

    2011-10-01

    Full Text Available The pathogenicity, development and reproduction of Steinernema sp., isolate Skpr-20/Str, were studied using Tenebrio molitor. Results revealed that pathogenicity, development and reproduction were significantly influenced by nematode doses. Although the number of invading IJs increased with increasing dose, percentage penetration declined. The IJs reached adulthood within 3 days. Females laid eggs from day 4-7. All eggs remaining inside uterus develop inside the maternal body. The first female bearing endotokia matricida was observed on day 5. In a sand-based assay, nematode was more pathogenic at lower dose instead of higher ones, where optimum dose was 80 nematodes per larva and average number of progeny per female was 5438. Under crowded conditions, development proceeds to IJ stage instead of the J3. The average length and width decreased with increasing of nematode doses. The IJ produced in cadavers infested with 640 nematodes per larva was significantly smaller (492 ± 6.4 µm than offspring from other doses. The number of days which nematodes first emerged from the cadavers decreased with increasing dose. IJ first emerged at the average of 10-13 days at high IJ densities. It is concluded that the wide experimental characteristic of EPNs is also true for Steinernema sp., isolate Skpr-20/Str.

  11. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    Science.gov (United States)

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  12. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes

    NARCIS (Netherlands)

    Shah, Syed Jehangir; Anjam, Muhammad Shahzad; Mendy, Badou; Anwer, Muhammad Arslan; Habash, Samer S.; Lozano-Torres, Jose L.; Grundler, Florian M.W.; Siddique, Shahid

    2017-01-01

    When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in

  13. Postharvest Ripening and Shelf Life of Mango ( Mangifera indica L ...

    African Journals Online (AJOL)

    Postharvest Ripening and Shelf Life of Mango ( Mangifera indica L.) Fruit as Influenced by ... evaluate the influence of 1-Methylcyclopropene (1-MCP) and polyethylene packaging (PP) on postharvest storage of mango. ... HOW TO USE AJOL.

  14. Effects of composite mango ( Mangifera indica ) fruit reject meal on ...

    African Journals Online (AJOL)

    Effects of composite mango ( Mangifera indica ) fruit reject meal on growth performance, digestibility and economics of production of rabbits. ... The experiment was conducted to determine the effect of mango fruit reject ... HOW TO USE AJOL.

  15. Toxic effects of neem products (Azadirachta indica A. Juss) on ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Key words: Azadirachta indica (neem), Aedes aegypti (mosquito), LC50, ... constitute a major problem of public health and lead to ... of Coleoptera Epilachnus varivestus and caused sterility .... with a balm of Canada.

  16. Sex-specific lifespan and its evolution in nematodes.

    Science.gov (United States)

    Ancell, Henry; Pires-daSilva, Andre

    2017-10-01

    Differences between sexes of the same species in lifespan and aging rate are widespread. While the proximal and evolutionary causes of aging are well researched, the factors that contribute to sex differences in these traits have been less studied. The striking diversity of nematodes provides ample opportunity to study variation in sex-specific lifespan patterns associated with shifts in life history and mating strategy. Although the plasticity of these sex differences will make it challenging to generalize from invertebrate to vertebrate systems, studies in nematodes have enabled empirical evaluation of predictions regarding the evolution of lifespan. These studies have highlighted how natural and sexual selection can generate divergent patterns of lifespan if the sexes are subject to different rates or sources of mortality, or if trade-offs between complex traits and longevity are resolved differently in each sex. Here, we integrate evidence derived mainly from nematodes that addresses the molecular and evolutionary basis of sex-specific aging and lifespan. Ultimately, we hope to generate a clearer picture of current knowledge in this area, and also highlight the limitations of our understanding. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Optimization of a host diet for in vivo production of entomopathogenic nematodes

    Science.gov (United States)

    In previous studies, we developed an improved diet for Tenebrio molitor, a host that is used for in vivo nematode production, and we demonstrated that single insect diet components (e.g., lipids and proteins) can have a positive or negative impact on entomopathogenic nematode fitness and quality. I...

  18. Conflict of interest between a nematode and a trematode in an amphipod host: Test of the "sabotage" hypothesis

    Science.gov (United States)

    Thomas, Frédéric; Fauchier, Jerome; Lafferty, Kevin D.

    2002-01-01

    Microphallus papillorobustus is a manipulative trematode that induces strong behavioural alterations in the gamaridean amphipod Gammarus insensibilis, making the amphipod more vulnerable to predation by aquatic birds (definitive hosts). Conversely, the sympatric nematodeGammarinema gammari uses Gammarus insensibilis as a habitat and a source of nutrition. We investigated the conflict of interest between these two parasite species by studying the consequences of mixed infection on amphipod behaviour associated with the trematode. In the field, some amphipods infected by the trematode did not display the altered behaviour. These normal amphipods also had more nematodes, suggesting that the nematode overpowered the manipulation of the trematode, a strategy that would prolong the nematode's life. We hypothesize that sabotage of the trematode by the nematode would be an adaptive strategy for the nematode consistent with recent speculation about co-operation and conflict in manipulative parasites. A behavioural test conducted in the laboratory from naturally infected amphipods yielded the same result. However, exposing amphipods to nematodes did not negate or decrease the manipulation exerted by the trematode. Similarly, experimental elimination of nematodes from amphipods did not permit trematodes to manipulate behaviour. These experimental data do not support the hypothesis that the negative association between nematodes and manipulation by the trematode is a result of the "sabotage" hypothesis.

  19. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Fonseca, Vera G; Power, Deborah M

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  20. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil.

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    Full Text Available Endoparasitic root-knot (Meloidogyne spp. and lesion (Pratylenchus spp. nematodes cause considerable damage in agriculture. Before they invade roots to complete their life cycle, soil microbes can attach to their cuticle or surface coat and antagonize the nematode directly or by induction of host plant defenses. We investigated whether the nematode-associated microbiome in soil differs between infective stages of Meloidogyne incognita and Pratylenchus penetrans, and whether it is affected by variation in the composition of microbial communities among soils. Nematodes were incubated in suspensions of five organically and two integrated horticultural production soils, recovered by sieving and analyzed for attached bacteria and fungi after washing off loosely adhering microbes. Significant effects of the soil type and nematode species on nematode-associated fungi and bacteria were revealed as analyzed by community profiling using denaturing gradient gel electrophoresis. Attached microbes represented a small specific subset of the soil microbiome. Two organic soils had very similar bacterial and fungal community profiles, but one of them was strongly suppressive towards root-knot nematodes. They were selected for deep amplicon sequencing of bacterial 16S rRNA genes and fungal ITS. Significant differences among the microbiomes associated with the two species in both soils suggested specific surface epitopes. Among the 28 detected bacterial classes, Betaproteobacteria, Bacilli and Actinobacteria were the most abundant. The most frequently detected fungal genera were Malassezia, Aspergillus and Cladosporium. Attached microbiomes did not statistically differ between these two soils. However, Malassezia globosa and four fungal species of the family Plectosphaerellaceae, and the bacterium Neorhizobium galegae were strongly enriched on M. incognita in the suppressive soil. In conclusion, the highly specific attachment of microbes to infective stages of

  1. First use of soil nematode communities as bioindicator of radiation impact in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, C.; Bonzom, J.M.; Adam-Guillermin, C. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO (France); Della-Vedova, C. [Magelis, Cadenet (France); Beaugelin-Seiller, K. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LM2E (France); Gaschak, S. [Chernobyl Center for Nuclear safety, Radioactive waste and Radioecology, International Radioecology Laboratory (Ukraine); Coppin, F. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, L2BT (France); Garnier-Laplace, J. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS (France)

    2014-07-01

    The aim of the study was to assess the effects of former radioactive contamination on the structure of the nematode community in sites affected by the fallout from the Chernobyl accident that occurred on 26, April 1986. Nematodes were collected in spring 2011 from 18 forest sites of the Chernobyl Exclusion Zone (CEZ). The external gamma dose rates, measured from radiophotoluminescent dosimeters (RPL) varied from 0.2 to 22 μGy h{sup -1} between sites. In parallel, the Total dose rates (TDR) absorbed by nematodes were predicted from measured soil activity concentrations, Dose Conversion Coefficients (DCC, calculated by the EDEN software) and Soil-to-biota concentration ratios (from the ERICA tool database). Results showed that TDR were one order of magnitude above the external gamma dose rate measured from RPL. This is mainly due to the contribution of alpha ({sup 241}Am,{sup 238,239,240}Pu) and beta ({sup 90}Sr, and {sup 137}Cs) emitters in the external dose rate. The small size (in the order of mm) of nematodes promoted a high energy deposition throughout the organisms without fading, giving more weight to external dose rate induced by alpha-and beta-emitters, relatively to gamma-emitters. Analysis of the nematode community showed a majority of bacterial-, plant-, and fungal- feeder nematodes and almost none of the disturbance sensitive families whatever the level of radioactive contamination. Multiple regression analysis was used to establish relationships between ecological features (nematodes abundance and family diversity, indices of ecosystem structure and function) to the environmental characteristics (TDR and soil physico-chemical properties). No evidence was found that nematode total abundance and family diversity were impaired by the radiological contamination. However, the Nematode Channel Ratio (defining the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR suggesting that the radioactive

  2. Excretory/secretory products of anisakid nematodes

    DEFF Research Database (Denmark)

    Mehrdana, Foojan; Buchmann, Kurt

    2017-01-01

    Parasites from the family Anisakidae are widely distributed in marine fish populations worldwide and mainly nematodes of the three genera Anisakis, Pseudoterranova and Contracaecum have attracted attention due to their pathogenicity in humans. Their life cycles include invertebrates and fish as i...

  3. Effect of Opuntia ficus-indica flowers maceration on quality and on heat stability of olive oil.

    Science.gov (United States)

    Ammar, Imène; BenAmira, Amal; Khemakem, Ibtihel; Attia, Hamadi; Ennouri, Monia

    2017-05-01

    This study was focused on the evaluation of the quality and the oxidative stability of olive oil added with Opuntia ficus - indica flowers. Two different amounts of O. ficus - indica flowers were considered 5 and 15% (w/w). The olive oils were evaluated towards their quality, fatty acids profile, total phenol contents and thermal properties by differential scanning calorimetry. The oxidative stability was also monitored by employing the Rancimat and the oven test based on accelerating the oxidation process during storage. The addition of O. ficus - indica flowers induced an increase in free acidity values and a variation in fatty acids profile of olive oils but values remained under the limits required for an extra-virgin olive oil. The obtained olive oils were nutritionally enriched due to the increase in their phenols content. The oxidative stability was generally improved, mainly in olive oil enriched with 5% Opuntia ficus - indica flowers. These findings proved that this enriched olive oil could be considered as a product with a greater added value.

  4. Renewable energy sources from Michelia champaca and Garcinia indica seed oils: A rich source of oil

    International Nuclear Information System (INIS)

    Hosamani, K.M.; Hiremath, V.B.; Keri, R.S.

    2009-01-01

    Michelia champaca and Garcinia indica seeds yielded 45.0% and 45.5% of oil. The fatty acid profiles of both the seed oils were examined. The saponification value (SV), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of both the seed oils were empirically determined. The saponification value (SV) and iodine value (IV) are in good agreement with the experimentally observed values. The fatty acid compositions, iodine value and cetane number were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Thus, the fatty acid methyl esters of seed oils of M. champaca and G. indica were found to be the most suitable biodiesel and they meet the major specification of biodiesel standards. The selected plants M. champaca and G. indica have great potential for biodiesel. M. champaca and G. indica seed oils were found to contain keto fatty acids along with the other normal fatty acids, respectively. These fatty acids have been detected and characterized by UV, FTIR, 1 H NMR, 13 C NMR, MS, GC techniques and chemical transformations

  5. Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Power, Deborah M

    2014-01-01

    Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.

  6. Three Nematode Species Recovered from Terrestrial Snakes in Republic of Korea.

    Science.gov (United States)

    Choe, Seongjun; Lim, Junsik; Kim, Hyun; Kim, Youngjun; Kim, Heejong; Lee, Dongmin; Park, Hansol; Jeon, Hyeong-Kyu; Eom, Keeseon S

    2016-04-01

    The majority of parasitological studies of terrestrial snakes in Korea have focused on zoonotic parasites. However, in the present study, we describe 3 unrecorded nematode species recovered from 5 species of snakes (n=6) in Korea. The examined snakes, all confiscated from illegal hunters, were donated by the Chungnam Wild Animal Rescue Center and Korean Broadcasting System in July 2014 and February 2015. Light and scanning electron microscopies on the shapes of spicules that are either bent or straight (kalicephalids) and the presence of the intestinal cecum (ophidascarids) figured out 3 nematodes; Kalicephalus brachycephalus Maplestone, 1931, Kalicephalus sinensis Hsü, 1934, and Ophidascaris excavata Hsü and Hoeppli, 1934. These 3 species of nematode faunas are recorded for the first time in Korea.

  7. Some Plant Parasitic Nematodes of Fruit Trees in Northern Khorasan Province, Iran

    Directory of Open Access Journals (Sweden)

    N. Heidarzadeh

    2017-08-01

    Full Text Available Introduction: Nematodes (Phylum Nematoda are considered as one of the most abundant and diverse animals on earth. They are found in terrestrial, freshwater, brackish, and marine environments and play important ecological roles in soil ecosystems. The order Tylenchida includes the largest and economically most important group of plant-parasitic nematodes so they have always received ample taxonomic attention. Many plant parasitic nematode species are important pests of fruit trees. They damage the plant by directly attacking roots and subsequently predisposing them to secondary infections by bacteria, fungi by causing replant and pre-plant problems of orchards and also by transmission of viruses. Plant parasitic nematodes feed on a plant root system, ability to take up water and minerals and to transport nutrients to the shoot. This restricts root growth reduce plant vitality and inhibits shoot growth, the combination of which results in decreased in quality and yield. The economically most important species belong to the genera Meloidogyne, Pratylenchus, criconemella, Logidorus, Xiphinema, Trichodorus and Paratrichodorus and are widely distributed in fruit orchards throughout the world. Nematode species are classically defined on the basis of these qualitative and quantitative characters. Although morphological information might help species diagnostics, these characters are homoplasious features in many cases and do not adequately consider the possibility of convergent evolution. As a result, new species descriptions are increasingly supported by molecular evidence. However, the study of morphology remains a critical necessity as morphology is the primary interface of an organism with its environment with key implications for development and ecology. Therefore, a more robust phylogeny based on a combination of morphological and molecular approaches is needed to clarify important relationships within Tylenchomorpha. The purpose of the present

  8. Study on the acaricidal effects of Azadirachta indica and Phytolacca ...

    African Journals Online (AJOL)

    ta indica (neem) and Phytolacca dodecandra (locally known endod in Ethiopia) on. Amblyomma ... Even though, the use of acaricdes is still the basic procedure for controlling most ticks and ecto- ..... The insecticidal and acaricidal action of.

  9. Hepatoprotective and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice.

    Science.gov (United States)

    Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar; Namasivayam, Elangovan

    2014-01-01

    To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl 2 ) induced toxicity in Swiss albino mice. Toxicity in mice was induced with HgCl 2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24.

  10. Biology and control of the raspberry crown borer (Lepidoptera: Sesiidae).

    Science.gov (United States)

    McKern, Jacquelyn A; Johnson, Donn T; Lewis, Barbara A

    2007-04-01

    This study explored the biology of raspberry crown borer, Pennisetia marginata (Harris) (Lepidoptera: Sesiidae), in Arkansas and the optimum timing for insecticide and nematode applications. The duration of P. marginata's life cycle was observed to be 1 yr in Arkansas. Insecticide trials revealed that bifenthrin, chlorpyrifos, imidacloprid, metaflumizone, and metofluthrin efficacy were comparable with that of azinphosmethyl, the only labeled insecticide for P. marginata in brambles until 2005. Applications on 23 October 2003 for plots treated with bifenthrin, chlorpyrifos, and azinphosmethyl resulted in >88% reduction in larvae per crown. Applications on 3 November 2004 of metaflumizone, metofluthrin, and bifenthrin resulted in >89% reduction in larvae per crown. Applications on 7 April 2005 for metofluthrin, imidacloprid, bifenthrin, metaflumizone, and benzoylphenyl urea resulted in >64% reduction in the number of larvae per crown. Applications on 6 May 2004 did not reduce larval numbers. The optimum timing for treatments was found to be between October and early April, before the larvae tunneled into the crowns of plants. Applying bifenthrin with as little as 468 liters water/ha (50 gal/acre) was found to be as effective against larvae as higher volumes of spray. Nematode applications were less successful than insecticides. Nematode applications of Steinernemafeltiae, Steinernema carpocapsae, and Heterorhabditis bacteriophora reduced larvae counts per plant by 46, 53, and 33%, respectively.

  11. Mantis indica Mukherjee, 1995: a synonym of Statilia nemoralis (Saussure, 1870 (Insecta: Mantodea

    Directory of Open Access Journals (Sweden)

    P. Chatterjee

    2014-10-01

    Full Text Available Mantis indica (Mukherjee, 1995 was erected on the basis of some distinctive characters. Based on morphological characters, it was supposed to belong to the genus Statilia (Roy (1999: 163. However, in the absence of the knowledge of the structure of genitalia, its species status remained confusing. A further study on the structure of genitalia revealed that Mantis indica (Mukherjee, 1995 is undoubtedly a synonym of Statilia nemoralis (Saussure, 1870. A table is provided to compare significant features of related species. Colour photographs of holotype and genitalia of comparable species are also provided.

  12. Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats.

    Science.gov (United States)

    Reddy, J Suresh; Rao, P Rajeswara; Reddy, Mada S

    2002-02-01

    The ethanolic extracts of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica were evaluated for their wound healing activity in rats. Wound healing activity was studied using excision and incision wound models in rats following topical application. Animals were divided into four groups with six in each group. Ten percent w/v extract of each plant was prepared in saline for topical application. H. indicum possesses better wound healing activity than P. zeylanicum and A. indica. Tensile strength results indicate better activity of H. indicum on remodeling phase of wound healing.

  13. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na + /K + homeostasis under salt stress conditions

    KAUST Repository

    Abdelaziz, Mohamed Ewis; Kim, Dongjin; Ali, Shawkat; Fedoroff, Nina V.; Al-Babili, Salim

    2017-01-01

    The mutualistic, endophytic fungus Piriformospora indica has been shown to confer biotic and abiotic stress tolerance to host plants. In this study, we investigated the impact of P. indica on the growth of Arabidopsis plants under normal and salt

  14. Expression of a cystatin transgene in eggplant provides resistance to root-knot nematode, Meloidogyne incognita

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Papolu

    2016-07-01

    Full Text Available Root-knot nematodes (RKN cause substantial yield decline in eggplant and sustainable management options to minimize crop damage due to nematodes are still limited. A number of genetic engineering strategies have been developed to disrupt the successful plant-nematode interactions. Among them, delivery of proteinase inhibitors from the plant to perturb nematode development and reproduction is arguably the most effective strategy. In the present study, transgenic eggplant expressing a modified rice cystatin (OC-IΔD86 gene under the control of the root-specific promoter, TUB-1, was generated to evaluate the genetically modified nematode resistance. Five putative transformants were selected through PCR and genomic Southern blot analysis. Expression of the cystatin transgene was confirmed in all the events using western blotting, ELISA and qPCR assay. Upon challenge inoculation, all the transgenic events exhibited a detrimental effect on RKN development and reproduction. The best transgenic line (a single copy event showed 78.3% inhibition in reproductive success of RKN. Our results suggest that cystatins can play an important role for improving nematode resistance in eggplant and their deployment in gene pyramiding strategies with other proteinase inhibitors could ultimately enhance crop yield.

  15. Determination of Heavy Metals in Leaves of Mangifera Indica ...

    African Journals Online (AJOL)

    USER PC

    ABSTRACT. Concentrations of cadmium, chromium and zinc in leaves of Mangifera indica (Mango), Psidium ... alarm, in some cases, trace heavy metals may accumulate to an ... leaves when released can lead to serious ... shown that it can interact with different hormonal .... 17, 2012. Cadmium Exposure and Bone Mineral.

  16. Azadirachta indica (Neem) Seed Extracts: A Supplement for Culture ...

    African Journals Online (AJOL)

    The effectiveness of Neem seed extracts (Azadirachta indica A. Juss) was tested against Aspergillus niger isolated from soil to determine whether the neem seed extracts will inhibit or enhance the growth of Aspergillus niger . Three different concentrations of neem seed extracts were prepared 10%, 20% and 50%.

  17. Assessment of the insecticidal potency of neem ( Azadirachta Indica ...

    African Journals Online (AJOL)

    The potency of aqueous and methanolic extracts of neem (Azadirachta indica A. Juss) seed kernel, in inhibiting and disrupting development of Anopheles mosquito was assessed in the laboratory. Different concentrations of aqueous and methanolic extracts were tested on eggs, larvae and pupae. Both extracts were found ...

  18. Turbidity removal from surface water using Tamarindus indica crude ...

    African Journals Online (AJOL)

    Plant-based coagulants are potential alternatives to chemical coagulants used in drinking water treatment. This paper examined the turbidity removal efficiency of Tamarindus indica fruit crude pulp extract (CPE) towards evaluating a low-cost option for drinking-water treatment. Laboratory analysis was carried out on high ...

  19. First report of the root-knot nematode Meloidogyne ethiopica on tomato in Slovenia

    NARCIS (Netherlands)

    Sirca, S.; Urek, G.; Karssen, G.

    2004-01-01

    The root-knot nematode Meloidogyne ethiopica Whitehead originally described from Tanzania is also distributed in South Africa, Zimbabwe, and Ethiopia (3). Although this species is a relatively unknown root-knot nematode, M. ethiopica parasitizes several economical important crops, such as tomato,

  20. A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid

    Directory of Open Access Journals (Sweden)

    Grace A. Hoysted

    2017-11-01

    Full Text Available Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L. host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida, and a phloem-sucking herbivore (Myzus persicae. The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests.

  1. Use of mixed cultures of biocontrol agents to control sheep nematodes.

    Science.gov (United States)

    Baloyi, M A; Laing, M D; Yobo, K S

    2012-03-23

    Biological control is a promising non-chemical approach for the control of gastrointestinal nematodes of sheep. Use of combinations of biocontrol agents have been reported to be an effective method to increase the efficacy of biological control effects. In this study, combinations of either two Bacillus thuringiensis (Bt) or Clonostachys rosea (C. rosea) isolates and Bt+C. rosea isolates were evaluated in vitro in microtitre plates for their biocontrol activity on sheep nematodes. The Baermann technique was used to extract the surviving L3 larval stages of intestinal nematodes and counted under a dissecting microscope to determine the larval counts. Results indicate that there was a significant reduction of nematode counts due to combination of biocontrol agents (Pnematodes counts by 72.8%, 64% and 29.8%. The results revealed a control level of 57% when C. rosea isolates P3+P8 were combined. Combination of Bt and C. rosea isolates B10+P8 caused the greatest mortality of 76.7%. Most combinations were antagonistic, with only a few combinations showing an additive effect. None were synergistic. The isolate combinations were more effective than when isolates were used alone. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. [Controlling effect of antagonist bioorganic fertilizer on tomato root-knot nematode].

    Science.gov (United States)

    Zhu, Zhen; Chen, Fang; Xiao, Tong-jian; Wang, Xiao-hui; Ran, Wei; Yang, Xing-ming; Shen, Qi-rong

    2011-04-01

    Indoor in vitro culture experiment and greenhouse pot experiment were conducted to evaluate the capabilities of three bacterial strains XZ-173 (Bacillus amyloliquefaciens), SL-25 (B. gibsonii), and KS-62 (Paenibacillus polymyxa) that can hydrolyze collagen protein in controlling tomato root-knot nematode. In the in vitro culture experiment, suspensions of XZ-173, SL-25, and KS-62 induced a mortality rate of 75.9%, 66.7%, and 50.0% to the second-stage junior nematode within 24 h, and decreased the egg hatching rate to 17.8%, 28.9% and 37.6% after 7-day incubation, respectively, in contrast to the 17.4% mortality rate and 53.6% egg hatching rate in the control (sterilized water). In the greenhouse pot experiment, the bioorganic fertilizer mixed with equal parts of fermented XZ-173, SL-25, and KS-62 gained the best result, with the root-knot nematode population in rhizosphere soil decreased by 84.0% as compared with the control. The bioorganic fertilizer also decreased the numbers of galls and eggs on tomato roots significantly, and increased the underground and aboveground biomass of tomato. Therefore, antagonist bioorganic fertilizer has promising potential in controlling root-knot nematode.

  3. Application of PCR-DGGE method for identification of nematode communities in pepper growing soil

    OpenAIRE

    Nguyen, Thi Phuong; Ha, Duy Ngo; Nguyen, Huu Hung; Duong, Duc Hieu

    2017-01-01

    Soil nematodes play an important role in indication for assessing soil environments and ecosystems. Previous studies of nematode community analyses based on molecular identification have shown to be useful for assessing soil environments. Here we applied PCR-DGGE method for molecular analysis of five soil nematode communities (designed as S1 to S5) collected from four provinces in Southeastern Vietnam (Binh Duong, Ba Ria Vung Tau, Binh Phuoc and Dong Nai) based on SSU gene. By sequencing DNA ...

  4. Nutritional requirements for soybean cyst nematode

    Science.gov (United States)

    Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean producers confront. This obligate parasi...

  5. Natural product synthesis: Making nematodes nervous

    Science.gov (United States)

    Snyder, Scott A.

    2011-06-01

    A highly inventive route for the synthesis of a key substance that stimulates potato cyst nematodes to hatch has been developed. This discovery has potential to impact food supplies, as treatment of crops with this compound could alleviate the devastating effect of these parasites.

  6. Cactus (Opuntia ficus indica f. inermis) fruit juice protects against ...

    African Journals Online (AJOL)

    HICHEM

    2013-12-18

    Dec 18, 2013 ... A putative beneficial effect of Opuntia ficus indica f. inermis prickly pear ... peroxidation levels were also increased in animals given ethanol compared to the controls. ..... mechanisms are suggested in this study to explain the.

  7. (CI 42053) from an aqueous solution using Azadirachta indica leaf

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... ... 42053) from an aqueous solution using Azadirachta indica leaf powder as a low- ... and biodegradable effective adsorbents. They were ob- tained from ... pesticide. The trees are also known as an air purifier. The medicinal.

  8. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    Science.gov (United States)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  9. Evaluation of Clonostachys rosea for Control of Plant-Parasitic Nematodes in Soil and in Roots of Carrot and Wheat.

    Science.gov (United States)

    Iqbal, Mudassir; Dubey, Mukesh; McEwan, Kerstin; Menzel, Uwe; Franko, Mikael Andersson; Viketoft, Maria; Jensen, Dan Funck; Karlsson, Magnus

    2018-01-01

    Biological control is a promising approach to reduce plant diseases caused by nematodes. We tested the effect of the fungus Clonostachys rosea strain IK726 inoculation on nematode community composition in a naturally nematode infested soil in a pot experiment, and the effect of C. rosea on plant health. The numbers of plant-parasitic nematode genera extracted from soil and plant roots decreased by 40 to 73% when C. rosea was applied, while genera of nonparasitic nematodes were not affected. Soil inoculation of C. rosea increased fresh shoot weight and shoot length of wheat plants by 20 and 24%, respectively, while only shoot dry weight increased by 48% in carrots. Light microscopy of in vitro C. rosea-nematode interactions did not reveal evidence of direct parasitism. However, culture filtrates of C. rosea growing in potato dextrose broth, malt extract broth and synthetic nutrient broth exhibited toxicity toward nematodes and immobilized 57, 62, and 100% of the nematodes, respectively, within 48 h. This study demonstrates that C. rosea can control plant-parasitic nematodes and thereby improve plant growth. The most likely mechanism responsible for the antagonism is antibiosis through production of nematicidal compounds, rather than direct parasitism.

  10. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Jones, John T; Urwin, Peter E

    2014-09-01

    Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  11. Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments.

    Directory of Open Access Journals (Sweden)

    Punyasloke Bhadury

    Full Text Available Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99-100% and unpublished high-throughput 454 environmental datasets (>95%. BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions.

  12. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar): A Mesocosm Experiment

    International Nuclear Information System (INIS)

    Villenave, C.; Kichenin, E.; Djigal, D.; Blanchart, E.; Rabary, B.; Djigal, D.

    2010-01-01

    Free-living nematodes present several characteristics that have led to their use as bio indicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean) were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders) was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  13. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Cécile Villenave

    2010-01-01

    Full Text Available Free-living nematodes present several characteristics that have led to their use as bioindicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  14. Entomopathogenic nematodes in the European biocontrol market.

    Science.gov (United States)

    Ehlers, R U

    2003-01-01

    In Europe total revenues in the biocontrol market have reached approximately 200 million Euros. The sector with the highest turn-over is the market for beneficial invertebrates with a 55% share, followed by microbial agents with approximately 25%. Annual growth rates of up to 20% have been estimated. Besides microbial plant protection products that are currently in the process of re-registration, several microbial products have been registered or are in the process of registration, following the EU directive 91/414. Entomopathogenic nematodes (EPN) are exceptionally safe biocontrol agents. Until today, they are exempted from registration in most European countries, the reason why SMEs were able to offer economically reasonable nematode-based products. The development of technology for mass production in liquid media significantly reduced the product costs and accelerated the introduction of nematode products in tree nurseries, ornamentals, strawberries, mushrooms, citrus and turf. Progress in storage and formulation technology has resulted in high quality products which are more resistant to environmental extremes occurring during transportation to the user. The cooperation between science, industry and extension within the EU COST Action 819 has supported the development of quality control methods. Today four companies produce EPN in liquid culture, offering 8 different nematode species. Problems with soil insects are increasing. Grubs, like Melolontha melolontha and other scarabaeidae cause damage in orchards and turf. Since the introduction of the Western Corn Rootworm Diabrotica virgifera into Serbia in 1992, this pests as spread all over the Balkan Region and has reached Italy, France and Austria. These soil insect pests are potential targets for EPN. The development of insecticide resistance has opened another sector for EPN. Novel adjuvants used to improve formulation of EPN have enabled the foliar application against Western Flower Thrips and Plutella

  15. Proximate composition, phytochemical screening, GC-MS studies of biologically active cannabinoids and antimicrobial activities of Cannabis indica

    Directory of Open Access Journals (Sweden)

    Muhammad Saqib Isahq

    2015-11-01

    Full Text Available Objective: To investigate the proximate composition, minerals analysis, phytochemical screening, gas chromatography-mass spectrometry (GC-MS studies of active cannabinoids and antimicrobial activities of Cannabis indica (C. indica leaves, stems, and seeds. Methods: Standard qualitative protocols of phytochemical screening were accomplished for the identification of biologically active phytochemicals. Minerals in plant samples were analyzed by using atomic absorption spectrophotometer. The resins of C. indica were analyzed for medicinally active cannabinoid compounds by GC-MS. The sample for GC-MS study was mixed with small quantity of n-hexane and 30 mL of acetonitrile solution for the identification of cannabinoids. Agar well diffusion method was used for antibacterial activity. For antifungal activity, the tested fungal strains were sub-cultured on Sabouraud’s dextrose agar at 28 °C. Results: Mineral analysis revealed the presence of sodium, potassium, magnesium and some other minerals in all parts of C. indica. Phytochemical investigation showed the presence of alkaloids, saponins, tannins, flavonoids, sterols and terpenoids. C. indica divulged wide spectrum of antibacterial activities against Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, and Proteus mirabilis. The extracts of plant leaves, seeds and stems showed significant antifungal activities against Aspergillus niger, Aspergillus parasiticus, and Aspergillus oryzae. The biologically active cannabinoids of delta-9-tetrahydrocannabinol (25.040% and cannabidiol (resorcinol, 2-p-mentha-1,8-dien-4-yl-5-pentyl (50.077% were found in Cannabis resin in high percentage. Conclusions: The findings of the study suggested that the existence of biologically active remedial cannabinoids in elevated concentrations and antimicrobial bioassays of C. indica make it a treasured source to be used in herbal preparation for various ailments.

  16. Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion

    NARCIS (Netherlands)

    Geisen, S.; Snoek, B.; Ten Hooven, F.C.; Duyts, H.; Kostenko, O.; Bloem, Janneke; Martens, H.J.; Quist, C.W.; Helder, Johannes; van der Putten, W.H.

    2018-01-01

    Below‐ground nematodes are important for soil functioning, as they are ubiquitous and operate at various trophic levels in the soil food web. However, morphological nematode community analysis is time consuming and requires ample training. qPCR‐based nematode identification techniques are well

  17. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.).

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Rodríguez-Rodríguez, César; Gutiérrez-Uribe, Janet A; Cepeda-Cañedo, Eduardo; Serna-Saldívar, Sergio O

    2017-08-22

    Isorhamnetin glycosides are representative compounds of Opuntia ficus-indica that possess different biological activities. There is slight information about the changes in bioaccessibility induced by the glycosylation pattern of flavonoids, particularly for isorhamnetin. In this study, the bioaccessibility and permeability of isorhamnetin glycosides extracted from O. ficus-indica were contrasted with an isorhamnetin standard. Also, the plasma stability of these isorhamnetin glycosides after intravenous administration in rats was evaluated. Recoveries of isorhamnetin after oral and gastric digestion were lower than that observed for its glycosides. After intestinal digestion, isorhamnetin glycosides recoveries were reduced to less than 81.0%. The apparent permeability coefficient from apical (AP) to basolateral (BL) direction (Papp (AP-BL) ) of isorhamnetin was 2.6 to 4.6-fold higher than those obtained for its glycosides. Isorhamnetin diglycosides showed higher Papp (AP-BL) values than triglycosides. Sugar substituents affected the Papp (AP-BL) of the triglycosides. Isorhamnetin glycosides were better retained in the circulatory system than the aglycone. After intravenous dose of the isorhamnetin standard, the elimination half-life was 0.64 h but increased to 1.08 h when the O. ficus-indica extract was administered. These results suggest that isorhamnetin glycosides naturally found in O. ficus-indica could be a controlled delivery system to maintain a constant plasmatic concentration of this important flavonoid to exert its biological effects in vivo.

  18. Investigation on the infection mechanism of the fungus Clonostachys rosea against nematodes using the green fluorescent protein.

    Science.gov (United States)

    Zhang, Lin; Yang, Jinkui; Niu, Qiuhong; Zhao, Xuna; Ye, Fengping; Liang, Lianming; Zhang, Ke-Qin

    2008-04-01

    The fungus Clonostachys rosea (syn. Gliocladium roseum) is a potential biocontrol agent. It can suppress the sporulation of the plant pathogenic fungus Botrytis cinerea and kill pathogenic nematodes, but the process of nematode pathogenesis is poorly understood. To help understand the underlying mechanism, we constructed recombinant strains containing a plasmid with both the enhanced green fluorescent protein gene egfp and the hygromycin resistance gene hph. Expression of the green fluorescent protein (GFP) was monitored using fluorescence microscopy. Our observations reveal that the pathogenesis started from the adherence of conidia to nematode cuticle for germination, followed by the penetration of germ tubes into the nematode body and subsequent death and degradation of the nematodes. These are the first findings on the infection process of the fungal pathogen marked with GFP, and the developed method can become an important tool for studying the molecular mechanisms of nematode infection by C. rosea.

  19. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO; 1550 clusters were assigned enzyme commission (EC numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to

  20. Morphological and morphometric features of nematode-cysts in Gymnotus inaequilabiatus liver in the Brazilian Pantanal

    Directory of Open Access Journals (Sweden)

    Gizela Melina Galindo

    2017-08-01

    Full Text Available Abstract The aim of this study was to determine the morphometric measures and morphological aspects of nematode-cysts in Gymnotus inaequilabiatus, and the presence of melanomacrophage centers (MMCs associated with the periphery of cysts and in the liver parenchyma. Adult specimens, 34 female (123.1 ± 43.9g and 45 male (135.5 ± 43.4g, from Paraguay River, Corumbá, Brazil, were used. The number of nematode-cysts was determined in 79 livers and 25 of them randomly selected for histopathological analysis and morphometric measures of nematode-cysts (mean diameter, thickness of collagen layer, and cyst-wall layer. The percentage of cysts with MMCs on the periphery and density in the liver parenchyma was estimated. The average number of macroscopic cysts was of 48.7 ± 2.78. Granulomatous reaction was observed surrounding the cysts. Diameter, collagen layer and cyst-wall measurements were 293.0 ± 75.18 (µm, 17.72 ± 6.01 (µm and 12.21 ± 9.51 (µm, respectively. The number of nematode-cysts was correlated with hepatosomatic index, (r=0.26, P<0.05. Collagen layer was correlated with cyst diameter (r=0.62, P<0.01. Pericystic and parenchymatous MMCs were moderately (r=0.48 and highly (r=0.90 correlated with nematode-cysts number. Morphological characteristics of hepatic tissue and cysts-nematodes measures suggest that G. inaequilabiatus acts as a paratenic host to nematodes in the larval stage.