WorldWideScience

Sample records for nematode resistance gene

  1. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Science.gov (United States)

    Dutta, Tushar K.; Papolu, Pradeep K.; Banakar, Prakash; Choudhary, Divya; Sirohi, Anil; Rao, Uma

    2015-01-01

    Root-knot nematodes (Meloidogyne incognita) cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco, and soybean) that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1), was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60–80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants. PMID:25883594

  2. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  3. Functional Characterization of Mi, a Root-knot Nematode Resistance Gene from Tomato( Lycopersicon esculentum L.)

    Institute of Scientific and Technical Information of China (English)

    Ru-Gang Chen; Li-Ying Zhang; Jun-Hong Zhang; Wei Zhang; Xue Wang; Bo Ouyang; Han-Xia Li; Zhi-Biao Ye

    2006-01-01

    Root-knot nematodes (Meloidogyne spp.) cause major economic damage to numerous crop species around the world. Plant resistance is the most important attribute that is able to suppress invasion by the rootknot nematodes. In the present study, a candidate root-knot nematode resistance gene (Mi) was isolated from the resistant tomato (Lycopersicon esculentum L.) line RN-1. Expression profiling analysis revealed that this gene was expressed specifically in the roots, stems, and leaves, but not in the flowers or fruits.To verify the real function of this candidate gene, both sense and inteference RNA (RNAi) vectors were constructed. We obtained 31 transgenic plants with between one and seven copies of T-DNA inserts of sense Mi from two nematode-susceptible tomato cultivars as assayed by polymerase chain reaction (PCR)and Southern blotting analysis. Reverse transcription-PCR analysis revealed that expression levels of the Mi gene varied in different transgenic plants. Nematode assays showed that the resistance to root-knot nematodes was significantly improved in some transgenic lines compared with untransformed susceptible controls and that the resistance was heritable in selfed progeny. Loss of function via RNAi further confirmed the role of the Mi gene and the original resistant lines became susceptible to root-knot nematodes.

  4. Confirmation of root-knot nematode resistant gene Rmi1 using SSR markers

    Directory of Open Access Journals (Sweden)

    Musarrat Ramzan

    2017-02-01

    Full Text Available Background: The Root Knot Nematode (RKN is a serious economic threat to various cultivated crops worldwide. It is a devastating pest of soybean and responsible to cause severe yield loss in Pakistan. The cultivation of resistant soybean varieties against this pest is the sustainable strategy to manage the heavy loss and increase yield. There is an utmost need to identify RKN resistant varieties of soybean against cultivated in Pakistan. The presented study is an attempt to identify and confirm the presence of resistant gene Rmi1 in soybean. Method: Molecular studies have been done using Simple Sequence Repeat (SSR marker system to identify resistant soybean varieties against Root Knot Nematode (RKN using fifteen (15 indigenous cultivars and four (4 US cultivars. DNA was isolated, purified, quantified and then used to employ various SSR markers. The amplified product is observed using gel documentation system after electrophoresis. Results: Diagnostic SSR markers Satt-358 and Satt-492 have shown the presence of Rmi1 gene in all resistance carrying genotypes. Satt-358 amplified the fragment of 200 bp and Satt-492 generated 232 bp bands in all resistant genotypes. This study confirmed the Rmi gene locus (G248A-1 in all internationally confirmed resistant including six (6 native varieties. Conclusion: These investigations have identified six (6 resistant cultivars revealing the effective and informative sources that can be utilized in breeding programs for the selection of RKN resistance soybean genotypes in Pakistan.

  5. Identification of virus and nematode resistance genes in the Chilota Potato Genebank of the Universidad Austral de Chile

    Directory of Open Access Journals (Sweden)

    Marlon López

    2015-09-01

    Full Text Available Potato Genebank of the Universidad Austral de Chile (UACh is an important gene bank in Chile. The accessions collected all over the country possess high genetic diversity, present interesting agronomic and cooking traits, and show resistance to biotic and abiotic stress. A particularly interesting subgroup of the gene bank includes the accessions collected in the South of Chile, the Chilota Potato Genebank. The focus of this study is the identification of virus and nematode resistant genes in potatoes (Solatium tuberosum L., using the RYSC3 and YES3-3B molecular markers. The Potato virus Y(PVY resistance genes Ry adg and Ry sto were identified. Furthermore, the CP60 marker was used to assess the Rx resistance gene that confers resistance to Potato virus X (PVX. In addition, the HC and GRO1-4 markers were utilized to identify the GpaVvrn_QTL and Gro1-4, resistance genes of Globodera pallida and Globodera rostochiensis, respectively. Both G. pallida and G. rostochiensis are Potato Cyst Nematodes (PCN. The plant material used in this study included leaves from 271 accessions of the gene bank. These samples were collected in the field where natural pathogen pressure of potential viruses and diseases exists. ELISA assays were run for field detection of PVY and PVX. However, there have been no previous reports of nematode presence in the plant material. The results herein presented indicate presence of virus and nematode resistance genes in accessions of the Chilota Potato Genebank. In terms of virus resistance, 99 accessions out of the 271 tested possess the Ry adg resistance gene and 17 accessions of these 271 tested have the Ry sto resistance gene. Also, 10 accessions showed positive amplification of the Rxl resistant gene marker. As to nematode resistance, 99 accessions have possible resistance to G. pallida and 54 accessions show potential resistance to G. rostochiensis as detected using the available molecular markers.

  6. Transgenic Nicotiana tabacum cultivar Samsun plants carrying the wild sugar beet Hs1pro1 gene have resistance to root-knot nematodes

    OpenAIRE

    SÖNMEZ, Çağla; ELEKCİOĞLU, İbrahim Halil; YÜCEL, Ayşe Meral; ÖKTEM, Hüseyin Avni

    2014-01-01

    Nematodes are the principal animal parasites of plants, causing annual crop losses of more than US100 billion worldwide. Conventional control measures against nematode infection include toxic nematicide application to soil, crop rotation practices, and classical breeding approaches. However, due to the limitations of each technique, biotechnology presents itself as an effective alternative in nematode control. To date, several resistance genes against nematodes have been cloned. One such gene...

  7. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode

    Science.gov (United States)

    Liu, Shiming; Kandoth, Pramod K.; Lakhssassi, Naoufal; Kang, Jingwen; Colantonio, Vincent; Heinz, Robert; Yeckel, Greg; Zhou, Zhou; Bekal, Sadia; Dapprich, Johannes; Rotter, Bjorn; Cianzio, Silvia; Mitchum, Melissa G.; Meksem, Khalid

    2017-01-01

    Two types of resistant soybean (Glycine max (L.) Merr.) sources are widely used against soybean cyst nematode (SCN, Heterodera glycines Ichinohe). These include Peking-type soybean, whose resistance requires both the rhg1-a and Rhg4 alleles, and PI 88788-type soybean, whose resistance requires only the rhg1-b allele. Multiple copy number of PI 88788-type GmSNAP18, GmAAT, and GmWI12 in one genomic segment simultaneously contribute to rhg1-b resistance. Using an integrated set of genetic and genomic approaches, we demonstrate that the rhg1-a Peking-type GmSNAP18 is sufficient for resistance to SCN in combination with Rhg4. The two SNAPs (soluble NSF attachment proteins) differ by only five amino acids. Our findings suggest that Peking-type GmSNAP18 is performing a different role in SCN resistance than PI 88788-type GmSNAP18. As such, this is an example of a pathogen resistance gene that has evolved to underlie two types of resistance, yet ensure the same function within a single plant species. PMID:28345654

  8. Resistance to root-knot nematodes (Meloidogyne spp. in tomato: Mi gene and occurrence of virulent populations

    Directory of Open Access Journals (Sweden)

    Gökhan AYDINLI

    2015-12-01

    Full Text Available Root-knot nematodes (Meloidogyne spp. are one of the most important agricultural pests that cause serious yield losses in tomato. Resistant tomato cultivars have commonly been used in both conventional and organic agriculture. In tomato, resistance to three most prevalent species of root-knot nematode, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, is controlled by the Mi-1 gene. However, there are two major limiting factors for efficiency of Mi-1 gene: High soil temperature and occurrence of resistance-breaking (virulent populations. These populations can emerge either naturally or after repeated exposure on tomatoes with Mi-1 gene. This review summarizes information on some strategies to prevent the emergence of virulent populations and to preserve the durability of plant resistance to Mi-1 gene.

  9. Differential expression of TIR-like genes embedded in the M1-1 gene cluster in nematode-resistant and -susceptible tomato roots

    NARCIS (Netherlands)

    Seifi Abdolabad, A.R.; Visser, R.G.F.; Bai, Y.

    2011-01-01

    Transport inhibitor 1 (TIR1) is an auxin receptor that plays a pivotal role in auxin signaling. It has been reported that TIR-like genes are present in a gene cluster carrying the Mi-1 gene which confers resistance to nematodes, aphids and whiteflies. Since auxin is involved in the pathogenicity of

  10. Differential expression of TIR-like genes embedded in the M1-1 gene cluster in nematode-resistant and -susceptible tomato roots

    NARCIS (Netherlands)

    Seifi Abdolabad, A.R.; Visser, R.G.F.; Bai, Y.

    2011-01-01

    Transport inhibitor 1 (TIR1) is an auxin receptor that plays a pivotal role in auxin signaling. It has been reported that TIR-like genes are present in a gene cluster carrying the Mi-1 gene which confers resistance to nematodes, aphids and whiteflies. Since auxin is involved in the pathogenicity of

  11. Effects of Php Gene-Associated versus Induced Resistance to Tobacco Cyst Nematode in Flue-Cured Tobacco

    Science.gov (United States)

    Johnson, Charles S.; Eisenback, Jon D.

    2009-01-01

    Effects of the systemic acquired resistance (SAR)-inducing compound acibenzolar-S-methyl (ASM) and the plant-growth promoting rhizobacterial mixture Bacillus subtilis A13 and B. amyloliquefaciens IN937a (GB99+GB122) were assessed on the reproduction of a tobacco cyst nematode (TCN- Globodera tabacum solanacearum) under greenhouse conditions. Two sets of two independent experiments were conducted, each involving soil or root sampling. Soil sample experiments included flue-cured tobacco cultivars with (Php+: NC71 and NC102) and without (Php-: K326 and K346) a gene (Php) suppressing TCN parasitism. Root sample experiments examined TCN root parasitism of NC71 and K326. Cultivars possessing the Php gene (Php+) were compared with Php- cultivars to assess the effects of resistance mediated via Php gene vs. induced resistance to TCN. GB99+GB122 consistently reduced nematode reproductive ratio on both Php+ and Php- cultivars, but similar effects of ASM across Php- cultivars were less consistent. In addition, ASM application resulted in leaf yellowing and reduced root weight. GB99+GB122 consistently reduced nematode development in roots of both Php+ and Php- cultivars, while similar effects of ASM were frequently less consistent. The results of this study indicate that GB99+GB122 consistently reduced TCN reproduction in all flue-cured tobacco cultivars tested, while the effects of ASM were only consistent in Php+ cultivars. Under most circumstances, GB99+GB122 suppressed nematode reproduction more consistently than ASM compared to the untreated control. PMID:22736824

  12. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    Science.gov (United States)

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  13. Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field.

    Science.gov (United States)

    Barbary, Arnaud; Djian-Caporalino, Caroline; Palloix, Alain; Castagnone-Sereno, Philippe

    2015-12-01

    Root-knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From a structural point of view, these genes often harbour NBS-LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from wild to cultivated plants remains a challenge for breeders, although facilitated by marker-assisted selection. As shown with other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes and maintain their durability.

  14. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  15. Effects of Ph gene-associated versus induced resistance to tobacco cyst nematode in flue-cured tobacco.

    Science.gov (United States)

    Parkunan, Venkatesan; Johnson, Charles S; Eisenback, Jon D

    2009-12-01

    Effects of the systemic acquired resistance (SAR)-inducing compound acibenzolar-S-methyl (ASM) and the plant-growth promoting rhizobacterial mixture Bacillus subtilis A13 and B. amyloliquefaciens IN937a (GB99+GB122) were assessed on the reproduction of a tobacco cyst nematode (TCN- Globodera tabacum solanacearum) under greenhouse conditions. Two sets of two independent experiments were conducted, each involving soil or root sampling. Soil sample experiments included flue-cured tobacco cultivars with (Ph(p)+: NC71 and NC102) and without (Ph(p)-: K326 and K346) a gene (Ph(p)) suppressing TCN parasitism. Root sample experiments examined TCN root parasitism of NC71 and K326. Cultivars possessing the Ph(p) gene (Ph(p)+) were compared with Ph(p)- cultivars to assess the effects of resistance mediated via Ph(p) gene vs. induced resistance to TCN. GB99+GB122 consistently reduced nematode reproductive ratio on both Ph(p)+ and Ph(p)- cultivars, but similar effects of ASM across Ph(p)- cultivars were less consistent. In addition, ASM application resulted in leaf yellowing and reduced root weight. GB99+GB122 consistently reduced nematode development in roots of both Ph(p)+ and Ph(p)- cultivars, while similar effects of ASM were frequently less consistent. The results of this study indicate that GB99+GB122 consistently reduced TCN reproduction in all flue-cured tobacco cultivars tested, while the effects of ASM were only consistent in Ph(p)+ cultivars. Under most circumstances, GB99+GB122 suppressed nematode reproduction more consistently than ASM compared to the untreated control.

  16. Characterization of nematode resistance genes in the section Procumbentes genus Beta: response to two populations of Heterodera schachtii.

    Science.gov (United States)

    Klinke, A; Müller, J; Wricke, G

    1996-10-01

    Three species of the section Procumbentes genus Beta, nine monosomic additions, and five translocation lines were tested for resistance to two Heterodera schachtii populations. Nematode population 129-v (129-virulent) was selected for virulence to resistance gene(s) transferred from chromosome 1 of Beta procumbens to the diploid resistant sugar beet KWS-NR1. This population is considered to be a pathotype. The unselected sib population 129-av (129-avirulent) was reared continuously on fodder rape, Brassica napus cv Velox. Monosomic additions with chromosome 1 from the three species of the section Procumbentes were susceptible to population 129-v, regardless of the origin of the alien chromosome. Translocations with a gene(s) for resistance from chromosome 7 of B. procumbens and B. webbiana were also susceptible to the pathotype. However, a monosomic addition with chromosome 7 of B. webbiana was resistant to population 129-v. The three wild beets of the section Procumbentes, Beta procumbens, Beta webbiana and Beta patellaris, also were highly resistant to the two populations. The results indicate the existence of just two different major genes for resistance to H. schachtii in the entire Procumbentes section.

  17. The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana.

    Science.gov (United States)

    Thurau, Tim; Kifle, Sirak; Jung, Christian; Cai, Daguang

    2003-06-01

    The Hs1pro-1 gene confers resistance to the beet cyst nematode Heterodera schachtii in sugar beet (Beta vulgaris L.) on the basis of a gene-for-gene relationship. RNA-gel blot analysis revealed that the transcript of Hs1pro-1 was present in uninfected roots of resistant beet at low levels but increased by about fourfold one day after nematode infection. Treatments of plants with external stimuli including salicylic acid, jasmonic acid, gibberellic acid and abscisic acid as well as wounding or salt stress did not result in changes in the gene transcription, indicating de novo transcription of Hs1pro-1 upon nematode infection specifically. To study transcriptional regulation of Hs1pro-1 expression at the cellular level, a 3082 bp genomic fragment representing the Hs1pro-1 promoter, isolated from the YAC-DNA housing the Hs1pro-1 gene, was fused to the beta-glucuronidase reporter gene (1832prm1::GUS) and transformed into susceptible beet roots and Arabidopsis plants, respectively. Fluorometric and histochemical GUS assays on transgenic beet roots and Arabidopsis plants carrying the 1832prm1::GUS construct demonstrated that the Hs1pro-1 promoter is functional in both species and drives a nematode responsive and feeding site-specific GUS-expression. GUS activity was detected as early as at initiation of the nematode feeding sites and GUS staining was restricted to the nematode feeding sites. To delineate the regulatory domains of the Hs1pro-1 promoter, fusion genes with various 5' deletions of the Hs1pro-1 promoter and the GUS gene were constructed and analysed in transgenic beet roots as well. Cis elements responsible for feeding site-specific gene expression reside between -355 and +247 from the transcriptional initiation site of Hs1pro-1 whereas an enhancer region necessary for higher gene expression is located between -1199 and -705 of the promoter. The Hs1pro-1 promoter drives a nematode feeding site-specific GUS expression in both sugar beet and Arabidopsis

  18. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    Science.gov (United States)

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  19. Plant genetic background increasing the efficiency and durability of major resistance genes to root-knot nematodes can be resolved into a few resistance QTLs

    Directory of Open Access Journals (Sweden)

    Arnaud eBarbary

    2016-05-01

    Full Text Available With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes. However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a QTL analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, M. incognita, M. arenaria and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS-LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes.

  20. Towards isolation of the tomato root-knot nematode resistance gene Mi via positional cloning.

    NARCIS (Netherlands)

    Daelen, van R.A.J.J.

    1995-01-01

    Root-knot nematodes of the genus Meloidogyne are severe pathogens of plants and worldwide they cause damage to many economically important crops like potato, rice, cotton, and tomato. So the control of nematodes and the protection of plants against nematode damage are matters of major concern. Some

  1. 植物抗线虫基因与抗性机理研究进展%Advances in genes and mechanisms resistance to nematodes in plants

    Institute of Scientific and Technical Information of China (English)

    叶德友; 陈劲枫

    2012-01-01

    植物寄生线虫是严重危害农业生产的一类重要病原生物,对全球作物产量造成重大损失.抗线虫基因在植物抗线虫反应中发挥重要作用,发掘抗线虫基因并培育抗线虫品种是防治线虫病害的一条有效途径.抗线虫基因的定位与克隆对解析植物抗线虫性的分子机理做出了巨大贡献,明确线虫与寄主植物之间的互作关系及抗线虫机制,可以为制定和采取更加有效的防控策略提供借鉴.%Plant parasitic nematodes are important pathogens causing significant economic losses to crops all over the world. Nematode-resistant genes in plants play an important role against nematodes. The effective measure to control the pests is to investigate genes and screen varieties resistant to nematodes. Mapping and cloning of nema-tode-resistant genes have made a great contribution to clarifying molecular mechanisms involved in plant resistance to nematodes. Underlying interaction between nematodes and plants and its resistance mechanisms are of great interest, which can be helpful for making a more effective strategy for nematode management.

  2. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants.

    Science.gov (United States)

    Silvestre, A; Cabaret, J

    2004-06-01

    In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control)? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation) are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole). Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy) are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial: it is not possible to avoid it, but only to delay its development in farm animal industry.

  3. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants

    Directory of Open Access Journals (Sweden)

    Silvestre A.

    2004-06-01

    Full Text Available In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control ? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole. Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial : it is not possible to avoid it, but only to delay its development in farm animal industry.

  4. Transgenic Strategies for Enhancement of Nematode Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-05-01

    Full Text Available Plant parasitic nematodes (PPNs are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  5. Transgenic Strategies for Enhancement of Nematode Resistance in Plants.

    Science.gov (United States)

    Ali, Muhammad A; Azeem, Farrukh; Abbas, Amjad; Joyia, Faiz A; Li, Hongjie; Dababat, Abdelfattah A

    2017-01-01

    Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  6. Anthelmintic resistance in equine nematodes

    Science.gov (United States)

    Matthews, Jacqueline B.

    2014-01-01

    Anthelmintics have been applied indiscriminately to control horse nematodes for over 40 years. Three broad-spectrum anthelmintic classes are currently registered for nematode control in horses: benzimidazoles (fenbendazole, oxibendazole), tetrahydropyrimidines (pyrantel) and macrocyclic lactones (ivermectin, moxidectin). Generally, control strategies have focused on nematode egg suppression regimens that involve the frequent application of anthelmintics to all horses at intervals based on strongyle egg reappearance periods after treatment. The widespread use of such programmes has substantially reduced clinical disease, especially that associated with large strongyle species; however, high treatment frequency has led to considerable selection pressure for anthelmintic resistance, particularly in cyathostomin species. Field studies published over the last decade indicate that benzimidazole resistance is widespread globally in cyathostomins and there are also many reports of resistance to pyrantel in these worms. Cyathostomin resistance to macrocyclic lactone compounds is emerging, principally measured as a reduction in strongyle egg reappearance time observed after treatment. Ivermectin resistance is a further concern in the small intestinal nematode, Parascaris equorum, an important pathogen of foals. These issues indicate that horse nematodes must now be controlled using methods less dependent on anthelmintic use and more reliant on management practices designed to reduce the force of infection in the environment. Such strategies include improved grazing management integrated with targeted anthelmintic administration involving faecal egg count (FEC)-directed treatments. The latter require that the supporting diagnostic tests available are robust and practically applicable. Recent research has focused on maximising the value of FEC analysis in horses and on optimizing protocols for anthelmintic efficacy testing. Other studies have sought to develop diagnostics

  7. Anthelmintic resistance in equine nematodes

    Directory of Open Access Journals (Sweden)

    Jacqueline B. Matthews

    2014-12-01

    Full Text Available Anthelmintics have been applied indiscriminately to control horse nematodes for over 40 years. Three broad-spectrum anthelmintic classes are currently registered for nematode control in horses: benzimidazoles (fenbendazole, oxibendazole, tetrahydropyrimidines (pyrantel and macrocyclic lactones (ivermectin, moxidectin. Generally, control strategies have focused on nematode egg suppression regimens that involve the frequent application of anthelmintics to all horses at intervals based on strongyle egg reappearance periods after treatment. The widespread use of such programmes has substantially reduced clinical disease, especially that associated with large strongyle species; however, high treatment frequency has led to considerable selection pressure for anthelmintic resistance, particularly in cyathostomin species. Field studies published over the last decade indicate that benzimidazole resistance is widespread globally in cyathostomins and there are also many reports of resistance to pyrantel in these worms. Cyathostomin resistance to macrocyclic lactone compounds is emerging, principally measured as a reduction in strongyle egg reappearance time observed after treatment. Ivermectin resistance is a further concern in the small intestinal nematode, Parascaris equorum, an important pathogen of foals. These issues indicate that horse nematodes must now be controlled using methods less dependent on anthelmintic use and more reliant on management practices designed to reduce the force of infection in the environment. Such strategies include improved grazing management integrated with targeted anthelmintic administration involving faecal egg count (FEC-directed treatments. The latter require that the supporting diagnostic tests available are robust and practically applicable. Recent research has focused on maximising the value of FEC analysis in horses and on optimizing protocols for anthelmintic efficacy testing. Other studies have sought to develop

  8. Comparative Map-based Cloning for Genes Conferring Resistance to Soybean Cyst Nematode

    Institute of Scientific and Technical Information of China (English)

    X.J. Fang; P.T. Gong; J.G. Mu; J.R. Zhao

    2007-01-01

    @@ Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most dangerous disease to cause significant yield losses. Most recent estimates for SCN indicate losses of nearly 9 million metric tons worldwide in 1998 and 3.5 million metric tons in the China in 2004.

  9. Acetylcholinesterase genes in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Combes, D; Fedon, Y; Toutant, J P; Arpagaus, M

    2001-01-01

    Acetylcholinesterase (AChE, EC 3.1.1.7) is responsible for the termination of cholinergic nerve transmission. It is the target of organophosphates and carbamates, two types of chemical pesticides being used extensively in agriculture and veterinary medicine against insects and nematodes. Whereas there is usually one single gene encoding AChE in insects, nematodes are one of the rare phyla where multiple ace genes have been unambiguously identified. We have taken advantage of the nematode Caenorhabditis elegans model to identify the four genes encoding AChE in this species. Two genes, ace-1 and ace-2, encode two major AChEs with different pharmacological properties and tissue repartition: ace-1 is expressed in muscle cells and a few neurons, whereas ace-2 is mainly expressed in motoneurons. ace-3 represents a minor proportion of the total AChE activity and is expressed only in a few cells, but it is able to sustain double null mutants ace-1; ace-2. It is resistant to usual cholinesterase inhibitors. ace-4 was transcribed but the corresponding enzyme was not detected in vivo.

  10. [Allelic state of the molecular marker for the golden nematode (Globodera rostochiensis) resistance gene H1 among Ukrainian and world cultivars of potato (Solanum tuberosum ssp. tuberosum)].

    Science.gov (United States)

    Karelov, A V; Pilipenko, L A; Kozub, N A; Bondus, R A; Borzykh, A U; Sozinov, I A; Blium, Ia B; Sozinov, A A

    2013-01-01

    The purpose of our investigation was determination of allelic state of the H1 resistance gene against the pathotypes Ro1 and Ro4 of golden potato cyst nematode (Globodera rostochiensis) among Ukrainian and world potato (Solanum tuberosum ssp. tuberosum) cultivars. The allelic condition of the TG689 marker was determined by PCR with DNA samples isolated from tubers of potato and primers, one pair of which flanks the allele-specific region and the other one was used for the control of DNA quality. Among analyzed 77 potato cultivars the allele of marker associated with the H1-type resistance was found in 74% of Ukrainian and 90% foreign ones although some of those cultivars proved to be susceptible to the golden potato nematode in field. The obtained data confirm the presence of H1-resistance against golden nematode pathotypes Ro1 and Ro4 among the Ukrainian potato cultivars and efficiency of the used marker within the accuracy that has been declared by its authors.

  11. Genetic analysis of root-knot nematode resistance in potato

    NARCIS (Netherlands)

    Draaistra, J.

    2006-01-01

    The development of potato varieties with resistance towards the potato cyst nematode, allowed a dramatic decrease of the use of nematicides. Subsequently the population of the free living nematodes and the root-knot nematodes ( Meloidogyne spp.) has increased. Among the root-knot nematodes, three Me

  12. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance.

    Science.gov (United States)

    Manosalva, Patricia; Manohar, Murli; von Reuss, Stephan H; Chen, Shiyan; Koch, Aline; Kaplan, Fatma; Choe, Andrea; Micikas, Robert J; Wang, Xiaohong; Kogel, Karl-Heinz; Sternberg, Paul W; Williamson, Valerie M; Schroeder, Frank C; Klessig, Daniel F

    2015-07-23

    Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture.

  13. 甜菜胞囊线虫抗性基因及遗传工程改良策略%The Sugar Beet Cyst Nematode Resistance Genes and Genetic Engineering Improvement Strategy

    Institute of Scientific and Technical Information of China (English)

    章洁琼; 蔡大广; 唐桂香

    2012-01-01

    Cyst nematode ( Heterodera schachtii) is the most important diseases in sugar beet cultivation and it causes great losses to the sugar beet production . With the development of molecular biology and genetic engineering technology, the genetic engineering improvement strategies is the most economical and effective method for sugar beet cyst nematode resistant breeding. It firstly introduced the life of sugar beet cyst nematode fertility and resistant mechanism, then reviewed the studied progresses of beet cyst nematode resistant genes cloning, identification and the genetic engineering improvement strategies for sugar beet cyst nematode resistance breeding. Furthermore, the prospect of sugar beet cyst nematode breeding in the future has also been discussed.%甜菜胞囊线虫(Heterodera schachtii)是甜菜的重要病害之一,给甜菜生产造成了极大的损失.随着分子生物学和遗传工程技术的发展,采用遗传工程改良策略进行甜菜抗性品种选育是甜菜胞囊线虫防治中最经济、有效的方法.介绍了甜菜胞囊线虫的生育史及抗性机制,综述了甜菜胞囊线虫抗性基因的克隆和鉴定研究进展及甜菜胞囊线虫抗性育种的遗传工程改良策略,并提出今后甜菜胞囊线虫抗性育种的展望.

  14. [Resistance to anthelmintics in nematodes in sheep and goats].

    Science.gov (United States)

    Praslicka, J; Corba, J

    1995-08-01

    The article offers a brief view on the most important theoretical knowledge of resistance of gastrointestinal nematodes to anthelmintic drugs in sheep and goats. Besides the definition and basic terms, factors of development and occurrence of resistance on farm are analyzed. Furthermore, methods for detection of resistant nematodes as well as complex of recommended preventive measures are given.

  15. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Sagar Banerjee

    2017-05-01

    Full Text Available Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  16. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes.

    Science.gov (United States)

    Banerjee, Sagar; Banerjee, Anamika; Gill, Sarvajeet S; Gupta, Om P; Dahuja, Anil; Jain, Pradeep K; Sirohi, Anil

    2017-01-01

    Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  17. AFLP and SRAP markers linked to the mj gene for root-knot nematode resistance in cucumber Marcadores AFLP e SRAP ligados ao gene mj para resistência a nematóides causadores de galhas em pepino

    Directory of Open Access Journals (Sweden)

    Zübeyir Devran

    2011-02-01

    Full Text Available Root-knot nematodes (Meloidogyne spp. are an important worldwide pest of cucumber (Cucumis sativus L.. Molecular markers linked to the Javanese root-knot nematode (M. javanica resistance gene mj in cucumber may aid marker assisted selection. One-hundred AFLP (EcoRI-MseI and 112 SRAP were used to screen resistant and susceptible parents for polymorphisms to develop molecular markers linked to the mj gene. Of the 100 AFLP primers, 92 produced bands and two yielded candidate markers (E-ATT/M-CAA and E-AAC/M-CTG. These two bands were cut off from polyacrylamide gel, cloned and sequenced. Primers designed from the sequences did not yield polymorphic bands between the parents. In addition, the sequences did not contain any restriction site or indel to be used to convert them to CAPS or SCAR markers. The two sequences obtained from polymorphic AFLP markers were used primarily to design D1F, D1R, D17F and D17R primers. SRAP forward and reverse primers were used in combination with these four specific primers to search for polymorphisms between parents. Of the 112 primer combinations 11 yielded polymorphisms between parents. MapMaker Exp 3.0 software was used to analyze the 11 markers. Two markers were identified that flanked the mj gene at distance of 16.3 and 19.3 cM. The results indicated that these markers should be useful to develop molecular markers flanking the mj gene.Nematóides causadores de galhas (Meloidogyne spp. em raízes de pepino Cucumis sativus L. são de ocorrência mundial. Marcadores moleculares ligados ao gene mj que confere resistência a M. javanica em pepino podem auxiliar na seleção de plantas em programas de melhoramento genético. Cem AFLP (EcoRI-MseI e 112 SRAP foram usados para a seleção de parentais resistentes e susceptíveis, por meio de polimorfismos, para o desenvolvimento de marcadores moleculares ligados ao gene mj. Entre 100 oligonucleotídeos iniciadores para AFLP, 92 geraram fragmentos amplificados de DNA e

  18. Notice of Release of ‘Truhart-NR’, a Root-knot Nematode Resistant, Pimento-type Pepper

    Science.gov (United States)

    The USDA has developed a high-yielding, pimento-type pepper (Capsicum annuum L.) cultivar that is highly resistant to root-knot nematodes. The new cultivar, Truhart-NR, is homozygous for the dominant N gene that conditions a high level of resistance to the southern root-knot nematode [Meloidogyne i...

  19. Computational and phylogenetic validation of nematode horizontal gene transfer

    OpenAIRE

    Bird David; Scholl Elizabeth H

    2011-01-01

    Abstract Sequencing of expressed genes has shown that nematodes, particularly the plant-parasitic nematodes, have genes purportedly acquired from other kingdoms by horizontal gene transfer. The prevailing orthodoxy is that such transfer has been a driving force in the evolution of niche specificity, and a recent paper in BMC Evolutionary Biology that presents a detailed phylogenetic analysis of cellulase genes in the free-living nematode Pristionchus pacificus at the species, genus and family...

  20. Soybean lines evaluated for resistance to reniform nematode

    Science.gov (United States)

    Seventy-four wild and domestic soybean (Glycine max and G. soja) lines were evaluated for resistance to reniform nematode (Rotylenchulus reniformis) in growth chamber tests with a day length of 16 hours and temperature held constant at 28 C. Several entries for which reactions to reniform nematode w...

  1. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Postnikova, Olga A; Hult, Maria; Shao, Jonathan; Skantar, Andrea; Nemchinov, Lev G

    2015-01-01

    Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp.) are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against these pests and specifically against RKN. In this work, we performed root transcriptome analysis of resistant (cv. Moapa 69) and susceptible (cv. Lahontan) alfalfa cultivars infected with RKN Meloidogyne incognita, widespread root-knot nematode species and a major pest worldwide. A total of 1,701,622,580 pair-end reads were generated on an Illumina Hi-Seq 2000 platform from the roots of both cultivars and assembled into 45,595 and 47,590 transcripts in cvs Moapa 69 and Lahontan, respectively. Bioinformatic analysis revealed a number of common and unique genes that were differentially expressed in susceptible and resistant lines as a result of nematode infection. Although the susceptible cultivar showed a more pronounced defense response to the infection, feeding sites were successfully established in its roots. Characteristically, basal gene expression levels under normal conditions differed between the two cultivars as well, which may confer advantage to one of the genotypes toward resistance to nematodes. Differentially expressed genes were subsequently assigned to known Gene Ontology categories to predict their functional roles and associated biological processes. Real-time PCR validated expression changes in genes arbitrarily selected for experimental confirmation. Candidate genes that contribute to protection against M. incognita in alfalfa were proposed and alfalfa-nematode interactions with respect to resistance

  2. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita.

    Directory of Open Access Journals (Sweden)

    Olga A Postnikova

    Full Text Available Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp. are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against these pests and specifically against RKN. In this work, we performed root transcriptome analysis of resistant (cv. Moapa 69 and susceptible (cv. Lahontan alfalfa cultivars infected with RKN Meloidogyne incognita, widespread root-knot nematode species and a major pest worldwide. A total of 1,701,622,580 pair-end reads were generated on an Illumina Hi-Seq 2000 platform from the roots of both cultivars and assembled into 45,595 and 47,590 transcripts in cvs Moapa 69 and Lahontan, respectively. Bioinformatic analysis revealed a number of common and unique genes that were differentially expressed in susceptible and resistant lines as a result of nematode infection. Although the susceptible cultivar showed a more pronounced defense response to the infection, feeding sites were successfully established in its roots. Characteristically, basal gene expression levels under normal conditions differed between the two cultivars as well, which may confer advantage to one of the genotypes toward resistance to nematodes. Differentially expressed genes were subsequently assigned to known Gene Ontology categories to predict their functional roles and associated biological processes. Real-time PCR validated expression changes in genes arbitrarily selected for experimental confirmation. Candidate genes that contribute to protection against M. incognita in alfalfa were proposed and alfalfa-nematode interactions with

  3. Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction

    OpenAIRE

    Beneventi, Magda Aparecida; da Silva, Orzenil Bonfim; SÁ,MARIA EUGÊNIA LISEI DE; Firmino, Alexandre Augusto Pereira; de Amorim, Regina Maria Santos; Albuquerque, Érika Valéria Saliba; da Silva, Maria Cristina Mattar; da Silva, Joseane Padilha; Campos,Magnólia de Araújo; Lopes,Marcus José Conceição; Togawa, Roberto Coiti; Pappas, Georgios Joanis; Grossi–de–Sa, Maria Fatima

    2013-01-01

    Background Root-knot nematodes (RKN– Meloidogyne genus) present extensive challenges to soybean crop. The soybean line (PI 595099) is known to be resistant against specific strains and races of nematode species, thus its differential gene expression analysis can lead to a comprehensive gene expression profiling in the incompatible soybean-RKN interaction. Even though many disease resistance genes have been studied, little has been reported about phytohormone crosstalk on modulation of ROS sig...

  4. Transcriptome Analysis of Cotton (Gossypium hirsutum L. Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis.

    Directory of Open Access Journals (Sweden)

    Ruijuan Li

    Full Text Available Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.. An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747, resistant (BARBREN-713, and hypersensitive (LONREN-1 genotypes of cotton (Gossypium hirsutum L. with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.

  5. Characterization of plant nematode genes: identifying targets for a transgenic defence.

    Science.gov (United States)

    Lilley, C J; Urwin, P E; Atkinson, H J

    1999-01-01

    Current control of plant parasitic nematodes often relies on highly toxic and environmentally harmful nematicides. As their use becomes increasingly restricted there is an urgent need to develop crop varieties with resistance to nematodes. The limitations surrounding conventional plant breeding ensure there is a clear opportunity for transgenic resistance to lessen current dependence on chemical control. The increasing use of molecular biology techniques in the field of plant nematology is now providing useful information for the design of novel defences to meet the new needs. Plant responses to parasitism are being investigated at the molecular level and nematode gene products that could be targets for a direct anti-nematode defence are being characterized. The potential of an anti-feedant approach to nematode control has been demonstrated. It is based on the transgenic expression of proteinase inhibitors. The rational development of this strategy involves characterization of nematode proteinase genes and optimization of inhibitors by protein engineering. Durability of the resistance can be enhanced by stacking transgenes directed at different nematode targets.

  6. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.

    Science.gov (United States)

    Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J

    2009-01-01

    Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.

  7. Nematode parasite genes: what's in a name?

    Science.gov (United States)

    Beech, Robin N; Wolstenholme, Adrian J; Neveu, Cédric; Dent, Joseph A

    2010-07-01

    The central theme of Shakespeare's Romeo and Juliet is that names are meaningless, artificial constructs, detached from any underlying reality. By contrast, we argue that a well chosen gene name can concisely convey a wealth of relevant biological information. A consistent nomenclature adds transparency that can have a real impact on our understanding of gene function. Currently, genes in parasitic nematodes are often named ad hoc, leading to confusion that can be resolved by adherence to a nomenclature standard adapted from Caenorhabditis elegans. We demonstrate this with ligand-gated ion-channels and propose that the flood of genome data and differences between parasites and the free living C. elegans will require modification of the standard.

  8. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance

    National Research Council Canada - National Science Library

    Manosalva, Patricia; Manohar, Murli; von Reuss, Stephan H; Chen, Shiyan; Koch, Aline; Kaplan, Fatma; Choe, Andrea; Micikas, Robert J; Wang, Xiaohong; Kogel, Karl-Heinz; Sternberg, Paul W; Williamson, Valerie M; Schroeder, Frank C; Klessig, Daniel F

    2015-01-01

    .... Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated...

  9. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2017-01-01

    plants and two infection time intervals from resistant plants, grown under soil conditions. Differentially expressed genes during susceptible (1827-tomato, 462-RKN) and resistance (25-tomato, 160-RKN) interactions were identified. In susceptible responses, tomato genes involved in cell wall structure......, development, primary and secondary metabolites and defense signalling pathways along with RKN genes involved in host parasitism, development and defense are discussed. In resistance responses, tomato genes involved in secondary metabolite and hormone-mediated defense responses along with RKN genes involved...... in starvation stress-induced apoptosis are discussed. Also, forty novel differentially expressed RKN genes encoding secretory proteins were identified. Our findings, for the first time, provide novel insights into temporal regulation of genes involved in various biological processes from tomato and RKN...

  10. Putatively novel sources of resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (SCN) remains to be the most economically devastating endo-root parasite of soybean [Glycine max L. (Merrill)], in the USA and worldwide. Currently, two resistance loci, rhg1 and Rhg4 have been the main sources of resistance to SCN. Over 95% of soybean cultivars with SCN resist...

  11. ‘Truhart-NR’, A Root-knot Nematode Resistant, Pimento-type Pepper

    Science.gov (United States)

    Efforts to develop a high-yielding, pimento-type pepper (Capsicum annuum L.) cultivar that is highly resistant to root-knot nematodes were completed with the official release of Truhart-NR on October 20, 2009. The new cultivar is homozygous for the dominant N gene that conditions a high level of re...

  12. Truhart-NR, A Root-knot Nematode Resistant, Pimento-type Pepper Cultivar

    Science.gov (United States)

    Efforts to develop a high-yielding, pimento-type pepper (Capsicum annuum L.) cultivar that is highly resistant to root-knot nematodes were completed with the official release of Truhart-NR on October 20, 2009. The new cultivar is homozygous for the dominant N gene that conditions a high level of re...

  13. Mapping of a southern root-knot nematode resistance gene in pepper and marker-assisted selection%辣椒抗南方根结线虫基因的定位及标记辅助选择

    Institute of Scientific and Technical Information of China (English)

    张维; 方源; 沈火林

    2012-01-01

    A southern root-knot nematode resistant inbred line 09C649 was crossed with a susceptible line 09C108. TheF2 segregating population was obtained. Disease investigatLon and heredity analysis revealed that the resistance to southern root-knot nematode in 09C649 was controlled by a dominant gene, tentatively named as MeS. Two hundreds and thirty six pairs of SSR markers, 1 pair of SCAR marker, 1 pair of SSCP marker,8 pairs of EST-SSR markers and 2 pairs of COSII markers were used to map MeS. It was located on the chromosome 9 of pepper. The four molecular markers SSCP B322, COS710, SCAR_315 and C0S970, were the nearest markers away from Me8 with geneticdistances of 0,0. 1,1.3 and 3.3 cM respectively. Southern root-knot nematode resistance genes N, Me1, Me3 and Me7 were also located in this genomic region. These markers could thus be used in marker-assisted selection for all the southern root-knot nematode resistance genes that were found currently. The SCAR_315 was used in marker-assisted selection of 37 pepper lines. And the molecular identification was well in agreement with the southern root-knot nematode resistance tests.%用对南方根结线虫具有稳定抗性的辣椒材料09C649与感病材料09C108杂交并构建F2分离群体,遗传分析表明,09C649中对南方根结线虫的抗性由一对显性基因控制,将其暂命名为Me8。用236对SSR标记、1对SCAR标记、1对SSCP标记、8对EST-SSR标记及2对COSII标记对Me8进行基因定位。该基因被定位在辣椒第9号染色体上,与其距离最近的4个标记SSCPB322、COS710、SCAR315和COS970,分别与该基因相距0、0.1、1.3和3.3cM。抗南方根结线虫基因N、Me1、Me3及Me7也都位于这一染色体区域,因此这4个分子标记可运用于对目前已发现的所有抗南方根结线虫基因的辅助选择中。用标记SCAR315对37份辣椒材料进行辅助选择,结果表明标记鉴定结果与抗性鉴定结果具有高度的一致性。

  14. Screening and Histopathological Characterization of Korean Carrot Lines for Resistance to the Root-Knot Nematode Meloidogyne incognita

    Directory of Open Access Journals (Sweden)

    Yunhee Seo

    2014-03-01

    Full Text Available In total, 170 carrot lines developed in Korea were screened for resistance to Meloidogyne incognita race 1 to select parental genetic resources useful for the development of nematode-resistant carrot cultivars. Using the gall index (GI, gall formation was examined on carrot roots inoculated with approximately 1,000 second-stage juveniles of the nematode 7 weeks after inoculation. Sixty-one carrot lines were resistant (GI ≤ 1.0, while the other 109 were susceptible (GI > 1.0 with coefficient of variance (CV of GI for total carrot lines 0.68, indicating low-variation of GI within the lines examined. The histopathological responses of two carrot plants from resistant and susceptible lines were examined after nematode infection. In susceptible carrots, giant cells formed with no discernible necrosis around the infecting nematodes. In the resistant carrot line, however, no giant cells formed, although modified cells were observed with extensive formation of necrotic layers through their middle lamella and around the infecting nematodes. This suggested that these structural modifications were related to hypersensitive responses governed by the expression of true resistance genes. Therefore, the Korean carrot lines resistant to the nematode infection are potential genetic resources for the development of quality carrot cultivars resistant to M. incognita race 1.

  15. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes.

    Science.gov (United States)

    Fairbairn, David J; Cavallaro, Antonino S; Bernard, Margaret; Mahalinga-Iyer, Janani; Graham, Michael W; Botella, José R

    2007-11-01

    Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.

  16. Root-knot nematode resistant rootstocks for grafted watermelon

    Science.gov (United States)

    Rootstock lines of wild watermelon (Citrullus lanatus var. citroides) with resistance to root-knot nematodes (RKN) were developed by our team at the U.S. Vegetable Laboratory. Rootstock lines RKVL 301, RKVL 316, and RKVL 318 (RKVL = Root Knot Vegetable Laboratory) were compared to wild tinda (Praec...

  17. Field study on nematode resistance in Nelore-breed cattle

    NARCIS (Netherlands)

    Bricarello, P A; Zaros, L G; Coutinho, L L; Rocha, R A; Kooyman, F N J; De Vries, E; Gonçalves, J R S; Lima, L G; Pires, A V; Amarante, A F T

    2007-01-01

    The present study evaluated Nelore cattle with different degrees of resistance to natural infections by gastrointestinal nematodes. One hundred weaned male cattle, 11-12 months of age, were kept on the same pasture and evaluated from October 2003 to February 2004. Faecal and blood samples were colle

  18. Phenotypic and molecular evaluation of cotton hairy roots as a model system for studying nematode resistance

    Science.gov (United States)

    The cellular mechanisms that mediate resistance of allotetraploid cotton (Gossypium spp.) to root-knot nematode (Meloidogyne incognita) and reniform nematode (Rotylenchulus reniformis) are poorly understood. Here, Agrobacterium rhizogenes-induced hairy roots were investigated as a possible research...

  19. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    Science.gov (United States)

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  20. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection.

    Science.gov (United States)

    Samuelian, Suren; Kleine, Michael; Ruyter-Spira, Carolien P; Klein-Lankhorst, René M; Jung, Christian

    2004-01-01

    The cDNA-AFLP technique was used to isolate sugar beet genes up-regulated upon infection with the beet cyst nematode Heterodera schachtii. Hairy root cultures were obtained from resistant plants carrying a Beta procumbens translocation as well as from a non-resistant control. mRNA was isolated from hairy root clones and sugar beet plants infected or not with the beet cyst nematode and 8000 transcript-derived fragments (TDFs) were analysed. One TDF was found to be differentially expressed in both materials and was further investigated. Real-time PCR confirmed that this TDF is specifically up-regulated in resistant sugar beet upon nematode infection and its full-length cDNA was isolated. Sequence analysis suggests that the gene encodes a 317 amino acid polypeptide of unknown function. No homology to any sequence present in the public databases could be detected. To further elucidate its function in resistance to the beet cyst nematode, the cDNA was transformed into hairy roots of susceptible sugar beet under the control of the 35S promoter and hairy root clones were inoculated with nematodes. The number of developing females was significantly reduced in 12 out of 15 clones resulting from independent transgenic events suggesting that the gene can be used for inducing cyst nematode resistance in plants.

  1. Current status of the availability, development, and use of host plant resistance to nematodes.

    Science.gov (United States)

    Roberts, P A

    1992-06-01

    Host plant resistance (HPR) to nematodes has been identified in many major crops and related wild germplasm. Most HPR is to the more specialized, sedentary endoparasitic genera and species, e.g., Globodera, Heterodera, Meloidogyne, Nacobbus, Rotylenchulus, and Tylenchulus. Some HPR has been developed or identified also to certain migratory endoparasites (Aphelenchoides, Ditylenchus, Pratylenchus, Radopholus) in a few hosts. Commercial use of HPR remains limited, despite its benefits to crop production when deployed appropriately. Restricted use and availability of HPR result from problems associated with transfer of resistance into acceptable cultivars. Difficulties occur in gene transfer to acceptable cultivars because of incompatibility barriers to hybridization or linkage to undesirable traits, for example in cucurbitaceous and solanaceous crops and sugarbeet. Specificity of HPR to only one species, or one or few pathotypes, as it relates to resistance durability and nematode virulence, and HPR response to abiotic factors such as high soil temperature, also limit availability and utility. A scheme for HPR development is presented to emphasize nematology research and information requirements for expanding HPR use in nematode control programs, for example in common bean, sugarbeet, and tomato. Nonbiological factors that influence HPR usage are discussed, including heavy reliance on nematicide programs, low priority of nematode HPR in many breeding programs, and insufficient breeder-nematologist collaboration.

  2. Acid phosphatase-1 1, a molecular marker tightly linked to root-knot nematode resistance in tomato.

    NARCIS (Netherlands)

    Aarts, J.M.M.J.G.

    1993-01-01

    Root knot nematode resistance in tomato is a genetic trait which is determined by a single dominant gene ( Mi ) on chromosome 6 of tomato. Information about the mRNA or protein product is completely lacking, which precludes the cloning of Mi by conventional strategies based on gene expression. Howev

  3. Breeding Soybeans for Resistance to Physiological Race 4 of Cyst Nematode

    Institute of Scientific and Technical Information of China (English)

    WANG Lian-zheng; WANG Lan; YAN Qing-shang; ZHAO Rong-juan; CHEN Pin-san; LI Qiang

    2002-01-01

    Soybean cyst nematode causes serious damage to soybean production. In 1991, we started breeding studies on the resistance of soybeans to the cyst nematode. We found that near the Beijing area the dominant race of the cyst nematode was race 4. We made more than 50 combinations of cross. The best combination was Dan 8 × PI 437654 which resulted in marked segregation in plant height, pod habit, resistance to cyst nematode and maturity. We obtained many new soybean lines highly resistant to the cyst nematode through the pedigree method of selection, enlarging the number of plants of good combinations, alternative breeding in the North and in the South, and identification at an early generation. We now have released three soybean cultivars, Zhonghuang 12, Zhonghuang 13 and Zhonghuang 17 with moderate resistance to the cyst nematode in Beijing, Anhui, Tianjin and Northern China. In addition, we obtained many lines which were highly resistant to the cyst nematode.

  4. Anthelmintic resistance in nematode parasites of goats.

    Science.gov (United States)

    Barton, N J; Trainor, B L; Urie, J S; Atkins, J W; Pyman, M F; Wolstencroft, I R

    1985-07-01

    Cases of anthelmintic resistance on 3 goat farms in Gippsland were investigated. On the first farm Haemonchus contortus, Trichostrongylus colubriformis and Ostertagia (Teladorsagia) circumcincta were found to be resistant to fenbendazole, but the first 2 species were fully susceptible to levamisole. On the second farm a population of T. colubriformis, resistant to concurrent full doses of levamisole and a benzimidazole, was found to retain this resistance when transferred to sheep. On the third farm, heavy mortality due to Ostertagia and Trichostrongylus spp burdens was arrested only by the use of concurrent full doses of levamisole and oxfendazole; no single anthelmintic was found to be effective. A disturbing rise in the incidence of clinical helminthiosis, often accompanied by anthelmintic resistance, occurred on goat farms in Gippsland early in 1984.

  5. Molecular cloning and functional identification of resistant candidate gene Rhg1 to soybean cyst nematode%大豆胞囊线虫抗性候选基因Rhg1的克隆及其功能验证

    Institute of Scientific and Technical Information of China (English)

    高慕娟; 宋雯雯; 韩雪; 王继安

    2012-01-01

    Soybean cyst nematode (SCN) is a serious and destructive pest in soybean production worldwide and causes great loss on its yield and quality. It has been an economical and effective method to breed resistant soybean cultivars for decreasing or avoiding its damage. Clone the Rhg1 gene through the RT-PCR method and constructed the overexpression vector pCAMBIA3301/Rhg1 that was transformed into soybean Dongnong50 via Agrobacterium-mediated transformation of cotyledonary node. Glufosinate-resistant plants were detected to be positive by PCR. Furthermore, the Rhg1 gene in transgenic plants were identified to be a high expression level through Real-time quantify PCR. The SOD content of transgenic plant was significantly higher than that of wild types, while the MDA content of transgenic plant was lower than that of wild types. The results confirmed that the Rhg1 gene was crucial resistant gene and provided the basis on molecular resistant breeding of soybean cyst nematode.%大豆胞囊线虫(Soybean cyst nematode,SCN)是大豆生产上一种危害严重的世界性害虫,给大豆的产量和品质造成极大的损失.大豆抗性品种选育是其防治措施中最经济、有效的方法.文章拟利用RT-PCR方法克隆得到大豆胞囊线虫抗性候选基因Rhg1,通过构建植物过量表达栽体pCAMBIA3301/Rhg1,并采用根癌农杆菌介导的大豆子叶节方法转化大豆东农50.PCR检测草丁膦抗性植株,表明目的基因已经整合到了大豆基因组中;实时荧光定量PCR结果也进一步证实,目的基因在转基因植株中有较高水平的表达丰度.在胞囊线虫的侵蚀下,转基因植株体内的超氧化物歧化酶含量显著高于野生型植株,而丙二醛含量低于野生型植株.研究证实了Rhg1为大豆胞囊线虫的主抗基因,同时为大豆胞囊线虫的分子抗性育种提供理论基础.

  6. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes.

    Science.gov (United States)

    Damiani, Isabelle; Baldacci-Cresp, Fabien; Hopkins, Julie; Andrio, Emilie; Balzergue, Sandrine; Lecomte, Philippe; Puppo, Alain; Abad, Pierre; Favery, Bruno; Hérouart, Didier

    2012-04-01

    The establishment and development of plant-microorganism interactions involve impressive transcriptomic reprogramming of target plant genes. The symbiont (Sinorhizobium meliloti) and the root knot-nematode pathogen (Meloidogyne incognita) induce the formation of new root organs, the nodule and the gall, respectively. Using laser-assisted microdissection, we specifically monitored, at the cell level, Medicago gene expression in nodule zone II cells, which are preparing to receive rhizobia, and in gall giant and surrounding cells, which play an essential role in nematode feeding and constitute the typical root swollen structure, respectively. We revealed an important reprogramming of hormone pathways and C1 metabolism in both interactions, which may play key roles in nodule and gall neoformation, rhizobia endocytosis and nematode feeding. Common functions targeted by rhizobia and nematodes were mainly down-regulated, whereas the specificity of the interaction appeared to involve up-regulated genes. Our transcriptomic results provide powerful datasets to unravel the mechanisms involved in the accommodation of rhizobia and root-knot nematodes. Moreover, they raise the question of host specificity and the evolution of plant infection mechanisms by a symbiont and a pathogen.

  7. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection

    NARCIS (Netherlands)

    Samuelian, S.; Kleine, M.; Spira, C.P.; Klein Lankhorst, R.M.; Jung, C.

    2004-01-01

    The cDNA-AFLP technique was used to isolate sugar beet genes up-regulated upon infection with the beet cyst nematode Heterodera schachtii. Hairy root cultures were obtained from resistant plants carrying a Beta procumbens translocation as well as from a non-resistant control. mRNA was isolated from

  8. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection

    NARCIS (Netherlands)

    Samuelian, S.; Kleine, M.; Spira, C.P.; Klein Lankhorst, R.M.; Jung, C.

    2004-01-01

    The cDNA-AFLP technique was used to isolate sugar beet genes up-regulated upon infection with the beet cyst nematode Heterodera schachtii. Hairy root cultures were obtained from resistant plants carrying a Beta procumbens translocation as well as from a non-resistant control. mRNA was isolated from

  9. Anthelmintic resistance in cattle nematodes in the US.

    Science.gov (United States)

    Gasbarre, Louis C

    2014-07-30

    The first documented case of macrocyclic lactone resistance in gastrointestinal (GI) nematodes of cattle was seen in the US approximately 10 years ago. Since that time the increase incidence of anthelmintic resistance has continued at an alarming rate. Currently parasites of the genera Cooperia and/or Haemonchus resistant to generic or brand-name macrocyclic lactones have be demonstrated in more than half of all operations examined. Both of these parasite genera are capable of causing economic losses by decreasing food intake and subsequently animal productivity. Currently, there are no easy and quick means to detect anthelmintic resistant GI nematodes. Definitive identification requires killing of cattle. The most commonly used field detection method is the fecal egg count reduction test (FECRT). This method can be adapted for use as a screening agent for Veterinarians and producers to identify less than desired clearance of the parasites after anthelmintic treatment. Further studies can then define the reasons for persistence of the egg counts. The appearance of anthelmintic resistance is largely due to the development of very effective nematode control programs that have significantly improved the productivity of the US cattle industry, but at the same time has placed a high level of selective pressure on the parasite genome. The challenges ahead include the development of programs that control the anthelmintic resistant nematodes but at the same time result in more sustainable parasite control. The goal is to maintain high levels of productivity but to exert less selective pressures on the parasites. One of the most effective means to slow the development of drug resistance is through the simultaneous use of multiple classes of anthelmintics, each of which has a different mode of action. Reduction of the selective pressure on the parasites can be attained through a more targeted approach to drug treatments where the producer's needs are met by selective

  10. Acid phosphatase-1.1, a molecular marker tightly linked to root-knot nematode resistance in tomato

    NARCIS (Netherlands)

    Aarts, J.M.M.J.G.

    1993-01-01

    Root knot nematode resistance in tomato is a genetic trait which is determined by a single dominant gene ( Mi ) on chromosome 6 of tomato. Information about the mRNA or protein product is completely lacking, which precludes the cloning of Mi by

  11. DEVELOPMENT OF EST-SSR MARKERS LINKED TO ME1,A NEMATODES RESISTANCE GENE IN PEPPER%与辣椒抗根结线虫基因Me1紧密连锁的EST-SSR标记开发

    Institute of Scientific and Technical Information of China (English)

    张宇; 张晓芬; 陈斌; 耿三省; 李焕秀

    2011-01-01

    以含抗根结线虫病基因Me1的PM217与感线虫品种茄门,及其F1、F2作为试验材料,采用南方根结线虫(Meloidogyne spp.)人工接种鉴定,根据鉴定结果,利用分离群体分组分析法(bulked segregantanalysis,BSA)建立抗感池,共筛选到3对(118、141及211)多态性EST-SSR引物在抗感池间存在差异。利用Joinmap3.0软件,结合抗病性鉴定,对F2群体进行SSR分析,研究3个EST-SSR标记位点与根结线虫抗性基因Me1的连锁关系,结果表明,EST-SSR标记141、118及211与Me1的遗传距离分别为6.984、18.684和29.310cM。本研究得到的与辣椒抗根结线虫显性单基因Me1紧密连锁的EST-SSR标记,为Me1基因的标记辅助选择提供了参考。%In this study,we investigated the resistance to Meloidogyne spp with artifical inoculation systems among F2 lines derivered from susceptible variety Qiemen and resistant variety PM217 carried nematodes resistance gene Me1,with artificial Meloidogyne spp.inoculation systems.Based on the phenotype,we constructed a resistance bulk and a susceptible bulks to screen out the linkage markers.Using EST-SSR technology,the combination primers 118,141 and 211 were shown to be linked to Me1.Furthermore,with exponding population,the three markers were mapped to the locus with genetic distances of 6.984,18.684 and 29.310cM,respectively using Joinmap3.0 software.Identification of EST-SSR molecular markers linked to the dominant resistant gene Me1 laid laying the foundation for resistance breeding.

  12. Predictive role of mitochondrial genome in the stress resistance of insects and nematodes.

    Science.gov (United States)

    Pandey, Akshay; Suman, Shubhankar; Chandna, Sudhir

    2010-06-24

    Certain insects (e.g., moths and butterflies; order Lepidoptera) and nematodes are considered as excellent experimental models to study the cellular stress signaling mechanisms since these organisms are far more stress-resistant as compared to mammalian system. Multiple factors have been implicated in this unusual response, including the oxidative stress response mechanisms. Radiation or chemical-induced mitochondrial oxidative stress occurs through damage caused to the components of electron transport chain (ETC) leading to leakage of electrons and generation of superoxide radicals. This may be countered through quick replacement of damaged mitochondrial proteins by upregulated expression. Since the ETC comprises of various proteins coded by mitochondrial DNA, variation in the composition, expressivity and regulation of mitochondrial genome could greatly influence mitochondrial role under oxidative stress conditions. Therefore, we carried out in silico analysis of mitochondrial DNA in these organisms and compared it with that of the stress-sensitive humans/mammals. Parameters such as mitochondrial genome organization, codon bias, gene expressivity and GC(3) content were studied. Gene arrangement and Shine-Dalgarno (SD) sequence patterns indicating translational regulation were distinct in insect and nematodes as compared to humans. A higher codon bias (ENC≫35) and lower GC(3) content (≫0.20) were observed in mitochondrial genes of insect and nematodes as compared to humans (ENC>42; GC3>0.20), coupled with low codon adaptation index among insects. These features indeed favour higher expressivity of mitochondrial proteins and might help maintain the mitochondrial physiology under stress conditions. Therefore, our study indicates that mitochondrial genome organization may influence stress-resistance of insects and nematodes.

  13. Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Hirao Tomonori

    2012-01-01

    Full Text Available Abstract Background Pine wilt disease is caused by the pine wood nematode, Bursaphelenchus xylophilus, which threatens pine forests and forest ecosystems worldwide and causes serious economic losses. In the 40 years since the pathogen was identified, the physiological changes occurring as the disease progresses have been characterized using anatomical and biochemical methods, and resistant trees have been selected via breeding programs. However, no studies have assessed the molecular genetics, e.g. transcriptional changes, associated with infection-induced physiological changes in resistant or susceptible trees. Results We constructed seven subtractive suppression hybridization (SSH cDNA libraries using time-course sampling of trees inoculated with pine wood nematode at 1, 3, or 7 days post-inoculation (dpi in susceptible trees and at 1, 3, 7, or 14 dpi in resistant trees. A total of 3,299 sequences was obtained from these cDNA libraries, including from 138 to 315 non-redundant sequences in susceptible SSH libraries and from 351 to 435 in resistant SSH libraries. Using Gene Ontology hierarchy, those non-redundant sequences were classified into 15 subcategories of the biological process Gene Ontology category and 17 subcategories of the molecular function category. The transcriptional components revealed by the Gene Ontology classification clearly differed between resistant and susceptible libraries. Some transcripts were discriminative: expression of antimicrobial peptide and putative pathogenesis-related genes (e.g., PR-1b, 2, 3, 4, 5, 6 was much higher in susceptible trees than in resistant trees at every time point, whereas expression of PR-9, PR-10, and cell wall-related genes (e.g., for hydroxyproline-rich glycoprotein precursor and extensin was higher in resistant trees than in susceptible trees at 7 and 14 dpi. Conclusions Following inoculation with pine wood nematode, there were marked differences between resistant and susceptible trees

  14. Sources for Heat-Stable Resistance to Southern Root-Knot Nematode(Meloidogyne incognita) in Solanum lycopersicum

    Institute of Scientific and Technical Information of China (English)

    WU Wen-wen; SHEN Huo-lin; YANG Wen-cai

    2009-01-01

    Southern root-knot nematode (Meloidogyne incognita) is a major problem in vegetable production in China due to the expansion of plastic tunnel and solar greenhouse.Using resistant cultivars is an effective approach to control the disease.Nine genes,Mi-1 to Mi-9,have been reported and only Mi-1 has been successfully used in tomato breeding.However,Mi-1 is inactive at a temperature above 28℃.In order to identify sources for heat-stable resistance to southern root-knot nematode,53 genotypes of tomato (Solanum spp.) were inoculated with an isolate of M.incognita in the growth chamber at 28 or 32℃ for initial screening.28 lines had less than 25 galls and were considered as resistant candidates.The top 60% (16 in total) of resistant candidates obtained from each temperature were subject to re-evaluation at 32℃ using the same nematode isolate.Three lines ZN17,ZN 48,and LA0385 showed heat-stable resistance with an average of 10 galls or less per plant.LA0385 is a wild species,while ZN 17 and ZN48 are elite breeding lines.These lines were grown in a greenhouse for two seasons,and also showed high resistance with less than 10 galls per plant.Thus they were considered as good sources for breeding resistance to southern root-knot nematode in tomato.

  15. The unique resistance and resilience of the Nigerian West African Dwarf goat to gastrointestinal nematode infections

    Science.gov (United States)

    2011-01-01

    Background West African Dwarf (WAD) goats serve an important role in the rural village economy of West Africa, especially among small-holder livestock owners. They have been shown to be trypanotolerant and to resist infections with Haemonchus contortus more effectively than any other known breed of goat. Methods In this paper we review what is known about the origins of this goat breed, explain its economic importance in rural West Africa and review the current status of our knowledge about its ability to resist parasitic infections. Conclusions We suggest that its unique capacity to show both trypanotolerance and resistance to gastrointestinal (GI) nematode infections is immunologically based and genetically endowed, and that knowledge of the underlying genes could be exploited to improve the capacity of more productive wool and milk producing, but GI nematode susceptible, breeds of goats to resist infection, without recourse to anthelmintics. Either conventional breeding allowing introgression of resistance alleles into susceptible breeds, or transgenesis could be exploited for this purpose. Appropriate legal protection of the resistance alleles of WAD goats might provide a much needed source of revenue for the countries in West Africa where the WAD goats exist and where currently living standards among rural populations are among the lowest in the world. PMID:21291550

  16. The unique resistance and resilience of the Nigerian West African Dwarf goat to gastrointestinal nematode infections

    Directory of Open Access Journals (Sweden)

    Chiejina Samuel N

    2011-02-01

    Full Text Available Abstract Background West African Dwarf (WAD goats serve an important role in the rural village economy of West Africa, especially among small-holder livestock owners. They have been shown to be trypanotolerant and to resist infections with Haemonchus contortus more effectively than any other known breed of goat. Methods In this paper we review what is known about the origins of this goat breed, explain its economic importance in rural West Africa and review the current status of our knowledge about its ability to resist parasitic infections. Conclusions We suggest that its unique capacity to show both trypanotolerance and resistance to gastrointestinal (GI nematode infections is immunologically based and genetically endowed, and that knowledge of the underlying genes could be exploited to improve the capacity of more productive wool and milk producing, but GI nematode susceptible, breeds of goats to resist infection, without recourse to anthelmintics. Either conventional breeding allowing introgression of resistance alleles into susceptible breeds, or transgenesis could be exploited for this purpose. Appropriate legal protection of the resistance alleles of WAD goats might provide a much needed source of revenue for the countries in West Africa where the WAD goats exist and where currently living standards among rural populations are among the lowest in the world.

  17. Four acetylcholinesterase genes in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Arpagaus, M; Combes, D; Culetto, E; Grauso, M; Fedon, Y; Romani, R; Toutant, J P

    1998-01-01

    Whereas a single gene encodes acetylcholinesterase (AChE) in vertebrates and most insect species, four distinct genes have been cloned and characterized in the nematode Caenorhabditis elegans. We found that ace-1 (mapped to chromosome X) is prominently expressed in muscle cells whereas ace-2 (located on chromosome I) is mainly expressed in neurons. Ace-x and ace-y genes are located in close proximity on chromosome II where they are separated by only a few hundred base pairs. The role of these two genes is still unknown.

  18. [Levamisole- and tetramisole-resistant gastrointestinal nematodes in sheep].

    Science.gov (United States)

    Praslicka, J; Pilko, P; Várady, M; Corba, J

    1995-02-01

    Two experiments were carried out with sheep naturally infected with gastrointestinal nematodes to evaluate efficacy of anthelmintics using in vivo faecal egg count reduction (FECR) test. In experiment 1 with 28 ewes, the following efficacy of anthelmintics given at recommended dose rates was observed: albendazole 99.4%, ivermectin 99.3% and levamisole 81.8%. In experiment 2 with 18 ewes, tetramisole exhibited 71.3% efficacy. Suspected resistance to imidothiazole anthelmintics was confirmed by in vitro larval development test (LDT)--minimal inhibition concentration (MIC) values were estimated at 2.0 micrograms/ml. Infective larvae L3 cultivated from eggs produced by the population of resistant helminths were identified as Ostertagia and Trichostrongylus spp.

  19. Molecular networks associated with host resistance to gastrointestional nematodes in cattle

    Science.gov (United States)

    Parasitism by gastrointestinal nematodes is a disease severely affecting productivity in ruminants. To unravel mechanisms of host resistance to parasitic infection, we characterized the jejunal transcriptome of the cattle populations displaying resistance phenotypes in response to experimental Coope...

  20. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B.

    Science.gov (United States)

    Winter, Shawn M J; Shelp, Barry J; Anderson, Terry R; Welacky, Tom W; Rajcan, Istvan

    2007-02-01

    Soybean cyst nematode (Heterodera glycines Ichinohe; SCN) is the primary disease responsible for yield loss of soybean [Glycine max (L.) Merr.]. Resistant cultivars are an effective management tool; however, the sources currently available have common resistant genes. Glycine soja Sieb. and Zucc., the wild ancestor of domesticated soybean, represents a diverse germplasm pool with known SCN resistance. The objectives of this research were to: (1) determine the genetic variation and inheritance of SCN resistance in a G. max ('S08-80') x G. soja (PI464925B) F (4:5) recombinant inbred line (RIL) population; and (2) identify and evaluate quantitative trait loci (QTL) associated with SCN resistance. Transgressive segregation for resistance was observed, although neither parent was resistant to the Chatham and Ruthven SCN isolates. Broad sense heritability was 0.81 for the Ruthven and 0.91 for the Chatham isolate. Root dry weight was a significant covariate that influenced cyst counts. One RIL [female index (FI) = 5.2 +/- 1.11] was identified as resistant to the Chatham isolate (FI soja, were identified on linkage groups I, K, and O, and individually explained 8, 7 and 5% (LOD = 2.1-2.7) of the total phenotypic variation, respectively. Significant epistatic interactions were found between pairs of SSR markers that individually may or may not have been associated with SCN resistance, which explained between 10 and 15% of the total phenotypic variation. Best-fit regression models explained 21 and 31% of the total phenotypic variation in the RIL population to the Chatham and Ruthven isolates, respectively. The results of this study help to improve the understanding of the genetic control of SCN resistance in soybean caused by minor genes resulting in horizontal resistance. The incorporation of the novel resistance QTL from G. soja could increase the durability of SCN-resistance in soybean cultivars, especially if major gene resistance breaks down.

  1. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots.

    Science.gov (United States)

    Cai, Daguang; Thurau, Tim; Tian, Yanyan; Lange, Tina; Yeh, Kai-Wun; Jung, Christian

    2003-04-01

    Sporamin, a sweet potato tuberous storage protein, is a Kunitz-type trypsin inhibitor. Its capability of conferring insect-resistance on transgenic tobacco and cauliflower has been confirmed. To test its potential as an anti-feedant for the beet cyst nematode (Heterodera schachtii Schm.), the sporamin gene SpTI-1 was introduced into sugar beet (Beta vulgaris L.) by Agrobacterium rhizogenes-mediated transformation. Twelve different hairy root clones expressing sporamin were selected for studying nematode development. Of these, 8 hairy root clones were found to show significant efficiency in inhibiting the growth and development of the female nematodes whereas 4 root clones did not show any inhibitory effects even though the SpTI-1 gene was regularly expressed in all of the tested hairy roots as revealed by northern and western analyses. Inhibition of nematode development correlated with trypsin inhibitor activity but not with the amount of sporamin expressed in hairy roots. These data demonstrate that the trypsin inhibitor activity is the critical factor for inhibiting growth and development of cyst nematodes in sugar beet hairy roots expressing the sporamin gene. Hence, the sweet potato sporamin can be used as a new and effective anti-feedant for controlling cyst nematodes offering an alternative strategy for establishing nematode resistance in crops.

  2. Immunity to helminths: resistance, regulation, and susceptibility to gastrointestinal nematodes.

    Science.gov (United States)

    Grencis, Richard K

    2015-01-01

    Helminth parasites are a highly successful group of pathogens that challenge the immune system in a manner distinct from rapidly replicating infectious agents. Of this group, roundworms (nematodes) that dwell in the intestines of humans and other animals are prevalent worldwide. Currently, more than one billion people are infected by at least one species, often for extended periods of time. Thus, host-protective immunity is rarely complete. The reasons for this are complex, but laboratory investigation of tractable model systems in which protective immunity is effective has provided a mechanistic understanding of resistance that is characterized almost universally by a type 2/T helper 2 response. Greater understanding of the mechanisms of susceptibility has also provided the basis for defining host immunoregulation and parasite-evasion strategies, helping place in context the changing patterns of immunological disease observed worldwide.

  3. Transcriptome Analysis of Resistant and Susceptible Alfalfa Cultivars Infected With Root-Knot Nematode Meloidogyne incognita

    OpenAIRE

    Postnikova, Olga A.; Maria Hult; Jonathan Shao; Andrea Skantar; Nemchinov, Lev G.

    2015-01-01

    Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp.) are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute...

  4. Potential of tissue culture for breeding root-knot nematode resistance into vegetables.

    Science.gov (United States)

    Fassuliotis, G; Bhatt, D P

    1982-01-01

    Plant protoplast technology is being investigated as a means of transferring root-knot nematode resistance factors from Solanum sisymbriifolium into the susceptible S. melongena. Solanum sisymbriifolium plants regenerated from callus lost resistance to Meloidogyne javanica but retained resistance to M. incognita. Tomato plants cloned from leaf discs of the root-knot nematode resistant 'Patriot' were completely susceptible to M. incognita, while sections of stems and leaves rooted in sand in the absence of growth hormones retained resistance. Changes in resistance persisted for three generations. It is postulated that the exogenous hormonal constituents of the culture medium are modifying the expression of genetic resistance.

  5. Benzimidazole-resistant gastrointestinal nematodes in indigenous Chiapas and Pelibuey sheep breeds from Chiapas, Mexico.

    Science.gov (United States)

    Liébano-Hernández, E; González-Olvera, M; Vázquez-Peláez, C; Mendoza-de-Gives, P; Ramírez-Vargas, G; Peralta-Lailson, M; Reyes-García, M E; Osorio, J; Sánchez-Pineda, H; López-Arellano, M E

    2015-01-01

    Because of the natural adaptation of Mexican sheep, the aim of the present study was to identify the presence or absence of gastrointestinal parasitic nematodes (GIN) resistant to benzimidazole (BZ) in both Chiapas and Pelibuey sheep breeds on local farms. Both male and female GIN-infected grazing sheep of the two breeds were selected. Sheep faecal samples were collected to obtain infective larvae (L3). This evolving stage of the parasite was used for taxonomic identification of the genus, based on its morphological characteristics. BZ anthelmintic resistance was evaluated using a nematode-compound in vitro interaction bioassay and the allele-specific polymerase chain reaction technique to detect mutations of residues 198 and 200 on isotype 1 of the β-tubulin gene. Three BZ-based compounds (febendazole (FBZ), tiabendazole (TBZ) and albendazole (ABZ)) at concentrations of 1, 0.5, 0.25, 0.125, 0.062 and 0.03 mg/ml were used to estimate the anthelmintic efficacy and lethal dose (LD50, LD90 and LD99) of the drugs. Two parasitic nematodes, Haemonchus and Teladorsagia, were identified in both isolates. Also, the proportions of anthelmintic resistance identified in GIN of the two sheep breeds were 68% in isolates from the Chiapas breed and 71.8% in the Pelibuey breed. The specific lethal activity obtained with FBZ was higher than 90%. However, TBZ and ABZ showed a lethal activity lower than 50%. High variability in the discriminating dose values was found among the BZ drugs. For example, FBZ LD ranged from 0.01 to 1.20 mg/ml; on the other hand, TBZ and ABZ required a dose ranging from 0.178 to 759 mg/ml. In addition, amino acid changes of Phe (TTC) to Tyr (TAC) at codon 200 of the β-tubulin gene, showing resistance to BZ, and no changes at codon 198 Glu (GAA) to Ala (GCA) were observed for both isolates. These results confirmed the presence of a genetic mutation associated with BZ in both Chiapas and Pelibuey nematode isolates.

  6. Exploring the Genetic Resistance to Gastrointestinal Nematodes Infection in Goat Using RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Ali Akbar Bhuiyan

    2017-04-01

    Full Text Available Gastrointestinal nematodes (GINs are one of the most economically important parasites of small ruminants and a major animal health concern in many regions of the world. However, the molecular mechanisms of the host response to GIN infections in goat are still little known. In this study, two genetically distinct goat populations, one relatively resistant and the other susceptible to GIN infections, were identified in Yichang goat and then four individuals in each group were chosen to compare mRNA expression profiles using RNA-seq. Field experiment showed lower worm burden, delayed and reduced egg production in the relatively resistant group than the susceptible group. The analysis of RNA-seq showed that 2369 genes, 1407 of which were up-regulated and 962 down-regulated, were significantly (p < 0.001 differentially expressed between these two groups. Functional annotation of the 298 genes more highly expressed in the resistant group yielded a total of 46 significant (p < 0.05 functional annotation clusters including 31 genes (9 in innate immunity, 13 in immunity, and 9 in innate immune response related to immune biosynthetic process as well as transforming growth factor (TGF-β, mitogen-activated protein kinase (MAPK, and cell adhesion molecules (CAMs pathways. Our findings provide insights that are immediately relevant for the improvement of host resistance to GIN infections and which will make it possible to know the mechanisms underlying the resistance of goats to GIN infections.

  7. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance

    OpenAIRE

    Manosalva, P; Manohar, M; von Reuss, S.; Chen, S.; Koch, A; Kaplan, F; Choe, A.; Micikas, R.; X. Wang; Kogel, K.; Sternberg, P.; Williamson, V; Schroeder, D; Klessig, F.

    2015-01-01

    Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentratio...

  8. Characterization of the abomasal transcriptome for mechanisms of resistance to gastrointestinal nematodes in cattle.

    Science.gov (United States)

    Li, Robert W; Rinaldi, Manuela; Capuco, Anthony V

    2011-11-30

    The response of the abomasal transcriptome to gastrointestinal parasites was evaluated in parasite-susceptible and parasite-resistant Angus cattle using RNA-seq at a depth of 23.7 million sequences per sample. These cattle displayed distinctly separate resistance phenotypes as assessed by fecal egg counts. Approximately 65.3% of the 23,632 bovine genes were expressed in the fundic abomasum. Of these, 13,758 genes were expressed in all samples tested and likely represent core components of the bovine abomasal transcriptome. The gene (BT14427) with the most abundant transcript, accounting for 10.4% of sequences in the transcriptome, is located on chromosome 29 and has unknown functions. Additionally, PIGR (1.6%), Complement C3 (0.7%), and Immunoglobulin J chain (0.5%) were among the most abundant transcripts in the transcriptome. Among the 203 genes impacted, 64 were significantly over-expressed in resistant animals at a stringent cutoff (FDR gastrointestinal nematode infection and will facilitate understanding of mechanism underlying host resistance.

  9. Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees

    Directory of Open Access Journals (Sweden)

    Greer Gordon J

    2006-07-01

    Full Text Available Abstract Background Currently most pastoral farmers rely on anthelmintic drenches to control gastrointestinal parasitic nematodes in sheep. Resistance to anthelmintics is rapidly increasing in nematode populations such that on some farms none of the drench families are now completely effective. It is well established that host resistance to nematode infection is a moderately heritable trait. This study was undertaken to identify regions of the genome, quantitative trait loci (QTL that contain genes affecting resistance to parasitic nematodes. Results Rams obtained from crossing nematode parasite resistant and susceptible selection lines were used to derive five large half-sib families comprising between 348 and 101 offspring per sire. Total offspring comprised 940 lambs. Extensive measurements for a range of parasite burden and immune function traits in all offspring allowed each lamb in each pedigree to be ranked for relative resistance to nematode parasites. Initially the 22 most resistant and 22 most susceptible progeny from each pedigree were used in a genome scan that used 203 microsatellite markers spread across all sheep autosomes. This study identified 9 chromosomes with regions showing sufficient linkage to warrant the genotyping of all offspring. After genotyping all offspring with markers covering Chromosomes 1, 3, 4, 5, 8, 12, 13, 22 and 23, the telomeric end of chromosome 8 was identified as having a significant QTL for parasite resistance as measured by the number of Trichostrongylus spp. adults in the abomasum and small intestine at the end of the second parasite challenge. Two further QTL for associated immune function traits of total serum IgE and T. colubiformis specific serum IgG, at the end of the second parasite challenge, were identified on chromosome 23. Conclusion Despite parasite resistance being a moderately heritable trait, this large study was able to identify only a single significant QTL associated with it. The QTL

  10. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  11. Field resistance of transgenic plantain to nematodes has potential for future African food security

    OpenAIRE

    Tripathi, L.; Babirye, A.; Roderick, H; Tripathi, JN; Changa, C; Urwin, PE; Tushemereirwe, WK; Coyne, D.; Atkinson, HJ

    2015-01-01

    Plant parasitic nematodes impose losses of up to 70% on plantains and cooking bananas in Africa. Application of nematicides is inappropriate and resistant cultivars are unavailable. Where grown, demand for plantain is more than for other staple crops. Confined field testing demonstrated that transgenic expression of a biosafe, anti-feedant cysteine proteinase inhibitor and an anti-root invasion, non-lethal synthetic peptide confers resistance to plantain against the key nematode pests Radopho...

  12. Radiation-induced gene expression in the nematode caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, G.A.; Jones, T.A.; Chesnut, A.; Smith, A.L. [Loma Linda Univ., CA (United States)

    2002-12-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by reverse transcription polymerase chain reaction (RT-PCR) differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density. (author)

  13. Radiation-induced gene expression in the nematode Caenorhabditis elegans

    Science.gov (United States)

    Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.

  14. Breeding for resistance to gastrointestinal nematodes - the potential in low-input/output small ruminant production systems.

    Science.gov (United States)

    Zvinorova, P I; Halimani, T E; Muchadeyi, F C; Matika, O; Riggio, V; Dzama, K

    2016-07-30

    The control of gastrointestinal nematodes (GIN) is mainly based on the use of drugs, grazing management, use of copper oxide wire particles and bioactive forages. Resistance to anthelmintic drugs in small ruminants is documented worldwide. Host genetic resistance to parasites, has been increasingly used as a complementary control strategy, along with the conventional intervention methods mentioned above. Genetic diversity in resistance to GIN has been well studied in experimental and commercial flocks in temperate climates and more developed economies. However, there are very few report outputs from the more extensive low-input/output smallholder systems in developing and emerging countries. Furthermore, results on quantitative trait loci (QTL) associated with nematode resistance from various studies have not always been consistent, mainly due to the different nematodes studied, different host breeds, ages, climates, natural infections versus artificial challenges, infection level at sampling periods, among others. The increasing use of genetic markers (Single Nucleotide Polymorphisms, SNPs) in GWAS or the use of whole genome sequence data and a plethora of analytic methods offer the potential to identify loci or regions associated nematode resistance. Genomic selection as a genome-wide level method overcomes the need to identify candidate genes. Benefits in genomic selection are now being realised in dairy cattle and sheep under commercial settings in the more advanced countries. However, despite the commercial benefits of using these tools, there are practical problems associated with incorporating the use of marker-assisted selection or genomic selection in low-input/output smallholder farming systems breeding schemes. Unlike anthelmintic resistance, there is no empirical evidence suggesting that nematodes will evolve rapidly in response to resistant hosts. The strategy of nematode control has evolved to a more practical manipulation of host-parasite equilibrium

  15. Phylogenetic Characterization of β-Tubulins and Development of Pyrosequencing Assays for Benzimidazole Resistance in Cattle Nematodes

    Science.gov (United States)

    Demeler, Janina; Krüger, Nina; Krücken, Jürgen; von der Heyden, Vera C.; Ramünke, Sabrina; Küttler, Ursula; Miltsch, Sandra; López Cepeda, Michael; Knox, Malcolm; Vercruysse, Jozef; Geldhof, Peter; Harder, Achim; von Samson-Himmelstjerna, Georg

    2013-01-01

    Control of helminth infections is a major task in livestock production to prevent health constraints and economic losses. However, resistance to established anthelmintic substances already impedes effective anthelmintic treatment in many regions worldwide. Thus, there is an obvious need for sensitive and reliable methods to assess the resistance status of at least the most important nematode populations. Several single nucleotide polymorphisms (SNPs) in the β-tubulin isotype 1 gene of various nematodes correlate with resistance to benzimidazoles (BZ), a major anthelmintic class. Here we describe the full-length β-tubulin isotype 1 and 2 and α-tubulin coding sequences of the cattle nematode Ostertagia ostertagi. Additionally, the Cooperia oncophora α-tubulin coding sequence was identified. Phylogenetic maximum-likelihood analysis revealed that both isotype 1 and 2 are orthologs to the Caenorhabditis elegans ben-1 gene which is also associated with BZ resistance upon mutation. In contrast, a Trichuris trichiura cDNA, postulated to be β-tubulin isotype 1 involved in BZ resistance in this human parasite, turned out to be closely related to C. elegans β-tubulins tbb-4 and mec-7 and would therefore represent the first non-ben-1-like β-tubulin to be under selection through treatment with BZs. A pyrosequencing assay was established to detect BZ resistance associated SNPs in β-tubulin isotype 1 codons 167, 198 and 200 of C. oncophora and O. ostertagi. PCR-fragments representing either of the two alleles were combined in defined ratios to evaluate the pyrosequencing assay. The correlation between the given and the measured allele frequencies of the respective SNPs was very high. Subsequently laboratory isolates and field populations with known resistance status were analyzed. With the exception of codon 167 in Cooperia, increases of resistance associated alleles were detected for all codons in at least one of the phenotypically resistant population. Pyrosequencing

  16. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance

    Science.gov (United States)

    Nematodes, which are ubiquitous in soil and are estimated to cause $100 B of agricultural damage annually, produce novel, highly conserved small sugar-based molecules call ascarosides. Ascarosides play critical roles in nematode development and behavior. We report here that plants recognize these un...

  17. Wild deer as potential vectors of anthelmintic-resistant abomasal nematodes between cattle and sheep farms.

    Science.gov (United States)

    Chintoan-Uta, C; Morgan, E R; Skuce, P J; Coles, G C

    2014-04-07

    Gastrointestinal (GI) nematodes are among the most important causes of production loss in farmed ruminants, and anthelmintic resistance is emerging globally. We hypothesized that wild deer could potentially act as reservoirs of anthelmintic-resistant GI nematodes between livestock farms. Adult abomasal nematodes and faecal samples were collected from fallow (n = 24), red (n = 14) and roe deer (n = 10) from venison farms and areas of extensive or intensive livestock farming. Principal components analysis of abomasal nematode species composition revealed differences between wild roe deer grazing in the areas of intensive livestock farming, and fallow and red deer in all environments. Alleles for benzimidazole (BZ) resistance were identified in β-tubulin of Haemonchus contortus of roe deer and phenotypic resistance confirmed in vitro by an egg hatch test (EC50 = 0.149 µg ml(-1) ± 0.13 µg ml(-1)) on H. contortus eggs from experimentally infected sheep. This BZ-resistant H. contortus isolate also infected a calf experimentally. We present the first account of in vitro BZ resistance in wild roe deer, but further experiments should firmly establish the presence of phenotypic BZ resistance in vivo. Comprehensive in-field studies should assess whether nematode cross-transmission between deer and livestock occurs and contributes, in any way, to the development of resistance on livestock farms.

  18. Mining predicted essential genes of Brugia malayi for nematode drug targets.

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    Full Text Available We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

  19. Development of Anthelmintic Resistance Detection Methods of Gastrointestinal Nematodes on Livestock

    Directory of Open Access Journals (Sweden)

    Dyah Haryuningtyas

    2008-03-01

    Full Text Available The intensive usage of anthelmintic in most of farms led to resistances of livestock gastrointestinal nematodes against anthelmintic. Many reports of resistance that increased every year happen following the continuing helminth control programmes. The succesful implementation of helminth control programmes that designed to minimize the development of resistance in nematode populations depends on the availability of effective and sensitive method for its detection and monitoring. A variety of in vivo and in vitro tests have been developed for detecting nematode population resistance to the main anthelmintic groups. This paper will discuss the development of detection method of anthelmintic resistance based on conventional and molecular approach according to their strengths and weakness.

  20. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride

    Science.gov (United States)

    Medeiros, Hugo Agripino de; Araújo Filho, Jerônimo Vieira de; Freitas, Leandro Grassi de; Castillo, Pablo; Rubio, María Belén; Hermosa, Rosa; Monte, Enrique

    2017-01-01

    Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth. PMID:28071749

  1. Analysis of putative inhibitors of anthelmintic resistance mechanisms in cattle gastrointestinal nematodes.

    Science.gov (United States)

    AlGusbi, Salha; Krücken, Jürgen; Ramünke, Sabrina; von Samson-Himmelstjerna, Georg; Demeler, Janina

    2014-08-01

    Effects of the cytochrome P450 inhibitor piperonyl butoxide and the P-glycoprotein inhibitor verapamil on the efficacy of ivermectin and thiabendazole were studied in vitro in susceptible and resistant isolates of the cattle parasitic nematodes Cooperia oncophora and Ostertagia ostertagi. The effects of combined use of drug and piperonyl butoxide/verapamil, respectively, were investigated in the Egg Hatch Assay, the Larval Development Assay and the Larval Migration Inhibition Assay. The effects of piperonyl butoxide and verapamil as inhibitors of thiabendazole and ivermectin responses were particularly marked for larval development, where both inhibitors were able to completely eliminate all differences between susceptible and resistant isolates. Even the lowest concentrations of anthelmintics used in combination with inhibitors caused complete inhibition of development. Differences and/or similarities among responses in different isolates were only obtained in the two other assays: in the Egg Hatch Assay piperonyl butoxide caused a shift in concentration-response curves obtained with thiabendazole to the left for all isolates tested, changing relative differences between isolates. In contrast, an effect of verapamil in the Egg Hatch Assay was only apparent for benzimidazole-resistant isolates. In the Larval Migration Inhibition Assay only ivermectin was tested and piperonyl butoxide shifted the concentration-response curves for all isolates to the left, again eliminating differences in EC50 values between susceptible and resistant isolates. This was not the case using verapamil as an inhibitor, where curves for both susceptible and benzimidazole-resistant isolates shifted to the left in Ostertagia isolates. In Cooperia the picture was more complex with ivermectin-resistant isolates showing a larger shift than the susceptible isolate. Single nucleotide polymorphisms in the β-tubulin isotype 1 gene were investigated. Significantly increased frequencies of

  2. An efficient method for measuring copy number variation applied to improvement of nematode resistance in soybean.

    Science.gov (United States)

    Lee, Tong Geon; Diers, Brian W; Hudson, Matthew E

    2016-10-01

    Copy number variation (CNV) is implicated in important traits in multiple crop plants, but can be challenging to genotype using conventional methods. The Rhg1 locus of soybean, which confers resistance to soybean cyst nematode (SCN), is a CNV of multiple 31.2-kb genomic units each containing four genes. Reliable, high-throughput methods to quantify Rhg1 and other CNVs for selective breeding were developed. The CNV genotyping assay described here uses a homeologous gene copy within the paleopolyploid soybean genome to provide the internal control for a single-tube TaqMan copy number assay. Using this assay, CNV in breeding populations can be tracked with high precision. We also show that extensive CNV exists within Fayette, a released, inbred SCN-resistant soybean cultivar with a high copy number at Rhg1 derived from a single donor parent. Copy number at Rhg1 is therefore unstable within a released variety over a relatively small number of generations. Using this assay to select for individuals with altered copy number, plants were obtained with both increased copy number and increased SCN resistance relative to control plants. Thus, CNV genotyping technologies can be used as a new type of marker-assisted selection to select for desirable traits in breeding populations, and to control for undesirable variation within cultivars. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  3. Use of FAMACHA system to evaluate gastrointestinal nematode resistance/resilience in offspring of stud rams

    Science.gov (United States)

    High levels of anthelmintic resistance in gastrointestinal nematodes (GIN) of small ruminants have created the need for animals with greater resistance to these parasites. The objective of this experiment was to evaluate the effectiveness of the FAMACHA system in identification of parasite resilien...

  4. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean

    Science.gov (United States)

    Bi-parental mapping populations have been commonly utilized to identify and characterize quantitative trait loci (QTL) controlling resistance to soybean cyst nematode (SCN, Heterodera glycines Ichinohe). Although this approach successfully mapped a large number of SCN resistance QTL, it captures onl...

  5. A genome-wide survey reveals a deletion polymorphism associated with resistance to gastrointestinal nematodes in Angus cattle.

    Science.gov (United States)

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Van Tassell, Curtis P; Sonstegard, Tad S; Liu, George E

    2014-06-01

    Gastrointestinal (GI) nematode infections are a worldwide threat to human health and animal production. In this study, we performed a genome-wide association study between copy number variations (CNVs) and resistance to GI nematodes in an Angus cattle population. Using a linear regression analysis, we identified one deletion CNV which reaches genome-wide significance after Bonferroni correction. With multiple mapped human olfactory receptor genes but no annotated bovine genes in the region, this significantly associated CNV displays high population frequencies (58.26 %) with a length of 104.8 kb on chr7. We further investigated the linkage disequilibrium (LD) relationships between this CNV and its nearby single nucleotide polymorphisms (SNPs) and genes. The underlining haplotype blocks contain immune-related genes such as ZNF496 and NLRP3. As this CNV co-segregates with linked SNPs and associated genes, we suspect that it could contribute to the detected variations in gene expression and thus differences in host parasite resistance.

  6. Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape.

    Science.gov (United States)

    Hwang, Chin-Feng; Xu, Kenong; Hu, Rong; Zhou, Rita; Riaz, Summaira; Walker, M Andrew

    2010-08-01

    The dagger nematode, Xiphinema index, feeds aggressively on grape roots and in the process, vectors grapevine fanleaf virus (GFLV) leading to the severe viral disease known as fanleaf degeneration. Resistance to X. index and GFLV has been the key objective of grape rootstock breeding programs. A previous study found that resistance to X. index derived from Vitis arizonica was largely controlled by a major quantitative trait locus, XiR1 (X. index Resistance 1), located on chromosome 19. The study presented here develops high-resolution genetic and physical maps in an effort to identify the XiR1 gene(s). The mapping was carried out with 1,375 genotypes in three populations derived from D8909-15, a resistant selection from a cross of V. rupestris A. de Serres (susceptible) x V. arizonica b42-26 (resistant). Resistance to X. index was evaluated on 99 informative recombinants that were identified by screening the three populations with two markers flanking the XiR1 locus. The high-resolution genetic map of XiR1 was primarily constructed with seven DNA markers developed in this study. Physical mapping of XiR1 was accomplished by screening three bacterial artificial chromosome (BAC) libraries constructed from D8909-15, V. vinifera Cabernet Sauvignon and V. arizonica b42-26. A total of 32 BAC clones were identified and the XiR1 locus was delineated within a 115 kb region. Sequence analysis of three BAC clones identified putative nucleotide binding/leucine-rich repeat (NB-LRR) genes. This is the first report of a closely linked major gene locus responsible for ectoparasitic nematode resistance. The markers developed from this study are being used to expedite the breeding of resistant grape rootstocks.

  7. [Recent findings on the genetics of gastro-intestinal nematode resistance in ruminants].

    Science.gov (United States)

    Carta, A; Scala, A

    2004-06-01

    , more attention is now being given to traits related to health (resistance to EST, mastitis or parasitic diseases). Some studies conducted in New Zealand and Australia showed that nematode resistance is genetically controlled with high heritabilities and quite low genetic correlations with production traits. In this sense, some studies showed that it is possible to decrease the number of parasites in the framework of a traditional breeding programme. However, in most situations, this trait is not extensively recorded due to the high cost of individual recording. Therefore, it would be useful to implement breeding strategies based on the knowledge of the genes involved in this trait expression. Traditionally, two approaches are available to locate a gene: i) genome scan; ii) candidate gene approach. The candidate gene approach attempts to link general resistance to some particular genes. To date, genetic resistance against parasites is considered to be linked with the MHC and IgE genes. Furthermore, several gene detection studies based on the genome scan approach for this trait are currently being carried out on both crossed experimental populations (fat x lean Blackface lines and Sarda x Lacaune) and pure breeds (Churra). The preliminary results seem promising as to the use of marker assisted or genotype assisted selection for this trait, which is difficult and expensive to measure on a population scale.

  8. Gene expression and pharmacology of nematode NLP-12 neuropeptides.

    Science.gov (United States)

    McVeigh, Paul; Leech, Suzie; Marks, Nikki J; Geary, Timothy G; Maule, Aaron G

    2006-05-31

    This study examines the biology of NLP-12 neuropeptides in Caenorhabditis elegans, and in the parasitic nematodes Ascaris suum and Trichostrongylus colubriformis. DYRPLQFamide (1 nM-10 microM; n > or =6) produced contraction of innervated dorsal and ventral Ascaris body wall muscle preparations (10 microM, 6.8+/-1.9 g; 1 microM, 4.6+/-1.8 g; 0.1 microM, 4.1+/-2.0 g; 10 nM, 3.8+/-2.0 g; n > or =6), and also caused a qualitatively similar, but quantitatively lower contractile response (10 microM, 4.0+/-1.5 g, n=6) on denervated muscle strips. Ovijector muscle displayed no measurable response (10 microM, n=5). nlp-12 cDNAs were characterised from A. suum (As-nlp-12) and T. colubriformis (Tc-nlp-12), both of which show sequence similarity to C. elegans nlp-12, in that they encode multiple copies of -LQFamide peptides. In C. elegans, reverse transcriptase (RT)-PCR analysis showed that nlp-12 was transcribed throughout the life cycle, suggesting that DYRPLQFamide plays a constitutive role in the nervous system of this nematode. Transcription was also identified in both L3 and adult stages of T. colubriformis, in which Tc-nlp-12 is expressed in a single tail neurone. Conversely, As-nlp-12 is expressed in both head and tail tissue of adult female A. suum, suggesting species-specific differences in the transcription pattern of this gene.

  9. Plant-mediated RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in diverse genetic backgrounds of potato and reduces pathogenicity of nematode offspring

    Science.gov (United States)

    Meloidogyne chitwoodi is a major problem for potato production in the Pacific Northwest of the USA. In spite of long-term breeding efforts no commercial potato cultivars with resistance to M. chitwoodi exist to date. The RMc1 resistance gene against M. chitwoodi has been introgressed from Solanum bu...

  10. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification

    Directory of Open Access Journals (Sweden)

    Vinogradov Serge N

    2008-10-01

    Full Text Available Abstract Background Globin isoforms with variant properties and functions have been found in the pseudocoel, body wall and cuticle of various nematode species and even in the eyespots of the insect-parasite Mermis nigrescens. In fact, much higher levels of complexity exist, as shown by recent whole genome analysis studies. In silico analysis of the genome of Caenorhabditis elegans revealed an unexpectedly high number of globin genes featuring a remarkable diversity in gene structure, amino acid sequence and expression profiles. Results In the present study we have analyzed whole genomic data from C. briggsae, C. remanei, Pristionchus pacificus and Brugia malayi and EST data from several other nematode species to study the evolutionary history of the nematode globin gene family. We find a high level of conservation of the C. elegans globin complement, with even distantly related nematodes harboring orthologs to many Caenorhabditis globins. Bayesian phylogenetic analysis resolves all nematode globins into two distinct globin classes. Analysis of the globin intron-exon structures suggests extensive loss of ancestral introns and gain of new positions in deep nematode ancestors, and mainly loss in the Caenorhabditis lineage. We also show that the Caenorhabditis globin genes are expressed in distinct, mostly non-overlapping, sets of cells and that they are all under strong purifying selection. Conclusion Our results enable reconstruction of the evolutionary history of the globin gene family in the nematode phylum. A duplication of an ancestral globin gene occurred before the divergence of the Platyhelminthes and the Nematoda and one of the duplicated genes radiated further in the nematode phylum before the split of the Spirurina and Rhabditina and was followed by further radiation in the lineage leading to Caenorhabditis. The resulting globin genes were subject to processes of subfunctionalization and diversification leading to cell

  11. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification.

    Science.gov (United States)

    Hoogewijs, David; De Henau, Sasha; Dewilde, Sylvia; Moens, Luc; Couvreur, Marjolein; Borgonie, Gaetan; Vinogradov, Serge N; Roy, Scott W; Vanfleteren, Jacques R

    2008-10-09

    Globin isoforms with variant properties and functions have been found in the pseudocoel, body wall and cuticle of various nematode species and even in the eyespots of the insect-parasite Mermis nigrescens. In fact, much higher levels of complexity exist, as shown by recent whole genome analysis studies. In silico analysis of the genome of Caenorhabditis elegans revealed an unexpectedly high number of globin genes featuring a remarkable diversity in gene structure, amino acid sequence and expression profiles. In the present study we have analyzed whole genomic data from C. briggsae, C. remanei, Pristionchus pacificus and Brugia malayi and EST data from several other nematode species to study the evolutionary history of the nematode globin gene family. We find a high level of conservation of the C. elegans globin complement, with even distantly related nematodes harboring orthologs to many Caenorhabditis globins. Bayesian phylogenetic analysis resolves all nematode globins into two distinct globin classes. Analysis of the globin intron-exon structures suggests extensive loss of ancestral introns and gain of new positions in deep nematode ancestors, and mainly loss in the Caenorhabditis lineage. We also show that the Caenorhabditis globin genes are expressed in distinct, mostly non-overlapping, sets of cells and that they are all under strong purifying selection. Our results enable reconstruction of the evolutionary history of the globin gene family in the nematode phylum. A duplication of an ancestral globin gene occurred before the divergence of the Platyhelminthes and the Nematoda and one of the duplicated genes radiated further in the nematode phylum before the split of the Spirurina and Rhabditina and was followed by further radiation in the lineage leading to Caenorhabditis. The resulting globin genes were subject to processes of subfunctionalization and diversification leading to cell-specific expression patterns. Strong purifying selection subsequently

  12. Anthelmintic resistance in gastrointestinal nematodes from grazing beef cattle in Campeche State, Mexico.

    Science.gov (United States)

    Muñiz-Lagunes, Abel; González-Garduño, Roberto; López-Arellano, Maria Eugenia; Ramírez-Valverde, Rodolfo; Ruíz-Flores, Agustín; García-Muñiz, Guadalupe; Ramírez-Vargas, Gabriel; Mendoza-de Gives, Pedro; Torres-Hernández, Glafiro

    2015-08-01

    Production of beef cattle is one of the most important economic activities in Mexico. However, anthelmintic resistance (AR) has affected animal productivity. The aim of this study was to determine the presence of AR in gastrointestinal nematodes (GIN) of beef cattle in Candelaria Municipality of Campeche State, Mexico. Sixty-five-month-old beef calves were selected for the faecal egg count reduction test (FECRT) and the inhibition of egg hatch (IEH) assay. These parameters were determined using albendazole (benzimidazole, BZ), ivermectin (IVM, Macrocyclic lactone, ML) and levamisole (LEV, imidazothiazole, IMZ). Allele-specific PCR (AS-PCR) confirmed polymorphisms at codon 200 of isotype 1 of the β-tubulin gene of Haemonchus placei. The results showed 32 % IVM toxicity by FECRT, indicating problems of AR in the GIN population. In contrast, BZ and LEV showed 95 and 100 % toxicity, respectively, against GIN from infected beef calves. The infective larvae (L3) of Cooperia, Haemonchus and Oesophagostomum were identified before anthelmintic treatment, and Cooperia L3 larvae were identified after treatment with IVM. The IEH assays had lethal dose 50 (LD50) of 187 nM to BZ, confirming the ovicidal effect of BZ. In contrast, the LD50 for LEV and IVM were 3.3 and 0.4 mM, respectively. The results obtained by AS-PCR confirmed two DNA fragments of 250 and 550 bp, corresponding to the resistant and susceptible alleles in the H. placei population. The nematode Cooperia showed AR against IVM, while the toxicity effect of BZ against GIN with both FECRT and IEH was confirmed.

  13. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking × 7605 under two ecological sites

    Indian Academy of Sciences (India)

    YONGCHUN LI; NA GUO; JINMING ZHAO; BIN ZHOU; RAN XU; HUI DING; WEIGUO ZHAO; JUNYI GAI; HAN XING

    2016-12-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F2:8:11 lines) and JN(RN)P7 (248 F2:7:9 lines) were developed from the cross of the cultivars Peking × 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families’ female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= −16.68, P < 0.01). This indicated that natural selection may affect resistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.

  14. Field resistance of transgenic plantain to nematodes has potential for future African food security.

    Science.gov (United States)

    Tripathi, Leena; Babirye, Annet; Roderick, Hugh; Tripathi, Jaindra N; Changa, Charles; Urwin, Peter E; Tushemereirwe, Wilberforce K; Coyne, Danny; Atkinson, Howard J

    2015-01-30

    Plant parasitic nematodes impose losses of up to 70% on plantains and cooking bananas in Africa. Application of nematicides is inappropriate and resistant cultivars are unavailable. Where grown, demand for plantain is more than for other staple crops. Confined field testing demonstrated that transgenic expression of a biosafe, anti-feedant cysteine proteinase inhibitor and an anti-root invasion, non-lethal synthetic peptide confers resistance to plantain against the key nematode pests Radopholus similis and Helicotylenchus multicinctus. The best peptide transgenic line showed improved agronomic performance relative to non-transgenic controls and provided about 99% nematode resistance at harvest of the mother crop. Its yield was about 186% in comparison with the nematode challenged control non-transgenic plants based on larger bunches and diminished plant toppling in storms, due to less root damage. This is strong evidence for utilizing this resistance to support the future food security of 70 million, mainly poor Africans that depend upon plantain as a staple food.

  15. Evaluation of edible ginger and turmeric cultivars for root-knot nematode resistance

    Science.gov (United States)

    Edible ginger and turmeric roots are important agricultural commodities for the State of Hawaii. Bacterial wilt, Ralstonia solanacearum, and root-knot nematodes, Meloidogyne spp. are major factors hindering optimum production. An evaluation of tolerance and resistance to M. incognita was undertake...

  16. A survey on anthelmintic resistance in nematode parasites of sheep in the Slovak Republic.

    Science.gov (United States)

    Cernanská, D; Várady, M; Corba, J

    2006-01-15

    The prevalence of anthelmintic resistance on 27 sheep farms in Slovakia was investigated in 2003 and 2004 using the faecal egg count reduction test (FECRT) according to the WAAVP guidelines. Resistance to albendazole was detected on one farm (3.7%) and suspected on two farms (7.4%) out of 27 sheep flocks. Resistance to ivermectin was tested on 26 farms. On six (23.1%) farms, results indicated the presence of ivermectin resistance. Resistance to ivermectin was suspected on eight farms (30.8%). However, it is also possible that generic ivermectin anthelmintics used in survey have a lower efficacy against sheep nematodes.

  17. Effects of JA Synthesis-Related Genes Spr2 and LePrs on the Resistance to Root-Knot Nematodes in Tomato%茉莉酸合成相关基因Spr2与LePrs在番茄抗根结线虫中的作用

    Institute of Scientific and Technical Information of China (English)

    张立宁; 程继鸿; 杨瑞; 孙中华; 吴春霞; 王绍辉

    2011-01-01

    [目的]研究茉莉酸合成相关基因Spr2与LePrs对番茄抗根结线虫的影响,探讨茉莉酸在番茄抗根结线虫病中的作用.[方法]以番茄茉莉酸合成突变体spr2、茉莉酸过量表达转基因番茄35S(::)PS及野生型CM为试材,研究外源喷施茉莉酸甲酯及不同番茄试材相互嫁接对接种根结线虫后番茄根结数、蛋白质酶抑制剂PI-II表达及Spr2、LePrs基因转录水平的影响.[结果]番茄茉莉酸合成突变体spr2较野生型与茉莉酸过量表达转基因番茄35S::PS容易感染根结线虫,外源喷施茉莉酸甲酯降低了番茄根结数.以茉莉酸过量表达转基因番茄35S(::)PS为砧木,可以提高嫁接植株对根结线虫的抵抗能力.[结论]Spr2突变降低了番茄对根结线虫的抗性, LePrs过量表达可以提高植株对根结线虫的抗性.因此,茉莉酸在番茄抗根结线虫病中起到了一定的作用.%[Objective] Spr2 and LePrs were related with JA synthesis, the effects of the two genes on the response of tomato to root-knot nematodes were studied. [Method] In this paper, JA biosynthetic mutant (spr2 plants) and JA-overexpression transgenic plants (35S::PS plants) of tomato as well as wild tomato species (CM) were used, and the effects of MeJA sprays and grafting on root-knot numbers, P1-II content and Spr2, LePrs transcription levels, before and after inoculating root-knot nematodes, were analyzed. [Result] Compared with CM and 35S::PS plants, spr2 plants was more susceptible to root-knot nematodes. Spraying MeJA on tomato leaves could reduce root-knot numbers. Using 35S::PS plants as stock improved grafting tomato resistance to root-knot nematodes. [Conclusion] Resistance to nematodes in JA biosynthetic mutant (with mutant Spr2) was reduced, while in JA-overexpression transgenic tomato (with over-expressing LePrs) it was increased. So Jasmonic acid played a role in the response of tomato to root-knot nematodes.

  18. Systemic RNAi mediated gene silencing in the anhydrobiotic nematode Panagrolaimus superbus

    Directory of Open Access Journals (Sweden)

    Boyd Jacqueline

    2008-06-01

    Full Text Available Abstract Background Gene silencing by RNA interference (RNAi is a powerful tool for functional genomics. Although RNAi was first described in Caenorhabditis elegans, several nematode species are unable to mount an RNAi response when exposed to exogenous double stranded RNA (dsRNA. These include the satellite model organisms Pristionchus pacificus and Oscheius tipulae. Available data also suggest that the RNAi pathway targeting exogenous dsRNA may not be fully functional in some animal parasitic nematodes. The genus Panagrolaimus contains bacterial feeding nematodes which occupy a diversity of niches ranging from polar, temperate and semi-arid soils to terrestrial mosses. Thus many Panagrolaimus species are adapted to tolerate freezing and desiccation and are excellent systems to study the molecular basis of environmental stress tolerance. We investigated whether Panagrolaimus is susceptible to RNAi to determine whether this nematode could be used in large scale RNAi studies in functional genomics. Results We studied two species: Panagrolaimus sp. PS1159 and Panagrolaimus superbus. Both nematode species displayed embryonic lethal RNAi phenotypes following ingestion of Escherichia coli expressing dsRNA for the C. elegans embryonic lethal genes Ce-lmn-1 and Ce-ran-4. Embryonic lethal RNAi phenotypes were also obtained in both species upon ingestion of dsRNA for the Panagrolaimus genes ef1b and rps-2. Single nematode RT-PCR showed that a significant reduction in mRNA transcript levels occurred for the target ef1b and rps-2 genes in RNAi treated Panagrolaimus sp. 1159 nematodes. Visible RNAi phenotypes were also observed when P. superbus was exposed to dsRNA for structural genes encoding contractile proteins. All RNAi phenotypes were highly penetrant, particularly in P. superbus. Conclusion This demonstration that Panagrolaimus is amenable to RNAi by feeding will allow the development of high throughput methods of RNAi screening for P. superbus. This

  19. Genetic analysis of resistance to ticks, gastrointestinal nematodes and Eimeria spp. in Nellore cattle.

    Science.gov (United States)

    Passafaro, Tiago Luciano; Carrera, Juan Pablo Botero; dos Santos, Livia Loiola; Raidan, Fernanda Santos Silva; dos Santos, Dalinne Chrystian Carvalho; Cardoso, Eduardo Penteado; Leite, Romário Cerqueira; Toral, Fabio Luiz Buranelo

    2015-06-15

    The aim of the present study was to obtain genetic parameters for resistance to ticks, gastrointestinal nematodes (worms) and Eimeria spp. in Nellore cattle, analyze the inclusion of resistance traits in Nellore breeding programs and evaluate genetic selection as a complementary tool in parasite control programs. Counting of ticks, gastrointestinal nematode eggs and Eimeria spp. oocysts per gram of feces totaling 4270; 3872 and 3872 records from 1188; 1142 and 1142 animals, respectively, aged 146 to 597 days were used. The animals were classified as resistant (counts equal to zero) or susceptible (counts above zero) to each parasite. The statistical models included systematics effects of contemporary groups and the mean trajectory. The random effects included additive genetic effects, direct permanent environmental effects and residual. The mean trajectory and random effects were modeled with linear Legendre polynomials for all traits except for the mean trajectory of resistance to Eimeria spp., which employed the cubic polynomial. Heritability estimates were of low to moderate magnitude and ranged from 0.06 to 0.30, 0.06 to 0.33 and 0.04 to 0.33 for resistance to ticks, gastrointestinal nematodes and Eimeria spp., respectively. The posterior mean of genetic and environmental correlations for the same trait at different ages (205, 365, 450 and 550 days) were favorable at adjacent ages and unfavorable at distant ages. In general, the posterior mean of the genetic and environmental correlations between traits of resistance were low and high-density intervals were large and included zero in many cases. The heritability estimates support the inclusion of resistance to ticks, gastrointestinal nematodes and Eimeria spp. in Nellore breeding programs. Genetic selection can increase the frequency of resistant animals and be used as a complementary tool in parasite control programs.

  20. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans.

    OpenAIRE

    2000-01-01

    The protein toxins produced by Bacillus thuringiensis (Bt) are the most widely used natural insecticides in agriculture. Despite successful and extensive use of these toxins in transgenic crops, little is known about toxicity and resistance pathways in target insects since these organisms are not ideal for molecular genetic studies. To address this limitation and to investigate the potential use of these toxins to control parasitic nematodes, we are studying Bt toxin action and resistance in ...

  1. Prevalence of anthelmintic resistance in gastrointestinal nematodes of sheep and goats in Norway.

    Science.gov (United States)

    Domke, Atle V Meling; Chartier, Christophe; Gjerde, Bjørn; Höglund, Johan; Leine, Nils; Vatn, Synnøve; Stuen, Snorre

    2012-07-01

    In the period of 2008–2009, the efficacies of the benzimidazole (BZ) albendazole and the macrocyclic lactone (ML) ivermectin against gastrointestinal nematodes (GIN) of small ruminants were evaluated by means of the fecal egg count reduction (FECR) test and by post-treatment identification of surviving third stage (L3) larvae after coproculture. Sheep (n=28) and goat (n=28) flocks from three areas of Norway were randomly selected to assess the prevalence of anthelmintic resistance (AR), whereas only lambs from non-randomly selected sheep flocks (n=32) with a farm management that could select for AR were investigated the second year. Only flocks with a mean excretion of nematode eggs per gram feces (EPG) ≥ 150 at time of treatment were included in the survey. In total, 48 (80%) and 13 (46.4%) of the selected sheep and goat flocks, respectively, fulfilled the inclusion criteria. The proportions of flocks classified as resistant (i.e., FECR nematode genera were Teladorsagia/Trichostrongylus in five flocks, Haemonchus in two flocks, and a mixture of these genera in the remaining two flocks. In the goat flocks, the pre-treatment infection levels of GIN were low compared to what was found in the sheep flocks. Still, in one flock, AR against BZ in Teladorsagia/Trichostrongylus was found. New strategies and recommendations to face the emerging AR situation in Rogaland County in order to limit the spread of resistant nematodes within and into other areas are urgently needed.

  2. Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3.

    Science.gov (United States)

    Yuan, C P; Wang, Y J; Zhao, H K; Zhang, L; Wang, Y M; Liu, X D; Zhong, X F; Dong, Y S

    2016-06-10

    Over-utilization of germplasms that are resistant to the soybean cyst nematode (SCN) in soybean breeding programs can lead to genetic vulnerability in resistant cultivars. Resistant wild soybean (Glycine soja) is considered an invaluable gene source for increasing the genetic diversity of SCN resistance. In this study, we genotyped 23 G. soja accessions that are resistant to SCN race 3 for polymorphisms in the resistance genes, rhg1, Rhg4, and SHMT, and investigated their genetic relationship with eight Glycine max resistant cultivars. We identified 89 single nucleotide polymorphisms (SNPs) and 11 DNA insertion-deletions (InDels), of which 70 SNPs and 8 InDels were found in rhg1, 9 SNPs were found in Rhg4, and 10 SNPs and 3 InDels were found in SHMT. Nucleotide diversity was π = 0.00238 and θ = 0.00235, and haplotype diversity was 1.000. A phylogenetic tree comprising four clusters was constructed using sequence variations of the 23 G. soja and 8 G. max resistant accessions. Five G. soja accessions in subcluster A2, and four G. soja accessions in cluster B were genetically distant from G. max genotypes. Eight resistance-associated SNPs in the three resistance genes formed nine haplotypes in total. G. soja resistant accessions had different haplotypes (H2, H4, H5, H6, H7, and H8) compared with those of G. max (H1, H3, and H9). These results provide vital information on the use of wild soybeans for broadening the genetic base of SCN resistance.

  3. Effects of soil mechanical resistance on nematode community structure under conventional sugarcane and remaining of Atlantic Forest.

    Science.gov (United States)

    de Oliveira Cardoso, Mércia; Pedrosa, Elvira M R; Rolim, Mário M; Silva, Enio F F E; de Barros, Patrícia A

    2012-06-01

    Nematodes present high potential as a biological indicator of soil quality. In this work, it was evaluated relations between soil physical properties and nematode community under sugarcane cropping and remaining of Atlantic Forest areas in Northeastern Pernambuco, Brazil. Soil samples were collected from September to November 2009 along two 200-m transects in both remaining of Atlantic Forest and sugarcane field at deeps of 0-10, 10-20, 20-30, 30-40, and 40-50 cm. For soil characterization, it was carried out analysis of soil size, water content, total porosity, bulk density, and particle density. The level of soil mechanical resistance was evaluated through a digital penetrometer. Nematodes were extracted per 300 cm(3) of soil through centrifugal flotation in sucrose being quantified, classified according trophic habit, and identified in level of genus or family. Data were analyzed using Pearson correlation at 5% of probability. Geostatistical analysis showed that the penetration resistance, water content, total porosity, and bulk density on both forest and cultivated area exhibited spatial dependence at the sampled scale, and their experimental semivariograms were fitted to spherical and exponential models. In forest area, the ectoparasites and free-living nematodes exhibited spherical model. In sugarcane field, the soil nematodes exhibited pure nugget effect. Pratylenchus sp. and Helicotylenchus sp. were prevalent in sugarcane field, but in forest, there was prevalence of Dorylaimidae and Rhabditidae. Total amount of nematode did not differ between environments; however, community trophic structure in forest presented prevalence of free-living nematodes: omnivores followed by bacterial-feeding soil nematodes, while plant-feeding nematodes were prevalent in sugarcane field. The nematode diversity was higher in the remaining of Atlantic Forest. However, the soil mechanical resistance was higher under sugarcane cropping, affecting more directly the free

  4. Evaluation of reference genes for real-time PCR studies of Brazilian Somalis sheep infected by gastrointestinal nematodes

    Directory of Open Access Journals (Sweden)

    Lilian Giotto Zaros

    2010-01-01

    Full Text Available Precise normalization with reference genes is necessary, in order to obtain reliable relative expression data in response to gastrointestinal nematode infection. By using sheep from temperate regions as models, three reference genes, viz., ribosomal protein LO (RPLO, glyceraldehyde 3-phosphate dehydrogenase (GAPDH and succinate dehydrogenase complex subunit A (SDHA, were investigated in the abomasum, abomasal lymph nodes and small intestine of Brazilian Somalis sheep, either resistant or susceptible to gastrointestinal nematodes infections. Real time PCR was carried out by using SYBR Green I dye, and gene stability was tested by geNorm. RPLO was an ideal reference gene, since its expression was constant across treatments, presented lower variation, and was ranked as the most stable in abomasum and lymph node tissues. On the other hand, SDHA was the most stable in the small intestine followed by RPLO and GAPDH. These findings demonstrate the importance of correctly choosing reference genes prior to relative quantification. In addition, we determined that reference genes used in sheep from temperate regions, when properly tested, can be applied in animals from tropical regions such as the Brazilian Somalis sheep.

  5. Evaluation of reference genes for real-time PCR studies of Brazilian Somalis sheep infected by gastrointestinal nematodes

    Science.gov (United States)

    2010-01-01

    Precise normalization with reference genes is necessary, in order to obtain reliable relative expression data in response to gastrointestinal nematode infection. By using sheep from temperate regions as models, three reference genes, viz., ribosomal protein LO (RPLO), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and succinate dehydrogenase complex subunit A (SDHA), were investigated in the abomasum, abomasal lymph nodes and small intestine of Brazilian Somalis sheep, either resistant or susceptible to gastrointestinal nematodes infections. Real time PCR was carried out by using SYBR Green I dye, and gene stability was tested by geNorm. RPLO was an ideal reference gene, since its expression was constant across treatments, presented lower variation, and was ranked as the most stable in abomasum and lymph node tissues. On the other hand, SDHA was the most stable in the small intestine followed by RPLO and GAPDH. These findings demonstrate the importance of correctly choosing reference genes prior to relative quantification. In addition, we determined that reference genes used in sheep from temperate regions, when properly tested, can be applied in animals from tropical regions such as the Brazilian Somalis sheep. PMID:21637421

  6. Selecting soybean resistant to the cyst nematode Heterodera glycines using simple sequence repeat (microssatellite) markers.

    Science.gov (United States)

    Espindola, S M C G; Hamawaki, O T; Oliveira, A P; Hamawaki, C D L; Hamawaki, R L; Takahashi, L M

    2016-03-11

    The soybean cyst nematode (SCN) is a major cause of soybean yield reduction. The objective of this study was to evaluate the efficiency of marker-assisted selection to identify genotypes resistant to SCN race 3 infection, using Sat_168 and Sat-141 resistance quantitative trait loci. The experiment was carried out under greenhouse conditions, using soybean populations originated from crosses between susceptible and resistant parent stock: CD-201 (susceptible) and Foster IAC (resistant), Conquista (susceptible) and S83-30 (resistant), La-Suprema (susceptible) and S57-11 (resistant), and Parecis (susceptible) and S65-50 (resistant). Plants were inoculated with SCN and evaluated according to the female index (FI), those with FI < 10% were classified as resistant to nematode infection. Plants were genotyped for SCN resistance using microsatellite markers Sat-141 and Sat_168. Marker selection efficiency was analyzed by a contingency table, taking into account genotypic versus phenotypic evaluations for each line. These markers were shown to be useful tool for selection of SCN race 3.

  7. Use of P-glycoprotein gene probes to investigate anthelmintic resistance in Haemonchus contortus and comparison with Onchocerca volvulus

    NARCIS (Netherlands)

    Kwa, M.S.G.; Okoli, M.N.; Schulz-Key, H.; Okongkwo, P.O.; Roos, M.H.

    1998-01-01

    A P-glycoprotein gene probe from the sheep parasitic nematode Haemonchus contortus was developed and used to analyse restriction fragment length polymorphisms between susceptible isolates and isolates resistant to either benzimidazole; levamisole and benzimidazole; or benzimidazole, ivermectin and

  8. Use of P-glycoprotein gene probes to investigate anthelmintic resistance in Haemonchus contortus and comparison with Onchocerca volvulus

    NARCIS (Netherlands)

    Kwa, M.S.G.; Okoli, M.N.; Schulz-Key, H.; Okongkwo, P.O.; Roos, M.H.

    1998-01-01

    A P-glycoprotein gene probe from the sheep parasitic nematode Haemonchus contortus was developed and used to analyse restriction fragment length polymorphisms between susceptible isolates and isolates resistant to either benzimidazole; levamisole and benzimidazole; or benzimidazole, ivermectin and c

  9. Resistance against gastrointestinal nematodes in Crioulo Lageano and crossbred Angus cattle in southern Brazil.

    Science.gov (United States)

    Cardoso, Cristina P; Silva, Bruna F; Trinca, Luzia A; Amarante, Alessandro F T

    2013-02-18

    Gastrointestinal nematode (GIN) infection is a major cause of production losses in cattle. This study was carried out to evaluate the natural resistance against nematode infection in Crioulo Lageano and crossbred Angus male calves. Crioulo Lageano is a local cattle breed in the state of Santa Catarina, in southern Brazil. Ten weaned calves of each breed were grazed together on pasture and naturally infected with nematodes between July 2009 and December 2010. Once every 28 days, we collected fecal and blood samples for parasitological and immunological tests, as well as recording body weights. After 19 samplings, all animals were slaughtered for quantification and identification of GINs. We found that the animals had been infected with the following nematode species, in decreasing order by the mean number of specimens: Trichostrongylus axei, Cooperia punctata, Ostertagia ostertagi, Haemonchus placei, Oesophagostomum radiatum, and Trichuris spp. There were no significant differences between the Crioulo Lageano and crossbred Angus groups in terms of worm burden or nematode fecal egg count, nor in terms of the mean levels of immunoglobulin (G and A) against C. punctata and H. placei antigens, except in IgA mean level in abomasal mucus against H. placei adult worms that was significantly higher in crossbred Angus cattle (pAngus cattle were heavier than were the Crioulo Lageano cattle (mean live weight, 507.35 and 390.3 kg, respectively). Comparative parasitological and immunological evaluation revealed no difference between two breeds in terms of their natural resistance against GINs. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Marker-assisted selection strategies for developing resistant soybean plants to cyst nematode

    Directory of Open Access Journals (Sweden)

    Fernanda Abreu Santana

    2014-10-01

    Full Text Available Resistant lines can be identified by marker-assisted selection (MAS, based on alleles of genetic markers linked to the resistance trait. This reduces the number of phenotypically evaluated lines, one of the limitations in the development of cultivars with resistance to soybean cyst nematode (SCN. This study evaluated the efficiency of microsatellites near quantitative trait loci (QTL for SCN resistance, in the linkage groups (LG G and A2 of soybean, for the selection of resistant genotypes in populations originated from crosses between the cultivars Vmax and CD201. The QTL of LG A2 was not detected in ‘Vmax’ (derived from PI 88788. In MAS, the microsatellites of LG G were efficient in selecting F6:7 families with resistance and moderate resistance to SCN race 3. The selection efficiency of the microsatellites Sat_168, Satt309 and Sat_141 was greater than 93%.

  11. Genetic determinants of resistance to gastrointestinal nematodes in ruminants

    Science.gov (United States)

    Genetic markers for host resistance to gastrointestinal parasites have long been sought by the livestock industry as a way to select more resistant individuals, and alternatively, to help farmers with parasite control because high egg shedders will be removed from the flock and reduce parasite trans...

  12. Gastrointestinal nematodes and anthelmintic resistance in Danish goat herds

    DEFF Research Database (Denmark)

    Holm, Signe A.; Sørensen, Camilla; Thamsborg, Stig M.

    2014-01-01

    The prevalence of gastrointestinal parasites in Danish goats and the presence of anthelmintic resistance (AR) in 10 selected herds were investigated during April-September 2012. All Danish herds (n = 137) with 10 or more adult goats were invited to participate, and of these 27 herds met......, resistance to the most commonly used anthelmintics is widespread in larger goat herds throughout Denmark....

  13. First Report of Anthelmintic Resistance in Gastrointestinal Nematodes of Sheep from Costa Rica

    Directory of Open Access Journals (Sweden)

    R. Maroto

    2011-01-01

    Full Text Available As the prevalence and severity of anthelmintic resistance continue to rise, nematode infections in sheep correspondingly reduce the profitability of the sheep industry. In Costa Rica, sheep production systems are increasing in both number and importance. A field trial study was carried out to detect the level of anthelmintic resistance to albendazole and ivermectin in gastrointestinal nematodes (GIN of sheep from seven farms in Costa Rica. Resistance was determined using the fecal egg count reduction test (FECRT. Three treatment groups were assessed on each farm: control, albendazole, and ivermectin. Haemonchus spp. (71%, Strongyloides sp. (57%, and Trichostrongylus spp. (43% presented resistance levels to albendazole, whereas Strongyloides sp. (43%, Haemonchus spp. (29%, and Trichostrongylus spp. (29% were resistant to ivermectin. Haemonchus spp., Strongyloides sp., and Trichostrongylus spp. were the most resistant GIN to both products. This study suggests that frequency of treatment, exclusive chemical control, and visual estimation of animal weight to calculate dosage may contribute to the high levels of anthelmintic resistance that were observed on the farms analyzed herein.

  14. First Report of Anthelmintic Resistance in Gastrointestinal Nematodes of Sheep from Costa Rica

    Science.gov (United States)

    Maroto, R.; Jiménez, A. E.; Romero, J. J.; Alvarez, V.; De Oliveira, J. B.; Hernández, J.

    2011-01-01

    As the prevalence and severity of anthelmintic resistance continue to rise, nematode infections in sheep correspondingly reduce the profitability of the sheep industry. In Costa Rica, sheep production systems are increasing in both number and importance. A field trial study was carried out to detect the level of anthelmintic resistance to albendazole and ivermectin in gastrointestinal nematodes (GIN) of sheep from seven farms in Costa Rica. Resistance was determined using the fecal egg count reduction test (FECRT). Three treatment groups were assessed on each farm: control, albendazole, and ivermectin. Haemonchus spp. (71%), Strongyloides sp. (57%), and Trichostrongylus spp. (43%) presented resistance levels to albendazole, whereas Strongyloides sp. (43%), Haemonchus spp. (29%), and Trichostrongylus spp. (29%) were resistant to ivermectin. Haemonchus spp., Strongyloides sp., and Trichostrongylus spp. were the most resistant GIN to both products. This study suggests that frequency of treatment, exclusive chemical control, and visual estimation of animal weight to calculate dosage may contribute to the high levels of anthelmintic resistance that were observed on the farms analyzed herein. PMID:21772962

  15. Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes.

    Science.gov (United States)

    Bygarski, Elizabeth E; Prichard, Roger K; Ardelli, Bernadette F

    2014-12-01

    Our objective was to determine if the resistance mechanism to moxidectin (MOX) is similar of that to ivermectin (IVM) and involves P-glycoproteins (PGPs). Several Caenorhabditis elegans strains were used: an IVM and MOX sensitive strain, 13 PGP deletion strains and the IVM-R strain which shows synthetic resistance to IVM (by creation of three point mutations in genes coding for α-subunits of glutamate gated chloride channels [GluCls]) and cross-resistance to MOX. These strains were used to compare expression of PGP genes, measure motility and pharyngeal pumping phenotypes and evaluate the ability of compounds that inhibit PGP function to potentiate sensitivity or reverse resistance to MOX. The results suggest that C. elegans may use regulation of PGPs as a response mechanism to MOX. This was indicated by the over-expression of several PGPs in both drug sensitive and IVM-R strains and the significant changes in phenotype in the IVM-R strain in the presence of PGP inhibitors. However, as the inhibitors did not completely disrupt expression of the phenotypic traits in the IVM-R strain, this suggests that there likely are multiple avenues for MOX action that may include receptors other than GluCls. If MOX resistance was mediated solely by GluCls then exposure of the IVM-R strain to PGP inhibitors should not have affected sensitivity to MOX. Targeted gene deletions showed that protection of C. elegans against MOX involves complex mechanisms and depends on the PGP gene family, particularly PGP-6. While the results presented are similar to others using IVM, there were some important differences observed with respect to PGPs which may play a role in the disparities seen in the characteristics of resistance to IVM and MOX. The similarities are of concern as parasites resistant to IVM show some degree but not complete cross-resistance to MOX; this could impact nematodes that are resistant to IVM.

  16. Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Bygarski

    2014-12-01

    Full Text Available Our objective was to determine if the resistance mechanism to moxidectin (MOX is similar of that to ivermectin (IVM and involves P-glycoproteins (PGPs. Several Caenorhabditis elegans strains were used: an IVM and MOX sensitive strain, 13 PGP deletion strains and the IVM-R strain which shows synthetic resistance to IVM (by creation of three point mutations in genes coding for α-subunits of glutamate gated chloride channels [GluCls] and cross-resistance to MOX. These strains were used to compare expression of PGP genes, measure motility and pharyngeal pumping phenotypes and evaluate the ability of compounds that inhibit PGP function to potentiate sensitivity or reverse resistance to MOX. The results suggest that C. elegans may use regulation of PGPs as a response mechanism to MOX. This was indicated by the over-expression of several PGPs in both drug sensitive and IVM-R strains and the significant changes in phenotype in the IVM-R strain in the presence of PGP inhibitors. However, as the inhibitors did not completely disrupt expression of the phenotypic traits in the IVM-R strain, this suggests that there likely are multiple avenues for MOX action that may include receptors other than GluCls. If MOX resistance was mediated solely by GluCls then exposure of the IVM-R strain to PGP inhibitors should not have affected sensitivity to MOX. Targeted gene deletions showed that protection of C. elegans against MOX involves complex mechanisms and depends on the PGP gene family, particularly PGP-6. While the results presented are similar to others using IVM, there were some important differences observed with respect to PGPs which may play a role in the disparities seen in the characteristics of resistance to IVM and MOX. The similarities are of concern as parasites resistant to IVM show some degree but not complete cross-resistance to MOX; this could impact nematodes that are resistant to IVM.

  17. Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides.

    Science.gov (United States)

    Molinari, Sergio

    2011-03-01

    Plant-parasitic nematodes are pests of a wide range of economically important crops, causing severe losses to agriculture. Natural genetic resistance of plants is expected to be a valid solution of the many problems nematodes cause all over the world. Progress in resistance applications is particularly important for the less-developed countries of tropical and subtropical regions, since use of resistant cultivars may be the only possible and economically feasible control strategy in those farming systems. Resistance is being considered of particular importance also in modern high-input production systems of developed countries, as the customary reliance on chemical nematicides has been restricted or has come to an end. This review briefly describes the genetic bases of resistance to nematodes in plants and focuses on the chances and problems of its exploitation as a key element in an integrated management program. Much space is dedicated to the major problem of resistance durability, in that the intensive use of resistant cultivars is likely to increasingly induce the selection of virulent populations able to "break" the resistance. Protocols of pest-host suitability are described, as bioassays are being used to evaluate local nematode populations in their potential to be selected on resistant germplasm and endanger resistant crops. The recent progress in using robust and durable resistances against nematodes as an efficient method for growers in vegetable cropping systems is reported, as well as the possible use of chemicals that do not show any unfavorable impact on environment, to induce in plants resistance against plant-parasitic nematodes.

  18. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species.

    Science.gov (United States)

    Ulloa, M; Wang, C; Saha, S; Hutmacher, R B; Stelly, D M; Jenkins, J N; Burke, J; Roberts, P A

    2016-04-01

    Chromosome substitution (CS) lines in plants are a powerful genetic resource for analyzing the contribution of chromosome segments to phenotypic variance. In this study, a series of interspecific cotton (Gossypium spp.) CS lines were used to identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode or fungal disease resistance traits. The CS lines were developed in the G. hirsutum L. TM-1 background with chromosome or chromosome segment substitutions from G. barbadense L. Pima 3-79 or G. tomentosum. Root-knot nematode (Meloidogyne incognita) and fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) (races 1 and 4) resistance alleles and quantitative trait loci (QTL) previously placed on cotton chromosomes using SSR markers in two interspecific recombinant inbred line populations were chosen for testing. Phenotypic responses of increased resistance or susceptibility in controlled inoculation and infested field assays confirmed the resistance QTLs, based on substitution with the positive or negative allele for resistance. Lines CS-B22Lo, CS-B04, and CS-B18 showed high resistance to nematode root-galling, confirming QTLs on chromosomes 4 and 22 (long arm) with resistance alleles from Pima 3-79. Line CS-B16 had less fusarium race 1-induced vascular root staining and higher percent survival than the TM-1 parent, confirming a major resistance QTL on chromosome 16. Lines CS-B(17-11) and CS-B17 had high fusarium race 4 vascular symptoms and low survival due to susceptible alleles introgressed from Pima 3-79, confirming the localization on chromosome 17 of an identified QTL with resistance alleles from TM1 and other resistant lines. Analyses validated regions on chromosomes 11, 16, and 17 harboring nematode and fusarium wilt resistance genes and demonstrated the value of CS lines as both a germplasm resource for breeding programs and as a powerful genetic analysis tool for determining QTL effects for disease

  19. Gastrointestinal nematodes and anthelmintic resistance in Danish goat herds

    DEFF Research Database (Denmark)

    Holm, Signe A.; Sørensen, Camilla; Thamsborg, Stig M.

    2014-01-01

    The prevalence of gastrointestinal parasites in Danish goats and the presence of anthelmintic resistance (AR) in 10 selected herds were investigated during April-September 2012. All Danish herds (n = 137) with 10 or more adult goats were invited to participate, and of these 27 herds met the inclu......The prevalence of gastrointestinal parasites in Danish goats and the presence of anthelmintic resistance (AR) in 10 selected herds were investigated during April-September 2012. All Danish herds (n = 137) with 10 or more adult goats were invited to participate, and of these 27 herds met...

  20. Frequency of cattle farms with ivermectin resistant gastrointestinal nematodes in Veracruz, Mexico.

    Science.gov (United States)

    Alonso-Díaz, M A; Arnaud-Ochoa, R A; Becerra-Nava, R; Torres-Acosta, J F J; Rodriguez-Vivas, R I; Quiroz-Romero, R H

    2015-09-15

    This study reports the percentage of cattle farms with ivermectin (IVM) resistant gastrointestinal nematodes (GINs) in Veracruz, Mexico, and identifies the GIN genera involved in the resistances. It also describes management practices of anthelmintic (AH) use on the surveyed farms. Twenty-one farms were assessed by means of the faecal egg count reduction test using the McMaster technique. Only two farms had GIN populations susceptible to IVM (9.5%). The proportion of farms with IVM resistant GIN was 71.4% (15/21). Seven of these farms had less than 80% egg count reductions. Haemonchus and Cooperia were the genera most commonly found in the resistant populations, followed by Oesophagostomum. Inappropriate AH treatment practices were identified from the completed questionnaires. Further management practices such as selective treatment and quarantine treatments are proposed to further reduce the spread of IVM resistance between farms.

  1. Anthelmintic resistant nematodes in goats in the Netherlands

    NARCIS (Netherlands)

    Borgsteede, F.H.M.; Pekelder, J.J.; Dercksen, D.P.

    1996-01-01

    A suspected case of anthelmintic resistance on a farm with Angora and Anglo-Nubian goats was confirmed in a controlled test. Twelve lambs of sheep were infected with larvae cultured from faeces of the goats. The lambs were allocated to four groups: untreated controls and lambs treated 21 days after

  2. Comparative efficacy of different anthelmintics against fenbendazole-resistant nematodes of pashmina goats.

    Science.gov (United States)

    Ram, H; Rasool, T J; Sharma, A K; Meena, H R; Singh, S K

    2007-08-01

    A trial using albendazole, albendazole plus rafoxanide combination, ivermectin and doramectin was conducted in Pashmina goats having history of fenbendazole resistance to Haemonchus spp. and maintained at high altitude (>2350 m above sea level). Day 0 infection level was variable in different groups of animals and their larval cultures indicated Haemonchus, Trichostrongylus, Ostertagia and Oesophagostomum spp. infection, in addition to Nematodirus spp. as observed in egg counts. Efficacy of drugs was calculated on day 14 post treatment by faecal egg count reduction test (FECRT). Albendazole was least effective (14%) followed by its combination with rafoxanide (54%). However, ivermectin and doramectin were 96% and 94% effective against gastrointestinal nematodes of Pashmina goats. It was concluded that use of albendazole and its combination with rafoxanide are ineffective in controlling the nematodes of goats at this farm; hence, future use must be avoided. However, regular monitoring of the efficacy of ivermectin and doramectin is needed.

  3. Assessment of anthelmintic resistance in nematode parasites of sheep and goats owned by smallholder farmers in eastern Ethiopia.

    Science.gov (United States)

    Sissay, M M; Asefa, A; Uggla, A; Waller, P J

    2006-04-01

    The anthelmintic resistance status was investigated of nematode parasites of sheep and goats owned by smallholder farmers in communities that received breeding stock from a source where a high level of anthelmintic resistance has been reported. The investigation used the faecal egg count reduction technique, whereby suitable animals within each of eight separate communities were pooled to achieve the numbers required to conduct separate tests for both sheep and goats. Anthelmintics tested were albendazole (ABZ), tetramisole (TET), a combination (ABZ + TET) and ivermectin (IVM), at the manufacturers' recommended dose rates. Results showed that there was no evidence of anthelmintic resistance in nematode parasites of either sheep an goats in any community. This indicates that dilution of resistant parasites imported with introduced breeding stock, and the low selection pressure imposed by the smallholder farmers themselves, has prevented anthelmintic resistance from emerging in nematode parasites of small ruminants in these communities.

  4. RNA interference of effector gene 16D10 leads to broad meloidogyne resistance in potato

    Science.gov (United States)

    Root-knot nematodes (Meloidogyne spp.) are a significant problem in potato (Solanum tuberosum) production. There is no known Meloidogyne resistance gene in cultivated potato, even though sources of resistance were identified in wild potato species. The objective of this study was to generate stable ...

  5. Resistance of gastrointestinal nematodes to anthelmintics in sheep (Ovis aries

    Directory of Open Access Journals (Sweden)

    Vanete Thomaz-Soccol

    2004-03-01

    Full Text Available The fecal egg count reduction test (FECRT was used in a survey for anthelmintic resistance in 42 sheep farms, in five different regions in Paraná State, Brazil between July 1996 - July 2000. Animals with natural infection were tested. Five drugs were used individually or in combination - benzimidazole, imidazothiazole, ivermectin, milbemicina and closantel. Results showed that the prevalence of resistance to all anthelmintic was as high as 88.1% for benzimidazoles (oxfendazole, 78.6% for ivermectin, 56.4% for closantel, 38.7% for closantel + oxfendazole, 38% for levamisole, and 23.6% for moxidectin. There was multiple resistance in all tested farms. The most important infective larvae recovered from culture were Haemonchus contortus and Trichostrongylus colubriformis. The failure of the existing drugs in the State of Paraná is considered an important issue. Some proposals to improve the situation are suggested which include a change of attitude on anthelmintic use by sheepherders, veterinarians and sanitary authorities.O teste de redução da contagem de ovos de helmintos por grama de fezes (FECRT foi usado para testar a eficiência dos antihelmínticos em 42 propriedades produtoras de ovinos, em cinco diferentes regiões no Estado do Paraná, Brasil. O estudo foi realizado entre Julho 1996 a Julho de 2000. Foram avaliados animais com infecção natural. Cinco drogas foram usadas só ou em combinação (benzimidazole, imidazothiazole, ivermectin, milbemicina e closantel. Resultados mostraram que a prevalência de resistência foi alta para todos os antihelmínticos avaliados: 88.1% para benzimidazoles (oxfendazole, 78.6% para ivermectin, 56.4% para closantel, 38.7% para closantel + oxfendazole, 38% para levamisole, e 23.6% para moxidectin. Havia resistência múltipla em todas fazendas estudadas. Na identificação das larvas de helmintos recuperadas das culturas de fezes após o tratamento verificou-se que maioria pertenciam a Haemonchus sp

  6. First report of cattle farms with gastrointestinal nematodes resistant to levamisole in Mexico.

    Science.gov (United States)

    Becerra-Nava, R; Alonso-Díaz, M A; Fernández-Salas, A; Quiroz, R H

    2014-08-29

    The objectives of the present study were: (1) to report the percentage of cattle farms with gastrointestinal nematodes (GINs) resistant to levamisole in Veracruz, Mexico, (2) to identify the genera of GINs involved in resistance, and (3) to identify factors associated with these resistances. The faecal egg count reduction test (McMaster technique) was used to detect the presence of resistant GINs. A questionnaire was given to owners to understand the history of anthelmintic use. The percentage of cattle farms with GINs resistant to levamisole was 36.4% (4/11). The percentage of faecal egg count reduction on resistant farms was 91%, 82%, 42% and 88%. A similar number of cattle farms (4/11) were identified as potentially having levamisole resistance. Only three farms had GIN populations susceptible to levamisole. Cooperia spp. was the genus most commonly found to be resistant, followed by Haemonchus spp., Ostertagia spp. and Oesophagostomum spp. No factors were identified that influenced the presence of GIN resistance. However, there were identified inappropriate anthelmintic practices in cattle farms that should be improved. None of the farmers weighed their animals in order to dose them correctly with anthelmintics. Six cattle farms (54.5%) applied anthelmintics to new arriving animals. This is the first report of levamisole resistant GINs in Mexico. Improving the use of anthelmintics and measures of quarantine for infected cattle will help control the spread of resistance.

  7. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut

    Science.gov (United States)

    Leal-Bertioli, Soraya C. M.; Moretzsohn, Márcio C.; Roberts, Philip A.; Ballén-Taborda, Carolina; Borba, Tereza C. O.; Valdisser, Paula A.; Vianello, Rosana P.; Araújo, Ana Cláudia G; Guimarães, Patricia M.; Bertioli, David J.

    2015-01-01

    Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs. PMID:26656152

  8. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut

    Directory of Open Access Journals (Sweden)

    Soraya C. M. Leal-Bertioli

    2016-02-01

    Full Text Available Root-knot nematodes (RKN; Meloidogyne sp. are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs.

  9. Gastrointestinal nematodes and anthelmintic resistance in Danish goat herds.

    Science.gov (United States)

    Holm, Signe A; Sörensen, Camilla R L; Thamsborg, Stig M; Enemark, Heidi L

    2014-01-01

    The prevalence of gastrointestinal parasites in Danish goats and the presence of anthelmintic resistance (AR) in 10 selected herds were investigated during April-September 2012. All Danish herds (n = 137) with 10 or more adult goats were invited to participate, and of these 27 herds met the inclusion criterion of more than 10 young kids never treated with anthelmintics. Questionnaire data on management were collected, and faecal samples from 252 kids were analysed by the McMaster technique. From all herds with a mean faecal egg count (FEC) above 300 eggs per g of faeces, pooled samples were stained with peanut agglutinin (PNA) for specific detection of Haemonchus contortus. Strongyle eggs were detected with an individual prevalence of 69%, including Nematodirus battus (3.6%) and other Nematodirus species (15.0%). Eimeria spp. were observed in 99.6% of the kids. H. contortus was found in 11 of 12 (92%) tested herds. Anthelmintics were used in 89% of the herds with mean treatment frequencies of 0.96 and 0.89 treatments per year for kids and adults, respectively. In 2011, new animals were introduced into 44% of the herds of which 25% practised quarantine anthelmintic treatments. In 10 herds the presence of AR was analysed by egg hatch assay and FEC reduction tests using ivermectin (0.3 mg/kg) or fenbendazole (10.0 mg/kg). AR against both fenbendazole and ivermectin was detected in seven herds; AR against fenbendazole in one herd, and AR against ivermectin in another herd. In conclusion, resistance to the most commonly used anthelmintics is widespread in larger goat herds throughout Denmark.

  10. Gastrointestinal nematodes and anthelmintic resistance in Danish goat herds☆

    Science.gov (United States)

    Holm, Signe A.; Sörensen, Camilla R. L.; Thamsborg, Stig M.; Enemark, Heidi L.

    2014-01-01

    The prevalence of gastrointestinal parasites in Danish goats and the presence of anthelmintic resistance (AR) in 10 selected herds were investigated during April–September 2012. All Danish herds (n = 137) with 10 or more adult goats were invited to participate, and of these 27 herds met the inclusion criterion of more than 10 young kids never treated with anthelmintics. Questionnaire data on management were collected, and faecal samples from 252 kids were analysed by the McMaster technique. From all herds with a mean faecal egg count (FEC) above 300 eggs per g of faeces, pooled samples were stained with peanut agglutinin (PNA) for specific detection of Haemonchus contortus. Strongyle eggs were detected with an individual prevalence of 69%, including Nematodirus battus (3.6%) and other Nematodirus species (15.0%). Eimeria spp. were observed in 99.6% of the kids. H. contortus was found in 11 of 12 (92%) tested herds. Anthelmintics were used in 89% of the herds with mean treatment frequencies of 0.96 and 0.89 treatments per year for kids and adults, respectively. In 2011, new animals were introduced into 44% of the herds of which 25% practised quarantine anthelmintic treatments. In 10 herds the presence of AR was analysed by egg hatch assay and FEC reduction tests using ivermectin (0.3 mg/kg) or fenbendazole (10.0 mg/kg). AR against both fenbendazole and ivermectin was detected in seven herds; AR against fenbendazole in one herd, and AR against ivermectin in another herd. In conclusion, resistance to the most commonly used anthelmintics is widespread in larger goat herds throughout Denmark. PMID:25076056

  11. Gastrointestinal nematodes and anthelmintic resistance in Danish goat herds☆

    Directory of Open Access Journals (Sweden)

    Holm Signe A.

    2014-01-01

    Full Text Available The prevalence of gastrointestinal parasites in Danish goats and the presence of anthelmintic resistance (AR in 10 selected herds were investigated during April–September 2012. All Danish herds (n = 137 with 10 or more adult goats were invited to participate, and of these 27 herds met the inclusion criterion of more than 10 young kids never treated with anthelmintics. Questionnaire data on management were collected, and faecal samples from 252 kids were analysed by the McMaster technique. From all herds with a mean faecal egg count (FEC above 300 eggs per g of faeces, pooled samples were stained with peanut agglutinin (PNA for specific detection of Haemonchus contortus. Strongyle eggs were detected with an individual prevalence of 69%, including Nematodirus battus (3.6% and other Nematodirus species (15.0%. Eimeria spp. were observed in 99.6% of the kids. H. contortus was found in 11 of 12 (92% tested herds. Anthelmintics were used in 89% of the herds with mean treatment frequencies of 0.96 and 0.89 treatments per year for kids and adults, respectively. In 2011, new animals were introduced into 44% of the herds of which 25% practised quarantine anthelmintic treatments. In 10 herds the presence of AR was analysed by egg hatch assay and FEC reduction tests using ivermectin (0.3 mg/kg or fenbendazole (10.0 mg/kg. AR against both fenbendazole and ivermectin was detected in seven herds; AR against fenbendazole in one herd, and AR against ivermectin in another herd. In conclusion, resistance to the most commonly used anthelmintics is widespread in larger goat herds throughout Denmark.

  12. Nematode Diversity of Qingdao Coast Inferred from the 18S Ribosomal RNA Gene Sequence Analysis

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiquan; YANG Guanpin; LIU Yongjian

    2007-01-01

    The 18S ribosomal DNA gene (18S rDNA) sequences (approximately 1300 bp in length) were amplified from the DNA extracted from the free-living marine nematodes collected from the inter-tidal sediment of Qingdao coast in bulk with nematode specific primers. The PCR products were cloned, re-amplified, digested with Rsa I and Hin6Ⅰ restriction endonucleases and separated in agarose gel. Among 17 restriction fragment length types, types 1, 2 and 6 covered 61.2%, 14.4% and 9.3% of the clones analyzed, respectively, while the remaining 14 only covered 21 clones, which accounted for 15.1% of the total. Twenty-four representative clones were sequenced and phylogenetically analyzed by referring to those currently available in RDP and GenBank databases. Although it was hard to assign these sequences to known species or genera due to the lack of the 18S rDNA sequence data of known marine free-living nematodes, the obtained sequences were assigned to the nematodes of Adenophorea. Among them, twelve sequences were close to Pontonema vulgare and Adoncholaimus sp., four to Daptonemaprocerus and two (identical) to Enoplus brevis. Our results showed that free-living marine nematode diversities could be determined by PCR retrieving and analysis of the 18S rDNA sequences and an 18S rDNA sequence could be assigned to a species or a genus only if the 18S rDNA sequences of the free-living marine nematodes were accumulated to some extent.

  13. Reniform nematode (Rotylenchulus reniformis) resistance locus from Gossypium aridum identified and introgressed into upland cotton (G. hirsutum)

    Science.gov (United States)

    SSR markers associated with reniform nematode (Rotylenchulus reniformis) resistance were identified and mapped using progeny from a cross between a tri-species hybrid [Gossypium arboreum × (G 371 - G. hirsutum × G. aridum -)] and G. hirsutum MD51ne. The 50 most resistant and 26 most susceptible prog...

  14. Multiple nodulation genes are up-regulated during establishment of reniform nematode feeding sites in soybean.

    Science.gov (United States)

    Redding, Nathan Wayne; Agudelo, Paula; Wells, Christina E

    2017-09-15

    The semi-endoparastic reniform nematode (Rotylenchulus reniformis) infects over 300 plant species. Females penetrate host roots and induce formation of complex, multinucleate feeding sites called syncytia. While anatomical changes associated with reniform nematode infection are well documented, little is known about their molecular basis. We grew soybean (Glycine max) in a split-root growth system, inoculated half of each root system with R. reniformis, and quantified gene expression in infected and control root tissue at four dates after inoculation. Over 6,000 genes were differentially expressed between inoculated and control roots on at least one date (FDR = 0.01, |log2FC| ≥ 1), and 507 gene sets were significantly enriched or depleted in inoculated roots (FDR = 0.05). Numerous genes up-regulated during syncytium formation had previously been associated with rhizobia nodulation. These included the nodule-initiating transcription factors CYCLOPS, NSP1, NSP2, and NIN, as well as multiple nodulins associated with the plant-derived peribacteroid membrane. Nodulation-related NIP aquaporins and SWEET sugar transporters were induced, as were plant CLAVATA3/ESR-related (CLE) signaling proteins and cell cycle regulators such as CCS52A and E2F. Nodulins and nodule-associated genes may have ancestral functions in normal root development and mycorrhization that have been co-opted by both parasitic nematodes and rhizobial bacteria to promote feeding site and nodule formation.

  15. Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus

    Science.gov (United States)

    Zhou, Lifeng; Chen, Fengmao; Pan, Hongyang; Ye, Jianren; Dong, Xuejiao; Li, Chunyan; Lin, Fengling

    2016-01-01

    Bursaphelenchus mucronatus (B. mucronatus) isolates that originate from different regions may vary in their virulence, but their virulence-associated genes and proteins are poorly understood. Thus, we conducted an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) to analyse transcriptomic and proteomic data of highly and weakly virulent B. mucronatus isolates during the pathogenic processes. Approximately 40,000 annotated unigenes and 5000 proteins were gained from the isolates. When we matched all of the proteins with their detected transcripts, a low correlation coefficient of r = 0.138 was found, indicating probable post-transcriptional gene regulation involved in the pathogenic processes. A functional analysis showed that five differentially expressed proteins which were all highly expressed in the highly virulent isolate were involved in the pathogenic processes of nematodes. Peroxiredoxin, fatty acid- and retinol-binding protein, and glutathione peroxidase relate to resistance against plant defence responses, while β-1,4-endoglucanase and expansin are associated with the breakdown of plant cell walls. Thus, the pathogenesis of B. mucronatus depends on its successful survival in host plants. Our work adds to the understanding of B. mucronatus’ pathogenesis, and will aid in controlling B. mucronatus and other pinewood nematode species complexes in the future. PMID:27618012

  16. Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus

    Directory of Open Access Journals (Sweden)

    Lifeng Zhou

    2016-09-01

    Full Text Available Bursaphelenchus mucronatus (B. mucronatus isolates that originate from different regions may vary in their virulence, but their virulence-associated genes and proteins are poorly understood. Thus, we conducted an integrated study coupling RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ to analyse transcriptomic and proteomic data of highly and weakly virulent B. mucronatus isolates during the pathogenic processes. Approximately 40,000 annotated unigenes and 5000 proteins were gained from the isolates. When we matched all of the proteins with their detected transcripts, a low correlation coefficient of r = 0.138 was found, indicating probable post-transcriptional gene regulation involved in the pathogenic processes. A functional analysis showed that five differentially expressed proteins which were all highly expressed in the highly virulent isolate were involved in the pathogenic processes of nematodes. Peroxiredoxin, fatty acid- and retinol-binding protein, and glutathione peroxidase relate to resistance against plant defence responses, while β-1,4-endoglucanase and expansin are associated with the breakdown of plant cell walls. Thus, the pathogenesis of B. mucronatus depends on its successful survival in host plants. Our work adds to the understanding of B. mucronatus’ pathogenesis, and will aid in controlling B. mucronatus and other pinewood nematode species complexes in the future.

  17. Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil

    Science.gov (United States)

    Ramos, Fernanda; Portella, Luiza Pires; Rodrigues, Fernando de Souza; Reginato, Caroline Zamperete; Pötter, Luciana; Cezar, Alfredo Skrebsky; Sangioni, Luís Antônio; Vogel, Fernanda Silveira Flores

    2016-01-01

    Gastrointestinal nematodes resistant to anthelmintics have been reported in several regions of Brazil, and they may be associated with economic losses for the cattle industry. This study aimed to evaluate the resistance status of gastrointestinal nematodes from naturally infected beef cattle to several commercially available anthelmintics, as well as to test the efficacy of combinations of anthelmintics against multi-resistant gastrointestinal nematodes. Ten farms located in Rio Grande do Sul state were selected by: farmers' consent; extensive raising system; availability of calves aged from 7 to 9 months naturally infected by gastrointestinal nematodes; absence of anthelmintic treatment for 60 days before the study; and presence of 70–100 calves or more of both genders with ≥200 eggs per gram of feces (EPG) (sensitivity of 50 EPG). These calves were distributed into 10 groups (of 7–10 animals) per farm and treated with ivermectin, doramectin, eprinomectin, fenbendazole, closantel, nitroxynil, disophenol, levamisole, albendazole, or moxidectin. Feces were collected 2 days before treatment and 14 days after treatment. Additional groups of 7–10 calves were used to test six different two-drug combinations at four of the studied farms. In general terms, fenbendazole was the most effective drug, followed by levamisole, disophenol, and moxidectin. However, parasite resistance to multiple drugs was found in all herds, especially in the genera Cooperia spp., Trichostrongylus spp., and Haemonchus spp.. Some of the two-drug combinations were effective against nematode populations identified as resistant to the same compounds when used as single drugs. The most effective combinations were moxidectin + levamisole, doramectin + fenbendazole, and levamisole + closantel. In this study, parasites resistant to the main commercially available anthelmintics were found in all herds, and some combinations of two active components belonging to different chemical groups

  18. Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil.

    Science.gov (United States)

    Ramos, Fernanda; Portella, Luiza Pires; Rodrigues, Fernando de Souza; Reginato, Caroline Zamperete; Pötter, Luciana; Cezar, Alfredo Skrebsky; Sangioni, Luís Antônio; Vogel, Fernanda Silveira Flores

    2016-04-01

    Gastrointestinal nematodes resistant to anthelmintics have been reported in several regions of Brazil, and they may be associated with economic losses for the cattle industry. This study aimed to evaluate the resistance status of gastrointestinal nematodes from naturally infected beef cattle to several commercially available anthelmintics, as well as to test the efficacy of combinations of anthelmintics against multi-resistant gastrointestinal nematodes. Ten farms located in Rio Grande do Sul state were selected by: farmers' consent; extensive raising system; availability of calves aged from 7 to 9 months naturally infected by gastrointestinal nematodes; absence of anthelmintic treatment for 60 days before the study; and presence of 70-100 calves or more of both genders with ≥ 200 eggs per gram of feces (EPG) (sensitivity of 50 EPG). These calves were distributed into 10 groups (of 7-10 animals) per farm and treated with ivermectin, doramectin, eprinomectin, fenbendazole, closantel, nitroxynil, disophenol, levamisole, albendazole, or moxidectin. Feces were collected 2 days before treatment and 14 days after treatment. Additional groups of 7-10 calves were used to test six different two-drug combinations at four of the studied farms. In general terms, fenbendazole was the most effective drug, followed by levamisole, disophenol, and moxidectin. However, parasite resistance to multiple drugs was found in all herds, especially in the genera Cooperia spp., Trichostrongylus spp., and Haemonchus spp.. Some of the two-drug combinations were effective against nematode populations identified as resistant to the same compounds when used as single drugs. The most effective combinations were moxidectin + levamisole, doramectin + fenbendazole, and levamisole + closantel. In this study, parasites resistant to the main commercially available anthelmintics were found in all herds, and some combinations of two active components belonging to different chemical groups were effective

  19. Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda Ramos

    2016-04-01

    Full Text Available Gastrointestinal nematodes resistant to anthelmintics have been reported in several regions of Brazil, and they may be associated with economic losses for the cattle industry. This study aimed to evaluate the resistance status of gastrointestinal nematodes from naturally infected beef cattle to several commercially available anthelmintics, as well as to test the efficacy of combinations of anthelmintics against multi-resistant gastrointestinal nematodes. Ten farms located in Rio Grande do Sul state were selected by: farmers' consent; extensive raising system; availability of calves aged from 7 to 9 months naturally infected by gastrointestinal nematodes; absence of anthelmintic treatment for 60 days before the study; and presence of 70–100 calves or more of both genders with ≥200 eggs per gram of feces (EPG (sensitivity of 50 EPG. These calves were distributed into 10 groups (of 7–10 animals per farm and treated with ivermectin, doramectin, eprinomectin, fenbendazole, closantel, nitroxynil, disophenol, levamisole, albendazole, or moxidectin. Feces were collected 2 days before treatment and 14 days after treatment. Additional groups of 7–10 calves were used to test six different two-drug combinations at four of the studied farms. In general terms, fenbendazole was the most effective drug, followed by levamisole, disophenol, and moxidectin. However, parasite resistance to multiple drugs was found in all herds, especially in the genera Cooperia spp., Trichostrongylus spp., and Haemonchus spp.. Some of the two-drug combinations were effective against nematode populations identified as resistant to the same compounds when used as single drugs. The most effective combinations were moxidectin + levamisole, doramectin + fenbendazole, and levamisole + closantel. In this study, parasites resistant to the main commercially available anthelmintics were found in all herds, and some combinations of two active components belonging to different

  20. Inducing effect of PGRs on small regulatory si/miRNA in resistance to sugar beet cyst nematode.

    Science.gov (United States)

    Tsygankova, V A; Stefanovska, T R; Galkin, A P; Ponomarenko, S P; Blume, Ya B

    2012-01-01

    Sugar beet cyst nematode Heterodera schachtii Schmidt is an economically important plant parasite of sugar beet in Ukraine. The pest control options are limited. Sugar beet cyst nematode resistant varieties are not available on the market. Carbamate and organophosphate pesticides have been banned due to the high toxicity. The problem is aggravated by continuously increasing of oilseed rape (which is suitable host for H. schachtii) growing area due to biofuel demands. Several studies' results indicate that PGRs have role in management of plant parasitic nematodes but for sugar beet it is not studied well. We had an objective- studying of the role of four compositional PGRs created based of avermectin in suppression of sugar beet cyst nematode population on sugar beet and oilseed rape caused by enhancing of endogenous si/miRNA complementary to H. schachtii mRNA. Laboratory study was conducted in 2011 with using method DOT-blot hybridization si/miRNA with mRNA and by testing inhibitory activity in cell free system protein biosynthesis. That was shown that application of the PGRs enhances sugar beet and oilseeds rape plant immune-protective properties and resistance against plant-parasitic nematode Heterodera schochtii through enhancement of synthesis of small regulatory si/miRNA related (complementary) to an mRNA structure of the parasitic organisms. As a result, translation of mRNA of the nematode is blocked and causes the mortality of plant parasite juveniles.

  1. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis.

    Science.gov (United States)

    Hölscher, Dirk; Dhakshinamoorthy, Suganthagunthalam; Alexandrov, Theodore; Becker, Michael; Bretschneider, Tom; Buerkert, Andreas; Crecelius, Anna C; De Waele, Dirk; Elsen, Annemie; Heckel, David G; Heklau, Heike; Hertweck, Christian; Kai, Marco; Knop, Katrin; Krafft, Christoph; Maddula, Ravi K; Matthäus, Christian; Popp, Jürgen; Schneider, Bernd; Schubert, Ulrich S; Sikora, Richard A; Svatoš, Aleš; Swennen, Rony L

    2014-01-01

    The global yield of bananas-one of the most important food crops-is severely hampered by parasites, such as nematodes, which cause yield losses up to 75%. Plant-nematode interactions of two banana cultivars differing in susceptibility to Radopholus similis were investigated by combining the conventional and spatially resolved analytical techniques (1)H NMR spectroscopy, matrix-free UV-laser desorption/ionization mass spectrometric imaging, and Raman microspectroscopy. This innovative combination of analytical techniques was applied to isolate, identify, and locate the banana-specific type of phytoalexins, phenylphenalenones, in the R. similis-caused lesions of the plants. The striking antinematode activity of the phenylphenalenone anigorufone, its ingestion by the nematode, and its subsequent localization in lipid droplets within the nematode is reported. The importance of varying local concentrations of these specialized metabolites in infected plant tissues, their involvement in the plant's defense system, and derived strategies for improving banana resistance are highlighted.

  2. Anthelmintic-resistant nematodes in Irish commercial sheep flocks- the state of play

    Directory of Open Access Journals (Sweden)

    Good Barbara

    2012-12-01

    Full Text Available Abstract Anthelmintic resistance has been reported in most sheep producing countries. Prior to the mid 1990s, reports of anthelmintic resistance in Ireland were sparse and focused on benzimidazole, one of the three classes of anthelmintic available during this period. This evidence for efficacy issues on Irish farms combined with awareness that anthelmintic resistance was increasingly being reported in other countries prompted the need for more comprehensive investigations on Irish farms. Faecal egg count reduction and micro-agar larval development tests were employed to investigate resistance to benzimidazole, levamisole and macrocyclic lactone. There is compelling evidence for resistance to both benzimidazole (>88% of flocks and levamisole (>39% of flocks. Resistance of nematode populations to macrocyclic lactone was suspected on a small number of farms (11% but needs to be confirmed. The recent introduction of two new classes of anthelmintics, after over a 25 year interval, together with the evidence that anthelmintic resistance is reported within a relatively short time following the introduction of a new anthelmintic compound means that the challenge to the industry is immediate. Actions are urgently required to manage anthelmintic resistance so as to prolong the lifespan of anthelmintics.

  3. Characterization of innate immunity genes in the parasitic nematode Brugia malayi.

    Science.gov (United States)

    Libro, Silvia; Slatko, Barton E; Foster, Jeremy M

    The filarial nematode Brugia malayi is one of the causative agents of lymphatic filariasis, a neglected tropical disease that affects 120 million people worldwide. The limited effectiveness of available anthelmintics and the absence of a vaccine have prompted extensive research on the interaction between Brugia and its obligate bacterial endosymbiont, Wolbachia. Recent studies suggest that Wolbachia is able to manipulate its nematode host immunity but relatively little is known about the immune system of filarial nematodes. Therefore, elucidation of the mechanisms underlying the immune system of B. malayi may be useful for understanding how the symbiotic relationship is maintained and help in the identification of new drug targets. In order to characterize the main genetic pathways involved in B. malayi immunity, we exposed adult female worms to two bacterial lysates (Escherichia coli and Bacillus amyloliquefaciens), dsRNA and dsDNA. We performed transcriptome sequencing of worms exposed to each immune elicitor at two different timepoints. Gene expression analysis of untreated and immune-challenged worms was performed to characterize gene expression patterns associated with each type of immune stimulation. Our results indicate that different immune elicitors produced distinct expression patterns in B. malayi, with changes in the expression of orthologs of well-characterized C. elegans immune pathways such as insulin, TGF-β, and p38 MAPK pathways, as well as C-type lectins and several stress-response genes.

  4. The Power of Omics to Identify Plant Susceptibility Factors and to Study Resistance to Root-knot Nematodes.

    Science.gov (United States)

    Cabrera, Javier; Barcala, Marta; Fenoll, Carmen; Escobar, Carolina

    2016-01-01

    Technology has contributed to the advances on the genomic, transcriptomic, metabolomic and proteomic analyses of the plant-root-knot nematode (RKN) interaction. Holistic approaches to obtain expression profiles, such as cDNA libraries, differential display, q-PCR, microarray hybridization, massive sequencing, etc., have increased our knowledge on the molecular aspects of the interaction and have triggered the development of biotechnological tools to control this plague. An important limitation, however, has been the difficulty of cross-comparative analysis of these data. The construction of a database, NEMATIC, compiling microarray data available in Arabidopsis of the interaction with plant endoparasitic nematodes facilitated the in silico analysis, but is not sufficient for the handling of 'omic' information of different plant species. Omics combined with cell isolation techniques have shed some light on the heterogeneous expression signatures of nematode induced gall tissues, i.e., plant defences are specifically inhibited in giant cells within the gall aiding the nematode for a successful establishment. The natural resistance against RKNs varies from an early hypersensitive reaction before the establishment of the nematode, to the arrest of gall growth. The molecular bases of these mechanisms, not fully understood yet, could disclose powerful targets for the development of biotechnology based tools for nematode control.

  5. Resistant nematodes in cattle: Pharmaco-therapeutic assessment of the ivermectin- ricobendazole combination.

    Science.gov (United States)

    Canton, Candela; Ceballos, Laura; Fiel, César; Moreno, Laura; Domingo Yagüez, Pablo; Bernat, Gisele; Lanusse, Carlos; Alvarez, Luis

    2017-01-30

    Nematodicidal combinations have been proposed as a valid strategy to achieve effective nematode control in the presence of drug resistance. The goals of this study were: (1) to compare the clinical efficacy (therapeutic response) of ivermectin (IVM) and ricobendazole (RBZ) given subcutaneously either by separate or combined administration to calves naturally infected with gastrointestinal nematodes resistant to IVM, and (2) to evaluate the potential pharmacokinetic (PK) and/or pharmacodynamic (PD) interactions occurring after the co-administration of both anthelmintics. Sixty male calves naturally infected with gastrointestinal nematodes resistant to IVM were randomly allocated into four groups (n=15). Untreated control: animals not receiving anthelmintic treatment; IVM alone: animals treated with IVM by subcutaneous (SC) injection (0.2mg/kg); RBZ alone: animals received RBZ by the SC route (3.75mg/kg); IVM+RBZ: animals treated with IVM and RBZ (0.2 and 3.75mg/kg, respectively), by SC injection in two separates sites. Eight animals of each treated group were randomly selected to perform the PK study. Plasma samples were taken from those animals up to 28days post-treatment. IVM and RBZ plasma concentrations were quantified by HPLC. The therapeutic response was determined by faecal egg count reduction test (FECRT). The proportions of third-stage larvae (L3) recovered from coprocultures were used to calculate the efficacy against the main parasite genera. The daily total egg deposition for each experimental group was estimated. Similar pharmacokinetic trends were obtained for both IVM and RBZ allying the single-drug and the combined treatments, which indicates the absence of PK interactions between both anthelmintics. The observed overall clinical drug efficacies were 48% (IVM alone), 94% (RBZ alone) and 98% (IVM+RBZ). Haemonchus spp. and Cooperia spp. were recovered in the coproculture after IVM treatment, suggesting that resistance to IVM includes both genera. In

  6. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle.

    Science.gov (United States)

    Hou, Yali; Liu, George E; Bickhart, Derek M; Matukumalli, Lakshmi K; Li, Congjun; Song, Jiuzhou; Gasbarre, Louis C; Van Tassell, Curtis P; Sonstegard, Tad S

    2012-03-01

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes. In this study, we performed a large-scale analysis of CNVs using SNP genotyping data from 472 animals of the same population. We detected 811 candidate CNV regions, which represent 141.8 Mb (~4.7%) of the genome. To investigate the functional impacts of CNVs, we created 2 groups of 100 individual animals with extremely low or high estimated breeding values of eggs per gram of feces and referred to these groups as parasite resistant (PR) or parasite susceptible (PS), respectively. We identified 297 (~51 Mb) and 282 (~48 Mb) CNV regions from PR and PS groups, respectively. Approximately 60% of the CNV regions were specific to the PS group or PR group of animals. Selected PR- or PS-specific CNVs were further experimentally validated by quantitative PCR. A total of 297 PR CNV regions overlapped with 437 Ensembl genes enriched in immunity and defense, like WC1 gene which uniquely expresses on gamma/delta T cells in cattle. Network analyses indicated that the PR-specific genes were predominantly involved in gastrointestinal disease, immunological disease, inflammatory response, cell-to-cell signaling and interaction, lymphoid tissue development, and cell death. By contrast, the 282 PS CNV regions contained 473 Ensembl genes which are overrepresented in environmental interactions. Network analyses indicated that the PS-specific genes were particularly enriched for inflammatory response, immune cell trafficking, metabolic disease, cell cycle, and cellular organization and movement.

  7. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots

    Science.gov (United States)

    Yamaguchi, Yasuka L.; Suzuki, Reira; Cabrera, Javier; Nakagami, Satoru; Sagara, Tomomi; Ejima, Chika; Sano, Ryosuke; Aoki, Yuichi; Olmo, Rocio; Kurata, Tetsuya; Obayashi, Takeshi; Demura, Taku; Ishida, Takashi; Escobar, Carolina; Sawa, Shinichiro

    2017-01-01

    Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs) are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs) and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita, and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8, TDR and WOX4 were activated not only in M. incognita-induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii-induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host’s developmental regulation of the vascular stem cells during gall formation. PMID:28747918

  8. Resistance to benzimidazoles and levamisole in nematode parasites of sheep in Nyandarua district of Kenya

    DEFF Research Database (Denmark)

    Maingi, N.; Bjørn, H.; Gichohi, V.M.;

    1998-01-01

    The occurrence of anthelmintic resistance on 25 sheep farms in the Nyandarua District of Kenya was investigated, using the faecal egg count reduction test (FECRT), the egg hatch assay (EHA) and a larval development assay (LDA). In the FECRT, resistance to both benzimidazoles (BZs) and levamisole...... (LEV) was detected on four farms, resistance to LEV only on three farms and to BZs, only on two farms. Haemonchus contortus was the predominant nematode species in both pre-treatment and post-treatment faecal cultures. Out of the six farms where BZ resistance was detected in the FECRT, only isolates...... from one farm had an LD50 value higher than 0.5 mu M thiabendazole (TBZ) (0.1 mu g TBZ/ml) in the EHA indicating resistance. Isolates from three other farms, where susceptibility to BZs was detected and four with suspected BZ resistance in the FECRT, had LD50 values higher than 0.5 mu M TBZ in the EHA...

  9. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides).

    Science.gov (United States)

    Thies, Judy A; Ariss, Jennifer J; Kousik, Chandrasekar S; Hassell, Richard L; Levi, Amnon

    2016-03-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN.

  10. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides)

    Science.gov (United States)

    Thies, Judy A.; Ariss, Jennifer J.; Kousik, Chandrasekar S.; Hassell, Richard L.; Levi, Amnon

    2016-01-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN. PMID:27168648

  11. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Jones, John T; Urwin, Peter E

    2014-09-01

    Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  12. Albendazole Sensitive vs. Resistant Nematodes – The Mitochondrial Ultra-Structural Changes

    Directory of Open Access Journals (Sweden)

    Romeo T. CRISTINA

    2015-01-01

    Full Text Available Studies on microtubule inhibitors have shown that the loss of equilibrium between tubulin and microtubules can generate a multitude of histochemical changes in mitochondria. This disruption of balance is also considered the basis of benzimidazole anthelmintic (BZ activity. Studies have shown that BZ does not bond to the tubulin of the BZ-resistant Haemonchus contortus, as opposed to sensitive ones. This affinity alteration can be easily recognised by changes in the optical density and can help in the classification of H. contortus mitochondria, into sensitive (dark and resistant (clear, unmodified zones. In order to confirm this hypothesis, we started our study from albendazole (ABZ resistant and sensible H. contortus individuals, collected from the intestinal tract of sheep, aiming towards the identification of mitochondrial features, using the Electron Microscopy Transmission (EMT technique. The EMT has confirmed that the structure of sensitive trichostrongilian populations was affected rapidly, only four hours after ABZ treatments. The main changes that appeared in the intestinal mitochondria of sensitive helminths were: cristae thickening and decreasing in number and cellular membrane thickening. Twelve hours after anthelmintic administration, a total blocking of metabolic functionality was observed, and finally, these changes completely altered the optical density of the mitochondria. In ABZ resistant populations, the optical density has remained normal; and the cristae number, size or functionality of resistant nematode mitochondria has remained unchanged.

  13. Genomic and functional characteristics of copy number variations in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes

    Science.gov (United States)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to intestinal nematodes. In this study, we performed a large sca...

  14. Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae.

    Science.gov (United States)

    Browne, John A; Dolan, Katharine M; Tyson, Trevor; Goyal, Kshamata; Tunnacliffe, Alan; Burnell, Ann M

    2004-08-01

    Some organisms can survive exposure to extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living nematode Aphelenchus avenae can be induced to enter the anhydrobiotic state by exposure to a moderate reduction in relative humidity. During this preconditioning period, the nematode accumulates large amounts of the disaccharide trehalose, which is thought to be necessary, but not sufficient, for successful anhydrobiosis. To identify other adaptations that are required for anhydrobiosis, we developed a novel SL1-based mRNA differential display technique to clone genes that are upregulated by dehydration in A. avenae. Three such genes, Aav-lea-1, Aav-ahn-1, and Aav-glx-1, encode, respectively, a late embryogenesis abundant (LEA) group 3 protein, a novel protein that we named anhydrin, and the antioxidant enzyme glutaredoxin. Strikingly, the predicted LEA and anhydrin proteins are highly hydrophilic and lack significant secondary structure in the hydrated state. The dehydration-induced upregulation of Aav-lea-1 and Aav-ahn-1 was confirmed by Northern hybridization and quantitative PCR experiments. Both genes were also upregulated by an osmotic upshift, but not by cold, heat, or oxidative stress. Experiments to investigate the relationship between mRNA levels and protein expression for these genes are in progress. LEA proteins occur commonly in plants, accumulating during seed maturation and desiccation stress; the presence of a gene encoding an LEA protein in an anhydrobiotic nematode suggests that some mechanisms of coping with water loss are conserved between plants and animals.

  15. Relationships between initial population densities of Meloidogyne incognita race 2 and nematode population development in terms of variable soybean resistance.

    Science.gov (United States)

    Fourie, Hendrika; Mc Donald, Alexander H; De Waele, Dirk

    2010-03-01

    The effect of increasing initial population density levels (Pi) of Meloidogyne incognita race 2 on nematode population development and yield of a susceptible (Prima2000) and resistant (LS5995) soybean cultivar was investigated. Two experiments, one in a hail net cage and one in microplots, were conducted one each during two consecutive growing seasons at Potchefstroom in the North West Province of South Africa. Nematode reproduction was assessed by determining the number of eggs and second-stage juveniles (J2) in the rhizosphere and roots, egg masses, egg-laying females (ELF) and reproduction factor (Rf) values per root system at harvesting 110 days after planting. Percentage yield reduction in the two cultivars was also calculated. Strong non-linear relationships existed between all nematode variables as well as between Pi and percentage yield loss in both cultivars for both experiments in this study. Significantly higher numbers of eggs and J2, egg masses and ELF were maintained in the roots of the nematode-susceptible Prima2000 than in the resistant LS5995 from Pi = 100 and higher in both experiments. Rf values were inversely related to Pi for both cultivars and were lowest on LS5995, with Prima2000 maintaining significantly higher Rf values in both experiments. Yield loss in LS5995 was at least six times higher than that of Prima2000. The difference in monetary terms is demonstrated, although it is suggested that host plant resistance to plant-parasitic nematodes may not be sufficient as the only management tool in highly infested soils or in rotation systems including nematode susceptible crops.

  16. Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets.

    Directory of Open Access Journals (Sweden)

    Ben-Wen Li

    Full Text Available BACKGROUND: A better understanding of reproductive processes in parasitic nematodes may lead to development of new anthelmintics and control strategies for combating disabling and disfiguring neglected tropical diseases such as lymphatic filariasis and onchocerciasis. Transcriptomatic analysis has provided important new insights into mechanisms of reproduction and development in other invertebrates. We have performed the first genome-wide analysis of gender-associated (GA gene expression in a filarial nematode to improve understanding of key reproductive processes in these parasites. METHODOLOGY/PRINCIPAL FINDINGS: The Version 2 Filarial Microarray with 18,104 elements representing ∼85% of the filarial genome was used to identify GA gene transcripts in adult Brugia malayi worms. Approximately 19% of 14,293 genes were identified as GA genes. Many GA genes have potential Caenorhabditis elegans homologues annotated as germline-, oogenesis-, spermatogenesis-, and early embryogenesis- enriched. The potential C. elegans homologues of the filarial GA genes have a higher frequency of severe RNAi phenotypes (such as lethal and sterility than other C. elegans genes. Molecular functions and biological processes associated with GA genes were gender-segregated. Peptidase, ligase, transferase, regulator activity for kinase and transcription, and rRNA and lipid binding were associated with female GA genes. In contrast, catalytic activity from kinase, ATP, and carbohydrate binding were associated with male GA genes. Cell cycle, transcription, translation, and biological regulation were increased in females, whereas metabolic processes of phosphate and carbohydrate metabolism, energy generation, and cell communication were increased in males. Significantly enriched pathways in females were associated with cell growth and protein synthesis, whereas metabolic pathways such as pentose phosphate and energy production pathways were enriched in males. There were

  17. Sex-Biased Gene Expression and Evolution of the X Chromosome in Nematodes

    Science.gov (United States)

    Albritton, Sarah Elizabeth; Kranz, Anna-Lena; Rao, Prashant; Kramer, Maxwell; Dieterich, Christoph; Ercan, Sevinç

    2014-01-01

    Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno’s hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive. PMID:24793291

  18. Markers/parameters for the evaluation of natural resistance status of small ruminants against gastrointestinal nematodes.

    Science.gov (United States)

    Saddiqi, H A; Sarwar, M; Iqbal, Z; Nisa, M; Shahzad, M A

    2012-06-01

    The high prevalence of anthelmintic-resistant gastrointestinal nematodes (GINs) throughout the world has led to the need for alternative worm control strategies. One of the possible substitutes to reduce the problems of drug resistance and residue is the evaluation/breeding of small ruminants for greater resistance to the GINs (organically produced), which in turn would be a helpful tool to predict the performance of an animal. At present, the existing diversity in the genetic potential to resist/tolerate GINs infection both within and between breeds has been validated. Successful selection of animals to define the genotype and identified resistance is related to the employed markers. A number of phenotypic traits such as faecal egg count (FEC), worm burden, serum antibodies, peripheral eosinophilia, packed cell volume, live weight, serum protein and albumin concentrations have been used for this purpose both in natural and artificial infections. Relatively resistant/tolerant animals have also been found to have mastocytosis, globule leucocytes, high levels of histamine and immunoglobulin (Ig) A and IgE concentrations. Of these traits, the principal and most practical measurement used to assess resistance status in animals undergoing similar parasite challenges is FEC. FEC has a positive/negative correlation with other biochemical, cellular and immunological parameters; however, the reliability of individual trial is often questioned and valuable information regarding the genetic makeup can be obtained from pooled data of a large number of trials and parameters. This paper covers all the aspects reported in the literature on various parameters considered to evaluate the resistance status of a range of small ruminant breeds.

  19. Induction of pathogenesis-related gene 1 (PR-1 by acibenzolar-s-methyl application in pineapple and its effect on reniform nematodes (Rotylenchulus reniformis

    Directory of Open Access Journals (Sweden)

    Buncha Chinnasri

    2016-09-01

    Full Text Available The induction of systemic acquired resistance (SAR in pineapples (Ananas comosus was studied as shown by the up-regulation of the PR-1 gene (the SAR marker and examination of the SAR effect on the reniform nematode, Rotylenchulus reniformis. Real-time polymerase chain reaction assay was performed using degenerate primers designed from the PR-1 genes of several monocotyledonous (monocots and dicotyledonous (dicots plants. A 266 bp cDNA band was evident only in plants treated with the SAR inducer, acibenzolar-s-methyl. This 266 bp cDNA was sequenced and found to be highly homologous to a number of PR-1 genes from monocots. In addition, the amino acid sequence deduced from the 266 bp cDNA showed a high identity to PR-1 proteins from both monocots and dicots. Therefore, it was highly likely that this cloned fragment was part of the A. comosus PR-1 gene, indicating that A. comosus has an SAR pathway. The time course of PR-1 expression was studied. The results showed that PR-1 induction was initiated as early as 1 d after acibenzolar application and continued through 3 wk thereafter. The effect of SAR on the nematodes, R. reniformis, in pineapples was also elucidated. The results showed that the reproduction of nematodes on the pineapples treated with 100 mg/L or 200 mg/L was 55% lower than that on pineapples treated with 0 mg/L or 50 mg/L. Nematode reproduction on pineapples treated with the same concentration but inoculated at different times was not significantly different (p > 0.05.

  20. Anthelmintic resistance in gastrointestinal nematodes in goats and evaluation of FAMACHA diagnostic marker in Uganda.

    Science.gov (United States)

    Nabukenya, Immaculate; Rubaire-Akiiki, Chris; Olila, Deogracious; Muhangi, Denis; Höglund, Johan

    2014-10-15

    Gastrointestinal nematodes (GIN) are a challenge to goat production globally causing reduced growth, morbidity and mortality. We report here results of the first nation-wide anthelmintic resistance (AR) study and validation of assessment of clinical anaemia with FAMACHA eye scores in goats in Uganda. From August to December 2012 the efficacy of albendazole (7.5mg/kg), levamisole (10.5mg/kg) and ivermectin (0.3mg/kg) against strongyle nematodes was tested on 33 goat farms in Soroti, Gulu, Mpigi, Mbarara and Ssembabule districts of Uganda. Altogether 497 goats were subjected to a total of 45 different faecal egg count reduction tests (FECRT), each involving 5-20 goats. On one farm all substances were tested. Faecal and blood samples were collected and FAMACHA eye scores evaluated on the day of treatment and 15 days later. A questionnaire survey was conducted on frequency, type and dose of anthelmintics used, farm size and grazing management system. Examination of infective third stage larvae (L3) from pooled faecal cultures demonstrated Haemonchus to be the predominant genus (>75%). Resistance to at least one anthelmintic group was detected on 61% of the 33 farms and in 49% of the 45 test groups. Prevalence of resistance to ivermectin, levamisole and albendazole was respectively 58%, 52% and 38%. Correlation between pre-treatment packed cell volume determinations and FAMACHA scores (r(498) = -0.89) was significant. Paddock grazing system (Odds ratio 4.9, 95% CI 1.4-17.3) and large farm size of >40 goats (odds ratio 4.4, 95% CI 1.2-16.1) were significant predictors of AR. In all districts, resistance to all three anthelmintics was higher on large-scale goat farms practising mostly paddock grazing. Interestingly, resistance to albendazole, the most commonly used anthelmintic in Uganda, was lower than that to ivermectin and levamisole. We recommend adaptation of FAMACHA to goats to help restrict anthelmintic treatment to heavily infected individuals. This will limit

  1. Correlates of resistance to gastrointestinal nematode infection in Nigerian West African dwarf sheep

    Institute of Scientific and Technical Information of China (English)

    IK Idika; SN Chiejina; LI Mhomga; PA Nnadi; LA Ngongeh

    2012-01-01

    ABSTRACT Objective:To investigate correlates of resistance toGI nematode infection inNigerianWest African dwarf(WAD) sheep.Methods:Thirty three sheep were randomly assigned to two groups, A(n=27) which were used for experimental infections, andB(n=6) which served as uninfected control.Each infected animal received weekly escalating infections with infective larvae(60%Haemonchus contortus (H. contortus) and40%Trichostrongylus colubriformis (T. colubriformis) for4 weeks.The responses of all the infected and control sheep were assessed by faecal egg count(FEC), worm burden(Wb), packed cell volume(PCV), body weight(Bwt), and body condition score(BCS).On the basis of their individual faecal egg output,Lambs in groupA with epg≤1 000 on any sampling day were classified as low faecal egg count(LFEC) phenotype(n =16), those with epg between1000 and10000 as intermediate(n=5) and lambs with epg >10000 as high feacal egg count(HFEC) phenotype(n=6).Results:The difference between theFEC classes was highly significant(P=0.001).TheBCS and weight gained at the end of the experiment by the control andLFEC sheep was significantly higher(P≤0.05) than those of the intermediate and HFEC phenotypes.There was a significant and negative correlation between the parasitological measures and the trio ofBCS,PCV andBwt of sheep.Conclusions:The result of the study indicated that theFEC, weight gain,PCV, andBCS are correlates and potential selection criteria ofGI nematode resistantWAD sheep.

  2. A Labratory Survey on Drug Resistance in Gastrointestinal Nematodes of Sheep in Iran

    Directory of Open Access Journals (Sweden)

    A Gholamian

    2007-06-01

    Full Text Available Background: Broad spectrum anthelmintics had been used for about 50 years to control internal parasites of human and animals. Methods: In this survey, resistance in gastrointestinal nematode of sheep to levamisole and albendazole were investigated in 15 sheep flocks. On each flock, faecal samples were taken from 20 randomly selected sheep. Nematode eggs were separated from the samples and placed in microplate for 24 hours at 25 °C to hatch and then Nutritive media, Escherichia coli and different concentrations of levamisole or albendazole were added to first stage larvae and incubated at 25 °C for 6 more days. LD50 of these drugs in each flock were calculated according to precent of larval development parameter in different concentration of levamisole or albendazole (Hubert and Kerboeuf, 1992. Results: LD50 of levamisole were varied between 0.021 to 0.27 μg /ml and LD50 of albendazole between 0.021 to 0.13 μg/ml. In negative control samples with no anthelmintic average larval development was 65% and third stage larvae were mostly composed of Ostertagia (59%, Trichostrongylus (20% and Haemonchus (21% but in positive contol samples with the highest concentration of levamisole Ostertagia spp and Trichostrongylus spp and albendazole Ostertagia spp were detected. Conclusion: Therefore we can conclude that resistance have been developed in some isolates of Ostertagia spp and Trichostrongylus spp to levamisole and to in some isolates of Ostertagia spp to benzimidazoles that can be alarming for treatment of trichotrongylus in people.

  3. The genetic basis for the selection of dairy goats with enhanced resistance to gastrointestinal nematodes

    Science.gov (United States)

    Heckendorn, Felix; Bieber, Anna; Werne, Steffen; Saratsis, Anastasios; Maurer, Veronika; Stricker, Chris

    2017-01-01

    Gastrointestinal nematodes (GIN) severely affect small ruminant production worldwide. Increasing problems of anthelmintic resistance have given strong impetus to the search for alternative strategies to control GIN. Selection of animals with an enhanced resistance to GIN has been shown to be successful in sheep. In goats, the corresponding information is comparatively poor. Therefore, the present study was designed to provide reliable data on heritabilities of and genetic correlations between phenotypic traits linked to GIN and milk yield in two major dairy goat breeds (Alpine and Saanen). In all, 20 herds totalling 1303 goats were enrolled in the study. All herds had (i) a history of gastrointestinal nematode infection, (ii) uniform GIN exposure on pasture and (iii) regular milk recordings. For all goats, individual recordings of faecal egg counts (FEC), FAMACHA© eye score, packed cell volume (PCV) and milk yield were performed twice a year with an anthelmintic treatment in between. The collected phenotypic data were multivariately modelled using animal as a random effect with its covariance structure inferred from the pedigree, enabling estimation of the heritabilities of the respective traits and the genetic correlation between them. The heritabilities of FEC, FAMACHA© and PCV were 0.07, 0.22 and 0.22, respectively. The genetic correlation between FEC and FAMACHA© was close to zero and −0.41 between FEC and PCV. The phenotypic correlation between FEC and milk yield was close to zero, whereas the genetic correlation was 0.49. Our data suggest low heritability of FEC in Saanen and Alpine goats and an unfavourable genetic correlation of FEC with milk yield. PMID:28792887

  4. Isolating genes involved with genotoxic drug response in the nematode Caenorhabditis elegans using genome-wide RNAi screening

    DEFF Research Database (Denmark)

    Schøler, Lone Vedel; Møller, Tine Hørning; Nørgaard, Steffen;

    2012-01-01

    The soil nematode Caenorhabditis elegans has become a popular genetic model organism used to study a broad range of complex biological processes, including development, aging, apoptosis, and DNA damage responses. Many genetic tools and tricks have been developed in C. elegans including knock down...... of gene expression via RNA interference (RNAi). In C. elegans RNAi can effectively be administrated via feeding the nematodes bacteria expressing double-stranded RNA targeting the gene of interest. Several commercial C. elegans RNAi libraries are available and hence gene inactivation using RNAi can...

  5. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event

    Directory of Open Access Journals (Sweden)

    Gheysen Godelieve

    2008-11-01

    Full Text Available Abstract Background Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5 have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN. The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Results Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea; all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida. Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. Conclusion We conclude that the ancestral

  6. Prevalence of drug-resistant gastrointestinal nematodes in an organized sheep farm

    Directory of Open Access Journals (Sweden)

    Ambalathaduvar Meenakshisundaram

    2014-12-01

    Full Text Available Aim: The present study was aimed to determine the resistance against albendazole, fenbendazole, levamisole and closantel in gastrointestinal (GI nematodes of sheep. Introduction: Anthelmintics are used traditionally as an integral part of helminthic control strategies for grazing livestock to prevent production losses from parasitic infections. The continuous and indiscriminate use of the same anthelmintics over years together as the sole means of control are now failing due to the emergence of resistance strains of helminths. Resistance to the commonly used anthelmintics in GI nematodes of sheep has become an increasingly widespread problem throughout the world. Materials and Methods: Fifty-five naturally infected Madras Red lambs of 6-12 months of age were selected and distributed randomly into five treatment groups of 11 animals each. Four groups were treated orally with albendazole (5 mg/kg, fenbendazole (7 mg/kg, levamisole (7.5 mg/kg and closantel (10 mg/kg respectively, whereas the fifth group served as untreated control. Fecal samples were collected per rectum of each lamb just prior to treatment (pre-treatment and on 7, 14, 21 and 28 days post-treatment. The anthelmintic resistance was evaluated by in vivo fecal egg count reduction test (FECRT, post-treatment larval culture and in vitro egg hatch assay. Results: In the FECRT, albendazole reduced the faecal egg count by 86.50%, 84.81%, 85.28% and 84.47% respectively for 4 weeks after treatment. Fecal egg count reduction using fenbendazole was 92.64, 93.04, 90.80 and 90.06% respectively for 4 weeks after treatment. The percent efficacy for levamisole and closantel was more than 95%. The post-treatment larval culture contained only Haemonchus contortus. In the in vitro egg hatch assay, the ED50 value for benzimidazole was 0.299 μg albendazole/ml and levamisole showed an ED50 value of 0.283 μg/ml. Conclusion: Our study confirmed the resistance of H. contortus to benzimidazole in sheep. .

  7. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe.

    Science.gov (United States)

    Geurden, Thomas; Chartier, Christophe; Fanke, Jane; di Regalbono, Antonio Frangipane; Traversa, Donato; von Samson-Himmelstjerna, Georg; Demeler, Janina; Vanimisetti, Hima Bindu; Bartram, David J; Denwood, Matthew J

    2015-12-01

    Anthelmintic resistance has been increasingly reported in cattle worldwide over the last decade, although reports from Europe are more limited. The objective of the present study was to evaluate the efficacy of injectable formulations of ivermectin and moxidectin at 0.2 mg per kg bodyweight against naturally acquired gastro-intestinal nematodes in cattle. A total of 753 animals on 40 farms were enrolled in Germany (12 farms), the UK (10 farms), Italy (10 farms), and France (8 farms). Animals were selected based on pre-treatment faecal egg counts and were allocated to one of the two treatment groups. Each treatment group consisted of between 7 and 10 animals. A post-treatment faecal egg count was performed 14 days (±2 days) after treatment. The observed percentage reduction was calculated for each treatment group based on the arithmetic mean faecal egg count before and after treatment. The resistance status was evaluated based on the reduction in arithmetic mean faecal egg count and both the lower and upper 95% confidence limits. A decreased efficacy was observed in half or more of the farms in Germany, France and the UK. For moxidectin, resistance was confirmed on 3 farms in France, and on 1 farm in Germany and the UK. For ivermectin, resistance was confirmed on 3 farms in the UK, and on 1 farm in Germany and France. The remaining farms with decreased efficacy were classified as having an inconclusive resistance status based on the available data. After treatment Cooperia spp. larvae were most frequently identified, though Ostertagia ostertagi was also found, in particular within the UK and Germany. The present study reports lower than expected efficacy for ivermectin and moxidectin (based on the reduction in egg excretion after treatment) on European cattle farms, with confirmed anthelmintic resistance on 12.5% of the farms.

  8. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe

    Directory of Open Access Journals (Sweden)

    Thomas Geurden

    2015-12-01

    Full Text Available Anthelmintic resistance has been increasingly reported in cattle worldwide over the last decade, although reports from Europe are more limited. The objective of the present study was to evaluate the efficacy of injectable formulations of ivermectin and moxidectin at 0.2 mg per kg bodyweight against naturally acquired gastro-intestinal nematodes in cattle. A total of 753 animals on 40 farms were enrolled in Germany (12 farms, the UK (10 farms, Italy (10 farms, and France (8 farms. Animals were selected based on pre-treatment faecal egg counts and were allocated to one of the two treatment groups. Each treatment group consisted of between 7 and 10 animals. A post-treatment faecal egg count was performed 14 days (±2 days after treatment. The observed percentage reduction was calculated for each treatment group based on the arithmetic mean faecal egg count before and after treatment. The resistance status was evaluated based on the reduction in arithmetic mean faecal egg count and both the lower and upper 95% confidence limits. A decreased efficacy was observed in half or more of the farms in Germany, France and the UK. For moxidectin, resistance was confirmed on 3 farms in France, and on 1 farm in Germany and the UK. For ivermectin, resistance was confirmed on 3 farms in the UK, and on 1 farm in Germany and France. The remaining farms with decreased efficacy were classified as having an inconclusive resistance status based on the available data. After treatment Cooperia spp. larvae were most frequently identified, though Ostertagia ostertagi was also found, in particular within the UK and Germany. The present study reports lower than expected efficacy for ivermectin and moxidectin (based on the reduction in egg excretion after treatment on European cattle farms, with confirmed anthelmintic resistance on 12.5% of the farms.

  9. Anthelmintic Resistance of Strongyle Nematodes to Ivermectin and Fenbendazole on Cart Horses in Gondar, Northwest Ethiopia.

    Science.gov (United States)

    Seyoum, Zewdu; Zewdu, Alemu; Dagnachew, Shimelis; Bogale, Basazinew

    2017-01-01

    A study was conducted from November 2015 to April 2016 to determine fenbendazole and ivermectin resistance status of intestinal nematodes of cart horses in Gondar, Northwest Ethiopia. Forty-five strongyle infected animals were used for this study. The animals were randomly allocated into three groups (15 horses per group). Group I was treated with fenbendazole and Group II with ivermectin and Group III was left untreated. Faecal samples were collected from each cart horse before and after treatment. Accordingly, the reduction in the mean fecal egg count at fourteen days of treatment for ivermectin and fenbendazole was 97.25% and 79.4%, respectively. It was significantly different in net egg count between treatment and control groups after treatment. From the study, resistance level was determined for fenbendazole and suspected for ivermectin. In addition, a questionnaire survey was also conducted on 90 selected cart owners to assess their perception on anthelmintics. In the survey, the most available drugs in the study area used by the owners were fenbendazole and ivermectin. Most respondents have no knowledge about drug management techniques. Hence, animal health extension services to create awareness regarding anthelmintic management that plays a key role in reducing the anthelmintic resistance parasites.

  10. Anthelmintic Resistance of Strongyle Nematodes to Ivermectin and Fenbendazole on Cart Horses in Gondar, Northwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Zewdu Seyoum

    2017-01-01

    Full Text Available A study was conducted from November 2015 to April 2016 to determine fenbendazole and ivermectin resistance status of intestinal nematodes of cart horses in Gondar, Northwest Ethiopia. Forty-five strongyle infected animals were used for this study. The animals were randomly allocated into three groups (15 horses per group. Group I was treated with fenbendazole and Group II with ivermectin and Group III was left untreated. Faecal samples were collected from each cart horse before and after treatment. Accordingly, the reduction in the mean fecal egg count at fourteen days of treatment for ivermectin and fenbendazole was 97.25% and 79.4%, respectively. It was significantly different in net egg count between treatment and control groups after treatment. From the study, resistance level was determined for fenbendazole and suspected for ivermectin. In addition, a questionnaire survey was also conducted on 90 selected cart owners to assess their perception on anthelmintics. In the survey, the most available drugs in the study area used by the owners were fenbendazole and ivermectin. Most respondents have no knowledge about drug management techniques. Hence, animal health extension services to create awareness regarding anthelmintic management that plays a key role in reducing the anthelmintic resistance parasites.

  11. First report of multiple anthelmintic resistance in nematodes of sheep in Colombia

    Directory of Open Access Journals (Sweden)

    Carlos M.B. Gárcia

    2016-03-01

    Full Text Available This study aimed to report the presence of parasites resistant to the most used anthelmintic drugs in sheep in Colombia. Four farms (denominated farm 1, 2, 3 and 4 were selected where the animals were not treated with anthelmintics for two months before the trial. Animals with faecal egg count (FEC above 150 and of different ages were allocated into six groups, each consisting of at least 5 animals. The drugs and dosages used were: ivermectin 1% (0.2 mg/kg, albendazole 25% (5 mg/kg, fenbendazole 10% (5 mg/kg, levamisole 10% (5 mg/kg, and moxidectin 1% (0.2 mg/kg. Anthelmintic efficacy was determined by the FEC reduction test (FECRT with a second sampling 14 days post-treatment. The efficacy of albendazole and fenbendazole at farm 1 was above 95%, which was different from the others farms. The FECRT indicated the presence of multidrug resistance in the other farms where no tested drugs showed activity higher than 79% (albendazole: 0 to 55%, fenbendazole: 51.4 to 76.6%, ivermectin: 67.3 to 93.1%, levamisole: 0 to 78.1%, and moxidectin: 49.2 to 64.1%.Haemonchus contortus was the predominant (96% species, followed by a small presence of Trichostrongylus sp. (3% andCooperia sp. (1%. Therefore, we report for the first time the existence of multiple anthelmintic resistance in gastrointestinal nematodes of sheep in Colombia.

  12. Genetic Analysis of Parasitism in the Soybean Cyst Nematode Heterodera Glycines

    OpenAIRE

    Dong, K; Opperman, C. H.

    1997-01-01

    A genetic analysis of parasitic ability in the soybean cyst nematode Heterodera glycines was performed. To identify and characterize genes involved in parasitism, we developed three highly inbred H. glycines lines, OP20, OP25 and OP50, for use as parents for controlled crosses. Through these crosses, we have identified genes in the inbred parents that control reproduction of the nematode on hosts that carry resistance genes. These genes, designated as ror-* for reproduction on a resistant hos...

  13. Molecular characterization and functional analysis of venom allergen-like protein genes in the potato cyst nematode, Globodera rostochiensis

    Science.gov (United States)

    Venom allergen-like proteins (VAPs) are members of the SCP/Tpx-1/Ag5/PR-1/Sc7 family of eukaryotic secreted proteins. We have identified a VAP gene (designated GrVAP-1) from the potato cyst nematode Globodera rostochiensis. The GrVAP-1 gene contains an open reading frame (660 bp) encoding a putative...

  14. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective.

    Science.gov (United States)

    Roeber, Florian; Jex, Aaron R; Gasser, Robin B

    2013-05-27

    Parasitic nematodes (roundworms) of small ruminants and other livestock have major economic impacts worldwide. Despite the impact of the diseases caused by these nematodes and the discovery of new therapeutic agents (anthelmintics), there has been relatively limited progress in the development of practical molecular tools to study the epidemiology of these nematodes. Specific diagnosis underpins parasite control, and the detection and monitoring of anthelmintic resistance in livestock parasites, presently a major concern around the world. The purpose of the present article is to provide a concise account of the biology and knowledge of the epidemiology of the gastrointestinal nematodes (order Strongylida), from an Australian perspective, and to emphasize the importance of utilizing advanced molecular tools for the specific diagnosis of nematode infections for refined investigations of parasite epidemiology and drug resistance detection in combination with conventional methods. It also gives a perspective on the possibility of harnessing genetic, genomic and bioinformatic technologies to better understand parasites and control parasitic diseases.

  15. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective.

    Science.gov (United States)

    Li, Ruijuan; Rashotte, Aaron M; Singh, Narendra K; Weaver, David B; Lawrence, Kathy S; Locy, Robert D

    2015-01-01

    Sedentary plant endoparasitic nematodes can cause detrimental yield losses in crop plants making the study of detailed cellular, molecular, and whole plant responses to them a subject of importance. In response to invading nematodes and nematode-secreted effectors, plant susceptibility/resistance is mainly determined by the coordination of different signaling pathways including specific plant resistance genes or proteins, plant hormone synthesis and signaling pathways, as well as reactive oxygen signals that are generated in response to nematode attack. Crosstalk between various nematode resistance-related elements can be seen as an integrated signaling network regulated by transcription factors and small RNAs at the transcriptional, posttranscriptional, and/or translational levels. Ultimately, the outcome of this highly controlled signaling network determines the host plant susceptibility/resistance to nematodes.

  16. Frequency of eprinomectin resistance in gastrointestinal nematodes of goats in canton Berne, Switzerland.

    Science.gov (United States)

    Murri, Sarah; Knubben-Schweizer, Gabriela; Torgerson, Paul; Hertzberg, Hubertus

    2014-06-16

    Eprinomectin (EPN) is a member of the avermectin class of compounds and the only anthelmintic registered for goats in Switzerland with a zero milk withdrawal period. The aim of the present study was to identify the actual efficacy of EPN in an area with a higher density of goat enterprises. Forty-three randomly chosen farms from canton Berne were investigated. At least eight goats were investigated on every farm. Conditions for inclusion in the study were the absence of anthelmintic treatment during the previous six weeks and a pooled faecal sample showing a mean faecal egg count (FEC) higher than 600 epg faeces. Pre- and 14-16 days post-treatment samples were individually collected directly from the rectum. Animals were treated with the recommended dose of EPN (1 mg/kg body weight) after taking the pre-treatment samples. Efficacy of EPN was tested with the faecal egg count reduction test (FECRT) and faecal cultures were performed on every farm from pooled faeces samples before and after treatment. Additionally the farmers completed a questionnaire. None of the gastrointestinal nematode populations of the 43 investigated farms were susceptible to EPN at the required level. The mean egg count reduction was 40%. None of the typical risk factors, such as production type, stocking rate, animal traffic and quarantine measures showed an association with the level of eprinomectin resistance. It can be concluded with 80% certainty that the prevalence of EPN resistance on goat farms is at least 95% in canton Berne.

  17. Risk factors for anthelmintic resistance development in cattle gastrointestinal nematodes in Argentina

    Directory of Open Access Journals (Sweden)

    Víctor Humberto Suarez

    Full Text Available Risk factors for anthelmintic resistance (AR on bovine ranches were studied. Data were derived from a survey made to 50 ranch owners, who had conducted a faecal egg-count-reduction test. The questionnaire contained descriptors of bovine ranch management and nematode control. A case-control design study was undertaken and AR cases were present in 26 herds. Associations between the binary outcome variable (AR versus not AR and risk factors recorded in the questionnaire were evaluated. Variables associated with the presence of AR at P 2 were subjected to a multivariable logistic regression model. The main effects contributing to general AR (avermectin AVM and/or benzimidazole in the final model were total number of annual treatments (OR 7.68; 95% CI 2.4 to 28.3 and use of more than 75% of AVM in the past (OR= 18.6; 95% CI 1.3 to 97.3, whereas for AVM resistance alone were total number of AVM annual treatments (OR= 11.5; 95% CI 2.9 to 45.5 and number of AVM Nov-Jan treatments (OR= 5.8; 95% CI 1.71 to 47.9. The results showed that treatment frequency, date of treatment and frequency of treatment in the past with a single drug were the main risk factors involved in AR development.

  18. Risk factors for anthelmintic resistance development in cattle gastrointestinal nematodes in Argentina.

    Science.gov (United States)

    Suarez, Víctor Humberto; Cristel, Silvina Lujan

    2014-01-01

    Risk factors for anthelmintic resistance (AR) on bovine ranches were studied. Data were derived from a survey made to 50 ranch owners, who had conducted a faecal egg-count-reduction test. The questionnaire contained descriptors of bovine ranch management and nematode control. A case-control design study was undertaken and AR cases were present in 26 herds. Associations between the binary outcome variable (AR versus not AR) and risk factors recorded in the questionnaire were evaluated. Variables associated with the presence of AR at P 2 were subjected to a multivariable logistic regression model. The main effects contributing to general AR (avermectin AVM and/or benzimidazole) in the final model were total number of annual treatments (OR 7.68; 95% CI 2.4 to 28.3) and use of more than 75% of AVM in the past (OR= 18.6; 95% CI 1.3 to 97.3), whereas for AVM resistance alone were total number of AVM annual treatments (OR= 11.5; 95% CI 2.9 to 45.5) and number of AVM Nov-Jan treatments (OR= 5.8; 95% CI 1.71 to 47.9). The results showed that treatment frequency, date of treatment and frequency of treatment in the past with a single drug were the main risk factors involved in AR development.

  19. Estimation of genetic parameters for resistance to gastro-intestinal nematodes in pure blood Arabian horses.

    Science.gov (United States)

    Kornaś, Sławomir; Sallé, Guillaume; Skalska, Marta; David, Ingrid; Ricard, Anne; Cabaret, Jacques

    2015-03-01

    Equine internal parasites, mostly cyathostomins, affect both horse welfare and performance. The appearance of anthelmintic-resistant parasites creates a pressing need for optimising drenching schemes. This optimization may be achieved by identifying genetic markers associated with host susceptibility to infection and then to drench carriers of these markers. The aim of our study was to characterise the genetics of horse resistance to strongyle infection by estimating heritability of this trait in an Arabian pure blood population. A population of 789 Arabian pure blood horses from the Michałów stud farm, Poland were measured for strongyle egg excretion twice a year, over 8 years. Low repeatability values were found for faecal egg counts. Our analyses showed that less than 10% of the observed variation for strongyle faecal egg counts in this population had a genetic origin. However, additional analyses highlighted an age-dependent increase in heritability which was 0.04 (±0.02) in young horses (up to 3 years of age) but 0.21 (±0.04) in older ones. These results suggest that a significant part of the inter-individual variation has a genetic origin. This paves the way to a genomic dissection of horse-nematode interactions which might provide predictive markers of susceptibility, allowing individualised drenching schemes. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  20. Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes.

    Science.gov (United States)

    Li, Yan; Hyde, Kevin D; Jeewon, Rajesh; Cai, Lei; Vijaykrishna, Dhanasekaran; Zhang, Keqin

    2005-01-01

    The systematic classification of nematode-trapping fungi is redefined based on phylogenies inferred from sequence analyses of 28S rDNA, 5.8S rDNA and beta-tubulin genes. Molecular data were analyzed with maximum parsimony, maximum likelihood and Bayesian analysis. An emended generic concept of nematode-trapping fungi is provided. Arthrobotrys is characterized by adhesive networks, Dactylellina by adhesive knobs, and Drechslerella by constricting-rings. Phylogenetic placement of taxa characterized by stalked adhesive knobs and non-constricting rings also is confirmed in Dactylellina. Species that produce unstalked adhesive knobs that grow out to form loops are transferred from Gamsylella to Dactylellina, and those that produce unstalked adhesive knobs that grow out to form networks are transferred from Gamsylella to Arthrobotrys. Gamsylella as currently circumscribed cannot be treated as a valid genus. A hypothesis for the evolution of trapping-devices is presented based on multiple gene data and morphological studies. Predatory and nonpredatory fungi appear to have been derived from nonpredatory members of Orbilia. The adhesive knob is considered to be the ancestral type of trapping device from which constricting rings and networks were derived via two pathways. In the first pathway adhesive knobs retained their adhesive material forming simple two-dimension networks, eventually forming complex three-dimension networks. In the second pathway adhesive knobs lost their adhesive materials, with their ends meeting to form nonconstricting rings and they in turn formed constricting rings with three inflated-cells.

  1. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.).

    Science.gov (United States)

    Finkers-Tomczak, Anna; Bakker, Erin; de Boer, Jan; van der Vossen, Edwin; Achenbach, Ute; Golas, Tomasz; Suryaningrat, Suwardi; Smant, Geert; Bakker, Jaap; Goverse, Aska

    2011-02-01

    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146-152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene.

  2. Mitochondrial genomes of Meloidogyne chitwoodi and M. incognita (Nematoda: Tylenchina): comparative analysis, gene order and phylogenetic relationships with other nematodes.

    Science.gov (United States)

    Humphreys-Pereira, Danny A; Elling, Axel A

    2014-01-01

    Root-knot nematodes (Meloidogyne spp.) are among the most important plant pathogens. In this study, the mitochondrial (mt) genomes of the root-knot nematodes, M. chitwoodi and M. incognita were sequenced. PCR analyses suggest that both mt genomes are circular, with an estimated size of 19.7 and 18.6-19.1kb, respectively. The mt genomes each contain a large non-coding region with tandem repeats and the control region. The mt gene arrangement of M. chitwoodi and M. incognita is unlike that of other nematodes. Sequence alignments of the two Meloidogyne mt genomes showed three translocations; two in transfer RNAs and one in cox2. Compared with other nematode mt genomes, the gene arrangement of M. chitwoodi and M. incognita was most similar to Pratylenchus vulnus. Phylogenetic analyses (Maximum Likelihood and Bayesian inference) were conducted using 78 complete mt genomes of diverse nematode species. Analyses based on nucleotides and amino acids of the 12 protein-coding mt genes showed strong support for the monophyly of class Chromadorea, but only amino acid-based analyses supported the monophyly of class Enoplea. The suborder Spirurina was not monophyletic in any of the phylogenetic analyses, contradicting the Clade III model, which groups Ascaridomorpha, Spiruromorpha and Oxyuridomorpha based on the small subunit ribosomal RNA gene. Importantly, comparisons of mt gene arrangement and tree-based methods placed Meloidogyne as sister taxa of Pratylenchus, a migratory plant endoparasitic nematode, and not with the sedentary endoparasitic Heterodera. Thus, comparative analyses of mt genomes suggest that sedentary endoparasitism in Meloidogyne and Heterodera is based on convergent evolution.

  3. Use of two in vitro methods for the detection of anthelmintic resistant nematode parasites on Slovak sheep farms.

    Science.gov (United States)

    Várady, Marián; Cernanská, Dana; Corba, Július

    2006-02-18

    A survey of the prevalence of anthelmintic resistant nematode populations was conducted on 32 sheep farms in the Slovak Republic. In vitro egg hatch test and larval development tests were used for the detection of resistance to benzimidazole anthelmintics and they were compared with in vivo faecal egg count reduction tests. There was agreement in the declaration of resistance between the faecal egg count reduction test and both in vitro tests. The presence of resistant populations was determined on two farms using egg hatch test. In both farms, the LD(50) values were higher than 0.1 microg TBZ/ml, indicating resistance. By using LD(99) values it might be possible to reveal relatively small proportion of resistant larvae in the population. The prevalence of benzimidazole resistance has not change on Slovak sheep farms during last decade.

  4. Improving liveweight gain of lambs infected by multidrug-resistant nematodes using a FECRT-based schedule of treatments.

    Science.gov (United States)

    Pivoto, Felipe Lamberti; Machado, Fabricio Amadori; Anezi-Junior, Paulo Afonso; Weber, Augusto; Cezar, Alfredo Skrebsky; Sangioni, Luis Antonio; Vogel, Fernanda Silveira Flores

    2014-06-01

    The aim of this study was to compare the liveweight gain of lambs, infected by multidrug-resistant nematodes, treated by conventional schemes of helminth control or using a schedule based on fecal egg count reduction test (FECRT). The flock was selected after a FECRT (experiment 1) which revealed a parasite population resistant to benzimidazoles, imidazothiazoles, macrocyclic lactones (ivermectin), salicylanilides, nitrophenols, and organophosphates. Despite the parasite resistance to ivermectin (an avermectin), the moxidectin (a milbemycin) was effective against the gastrointestinal nematodes (PR > 90%). In experiment 2, 48 suckling lambs were distributed in four randomized blocks (G1, G2, G3, and G4) by previous body weighings. G1 was kept as untreated control; G2 was treated following a FECRT-based schedule with drugs chosen based on fecal analysis (first drench with moxidectin, second drench with a combination of moxidectin and levamisole, and third drench with praziquantel, an anti-cestode drug); G3 and G4 received three drenches with ivermectin or disophenol, respectively. Body weighings and fecal analysis of these lambs were performed every 2 weeks over a 98-day period. An effective control of gastrointestinal nematodes was obtained with two nematicidal drenches following the FECRT-based schedule of treatments. On the other hand, eggs per gram of feces (EPG) counts were no different among untreated control, G3, and G4. Lambs treated using the FECRT-based schedule had the greatest liveweight gain among the groups tested. Additionally, liveweight gain was no different among the groups G3, G4, and G1. The FECRT-based schedule of anthelmintic treatments was beneficial regarding productivity and sustainability of helminth control in lambs infected by multidrug-resistant nematodes.

  5. Molecular characterization of the beet cyst nematode (Heterodera schachtii) resistance locus Hs1.

    NARCIS (Netherlands)

    Salentijn, E.M.J.

    1995-01-01

    The white beet cyst nematode (BCN), Heterodera schachtii Schm. is a serious pest in sugar beet ( B. vulgaris L.) cultivation and is widely distributed throughout most of the beet-growing areas in the world (Cooke 1987). The economical losses due to infestation with the nematode are considerable (app

  6. Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae.

    Science.gov (United States)

    Grauso, M; Culetto, E; Combes, D; Fedon, Y; Toutant, J P; Arpagaus, M

    1998-03-13

    Three genes, ace-1, ace-2 and ace-3, respectively located on chromosomes X, I and II, were reported to encode acetylcholinesterases (AChEs) of classes A, B and C in the nematode Caenorhabditis elegans. We have previously cloned and sequenced ace-1 in the two related species C. elegans and C. briggsae. We report here partial sequences of ace-2 (encoding class B) and of two other ace sequences located in close proximity on chromosome II in C. elegans and C. briggsae. These two sequences are provisionally named ace-x and ace-y, because it is not possible at the moment to establish which of these two genes corresponds to ace-3. Ace-x and ace-y are transcribed in vivo as shown by RT-PCR and they are likely to be included in a single operon.

  7. Evolutionary Expansion of WRKY Gene Family in Banana and Its Expression Profile during the Infection of Root Lesion Nematode, Pratylenchus coffeae

    Science.gov (United States)

    Suthanthiram, Backiyarani; Subbaraya, Uma; Marimuthu Somasundram, Saraswathi; Muthu, Mayilvaganan

    2016-01-01

    The WRKY family of transcription factors orchestrate the reprogrammed expression of the complex network of defense genes at various biotic and abiotic stresses. Within the last 96 million years, three rounds of Musa polyploidization events had occurred from selective pressure causing duplication of MusaWRKYs with new activities. Here, we identified a total of 153 WRKY transcription factors available from the DH Pahang genome. Based on their phylogenetic relationship, the MusaWRKYs available with complete gene sequence were classified into the seven common WRKY sub-groups. Synteny analyses data revealed paralogous relationships, with 17 MusaWRKY gene pairs originating from the duplication events that had occurred within the Musa lineage. We also found 15 other MusaWRKY gene pairs originating from much older duplication events that had occurred along Arecales and Poales lineage of commelinids. Based on the synonymous and nonsynonymous substitution rates, the fate of duplicated MusaWRKY genes was predicted to have undergone sub-functionalization in which the duplicated gene copies retain a subset of the ancestral gene function. Also, to understand the regulatory roles of MusaWRKY during a biotic stress, Illumina sequencing was performed on resistant and susceptible cultivars during the infection of root lesion nematode, Pratylenchus coffeae. The differential WRKY gene expression analysis in nematode resistant and susceptible cultivars during challenged and unchallenged conditions had distinguished: 1) MusaWRKYs participating in general banana defense mechanism against P.coffeae common to both susceptible and resistant cultivars, 2) MusaWRKYs that may aid in the pathogen survival as suppressors of plant triggered immunity, 3) MusaWRKYs that may aid in the host defense as activators of plant triggered immunity and 4) cultivar specific MusaWRKY regulation. Mainly, MusaWRKY52, -69 and -92 are found to be P.coffeae specific and can act as activators or repressors in a

  8. A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance.

    Science.gov (United States)

    Tomkins, J P; Mahalingam, R; Smith, H; Goicoechea, J L; Knap, H T; Wing, R A

    1999-09-01

    We have constructed a soybean bacterial artificial chromosome (BAC) library using the plant introduction (PI) 437654. The library contains 73 728 clones stored in 192 384-well microtiter plates. A random sampling of 230 BACs indicated an average insert size of 136 kb with a range of 20 to 325 kb, and less than 4% of the clones do not contain inserts. Ninety percent of BAC clones in the library have an average insert size greater than 100 kb. Based on a genome size of 1115 Mb, library coverage is 9 haploid genome equivalents. Screening the BAC library colony filters with cpDNA sequences showed that contamination of the genomic library with chloroplast clones was low (1.85%). Library screening with three genomic RFLP probes linked to soybean cyst nematode (SCN) resistance genes resulted in an average of 18 hits per probe (range 7 to 30). Two separate pools of forward and reverse suppression subtractive cDNAs obtained from SCN-infected and uninfected roots of PI437654 were hybridized to the BAC library filters. The 488 BACs identified from positive signals were fingerprinted and analyzed using FPC software (version 4.0) resulting in 85 different contigs. Contigs were grouped and analyzed in three categories: (1) contigs of BAC clones which hybridized to forward subtracted cDNAs, (2) contigs of BAC clones which hybridized to reverse subtracted cDNAs, and (3) contigs of BAC clones which hybridized to both forward and reverse subtracted cDNAs. This protocol provides an estimate of the number of genomic regions involved in early resistance response to a pathogenic attack.

  9. Gastrointestinal nematodes of dairy goats, anthelmintic resistance and practices of parasite control in Northern Italy

    Science.gov (United States)

    2014-01-01

    Background Gastrointestinal nematodes (GINs) are one of the main constraints to ruminant production worldwide. Anthelmintic resistance (AR) has been reported in goats throughout Europe, yet little is known about the AR status in Italy. The aims of the study were: i) determine the frequency of AR in GINs in goat flocks in Northern Italy, Italy, ii) survey goat farmers on the current practices of parasite control, iii) update the species composition of the gastrointestinal helminthofauna. Thirty three flocks were enrolled and 1288 individual fecal samples were collected. Based on the egg per gram (EPG), 15 flocks were selected to evaluate the presence of AR in GINs with the Fecal Egg Count Reduction Test (FECRT). A questionnaire surveyed 110 dairy goat farmers to acquire information about farm management and drenching practices against GINs. Further, the gastrointestinal tracts of 42 goats were analyzed. Results The FECRs indicated that five of the 15 flocks had problems of AR, which was identified in all two of the anthelmintic classes tested. Resistance and suspected resistance was found in 40% of the flocks selected for AR testing that were treated with benzimidazoles while 20% of the flocks treated with eprinomectin had resistant GINs. Teladorsagia/Trichostrongylus L3 were isolated from the post-treatment coprocultures of all flocks with resistance but not from the flock with suspected oxfendazole resistance. Treatments against helminths were performed once annually in 73.63% of the flocks, but 20.00% of farmers declared not regularly treating their goats every year. Annual treatments usually occurred in autumn or winter at dose rate for sheep. Te. circumcincta, H. contortus, Tr. colubriformis, Skrjabinema caprae and Oesophagostomum venulosum were the most abundant and prevalent species of the gastrointestinal tract. Conclusions Strategies to prevent the development of AR should be widely adopted in Northern Italy. Further, farmers and practitioners should be

  10. A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max

    OpenAIRE

    Kandoth, Pramod K; Heinz, Robert; Yeckel, Greg; Gross, Nathan W; Juvale, Parijat S; Hill, John; Whitham, Steven A.; Baum, Thomas J.; Mitchum, Melissa G.

    2013-01-01

    Background Bean pod mottle virus (BPMV) based virus-induced gene silencing (VIGS) vectors have been developed and used in soybean for the functional analysis of genes involved in disease resistance to foliar pathogens. However, BPMV-VIGS protocols for studying genes involved in disease resistance or symbiotic associations with root microbes have not been developed. Findings Here we describe a BPMV-VIGS protocol suitable for reverse genetic studies in soybean roots. We use this method for anal...

  11. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines HG Type 2.5.7 in Wild Soybean (Glycine soja

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2016-08-01

    Full Text Available Soybean cyst nematode (SCN is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean (Glycine max (L. Merr. cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc. accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5, a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30 were identified, with ten SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction.

  12. Genome-Wide Association Study of Resistance to Soybean Cyst Nematode (Heterodera glycines) HG Type 2.5.7 in Wild Soybean (Glycine soja).

    Science.gov (United States)

    Zhang, Hengyou; Li, Chunying; Davis, Eric L; Wang, Jinshe; Griffin, Joshua D; Kofsky, Janice; Song, Bao-Hua

    2016-01-01

    Soybean cyst nematode (SCN) is the most destructive soybean pest worldwide. Host plant resistance is the most environmentally friendly and cost-effective way of mitigating SCN damage to soybeans. However, overuse of the resistant soybean [Glycine max (L.) Merr.] cultivars from limited genetic resources has resulted in SCN race shifts in many soybean-growing areas. Thus, exploration of novel sources of SCN resistance and dissection of the genetic basis are urgently needed. In this study, we screened 235 wild soybean (Glycine soja Sieb. & Zucc.) accessions to identify genotypes resistant to SCN HG Type 2.5.7 (race 5), a less investigated type but is prevalent in the southeastern US. We also dissected the genetic basis of SCN resistance using a genome-wide association study with SNPs genotyped by SoySNP50k iSelect BeadChip. In total, 43 resistant accessions (female index < 30) were identified, with 10 SNPs being significantly associated with SCN HG 2.5.7 resistance in this wild species. Furthermore, four significant SNPs were localized to linked regions of the known quantitative trait locus (QTL) rhg1 on chromosome 18. The other four SNPs on chromosome 18 and two SNPs on chromosome 19 are novel. Genes encoding disease resistance-related proteins with a leucine-rich region, a mitogen-activated protein kinase (MAPK) on chromosome 18, and a MYB transcription factor on chromosome 19 were identified as promising candidate genes. The identified SNPs and candidate genes will benefit future marker-assisted breeding and dissection of the molecular mechanisms underlying the soybean-SCN interaction.

  13. Development of an in vivo RNAi protocol to investigate gene function in the filarial nematode, Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Chuanzhe Song

    Full Text Available Our ability to control diseases caused by parasitic nematodes is constrained by a limited portfolio of effective drugs and a paucity of robust tools to investigate parasitic nematode biology. RNA interference (RNAi is a reverse-genetics tool with great potential to identify novel drug targets and interrogate parasite gene function, but present RNAi protocols for parasitic nematodes, which remove the parasite from the host and execute RNAi in vitro, are unreliable and inconsistent. We have established an alternative in vivo RNAi protocol targeting the filarial nematode Brugia malayi as it develops in an intermediate host, the mosquito Aedes aegypti. Injection of worm-derived short interfering RNA (siRNA and double stranded RNA (dsRNA into parasitized mosquitoes elicits suppression of B. malayi target gene transcript abundance in a concentration-dependent fashion. The suppression of this gene, a cathepsin L-like cysteine protease (Bm-cpl-1 is specific and profound, both injection of siRNA and dsRNA reduce transcript abundance by 83%. In vivo Bm-cpl-1 suppression results in multiple aberrant phenotypes; worm motility is inhibited by up to 69% and parasites exhibit slow-moving, kinked and partial-paralysis postures. Bm-cpl-1 suppression also retards worm growth by 48%. Bm-cpl-1 suppression ultimately prevents parasite development within the mosquito and effectively abolishes transmission potential because parasites do not migrate to the head and proboscis. Finally, Bm-cpl-1 suppression decreases parasite burden and increases mosquito survival. This is the first demonstration of in vivo RNAi in animal parasitic nematodes and results indicate this protocol is more effective than existing in vitro RNAi methods. The potential of this new protocol to investigate parasitic nematode biology and to identify and validate novel anthelmintic drug targets is discussed.

  14. Phenotypic and genotypic characterisation of Haemonchus spp. and other gastrointestinal nematodes resistant to benzimidazole in infected calves from the tropical regions of Campeche State, Mexico.

    Science.gov (United States)

    Encalada-Mena, Lisandro; Tuyub-Solis, Henry; Ramirez-Vargas, Gabriel; Mendoza-de-Gives, Pedro; Aguilar-Marcelino, Liliana; López-Arellano, Ma Eugenia

    2014-09-15

    The aim of this study was to identify the presence of anthelmintic resistance to benzimidazole (BZ) in gastrointestinal nematodes (GIN) from naturally infected calves in the tropical regions of Campeche State of Mexico. The faecal egg count reduction test (FECRT) was conducted at 10 livestock farms localised in the Carmen, Candelaria, Champotón, Escárcega and Palizada municipalities of Campeche. The assessed anthelmintic was albendazole. The trial period was between August and November 2012. Infected calves were allocated into two groups, control and treated, on each farm. The number of eggs excreted per g of faeces was estimated by the McMaster technique at 0 and 14 days pre- and post- treatment, respectively. Recovered infective larvae (L3) (pre- and post-treatment) were identified using taxonomic keys and a genomic DNA (gDNA) template from a pool of L3 species prior to BZ treatment. Additionally, BZ-resistance polymorphisms in Haemonchus were determined by Allele Specific PCR (AS-PCR) at codon 200 and by end-point PCR at codons 200, 198 and 167 from isotype 1 of the β-tubulin gene. Morphological identification revealed Haemonchus, Cooperia, Trichostrongylus, Ostertagia and Oesophagostumum L3 species before BZ treatment, and Haemonchus and Cooperia L3 species after treatment. Additionally, of the GIN populations, three exhibited BZ resistance, and seven were BZ-susceptible by FECRT. Molecular analysis identified mutations in Haemonchus populations on nine farms at codon 200 (TTC to TAC) by AS-PCR, while no changes were observed at 167 (TTC to TAC) or 198 (GAA to GCA) codons in any population. In conclusion, resistance to BZ was determined in Haemonchus and Cooperia nematodes in infected cattle in five tropical regions of Campeche State. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The identification of cattle nematode parasites resistant to multiple classes of anthelmintics in a commercial cattle population in the US.

    Science.gov (United States)

    Gasbarre, Louis C; Smith, Larry L; Lichtenfels, J Ralph; Pilitt, Patricia A

    2009-12-23

    Resistance to modern anthelmintics by ruminant nematode parasites is an increasing problem throughout the world. To date the problem has largely been reported in parasites of small ruminants, but there are increasing reports of such resistance in nematodes recovered from cattle. Until now there have been no published reports of drug resistant parasites from cattle in North America. In 2002 a producer in the upper Midwest who backgrounds young cattle acquired from the southeastern US experienced lower than expected weight gain as well as apparent parasitic gastroenteritis in his cattle during the fall. Fecal sample results supported the suspicion that decreased productivity and diarrhea were the result of GI nematode parasitism. The operation used intensive grazing management and practiced strategically timed deworming for >17 year. In 2003, all animals were dewormed the first week of May with Ivomec Plus, then with Dectomax Injectable on 4 June and 17 July. On 31 July, 10 randomly taken fecal samples showed EPG values from 0 to 55. To assess whether the apparent decreased drug efficacy was the result of drug resistance in the nematode population, on 18 August approximately 150 heads, previously strategic timed dewormed, of 9-11 month old cattle from one pasture were selected for study. The calves were randomly assigned to 1 of 6 treatment groups: untreated (U), ivermectin injectable (I), moxidectin pour-on (M), doramectin injectable (D), eprinomectin pour-on (E), albendazole oral (A). Cattle were weighed prior to treatment and the drug was dosed according to label directions. Seven days later, 3 calves from each group were slaughtered for worm recovery. Fecal samples taken from the remaining animals at 14 days after treatment showed that the reduction of mean fecal EPG value for each group was: U-46%, I-52%, M-72%, D-61%, E-8%, and A-68%. Worm recovery from the slaughter calves showed that all groups harbored significant numbers of Haemonchus placei and H

  16. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Science.gov (United States)

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  17. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Directory of Open Access Journals (Sweden)

    Mohamed Adam

    Full Text Available The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  18. Effects of lithium on growth, maturation, reproduction and gene expression in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Inokuchi, Ayako; Yamamoto, Ryoko; Morita, Fumiyo; Takumi, Shota; Matsusaki, Hiromi; Ishibashi, Hiroshi; Tominaga, Nobuaki; Arizono, Koji

    2015-09-01

    Lithium (Li) has been widely used to treat bipolar disorder, and industrial use of Li has been increasing; thus, environmental pollution and ecological impacts of Li have become a concern. This study was conducted to clarify the potential biological effects of LiCl and Li(2)CO(3) on a nematode, Caenorhabditis elegans as a model system for evaluating soil contaminated with Li. Exposure of C. elegans to LiCl and Li(2)CO(3) decreased growth/maturation and reproduction. The lowest observed effect concentrations for growth, maturation and reproduction were 1250, 313 and 10 000 µm, respectively, for LiCl and 750, 750 and 3000 µm, respectively, for Li(2)CO(3). We also investigated the physiological function of LiCl and LiCO(3) in C. elegans using DNA microarray analysis as an eco-toxicogenomic approach. Among approximately 300 unique genes, including metabolic genes, the exposure to 78 µm LiCl downregulated the expression of 36 cytochrome P450, 16 ABC transporter, 10 glutathione S-transferase, 16 lipid metabolism and two vitellogenin genes. On the other hand, exposure to 375 µm Li(2)CO(3) downregulated the expression of 11 cytochrome P450, 13 ABC transporter, 13 lipid metabolism and one vitellogenin genes. No gene was upregulated by LiCl or Li(2)CO(3). These results suggest that LiCl and Li(2)CO(3) potentially affect the biological and physiological function in C. elegans associated with alteration of the gene expression such as metabolic genes. Our data also provide experimental support for the utility of toxicogenomics by integrating gene expression profiling into a toxicological study of an environmentally important organism such as C. elegans.

  19. Utilization of composite fecal samples for detection of anthelmintic resistance in gastrointestinal nematodes of cattle.

    Science.gov (United States)

    George, Melissa M; Paras, Kelsey L; Howell, Sue B; Kaplan, Ray M

    2017-06-15

    Recent reports indicate that anthelmintic resistance in gastrointestinal nematodes of cattle is becoming increasingly prevalent worldwide. Presently, the fecal egg count reduction test (FECRT) is the only means available for detection of resistance to anthelmintics in cattle herds at the farm level. However, the FECRT is labor and cost intensive, and consequently is only rarely performed on cattle farms unless for research purposes. If costs could be reduced, cattle producers might be more likely to pursue drug resistance testing on their farms. One approach to reducing the cost of the FECRT, is the use of composite fecal samples for performing fecal egg counts (FEC), rather than conducting FEC on fecal samples from 15 to 20 individual animals. In this study FECRT were performed on 14 groups of cattle using both individual and composite FEC methods To measure how well the results of composite sampling reproduce those of individual sampling, Lin's Concordance Correlation Coefficient was utilized to describe both the linear relationship between methods and the slope and y-intercept of the line relating the data sets. There was little difference between the approaches with 98% agreement in mean FEC found between methods Mean FEC based on individual counts ranged between 0 and 670.6 eggs per gram of feces, indicating that the results of this study are applicable to a wide range of FEC levels. Standard error of the mean FEC and range of FEC are reported for each group prior to and following treatment to describe the variability of the data set. There was greater than 95% agreement in drug efficacy between individual and composite sampling methods, demonstrating composite sampling is appropriate to evaluate drug efficacy. Notably, for all groups tested the efficacy calculated by composite sampling was within the 95% confidence interval for efficacy calculated using individual sampling. The use of composite samples was shown to reduce the number of FEC required by 79

  20. Co-adaptation mechanisms in plant-nematode systems.

    Science.gov (United States)

    Zinovieva, S V

    2014-01-01

    The review is aimed to analyze the biochemical and immune-breaking adaptive mechanisms established in evolution of plant parasitic nematodes. Plant parasitic nematodes are obligate, biotrophic pathogens of numerous plant species. These organisms cause dramatic changes in the morphology and physiology of their hosts. The group of sedentary nematodes which are among the most damaging plant-parasitic nematodes cause the formation of special organs called nematode feeding sites in the root tissue called syncytium (cyst nematodes, CN; Heterodera and Globodera spp.) or giant cells (root-knot nematodes, RKN; Meloidogyne spp.). The most pronounced morphological adaptations of nematodes for plant parasitism include a hollow, protrusible stylet (feeding spear) connected to three esophageal gland cells that express products secreted into plant tissues through the stylet. Several gene products secreted by the nematode during parasitism have been identified. The current battery of candidate parasitism proteins secreted by nematodes to modify plant tissues for parasitism includes cell-wall-modifying enzymes, multiple regulators of host cell cycle and metabolism, proteins that can localize near the plant cell nucleus, potential suppressors of host defense, and mimics of plant molecules. Plants are usually able to recognize and react to parasites by activating various defense responses. When the response of the plant is too weak or too late, a successful infection (compatible interaction) will result. A rapid and strong defense response (e. g. due to the presence of a resistance gene) will result in the resistant (incompatible) reaction. Defense responses include the production of toxic oxygen radicals and systemic signaling compounds as well as the activation of defense genes that lead to the production of structural barriers or other toxins.

  1. Efficacy and productive performance of moxidectin in feedlot calves infected with nematodes resistant to ivermectin.

    Science.gov (United States)

    Fazzio, L E; Streitenberger, N; Galvan, W R; Sánchez, R O; Gimeno, E J; Sanabria, R E F

    2016-06-15

    Anthelmintic resistance (AR) of gastrointestinal nematodes to macrocyclic lactones is an increasingly common worldwide phenomenon limiting cattle production. This has motivated the search for alternatives, such as new active compounds, added drug synergisms, different doses, and alternate administration routes. The aim of this study was the assessment of moxidectin (MXD) performance in feedlot calves with a history of AR to ivermectin (IVM). Crossbred female calves aged 6-7 months and weighing 163kg (SD=34kg) were divided into 3 groups of 35 animals each. They were assigned to the following antiparasitic treatment groups: IVM group (0.2mg/kg IVM); MXD group (0.2mg/kg MXD), and ricobendazole+levamisole (RBZ+LEV) group (7.5mg/kg RBZ+8mg/kg LEV). On days 0, 26, and 47, fecal samples were taken and the weight of each animal was registered. Anthelmintic efficacy (by fecal egg count reduction), total weight gain (TWG) and average daily weight gain (AWG) were compared between the groups. A mixed SAS procedure was used for statistical analysis. Fecal egg count reduction 26 days post-treatment (PT) was calculated at 28% for the IVM group, 85% for the MXD group, and 99% for the RBZ+LEV group. AWGs (Standard Error) of 1.095g (56), 1.264g (49), and 1.340g (52) were registered for the IVM, MXD, and RBZ+LEV groups, respectively (p<0.05). Coprocultures revealed that MXD more effectively reduced Haemonchus spp. and Cooperia spp. egg counts than IVM. This resulted in higher AWGs and TWGs for this group; similar results were seen for the RBZ+LEV group as well. In this study, animals treated with MXD gained about 160 more g/day than animals treated with IVM. This represents a gain of 16 USD per animal over the 47 day trial.

  2. Anthelmintic resistance of nematodes in communally grazed goats in a semi-arid area of South Africa

    Directory of Open Access Journals (Sweden)

    F.R. Bakunzi

    2003-07-01

    Full Text Available A survey was conducted on the occurrence of anthelmintic resistance of nematodes in communally grazed goats in a semi-arid area in SouthAfrica. In herds belonging to 10 smallholder goat farmers, the efficacies of fenbendazole, levamisole and rafoxanide were tested by faecal egg count reduction (FECR tests. Efficacies of 80 % were considered a threshold for anthelmintic resistance. The FECR tests showed that all drugs tested more than 80 % effective in most instances, but there were notable exceptions. In 1 case, rafoxanide was only 31 % effective and in another case fenbendazole was only 47 % effective. The occurrence of anthelmintic resistance in this farming sector is of concern. Steps should be taken to prevent its further spread and to avoid the development of a situation as onnumerous commercial sheep farms in South Africa where resistance is very common.

  3. Obesity genes and insulin resistance

    Science.gov (United States)

    Belkina, Anna C.; Denis, Gerald V.

    2011-01-01

    Purpose of review The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of ‘metabolically healthy but obese’ (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. Recent findings The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Summary Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients. PMID:20585247

  4. Characterization of the abomasal transcriptome for mechanisms of resistance to gastrointestinal nematodes in cattle

    Directory of Open Access Journals (Sweden)

    Li Robert W

    2011-11-01

    Full Text Available Abstract The response of the abomasal transcriptome to gastrointestinal parasites was evaluated in parasite-susceptible and parasite-resistant Angus cattle using RNA-seq at a depth of 23.7 million sequences per sample. These cattle displayed distinctly separate resistance phenotypes as assessed by fecal egg counts. Approximately 65.3% of the 23 632 bovine genes were expressed in the fundic abomasum. Of these, 13 758 genes were expressed in all samples tested and likely represent core components of the bovine abomasal transcriptome. The gene (BT14427 with the most abundant transcript, accounting for 10.4% of sequences in the transcriptome, is located on chromosome 29 and has unknown functions. Additionally, PIGR (1.6%, Complement C3 (0.7%, and Immunoglobulin J chain (0.5% were among the most abundant transcripts in the transcriptome. Among the 203 genes impacted, 64 were significantly over-expressed in resistant animals at a stringent cutoff (FDR

  5. Efficacy of commonly used anthelmintics: first report of multiple drug resistance in gastrointestinal nematodes of sheep in Trinidad.

    Science.gov (United States)

    George, N; Persad, K; Sagam, R; Offiah, V N; Adesiyun, A A; Harewood, W; Lambie, N; Basu, A K

    2011-12-29

    In Trinidad, small ruminant farms are semi-intensively managed under tropical conditions which support the development and survival of the infective stages of the helminths. Local farmers use anthelmintics to control gastrointestinal nematodes frequently. Frequent use of anthelmintics has the potential to select for populations of nematodes resistance to those chemicals. Hence, an attempt was made to study the efficacy of commonly used drugs on gastrointestinal nematodes of sheep. Three farms situated in different counties in Trinidad were selected. Sheep aged 6-15 months and not treated with anthelmintics for a minimum of six months previous and with faecal egg count (FEC)>150 eggs per gram were selected for study. They were allocated into 5 groups, each consisting 10 animals. The Group TA animals were treated once with albendazole (5mg/kg. b.wt.), group TF with fenbendazole (5mg/kg.b.wt.), group TI animals with ivermectin (200 μg/kg b.wt.), group TL with levamisol (7.5mg/kg b.wt.). The group NTC animals were not given any drug and served as control. The number of nematode eggs per gram of faeces from each animal was determined before treatment and at 14 days after treatment. The anthelmintic susceptibility to different drugs was detected by FECRT (in vivo) with EPG recorded at 14 day post-treatment. The data analysis using FECRT revealed that efficacy of albendazole (46-62%), fenbendazole (44-61%) and levamisol (53-81%) were reduced compared to ivermectin (95-97%). An attempt has also been made to find a suitable method for calculation of FECR (%).

  6. Introduction of beet cyst nematode resistance from Sinapsis alba L. and Raphanus sativus L. into Brassica napus L. (oil-seed rape) through sexual and somatic hybridization.

    NARCIS (Netherlands)

    Lelivelt, C.L.C.

    1993-01-01

    Experiments were performed to select for beet cyst nematode (Heterodera schachtii Schm., abbrev. BCN) resistant genotypes of Brassica napus L. (oilseed rape), and to introduce BCN-resistance from the related species Raphanus sativus L. (oil-radish) and Sinapis alba L. (white mustard) into oil-seed r

  7. Intra- and interspecific variation of root-knot nematodes, Meloidogyne spp., with regard to resistance from wild tuber bearing Solanum species

    NARCIS (Netherlands)

    Janssen, G.J.W.; Norel, van A.; Verkerk-Bakker, B.; Janssen, R.

    1997-01-01

    Genotypes of wild Solanum species were tested to determine the level of resistance to root-knot nematodes and to detect the presence of virulent populations within Meloidogyne chitwoodi, M. fallax and M. hapla. High resistance to all tested populations of M. chitwoodi and M. fallax was observed in g

  8. The evolution of resistance gene in plants

    Institute of Scientific and Technical Information of China (English)

    BEN Haiyan; LIU Xuemin; LI Lijun; LIU Li

    2007-01-01

    Resistance genes enable plants to fight against plant pathogens. Plant resistance genes (R gene) are organized complexly in genome. Some resistance gene sequence data enable an insight into R gene structure and gene evolution. Some sites like Leucine-Rich Repeat (LRR) are of specific interest since homologous recombination can happen. Crossing over, transposon insertion and excision and mutation can produce new specificity. Three models explaining R gene evolution were discussed. More information needed for dissection of R gene evolution though some step can be inferred from genetic and sequence analysis.

  9. Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode1[W][OPEN

    Science.gov (United States)

    Cook, David E.; Bayless, Adam M.; Wang, Kai; Guo, Xiaoli; Song, Qijian; Jiang, Jiming; Bent, Andrew F.

    2014-01-01

    Copy number variation of kilobase-scale genomic DNA segments, beyond presence/absence polymorphisms, can be an important driver of adaptive traits. Resistance to Heterodera glycines (Rhg1) is a widely utilized quantitative trait locus that makes the strongest known contribution to resistance against soybean cyst nematode (SCN), Heterodera glycines, the most damaging pathogen of soybean (Glycine max). Rhg1 was recently discovered to be a complex locus at which resistance-conferring haplotypes carry up to 10 tandem repeat copies of a 31-kb DNA segment, and three disparate genes present on each repeat contribute to SCN resistance. Here, we use whole-genome sequencing, fiber-FISH (fluorescence in situ hybridization), and other methods to discover the genetic variation at Rhg1 across 41 diverse soybean accessions. Based on copy number variation, transcript abundance, nucleic acid polymorphisms, and differentially methylated DNA regions, we find that SCN resistance is associated with multicopy Rhg1 haplotypes that form two distinct groups. The tested high-copy-number Rhg1 accessions, including plant introduction (PI) 88788, contain a flexible number of copies (seven to 10) of the 31-kb Rhg1 repeat. The identified low-copy-number Rhg1 group, including PI 548402 (Peking) and PI 437654, contains three copies of the Rhg1 repeat and a newly identified allele of Glyma18g02590 (a predicted α-SNAP [α-soluble N-ethylmaleimide–sensitive factor attachment protein]). There is strong evidence for a shared origin of the two resistance-conferring multicopy Rhg1 groups and subsequent independent evolution. Differentially methylated DNA regions also were identified within Rhg1 that correlate with SCN resistance. These data provide insights into copy number variation of multigene segments, using as the example a disease resistance trait of high economic importance. PMID:24733883

  10. Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum.

    Directory of Open Access Journals (Sweden)

    Bruce A Rosa

    2014-02-01

    Full Text Available BACKGROUND: Caenorhabditis elegans has traditionally been used as a model for studying nematode biology, but its small size limits the ability for researchers to perform some experiments such as high-throughput tissue-specific gene expression studies. However, the dissection of individual tissues is possible in the parasitic nematode Ascaris suum due to its relatively large size. Here, we take advantage of the recent genome sequencing of Ascaris suum and the ability to physically dissect its separate tissues to produce a wide-scale tissue-specific nematode RNA-seq datasets, including data on three non-reproductive tissues (head, pharynx, and intestine in both male and female worms, as well as four reproductive tissues (testis, seminal vesicle, ovary, and uterus. We obtained fundamental information about the biology of diverse cell types and potential interactions among tissues within this multicellular organism. METHODOLOGY/PRINCIPAL FINDINGS: Overexpression and functional enrichment analyses identified many putative biological functions enriched in each tissue studied, including functions which have not been previously studied in detail in nematodes. Putative tissue-specific transcriptional factors and corresponding binding motifs that regulate expression in each tissue were identified, including the intestine-enriched ELT-2 motif/transcription factor previously described in nematode intestines. Constitutively expressed and novel genes were also characterized, with the largest number of novel genes found to be overexpressed in the testis. Finally, a putative acetylcholine-mediated transcriptional network connecting biological activity in the head to the male reproductive system is described using co-expression networks, along with a similar ecdysone-mediated system in the female. CONCLUSIONS/SIGNIFICANCE: The expression profiles, co-expression networks and co-expression regulation of the 10 tissues studied and the tissue-specific analysis

  11. Introgression of ivermectin resistance genes into a susceptible Haemonchus contortus strain by multiple backcrossing.

    Science.gov (United States)

    Redman, Elizabeth; Sargison, Neil; Whitelaw, Fiona; Jackson, Frank; Morrison, Alison; Bartley, David Jon; Gilleard, John Stuart

    2012-02-01

    Anthelmintic drug resistance in livestock parasites is already widespread and in recent years there has been an increasing level of anthelmintic drug selection pressure applied to parasitic nematode populations in humans leading to concerns regarding the emergence of resistance. However, most parasitic nematodes, particularly those of humans, are difficult experimental subjects making mechanistic studies of drug resistance extremely difficult. The small ruminant parasitic nematode Haemonchus contortus is a more amenable model system to study many aspects of parasite biology and investigate the basic mechanisms and genetics of anthelmintic drug resistance. Here we report the successful introgression of ivermectin resistance genes from two independent ivermectin resistant strains, MHco4(WRS) and MHco10(CAVR), into the susceptible genome reference strain MHco3(ISE) using a backcrossing approach. A panel of microsatellite markers were used to monitor the procedure. We demonstrated that after four rounds of backcrossing, worms that were phenotypically resistant to ivermectin had a similar genetic background to the susceptible reference strain based on the bulk genotyping with 18 microsatellite loci and individual genotyping with a sub-panel of 9 microsatellite loci. In addition, a single marker, Hcms8a20, showed evidence of genetic linkage to an ivermectin resistance-conferring locus providing a starting point for more detailed studies of this genomic region to identify the causal mutation(s). This work presents a novel genetic approach to study anthelmintic resistance and provides a "proof-of-concept" of the use of forward genetics in an important model strongylid parasite of relevance to human hookworms. The resulting strains provide valuable resources for candidate gene studies, whole genome approaches and for further genetic analysis to identify ivermectin resistance loci.

  12. Introgression of ivermectin resistance genes into a susceptible Haemonchus contortus strain by multiple backcrossing.

    Directory of Open Access Journals (Sweden)

    Elizabeth Redman

    2012-02-01

    Full Text Available Anthelmintic drug resistance in livestock parasites is already widespread and in recent years there has been an increasing level of anthelmintic drug selection pressure applied to parasitic nematode populations in humans leading to concerns regarding the emergence of resistance. However, most parasitic nematodes, particularly those of humans, are difficult experimental subjects making mechanistic studies of drug resistance extremely difficult. The small ruminant parasitic nematode Haemonchus contortus is a more amenable model system to study many aspects of parasite biology and investigate the basic mechanisms and genetics of anthelmintic drug resistance. Here we report the successful introgression of ivermectin resistance genes from two independent ivermectin resistant strains, MHco4(WRS and MHco10(CAVR, into the susceptible genome reference strain MHco3(ISE using a backcrossing approach. A panel of microsatellite markers were used to monitor the procedure. We demonstrated that after four rounds of backcrossing, worms that were phenotypically resistant to ivermectin had a similar genetic background to the susceptible reference strain based on the bulk genotyping with 18 microsatellite loci and individual genotyping with a sub-panel of 9 microsatellite loci. In addition, a single marker, Hcms8a20, showed evidence of genetic linkage to an ivermectin resistance-conferring locus providing a starting point for more detailed studies of this genomic region to identify the causal mutation(s. This work presents a novel genetic approach to study anthelmintic resistance and provides a "proof-of-concept" of the use of forward genetics in an important model strongylid parasite of relevance to human hookworms. The resulting strains provide valuable resources for candidate gene studies, whole genome approaches and for further genetic analysis to identify ivermectin resistance loci.

  13. Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens.

    LENUS (Irish Health Repository)

    Easom, Catherine A

    2010-01-01

    ABSTRACT: BACKGROUND: Photorhabdus are Gram negative entomopathogenic bacteria that also have a mutualistic association with nematodes from the family Heterorhabditis. An essential part of this symbiosis is the ability of the bacterium to colonize the gut of the freeliving form of the nematode called the infective juvenile (IJ). Although the colonization process (also called transmission) has been described phenomonologically very little is known about the underlying molecular mechanisms. Therefore, in this study, we were interested in identifying genes in Photorhabdus that are important for IJ colonization. RESULTS: In this work we genetically tagged P. luminescens TT01 with gfp and constructed a library containing over 3200 mutants using the suicide vector, pUT-Km2. Using a combination of in vitro symbiosis assays and fluorescent microscopy we screened this library for mutants that were affected in their ability to colonize the IJ i.e. with decreased transmission frequencies. In total 8 mutants were identified with transmission frequencies of <\\/= 30% compared to wild-type. These mutants were mapped to 6 different genetic loci; the pbgPE operon, galE, galU, proQ, asmA and hdfR. The pbgPE, galE and galU mutants were all predicted to be involved in LPS biosynthesis and, in support of this, we have shown that these mutants are avirulent and sensitive to the cationic antimicriobial peptide, polymyxin B. On the other hand the proQ, asmA and hdfR mutants were not affected in virulence and were either as resistant (proQ) or slightly more sensitive (asmA, hdfR) to polymyxin B than the wild-type (WT). CONCLUSIONS: This is the first report describing the outcome of a comprehensive screen looking for transmission mutants in Photorhabdus. In total 6 genetic loci were identified and we present evidence that all of these loci are involved in the assembly and\\/or maintenance of LPS and other factors associated with the cell surface. Interestingly several, but not all, of the

  14. Poor efficacy of the most commonly used anthelmintics in sport horse nematodes in Morocco in relation to resistance

    Directory of Open Access Journals (Sweden)

    Zouiten H.

    2005-12-01

    Full Text Available Sport and leisure horses in Morocco are treated with several anthelmintics, organophosphates (dichlorvos, benzimidazoles (mostly thiabendazole or tetrahydropyrimidines (mostly pyrantel pamoate against nematodes. We studied three horse stables in Rabat, one in Meknes and one in Bouznika. Two of the Rabat and Bouznika stables had introduced a large number of horses from countries (Argentina or Europe where resistance to benzimidazoles is frequent, whereas the Meknes stud farm remained without foreign introduction. The number of treatments was not very frequent (twice a year in adult horses but the same anthelmintics were used repeatedly. No resistance to dichlorvos was detected whereas benzimidazole and pyrantel pamoate resistances were detected for the first time in African horses, outside South Africa.

  15. Heritability of resistance to infestation with the body louse, Bovicola ovis, in Romney sheep bred for differences in resistance or resilience to gastro-intestinal nematode parasites.

    Science.gov (United States)

    Pfeffer, A; Morris, C A; Green, R S; Wheeler, M; Shu, D; Bisset, S A; Vlassoff, A

    2007-12-01

    The inheritance of resistance to louse infestation and the related allergic skin disease, cockle, was examined in Romney lambs. The lambs used in the study were the 2001- and 2004-born progeny of four experimental breeding lines ("Resistant", "Susceptible", "Resilient" and "Control") developed as part of a long-term study of the genetics of host resistance (maintenance of low faecal egg count (FEC) under nematode challenge) or resilience (maintenance of health and productivity under nematode challenge irrespective of FEC) to nematode parasites in sheep. Between 13 and 22 progeny (equally distributed between males and females, where possible) from each of five sires in each line were selected each year for this trial. All lambs (n=701) were examined for lice (Bovicola ovis) before artificial infestation; in 2001 the lambs were free of natural infestation, whilst in 2004 naturally acquired infestation was evident. In November 2001 and May 2002, approximately 60 B. ovis were transferred to each lamb, followed by monitoring at approximately 2-monthly intervals until August 2002. Similar procedures, but with fewer monitoring times, were repeated on the 2004 lambs. Overall, lambs in the Control line were significantly more susceptible to louse infestation and cockle compared with those in the other three lines (Pestimates were similar to those obtained for resistance to gastro-intestinal nematodes in these breeding lines, using log-transformed FECs. Heritability estimates for cockle score in autumn, winter and when combined were 0.06 (SE 0.04), 0.45 (SE 0.09) and 0.40 (SE 0.09), respectively. The genetic correlations of mean log-transformed louse score with mean cockle score and levels of two different louse antigens in wool were, respectively, 0.97 (SE 0.04), 0.96 (SE 0.08) and 0.95 (SE 0.09). However, there was no significant genetic correlation between louse scores and FEC. These results suggest that selective breeding would be effective in reducing louse infestation

  16. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    Science.gov (United States)

    Mayer, Melanie G; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J

    2015-06-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for

  17. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    Directory of Open Access Journals (Sweden)

    Melanie G Mayer

    2015-06-01

    Full Text Available Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as

  18. Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor-resistant conventional and real-time PCR.

    Directory of Open Access Journals (Sweden)

    Janina Demeler

    Full Text Available Diagnosis of gastrointestinal nematodes relies predominantly on coproscopic methods such as flotation, Kato-Katz, McMaster or FLOTAC. Although FLOTAC allows accurate quantification, many nematode eggs can only be differentiated to genus or family level. Several molecular diagnostic tools discriminating closely related species suffer from high costs for DNA isolation from feces and limited sensitivity since most kits use only small amounts of feces (<1 g. A direct PCR from crude egg preparations was designed for full compatibility with FLOTAC to accurately quantify eggs per gram feces (epg and determine species composition. Eggs were recovered from the flotation solution and concentrated by sieving. Lysis was achieved by repeated boiling and freezing cycles - only Trichuris eggs required additional mechanic disruption. Egg lysates were directly used as template for PCR with Phusion DNA polymerase which is particularly resistant to PCR inhibitors. Qualitative results were obtained with feces of goats, cattle, horses, swine, cats, dogs and mice. The finally established protocol was also compatible with quantitative real-time PCR in the presence of EvaGreen and no PCR inhibition was detectable when extracts were diluted at least fourfold. Sensitivity was comparable to DNA isolation protocols and spiked samples with five epg were reliably detected. For Toxocara cati a detection limit below one epg was demonstrated. It was possible to distinguish T. cati and Toxocara canis using high resolution melt (HRM analysis, a rapid tool for species identification. In human samples, restriction fragment length polymorphism (RFLP and HRM analysis were used to discriminate Necator americanus and Ancylostoma duodenale. The method is able to significantly improve molecular diagnosis of gastrointestinal nematodes by increasing speed and sensitivity while decreasing overall costs. For identification of species or resistance alleles, analysis of PCR products with many

  19. Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor-resistant conventional and real-time PCR.

    Science.gov (United States)

    Demeler, Janina; Ramünke, Sabrina; Wolken, Sonja; Ianiello, Davide; Rinaldi, Laura; Gahutu, Jean Bosco; Cringoli, Giuseppe; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2013-01-01

    Diagnosis of gastrointestinal nematodes relies predominantly on coproscopic methods such as flotation, Kato-Katz, McMaster or FLOTAC. Although FLOTAC allows accurate quantification, many nematode eggs can only be differentiated to genus or family level. Several molecular diagnostic tools discriminating closely related species suffer from high costs for DNA isolation from feces and limited sensitivity since most kits use only small amounts of feces (PCR from crude egg preparations was designed for full compatibility with FLOTAC to accurately quantify eggs per gram feces (epg) and determine species composition. Eggs were recovered from the flotation solution and concentrated by sieving. Lysis was achieved by repeated boiling and freezing cycles - only Trichuris eggs required additional mechanic disruption. Egg lysates were directly used as template for PCR with Phusion DNA polymerase which is particularly resistant to PCR inhibitors. Qualitative results were obtained with feces of goats, cattle, horses, swine, cats, dogs and mice. The finally established protocol was also compatible with quantitative real-time PCR in the presence of EvaGreen and no PCR inhibition was detectable when extracts were diluted at least fourfold. Sensitivity was comparable to DNA isolation protocols and spiked samples with five epg were reliably detected. For Toxocara cati a detection limit below one epg was demonstrated. It was possible to distinguish T. cati and Toxocara canis using high resolution melt (HRM) analysis, a rapid tool for species identification. In human samples, restriction fragment length polymorphism (RFLP) and HRM analysis were used to discriminate Necator americanus and Ancylostoma duodenale. The method is able to significantly improve molecular diagnosis of gastrointestinal nematodes by increasing speed and sensitivity while decreasing overall costs. For identification of species or resistance alleles, analysis of PCR products with many different post PCR methods can

  20. Resistant Citrullus lanatus var. citroides Rootstocks for Managing Root-knot Nematodes in Grafted Watermelon

    Science.gov (United States)

    Southern root-knot nematode (RKN), Meloidogyne incognita, is an important re-emerging pest of watermelon. Several factors have contributed to re-emergence of RKN including: 1) ban of methyl bromide for soil fumigation; 2) reduced land area for crop rotation; and 3) continuous cropping of cucurbits u...

  1. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum

    Science.gov (United States)

    Lilium longiflorum cv. “Nellie White” is an economically important cut flower, being one of the most valuable species with an annual wholesale value above $20,000,000 for pot plants sold in the US. The root lesion nematode (Pratylenchus penetrans) is one of the main pests for lily producers due to...

  2. Transgenic Cotton and Disease Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    RAJASEKARAN; Kanniah

    2008-01-01

    Success in conventional breeding for resistance to mycotoxin-producing or other phytopathogenic fungi is dependent on the availability of resistance gene(s) in the germplasm.Even when it is available,breeding for disease-resistant crops is very time consuming,especially in perennial crops such as

  3. The same or not the same: lineage-specific gene expansions and homology relationships in multigene families in nematodes.

    Science.gov (United States)

    Markov, Gabriel V; Baskaran, Praveen; Sommer, Ralf J

    2015-01-01

    Homology is a fundamental concept in comparative biology and a crucial tool for the analysis of character distribution. Introduced by Owen in 1843 (Lectures on comparative anatomy and physiology of the invertebrate animals, Longman, Brown, Green and Longman, London) in a morphological context, homology can similarly be applied to protein-coding genes. However, in molecular biology the proper distinction between orthology and paralogy was long limited by the absence of whole-genome sequencing data. By now, genome-wide sequencing allows comprehensive analyses of the homology of genes and gene families at the level of an entire phylum. Here, we analyze a manually curated dataset of more than 2,000 proteins from the genomes of 11 nematode species of seven different genera, including free-living and animal and plant parasites to study the principles of homology assignments in gene families. Using all sequenced species as an extensive outgroup, we specifically focus on the two model species Caenorhabditis elegans and Pristionchus pacificus and compare enzymes involved in detoxification of xenobiotics and synthesis of fatty acids. We find that only a small proportion of genes in these families are one-to-one orthologs and that their history is shaped by massive duplication events. Of a total of 349 and 528 genes from C. elegans and P. pacificus, respectively, only 39 are one-to-one orthologs. Thus, frequent amplifications and losses are a widespread phenomenon in nematode lineages. We also report variation in birth and death rates depending on gene families and nematode lineages. Finally, we discuss the consequence of the near absence of one-to-one orthology in related organisms for the application of the homology concept to protein-coding genes in the era of whole-genome sequencing data.

  4. Genetic Diversity of Soybean and the Establishment of a Core Collection Focused on Resistance to Soybean Cyst Nematode

    Institute of Scientific and Technical Information of China (English)

    Yan-Song Ma; Wen-Hui Wang; Li-Xia Wang; Feng-Ming Ma; Pei-Wu Wang; Ru-Zhen Chang; Li-Juan Qiu

    2006-01-01

    Soybean cyst nematode (SCN; Heterodera glycines) is one of the most important pests affecting soybean production. The best method of control of SCN is through the development of resistant cultivars. However,limited progress has been made in soybean breeding in China because most modern cultivars have no resistance to SCN. The distribution and phenotype of 432 immune or highly resistant Chinese accessions were surveyed and a primary core collection was selected as a representative sample for further analyses.Using evenly distributed simple sequence repeat markers, five selection methods were applied to the primary core collection and the optimal method was chosen to establish a core collection, which consisted of 28 accessions. These encompassed 70.8% of the allelic variation present in the overall resistant collection.The 28 accessions differed from the reference resistant accessions at the genomic level, indicating that Chinese resistant accessions are distinct from known resistant accessions. This applied core collection provides a rational framework for undertaking diversity surveys, using genetic variation for the investigation of complex traits and for the discovery of novel traits.

  5. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining.

    Directory of Open Access Journals (Sweden)

    Etienne G J Danchin

    2013-10-01

    Full Text Available Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when

  6. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining.

    Science.gov (United States)

    Danchin, Etienne G J; Arguel, Marie-Jeanne; Campan-Fournier, Amandine; Perfus-Barbeoch, Laetitia; Magliano, Marc; Rosso, Marie-Noëlle; Da Rocha, Martine; Da Silva, Corinne; Nottet, Nicolas; Labadie, Karine; Guy, Julie; Artiguenave, François; Abad, Pierre

    2013-10-01

    Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when silenced, constitute

  7. Caenorhabditis elegans: A Genetic Guide to Parasitic Nematode Biology.

    Science.gov (United States)

    Bird, D M; Opperman, C H

    1998-09-01

    The advent of parasite genome sequencing projects, as well as an increase in biology-directed gene discovery, promises to reveal genes encoding many of the key molecules required for nematode-host interactions. However, distinguishing parasitism genes from those merely required for nematode viability remains a substantial challenge. Although this will ultimately require a functional test in the host or parasite, the free-living nematode Caenorhabditis elegans can be exploited as a heterologous system to determine function of candidate parasitism genes. Studies of C. elegans also have revealed genetic networks, such as the dauer pathway, that may also be important adaptations for parasitism. As a more directed means of identifying parasitism traits, we developed classical genetics for Heterodera glycines and have used this approach to map genes conferring host resistance-breaking phenotypes. It is likely that the C. elegans and H. glycines genomes will be at least partially syntenic, thus permitting predictive physical mapping of H. glycines genes of interest.

  8. Transcription of Biotic Stress Associated Genes in White Clover (Trifolium repens L. Differs in Response to Cyst and Root-Knot Nematode Infection.

    Directory of Open Access Journals (Sweden)

    Afsana Islam

    Full Text Available The transcription of four members of the Kunitz proteinase inhibitor (KPI gene family of white clover (Trifolium repens L., designated as Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5, was investigated at both local infection (roots and systemic (leaf tissue sites in white clover in response to infection with the clover root knot nematode (CRKN Meloidogyne trifoliophila and the clover cyst nematode (CCN Heterodera trifolii. Invasion by the CRKN resulted in a significant decrease in transcript abundance of Tr-KPI4 locally at both 4 days post-infection (dpi and at 8 dpi, and an increase in transcription of Tr-KPI1 systemically at 8 dpi. In contrast, an increase in transcript abundance of all four Tr-KPI genes locally at 4 and 8 dpi, and an increase of Tr-KPI1, Tr-KPI2, and Tr-KPI5 at 8 dpi systemically was observed in response to infection with the CCN. Challenge of a resistant (R genotype and a susceptible (S genotype of white clover with the CCN revealed a significant increase in transcript abundance of all four Tr-KPI genes locally in the R genotype, while an increase in abundance of only Tr-KPI1, Tr-KPI2, and Tr-KPI5 was observed in the S genotype, and only at 4 dpi. The transcript abundance of a member of the1-AMINOCYCLOPROPANE-1-CARBOXYLATE (ACC SYNTHASE gene family from white clover (Tr-ACS1 was significantly down-regulated locally in response to CRKN infection at 4 and 8 dpi and at 4 dpi, systemically, while abundance increased locally and systemically at 8 dpi in response to CCN challenge. Conversely, the abundance of the jasmonic acid (JA signalling gene, CORONATINE-INSENSITIVE PROTEIN 1 from white clover (Tr-COI1 increased significantly at 8 dpi locally in response to CRKN infection, but decreased at 8 dpi in response to CCN infection. The significance of this differential regulation of transcription is discussed with respect to differences in infection strategy of the two nematode species.

  9. Transcription of Biotic Stress Associated Genes in White Clover (Trifolium repens L.) Differs in Response to Cyst and Root-Knot Nematode Infection.

    Science.gov (United States)

    Islam, Afsana; Mercer, Chris F; Leung, Susanna; Dijkwel, Paul P; McManus, Michael T

    2015-01-01

    The transcription of four members of the Kunitz proteinase inhibitor (KPI) gene family of white clover (Trifolium repens L.), designated as Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5, was investigated at both local infection (roots) and systemic (leaf tissue) sites in white clover in response to infection with the clover root knot nematode (CRKN) Meloidogyne trifoliophila and the clover cyst nematode (CCN) Heterodera trifolii. Invasion by the CRKN resulted in a significant decrease in transcript abundance of Tr-KPI4 locally at both 4 days post-infection (dpi) and at 8 dpi, and an increase in transcription of Tr-KPI1 systemically at 8 dpi. In contrast, an increase in transcript abundance of all four Tr-KPI genes locally at 4 and 8 dpi, and an increase of Tr-KPI1, Tr-KPI2, and Tr-KPI5 at 8 dpi systemically was observed in response to infection with the CCN. Challenge of a resistant (R) genotype and a susceptible (S) genotype of white clover with the CCN revealed a significant increase in transcript abundance of all four Tr-KPI genes locally in the R genotype, while an increase in abundance of only Tr-KPI1, Tr-KPI2, and Tr-KPI5 was observed in the S genotype, and only at 4 dpi. The transcript abundance of a member of the1-AMINOCYCLOPROPANE-1-CARBOXYLATE (ACC) SYNTHASE gene family from white clover (Tr-ACS1) was significantly down-regulated locally in response to CRKN infection at 4 and 8 dpi and at 4 dpi, systemically, while abundance increased locally and systemically at 8 dpi in response to CCN challenge. Conversely, the abundance of the jasmonic acid (JA) signalling gene, CORONATINE-INSENSITIVE PROTEIN 1 from white clover (Tr-COI1) increased significantly at 8 dpi locally in response to CRKN infection, but decreased at 8 dpi in response to CCN infection. The significance of this differential regulation of transcription is discussed with respect to differences in infection strategy of the two nematode species.

  10. Multispecies resistance of cattle gastrointestinal nematodes to long-acting avermectin formulations in Mato Grosso do Sul.

    Science.gov (United States)

    Borges, Fernando de Almeida; Borges, Dyego Gonçalves Lino; Heckler, Rafael Pereira; Neves, Juliana Paniago Lordello; Lopes, Fernando Gonçalves; Onizuka, Marcel Kenzo Vilalba

    2015-09-15

    The use of long-acting avermectins (AVMs) in cattle to treat infections with gastrointestinal nematodes was common in Brazil until its prohibition by state authorities. The prohibition; however, was rescinded in 2015, but a scientific discussion of the pros and cons of the use of these formulations is necessary. We evaluated the levels of resistance to 1.0 and 3.5% doramectin and to 3.15% ivermectin in cattle. The worms in animals treated with 3.5% doramectin were characterized by the suppression of oviposition and by a higher proportion of adult females carrying no eggs. Haemonchus placei, Cooperia punctata, C. pectinata, C. spatulata, and Oesophagostomum radiatum were resistant to the above compositions. The administration of long-acting AVM formulations did not result in a higher efficacy against these helminth populations.

  11. 16D10 siRNAs inhibit root-knot nematode infection in transgenic grape hairy roots

    Science.gov (United States)

    To develop a biotech-based solution for controlling Root-knot nematodes (RKNs) in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constru...

  12. Acquired antibiotic resistance genes: an overview.

    Directory of Open Access Journals (Sweden)

    Angela H.A.M. van Hoek

    2011-09-01

    Full Text Available In this review an overview is given on antibiotic resistance mechanisms with special attentions to the antibiotic resistance genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is paid to mobile genetic elements such as plasmids, transposons and integrons, which are associated with antibiotic resistance genes, and involved in the dispersal of antimicrobial determinants between different bacteria.

  13. Acquired antibiotic resistance genes: an overview.

    OpenAIRE

    Hoek, Angela H.A.M. van; Dik eMevius; Beatriz eGuerra; Peter eMullany; Adam Paul Roberts; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance mechanisms with special attentions to the antibiotic resistance genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is paid to mobile genetic elements such as plasmids, transposons and integrons, which are associated with antibiotic resistance genes, and involved in the dispersal of anti...

  14. Phylogenic analysis of adhesion related genes Mad1 revealed a positive selection for the evolution of trapping devices of nematode-trapping fungi.

    Science.gov (United States)

    Li, Juan; Liu, Yue; Zhu, Hongyan; Zhang, Ke-Qin

    2016-03-04

    Adhesions, the major components of the extracellular fibrillar polymers which accumulate on the outer surface of adhesive traps of nematode-trapping fungi, are thought to have played important roles during the evolution of trapping devices. Phylogenetic analyses based on the genes related to adhesive materials can be of great importance for understanding the evolution of trapping devices. Recently, AoMad1, one homologous gene of the entomopathogenic fungus Metarhizium anisopliae cell wall protein MAD1, has been functionally characterized as involved in the production of adhesions in the nematode-trapping fungus Arthrobotrys oligospora. In this study, we cloned Mad1 homologous genes from nematode-trapping fungi with various trapping devices. Phylogenetic analyses suggested that species which formed nonadhesive constricting ring (CR) traps more basally placed and species with adhesive traps evolved along two lineages. Likelihood ratio tests (LRT) revealed that significant positive selective pressure likely acted on the ancestral trapping devices including both adhesive and mechanical traps, indicating that the Mad1 genes likely played important roles during the evolution of nematode-trapping fungi. Our study provides new insights into the evolution of trapping devices of nematode-trapping fungi and also contributes to understanding the importance of adhesions during the evolution of nematode-trapping fungi.

  15. Dehydration-Specific Induction of Hydrophilic Protein Genes in the Anhydrobiotic Nematode Aphelenchus avenae

    OpenAIRE

    2004-01-01

    Some organisms can survive exposure to extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living nematode Aphelenchus avenae can be induced to enter the anhydrobiotic state by exposure to a moderate reduction in relative humidity. During this preconditioning period, the nematode accumulates large amounts of the disaccharide trehalose, which is thought to be necessary, but not sufficient, for successful anhydrobiosis. To identify other adaptations t...

  16. Biotechnological application of functional genomics towards plant-parasitic nematode control.

    Science.gov (United States)

    Li, Jiarui; Todd, Timothy C; Lee, Junghoon; Trick, Harold N

    2011-12-01

    Plant-parasitic nematodes are primary biotic factors limiting the crop production. Current nematode control strategies include nematicides, crop rotation and resistant cultivars, but each has serious limitations. RNA interference (RNAi) represents a major breakthrough in the application of functional genomics for plant-parasitic nematode control. RNAi-induced suppression of numerous genes essential for nematode development, reproduction or parasitism has been demonstrated, highlighting the considerable potential for using this strategy to control damaging pest populations. In an effort to find more suitable and effective gene targets for silencing, researchers are employing functional genomics methodologies, including genome sequencing and transcriptome profiling. Microarrays have been used for studying the interactions between nematodes and plant roots and to measure both plants and nematodes transcripts. Furthermore, laser capture microdissection has been applied for the precise dissection of nematode feeding sites (syncytia) to allow the study of gene expression specifically in syncytia. In the near future, small RNA sequencing techniques will provide more direct information for elucidating small RNA regulatory mechanisms in plants and specific gene silencing using artificial microRNAs should further improve the potential of targeted gene silencing as a strategy for nematode management. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. Anthelmintic resistance of nematode parasites of small ruminants in eastern Ethiopia: exploitation of refugia to restore anthelmintic efficacy.

    Science.gov (United States)

    Sissay, Menkir M; Asefa, Asmare; Uggla, Arvid; Waller, Peter J

    2006-02-18

    Faecal egg count reduction tests (FECRT) were conducted in May 2003 to determine the efficacy of anthelmintics used for treatment against nematode parasites in separately managed sheep and goat flocks at Alemaya University in eastern Ethiopia. These tests revealed high levels of anthelmintic resistance to albendazole, tetramisole, the combination of these two drugs, and to ivermectin in the goat flock (predominantly infected by Haemonchus contortus and Trichostrongylus spp.), whereas all drugs were highly efficacious in the sheep flock. A second FECRT confirmed these observations. Following this, a new management system was implemented on the goat flock for a period of 9 months (January-September 2004) in an attempt to restore the anthelmintic efficacy. This involved a combination of measures: eliminating the existing parasite infections in the goats, exclusion from the traditional goat pastures, and introducing communal grazing of the goats with the university sheep flock and livestock owned by neighbouring small-holder farmers. A second series of FECRTs (Tests 3 and 4) conducted 7 months after this change in management, showed high levels of efficacy to all three drugs (albendazole, tetramisole and ivermectin) in the goat flock. This is the first field study to demonstrate that anthelmintic efficacy in the control of nematode parasites of small ruminants can be restored by exploiting refugia.

  18. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species

    Science.gov (United States)

    To Identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode and fungal disease resistance traits, a series of interspecific cotton (Gossypium spp.) chromosome substitution (CS) lines were used in this study. The CS lines were developed in ...

  19. Hc-fau, a novel gene regulating diapause in the nematode parasite Haemonchus contortus.

    Science.gov (United States)

    Yan, Baolong; Guo, Xiaolu; Zhou, Qianjin; Yang, Yi; Chen, Xueqiu; Sun, Weiwei; Du, Aifang

    2014-10-01

    Diapause induced in the early fourth stage of Haemonchus contortus is a strategy to adapt this nematode to hostile environmental conditions. In this study, we identified a new gene, Hc-fau, a homologue of human fau and Caenorhabditis elegans Ce-rps30. Hc-fau encodes two proteins through alternative RNA splicing, Hc-FAUA and Hc-FAUB, consisting of 130 and 107 amino acids, respectively. Hc-FAU possesses a diverged ubiquitin-like (UBiL) protein domain and a conserved ribosome protein S30 domain. The protein is ubiquitously expressed, except in the gonad. However Hc-fau transcripts decrease significantly in diapausing L4s of H. contortus. In C. elegans, knockdown of Ce-rps30 confers an extended lifespan, increased lipid storage in the intestine and shortened body length. These morphological characteristics are comparable with dauer larvae of C. elegans, in which the gonad is condensed considerably. In contrast, a shortened lifespan is observed in C. elegans over-expressing Hc-faua, and especially Hc-faub, with hatching failure detected. The genes of insulin/IGF-1 signalling (IIS), TGF-β, cGMP, dafachronic acid (DA), apoptosis (AP) and fatty acids (FA) metabolism are all down-regulated in Ce-rps30RNAi (RNA interference) worms, except for akt-1 and daf-16. However, daf-16 up-regulation is inconsistent with its target gene down-regulation and the result from a heat stress assay in these worms. Daf-16 RNAi conducted in Ce-rps30 (tm6034/nt1) mutants failed to rescue the worms. The S30 domain stays in the nucleus, while UBiL accumulates in the cytoplasm. Compared with Hc-FAUA, results of UBiL domain and S30 domain over-expression indicate synergism between UBiL and S30 in regulating lifespan and reproduction. These results suggest the potential functions of Hc-fau in regulating larval diapause in H.contortus.

  20. Gene flow from glyphosate-resistant crops.

    Science.gov (United States)

    Mallory-Smith, Carol; Zapiola, Maria

    2008-04-01

    Gene flow from transgenic glyphosate-resistant crops can result in the adventitious presence of the transgene, which may negatively impact markets. Gene flow can also produce glyphosate-resistant plants that may interfere with weed management systems. The objective of this article is to review the gene flow literature as it pertains to glyphosate-resistant crops. Gene flow is a natural phenomenon not unique to transgenic crops and can occur via pollen, seed and, in some cases, vegetative propagules. Gene flow via pollen can occur in all crops, even those that are considered to be self-pollinated, because all have low levels of outcrossing. Gene flow via seed or vegetative propagules occurs when they are moved naturally or by humans during crop production and commercialization. There are many factors that influence gene flow; therefore, it is difficult to prevent or predict. Gene flow via pollen and seed from glyphosate-resistant canola and creeping bentgrass fields has been documented. The adventitious presence of the transgene responsible for glyphosate resistance has been found in commercial seed lots of canola, corn and soybeans. In general, the glyphosate-resistant trait is not considered to provide an ecological advantage. However, regulators should consider the examples of gene flow from glyphosate-resistant crops when formulating rules for the release of crops with traits that could negatively impact the environment or human health.

  1. Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis

    Science.gov (United States)

    Duan, Mingyue; Xiong, Jinfeng; Lu, Dandan; Wang, Guoxiu; Ai, Hui

    2016-01-01

    Mosquito-transmitted diseases like malaria and dengue fever are global problem and an estimated 50–100 million of dengue or dengue hemorrhagic fever cases are reported worldwide every year. The mermithid nematode Romanomermis wuchangensis has been successfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in laboratory studies. However, this nematode can not undergo sex differentiation in vitro culture, which has seriously affected their application of biocontrol in the field. In this study, based on transcriptome sequencing analysis of R. wuchangensis, Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were cloned and used to investigate molecular regulatory function of sex differentiation. qRT-PCR results demonstrated that the expression level of Rwucmab-3 between male and female displayed obvious difference on the 3rd day of parasitic stage, which was earlier than Rwuclaf-1 and Rwuctra-2, highlighting sex differentiation process may start on the 3rd day of parasitic stage. Besides, FITC was used as a marker to test dsRNA uptake efficiency of R. wuchangensis, which fluorescence intensity increased with FITC concentration after 16 h incubation, indicating this nematode can successfully ingest soaking solution via its cuticle. RNAi results revealed the sex ratio of R. wuchangensis from RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfp dsRNA treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the development of male nematodes. These results suggest that Rwucmab-3 mainly involves in the initiation of sex differentiation and the development of male sexual dimorphism. Rwuclaf-1 and Rwuctra-2 may play vital role in nematode reproductive and developmental system. In conclusion, transcript sequences presented in this study could provide more bioinformatics resources for future studies on gene cloning and other molecular regulatory mechanism in R. wuchangensis. Moreover, identification and functional

  2. Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis.

    Science.gov (United States)

    Duan, Mingyue; Xiong, Jinfeng; Lu, Dandan; Wang, Guoxiu; Ai, Hui

    Mosquito-transmitted diseases like malaria and dengue fever are global problem and an estimated 50-100 million of dengue or dengue hemorrhagic fever cases are reported worldwide every year. The mermithid nematode Romanomermis wuchangensis has been successfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in laboratory studies. However, this nematode can not undergo sex differentiation in vitro culture, which has seriously affected their application of biocontrol in the field. In this study, based on transcriptome sequencing analysis of R. wuchangensis, Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were cloned and used to investigate molecular regulatory function of sex differentiation. qRT-PCR results demonstrated that the expression level of Rwucmab-3 between male and female displayed obvious difference on the 3rd day of parasitic stage, which was earlier than Rwuclaf-1 and Rwuctra-2, highlighting sex differentiation process may start on the 3rd day of parasitic stage. Besides, FITC was used as a marker to test dsRNA uptake efficiency of R. wuchangensis, which fluorescence intensity increased with FITC concentration after 16 h incubation, indicating this nematode can successfully ingest soaking solution via its cuticle. RNAi results revealed the sex ratio of R. wuchangensis from RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfp dsRNA treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the development of male nematodes. These results suggest that Rwucmab-3 mainly involves in the initiation of sex differentiation and the development of male sexual dimorphism. Rwuclaf-1 and Rwuctra-2 may play vital role in nematode reproductive and developmental system. In conclusion, transcript sequences presented in this study could provide more bioinformatics resources for future studies on gene cloning and other molecular regulatory mechanism in R. wuchangensis. Moreover, identification and functional

  3. Transgenic Cotton and Disease Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    RAJASEKARAN Kanniah

    2008-01-01

    @@ Success in conventional breeding for resistance to mycotoxin-producing or other phytopathogenic fungi is dependent on the availability of resistance gene(s) in the germplasm.Even when it is available,breeding for disease-resistant crops is very time consuming,especially in perennial crops such as tree nut crops,and does not lend itself ready to combat the evolution of new virulent fungal races.

  4. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Dowd, Carola D; Chronis, Demosthenis; Radakovic, Zoran S; Siddique, Shahid; Schmülling, Thomas; Werner, Tomáš; Kakimoto, Tatsuo; Grundler, Florian M W; Mitchum, Melissa G

    2017-07-26

    Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. A SNARE-Like Protein and Biotin Are Implicated in Soybean Cyst Nematode Virulence.

    Directory of Open Access Journals (Sweden)

    Sadia Bekal

    Full Text Available Phytoparasitic nematodes that are able to infect and reproduce on plants that are considered resistant are referred to as virulent. The mechanism(s that virulent nematodes employ to evade or suppress host plant defenses are not well understood. Here we report the use of a genetic strategy (allelic imbalance analysis to associate single nucleotide polymorphisms (SNPs with nematode virulence genes in Heterodera glycines, the soybean cyst nematode (SCN. To accomplish this analysis, a custom SCN SNP array was developed and used to genotype SCN F3-derived populations grown on resistant and susceptible soybean plants. Three SNPs reproducibly showed allele imbalances between nematodes grown on resistant and susceptible plants. Two candidate SCN virulence genes that were tightly linked to the SNPs were identified. One SCN gene encoded biotin synthase (HgBioB, and the other encoded a bacterial-like protein containing a putative SNARE domain (HgSLP-1. The two genes mapped to two different linkage groups. HgBioB contained sequence polymorphisms between avirulent and virulent nematodes. However, the gene encoding HgSLP-1 had reduced copy number in virulent nematode populations and appears to produce multiple forms of the protein via intron retention and alternative splicing. We show that HgSLP-1 is an esophageal-gland protein that is secreted by the nematode during plant parasitism. Furthermore, in bacterial co-expression experiments, HgSLP-1 co-purified with the SCN resistance protein Rhg1 α-SNAP, suggesting that these two proteins physically interact. Collectively our data suggest that multiple SCN genes are involved in SCN virulence, and that HgSLP-1 may function as an avirulence protein and when absent it helps SCN evade host defenses.

  6. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine

    Science.gov (United States)

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-01-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity. PMID:22407649

  7. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine.

    Science.gov (United States)

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Li, Xiaolin; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-06-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity.

  8. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses

    Directory of Open Access Journals (Sweden)

    Srour Ali

    2012-08-01

    Full Text Available Abstract Background Soybean (Glycine max (L. Merr. resistance to any population of Heterodera glycines (I., or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS, was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. Results A BAC (B73p06 encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%. In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. Conclusions The inference that soybean has

  9. Plant Resistance to Virus Diseases through Genetic Engineering: Can a Similar Approach Control Plant-parasitic Nematodes?

    OpenAIRE

    Reimann-Philipp, Ulrich; Beachy, Roger N.

    1993-01-01

    Genetically engineered resistance against plant virus diseases has been achieved by transforming plants with gene constructs that encode viral sequences. Several successful field trials of virus-resistant transgenic plants have been carried out. Specific features of virus infection make it possible to interfere with different steps of the infection and disease cycle by accumulating products of chimeric genes introduced into transgenic plants. In this paper we describe the most common methods ...

  10. Genes conserved in bilaterians but jointly lost with Myc during nematode evolution are enriched in cell proliferation and cell migration functions.

    Science.gov (United States)

    Erives, Albert J

    2015-09-01

    Animals use a stereotypical set of developmental genes to build body architectures of varying sizes and organizational complexity. Some genes are critical to developmental patterning, while other genes are important to physiological control of growth. However, growth regulator genes may not be as important in small-bodied "micro-metazoans" such as nematodes. Nematodes use a simplified developmental strategy of lineage-based cell fate specifications to produce an adult bilaterian body composed of a few hundreds of cells. Nematodes also lost the MYC proto-oncogenic regulator of cell proliferation. To identify additional regulators of cell proliferation that were lost with MYC, we computationally screened and determined 839 high-confidence genes that are conserved in bilaterians/lost in nematodes (CIBLIN genes). We find that 30 % of all CIBLIN genes encode transcriptional regulators of cell proliferation, epithelial-to-mesenchyme transitions, and other processes. Over 50 % of CIBLIN genes are unnamed genes in Drosophila, suggesting that there are many understudied genes. Interestingly, CIBLIN genes include many Myc synthetic lethal (MycSL) hits from recent screens. CIBLIN genes include key regulators of heparan sulfate proteoglycan (HSPG) sulfation patterns, and lysyl oxidases involved in cross-linking and modification of the extracellular matrix (ECM). These genes and others suggest the CIBLIN repertoire services critical functions in ECM remodeling and cell migration in large-bodied bilaterians. Correspondingly, CIBLIN genes are co-expressed with Myc in cancer transcriptomes, and include a preponderance of known determinants of cancer progression and tumor aggression. We propose that CIBLIN gene research can improve our understanding of regulatory control of cellular growth in metazoans.

  11. Tagging Blast Resistance Gene Pi 1 in Rice (Oryza sativa) Using Candidate Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    LI Ai-hong; WU Jian-li; XU Xin-ping; Menchu BERNADO; DAI Zheng-yuan; ZHUANG Jie-yun; CHEN Zong-xiang; ZHENG Kang-le; LI Bao-jian; Hei LEUNG; ZHANG Hong-xi; PAN Xue-biao

    2004-01-01

    An F3 population derived from C101LAC/CO39 containing 90 lines was analyzed for blast resistance with 48 candidate genes developed from resistance gene analogs (RGA) and suppression subtractive library. Genetic analysis confirmed that blast resistance of the population was controlled by a single gene Pi 1. One of the candidate genes, R10 was identified as associated with the blast resistance gene on the long arm of chromosome 11 and mapped using a DH population derived from Azucena/IR64.A pair of PCR based primers was designed based on the sequence of R10 for marker-aided selection of the blast resistance gene.The recombination frequency between Pi 1 and the marker was estimated as 1.28%. It suggested that strategy of employing candidate genes is useful for gene identification and mapping. A new RFLP marker and the corresponding PCR marker for tagging of Pi 1 were provided.

  12. Standardization of the egg hatch test for the detection of benzimidazole resistance in parasitic nematodes

    NARCIS (Netherlands)

    Samson-Himmelstjerna, von G.; Coles, G.; Jackson, F.; Bauer, C.; Borgsteede, F.H.M.; Cirak, V.; Demeler, J.; Donnan, A.; Dorny, P.; Epe, C.; Harder, A.; Hoglund, J.; Kaminsky, R.; Kerboeuf, D.; Kuttler, U.; Papadopoulos, E.; Posedi, J.; Small, J.; Varady, M.; Verscruysse, J.; Wirtherle, N.

    2009-01-01

    The ability to reliably detect anthelmintic resistance is a crucial part of resistance management. If data between countries are to be compared, the same test should give the same results in each laboratory. As the egg hatch test for benzimidazole resistance is used for both research and surveys, th

  13. Disease Resistance Gene Analogs (RGAs in Plants

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Sekhwal

    2015-08-01

    Full Text Available Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs, as resistance (R gene candidates, have conserved domains and motifs that play specific roles in pathogens’ resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.

  14. Disease Resistance Gene Analogs (RGAs) in Plants.

    Science.gov (United States)

    Sekhwal, Manoj Kumar; Li, Pingchuan; Lam, Irene; Wang, Xiue; Cloutier, Sylvie; You, Frank M

    2015-08-14

    Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens' resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.

  15. The map-1 gene family in root-knot nematodes, Meloidogyne spp.: a set of taxonomically restricted genes specific to clonal species.

    Directory of Open Access Journals (Sweden)

    Iva Tomalova

    Full Text Available Taxonomically restricted genes (TRGs, i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s in the specificity of the plant-RKN interactions.

  16. Acquired Antibiotic Resistance Genes: An Overview

    OpenAIRE

    Hoek, Angela H.A.M. van; Mevius, Dik; Guerra, Beatriz; Mullany, Peter; Roberts, Adam Paul; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants betw...

  17. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  18. Acquired antibiotic resistance genes:an overview

    NARCIS (Netherlands)

    Hoek, A.H. van; Mevius, D.; Guerra, B.; Mullany, P.; Robberts, A.P.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  19. Acquired antibiotic resistance genes: an overview

    NARCIS (Netherlands)

    Hoek, van A.H.; Mevius, D.J.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  20. Acquired antibiotic resistance genes:an overview

    NARCIS (Netherlands)

    Hoek, A.H. van; Mevius, D.; Guerra, B.; Mullany, P.; Robberts, A.P.

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  1. Acquired antibiotic resistance genes: an overview

    NARCIS (Netherlands)

    Hoek, van A.H.; Mevius, D.J.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  2. Sequence and Spatiotemporal Expression Analysis of CLE-Motif Containing Genes from the Reniform Nematode (Rotylenchulus reniformis Linford & Oliveira).

    Science.gov (United States)

    Wubben, Martin J; Gavilano, Lily; Baum, Thomas J; Davis, Eric L

    2015-06-01

    The reniform nematode, Rotylenchulus reniformis, is a sedentary semi-endoparasitic species with a host range that encompasses more than 77 plant families. Nematode effector proteins containing plant-ligand motifs similar to CLAVATA3/ESR (CLE) peptides have been identified in the Heterodera, Globodera, and Meloidogyne genera of sedentary endoparasites. Here, we describe the isolation, sequence analysis, and spatiotemporal expression of three R. reniformis genes encoding putative CLE motifs named Rr-cle-1, Rr-cle-2, and Rr-cle-3. The Rr-cle cDNAs showed >98% identity with each other and the predicted peptides were identical with the exception of a short stretch of residues at the carboxy(C)-terminus of the variable domain (VD). Each RrCLE peptide possessed an amino-terminal signal peptide for secretion and a single C-terminal CLE motif that was most similar to Heterodera CLE motifs. Aligning the Rr-cle cDNAs with their corresponding genomic sequences showed three exons with an intron separating the signal peptide from the VD and a second intron separating the VD from the CLE motif. An alignment of the RrCLE1 peptide with Heterodera glycines and Heterodera schachtii CLE proteins revealed a high level of homology within the VD region associated with regulating in planta trafficking of the processed CLE peptide. Quantitative RT-PCR (qRT-PCR) showed similar expression profiles for each Rr-cle transcript across the R. reniformis life-cycle with the greatest transcript abundance being in sedentary parasitic female nematodes. In situ hybridization showed specific Rr-cle expression within the dorsal esophageal gland cell of sedentary parasitic females.

  3. Characterization of a null mutation in ace-1, the gene encoding class A acetylcholinesterase in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Talesa, V; Culetto, E; Schirru, N; Bernardi, H; Fedon, Y; Toutant, J P; Arpagaus, M

    1995-01-09

    Two genes (ace-1 and ace-2) encode two major classes (A and B) of acetylcholinesterase (AChE) in the nematode Caenorhabditis elegans. A null mutation in ace-1 (allele p1000) suppresses all acetylcholinesterase activity of class A. We have identified an opal mutation TGG (W99)-->TGA (Stop) as the only alteration in the mutated gene. This leads to a truncated protein (98 instead of 620 amino acids) with no enzymatic activity. The mutation also reduces the level of ace-1 transcripts to only 10% of that in wild-type animals. This most likely results from a destabilization of mRNA containing the nonsense message. In contrast, compensation of class B by class A AChE in the null mutant strain ace-2 takes place with unchanged ace-1 mRNA level and enzymatic activity similar to class A AChE.

  4. Duplications and positive selection drive the evolution of parasitism associated gene families in the nematode Strongyloides papillosus.

    Science.gov (United States)

    Baskaran, Praveen; Jaleta, Tegegn G; Streit, Adrian; Rödelsperger, Christian

    2017-03-02

    Gene duplication is one major mechanism playing a role in the evolution of phenotypic complexity and in the generation of novel traits. By comparing parasitic and nonparasitic nematodes, a recent study found that the evolution of parasitism in Strongyloididae is associated with a large expansion in the Astacin and CAP gene families.To gain novel insights into the developmental processes in the sheep parasite Strongyloides papillosus, we sequenced transcriptomes of different developmental stages and sexes. Overall, we found that the majority of genes are developmentally regulated and have one-to-one orthologs in the diverged S. ratti genome. Together with the finding of similar expression profiles between S. papillosus and S. ratti, these results indicate a strong evolutionary constraint acting against change at sequence and expression levels. However, the comparison between parasitic and free-living females demonstrates a quite divergent pattern that is mostly due to the previously mentioned expansion in the Astacin and CAP gene families. More detailed phylogenetic analysis of both gene families shows that most members date back to single expansion events early in the Strongyloides lineage and have undergone subfunctionalization resulting in clusters that are highly expressed either in infective larvae or in parasitic females. Finally, we found increased evidence for positive selection in both gene families relative to the genome-wide expectation.In summary, our study reveals first insights into the developmental transcriptomes of S. papillosus and provides a detailed analysis of sequence and expression evolution in parasitism associated gene families.

  5. Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function

    Directory of Open Access Journals (Sweden)

    Aebischer Toni

    2005-03-01

    Full Text Available Abstract Background Parasites exploit sophisticated strategies to evade host immunity that require both adaptation of existing genes and evolution of new gene families. We have addressed this question by testing the immunological function of novel genes from helminth parasites, in which conventional transgenesis is not yet possible. We investigated two such novel genes from Brugia malayi termed abundant larval transcript (alt, expression of which reaches ~5% of total transcript at the time parasites enter the human host. Results To test the hypothesis that ALT proteins modulate host immunity, we adopted an alternative transfection strategy to express these products in the protozoan parasite Leishmania mexicana. We then followed the course of infection in vitro in macrophages and in vivo in mice. Expression of ALT proteins, but not a truncated mutant, conferred greater infectivity of macrophages in vitro, reaching 3-fold higher parasite densities. alt-transfected parasites also caused accelerated disease in vivo, and fewer mice were able to clear infection of organisms expressing ALT. alt-transfected parasites were more resistant to IFN-γ-induced killing by macrophages. Expression profiling of macrophages infected with transgenic L. mexicana revealed consistently higher levels of GATA-3 and SOCS-1 transcripts, both associated with the Th2-type response observed in in vivo filarial infection. Conclusion Leishmania transfection is a tractable and informative approach to determining immunological functions of single genes from heterologous organisms. In the case of the filarial ALT proteins, our data suggest that they may participate in the Th2 bias observed in the response to parasite infection by modulating cytokine-induced signalling within immune system cells.

  6. Exploring Antibiotic Resistance Genes and Metal Resistance Genes in Plasmid Metagenomes from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    An-Dong eLi

    2015-09-01

    Full Text Available Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs database and a metal resistance genes (MRGs database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes and metal resistance genes (23 out of a total 23 types on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs than the activated sludge and the digested sludge metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in wastewater treatment plants could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  7. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-08-31

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  8. The efficacy of trichlorphon and naphthalophos against multiple anthelmintic-resistant nematodes of naturally infected sheep in Argentina.

    Science.gov (United States)

    Fiel, César; Guzmán, Maricel; Steffan, Pedro; Rodriguez, Edgardo; Prieto, Olegario; Bhushan, Chandra

    2011-08-01

    An anthelmintic efficacy trial was conducted in sheep harbouring anthelmintic-resistant worms in Argentina. Seventy lambs were selected from a flock that had been grazed on pastures infected with trichostrongyles previously shown to be resistant to the main anthelmintic groups. Lambs were allocated to comparable groups of ten animals each and treated with trichlorphon (50 mg/kg body weight (b.w.) orally); naphthalophos (50 mg/kg b.w. orally); ivermectin (0.2 mg/kg b.w. subcutaneously); fenbendazole (5 mg/kg b.w. orally); levamisole (8 mg/kg b.w. subcutaneously) and closantel (10 mg/kg b.w. orally). There was also an untreated group. The dose selection was based on manufacturer's recommendations.Faecal samples were collected 0 and 10 days post treatment to estimate efficacy (faecal egg count reduction). Six animals from each group were necropsied at day 10 for enumeration/identification of worms from the abomasum, small and large intestines to determine the absolute efficacy of each agent (controlled efficacy test). Trichlorphon and naphthalophos were effective (> 99 %) against Haemonchus contortus (p 95 %) against all nematodes except T. colubriformis. The efficacy of ivermectin was low against H. contortus (23 %) and Cooperia spp. (46.3 %). Closantel showed low efficacy against T. axei (64.4 %), H. contortus (80.6 %) and T. colubriformis (59.5 %).When anthelmintic resistance is widespread, trichlorphon treatment is appropriate if H. contortus is present; however, naphthalophos represents an effective therapeutic alternative for incorporation into worm control programmes.

  9. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate

    Directory of Open Access Journals (Sweden)

    Juan Emilio Palomares-Rius

    2016-02-01

    Full Text Available Plant-parasitic nematodes (PPN need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN (Globodera pallida and G. rostochiensis are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium, while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules.

  10. Anthelmintic resistance of intestinal nematodes to ivermectin and pyrantel in Estonian horses.

    Science.gov (United States)

    Lassen, B; Peltola, S-M

    2015-11-01

    There is evidence of resistance in horses to anthelmintic treatment using ivermectin and pyrantel. However, little information is available about the parasites, treatment practices or anthelmintic resistance in the horse population in Estonia. In the present study, we examined 41 trotting and riding horses aged ivermectin. Up to 78% of horses required anthelmintic treatment and the efficiency of the anthelmintics was evaluated using a faecal egg count reduction test. Resistance of P. equorum was observed in 50% of horses treated with ivermectin and of strongyles in 27% of horses treated with pyrantel. Ivermectin treatment resulted in a mean reduction of 100% for strongyle eggs and an 89% reduction in P. equorum, and pyrantel-treated horses exhibited an 88% reduction in strongyle eggs. These results are considered to be the first indication of resistance to pyrantel, but further studies of ivermectin resistance are required. According to questionnaires completed by the owners of horses, resistance might be explained by a lack of evidence-based strategies, a strong preference for using ivermectin and possibly a subjective evaluation of the body weight of horses.

  11. Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures

    Directory of Open Access Journals (Sweden)

    Zubeyir Devran

    2010-05-01

    Full Text Available Rootstocks have been effective against many soil-borne pathogens in protected tomato production. Rootstocks with heat-stable root-knot nematode resistance may prolong the production season since the root-knot nematode resistance gene Mi-1.2 irreversibly breaks down at soil temperatures above 28°C. The objective of this study was to investigate the effect of soil temperature on root-knot nematode resistance conferred by two genes of tomato, using some commercial tomato cultivars, rootstocks, and PI lines. The response of these genes against Meloidogyne incognita race 2 was studied in two commonly used rootstock cv.  Beaufort and Vigomax, in tomato cultivars Astona RN F1 and Simita F1, and in Solanum lycopersicum L. accessions PI126443 and PI270435, known to possess heat-stable nematode resistance, at 24°C and 32°C under controlled conditions.  Each plant was inoculated with 1000 M. incognita race 2 second-stage juveniles (J2s and its response was evaluated 8 weeks post inoculation. The presence of the Mi-1.2 gene was determined with molecular markers. Astona RN F1, Vigomax, Beaufort, PI126443 and PI 270435 which carried the Mi-1.2 gene were resistant to Meloidogyne incognita race 2 at 24°C. The egg masses and J2s were significantly fewer in these lines than in the susceptible Simita F1 at 24°C, and there were no significant differences among resistant plants. In contrast, there were significant differences in the galling index among heat-stable sources and plants containing the Mi-1.2 gene. Simita F1, Astona RN F1 and the rootstocks had a susceptible reaction to M. incognita race 2 at 32°C, but PI 126443 and PI 270435 were resistant.  However, at this temperature there were significant differences in the number of juveniles in the soil, the egg mass and the galling index between the heat-stable and the heat-unstable plants.Rootstocks have been effective against many soil-borne pathogens in protected tomato production. Rootstocks with

  12. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants.

    Science.gov (United States)

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  13. Effects of nematicides and plant resistance on white clover performance and seasonal populations of nematodes parasitizing white clover in grazed pasture.

    Science.gov (United States)

    Mercer, C F; Watson, R N

    2007-12-01

    Root-infecting nematodes are a major cause of white clover, Trifolium repens, not reaching its potential in New Zealand pastures. Resistance and/or tolerance are the preferred control options. Greenhouse-based, recurrent selection programs have developed resistance to Meloidogyne trifoliophila and Heterodera trifolii, and a field-based program has developed tolerance. Lines from these programs were compared with commercial cultivars as controls in a series of field trials at four sites over 4 years. Resistant lines from the CCN program performed better than susceptible lines and as well as most cultivars, reflecting the high level of resistance developed in this greenhouse-based program. In stained root from Cambridge, numbers of CCN were lower in resistant lines than in cultivars; numbers in susceptible lines were intermediate. CCN resistance was also reflected to a lesser extent in the number of cysts counted in soil under resistant lines in Palmerston North. The root-knot nematode-resistant material performed better than the susceptible and as well as most cultivars. In one trial of CRKN-resistant lines, resistant and susceptible lines had similar numbers of CRKN which were both lower than the numbers in the cultivars; in the second trial, there were fewer CRKN in resistant than in susceptible lines or cultivars. The tolerant selections, developed under field conditions, performed as well as or better than the cultivars. The selections from the breeding programmes have exhibited strong agronomic potential across locations and years, and the best material has been crossed; progeny are being assessed in current field trials.

  14. Measurement of phenotypic resilience to gastro-intestinal nematodes in Merino sheep and association with resistance and production variables.

    Science.gov (United States)

    Kelly, Gareth A; Kahn, Lewis P; Walkden-Brown, Stephen W

    2013-03-31

    A cross-over experiment was conducted to compare six different phenotypic measures of resilience to gastro-intestinal nematodes (predominantly Haemonchus contortus) in Merino sheep and their association with resistance and production levels. On each of six farms, 120 ewes born in 2006 and 120 older mixed age ewes were selected at shearing in 2007. Of these, 60 in each mob were serially treated with long-acting anthelmintics to suppress worm populations. The other 60 ewes were managed according to management practices employed on the farm (infected, INF). At shearing in 2008, the experimental sheep had their anthelmintic treatments switched. The experiment concluded at shearing in 2009. Measures of resilience were greasy fleece weight (GFW), live weight gain (LWG) and haematocrit (HCT) when infected and the difference in these variables between infected and suppressed. Resistance was determined from multiple faecal worm egg counts (WEC) when infected. Measures of resilience based on GFW, LWG and HCT were moderately correlated with each other (r=0.25-0.50) suggesting that they represent different traits. Correlations between a measure in infected animals, and the difference in the same measurement between infected and uninfected animals were higher (r=-0.37 to -0.82), indicating that measurement during infection is an adequate measure of resilience. WEC was negatively correlated with LWG and HCT during infection but not GFW. Correlations with resilience measures based on difference between infected and uninfected were positive. Surviving infected sheep were found to have higher haematocrit (HCT), and lower WEC in summer and autumn than sheep that died following the measurement. These results show that measurement of performance traits while infected is a reasonable approximation of measurement of resilience based on the difference in performance between infected and non-infected. They also show that resilience to worm infection is not a single trait, but rather a

  15. Screening edible ginger and turmeric cultivars for resistance to root-knot nematodes

    Science.gov (United States)

    Twenty-two edible ginger and turmeric cultivars were screened for resistance or tolerance to Meloidogyne incognita. Plants were raised in 66 L grow bags in greenhouses in Hawaii according to established practices for producing bacterial wilt-free ginger. Three months after planting, each grow bag ...

  16. Antibiotic resistance genes in the environment

    Directory of Open Access Journals (Sweden)

    Jianqiang Su

    2013-07-01

    Full Text Available Antibiotic resistance and its spread in bacteria are topics of great importance in global research. In this paper, we review recent progress in understanding sources, dissemination, distribution and discovery of novel antibiotics resistance genes (ARGs in the environment. Bacteria exhibiting intrinsic resistance and antibiotic resistant bacteria in feces from humans and animals are the major sources of ARGs occurring in the environment. A variety of novel ARGs have been discovered using functional metagenomics. Recently, the long-term overuse of antibotics in drug therapy and animal husbandry has led to an increase in diversity and abundance of ARGs, causing the environmental dissemination of ARGs in aquatic water, sewage treatmentplants, rivers, sediment and soil. Future research should focus on dissemination mechanisms of ARGs, the discovery of novel ARGs and their resistant mechanisms, and the establishment of environmental risk assessment systems for ARGs.

  17. Nematode cholinergic pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  18. Pilus gene pool variation and the virulence of Corynebacterium diphtheriae clinical isolates during infection of a nematode.

    Science.gov (United States)

    Broadway, Melissa M; Rogers, Elizabeth A; Chang, Chungyu; Huang, I-Hsiu; Dwivedi, Prabhat; Yildirim, Suleyman; Schmitt, Michael P; Das, Asis; Ton-That, Hung

    2013-08-01

    Toxigenic Corynebacterium diphtheriae strains cause diphtheria in humans. The toxigenic C. diphtheriae isolate NCTC13129 produces three distinct heterotrimeric pili that contain SpaA, SpaD, and SpaH, making up the shaft structure. The SpaA pili are known to mediate bacterial adherence to pharyngeal epithelial cells. However, to date little is known about the expression of different pili in various clinical isolates and their importance in bacterial pathogenesis. Here, we characterized a large collection of C. diphtheriae clinical isolates for their pilin gene pool by PCR and for the expression of the respective pilins by immunoblotting with antibodies against Spa pilins. Consistent with the role of a virulence factor, the SpaA-type pili were found to be prevalent among the isolates, and most significantly, corynebacterial adherence to pharyngeal epithelial cells was strictly correlated with isolates that were positive for the SpaA pili. By comparison, the isolates were heterogeneous for the presence of SpaD- and SpaH-type pili. Importantly, using Caenorhabditis elegans as a model host for infection, we show here that strain NCTC13129 rapidly killed the nematodes, the phenotype similar to isolates that were positive for toxin and all pilus types. In contrast, isogenic mutants of NCTC13129 lacking SpaA-type pili or devoid of toxin and SpaA pili exhibited delayed killing of nematodes with similar kinetics. Consistently, nontoxigenic or toxigenic isolates that lack one, two, or all three pilus types were also attenuated in virulence. This work signifies the important role of pili in corynebacterial pathogenesis and provides a simple host model to identify additional virulence factors.

  19. [Cyclooxigenase-1 gene polymorphism and aspirin resistance].

    Science.gov (United States)

    Bondar', T N; Kravchenko, N A

    2012-01-01

    The literature data concerning structure of cyclo-oxigenase-1--the key enzyme in prostaglandin biosynthesis and the main target of anti-platelet therapy with the use of acetylsalicilic acid are presented in the review. The data on cyclooxigenase-1 gene polymorphism, distribution of the revealed variants in various populations and their possible correlation with biochemical and functional aspirin resistance are presented.

  20. Relationship Between Resistance Gene Analogue and Blast Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-min; FAN Cheng-ming; YANG Yan; HE Yue-qiu

    2009-01-01

    DNA fragments of 43 rice varieties were amplified with 11 pairs of primers designed based on resistance gene analogue (RGA) of plants, and the blast resistance of the varieties was identified by inoculation with 33 isolates of Magnaporthe grisea collected from Yunnan Province, China. Clustering results revealed a significant correlation between the blast resistance and DNA bands with a correlation coefficient of 0.6117 (α=0.01), indicating that the resistance analysis based on RGA-PCR clustering analysis coincided with that based on inoculation. The correlation coefficients, ranging from 0.1701 to 0.535, however, depended on the primers. Five pairs of primers, S1/AS3, S1 INV/S2 INV, XLRR For/XLRR Rev, Pto-Kin1 IN/Pto-Kin2 IN, and NLRR For/NLRR Rev might be applied for blast resistance identification in consideration of their band numbers and polymorphisms, and their correlation coefficients with blast resistance were 0.5305, 0.4898, 0.4059, 0.3719 and 0.3524, respectively. Besides, indica and japonica rice except two highly susceptible varieties, CO39 and Lijiangxintuanheigu, could be well classified by the 11 pairs of primers.

  1. 不同番茄品种抗根结线虫评价%Evaluation of tomato resistance to root knot nematodes

    Institute of Scientific and Technical Information of China (English)

    席先梅; 白全江; 李玉民

    2016-01-01

    为了明确当地主栽番茄品种对根结线虫的抗病性,以指导设施蔬菜根结线虫发生危害区合理利用抗病品种。该试验选择了内蒙古地区种植和选育的20个番茄品种进行了田间抗病性评价,鉴定结果表明,其中6个品种达到了免疫,3个品种高抗,2个品种抗病,其余分别为感病或高度感病品种。%In order to explore the resistance of the local dominant tomato cultivars to root knot nematode, and guide farmers to choose the suitable cultivars, the resistance in field were identified for twenty tomato cultivars which were planted and bred in Inner Mongolia area. The results revealed that in those tested cultivars six cultivars showed immune, three cultivars showed high resistance, two cultivars showed resistance, the others were susceptible or high susceptible to root-knot nematode.

  2. A new enabling proteomics methodology to investigate membrane associated proteins from parasitic nematodes: case study using ivermectin resistant and ivermectin susceptible isolates of Caenorhabditis elegans and Haemonchus contortus.

    Science.gov (United States)

    Hart, Elizabeth H; Brophy, Peter M; Prescott, Mark; Bartley, David J; Wolf, Basil T; Hamilton, Joanne V

    2015-01-30

    The mechanisms involved in anthelmintic resistance (AR) are complex but a greater understanding of AR management is essential for effective and sustainable control of parasitic helminth worms in livestock. Current tests to measure AR are time consuming and can be technically problematic, gold standard diagnostics are therefore urgently required to assist in combatting the threat from drug resistant parasites. For anthelmintics such as ivermectin (IVM), target proteins may be present in the cellular membrane. As proteins usually act in complexes and not in isolation, AR may develop and be measurable in the target associated proteins present in the parasite membrane. The model nematode Caenorhabditis elegans was used to develop a sub-proteomic assay to measure protein expression differences, between IVM resistant and IVM susceptible isolates in the presence and absence of drug challenge. Evaluation of detergents including CHAPS, ASB-14, C7BzO, Triton ×100 and TBP (tributyl phosphine) determined optimal conditions for the resolution of membrane proteins in Two Dimensional Gel Electrophoresis (2DE). These sub-proteomic methodologies were then translated and evaluated using IVM-susceptible and IVM-resistant Haemonchus contortus; a pathogenic blood feeding parasitic nematode which is of global importance in livestock health, welfare and productivity. We have demonstrated the successful resolution of membrane associated proteins from both C. elegans and H. contortus isolates, using a combination of CHAPS and the zwitterionic amphiphilic surfactant ASB-14 to further support the detection of markers for AR. Copyright © 2014. Published by Elsevier B.V.

  3. Bacteria can mobilize nematode-trapping fungi to kill nematodes.

    Science.gov (United States)

    Wang, Xin; Li, Guo-Hong; Zou, Cheng-Gang; Ji, Xing-Lai; Liu, Tong; Zhao, Pei-Ji; Liang, Lian-Ming; Xu, Jian-Ping; An, Zhi-Qiang; Zheng, Xi; Qin, Yue-Ke; Tian, Meng-Qing; Xu, You-Yao; Ma, Yi-Cheng; Yu, Ze-Fen; Huang, Xiao-Wei; Liu, Shu-Qun; Niu, Xue-Mei; Yang, Jin-Kui; Huang, Ying; Zhang, Ke-Qin

    2014-12-16

    In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode-predatory form; this predacious form is characterized by formation of specialized cellular structures or 'traps'. The bacteria significantly promote the elimination of nematodes by A. oligospora. Disruption of genes involved in urea transport and metabolism in A. oligospora abolishes the urea-induced trap formation. Furthermore, the urea metabolite ammonia functions as a signal molecule in the fungus to initiate the lifestyle switch to form trap structures. Our findings highlight the importance of multiple predator-prey interactions in prey defense mechanisms.

  4. Transposon tagging of disease resistance genes

    Energy Technology Data Exchange (ETDEWEB)

    Michelmore, R.W. (California Univ., Davis, CA (USA). Dept. of Physics)

    1989-01-01

    We are developing a transposon mutagenesis system for lettuce to clone genes for resistance to the fungal pathogen, Bremia lactucae. Activity of heterologous transposons is being studied in transgenic plants. Southern analysis of T{sub 1} and T{sub 2} plants containing Tam3 from Antirrhinum provided ambiguous results. Multiple endonuclease digests indicated that transposition had occurred; however, in no plant were all endonuclease digests consistent with a simple excision event. Southern or PCR analysis of over 50 plans containing Ac from maize have also failed to reveal clear evidence of transposition; this is contrast to experiments by others with the same constructs who have observed high rates of Ac excision in other plant species. Nearly all of 65 T{sub 2} families containing Ac interrupting a chimeric streptomycin resistance gene (Courtesy J. Jones, Sainsbury Lab., UK) clearly segregated for streptomycin resistance. Southern analyses, however, showed no evidence of transposition, indicating restoration of a functional message by other mechanisms, possibly mRNA processing. Transgenic plants have also been generated containing CaMV 35S or hsp70 promoters fused to transposase coding sequences or a Ds element interrupting a chimeric GUS gene (Courtesy M. Lassner, UC Davis). F{sub 1} plants containing both constructs were analyzed for transposition. Only two plants containing both constructs were obtained from 48 progeny, far fewer than expected, and neither showed evidence of transposition in Southerns and GUS assays. We are currently constructing further chimeric transposase fusions. To test for the stability of the targeted disease resistance genes, 50,000 F{sub 1} plants heterozygous for three resistance genes were generated; no mutants have been identified in the 5000 so far screened.

  5. Biological Control of Nematodes with Bacteria

    Science.gov (United States)

    Biological control of nematodes is receiving increased attention as environmental considerations with the use of nematicides have increased in importance and their high cost prohibits use on many crops. In addition, nematode resistant cultivars are not available for many crops and resistance that i...

  6. Transcript Analysis of Sedentary Parastic Female Reniform Nematodes (Rotylenchulus reniformis) Identifies Candidate Parasitism Genes and Targets for RNA-Interference

    Science.gov (United States)

    The reniform nematode (RN) (Rotylenchulus reniformis) is a semi-endoparasitic nematode with a host range that spans 30 plant families; however, RN infection is particularly detrimental to Upland cotton (Gossypium hirsutum). We present here an initial survey of cDNA sequences isolated from the RN fe...

  7. Transcriptomic Analysis and the Expression of Disease-Resistant Genes in Oryza meyeriana under Native Condition.

    Directory of Open Access Journals (Sweden)

    Bin He

    Full Text Available Oryza meyeriana (O. meyeriana, with a GG genome type (2n = 24, accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93-11 genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26 differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease

  8. Pulsed irradiation improves target selectivity of infrared laser-evoked gene operator for single-cell gene induction in the nematode C. elegans.

    Directory of Open Access Journals (Sweden)

    Motoshi Suzuki

    Full Text Available Methods for turning on/off gene expression at the experimenter's discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms.

  9. Genetic regulation of parasite infection: empirical evidence of the functional significance of an IL4 gene SNP on nematode infections in wild primates

    Directory of Open Access Journals (Sweden)

    Kappeler Peter M

    2011-04-01

    Full Text Available Abstract Background Susceptibility to parasite infection affects fitness-related processes, such as mate choice and survival, yet its genetic regulation remains poorly understood. Interleukin-4 (IL4 plays a central role in the humoral immune defence against nematode parasite infections, inducing IgE switch and regulation of worm expulsion from the intestines. The evolutionary and functional significance of single nucleotide polymorphisms (SNPs in IL4-genes is known, yet empirical information on the effect of IL4 SNPs on gastro-intestinal infections is lacking. Using samples from a population of wild red-fronted lemurs (Eulemur fulvus rufus, Primates: Lemuridae, from western Madagascar, we explored the association of IL4-gene promoter polymorphisms with nematode infections and investigated a possible functional role of the IL4 polymorphism on male reproductive success. Results Using sequence analyses of lemur DNA we detected a new SNP in the IL4 gene promoter area. Carriers of the genotype T/T showed higher nematode infection intensities than individuals of genotypes C/T and C/C. Genetic population analyses using data from more than 10 years, suggested higher reproductive success of T/T males than expected. Conclusions Our results suggest a regulatory effect of an IL4 gene promoter polymorphism on the intensity of parasite infections in a natural population of red-fronted lemurs, with a seemingly disadvantageous genotype represented in low frequencies. Long-term population analyses, however, point in the direction of a negative frequency-dependent association, giving a fitness advantage to the rare genotype. Due to low frequencies of the genotype in question conclusive evidence of a functional role of IL4 polymorphism cannot be drawn here; still, we suggest the use of IL4 polymorphism as a new molecular tool for quick assessment of individual genetic constitution with regard to nematode infection intensities, contributing to a better

  10. Methyridine (2-[2-methoxyethyl]-pyridine]) and levamisole activate different ACh receptor subtypes in nematode parasites: a new lead for levamisole-resistance

    Science.gov (United States)

    Martin, Richard J; Bai, Guangxing; Clark, Cheryl L; Robertson, Alan P

    2003-01-01

    The development of resistance to all chemotherapeutic agents increases and needs to be addressed. We are interested in resistance in parasitic nematodes to the anthelmintic levamisole. During studies on methyridine, we found that it gave us a new insight into pharmacological changes associated with levamisole resistance. Initially, electrophysiological investigation using a two-micropipette current-clamp recording technique revealed that methyridine acts as a cholinergic agonist on nematode muscle receptors (Ascaris suum). Methyridine (>30 μM) produced reversible concentration-dependent depolarizations and increases in input conductance. Mecamylamine (30 μM) and paraherquamide (0.3 μM) produced reversible antagonism of the depolarization and conductance responses to methyridine. These observations suggest that methyridine, like acetylcholine and levamisole, gates ion channels on the muscle of parasitic nematodes. The antagonistic effects of dihydro-β-erythroidine and paraherquamide on methyridine-induced contractions of A. suum muscle flaps were then examined to determine if methyridine showed subtype selectivity for N-subtype (nicotine-sensitive) or L-subtype (levamisole-sensitive) acetylcholine receptors. Dihydro-β-erythroidine weakly antagonized the effects of methyridine (but had no effect on levamisole responses). The antagonism of methyridine (pA2, 5.9) and nicotine (pA2, 6.1) by paraherquamide was similar, but was less than the antagonism of levamisole (pA2, 7.0). The antagonist profiles suggested that methyridine has a selective action on the N-subtype rather than on the L-subtype. A novel use for a larval inhibition migration assay was made using L3 larvae of Oesophagostomum dentatum. Inhibitory effects of nicotine, levamisole, pyrantel and methyridine on the migration of larvae of levamisole-sensitive (SENS) and levamisole-resistant (LEV-R) isolates were tested at different concentrations. Levamisole and pyrantel (putative L

  11. The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol.

    Directory of Open Access Journals (Sweden)

    Elaine Ward

    Full Text Available The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers may enhance biocontrol potential in some circumstances.

  12. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria.

    Science.gov (United States)

    Darsouei, Reyhaneh; Karimi, Javad; Ghadamyari, Mohammad; Hosseini, Mojtaba

    2017-08-01

    The expression of antimicrobial peptides (AMPs) as the main humoral defense reactions of insects during infection by entomopathogenic nematodes (EPNs) and their symbiont is addressed herein. Three AMPs, attacin, cecropin, and spodoptericin, were evaluated in the fifth instar larvae of Spodoptera exigua Hübner (beet armyworm) when challenged with Steinernema carpocapsae or Heterorhabditis bacteriophora. The results indicated that attacin was expressed to a greater extent than either cecropin or spodoptericin. While spodoptericin was expressed to a much lesser extent, this AMP was induced against Gram-positive bacteria, and thus not expressed after penetration of Xenorhabdus nematophila and Photorhabdus luminescens. Attacin and cecropin in the larvae treated with S. carpocapsae at 8 hr post-injection (PI) attained the maximum expression levels and were 138.42-fold and 65.84-fold greater than those of larvae infected with H. bacteriophora, respectively. Generally, the ability of H. bacteriophora to suppress attacin, cecropin, and spodoptericin was greater than that of S. carpocapsae. According to the results, the expression of AMPs by Sp. exigua larvae against S. carpocapsae was determined in the 4 statuses of monoxenic nematode, axenic nematode, live symbiotic bacterium, and dead symbiotic bacterium. The expression of attacin in larvae treated with a monoxenic nematode and live bacterium at 8 and 2 hr PI, respectively, were increased to the maximum amount. Live X. nematophila was the strongest agent for the suppression of attacin. The expression of cecropin against monoxenic nematodes and live symbiotic bacteria at 8 and 4 hr PI, respectively, reached the maximum amount while the expression levels of attacin and cecropin for axenic nematodes were lesser and stable. The results highlighted that the ability of P. luminescens in AMPs suppression was much more than X. nematophila. The results also showed that the effect of symbiotic bacterium in suppressing attacin and

  13. Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis

    OpenAIRE

    Duan, Mingyue; Xiong, Jinfeng; Lu, Dandan; Wang, Guoxiu; Ai, Hui

    2016-01-01

    Mosquito-transmitted diseases like malaria and dengue fever are global problem and an estimated 50–100 million of dengue or dengue hemorrhagic fever cases are reported worldwide every year. The mermithid nematode Romanomermis wuchangensis has been successfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in laboratory studies. However, this nematode can not undergo sex differentiation in vitro culture, which has seriously affected their application of biocontrol in t...

  14. Developing sustainable systems for nematode management.

    Science.gov (United States)

    Barker, K R; Koenning, S R

    1998-01-01

    Early researchers identified key concepts and developed tactics for multiple-option management of nematodes. Although the emphasis on integrated pest management over the past three decades has promoted strategies and tactics for nematode management, comprehensive studies on the related soil biology-ecology are relatively recent. Traditional management tactics include host resistance (where available), cultural tactics such as rotation with nonhosts, sanitation and avoidance, and destruction of residual crop roots, and the judicious use of nematicides. There have been advances in biological control of nematodes, but field-scale exploitation of this tactic remains to be realized. New technologies and resources are currently becoming central to the development of sustainable systems for nematode-pest-crop management: molecular diagnostics for nematode identification, genetic engineering for host resistance, and the elucidation and application of soil biology for general integrated cropping systems. The latter strategy includes the use of nematode-pest antagonistic cover crops, animal wastes, and limited tillage practices that favor growth-promoting rhizobacteria, earthworms, predatory mites, and other beneficial organisms while suppressing parasitic nematodes and other plant pathogens. Certain rhizobacteria may induce systemic host resistance to nematodes and, in some instances, to foliage pathogens. The systems focusing on soil biology hold great promise for sustainable crop-nematode management, but only a few research programs are currently involved in this labor-intensive endeavor.

  15. Organization of a resistance gene cluster linked to rhizomania resistance in sugar beet

    Science.gov (United States)

    Genetic resistance to rhizomania has been in use for over 40 years. Characterization of the molecular basis for susceptibility and resistance has proved challenging. Nucleotide-binding leucine-rich-repeat-containing (NB-LRR) genes have been implicated in numerous gene-for-gene resistance interaction...

  16. Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen

    Science.gov (United States)

    Lakhssassi, Naoufal; Liu, Shiming; Bekal, Sadia; Zhou, Zhou; Colantonio, Vincent; Lambert, Kris; Barakat, Abdelali; Meksem, Khalid

    2017-01-01

    Proteins with Tetratricopeptide-repeat (TPR) domains are encoded by large gene families and distributed in all plant lineages. In this study, the Soluble NSF-Attachment Protein (SNAP) subfamily of TPR containing proteins is characterized. In soybean, five members constitute the SNAP gene family: GmSNAP18, GmSNAP11, GmSNAP14, GmSNAP02, and GmSNAP09. Recently, GmSNAP18 has been reported to mediate resistance to soybean cyst nematode (SCN). Using a population of recombinant inbred lines from resistant and susceptible parents, the divergence of the SNAP gene family is analysed over time. Phylogenetic analysis of SNAP genes from 22 diverse plant species showed that SNAPs were distributed in six monophyletic clades corresponding to the major plant lineages. Conservation of the four TPR motifs in all species, including ancestral lineages, supports the hypothesis that SNAPs were duplicated and derived from a common ancestor and unique gene still present in chlorophytic algae. Syntenic analysis of regions harbouring GmSNAP genes in soybean reveals that this family expanded from segmental and tandem duplications following a tetraploidization event. qRT-PCR analysis of GmSNAPs indicates a co-regulation following SCN infection. Finally, genetic analysis demonstrates that GmSNAP11 contributes to an additive resistance to SCN. Thus, GmSNAP11 is identified as a novel minor gene conferring resistance to SCN. PMID:28338077

  17. RNA-Seq Based Identification of Candidate Parasitism Genes of Cereal Cyst Nematode (Heterodera avenae during Incompatible Infection to Aegilops variabilis.

    Directory of Open Access Journals (Sweden)

    Minghui Zheng

    Full Text Available One of the reasons for the progressive yield decline observed in cereals production is the rapid build-up of populations of the cereal cyst nematode (CCN, Heterodera avenae. These nematodes secrete so-call effectors into their host plant to suppress the plant defense responses, alter plant signaling pathways and then induce the formation of syncytium after infection. However, little is known about its molecular mechanism and parasitism during incompatible infection. To gain insight into its repertoire of parasitism genes, we investigated the transcriptome of the early parasitic second-stage (30 hours, 3 days and 9 days post infection juveniles of the CCN as well as the CCN infected tissue of the host Aegilops variabilis by Illumina sequencing. Among all assembled unigenes, 681 putative genes of parasitic nematode were found, in which 56 putative effectors were identified, including novel pioneer genes and genes corresponding to previously reported effectors. All the 681 CCN unigenes were mapped to 229 GO terms and 200 KEGG pathways, including growth, development and several stimulus-related signaling pathways. Sixteen clusters were involved in the CCN unigene expression atlas at the early stages during infection process, and three of which were significantly gene-enriched. Besides, the protein-protein interaction network analysis revealed 35 node unigenes which may play an important role in the plant-CCN interaction. Moreover, in a comparison of differentially expressed genes between the pre-parasitic juveniles and the early parasitic juveniles, we found that hydrolase activity was up-regulated in pre J2s whereas binding activity was upregulated in infective J2s. RT-qPCR analysis on some selected genes showed detectable expression, indicating possible secretion of the proteins and putative role in infection. This study provided better insights into the incompatible interaction between H. avenae and the host plant Ae. varabilis. Moreover, RNAi

  18. 水稻干尖线虫海藻糖酶Ab-tre-1基因克隆与逆境条件下的表达分析%Isolation and Expression Analysis of a Trehalase Gene From White Tip Nematode

    Institute of Scientific and Technical Information of China (English)

    陈曦; 冯辉; 束兆林; 姚克兵; 魏利辉

    2016-01-01

    Trehalase involves in energy metabolism,which plays an important role in stress resistance.White tip nematode as an offensive parasite on rice plants,shows strong tolerant capability to various stressful conditions and causes substantial loss of yield in most rice-growing areas.In order to study the function of the trehalase gene in white tip nematode,the full length of a trehalase gene,designated Ab-tre-1,was isolated from this nematode by using RACEPCR,differential expression of Ab-tre-1 in eggs and different developmental stages of the nematode,as well as under several stresses was analyzed by using real time PCR.The length of cDNA sequence of Ab-tre-1 was 2083 bp with nine introns.Open reading frame encoded a 580 amino acid protein.Alignment of several trehalase proteins revealed two conserved signature motifs in Ab-tre-1.Phylogenetic analysis results indicated that Ab-tre-1 was in different group from other free living nematodes and animal parasitic nematodes.The expression level of Ab-tre-1was highest in nematode eggs but lowest in third and fourth stage juveniles.When exposed to dehydration,reactive oxygen species,high temperature and nematodecide treatment,the expression level of Ab-tre-1 was significantly increased,indicating related to stresses resistance in nematode.Isolation and expression analysis of Ab-tre-1 will provide evidences for further studies on gene functions of nematodes during stress resistance response.%海藻糖酶参与生物体内能量代谢,在抵御逆境胁迫过程中发挥关键作用.水稻干尖线虫是水稻上重要的寄生线虫,能够在多种逆境中存活,严重危害水稻生长.为探究水稻干尖线虫海藻糖酶基因的功能,利用RACE-PCR技术获得了该线虫海藻糖酶基因全长,将其命名为Ab-tre-1,并利用实时荧光定量PCR技术分析在线虫卵、不同龄期和若干逆境条件下该基因的表达情况.结果表明,该基因DNA序列长2083bp,包含9个内含子,开放阅读框1 743 bp

  19. An evolutionary perspective on gastrointestinal nematodes of sheep.

    Science.gov (United States)

    Stear, M J; Singleton, D; Matthews, L

    2011-06-01

    The purpose of this paper was to discuss from an evolutionary perspective the interaction between domestic sheep (Ovis aries) and their gastrointestinal nematodes. Although evolution is the central theme of biology, there has been little attempt to consider how evolutionary forces have shaped and continue to shape the relationships between domestic animals and their parasite community. Mathematical modelling of the host-parasite relationship indicated that the system is remarkably robust to perturbations in its parameters. This robustness may be a consequence of the long coevolution of host and parasites. Although nematodes can potentially evolve faster than the host, coevolution is not dominated by the parasite and there are several examples where breeds of cattle or sheep have evolved high levels of resistance to disease. Coevolution is a more equal partnership between host and nematode than is commonly assumed. Coevolution between parasites and the host immune system is often described as an arms race where both host immune response genes and parasite proteins evolve rapidly in response to each other. However, initial results indicate that nematode antigens are not evolving rapidly; the arms race between the immune system and nematodes, if it exists, is happening very slowly. Fisher's fundamental theorem of natural selection states that genes with positive effects on fitness will be fixed by natural selection. Consequently, heritable variation in fitness traits is expected to be low. Contrary to this argument, there is considerable genetic variation in resistance to nematode infection. In particular, the heritabilities of nematode-specific IgA and IgE activity are moderate to high. The reasons for this apparent violation of the fundamental theorem of natural selection are not clear but several possible explanations are explored. Faecal nematode egg counts increase at the beginning of the grazing season - a phenomenon known as the periparturient rise. This

  20. Genetic characteristics of vancomycin resistance gene cluster in Enterococcus spp.

    Science.gov (United States)

    Chunhui, Chen; Xiaogang, Xu

    2015-05-01

    Vancomycin resistant enterococci has become an important nosocomial pathogen since it is discovered in late 1980s. The products, encoded by vancomycin resistant gene cluster in enterococci, catalyze the synthesis of peptidoglycan precursors with low affinity with glycopeptide antibiotics including vancomycin and teicoplanin and lead to resistance. These vancomycin resistant gene clusters are classified into nine types according to their gene sequences and organization, or D-Ala:D-Lac (VanA, VanB, VanD and VanM) and D-Ala:D-Ser (VanC, VanE, VanG, VanL and VanN) ligase gene clusters based on the differences of their encoded ligases. Moreover, these gene clusters are characterized by their different resistance levels and infection models. In this review, we summarize the classification, gene organization and infection model of vancomycin resistant gene cluster in Enterococcus spp.

  1. Expression and Regulation of the Arabidopsis thaliana Cel1 Endo 1,4 β Glucanase Gene During Compatible Plant-Nematode Interactions

    Science.gov (United States)

    Sukno, Serenella; Shimerling, Orit; McCuiston, Jamie; Tsabary, Galit; Shani, Ziv; Shoseyov, Oded; Davis, Eric L

    2006-01-01

    The root-knot nematode Meloidogyne incognita is an obligate endoparasite of plant roots and stimulates elaborate modifications of selected root vascular cells to form giant cells for feeding. An Arabidopsis thaliana endoglucanase (Atcel1) promoter is activated in giant cells that were formed in Atcel1::UidA transgenic tobacco and Arabidopsis plants. Activity of the full-length Atcel1 promoter was detected in root and shoot elongation zones and in the lateral root primordia. Different 5’ and internal deletions of regions of the 1,673 bp Atcel1 promoter were each fused to the UidA reporter gene and transformed in tobacco, and roots of the transformants were inoculated with M. incognita to assay for GUS expression in giant cells and noninfected plant tissues. Comparison of the Atcel1 promoter deletion constructs showed that the region between −1,673 and −1,171 (fragment 1) was essential for Atcel1 promoter activity in giant cells and roots. Fragment 1 alone, however, was not sufficient for Atcel1 expression in giant cells or roots, suggesting that cis-acting elements in fragment 1 may function in consort with other elements within the Atcel1 promoter. Root-knot nematodes and giant cells developed normally within roots of Arabidopsis that expressed a functional antisense construct to Atcel1, suggesting that a functional redundancy in endoglucanase activity may represent another level of regulatory control of cell wall-modifying activity within nematode feeding cells. PMID:19259541

  2. Resistance and resilience of traditionally managed West African Dwarf goats from the savanna zone of northern Nigeria to naturally acquired trypanosome and gastrointestinal nematode infections.

    Science.gov (United States)

    Behnke, J M; Chiejina, S N; Musongong, G A; Nnadi, P A; Ngongeh, L A; Abonyi, F O; Fakae, B B

    2011-03-01

    late rainy season, with marked reductions in PCV (goats were also in poor body condition with BCS of parasites. These results are discussed in the context of the unexpectedly strong resistance and resilience of the savanna WAD ecotype to its native strains of GI nematode and trypanosome parasites.

  3. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Leonetti, Paola; Zonno, Maria Chiara; Molinari, Sergio; Altomare, Claudio

    2017-04-01

    Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.

  4. Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAS and has a gene arrangement relatable to those of coelomate metazoans.

    Science.gov (United States)

    Lavrov, D V; Brown, W M

    2001-01-01

    The complete mitochondrial DNA (mtDNA) of the nematode Trichinella spiralis has been amplified in four overlapping fragments and 16,656 bp of its sequence has been determined. This sequence contains the 37 genes typical of metazoan mtDNAs, including a putative atp8, which is absent from all other nematode mtDNAs examined. The genes are transcribed from both mtDNA strands and have an arrangement relatable to those of coelomate metazoans, but not to those of secernentean nematodes. All protein genes appear to initiate with ATN codons, typical for metazoans. Neither TTG nor GTT start codons, inferred for several genes of other nematodes, were found. The 22 T. spiralis tRNA genes fall into three categories: (i) those with the potential to form conventional "cloverleaf" secondary structures, (ii) those with TPsiC arm + variable arm replacement loops, and (iii) those with DHU-arm replacement loops. Mt-tRNA(R) has a 5'-UCG-3' anticodon, as in most other metazoans, instead of the very unusual 5'-ACG-3' present in the secernentean nematodes. The sequence also contains a large repeat region that is polymorphic in size at the population and/or individual level. PMID:11156984

  5. Major gene for field stem rust resistance co-locates with resistance gene Sr12 in "Thatcher" wheat

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effecting stem rust resistance genes. "Thatcher" wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was ...

  6. [Research Progress on Genetic Diversity in Animal Parasitic Nematodes].

    Science.gov (United States)

    YIN, Fang-yuan; LI, Fa-cai; ZHAO, Jun-long; HU, Min

    2015-10-01

    The development of molecular genetic markers for parasitic nematodes has significant implications in fundamental and applied research in Veterinary Parasitology. Knowledge on genetic diversity of nematodes would not only provide a theoretical basis for understanding the spread of drug-resistance alleles, but also have implications in the development of nematode control strategies. This review discusses the applications of molecular genetic markers (RFLP, RAPD, PCR-SSCP, AFLP, SSR and mitochondrial DNA) in research on the genetic diversity of parasitic nematodes.

  7. Root-knot nematodes

    NARCIS (Netherlands)

    Karssen, G.; Wesemael, W.M.L.; Moens, M.

    2013-01-01

    Plant-parasitic nematodes devastate crops worldwide, in turn impacting international trade, social and economic development. Effective control of nematodes is essential for crop protection, and requires an understanding of nematode biology, taxonomy, population dynamics and sampling methods.

  8. Root-knot nematodes

    NARCIS (Netherlands)

    Karssen, G.; Wesemael, W.M.L.; Moens, M.

    2013-01-01

    Plant-parasitic nematodes devastate crops worldwide, in turn impacting international trade, social and economic development. Effective control of nematodes is essential for crop protection, and requires an understanding of nematode biology, taxonomy, population dynamics and sampling methods. Providi

  9. Use of Ivermectin as Endoparasiticide in Tropical Cattle Herds Generates Resistance in Gastrointestinal Nematodes and the Tick Rhipicephalus microplus (Acari: Ixodidae).

    Science.gov (United States)

    Alegría-López, M A; Rodríguez-Vivas, R I; Torres-Acosta, J F J; Ojeda-Chi, M M; Rosado-Aguilar, J A

    2015-03-01

    The objective of the present study was to determine simultaneously the status of resistance against ivermectin (IVM) in gastrointestinal nematodes (GIN) and Rhipicephalus microplus (Canestrini, 1888) ticks in 12 cattle farms where IVM was used for the control of GIN in the Mexican tropics. Six farms had frequent use of IVM (≥ 4 times per year) and six farms had low frequency of IVM use (1-2 times per year). The fecal egg count reduction test and the larval immersion test were used to determine the resistant status of GIN and R. microplus against IVM, respectively. The results indicated that 100% of the surveyed farms had IVM-resistant GIN (reduction % from 0 to 67%). The genera involved were Haemonchus, Cooperia, Ostertagia, Trichostrongylus, and Oesophagostomum. Although the IVM was never used for the control of ticks, 50% of the surveyed farms presented GIN and R. microplus simultaneously resistant to IVM. Furthermore, two R. microplus populations showed high resistance ratio (RR) to IVM (farm TAT: RR50% = 7 and RR99% = 40.1; and farm SLS: RR50% = 2.4; RR99% = 11.0). A high frequency of IVM use (≥ 4 times per year) seemed to promote IVM resistance amongst R. microplus ticks compared with the farms with low frequency of IVM use (1-2 times per year; 66.6 vs. 25.0%, respectively). However, the number of surveyed farms was insufficient to show clear statistical inferences (odds ratio = 6.00; 95% CI = 0.341-105.5). The use of IVM for the control of GIN promoted simultaneously the development of IVM resistance in the GIN and R. microplus populations of the cattle herds surveyed.

  10. Detection of the common resistance genes in Gram-negative bacteria using gene chip technology

    Directory of Open Access Journals (Sweden)

    C Ting

    2013-01-01

    Full Text Available Objective: To design a resistance gene detection chip that could, in parallel, detect common clinical drug resistance genes of Gram-negative bacteria. Materials and Methods: Seventy clinically significant Gram-negative bacilli (Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, Acinetobacter baumannii were collected. According to the known resistance gene sequences, we designed and synthesized primers and probes, which were used to prepare resistance gene detection chips, and finally we hybridized and scanned the gene detection chips. Results: The results between the gene chip and polymerase chain reaction (PCR were compared. The rate was consistently 100% in the eight kinds of resistance genes tested (TEM, SHV, CTX-M, DHA, CIT, VIM, KPC, OXA-23. One strain of Pseudomonas aeruginosa had the IMP, but it was not found by gene chip. Conclusion: The design of Gram-negative bacteria-resistant gene detection chip had better application value.

  11. cDNA sequence, gene structure, and in vitro expression of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Arpagaus, M; Fedon, Y; Cousin, X; Chatonnet, A; Bergé, J B; Fournier, D; Toutant, J P

    1994-04-01

    Three genes, ace-1, ace-2, and ace-3, encode three acetylcholinesterase classes (A, B, and C) in the nematode Caenorhabditis elegans. A fragment of genomic DNA was amplified by a polymerase chain reaction (PCR) using degenerate oligonucleotides based on sequences conserved in the cholinesterase family. This fragment mapped to chromosome X at a position that perfectly matched the location of ace-1 previously determined by genetic methods. Comparison of genomic and cDNA sequences showed that the open reading frame was interrupted by eight introns. The product of ace-1 (ACE-1, 620 amino acids) presented 42% identity with Torpedo and human acetylcholinesterases, 41% with human butyrylcholinesterase, and 35% with Drosophila acetylcholinesterase. The overall structure of cholinesterases was conserved in ACE-1 as indicated by the conserved sequence positions of Ser-216, His-468, and Glu-346 (S200, H440, E327 in Torpedo (AChE) as components of the catalytic triad, of the six cysteines which form three intrachain disulfide bonds, and of Trp-99(84), a critical side chain in the choline binding site. Spodoptera Sf9 cells were infected by a recombinant baculovirus containing ace-1 cDNA. The secreted enzyme was active and existed as hydrophilic 5 and 11.5 S molecular forms. It hydrolyzed both acetylthiocholine and butyrylthiocholine and was inhibited by acetylthiocholine above 10 mM.

  12. Efficacy of a combined oral formulation of derquantel-abamectin against the adult and larval stages of nematodes in sheep, including anthelmintic-resistant strains.

    Science.gov (United States)

    Little, Peter R; Hodge, Andrew; Maeder, Steven J; Wirtherle, Nicole C; Nicholas, David R; Cox, George G; Conder, George A

    2011-09-27

    Derquantel (DQL), a semi-synthetic member of a novel anthelmintic class, the spiroindoles, in combination with abamectin (ABA) [as the combination product STARTECT(®)] is a new entry for the treatment and control of parasites in sheep. The 19 studies reported herein were conducted in Australia, New Zealand, South Africa and the United Kingdom to demonstrate the efficacy of derquantel-abamectin (DQL-ABA) against a broad spectrum of gastrointestinal and respiratory nematodes of sheep, and to support registration of the combination product. Eleven studies were conducted using natural or experimental parasite infections with unknown or unconfirmed resistance, while eight studies utilised isolates/strains with confirmed or well characterised resistance to one or more currently available anthelmintics, including macrocyclic lactones. All studies included DQL-ABA and negative control groups, and in selected studies one or more reference anthelmintic groups were included. In all studies the commercial formulation of DQL-ABA was administered orally at 2mg/kg DQL and 0.2mg/kg ABA; placebo was administered in the same volume as DQL-ABA; and reference anthelmintics were administered as per label recommendations, except in one instance where levamisole was administered at twice the label dose. Infection, necropsy, worm collection and worm counting procedures were performed using standard techniques. Efficacy was calculated based on the percentage reduction in geometric mean worm count relative to negative control for each nematode species and lifecycle stage targeted. Twenty-two isolates/strains used in the eight studies targeting resistant worms had proven resistance: three to one anthelmintic class, eleven to two classes and eight to three or more classes; of these resistant strains, 16 demonstrated resistance to a macrocyclic lactone anthelmintic. Regardless of resistance status in the 19 studies, DQL-ABA controlled a broad range of economically important gastrointestinal

  13. Mosaic tetracycline resistance genes encoding ribosomal protection proteins.

    Science.gov (United States)

    Warburton, Philip J; Amodeo, Nina; Roberts, Adam P

    2016-12-01

    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.

  14. Genome-wide analysis of trans-splicing in the nematode Pristionchus pacificus unravels conserved gene functions for germline and dauer development in divergent operons.

    Science.gov (United States)

    Sinha, Amit; Langnick, Claudia; Sommer, Ralf J; Dieterich, Christoph

    2014-09-01

    Discovery of trans-splicing in multiple metazoan lineages led to the identification of operon-like gene organization in diverse organisms, including trypanosomes, tunicates, and nematodes, but the functional significance of such operons is not completely understood. To see whether the content or organization of operons serves similar roles across species, we experimentally defined operons in the nematode model Pristionchus pacificus. We performed affinity capture experiments on mRNA pools to specifically enrich for transcripts that are trans-spliced to either the SL1- or SL2-spliced leader, using spliced leader-specific probes. We obtained distinct trans-splicing patterns from the analysis of three mRNA pools (total mRNA, SL1 and SL2 fraction) by RNA-seq. This information was combined with a genome-wide analysis of gene orientation and spacing. We could confirm 2219 operons by RNA-seq data out of 6709 candidate operons, which were predicted by sequence information alone. Our gene order comparison of the Caenorhabditis elegans and P. pacificus genomes shows major changes in operon organization in the two species. Notably, only 128 out of 1288 operons in C. elegans are conserved in P. pacificus. However, analysis of gene-expression profiles identified conserved functions such as an enrichment of germline-expressed genes and higher expression levels of operonic genes during recovery from dauer arrest in both species. These results provide support for the model that a necessity for increased transcriptional efficiency in the context of certain developmental processes could be a selective constraint for operon evolution in metazoans. Our method is generally applicable to other metazoans to see if similar functional constraints regulate gene organization into operons.

  15. Identification and Characterization of a Differentially Expressed Gene (07E12 in the Infective Larvae of the Parasitic Nematode Ascaris suum.

    Directory of Open Access Journals (Sweden)

    Cuiqin Huang

    2014-06-01

    Full Text Available Parasitic nematodes cause animal and human diseases of major socio-economic importance worldwide. The suppression of parasite development at particular developmental stages could provide an alternative approach for nematode control. In this study, Ascaris suum was used as a model system in the study of the differentially expressed genes in the infective L3 stage.The gene (07E12 was screened and identified from the subtractive cDNA library for the infective larvae of Ascaris suum using real-time quantitative PCR. Then, the full-length cDNA of 07E12 was characterized by 3' and 5' rapid amplification of cDNA ends (RACE. The characteristics of the gene were further analyzed using bioinformatic analyses.The results showed that the gene 07E12 was differentially expressed in the third-stage larvae of A. suum and its expression level in the infective larvae was much higher than in other stages. It was shown that the gene 07E12 had 99% identity with the corresponding sequences of the A. suum whole genome shotgun sequence containing the homologous sequences with conserved sequences of Neuropeptide-Like Protein family member. Likewise, by performing BLASTN and BLASTP searches in the GenBank™, it was shown that this gene had 99 % identity with A. suum cre-nlp-2 protein.This gene 07E12 which is differentially expressed in the third-stage larvae of A. suum may encode a neuropeptide-like protein family member, a very important molecule in the process of infecting a host.

  16. Screening of Sweet Potato Germplasm Resources Resistant to Rot Nematode and Evaluation of Their Disease Resistance%甘薯抗茎线虫病种质资源的筛选与抗病性评价

    Institute of Scientific and Technical Information of China (English)

    孙厚俊; 赵永强; 谢逸萍; 陈晓宇; 邢继英

    2011-01-01

    对81份甘薯材料进行了茎线虫病、黑斑病和根腐病抗性鉴定和评价.结果表明:同时抗这3种病害的甘薯品种(系)较少,仅郑04-4-2和徐062826时甘薯茎线虫病抗侵入和抗扩展的同时,对黑斑病和根腐病也具有较高的抗性水平;另外有部分品种(系)如泰中7号、浙紫1号、徐060407等达到抗两病水平,可作为甘薯抗病育种的双抗亲本加以利用.%In this study, the resistances of 81 sweet potato germplasm resources to sweet potato rot nematode, black rot and root rot were identified and evaluated. The results indicated that very few sweet potato varieties (lines) could simultaneously resist these three diseases, only Zheng 04-4 -2 and Xu 062826 had high resistances not only to the invasion and expansion of rot nematode, but also to black rot and root rot. In addition, some tested resources such as Taizhong No. 7, Zhezi No. 1 and Xu 060407 had the double resistances, and they can be used as the double - resistant parents in the disease - resistant breeding of sweet potato.

  17. Characterization of the Pratylenchus penetrans transcriptome including data mining of putative nematode genes involved in plant parasitism

    Science.gov (United States)

    The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic ne...

  18. Antibiotic resistance gene discovery in food-producing animals.

    Science.gov (United States)

    Allen, Heather K

    2014-06-01

    Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.

  19. Identification of genes contributing to quantitative disease resistance in rice

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Despite the importance of quantitative disease resistance during a plant’s life, little is known about the molecular basis of this type of host-pathogen interaction, because most of the genes underlying resistance quantitative trait loci (QTLs) are unknown. To identify genes contributing to resistance QTLs in rice, we analyzed the colocalization of a set of characterized rice defense-responsive genes and resistance QTLs against different pathogens. We also examined the expression patterns of these genes in response to pathogen infection in the parents of the mapping populations, based on the strategy of validation and functional analysis of the QTLs. The results suggest that defense-responsive genes are important resources of resistance QTLs in rice. OsWRKY45-1 is the gene contributing to a major resistance QTL.NRR,OsGH3-1,and OsGLP members on chromosome 8 contribute alone or collectively to different minor resistance QTLs. These genes function in a basal resistance pathway or in major disease resistance gene-mediated race-specific pathways.

  20. Horizontal gene transfer—emerging multidrug resistance in hospital bacteria

    Institute of Scientific and Technical Information of China (English)

    SenkaDZIDIC; VladimirBEDEKOVIC

    2003-01-01

    The frequency and spectrum of antibiotic resistant infections have increased worldwide during the past few decades. This increase has been attributed to a combination of microbial characteristics, the selective pressure of antimicrobial use, and social and technical changes that enhance the transmission of resistant organisms. The resistance is acquired by mutational changer or by the acquisition of resistance-encoding genetic material which is transfered from another bacteria. The spread of antibiotic resistance genes may be causally related to the overuse of antibiotics in human health care and in animal feeds, increased use of invasive devices and procedures, a greater number of susceptible hosts, and lapses in infection control practices leading to increased transmission of resistant organisms. The resistance gene sequences are integrated by recombination into several classes of naturally occurring gene expression cassettes and disseminated within the microbial population by horizontal gene transfer mechanisms: transformation, conjugation or transduction. In the hospital, widespread use of antimicrobials in the intensive care units (ICU) and for immunocompromised patients has resulted in the selection of multidrug-resistant organisms. Methicilin-resistant Staphylococci, vancomycin resistant Enterococci and extended-spectrum betalactamase(ESBL) producing Gram negative bacilli are identified as major phoblem in nosocomial infections. Recent surveillance studies have demonstrated trend towares more seriously ill patients suffering from multidrug-resistant nosocomial infections. Emergence of multiresistant bacteria and spread of resistance genes should enforce the aplication of strict prevention strategies, including changes in antibiotic treatment regimens, hygiene measures, infection prevention and control of horizontal nosocomial transmission of organisms.

  1. Genomes of parasitic nematodes (Meloidogyne hapla, Meloidogyne incognita, Ascaris suum and Brugia malayi) have a reduced complement of small RNA interference pathway genes: knockdown can reduce host infectivity of M. incognita.

    Science.gov (United States)

    Iqbal, Sadia; Fosu-Nyarko, John; Jones, Michael G K

    2016-07-01

    The discovery of RNA interference (RNAi) as an endogenous mechanism of gene regulation in a range of eukaryotes has resulted in its extensive use as a tool for functional genomic studies. It is important to study the mechanisms which underlie this phenomenon in different organisms, and in particular to understand details of the effectors that modulate its effectiveness. The aim of this study was to identify and compare genomic sequences encoding genes involved in the RNAi pathway of four parasitic nematodes: the plant parasites Meloidogyne hapla and Meloidogyne incognita and the animal parasites Ascaris suum and Brugia malayi because full genomic sequences were available-in relation to those of the model nematode Caenorhabditis elegans. The data generated was then used to identify some potential targets for control of the root knot nematode, M. incognita. Of the 84 RNAi pathway genes of C. elegans used as model in this study, there was a 42-53 % reduction in the number of effectors in the parasitic nematodes indicating substantial differences in the pathway between species. A gene each from six functional groups of the RNAi pathway of M. incognita was downregulated using in vitro RNAi, and depending on the gene (drh-3, tsn-1, rrf-1, xrn-2, mut-2 and alg-1), subsequent plant infection was reduced by up to 44 % and knockdown of some genes (i.e. drh-3, mut-2) also resulted in abnormal nematode development. The information generated here will contribute to defining targets for more robust nematode control using the RNAi technology.

  2. Detection of benzimidazole resistance in gastrointestinal nematodes of sheep and goats of sub-Himalyan region of northern India using different tests.

    Science.gov (United States)

    Rialch, Ajayta; Vatsya, Stuti; Kumar, Rajeev Ranjan

    2013-12-06

    The present investigation was planned with the objective of studying the status of benzimidazole (BZ) resistance in gastrointestinal nematodes (GIN) of sheep and goats of different agro-climatic zones of sub-Himalyan region of northern India using in vivo faecal egg count reduction test (FECRT) and in vitro tests namely egg hatch assay (EHA) and larval development assay (LDA). Out of fourteen flocks, FECRT detected resistance in eight flocks (two sheep flocks and six goat flocks) with FECR% ranging from 54.95 to 90.86. Pre treatment coproculture contained predominantly Haemonchus contortus, followed by Trichostrongylus spp., Oesophagostomum and Strongyloides, while post treatment coproculture results showed that only H. contortus survived fenbendazole (FBZ) (in FECRT) or thiabendazole (TBZ) (in LDA) treatment except in three flocks of Tarai region {one sheep flock (Us1), and two goat flocks (Ug1 and Ug5)} where BZ resistant Trichostrongylus were also detected. The GIN of those eight farms which were found resistant by FECRT were also detected resistant by EHA. Arithmetic mean and range of ED50 value of susceptible group was found to be 0.059 μg/ml and 0.037-0.096 μg/ml, respectively, and the same for the resistant group were found to be 0.119 μg/ml and 0.101-0.147 μg/ml, respectively. With LDA, the arithmetic mean and range of LC50 value of susceptible group was found 0.0030 μg/ml and 0.001-0.005 μg/ml, respectively, and those of resistant group was found 0.0105 μg/ml and 0.009-0.012 μg/ml, respectively. The values of Spearman rank correlation coefficient indicated that negative correlation was found between FECR% and ED50 and between FECR% and LC50 while positive correlation existed between ED50 and LC50 value and the p-values indicated that these correlations were statistically highly significant. In the present study, FECRT and EHA gave comparable results with regard to detection of BZ resistance in GIN in sheep and goats. Although with LDA, the

  3. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...

  4. Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis.

    Directory of Open Access Journals (Sweden)

    Seloame T Nyaku

    Full Text Available The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1 and variant 2 (RN_VAR2. All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5% were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0% and 33 (75.0% of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.

  5. Characterization of the two intra-individual sequence variants in the 18S rRNA gene in the plant parasitic nematode, Rotylenchulus reniformis.

    Science.gov (United States)

    Nyaku, Seloame T; Sripathi, Venkateswara R; Kantety, Ramesh V; Gu, Yong Q; Lawrence, Kathy; Sharma, Govind C

    2013-01-01

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Sequence variation in this gene within a single species is rare, but it has been observed in few metazoan organisms. More frequently it has mostly been reported in the non-transcribed spacer region. Here, we have identified two sequence variants within the near full coding region of 18S rRNA gene from a single reniform nematode (RN) Rotylenchulus reniformis labeled as reniform nematode variant 1 (RN_VAR1) and variant 2 (RN_VAR2). All sequences from three of the four isolates had both RN variants in their sequences; however, isolate 13B had only RN variant 2 sequence. Specific variable base sites (96 or 5.5%) were found within the 18S rRNA gene that can clearly distinguish the two 18S rDNA variants of RN, in 11 (25.0%) and 33 (75.0%) of the 44 RN clones, for RN_VAR1 and RN_VAR2, respectively. Neighbor-joining trees show that the RN_VAR1 is very similar to the previously existing R. reniformis sequence in GenBank, while the RN_VAR2 sequence is more divergent. This is the first report of the identification of two major variants of the 18S rRNA gene in the same single RN, and documents the specific base variation between the two variants, and hypothesizes on simultaneous co-existence of these two variants for this gene.

  6. Comparative tissue pharmacokinetics and efficacy of moxidectin, abamectin and ivermectin in lambs infected with resistant nematodes: Impact of drug treatments on parasite P-glycoprotein expression.

    Science.gov (United States)

    Lloberas, Mercedes; Alvarez, Luis; Entrocasso, Carlos; Virkel, Guillermo; Ballent, Mariana; Mate, Laura; Lanusse, Carlos; Lifschitz, Adrian

    2013-12-01

    The high level of resistance to the macrocyclic lactones has encouraged the search for strategies to optimize their potential as antiparasitic agents. There is a need for pharmaco-parasitological studies addressing the kinetic-dynamic differences between various macrocyclic lactones under standardized in vivo conditions. The current work evaluated the relationship among systemic drug exposure, target tissue availabilities and the pattern of drug accumulation within resistant Haemonchus contortus for moxidectin, abamectin and ivermectin. Drug concentrations in plasma, target tissues and parasites were measured by high performance liquid chromatography. Additionally, the efficacy of the three molecules was evaluated in lambs infected with resistant nematodes by classical parasitological methods. Furthermore, the comparative determination of the level of expression of P-glycoprotein (P-gp2) in H. contortus recovered from lambs treated with each drug was performed by real time PCR. A longer persistence of moxidectin (P ivermectin at day 2 post-treatment. However, the efficacy against H. contortus was 20.1% (ivermectin), 39.7% (abamectin) and 89.6% (moxidectin). Only the ivermectin treatment induced an enhancement on the expression of P-gp2 in the recovered adult H. contortus, reaching higher values at 12 and 24 h post-administration compared to control (untreated) worms. This comparative pharmacological evaluation of three of the most used macrocyclic lactones compounds provides new insights into the action of these drugs.

  7. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2005-01-01

    Objectives: To determine the occurrence of class 1 and 2 integrons and antimicrobial resistance genes among sulphonamide-resistant Shigella strains isolated in Brazil during 1999-2003. Methods: Sixty-two Shigella (Shigella flexneri, n = 47 and Shigella sonnei, n = 15) were tested against 21....... Conclusions: The detection of class 1 and 2 integrons and additional antimicrobial resistance genes allowed us to identify the most frequent antimicrobial resistance patterns of Shigella spp. isolated in Brazil....

  8. Antimicrobial resistance gene distribution: a socioeconomic and sociocultural perspective

    Science.gov (United States)

    Ojo, Kayode K.; Sapkota, Amy R.; Ojo, Tokunbo B.; Pottinger, Paul S.

    2008-01-01

    The appearance of resistance to many first-line antimicrobial agents presents a critical challenge to the successful treatment of bacterial infections. Antimicrobial resistant bacteria and resistance genes are globally distributed, but significant variations in prevalence have been observed in different geographical regions. This article discusses possible relationships between socioeconomic and sociocultural factors and regional differences in the prevalence of antibiotic-resistant bacteria and their associated resistance genes. Findings indicate that the few studies that have been conducted to understand relationships between socioeconomic and sociocultural factors and antimicrobial resistance have focused on patterns of phenotypic antibiotic resistance. Yet, a critical need exists for molecular studies of human influences on bacterial resistance and adaptation. We propose that the results of these studies, coupled with well-coordinated culturally appropriate interventions that address specific socioeconomic and sociocultural needs may be necessary to reduce the scourge of antimicrobial resistance in both developing and developed countries. PMID:20204098

  9. Candidate Gene Approach for Parasite Resistance in Sheep – Variation in Immune Pathway Genes and Association with Fecal Egg Count

    Science.gov (United States)

    Periasamy, Kathiravan; Pichler, Rudolf; Poli, Mario; Cristel, Silvina; Cetrá, Bibiana; Medus, Daniel; Basar, Muladno; A. K., Thiruvenkadan; Ramasamy, Saravanan; Ellahi, Masroor Babbar; Mohammed, Faruque; Teneva, Atanaska; Shamsuddin, Mohammed; Podesta, Mario Garcia; Diallo, Adama

    2014-01-01

    Sheep chromosome 3 (Oar3) has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs) within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF) did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05) in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have potential for

  10. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  11. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease.

    Science.gov (United States)

    Catanzariti, Ann-Maree; Lim, Ginny T T; Jones, David A

    2015-07-01

    Plant resistance proteins provide race-specific immunity through the recognition of pathogen effectors. The resistance genes I, I-2 and I-3 have been incorporated into cultivated tomato (Solanum lycopersicum) from wild tomato species to confer resistance against Fusarium oxysporum f. sp. lycopersici (Fol) races 1, 2 and 3, respectively. Although the Fol effectors corresponding to these resistance genes have all been identified, only the I-2 resistance gene has been isolated from tomato. To isolate the I-3 resistance gene, we employed a map-based cloning approach and used transgenic complementation to test candidate genes for resistance to Fol race 3. Here, we describe the fine mapping and sequencing of genes at the I-3 locus, which revealed a family of S-receptor-like kinase (SRLK) genes. Transgenic tomato lines were generated with three of these SRLK genes and one was found to confer Avr3-dependent resistance to Fol race 3, confirming it to be I-3. The finding that I-3 encodes an SRLK reveals a new pathway for Fol resistance and a new class of resistance genes, of which Pi-d2 from rice is also a member. The identification of I-3 also allows the investigation of the complex effector-resistance protein interaction involving Avr1-mediated suppression of I-2- and I-3-dependent resistance in tomato.

  12. Mining the secretome of root-knot nematodes for cell wall modifying proteins

    NARCIS (Netherlands)

    Roze, E.H.A.

    2008-01-01

    The products of parasitism genes in nematodes must be secreted to reach their targets at the nematode-plant interface. These nematode secretory proteins are therefore recognised to play an important role in the nematode-plant interaction and as a result have been subject of intense study for years.

  13. Mining the secretome of root-knot nematodes for cell wall modifying proteins

    NARCIS (Netherlands)

    Roze, E.H.A.

    2008-01-01

    The products of parasitism genes in nematodes must be secreted to reach their targets at the nematode-plant interface. These nematode secretory proteins are therefore recognised to play an important role in the nematode-plant interaction and as a result have been subject of intense study for years.

  14. New resistance genes in the Zea mays: exserohilum turcicum pathosystem

    Directory of Open Access Journals (Sweden)

    Juliana Bernardi Ogliari

    2005-09-01

    Full Text Available The use of monogenic race-specific resistance is widespread for the control of maize (Zea mays L. helminthosporiosis caused by Exserohilum turcicum. Inoculation of 18 Brazilian isolates of E. turcicum onto elite maize lines containing previously identified resistance genes and onto differential near-isogenic lines allowed the identification of new qualitative resistance genes. The inoculation of one selected isolate on differential near-isogenic lines, F1 generations and a BC1F1 population from the referred elite lines enabled the characterization of the resistance spectrum of three new genes, one dominant (HtP, one recessive (rt and a third with non-identified genetic action. Three physiological races of the pathogen were also identified including two with new virulence factors capable of overcoming the resistance of one of the resistance genes identified here (rt.

  15. The Vf gene for scrab resistance in apple is linked to sub-lethal genes

    NARCIS (Netherlands)

    Gao, Z.S.; Weg, van de W.E.

    2006-01-01

    V f is the most widely used resistance gene in the breeding for scab resistant apple cultivars. Distorted segregation ratios for V f -resistance have frequently been reported. Here we revealed that sub-lethal genes caused the distorted segregation. The inheritance of V f was examined in six progenie

  16. Sponge microbiota are a reservoir of functional antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Dennis Versluis

    2016-11-01

    Full Text Available Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6, gentamicin (n=1, amikacin (n=7, trimethoprim (n=17, chloramphenicol (n=1, rifampicin (n=2 and ampicillin (n=3. Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.

  17. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    Science.gov (United States)

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-07-07

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.

  18. Diverse antibiotic resistance genes in dairy cow manure.

    Science.gov (United States)

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-04-22

    Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected

  19. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  20. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    Science.gov (United States)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  1. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus

    Directory of Open Access Journals (Sweden)

    Xiu-Wen Qiu

    2016-01-01

    Full Text Available As the causal agent of pine wilt disease (PWD, the pine wood nematode (PWN, Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1. The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA after B. xylophilus inoculation in Botrytis cinerea for the first generation (F1. The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinus thunbergii. The quantity of B. xylophilus was reduced significantly (p < 0.001 after treatment with dsRNAi compared with that using a control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD.

  2. Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii.

    Science.gov (United States)

    Anitha, P; Anbarasu, Anand; Ramaiah, Sudha

    2014-05-01

    Multi Drug Resistance (MDR) in Acinetobacter baumannii is one of the major threats for emerging nosocomial infections in hospital environment. Multidrug-resistance in A. baumannii may be due to the implementation of multi-combination resistance mechanisms such as β-lactamase synthesis, Penicillin-Binding Proteins (PBPs) changes, alteration in porin proteins and in efflux pumps against various existing classes of antibiotics. Multiple antibiotic resistance genes are involved in MDR. These resistance genes are transferred through plasmids, which are responsible for the dissemination of antibiotic resistance among Acinetobacter spp. In addition, these resistance genes may also have a tendency to interact with each other or with their gene products. Therefore, it becomes necessary to understand the impact of these interactions in antibiotic resistance mechanism. Hence, our study focuses on protein and gene network analysis on various resistance genes, to elucidate the role of the interacting proteins and to study their functional contribution towards antibiotic resistance. From the search tool for the retrieval of interacting gene/protein (STRING), a total of 168 functional partners for 15 resistance genes were extracted based on the confidence scoring system. The network study was then followed up with functional clustering of associated partners using molecular complex detection (MCODE). Later, we selected eight efficient clusters based on score. Interestingly, the associated protein we identified from the network possessed greater functional similarity with known resistance genes. This network-based approach on resistance genes of A. baumannii could help in identifying new genes/proteins and provide clues on their association in antibiotic resistance.

  3. RNAi and functional genomics in plant parasitic nematodes.

    Science.gov (United States)

    Rosso, M N; Jones, J T; Abad, P

    2009-01-01

    Plant nematology is currently undergoing a revolution with the availability of the first genome sequences as well as comprehensive expressed sequence tag (EST) libraries from a range of nematode species. Several strategies are being used to exploit this wealth of information. Comparative genomics is being used to explore the acquisition of novel genes associated with parasitic lifestyles. Functional analyses of nematode genes are moving toward larger scale studies including global transcriptome profiling. RNA interference (RNAi) has been shown to reduce expression of a range of plant parasitic nematode genes and is a powerful tool for functional analysis of nematode genes. RNAi-mediated suppression of genes essential for nematode development, survival, or parasitism is revealing new targets for nematode control. Plant nematology in the genomics era is now facing the challenge to develop RNAi screens adequate for high-throughput functional analyses.

  4. Molecular and biochemical characterization of the β-1,4-endoglucanase gene Mj-eng-3 in the root-knot nematode Meloidogyne javanica.

    Science.gov (United States)

    Hu, Lili; Cui, Ruqiang; Sun, Longhua; Lin, Borong; Zhuo, Kan; Liao, Jinling

    2013-09-01

    This study describes the molecular and biochemical characterization of the β-1,4-endoglucanase gene (Mj-eng-3) from the root knot nematode Meloidogyne javanica. A 2156-bp genomic DNA sequence of Mj-eng-3 containing six introns was obtained. Mj-eng-3 was localized in the subventral esophageal glands of M. javanica juveniles by in situ hybridization. Real-time RT-PCR assay showed that the highest transcriptional level of Mj-eng-3 occurred in pre-parasitic second-stage juveniles, and this high expression persisted in parasitic second-stage juveniles. Recombinant MJ-ENG-3 degraded carboxymethylcellulose and optimum enzyme activity at 40°C and pH 8.0. EDTA, Mg(2+), Mn(2+), Ca(2+), Co(2+), and Cu(2+) did not affect the activity of MJ-ENG-3; however, Zn(2+) and Fe(2+) inhibited MJ-ENG-3 enzyme activity. In planta Mj-eng-3 RNAi assay displayed a reduction in the number of nematodes and galls in transgenic tobacco roots. These results suggested that MJ-ENG-3 could be secreted by M. javanica to degrade the cellulose of plant cell walls to facilitate its entry and migration during the early stages of parasitism. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Exploiting natural variation to identify insect-resistance genes.

    Science.gov (United States)

    Broekgaarden, Colette; Snoeren, Tjeerd A L; Dicke, Marcel; Vosman, Ben

    2011-10-01

    Herbivorous insects are widespread and often serious constraints to crop production. The use of insect-resistant crops is a very effective way to control insect pests in agriculture, and the development of such crops can be greatly enhanced by knowledge on plant resistance mechanisms and the genes involved. Plants have evolved diverse ways to cope with insect attack that has resulted in natural variation for resistance towards herbivorous insects. Studying the molecular genetics and transcriptional background of this variation has facilitated the identification of resistance genes and processes that lead to resistance against insects. With the development of new technologies, molecular studies are not restricted to model plants anymore. This review addresses the need to exploit natural variation in resistance towards insects to increase our knowledge on resistance mechanisms and the genes involved. We will discuss how this knowledge can be exploited in breeding programmes to provide sustainable crop protection against insect pests. Additionally, we discuss the current status of genetic research on insect-resistance genes. We conclude that insect-resistance mechanisms are still unclear at the molecular level and that exploiting natural variation with novel technologies will contribute greatly to the development of insect-resistant crop varieties.

  6. Mechanisms of host seeking by parasitic nematodes.

    Science.gov (United States)

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors.

  7. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically...... examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional......). Fifteen of 37 inserts harbored resistance genes that shared resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance...

  8. Co-evolution between Globodera rostochiensis and potato driving sequence diversity of NB-LRR resistance loci and nematode suppressors of plant immunity

    NARCIS (Netherlands)

    Finkers-Tomczak, A.M.

    2011-01-01

    Sedentary plant parasitic nematodes have evolved sophisticated strategies that allow them to transform host cells in the roots of host plants into feeding structures. These complex structures enable the nematodes to complete their life cycle inside a single host plant. Feeding structure initiation a

  9. Co-evolution between Globodera rostochiensis and potato driving sequence diversity of NB-LRR resistance loci and nematode suppressors of plant immunity

    NARCIS (Netherlands)

    Finkers-Tomczak, A.M.

    2011-01-01

    Sedentary plant parasitic nematodes have evolved sophisticated strategies that allow them to transform host cells in the roots of host plants into feeding structures. These complex structures enable the nematodes to complete their life cycle inside a single host plant. Feeding structure initiation a

  10. Characterisation of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance

    NARCIS (Netherlands)

    Hoekstra, R.; Visser, A.; Wiley, L.; Weiss, A.S.; Sangster, N.C.; Roos, M.H.

    1997-01-01

    The anthelmintic drug levamisole is thought to bind to nicotinic acetylcholine receptors of nematodes. It is possible that resistance to this drug is associated with either a change in binding characteristics or a reduction in the number of nicotinic acetylcholine receptors. Therefore, the molecular

  11. Characterisation of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance

    NARCIS (Netherlands)

    Hoekstra, R.; Visser, A.; Wiley, L.; Weiss, A.S.; Sangster, N.C.; Roos, M.H.

    1997-01-01

    The anthelmintic drug levamisole is thought to bind to nicotinic acetylcholine receptors of nematodes. It is possible that resistance to this drug is associated with either a change in binding characteristics or a reduction in the number of nicotinic acetylcholine receptors. Therefore, the molecular

  12. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    Science.gov (United States)

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  13. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Science.gov (United States)

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  14. Gene induction by desiccation stress in the entomopathogenic nematode Steinernema carpocapsae reveals parallels with drought tolerance mechanisms in plants.

    Science.gov (United States)

    Tyson, Trevor; Reardon, Wesley; Browne, John A; Burnell, Ann M

    2007-06-01

    The dauer juvenile (DJ) stage of the insect parasitic nematode Steinernema carpocapsae is the only stage in the life cycle which is capable of surviving outside its host and it is adapted for tolerating environmental stresses and for host finding. We have isolated 45 unique expressed sequence tags (ESTs) that are up-regulated in response to desiccation in S. carpocapsae DJs. The majority of these ESTs were co-expressed in response to desiccation and osmotic stress and were generally not induced in response to heat and cold stress. Thirty-two ESTs showed similarity to known sequences. Among these were sequences which encode putative signalling molecules or transcription factors, sequences which detoxify reactive oxygen species, two C-type lectin sequences, ESTs which encode membrane-associated proteins and seven distinct late embryogenic abundant (LEA) sequences. We also isolated 13 novel ESTs. These data show that the molecular response to desiccation stress in entomopathogenic nematode DJs is complex and parallels many of the adaptive changes which occur in drought tolerant plants during exposure to desiccation and osmotic stress. A notable feature of the desiccation response of plants is the number and diversity of hydrophilic LEA proteins synthesised in response to desiccation. All of the LEA sequences detected in animals to date, including those reported in this study, belong to LEA3 group. We show that S. carpocapsae expresses several novel sequences which encode putative hydrophilic and natively unfolded proteins. It is likely that these novel and putative proteins play an important role in desiccation tolerance, possibly by carrying out analogous roles in nematodes to those carried out by the other LEA protein classes in plants.

  15. Mapping of the apple scab-resistance gene Vb.

    Science.gov (United States)

    Erdin, N; Tartarini, S; Broggini, G A L; Gennari, F; Sansavini, S; Gessler, C; Patocchi, A

    2006-10-01

    Apple scab, caused by the fungus Venturia inaequalis, is the major production constraint in temperate zones with humid springs. Normally, its control relies on frequent and regular fungicide applications. Because this control strategy has come under increasing criticism, major efforts are being directed toward the breeding of scab-resistant apple cultivars. Modern apple breeding programs include the use of molecular markers, making it possible to combine several different scab-resistance genes in 1 apple cultivar (pyramiding) and to speed up the breeding process. The apple scab-resistance gene Vb is derived from the Siberian crab apple 'Hansen's baccata #2', and is 1 of the 6 "historical" major apple scab-resistance genes (Vf, Va, Vr, Vbj, Vm, and Vb). Molecular markers have been published for all these genes, except Vr. In testcross experiments conducted in the 1960s, it was reported that Vb segregated independently from 3 other major resistance genes, including Vf. Recently, however, Vb and Vf have both been mapped on linkage group 1, a result that contrasts with the findings from former testcross experiments. In this study, simple sequence repeat (SSR) markers were used to identify the precise position of Vb in a cross of 'Golden Delicious' (vbvb) and 'Hansen's baccata #2' (Vbvb). A genome scanning approach, a fast method already used to map apple scab-resistance genes Vr2 and Vm, was used, and the Vb locus was identified on linkage group 12, between the SSR markers Hi02d05 and Hi07f01. This finding confirms the independent segregation of Vb from Vf. With the identification of SSR markers linked to Vb, another major apple scab-resistance gene has become available; breeders can use it to develop durable resistant cultivars with several different resistance genes.

  16. Are duplicated genes responsible for anthracnose resistance in common bean?

    Science.gov (United States)

    Costa, Larissa Carvalho; Nalin, Rafael Storto; Ramalho, Magno Antonio Patto; de Souza, Elaine Aparecida

    2017-01-01

    The race 65 of Colletotrichum lindemuthianum, etiologic agent of anthracnose in common bean, is distributed worldwide, having great importance in breeding programs for anthracnose resistance. Several resistance alleles have been identified promoting resistance to this race. However, the variability that has been detected within race has made it difficult to obtain cultivars with durable resistance, because cultivars may have different reactions to each strain of race 65. Thus, this work aimed at studying the resistance inheritance of common bean lines to different strains of C. lindemuthianum, race 65. We used six C. lindemuthianum strains previously characterized as belonging to the race 65 through the international set of differential cultivars of anthracnose and nine commercial cultivars, adapted to the Brazilian growing conditions and with potential ability to discriminate the variability within this race. To obtain information on the resistance inheritance related to nine commercial cultivars to six strains of race 65, these cultivars were crossed two by two in all possible combinations, resulting in 36 hybrids. Segregation in the F2 generations revealed that the resistance to each strain is conditioned by two independent genes with the same function, suggesting that they are duplicated genes, where the dominant allele promotes resistance. These results indicate that the specificity between host resistance genes and pathogen avirulence genes is not limited to races, it also occurs within strains of the same race. Further research may be carried out in order to establish if the alleles identified in these cultivars are different from those described in the literature.

  17. Genes for resistance to zucchini yellow mosaic in tropical pumpkin.

    Science.gov (United States)

    Pachner, Martin; Paris, Harry S; Lelley, Tamas

    2011-01-01

    Four cultigens of Cucurbita moschata resistant to zucchini yellow mosaic virus were crossed with the susceptible 'Waltham Butternut' and with each other in order to clarify the mode of inheritance of resistance and relationships among the genes involved. Five loci were segregating, with genes for resistance Zym-0 and Zym-4 carried by 'Nigerian Local' and one of them also carried by 'Nicklow's Delight,' Zym-1 carried by 'Menina,' and zym-6 carried by 'Soler.' A recessive gene carried by 'Waltham Butternut,' zym-5, is complementary with the dominant Zym-4 of 'Nigerian Local,' that is, the resistance conferred by Zym-4 is only expressed in zym-5/zym-5 individuals. Gene zym-6 appears to be linked to either Zym-0 or Zym-4, and it is also possible that Zym-1 is linked to one of them as well.

  18. The impact of insulin resistance, gender, genes, glucocorticoids and ...

    African Journals Online (AJOL)

    The impact of insulin resistance, gender, genes, glucocorticoids and ethnicity on body ... The metabolic consequences of obesity are highly dependent on body fat ... it has been suggested that insulin sensitivity at the level of the adipocyte may ...

  19. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on

  20. Resistance gene management: concepts and practice

    Science.gov (United States)

    Christopher C. Mundt

    2012-01-01

    There is now a very long history of genetics/breeding for disease resistance in annual crops. These efforts have resulted in conceptual advances and frustrations, as well as practical successes and failures. This talk will review this history and its relevance to the genetics of resistance in forest species. All plant breeders and pathologists are familiar with boom-...

  1. Molecular identification and functional characterization of the fatty acid- and retinoid-binding protein gene Rs-far-1 in the burrowing nematode Radopholus similis (Tylenchida: Pratylenchidae.

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    Full Text Available Fatty acid- and retinoid-binding protein (FAR is a nematode-specific protein expressed in the nematode hypodermis. It is involved in nematode development, reproduction, and infection and can disrupt the plant defense reaction. In this study, we obtained the full-length sequence of the far gene from Radopholus similis (Rs-far-1, which is 828 bp long and includes a 558 bp ORF encoding 186 amino acids. A protein homology analysis revealed that Rs-FAR-1 is 75% similar to Mj-FAR-1 from Meloidogyne javanica. A neighbor-joining phylogenetic tree was inferred and showed that Rs-FAR-1 is most similar to Pv-FAR-1 from Pratylenchus vulnus. A fluorescence-based ligand-binding analysis confirmed that Rs-FAR-1 can combine with fatty acids and retinol. qPCR was used to assess Rs-far-1 expression levels at different developmental stages in different R. similis populations, and its expression was 2.5 times greater in the highly pathogenic Rs-C population than in the less pathogenic Rs-P population. The highest expression was found in females, followed by eggs, juveniles and males. When R. similis was treated with Rs-far-1 dsRNA for 36 h, the reproduction and pathogenicity decreased significantly. In situ hybridization revealed Rs-far-1 transcripts in the R. similis hypodermis. Additionally, R. similis treated with Rs-far-1 dsRNA or water were inoculated into Arabidopsis thaliana. Allene oxide synthase (AOS expression in A. thaliana was upregulated during early infection in both treatments and then returned to the expression levels of the control plant. Compared with the control plant, AOS expression significantly decreased in A. thaliana inoculated with water-treated R. similis but significantly increased in A. thaliana inoculated with Rs-far-1 dsRNA-treated R. similis. This finding indicates that Rs-far-1 regulates AOS expression in A. thaliana. Rs-FAR-1 plays a critical role in R. similis development, reproduction, and infection and can disturb the plant

  2. The antimicrobial resistance crisis: management through gene monitoring

    Science.gov (United States)

    2016-01-01

    Antimicrobial resistance (AMR) is an acknowledged crisis for humanity. Its genetic origins and dire potential outcomes are increasingly well understood. However, diagnostic techniques for monitoring the crisis are currently largely limited to enumerating the increasing incidence of resistant pathogens. Being the end-stage of the evolutionary process that produces antimicrobial resistant pathogens, these measurements, while diagnostic, are not prognostic, and so are not optimal in managing this crisis. A better test is required. Here, using insights from an understanding of evolutionary processes ruling the changing abundance of genes under selective pressure, we suggest a predictive framework for the AMR crisis. We then discuss the likely progression of resistance for both existing and prospective antimicrobial therapies. Finally, we suggest that by the environmental monitoring of resistance gene frequency, resistance may be detected and tracked presumptively, and how this tool may be used to guide decision-making in the local and global use of antimicrobials. PMID:27831476

  3. Multiplex Polymerase Chain Reaction Identification of Single Individuals of the Longidorid Nematodes Xiphinema index, X. diversicaudatum, X. vuittenezi, and X. italiae Using Specific Primers from Ribosomal Genes.

    Science.gov (United States)

    Wang, Xinrong; Bosselut, Nathalie; Castagnone, Chantal; Voisin, Roger; Abad, Pierre; Esmenjaud, Daniel

    2003-02-01

    ABSTRACT The species X. index, X. diversicaudatum, X. vuittenezi, and X. italiae are established (E) or putative (P) vectors of Grapevine fanleaf virus (GFLV) (E), Arabis mosaic virus (E), Grapevine chrome mosaic virus (P), and GFLV (P) nepoviruses of grapevine, respectively. All four species are very closely related taxonomically and their low field densities make them difficult to identify from morphological and morphometrical diagnostic characters when only single or few individuals are detected. To improve diagnostic accuracy, a simple method was developed. The internal transcribed spacer 1 (ITS1) region spanning the 18S and 5.8S ribosomal genes was sequenced in one population of each species using two conserved primers from these genes. The ITS1 fragments were 1,132 bp (X. vuittenezi), 1,153 bp (X. index), 1,175 bp (X. diversicaudatum), and 1,190 bp (X. italiae), i.e., a difference of over 5% between the extremes. The sequence variability made it possible to design species-specific internal sense primers that amplified, in combination with the same antisense ITS1 primer, a single signature fragment (340 bp for X. index, 414 bp for X. italiae, 591 bp for X. vuittenezi, and 813 bp for X. diversicaudatum). Tests with DNA from a single adult or juvenile nematode confirmed the specificity of the primers from diverse isolates or populations. The primers were successfully used in a multiplex test for the reliable detection of two to four mixed species, each represented by a single individual. This multiplex-based diagnostic tool will be particularly useful for successful nematode management practices in vineyards.

  4. Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance.

    Science.gov (United States)

    Vinatzer, B A; Patocchi, A; Gianfranceschi, L; Tartarini, S; Zhang, H B; Gessler, C; Sansavini, S

    2001-04-01

    Scab caused by the fungal pathogen Venturia inaequalis is the most common disease of cultivated apple (Malus x domestica Borkh.). Monogenic resistance against scab is found in some small-fruited wild Malus species and has been used in apple breeding for scab resistance. Vf resistance of Malus floribunda 821 is the most widely used scab resistance source. Because breeding a high-quality cultivar in perennial fruit trees takes dozens of years, cloning disease resistance genes and using them in the transformation of high-quality apple varieties would be advantageous. We report the identification of a cluster of receptor-like genes with homology to the Cladosporium fulvum (Cf) resistance gene family of tomato on bacterial artificial chromosome clones derived from the Vf scab resistance locus. Three members of the cluster were sequenced completely. Similar to the Cf gene family of tomato, the deduced amino acid sequences coded by these genes contain an extracellular leucine-rich repeat domain and a transmembrane domain. The transcription of three members of the cluster was determined by reverse transcriptionpolymerase chain reaction to be constitutive, and the transcription and translation start of one member was verified by 5' rapid amplification of cDNA ends. We discuss the parallels between Cf resistance of tomato and Vf resistance of apple and the possibility that one of the members of the gene cluster is the Vf gene. Cf homologs from other regions of the apple genome also were identified and are likely to present other scab resistance genes.

  5. Occurrence and reservoirs of antibiotic resistance genes in the environment

    NARCIS (Netherlands)

    Seveno, N.; Kallifidas, D.; Smalla, K.; Elsas, van J.D.; Collard, J.M.; Karagouni, A.; Wellington, E.M.H.

    2002-01-01

    Antibiotic resistance genes have become highly mobile since the development of antibiotic chemotherapy. A considerable body of evidence exists proving the link between antibiotic use and the significant increase in drug-resistant human bacterial pathogens. The application of molecular detection and

  6. Occurrence and reservoirs of antibiotic resistance genes in the environment

    NARCIS (Netherlands)

    Seveno, N.; Kallifidas, D.; Smalla, K.; Elsas, van J.D.; Collard, J.M.; Karagouni, A.; Wellington, E.M.H.

    2002-01-01

    Antibiotic resistance genes have become highly mobile since the development of antibiotic chemotherapy. A considerable body of evidence exists proving the link between antibiotic use and the significant increase in drug-resistant human bacterial pathogens. The application of molecular detection and

  7. Spread of tetracycline resistance genes at a conventional dairy farm

    NARCIS (Netherlands)

    Kyselková, Martina; Jirout, Jiří; Vrchotová, Naděžda; Schmitt, Heike; Elhottová, Dana

    2015-01-01

    The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of

  8. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective

  9. Resistance to leaf rust in coffee carrying S H3 gene and others S H genes

    Directory of Open Access Journals (Sweden)

    Gustavo Hiroshi Sera

    2007-09-01

    Full Text Available The aim of this work was to evaluate the resistance to rust in coffee carrying S H3 gene and other S H genes. Twenty one CIFC’s coffee trees with several resistance genes S H were evaluated in field conditions. All the evaluated coffees carrying Sh3 gene presented resistance to the rust. It was possible that rust races with the virulence gene v3 in the Paraná State didn’t exist. The S H3 gene in combination with genes S H5, S H6, S H7, S H8, S H9 and S H? would be very important to obtain cultivars with more durable resistance to the rust.O objetivo deste trabalho foi avaliar a resistência à ferrugem em cafeeiros portadores do gene S H3 e outros genes S H em Londrina, Paraná, Brasil. Foram avaliados vinte e um cafeeiros do CIFC com diferentes genes S H de resistência em condição de alta incidência natural em campo. Todos os cafeeiros avaliados portadores do gene S H3 apresentaram resistência à ferrugem. É possível que não existam raças de ferrugem com o gene de virulência v3 no Paraná. Plantas portadoras do gene S H3 em combinação com os genes S H5, S H6, S H7, S H8, S H9 e S H? seria muito importante para obter cultivares com resistência mais durável à ferrugem.

  10. Genome-Wide Architecture of Disease Resistance Genes in Lettuce.

    Science.gov (United States)

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-10-08

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes. Copyright © 2015 Christopoulou et al.

  11. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater.

    Science.gov (United States)

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2013-11-01

    Antibiotic resistance in wastewater is becoming a major public health concern, but poorly understood about impact of disinfection on antibiotic resistant bacteria and antibiotic resistance genes. The UV disinfection of antibiotic resistant heterotrophic bacteria and their relevant genes in the wastewater of a municipal wastewater treatment plant has been evaluated. Two commonly used antibiotics, erythromycin and tetracycline were selected because of their wide occurrences in regard to the antibiotic resistance problem. After UV treatment at a fluence of 5mJcm(-2), the log reductions of heterotrophic bacteria resistant to erythromycin and tetracycline in the wastewater were found to be 1.4±0.1 and 1.1±0.1, respectively. The proportion of tetracycline-resistant bacteria (5%) was nearly double of that before UV disinfection (3%). Tetracycline-resistant bacteria exhibited more tolerance to UV irradiation compared to the erythromycin-resistant bacteria (pUV treatment at a fluence of 5mJcm(-2) removed the total erythromycin- and tetracycline-resistance genes by 3.0±0.1 log and 1.9±0.1 log, respectively. UV treatment was effective in reducing antibiotic resistance in the wastewater.

  12. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Huddleston JR

    2014-06-01

    Full Text Available Jennifer R HuddlestonBiology Department, Abilene Christian University, Abilene, TX, USAAbstract: Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed.Keywords: gut microbiome, conjugation, natural transformation, transduction

  13. Resistance of beef cattle of two genetic groups to ectoparasites and gastrointestinal nematodes in the state of São Paulo, Brazil.

    Science.gov (United States)

    Oliveira, M C S; Alencar, M M; Giglioti, R; Beraldo, M C D; Aníbal, F F; Correia, R O; Boschini, L; Chagas, A C S; Bilhassi, T B; Oliveira, H N

    2013-10-18

    The resistance to infestations by ectoparasites and infections by gastrointestinal nematodes was studied in 45 animals (males and females) of two genetic groups: purebred Nelore (NI, n=28) and Three-Cross (1/2 Angus+1/4 Canchim+1/4 Nelore - TC, n=17). The animals were monitored for 24 months, during which they were left to graze in tropical pastures without receiving treatment for parasites. Each month the animals were examined for infestations by external parasites, to count the numbers of cattle ticks Rhipicephalus microplus with diameter greater than 4.5mm present on the left side, horn flies (Haematobia irritans) present in the lumbar region and botfly larvae (Dermatobia hominis) present on the entire body. The H. irritans counts were performed with the aid of digital photographs. At the time of examination, fecal samples were collected to count the eggs per gram (EPG) and to perform coprocultures, and peripheral blood samples were drawn to determine the packed cell volume (PCV) and to count the eosinophils. For statistical analysis, the count data were transformed into log₁₀ (n+1), where n is the number of parasites. For PCV, significant effects (Pbotfly larvae they were 0.05 ± 0.03 and 0.45 ± 0.05, respectively. The average EPG values were only influenced by CO (P<0.01). The coprocultures revealed the presence of the following endoparasites: Haemonchus spp., Cooperia spp., Oesophagostomum spp. and Trichostrongylus spp., the last in smaller proportion. There were no significant differences between the genetic groups for the endoparasite loads, except for Cooperia spp., which were present in greater number (P<0.05) in the NI group. The results obtained in this experiment confirm previous findings of greater susceptibility of the Nelore breed to Cooperia spp. and high resistance to ectoparasites. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The development of anthelmintic resistance with best practice control of nematodes on commercial sheep farms in the UK.

    Science.gov (United States)

    Learmount, Jane; Stephens, Nathalie; Boughtflower, Valerie; Barrecheguren, Alba; Rickell, Kayleigh

    2016-10-15

    Antimicrobial resistance threatens the effective prevention and treatment of an ever-increasing range of infections. The widespread development of anthelmintic resistance is a major global issue affecting the effective control of parasite diseases in grazing livestock production. Sustainable control strategies that reduce dependence on antimicrobials have the potential to slow the further development of resistance but there is little data on the effect of control strategies on resistance development in the field. This report documents a study undertaken to measure the temporal effect of the UK sustainable control of parasites in sheep (SCOPS) guidelines on the development of anthelmintic resistance. Farms carrying out SCOPS or traditional worm control (TRADITIONAL) were tested for resistance to the benzimidazole and imidazothiazole anthelmintics in vitro using a discriminating dose (dd) larval development test (LDT) in year 1 and then 7 years later. In years 5 and 7, resistance was also measured using a dose-response LDT assay. There was a significant increase in Teladorsagia survivors at the benzimidazole dd assay between year 1 and year 7 for both treatment groups, but the increase in survivors was greater for the farms carrying out their traditional worm control compared to the SCOPS farms. There was also a significant difference between benzimidazole dd results generated across years for Trichostrongylus, but the year and treatment interaction was not significant. Only one of the farm Teladorsagia populations had survivors in the imidazothiazole dd assay in years 1 and 7 and none of the Trichostrongylus populations survived in year 1 compared to isolates from three of the farms in year 7. Dose-response data showed a significant effect for time for both the benzimidazole and imidazothiazole anthelmintics and the increase was again significantly higher for the Teladorsagia populations in the TRADITIONAL group compared to the SCOPS group. This data suggests an

  15. Clustering, haplotype diversity and locations of MIC-3: a unique root-specific defense-related gene family in upland cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    MIC-3-related genes of cotton (Gossypium spp.) were identified and shown to have root-specific expression, associated with pathogen defense-related function and specifically increased expression in root-knot nematode (RKN) resistant plants after nematode infection. Here we cloned and sequenced MIC-...

  16. Deciphering durable resistance one R gene at a time.

    Science.gov (United States)

    White, Frank F; Frommer, Wolf

    2015-12-01

    Characterizations of durable resistance genes in crop plants are coming to the fore. A new study characterizing the wheat gene Lr67 shows that how a plant manages sugar transport affects the ability of a broad group of fungal pathogens to colonize their host.

  17. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean

    Science.gov (United States)

    The B4 resistance (R)-gene cluster, located in subtelomeric region of chromosome 4, is one of the largest clusters known in common bean (Phaseolus vulgaris, Pv). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-coil-Nucleotide-Binding-Site-Leucine-Rich...

  18. Scab resistance in 'Geneva' apple is conditioned by a resistance gene cluster with complex genetic control.

    Science.gov (United States)

    Bastiaanse, Héloïse; Bassett, Heather C M; Kirk, Christopher; Gardiner, Susan E; Deng, Cecilia; Groenworld, Remmelt; Chagné, David; Bus, Vincent G M

    2016-02-01

    Apple scab, caused by the fungal pathogen Venturia inaequalis, is one of the most severe diseases of apple worldwide. It is the most studied plant-pathogen interaction involving a woody species using modern genetic, genomic, proteomic and bioinformatic approaches in both species. Although 'Geneva' apple was recognized long ago as a potential source of resistance to scab, this resistance has not been characterized previously. Differential interactions between various monoconidial isolates of V. inaequalis and six segregating F1 and F2 populations indicate the presence of at least five loci governing the resistance in 'Geneva'. The 17 chromosomes of apple were screened using genotyping-by-sequencing, as well as single marker mapping, to position loci controlling the V. inaequalis resistance on linkage group 4. Next, we fine mapped a 5-cM region containing five loci conferring both dominant and recessive scab resistance to the distal end of the linkage group. This region corresponds to 2.2 Mbp (from 20.3 to 22.5 Mbp) on the physical map of 'Golden Delicious' containing nine candidate nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance genes. This study increases our understanding of the complex genetic basis of apple scab resistance conferred by 'Geneva', as well as the gene-for-gene (GfG) relationships between the effector genes in the pathogen and resistance genes in the host.

  19. Nematode diversity in agroecosystems

    NARCIS (Netherlands)

    Yeates, G.W.; Bongers, T.

    1999-01-01

    The diversity of nematode faunae in agroecosystems and their relationships to soil processes suggests that they are potential bioindicators. However, the effects of plants, soil types and nematode biogeography mean a 'functional group' may be a better indicator than particular nematodes.

  20. Serine/threonine phosphatases in socioeconomically important parasitic nematodes--prospects as novel drug targets?

    Science.gov (United States)

    Campbell, Bronwyn E; Hofmann, Andreas; McCluskey, Adam; Gasser, Robin B

    2011-01-01

    Little is known about the fundamental biology of parasitic nematodes (=roundworms) that cause serious diseases, affecting literally billions of animals and humans worldwide. Unlocking the biology of these neglected pathogens using modern technologies will yield crucial and profound knowledge of their molecular biology, and could lead to new treatment and control strategies. Supported by studies in the free-living nematode, Caenorhabditis elegans, some recent investigations have provided improved insights into selected protein phosphatases (PPs) of economically important parasitic nematodes (Strongylida). In the present article, we review this progress and assess the potential of serine/threonine phosphatase (STP) genes and/or their products as targets for new nematocidal drugs. Current information indicates that some small molecules, known to specifically inhibit PPs, might be developed as nematocides. For instance, some cantharidin analogues are known to display exquisite PP-inhibitor activity, which indicates that some of them could be designed and tailored to specifically inhibit selected STPs of nematodes. This information provides prospects for the discovery of an entirely novel class of nematocides, which is of paramount importance, given the serious problems linked to anthelmintic resistance in parasitic nematode populations of livestock, and has the potential to lead to significant biotechnological outcomes.

  1. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    Science.gov (United States)

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  2. Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida)

    OpenAIRE

    2009-01-01

    Despite their phylogenetic diversity, parasitic nematodes share attributes of longevity and developmental arrest (=hypobiosis) with free-living nematodes at key points in their life cycles, particularly in larval stages responsible for establishing infection in the host. Insulin-like signalling plays crucial roles in the regulation of life span and arrest (=dauer formation) in the free-living nematode, Caenorhabditis elegans. Insulin-like signalling in C. elegans negatively regulates the fork...

  3. ENDOPARASITIC NEMATODES OF THE GENUS PRATYLENCHUS ON SOYBEAN

    Directory of Open Access Journals (Sweden)

    Ivana Majić

    2010-12-01

    negatively correlated. Cultivars differed significantly for total nematode community. Plant parasites and bacterial feeding nematode groups were predominant in nematode community for all cultivars, and decomposition of organic matter was mainly bacterial-mediated. Antagonist among the throphic groups of nematodes were not determined. The lowest variability for total population of nematode community was determined for cultivars Korana, Kuna, Una and Podravka 95. The highest population densities of plant parasites and lowest trophic biodiversity were recorded for cultivars Anica and Ika, which supported the dominance of one trophic group (plant parasites. Negative effect of nematode community for the same cultivars was more pronounced than positive. The highest throphic biodiversity was calculated for cultivar Korana. Calculations of Dominance index λ (i.e. Hills N2 and Evenness index (E2 revealed the greatest differences among soybean cultivars. These indexes proved to be the most reliable and applicable for evaluation of nematode trophic biodiversity. The intensity of AMF colonization did not significantly affect penetration of endoparasitic nematodes in soybean roots, although cultivars differed statistically for endoparasitic nematodes in roots and percentage of AMF colonization. Cultivars (native plant resistance, compared to intensity of AMF root colonization, was determined as the key factor influencing numbers of root lesion nematodes penetrated in soybean roots. Due to high nematode densities, all cultivars proved good host status for root lesion nematodes. However, satisfactory yields were achieved and cultivars proved tolerance. The potential of root lesion nematodes population to increase in soybeans and impact on soybean yields indicate importance for future nematode population monitoring. The results may contribute in future scientific projects especially breeding projects with the main aim to create more tolerant soybean cultivars against root lesion nematodes

  4. Parasitic nematodes - from genomes to control.

    Science.gov (United States)

    Mitreva, Makedonka; Zarlenga, Dante S; McCarter, James P; Jasmer, Douglas P

    2007-08-19

    The diseases caused by parasitic nematodes in domestic and companion animals are major factors that decrease production and quality of the agricultural products. Methods available for the control of the parasitic nematode infections are mainly based on chemical treatment, non-chemical management practices, immune modulation and biological control. However, even with integrated pest management that frequently combines these approaches, the effective and long-lasting control strategies are hampered by the persistent exposure of host animals to environmental stages of parasites, the incomplete protective response of the host and acquisition of anthelmintic resistance by an increasing number of parasitic nematodes. Therefore, the challenges to improve control of parasitic nematode infections are multi-fold and no single category of information will meet them all. However, new information, such as nematode genomics, functional genomics and proteomics, can strengthen basic and applied biological research aimed to develop improvements. In this review we will, summarize existing control strategies of nematode infections and discuss ongoing developments in nematode genomics. Genomics approaches offer a growing and fundamental base of information, which when coupled with downstream functional genomics and proteomics can accelerate progress towards developing more efficient and sustainable control programs.

  5. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks.

    Directory of Open Access Journals (Sweden)

    Kira S Makarova

    Full Text Available Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR, ultraviolet light (UV and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and

  6. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S. [National Center for Biotechnology Information; Omelchenko, Marina [National Center for Biotechnology Information; Gaidamakova, Elena [Uniformed Services University of the Health Sciences (USUHS); Matrosova, Vera [Uniformed Services University of the Health Sciences (USUHS); Vasilenko, Alexander [Uniformed Services University of the Health Sciences (USUHS); Zhai, Min [Uniformed Services University of the Health Sciences (USUHS); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Kim, Edwin [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pitluck, Samual [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Tom [Los Alamos National Laboratory (LANL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lai, Barry [Argonne National Laboratory (ANL); Ravel, Bruce [Argonne National Laboratory (ANL); Kemner, Kenneth M [Argonne National Laboratory (ANL); Wolf, Yuri [National Center for Biotechnology Information; Sorokin, Alexei [Genetique Microbienne; Gerasimova, Anna [Research Institute of Genetics and Selection of Industrial Microorganisms, Mosco; Gelfand, Mikhail [Moscow State University; Fredrickson, James K [Pacific Northwest National Laboratory (PNNL); Koonin, Eugene [National Center for Biotechnology Information; Daly, Michael [Uniformed Services University of the Health Sciences (USUHS)

    2007-01-01

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  7. Antibiotic resistance and virulence genes in coliform water isolates.

    Science.gov (United States)

    Stange, C; Sidhu, J P S; Tiehm, A; Toze, S

    2016-11-01

    Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes blaTEM, blaSHV, ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  9. Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseases.

    Science.gov (United States)

    Zamanian, Mostafa; Andersen, Erik C

    2016-09-01

    Neglected tropical diseases caused by parasitic nematodes inflict an immense health and socioeconomic burden throughout much of the developing world. Current estimates indicate that more than two billion people are infected with nematodes, resulting in the loss of 14 million disability-adjusted life years per annum. Although these parasites cause significant mortality, they primarily cause chronic morbidity through a wide range of severe clinical ailments. Treatment options for nematode infections are restricted to a small number of anthelmintic drugs, and the rapid expansion of anthelmintic mass drug administration raises concerns of drug resistance. Preservation of existing drugs is necessary, as well as the development of new treatment options and methods of control. We focus this review on how the democratization of CRISPR/Cas9 genome editing technology can be enlisted to improve our understanding of the biology of nematode parasites and our ability to treat the infections they cause. We will first explore how this robust method of genome manipulation can be used to newly exploit the powerful model nematode Caenorhabditis elegans for parasitology research. We will then discuss potential avenues to develop CRISPR/Cas9 editing protocols in filarial nematodes. Lastly, we will propose potential ways in which CRISPR/Cas9 can be used to engineer gene drives that target the transmission of mosquito-borne filarial nematodes. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  10. Effects of Endobacterium (Stenotrophomonas maltophilia on Pathogenesis-Related Gene Expression of Pine Wood Nematode (Bursaphelenchus xylophilus and Pine Wilt Disease

    Directory of Open Access Journals (Sweden)

    Long-Xi He

    2016-05-01

    Full Text Available Pine wilt disease (PWD caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus, is responsible for devastating epidemics in pine trees in Asia and Europe. Recent studies showed that bacteria carried by the PWN might be involved in PWD. However, the molecular mechanism of the interaction between bacteria and the PWN remained unclear. Now that the whole genome of B. xylophilus (Bursaphelenchus xylophilus is published, transcriptome analysis is a unique method to study the role played by bacteria in PWN. In this study, the transcriptome of aseptic B. xylophilus, B. xylophilus treated with endobacterium (Stenotrophomonas maltophilia NSPmBx03 and fungus B. xylophilus were sequenced. We found that 61 genes were up-regulated and 830 were down-regulated in B. xylophilus after treatment with the endobacterium; 178 genes were up-regulated and 1122 were down-regulated in fungus B. xylophilus compared with aseptic B. xylophilus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to study the significantly changed biological functions and pathways for these differentially expressed genes. Many pathogenesis-related genes, including glutathinone S-transferase, pectate lyase, ATP-binding cassette transporter and cytochrome P450, were up-regulated after B. xylophilus were treated with the endobacterium. In addition, we found that bacteria enhanced the virulence of PWN. These findings indicate that endobacteria might play an important role in the development and virulence of PWN and will improve our understanding of the regulatory mechanisms involved in the interaction between bacteria and the PWN.

  11. Molecular Scree ning of Blast Resistance Genes in Rice Germplasms Resistant to Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2017-01-01

    Full Text Available Molecular screening of major rice blast resistance genes was determined with molecular markers, which showed close-set linkage to 11 major rice blast resistance genes (Pi-d2, Pi-z, Piz-t, Pi-9, Pi-36, Pi-37, Pi5, Pi-b, Pik-p, Pik-h and Pi-ta2, in a collection of 32 accessions resistant to Magnaporthe oryzae. Out of the 32 accessions, the Pi-d2 and Pi-z appeared to be omnipresent and gave positive express. As the second dominant, Pi-b and Piz-t gene frequencies were 96.9% and 87.5%. And Pik-h and Pik-p gene frequencies were 43.8% and 28.1%, respectively. The molecular marker linkage to Pi-ta2 produced positive bands in eleven accessions, while the molecular marker linkage to Pi-36 and Pi-37 in only three and four accessions, respectively. The natural field evaluation analysis showed that 30 of the 32 accessions were resistant, one was moderately resistant and one was susceptible. Infection types were negatively correlated with the genotype scores of Pi-9, Pi5, Pi-b, Pi-ta2 and Pik-p, although the correlation coefficients were very little. These results are useful in identification and incorporation of functional resistance genes from these germplasms into elite cultivars through marker-assisted selection for improved blast resistance in China and worldwide.

  12. Genetic analysis of resistance gene analogues from a sugarcane cultivar resistant to red rot disease

    Science.gov (United States)

    One of the important approaches for disease control in sugarcane is to develop a disease resistant variety; this may be accomplished through identification of resistance genes in sugarcane. In this study, PCR primers targeting the conserved motifs of the nucleotide-binding site (NBS) class and kinas...

  13. Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass

    DEFF Research Database (Denmark)

    Schejbel, B; Jensen, L B; Asp, T;

    2008-01-01

    The objective of this study was to map resistance gene analogues (RGA) and quantitative trait loci (QTL) for powdery mildew resistance in perennial ryegrass (Lolium perenne L.). The mapping population consisted of 184 F2 genotypes produced from a cross between one genotype of a synthetic perennial...

  14. Genetic mapping and pyramiding of resistance genes in potato

    NARCIS (Netherlands)

    Tan, M.Y.A.

    2008-01-01

    Numerous pathogens can infect potato, but late blight (Phytophthora infestans (Mont.) de Bary) and potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida are most damaging. Several species of root knot nematodes (RKN) are an emerging threat. Breeders have successfully deployed disease re

  15. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    OpenAIRE

    Adelowo, Olawale O.; Obasola E. Fagade; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resista...

  16. Cytogenetic Mapping of Disease Resistance Genes and Analysis of Their Distribution Features on Chromosomes in Maize

    Institute of Scientific and Technical Information of China (English)

    LiLi-jia; SongYun-chun

    2003-01-01

    Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Htl, Htnl and Ht2, Helminthosporium maydis Nisik resistance genes Rhml and Rhm2,maize dwarf mosaic virus resistance gene Mdml, wheat streak mosaic virus resistance gene Wsml, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2. 1 of tomato, and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i. e. , chromosomesl, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3. 25) except for genes Rhml, Rhm2, Mdml and Wsml which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.

  17. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Bertinellys TEIXEIRA

    2016-01-01

    Full Text Available The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC, aminoglycoside-adenyltransferases (AAD, and aminoglycoside-phosphotransferases (APH, is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137 were identified from the Intensive Care Unit (ICU, mainly from discharges (96/137. The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively. Phenotype VI, resistant to these antibiotics, was the most frequent (14/49, followed by phenotype I, resistant to all the aminoglycosides tested (12/49. The aac(6´-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  18. Diversity of plasmids and antimicrobial resistance genes in multidrug-resistant Escherichia coli isolated from healthy companion animals

    Science.gov (United States)

    The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of gene...

  19. Use of the induced gene-expression in the soil nematode Caenorhabditis elegans as a biomonitor; Nutzung der induzierbaren Genexpression des Nematoden Caenorhabditis elegans als Biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, R.; Reichert, K.; Achazi, R. [Freie Univ. Berlin (Germany). Inst. fuer Biologie - Oekotoxikologie und Biochemie

    2002-07-01

    The soil nematode Caenorhabditis elegans is one of the simplest animals having the status of a laboratory model. Its already completely sequenced genome contains the remarkable number of 80 cytochrome P450 genes (CYP) and many further genes coding for enzymes involved in biotransformation. In order to study xenobiotically induced gene expression in C. elegans, liquid cultures were exposed to different, well-known xenobiotic inducers. The mRNA expression was detected by two different types of DNA arrays and semi-quantitative RT-PCR. {beta}-naphthoflavone, PCB52 and lansoprazol were the most active and, in particular, induced almost all CYP35 isoforms strongly. In conclusion, the xenobiotic dependent gene expression of C. elegans is a useful tool to reveal defense mechanisms against potential damaging substances as well as for developing a biomonitoring system. (orig.) [German] Der Bodennematode Caenorhabditis elegans gilt als das einfachste mehrzellige Tier mit dem Status eines Labormodels. Basierend auf seinem entschluesselten Genom konnte die bemerkenswerte Zahl von 80 Cytochrom P450 Genen (CYP) und eine Vielzahl weiterer Gene, welche fuer Enzyme der Biotransformation kodieren, identifiziert werden. Die differentielle Genexpression von C. elegans nach Schadstoffzugabe wurde in Fluessigkulturen mit 18 Xenobiotika aus unterschiedlichen Schadstoffgruppen untersucht. Anschliessend wurde die mRNA Expression mit DNA Arrays und semi-quantitativer RT-PCR bestimmt. {beta}-Naphthoflavone, PCB52 and Lansoprazol erwiesen sich dabei als die wirksamsten Induktoren und konnten unter anderen alle CYP 35 Isoformen stark induzieren. Mit diesen Untersuchungen konnte gezeigt werden, dass die schadstoffinduzierte Genexpression in C. elegans ein adaequates System ist, um sowohl Detoxifikationsmechanismen zu untersuchen als auch ein Biomonitorscreening aufzubauen. (orig.)

  20. Rapid Detection of Bacterial Antibiotic Resistance: Preliminary Evaluation of PCR Assays Targeting Tetracycline Resistance Genes

    Science.gov (United States)

    2007-08-01

    significant homologies over a wide range of species. The sequence of the Campylobacter jejuni tet(O) gene, used in this study as the core sequence...protection protein tet(O): M18896*, Campylobacter jejuni tet(O) gene; AY190525, Campylobacter jejuni plasmid pCjA13 tetracycline resistance protein tet(O

  1. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    YE Wu-wei; YU Shu-xun

    2008-01-01

    @@ Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on the cotton production.The salinityresisted genes and their differential expression were studied under the stress of NaCI on cotton.There were found,under the NaCI stress,1644 genes differentially expressed from the salinity-sensitive cotton and only 817 genes differentially expressed from the salinityresisted cotton.

  2. Performance of resistance gene pyramids to races of rice bacterial blight in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    ZHENGKangle; ZHUANGJieyun; WANGHanrong

    1998-01-01

    The effect of gene pyramiding on resistance to bacterial blight (BB) in rice was evahlated among the IR24-based near isogenic lines conraining single resistance gene and gene pyramids containing two, three or lour resistancegenes (see table).

  3. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria.

    Science.gov (United States)

    Adelowo, Olawale O; Fagade, Obasola E; Agersø, Yvonne

    2014-09-12

    This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Minimum inhibitory concentration (MIC) distributions of the isolates were determined using the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), strB (61%), catA1 (25%), cmlA1 (13%), tetA (21%) and tetB (17%). Class 1 and 2 integrons were found in five (14%) and six (17%) isolates, respectively, while one isolate was positive for both classes of integrons. Seven out of eight isolates with resistance to ciprofloxacin and MIC ≤ 32 mg/L to nalidixic acid contained qnrS genes. Our findings provided additional evidence that the poultry production environment in Nigeria represents an important reservoir of antibiotic resistance genes such as qnrS that may spread from livestock production farms to human populations via manure and water.

  4. A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): Evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters.

    Science.gov (United States)

    Subbotin, Sergei A; Ragsdale, Erik J; Mullens, Teresa; Roberts, Philip A; Mundo-Ocampo, Manuel; Baldwin, James G

    2008-08-01

    The root lesion nematodes of the genus Pratylenchus Filipjev, 1936 are migratory endoparasites of plant roots, considered among the most widespread and important nematode parasites in a variety of crops. We obtained gene sequences from the D2 and D3 expansion segments of 28S rRNA partial and 18S rRNA from 31 populations belonging to 11 valid and two unidentified species of root lesion nematodes and five outgroup taxa. These datasets were analyzed using maximum parsimony and Bayesian inference. The alignments were generated using the secondary structure models for these molecules and analyzed with Bayesian inference under the standard models and the complex model, considering helices under the doublet model and loops and bulges under the general time reversible model. The phylogenetic informativeness of morphological characters is tested by reconstruction of their histories on rRNA based trees using parallel parsimony and Bayesian approaches. Phylogenetic and sequence analyses of the 28S D2-D3 dataset with 145 accessions for 28 species and 18S dataset with 68 accessions for 15 species confirmed among large numbers of geographical diverse isolates that most classical morphospecies are monophyletic. Phylogenetic analyses revealed at least six distinct major clades of examined Pratylenchus species and these clades are generally congruent with those defined by characters derived from lip patterns, numbers of lip annules, and spermatheca shape. Morphological results suggest the need for sophisticated character discovery and analysis for morphology based phylogenetics in nematodes.

  5. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  6. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Science.gov (United States)

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species. PMID:27833593

  7. Prevalence of Aminoglycoside Resistance Genes in Acinetobacter baumannii Isolates

    OpenAIRE

    Aliakbarzade, Katayun; Farajnia, Safar; Karimi Nik, Ashraf; Zarei, Farzaneh; Tanomand, Asghar

    2014-01-01

    Background: Acinetobacter baumannii is one of the major causes of nosocomial infections and is resistant to most available antibiotics. Aminoglycosides remain as drugs of choice for treatment of Acinetobacter infections yet resistance to aminoglycosides has increased in the recent years. Objectives: The present study investigated the prevalence of genes encoding aminoglycoside-modifying enzymes in A. baumannii strains isolated from patients of Tabriz city, northwest of Iran. Materials and Met...

  8. Resistance identification of bivalent fungi-resistant genes transformed soybean to Phytophthora sojae

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soybean is one of the most important sources of edible oil and proteins in the world. However, it suffers from many kinds of fungal diseases which is a major limiting factor in soybean production. The fungal disease can be effectively controlled by breeding plant cultivars with genetic transformation. In this study, the resistance to Phytophthora sojae of five bivalent transgenic soybean line swas identified using the hypocotyls inoculation technique. The lines were the T2 of the transgenic soybean which were transformed with kidney bean chitinase gene and barley ribosome inactivating protein gene, and were positive by Southern Blot analysis. The resistance difference was studied through comparing the death percentage of transgenic soybean with the control. The results showed that four lines were more resistant to P. sojae, whereas other one had no significant difference in comparison with the control. These transgenic soybean lines with enhanced resistance to P. sojae will be useful in soybean resistance breeding.

  9. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria

    DEFF Research Database (Denmark)

    Adelowo, Olawale O.; Fagade, Obasola E.; Agersø, Yvonne

    2014-01-01

    Introduction: This study investigated the mechanisms of resistance in 36 E. coli isolated from waste, litter, soil and water samples collected from poultry farms in Southwestern Nigeria. Methodology: Minimum inhibitory concentration (MIC) distributions of the isolates were determined using...... the methods of the Clinical and Laboratory Standard Institute and resistance genes detected by PCR. Results: A total of 30 isolates (94%) showed resistance to more than one antimicrobial. Percentage resistance was: tetracycline 81%, sulphamethoxazole 67%, streptomycin 56%, trimethoprim 47 %, ciprofloxacin 42......%, ampicillin 36%, spectinomycin 28%, nalidixic acid 25%, chloramphenicol 22%, neomycin 14%, gentamicin 8%, amoxicillin-clavulanate, ceftiofur, cefotaxime, colistin, florfenicol and apramycin 0%. Resistance genes found among the isolates include bla-TEM (85%), sul2 (67%), sul3 (17%), aadA (65%), strA (70%), str...

  10. A SNARE-like protein and biotin are implicated in soybean cyst nematode virulence

    Science.gov (United States)

    Some phytoparasitic nematodes have the ability to infect and reproduce on plants that are normally considered resistant to nematode infection. Such nematodes are referred to as virulent and the mechanisms they use to evade or suppress host plant defenses are not well understood. Here, we report the ...

  11. Loss of the insulator protein CTCF during nematode evolution

    Directory of Open Access Journals (Sweden)

    Schierenberg Einhard

    2009-08-01

    Full Text Available Abstract Background The zinc finger (ZF protein CTCF (CCCTC-binding factor is highly conserved in Drosophila and vertebrates where it has been shown to mediate chromatin insulation at a genomewide level. A mode of genetic regulation that involves insulators and insulator binding proteins to establish independent transcriptional units is currently not known in nematodes including Caenorhabditis elegans. We therefore searched in nematodes for orthologs of proteins that are involved in chromatin insulation. Results While orthologs for other insulator proteins were absent in all 35 analysed nematode species, we find orthologs of CTCF in a subset of nematodes. As an example for these we cloned the Trichinella spiralis CTCF-like gene and revealed a genomic structure very similar to the Drosophila counterpart. To investigate the pattern of CTCF occurrence in nematodes, we performed phylogenetic analysis with the ZF protein sets of completely sequenced nematodes. We show that three ZF proteins from three basal nematodes cluster together with known CTCF proteins whereas no zinc finger protein of C. elegans and other derived nematodes does so. Conclusion Our findings show that CTCF and possibly chromatin insulation are present in basal nematodes. We suggest that the insulator protein CTCF has been secondarily lost in derived nematodes like C. elegans. We propose a switch in the regulation of gene expression during nematode evolution, from the common vertebrate and insect type involving distantly acting regulatory elements and chromatin insulation to a so far poorly characterised mode present in more derived nematodes. Here, all or some of these components are missing. Instead operons, polycistronic transcriptional units common in derived nematodes, seemingly adopted their function.

  12. Resistência de porta-enxertos para pessegueiro e ameixeira aos nematóides causadores de galhas (Meloidogyne spp. Resistance of rootstock for peach tree and plum to root-knot nematodes (Meloidogyne spp.

    Directory of Open Access Journals (Sweden)

    José Carlos Fachinello

    2000-03-01

    Full Text Available O trabalho foi realizado com o objetivo de comparar o comportamento de cinco diferentes porta-enxertos para frutas de caroço em frente a duas espécies de nematóides do gênero Meloidogyne (Meloidogyne javanica e Meloidogyne incognita. O cultivar GF 677 foi obtido a partir do cultivo in vitro e os demais porta-enxertos a partir de sementes. Aos dois meses, as plântulas foram repicadas e inoculadas com uma mistura de Meloidogyne javanica e M. incognita aos 30, 60 e 70 dias após o plantio em canteiros incorporando-se 0,2kg de solo altamente infestado com os nematóides ao redor de cada planta. Ao final do experimento, avaliaram-se o desenvolvimento das plantas e o grau de infecção de cada cultivar. O grau de resistência dos cultivares foi estimado a partir do índice de galhas, obtido através de uma escala de grau ou nota, a qual varia de 0 a 5, em função do número de galhas ou ootecas. Os resultados obtidos demonstraram que o cultivar Okinawa não apresentou galhas no sistema radicular e na análise de crescimento foi superior aos demais cultivares. Os cultivares R-15-2 e Aldrighi foram considerados resistentes aos fitonematóides por apresentarem pequeno número de galhas no sistema radicular. Já o cultivar GF 677 apresentou maior número de galhas no sistema radicular, chegando a 126 galhas/g de raiz.The work was carried out with the objective of comparing the response of five different stone fruit rootstocks to two nematode species (Meloidogyne javanica and Meloidogyne incognita. The cultivar GF677, which was obtained from in vitro cultivation and the others rootstocks, were obtained from seedlings. Two month old plants were transplanted and inoculated with a mixture of both nematode species at 30, 60, 70 days after planting, by incorporating 0.2kg of highly infested soil around each cultivar. The development of the roststocks were evaluated at the end of the experiment. Number of galls, ranging from 0 to 5 was used to score the

  13. Analysis of rice blast resistance genes by QTL mapping

    Institute of Scientific and Technical Information of China (English)

    XU Jichen; WANG Jiulin; LING Zhongzhuan; ZHU Lihuang

    2004-01-01

    Resistance to rice blast pathogen mostly shows a quantitative trait controlled by several minor genes. Its complexity and the mutable characteristic of rice blast isolates both hinder the development of the blast resistance research. The article here tried to explore the resistance gene distribution on rice chromosomes and the way of function. Totally 124 QTLs have been identified against 20 isolates using Cartographer software with a ZYQ8/JX17 DH population, which separately are at 100 loci of 72 marker intervals on 12 rice chromosomes. Of them, 16 QTLs were determined by the isolate HB-97-36-1. 82 QTLs (66.13%) are from the resistant parent alleles, ZYQ8, while 42 QTLs (33.87%) are from the susceptible parent alleles, JX17. In comparison of their positions on chromosome, most QTLs are clustered together and distributed nearby the major genes especially the regions on chromosomes 1, 2, 8, 10 and 12. Each QTL could account for the resistance variation between 3.52%-68.64%. And, a positional QTL might display the resistance to several different isolates with different contributions.

  14. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens

    DEFF Research Database (Denmark)

    Jiang, Xinglin; Ellabaan, Mostafa M Hashim; Charusanti, Pep

    2017-01-01

    It has been hypothesized that some antibiotic resistance genes (ARGs) found in pathogenic bacteria derive from antibiotic-producing actinobacteria. Here we provide bioinformatic and experimental evidence supporting this hypothesis. We identify genes in proteobacteria, including some pathogens......, that appear to be closely related to actinobacterial ARGs known to confer resistance against clinically important antibiotics. Furthermore, we identify two potential examples of recent horizontal transfer of actinobacterial ARGs to proteobacterial pathogens. Based on this bioinformatic evidence, we propose...... results support the existence of ancient and, possibly, recent transfers of ARGs from antibiotic-producing actinobacteria to proteobacteria, and provide evidence for a defined mechanism....

  15. Resistance of gastrointestinal nematodes to the most commonly used anthelmintics in sheep, cattle and horses in Spain.

    Science.gov (United States)

    Martínez-Valladares, M; Geurden, T; Bartram, D J; Martínez-Pérez, J M; Robles-Pérez, D; Bohórquez, A; Florez, E; Meana, A; Rojo-Vázquez, F A

    2015-07-30

    The objective of this study was to evaluate the status of anthelmintic resistance (AR) in ruminants and horses in Spain. The efficacy of commonly used macrocyclic lactones (MLs) - ivermectin (IVM) and moxidectin (MOX) - was measured in sheep, cattle and horses. In addition, albendazole (ABZ) and levamisole (LEV) were evaluated in sheep and oxibendazole (OXI) and pyrantel (PYR) in horses. Efficacy was evaluated based on the difference between the arithmetic mean pre- and post-treatment faecal egg count (in cattle and horses), or compared to an untreated control group (in sheep). AR was present when the percentage reduction in egg count was <95% and the lower 95% confidence interval (CI) was <90%; if only one of these two criteria was met, the finding was recorded as suspected AR (SAR). In horses, AR-PYR and OXI was considered when the percentage reduction in egg count was ≤ 90% and the lower 95% CI was ≤ 80%. For each animal species, at least 10 study sites were selected. AR to at least one of the drugs was detected in all 10 sheep flocks; the main parasite identified after treatment was Teladorsagia circumcincta. Moreover, in 5 flocks multidrug resistance was identified, on 4 farms to drugs from different families, on one farm to both MOX and IVM and on another farm to all drugs tested. In cattle, the efficacy of both MOX and IVM was 100% on 4 and 3 farms, respectively, and therefore 60% of these farms were considered to have AR or SAR to both MLs. The most frequent parasite identified after treatment was Trichostrongylus spp., although Ostertagia ostertagi was also identified after treatment on one farm. In contrast to ruminants, the 4 drugs evaluated in horses were highly efficacious against strongyles, with efficacies for the MLs and OXI between 95 and 100% and between 94 and 100% for PYR, although 3 herds were SAR against PYR. In conclusion, AR to at least one of the commonly used drugs was identified on all sheep flocks investigated in the northwest of

  16. Spread of tetracycline resistance genes at a conventional dairy farm

    Directory of Open Access Journals (Sweden)

    Martina eKyselkova

    2015-05-01

    Full Text Available The use of antibiotics in animal husbandry contributes to the worldwide problem of increasing antibiotic resistance in animal and human pathogens. Intensive animal production is considered an important source of antibiotic resistance genes released to the environment, while the contribution of smaller farms remains to be evaluated. Here we monitor the spread of tetracycline resistance (TC-r genes at a middle-size conventional dairy farm, where chlortetracycline (CTC, as intrauterine suppository is prophylactically used after each calving. Our study has shown that animals at the farm acquired the TC-r genes in their early age (1-2 weeks, likely due to colonization with TC-resistant bacteria from their mothers and/or the farm environment. The relative abundance of the TC-r genes tet(W, tet(Q and tet(M in fresh excrements of calves was about 1-2 orders of magnitude higher compared to heifers and dairy cows, possibly due to the presence of antibiotic residues in milk fed to calves. The occurrence and abundance of TC-r genes in fresh excrements of heifers and adult cows remained unaffected by intrauterine CTC applications, with tet(O, tet(Q and tet(W representing a ‘core TC-resistome’ of the farm, and tet(A, tet(M, tet(Y and tet(X occurring occasionally. The genes tet(A, tet(M, tet(Y and tet(X were shown to be respectively harbored by Shigella, Lactobacillus and Clostridium, Acinetobacter, and Wautersiella. Soil in the farm proximity, as well as field soil to which manure from the farm was applied, was contaminated with TC-r genes occurring in the farm, and some of the TC-r genes persisted in the field over 3 months following the manure application. Concluding, our study shows that antibiotic resistance genes may be a stable part of the intestinal metagenome of cattle even if antibiotics are not used for growth stimulation, and that smaller dairy farms may also contribute to environmental pollution with antibiotic resistance genes.

  17. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Science.gov (United States)

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  18. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Directory of Open Access Journals (Sweden)

    Colin W Hiebert

    Full Text Available Stem rust, caused by Puccinia graminis (Pgt, is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  19. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    Science.gov (United States)

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  20. Antimicrobial resistance and prevalence of resistance genes in intestinal Bacteroidales strains

    Directory of Open Access Journals (Sweden)

    Viviane Nakano

    2011-01-01

    Full Text Available OBJECTIVE: This study examined the antimicrobial resistance profile and the prevalence of resistance genes in Bacteroides spp. and Parabacteroides distasonis strains isolated from children's intestinal microbiota. METHODS: The susceptibility of these bacteria to 10 antimicrobials was determined using an agar dilution method. β-lactamase activity was assessed by hydrolysis of the chromogenic cephalosporin of 114 Bacteriodales strains isolated from the fecal samples of 39 children, and the presence of resistance genes was tested using a PCR assay. RESULTS: All strains were susceptible to imipenem and metronidazole. The following resistance rates were observed: amoxicillin (93%, amoxicillin/clavulanic acid (47.3%, ampicillin (96.4%, cephalexin (99%, cefoxitin (23%, penicillin (99%, clindamycin (34.2% and tetracycline (53.5%. P-lactamase production was verified in 92% of the evaluated strains. The presence of the cfiA, cepA, ermF, tetQ and nim genes was observed in 62.3%, 76.3%, 27%, 79.8% and 7.8% of the strains, respectively. CONCLUSIONS: Our results indicate an increase in the resistance to several antibiotics in intestinal Bacteroides spp. and Parabacteroides distasonis and demonstrate that these microorganisms harbor antimicrobial resistance genes that may be transferred to other susceptible intestinal strains.

  1. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes.

    Science.gov (United States)

    Zhang, Chong-Miao; Xu, Li-Mei; Wang, Xiaochang C; Zhuang, Kai; Liu, Qiang-Qiang

    2017-04-29

    To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli (E. coli). Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm(-2) ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm(-2) ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of ARB in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. Our study highlights the acquisition of other methods to control the spread of ARGs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. NBS-LRR resistance gene homologues in rice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Twenty three DNA fragments with a size of about 520 bp have been cloned from rice genome by PCR amplification using primers designed according to the conserved region of most plant resistance (R) genes which have Nucleotide Binding Site (NBS) and Leucine-Rich Repeat (LRR) domains. Homologous comparison showed that these fragments contained typical motifs of the NBS-LRR resistance gene class, kinase 1a, kinase 2a, kinase 3a and domain 2. Thus they were named R gene homologous sequences (RS). These RS were divided into 4 groups by clustering analysis and mapped onto chromosomes 1, 3, 4, 7, 8, 9, 10 and 11, respectively, by genetic mapping. Ten RS were located in the chromosomal intervals where known R genes had been mapped. Further RFLP analysis of an RS, RS13, near the bacterial blight resistance gene Xa4 locus on chromosome 11 among near isogenic lines and pyramiding lines of Xa4 showed that RS13 was possibly amplified from the gene family of Xa4.

  3. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes

    Science.gov (United States)

    Mahmood, Khalid; Mathiassen, Solvejg K.; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  4. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes.

    Science.gov (United States)

    Mahmood, Khalid; Mathiassen, Solvejg K; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  5. Multiple herbicide resistance in Lolium multiflorum and identification of conserved regulatory elements of herbicide resistance genes

    Directory of Open Access Journals (Sweden)

    Khalid Mahmood

    2016-08-01

    Full Text Available Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of L. multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR genes were also observed after herbicides exposure in the gene expression databases, indicating them a reliable marker. In order to get an overview of herbicidal resistance status of Lolium multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O.sativa and A.thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward towards a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management.

  6. Analysis of Romanian Bacteroides isolates for antibiotic resistance levels and the corresponding antibiotic resistance genes.

    Science.gov (United States)

    Székely, Edit; Eitel, Zsuzsa; Molnár, Szabolcs; Szász, Izabella Éva; Bilca, Doina; Sóki, József

    2015-02-01

    As part of an ESCMID Study Group on Anaerobic Infections (ESGAI) project, a study was conducted to measure the antibiotic susceptibilities and corresponding gene contents of 53 Bacteroides fragilis group strains isolated in Romania. The antibiotic resistance data was comparable with the data found for other East-European countries. Here, no resistant isolate was found for imipenem, metronidazole and tigecycline. An increasing role of the cepA, cfxA and cfiA genes was observed in their corresponding antibiotic resistances. Moreover, no isolate was found that harbored the cfiA gene with a possible activating IS element. Clindamycin resistance was low, similarly to that the rate for the ermF gene. However, we did find some isolates with nimB, ermB, msrSA, linA, satG, tetX, tetM and bexA genes. This study was the first to provide antibiotic resistance data for clinical Bacteroides strains from Romania.

  7. MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes.

    Science.gov (United States)

    Nath, S; Daneshvar, K; Roy, L D; Grover, P; Kidiyoor, A; Mosley, L; Sahraei, M; Mukherjee, P

    2013-06-17

    MUC1 (CD227), a membrane tethered mucin glycoprotein, is overexpressed in >60% of human pancreatic cancers (PCs), and is associated with poor prognosis, enhanced metastasis and chemoresistance. The objective of this study was to delineate the mechanism by which MUC1 induces drug resistance in human (BxPC3 and Capan-1) and mouse (KCKO, KCM) PC cells. We report that PC cells that express high levels of MUC1 exhibit increased resistance to chemotherapeutic drugs (gemcitabine and etoposide) in comparison with cells that express low levels of MUC1. This chemo resistance was attributed to the enhanced expression of multidrug resistance (MDR) genes including ABCC1, ABCC3, ABCC5 and ABCB1. In particular, levels of MRP1 protein encoded by the ABCC1 gene were significantly higher in the MUC1-high PC cells. In BxPC3 and Capan-1 cells MUC1 upregulates MRP1 via an Akt-dependent pathway, whereas in KCM cells MUC1-mediated MRP1 upregulation is via an Akt-independent mechanism. In KCM, BxPC3 and Capan-1 cells, the cytoplasmic tail motif of MUC1 associates directly with the promoter region of the Abcc1/ABCC1 gene, indicating a possible role of MUC1 acting as a transcriptional regulator of this gene. This is the first report to show that MUC1 can directly regulate the expression of MDR genes in PC cells, and thus confer drug resistance.

  8. Relationship between antifungal resistance of fluconazole resistant Candida albicans and mutations in ERG11 gene

    Institute of Scientific and Technical Information of China (English)

    FENG Li-juan; WAN Zhe; WANG Xiao-hong; LI Ruo-yu; LIU Wei

    2010-01-01

    Background The cytochrome P450 lanosterol 14α-demethylase(Erg11p) encoded by ERG11 gene is the primary target for azole antifungals.Changes in azole affinity of this enzyme caused by amino acid substitutions have been reported as a mechanism of azole antifungal resistance. This study aimed to investigate the relationship between amino acid substitutions in Erg11p from fluconazole resistant Candida albicans (C.albicans)isolates and their cross-resistance to azoles.Methods Mutations in ERG11 gene were screened in 10 clinical isolates of fluconazole resistant C.albicans strains.DNA sequence of ERG11 was determined by PCR based DNA sequencing.Results In the 10 isolates,19 types of amino acid substitutions were found,of which 10 substitutions (F72S, F103L, F145I, F198L, G206D, G227D, N349S, F416S, F422L and T482A) have not been reported previously. Mutations in ERG11 gene were detected in 9 isolates of fluconazole resistant C. albicans, but were not detected in 1 isolate. Conclusions Although no definite correlation was found between the type of amino acid substitutions in Erg11p and the phenotype of cross-resistance to azoles, the substitutions F72S, F145I and G227D in our study may be highly associated with resistance to azoles because of their special location in Erg11p.

  9. Transcriptomic analysis of the rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    Full Text Available BACKGROUND: The rice white tip nematode Aphelenchoides besseyi, a devastating nematode whose genome has not been sequenced, is distributed widely throughout almost all the rice-growing regions of the world. The aims of the present study were to define the transcriptome of A. besseyi and to identify parasite-related, mortality-related or host resistance-overcoming genes in this nematode. METHODOLOGY AND PRINCIPAL FINDINGS: Using Solexa/Illumina sequencing, we profiled the transcriptome of mixed-stage populations of A. besseyi. A total of 51,270 transcripts without gaps were produced based on high-quality clean reads. Of all the A. besseyi transcripts, 9,132 KEGG Orthology assignments were annotated. Carbohydrate-active enzymes of glycoside hydrolases (GHs, glycosyltransferases (GTs, carbohydrate esterases (CEs and carbohydrate-binding modules (CBMs were identified. The presence of the A. besseyi GH45 cellulase gene was verified by in situ hybridization. Given that 13 unique A. besseyi potential effector genes were identified from 41 candidate effector homologs, further studies of these homologs are merited. Finally, comparative analyses were conducted between A. besseyi contigs and Caenorhabditis elegans genes to look for orthologs of RNAi phenotypes, neuropeptides and peptidases. CONCLUSIONS AND SIGNIFICANCE: The present results provide comprehensive insight into the genetic makeup of A. besseyi. Many of this species' genes are parasite related, nematode mortality-related or necessary to overcome host resistance. The generated transcriptome dataset of A. besseyi reported here lays the foundation for further studies of the molecular mechanisms related to parasitism and facilitates the development of new control strategies for this species.

  10. The relationship of host-mediated induced resistance to polymorphism in gene-for-gene relationships.

    Science.gov (United States)

    Tellier, Aurélien; Brown, James K M

    2008-01-01

    Gene-for-gene relationships are a common feature of plant-parasite interactions. Polymorphism at host resistance and parasite avirulence loci is maintained if there is negative, direct frequency-dependent selection on alleles of either gene. More specifically, selection of this kind is generated when the disease is polycyclic with frequent auto-infection. When an incompatible interaction occurs between a resistant host and an avirulent parasite, systemic defenses are triggered, rendering the plant more resistant to a later attack by another parasite. However, induced resistance (IR) incurs a fitness cost to the plant. Here, the effect of IR on polymorphism in gene-for-gene interactions is investigated. First, in an infinite population model in which parasites have two generations per host generation, increasing the fitness cost of IR increases selection for susceptible plants at low disease severity, while increasing the effectiveness of IR against further parasite attacks enhances selection for resistant plants at high disease severity. This reduces the possibility of polymorphism being maintained in host and parasite populations. In finite population models, the number of plants varies over time as a function of the disease burden of the population. Polymorphism in gene-for-gene relationships is then more stable at high disease prevalence and severity if IR reactions are more costly when there is competition for resources between plants.

  11. Molecular Detection of Virulence Genes and Antibiotic Resistance ...

    African Journals Online (AJOL)

    Keywords: Pathogen, E. coli O157:H7, virulence genes, antibiotic-resistance, beef meat. Correspondence: ... O157:H7 have been a significant public health problem world-wide ... To the best of our knowledge, there have been no published ...

  12. Evaluating antibiotic resistance genes in soils with applied manures

    Science.gov (United States)

    Antibiotics are commonly used in livestock production to promote growth and combat disease. Recent studies have shown the potential for spread of antibiotic resistance genes (ARG) to the environment following application of livestock manures. In this study, concentrations of bacteria with ARG in soi...

  13. Identification of blast resistance genes for managing rice blast disease

    Science.gov (United States)

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  14. A mir-231-Regulated Protection Mechanism against the Toxicity of Graphene Oxide in Nematode Caenorhabditis elegans

    Science.gov (United States)

    Yang, Ruilong; Ren, Mingxia; Rui, Qi; Wang, Dayong

    2016-08-01

    Recently, several dysregulated microRNAs (miRNAs) have been identified in organisms exposed to graphene oxide (GO). However, their biological functions and mechanisms of the action are still largely unknown. Here, we investigated the molecular mechanism of mir-231 in the regulation of GO toxicity using in vivo assay system of Caenorhabditis elegans. We found that GO exposure inhibited the expression of mir-231::GFP in multiple tissues, in particular in the intestine. mir-231 acted in intestine to regulate the GO toxicity, and overexpression of mir-231 in intestine caused a susceptible property of nematodes to GO toxicity. smk-1 encoding a homologue to mammalian SMEK functioned as a targeted gene for mir-231, and was also involved in the intestinal regulation of GO toxicity. Mutation of smk-1 gene induced a susceptible property to GO toxicity, whereas the intestinal overexpression of smk-1 resulted in a resistant property to GO toxicity. Moreover, mutation of smk-1 gene suppressed the resistant property of mir-231 mutant to GO toxicity. In nematodes, SMK-1 further acted upstream of the transcriptional factor DAF-16/FOXO in insulin signaling pathway to regulate GO toxicity. Therefore, mir-231 may encode a GO-responsive protection mechanism against the GO toxicity by suppressing the function of the SMK-1 - DAF-16 signaling cascade in nematodes.

  15. Rolling circle amplification of complete nematode mitochondrial genomes.

    Science.gov (United States)

    Tang, Sha; Hyman, Bradley C

    2005-06-01

    To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80 degrees C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing.

  16. Conserving and enhancing biological control of nematodes.

    Science.gov (United States)

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good host