WorldWideScience

Sample records for nematode parasites resistant

  1. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants

    Directory of Open Access Journals (Sweden)

    Silvestre A.

    2004-06-01

    Full Text Available In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control ? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole. Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial : it is not possible to avoid it, but only to delay its development in farm animal industry.

  2. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Sagar Banerjee

    2017-05-01

    Full Text Available Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  3. Parasitic nematode interactions with mammals and plants.

    Science.gov (United States)

    Jasmer, Douglas P; Goverse, Aska; Smant, Geert

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent reinfection of host species. In addition, development of resistance to nematicides and anthelmintics by these parasites and reduced availability of some nematicides, for environmental protection, pose significant obstacles for current and future prospects of effective parasite control. Due to marked differences in host species, research on animal and plant parasitic nematodes often proceeds independently. Despite the differences between animals and plants, basic cellular properties are shared among these host organisms. Some common properties may be important for mechanisms [homologous or convergent (homoplastic)] by which nematodes successfully infect these diverse hosts or by which animal and plant hosts resist infections by these pathogens. Here we compare host/parasite interactions between plant parasitic nematodes (PPN) and animal parasitic nematodes, with an emphasis on mammalian hosts (MPN). Similarities and differences are considered in the context of progress on molecular dissection of these interactions. A comprehensive coverage is not possible in the space allotted. Instead, an illustrative approach is used to establish examples that, it is hoped, exemplify the value of the comparative approach.

  4. Mechanisms of host seeking by parasitic nematodes.

    Science.gov (United States)

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.

    Science.gov (United States)

    Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J

    2009-01-01

    Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.

  6. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect.

    Science.gov (United States)

    Elsen, A; Gervacio, D; Swennen, R; De Waele, D

    2008-07-01

    Although mycorrhizal colonization provides a bioprotectional effect against a broad range of soil-borne pathogens, including plant parasitic nematodes, the commercial use of arbuscular mycorrhizal fungi (AMF) as biocontrol agents is still in its infancy. One of the main reasons is the poor understanding of the modes of action. Most AMF mode of action studies focused on AMF-bacterial/fungal pathogens. Only few studies so far examined AMF-plant parasitic nematode interactions. Therefore, the aim of the study was to determine whether the AMF Glomus intraradices was able to incite systemic resistance in banana plants towards Radopholus similis and Pratylenchus coffeae, two plant parasitic nematodes using a split-root compartmental set-up. The AMF reduced both nematode species by more than 50%, even when the AMF and the plant parasitic nematodes were spatially separated. The results obtained demonstrate for the first time that AMF have the ability to induce systemic resistance against plant parasitic nematodes in a root system.

  7. Transgenic Strategies for Enhancement of Nematode Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-05-01

    Full Text Available Plant parasitic nematodes (PPNs are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  8. Genome Evolution of Plant-Parasitic Nematodes.

    Science.gov (United States)

    Kikuchi, Taisei; Eves-van den Akker, Sebastian; Jones, John T

    2017-08-04

    Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.

  9. Targeted mutagenesis in a human-parasitic nematode

    Science.gov (United States)

    Gang, Spencer S.; Castelletto, Michelle L.

    2017-01-01

    Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites. PMID:29016680

  10. Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-10-01

    Full Text Available Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.

  11. Anthelmintic resistance in cattle nematodes in the US.

    Science.gov (United States)

    Gasbarre, Louis C

    2014-07-30

    The first documented case of macrocyclic lactone resistance in gastrointestinal (GI) nematodes of cattle was seen in the US approximately 10 years ago. Since that time the increase incidence of anthelmintic resistance has continued at an alarming rate. Currently parasites of the genera Cooperia and/or Haemonchus resistant to generic or brand-name macrocyclic lactones have be demonstrated in more than half of all operations examined. Both of these parasite genera are capable of causing economic losses by decreasing food intake and subsequently animal productivity. Currently, there are no easy and quick means to detect anthelmintic resistant GI nematodes. Definitive identification requires killing of cattle. The most commonly used field detection method is the fecal egg count reduction test (FECRT). This method can be adapted for use as a screening agent for Veterinarians and producers to identify less than desired clearance of the parasites after anthelmintic treatment. Further studies can then define the reasons for persistence of the egg counts. The appearance of anthelmintic resistance is largely due to the development of very effective nematode control programs that have significantly improved the productivity of the US cattle industry, but at the same time has placed a high level of selective pressure on the parasite genome. The challenges ahead include the development of programs that control the anthelmintic resistant nematodes but at the same time result in more sustainable parasite control. The goal is to maintain high levels of productivity but to exert less selective pressures on the parasites. One of the most effective means to slow the development of drug resistance is through the simultaneous use of multiple classes of anthelmintics, each of which has a different mode of action. Reduction of the selective pressure on the parasites can be attained through a more targeted approach to drug treatments where the producer's needs are met by selective

  12. Plant-parasitic nematodes in Hawaiian agriculture

    Science.gov (United States)

    Hawaii’s diverse and mild climate allows for the cultivation of many crops. The introduction of each crop plant brought along its associated nematode pests. These plant-parasitic nematodes became established and are now endemic to the islands. Plantation agriculture determined the major nematode ...

  13. Nuclear techniqes in the study of genetic resistance to gastrointestinal nematode infections of sheep

    International Nuclear Information System (INIS)

    Dargie, J.D.

    1984-01-01

    The paper reviews genetic resistance of sheep to gastrointestinal nematodes from the standpoint of resistance to the parasites themselves and of resistance to the diseases they produce. Attention is focused on infections with the abomasal parasite Haemonchus contortus and the small intestinal nematode Trichostrongylus colubriformis, and on the role of nuclear techniques both in verifying the existence of genetically based differences in resistance to these parasites and in gaining an understanding of the mechanisms involved. It is concluded that resistance to disease per se is much less important than resistance to parasite establishment and survival and that genetic studies could contribute substantially to the identification of the factors and variables responsible for the present inability to successfully vaccinate young animals against these infections. (author)

  14. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  15. Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    2018-06-01

    conclusion, this study highlights the importance of the rhizosphere microbiome in protecting crops against plant-parasitic nematodes. An effect of pre-crops on the rhizosphere microbiome might be harnessed to enhance the resistance of crops towards plant-parasitic nematodes. However, nematode-suppressive effects of a particular microbiome may not necessarily coincide with improvement of plant growth in the absence of plant-parasitic nematodes.

  16. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation

    Directory of Open Access Journals (Sweden)

    Hawdon John

    2010-05-01

    Full Text Available Abstract Background Hookworm infection is one of the most important neglected diseases in developing countries, with approximately 1 billion people infected worldwide. To better understand hookworm biology and nematode parasitism, the present study generated a near complete transcriptome of the canine hookworm Ancylostoma caninum to a very high coverage using high throughput technology, and compared it to those of the free-living nematode Caenorhabditis elegans and the parasite Brugia malayi. Results The generated transcripts from four developmental stages, infective L3, serum stimulated L3, adult male and adult female, covered 93% of the A. caninum transcriptome. The broad diversity among nematode transcriptomes was confirmed, and an impact of parasitic adaptation on transcriptome diversity was inferred. Intra-population analysis showed that A. caninum has higher coding sequence diversity than humans. Examining the developmental expression profiles of A. caninum revealed major transitions in gene expression from larval stages to adult. Adult males expressed the highest number of selectively expressed genes, but adult female expressed the highest number of selective parasitism-related genes. Genes related to parasitism adaptation and A. caninum specific genes exhibited more expression selectivity while those conserved in nematodes tend to be consistently expressed. Parasitism related genes were expressed more selectively in adult male and female worms. The comprehensive analysis of digital expression profiles along with transcriptome comparisons enabled identification of a set of parasitism genes encoding secretory proteins in animal parasitic nematode. Conclusions This study validated the usage of deep sequencing for gene expression profiling. Parasitic adaptation of the canine hookworm is related to its diversity and developmental dynamics. This comprehensive comparative genomic and expression study substantially improves our understanding of

  17. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO; 1550 clusters were assigned enzyme commission (EC numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to

  18. Domestication of ruminant livestock and the impact of nematode parasites:possible implications for the reindeer industry

    Directory of Open Access Journals (Sweden)

    Peter J. Waller

    2005-04-01

    Full Text Available In a balanced ecological system, both host and nematode parasite populations are firmly controlled by a complex array of interacting factors. However domestication of livestock has tipped the balance in favour of the parasites. This is due to increasing the proportion of susceptible animals in the herd or flock (lactating females and weaned young animals, increasing stocking rate, increasing productivity demands and decreasing the movement of the animals. In contrast with microbial infections, where multiplication takes place entirely within the host, metazoan parasites have both a parasitic phase and a free-living phase. Every worm present has been separately acquired by the ingestion of free-living stages on pasture. Immunity to nematodes develops slowly, it is labile, and its maintenance is dependent upon a good nutritional state of the animal. Consequently, worm parasites are ubiquitous wherever livestock are kept and they impose a constant and often a high infectious pressure on grazing animals. Nematode infections in grazing livestock are almost always a mixture of species. All have deleterious effects and collectively lead to chronic ill thrift. Economic evaluations repeatedly show that the major losses due to parasites are on animal production, rather than on mortality. This paper focuses on the problems of nematode parasites; problems associated with drug use (anthelmintic resistance, environmental impact and costs of nematode infections for the common ruminant livestock industries (cattle, sheep, goats, with possible analogies for the semi-domesticated reindeer industry.

  19. Parasitic Nematode Interactions with Mammals and Plants

    NARCIS (Netherlands)

    Jasmer, D.P.; Goverse, A.; Smant, G.

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent

  20. Sequence mining and transcript profiling to explore cyst nematode parasitism

    Directory of Open Access Journals (Sweden)

    Recknor Justin

    2009-01-01

    Full Text Available Abstract Background Cyst nematodes are devastating plant parasites that become sedentary within plant roots and induce the transformation of normal plant cells into elaborate feeding cells with the help of secreted effectors, the parasitism proteins. These proteins are the translation products of parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants. Results We present here the expression patterns of all previously described parasitism genes of the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These insights were gained by analyzing our gene expression dataset from experiments using the Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes, we searched for predicted protein sequences that showed their highest similarities to plant or microbial proteins and identified 156 H. glycines genes, some of which also contained a signal peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses about potential roles in parasitism. This is the first study combining sequence analyses of a substantial EST dataset with microarray expression data of all major life stages (except adult males for the identification and characterization of putative parasitism-associated proteins in any parasitic nematode. Conclusion We have established an expression atlas for all known H. glycines parasitism genes. Furthermore, in an effort to identify additional H. glycines genes with putative functions in parasitism, we have reduced the

  1. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita

    NARCIS (Netherlands)

    Abad, P.; Gouzy, J.; Aury, J.M.; Tytgat, T.O.G.; Smant, G.

    2008-01-01

    Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the

  2. Plant-parasitic nematodes: towards understanding molecular players in stress responses.

    Science.gov (United States)

    Gillet, François-Xavier; Bournaud, Caroline; Antonino de Souza Júnior, Jose Dijair; Grossi-de-Sa, Maria Fatima

    2017-03-01

    Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Biocontrol: Fungal Parasites of Female Cyst Nematodes

    OpenAIRE

    Kerry, Brian

    1980-01-01

    Three species of fungi, Catenaria auxiliarls (Kühn) Tribe, Nematophthora gynophila Kerry and Crump, and a Lagenidiaceous fungus have been found attacking female cyst nematodes. All are zoosporic fungi which parasitize females on the root surface, cause the breakdown of the nematode cuticle, and prevent cyst formation. Their identification and some aspects of their biology are reviewed. N. gynophila is widespread in Britain and reduces populations of the cereal cyst nematode, Heterodera avenae...

  4. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    Science.gov (United States)

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  5. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    Science.gov (United States)

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes.

  6. Heterozygote deficits in cyst plant-parasitic nematodes: possible causes and consequences.

    Science.gov (United States)

    Montarry, Josselin; Jan, Pierre-Loup; Gracianne, Cecile; Overall, Andrew D J; Bardou-Valette, Sylvie; Olivier, Eric; Fournet, Sylvain; Grenier, Eric; Petit, Eric J

    2015-04-01

    Deviations of genotypic frequencies from Hardy-Weinberg equilibrium (HWE) expectations could reveal important aspects of the biology of populations. Deviations from HWE due to heterozygote deficits have been recorded for three plant-parasitic nematode species. However, it has never been determined whether the observed deficits were due (i) to the presence of null alleles, (ii) to a high level of consanguinity and/or (iii) to a Wahlund effect. The aim of the present work was, while taking into the possible confounding effect of null alleles, to disentangle consanguinity and Wahlund effect in natural populations of those three economically important cyst nematodes using microsatellite markers: Globodera pallida, G. tabacum and Heterodera schachtii, pests of potato, tobacco and sugar beet, respectively. The results show a consistent pattern of heterozygote deficiency in the three nematode species sampled at the spatial scale of the host plant. We demonstrate that the prevalence of null alleles is weak and that heterozygote deficits do not have a single origin. Our results suggested that it is restricted dispersal that leads to heterozygote deficits through both consanguinity and substructure, which effects can be linked to soil movement, cyst density, and the number of generations per year. We discuss potential implications for the durability of plant resistances that are used to protect crops against parasites in which mating between relatives occur. While consanguineous mating leads to homozygosity at all loci, including loci governing avirulence/virulence, which favours the expression of virulence when recessive, the Wahlund effect is expected to have no particular effect on the adaptation of nematodes to resistances. © 2015 John Wiley & Sons Ltd.

  7. Genetic analysis of resistance to ticks, gastrointestinal nematodes and Eimeria spp. in Nellore cattle.

    Science.gov (United States)

    Passafaro, Tiago Luciano; Carrera, Juan Pablo Botero; dos Santos, Livia Loiola; Raidan, Fernanda Santos Silva; dos Santos, Dalinne Chrystian Carvalho; Cardoso, Eduardo Penteado; Leite, Romário Cerqueira; Toral, Fabio Luiz Buranelo

    2015-06-15

    The aim of the present study was to obtain genetic parameters for resistance to ticks, gastrointestinal nematodes (worms) and Eimeria spp. in Nellore cattle, analyze the inclusion of resistance traits in Nellore breeding programs and evaluate genetic selection as a complementary tool in parasite control programs. Counting of ticks, gastrointestinal nematode eggs and Eimeria spp. oocysts per gram of feces totaling 4270; 3872 and 3872 records from 1188; 1142 and 1142 animals, respectively, aged 146 to 597 days were used. The animals were classified as resistant (counts equal to zero) or susceptible (counts above zero) to each parasite. The statistical models included systematics effects of contemporary groups and the mean trajectory. The random effects included additive genetic effects, direct permanent environmental effects and residual. The mean trajectory and random effects were modeled with linear Legendre polynomials for all traits except for the mean trajectory of resistance to Eimeria spp., which employed the cubic polynomial. Heritability estimates were of low to moderate magnitude and ranged from 0.06 to 0.30, 0.06 to 0.33 and 0.04 to 0.33 for resistance to ticks, gastrointestinal nematodes and Eimeria spp., respectively. The posterior mean of genetic and environmental correlations for the same trait at different ages (205, 365, 450 and 550 days) were favorable at adjacent ages and unfavorable at distant ages. In general, the posterior mean of the genetic and environmental correlations between traits of resistance were low and high-density intervals were large and included zero in many cases. The heritability estimates support the inclusion of resistance to ticks, gastrointestinal nematodes and Eimeria spp. in Nellore breeding programs. Genetic selection can increase the frequency of resistant animals and be used as a complementary tool in parasite control programs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.

    Science.gov (United States)

    Zheng, Jinshui; Peng, Donghai; Chen, Ling; Liu, Hualin; Chen, Feng; Xu, Mengci; Ju, Shouyong; Ruan, Lifang; Sun, Ming

    2016-07-27

    Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans, the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants. © 2016 The Author(s).

  9. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-12-09

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  10. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism.

    Science.gov (United States)

    Chronis, Demosthenis; Chen, Shiyan; Lu, Shunwen; Hewezi, Tarek; Carpenter, Sara C D; Loria, Rosemary; Baum, Thomas J; Wang, Xiaohong

    2013-04-01

    Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  11. Susceptibility of the Giant African snail (Achatina fulica) exposed to the gastropod parasitic nematode Phasmarhabditis hermaphrodita.

    Science.gov (United States)

    Williams, A J; Rae, R

    2015-05-01

    The Giant African snail (Achatina fulica) is a major pest in tropical countries. Current control methods involve the use of slug pellets (metaldehyde) but they are ineffective, therefore new methods of control are needed. We investigated whether A. fulica is susceptible to the gastropod parasitic nematode Phasmarhabditis hermaphrodita, which has been developed as a biological control agent for slugs and snails in northern Europe. We exposed A. fulica to P. hermaphrodita applied at 30 and 150nematodes per cm(2) for 70days and also assessed feeding inhibition and changes in snail weight. We show that unlike the susceptible slug species Deroceras panormitanum, which is killed less than 30days of exposure to P. hermaphrodita, A. fulica is remarkably resistant to the nematode at both doses. Also P. hermaphrodita does not reduce feeding in A. fulica nor did it have any effect on weight gain over 70days. Upon dissection of infected A. fulica we found that hundreds of P. hermaphrodita had been encapsulated, trapped and killed in the snail's shell. We found that A. fulica is able to begin encapsulating P. hermaphrodita after just 3days of exposure and the numbers of nematodes encapsulated increased over time. Taken together, we have shown that A. fulica is highly resistant to P. hermaphrodita, which could be due to an immune response dependent on the snail shell to encapsulate and kill invading parasitic nematodes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  13. [Screening endophytic bacteria against plant-parasitic nematodes].

    Science.gov (United States)

    Peng, Shuang; Yan, Shuzhen; Chen, Shuanglin

    2011-03-01

    Plant-parasite nematode is one of the most important pathogens in plant. Our objective is to screen endophytic bacteria against plant-parasitic nematodes from plant. Endophytic bacteria were isolated and screened by testing their metabolite against Bursaphelenchus xylophilus in vitro. Those strains inhibiting B. xylophilus were selected to culture in liquid medium and fermentation conditions were optimized by orthogonal test. The stability of the antinematode substances was evaluated by various. In addition, four strains were identified by 16SrDNA sequence analysis. In total 13 strains of endophytic bacteria secreting antinematode metabolite were isolated from 6 species of plant. The supernatant of the fermentation broth of these endophytic bacteria gave 100% mortality of nematodes after treated as the follows: 1 ml each was mixed with 0.2 ml of the suspension of nematodes (2000 nematodes/ml) then incubated at 250C for 24 h, some of which could led to leakage or dissolution of nematodes. Among them, four strains, BCM2, SZ5, CCM7 and DP1, showed stronger activity than others. The supernatants diluted three times also gave not less than 95% mortality after 24 h treatment, and those from DP1 and SZ5 even gave 100% mortality. The fermentation conditions of the four strains were optimized and the antinematode activity grew up four times after optimization. The antinematode substances of these strains were found stable when treated with protease or heating or stored at 4 degrees C after 100 days, while instable when treated with acid or alkali. DP1 and CCM7 were identified to be Bacillus subtilis, while SZ5 and BCM2 to be Bacillus cereus. Endophytic bacteria secreting antinematode metabolite were found in economic crops. The metabolite of some strains showed strong and stable antinematode activity. Our results indicate the real potential of biocontrol by endophytic bacteria.

  14. Structural and functional characterisation of FOXO/Acan-DAF-16 from the parasitic nematode Angiostrongylus cantonensis.

    Science.gov (United States)

    Yan, Baolong; Sun, Weiwei; Yan, Lanzhu; Zhang, Liangliang; Zheng, Yuan; Zeng, Yuzhen; Huang, Huicong; Liang, Shaohui

    2016-12-01

    Fork head box transcription factors subfamily O (FoxO) is regarded to be significant in cell-cycle control, cell differentiation, ageing, stress response, apoptosis, tumour formation and DNA damage repair. In the free-living nematode Caenorhabditis elegans, the FoxO transcription factor is encoded by Ce-daf-16, which is negatively regulated by insulin-like signaling (IIS) and involved in promoting dauer formation through bringing about its hundreds of downstream genes expression. In nematode parasites, orthologues of daf-16 from several species have been identified, with functions in rescue of dauer phenotypes determined in a surrogate system C. elegans. In this study, we identified the FoxO encoding gene, Acan-daf-16, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. Acan-daf-16 encodes two proteins, Acan-DAF-16A and Acan-DAF-16B, consisting of 555 and 491 amino acids, respectively. Both isoforms possess the highly conserved fork head domains. Acan-daf-16A and Acan-daf-16B are expressed from distinct promoters. The expression patterns of Acan-daf-16 isoforms in the C. elegans surrogate system showed that p Acan-daf-16a:gfp was expressed in all cells of C. elegans, including the pharynx, and the expression of p Acan-daf-16b:gfp was restricted to the pharynx. In addition to the same genomic organization to the orthologue in C. elegans, Ce-daf-16, both Acan-DAF-16 isoforms could restore the C. elegans daf-16(mg54) mutation in longevity, dauer formation and stress resistance, in spite of the partial complementation of Acan-DAF-16B isoform in longevity. These findings provide further evidence of the functional conservation of DAF-16s between parasitic nematodes and the free-living nematode C. elegans. Copyright © 2016. Published by Elsevier B.V.

  15. Discovery of genomic intervals that underlie nematode responses to benzimidazoles.

    Science.gov (United States)

    Zamanian, Mostafa; Cook, Daniel E; Zdraljevic, Stefan; Brady, Shannon C; Lee, Daehan; Lee, Junho; Andersen, Erik C

    2018-03-01

    Parasitic nematodes impose a debilitating health and economic burden across much of the world. Nematode resistance to anthelmintic drugs threatens parasite control efforts in both human and veterinary medicine. Despite this threat, the genetic landscape of potential resistance mechanisms to these critical drugs remains largely unexplored. Here, we exploit natural variation in the model nematodes Caenorhabditis elegans and Caenorhabditis briggsae to discover quantitative trait loci (QTL) that control sensitivity to benzimidazoles widely used in human and animal medicine. High-throughput phenotyping of albendazole, fenbendazole, mebendazole, and thiabendazole responses in panels of recombinant lines led to the discovery of over 15 QTL in C. elegans and four QTL in C. briggsae associated with divergent responses to these anthelmintics. Many of these QTL are conserved across benzimidazole derivatives, but others show drug and dose specificity. We used near-isogenic lines to recapitulate and narrow the C. elegans albendazole QTL of largest effect and identified candidate variants correlated with the resistance phenotype. These QTL do not overlap with known benzimidazole target resistance genes from parasitic nematodes and present specific new leads for the discovery of novel mechanisms of nematode benzimidazole resistance. Analyses of orthologous genes reveal conservation of candidate benzimidazole resistance genes in medically important parasitic nematodes. These data provide a basis for extending these approaches to other anthelmintic drug classes and a pathway towards validating new markers for anthelmintic resistance that can be deployed to improve parasite disease control.

  16. The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes.

    Science.gov (United States)

    Hiltpold, Ivan; Jaffuel, Geoffrey; Turlings, Ted C J

    2015-02-01

    To defend themselves against herbivores and pathogens, plants produce numerous secondary metabolites, either constitutively or de novo in response to attacks. An intriguing constitutive example is the exudate produced by certain root-cap cells that can induce a state of reversible quiescence in plant-parasitic nematodes, thereby providing protection against these antagonists. The effect of such root exudates on beneficial entomopathogenic nematodes (EPNs) remains unclear, but could potentially impair their use in pest management programmes. We therefore tested how the exudates secreted by green pea (Pisum sativum) root caps affect four commercial EPN species. The exudates induced reversible quiescence in all EPN species tested. Quiescence levels varied with the green pea cultivars tested. Notably, after storage in root exudate, EPN performance traits were maintained over time, whereas performances of EPNs stored in water rapidly declined. In sharp contrast to high concentrations, lower concentrations of the exudate resulted in a significant increase in EPN activity and infectiousness, but still reduced the activity of two plant-parasitic nematode species. Our study suggests a finely tuned dual bioactivity of the exudate from green pea root caps. Appropriately formulated, it can favour long-term storage of EPNs and boost their infectiousness, while it may also be used to protect plants from plant-parasitic nematodes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Remote Sensing of Parasitic Nematodes in Plants

    Science.gov (United States)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  18. Top 10 plant-parasitic nematodes in molecular plant pathology.

    Science.gov (United States)

    Jones, John T; Haegeman, Annelies; Danchin, Etienne G J; Gaur, Hari S; Helder, Johannes; Jones, Michael G K; Kikuchi, Taisei; Manzanilla-López, Rosa; Palomares-Rius, Juan E; Wesemael, Wim M L; Perry, Roland N

    2013-12-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  19. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes.

    Science.gov (United States)

    Meyer, Susan L F; Halbrendt, John M; Carta, Lynn K; Skantar, Andrea M; Liu, Ting; Abdelnabby, Hazem M E; Vinyard, Bryan T

    2009-12-01

    The antibiotic 2,4-diacetylphloroglucinol (DAPG) is produced by some isolates of the beneficial bacterium Pseudomonas fluorescens. DAPG is toxic to many organisms, and crop yield increases have been reported after application of DAPG-producing P. fluorescens. This study was conducted to determine whether DAPG is toxic to selected nematodes. The plant-parasitic nematodes Heterodera glycines, Meloidogyne incognita, Pratylenchus scribneri and Xiphinema americanum, and the bacterial-feeding nematodes Caenorhabditis elegans, Pristionchus pacificus, and Rhabditis rainai, were immersed in concentrations ranging from 0 to 100 μg/ml DAPG. Egg hatch and viability of juveniles and adults were determined. DAPG was toxic to X. americanum adults, with an LD₅₀ of 8.3 μg/ml DAPG. DAPG decreased M. incognita egg hatch, but stimulated C. elegans hatch during the first hours of incubation. Viability of M. incognita J2 and of C. elegans J1 and adults was not affected. There were no observed effects on the other nematodes. The study indicated that DAPG is not toxic to all nematodes, and did not affect the tested species of beneficial bacterial-feeding nematodes. Augmentation of DAPG-producing P. fluorescens populations for nematode biocontrol could be targeted to specific nematode species known to be affected by this compound and by other antibiotics produced by the bacteria, or these bacteria could be used for other possible effects, such as induced plant resistance.

  20. Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil.

    Science.gov (United States)

    Ramos, Fernanda; Portella, Luiza Pires; Rodrigues, Fernando de Souza; Reginato, Caroline Zamperete; Pötter, Luciana; Cezar, Alfredo Skrebsky; Sangioni, Luís Antônio; Vogel, Fernanda Silveira Flores

    2016-04-01

    Gastrointestinal nematodes resistant to anthelmintics have been reported in several regions of Brazil, and they may be associated with economic losses for the cattle industry. This study aimed to evaluate the resistance status of gastrointestinal nematodes from naturally infected beef cattle to several commercially available anthelmintics, as well as to test the efficacy of combinations of anthelmintics against multi-resistant gastrointestinal nematodes. Ten farms located in Rio Grande do Sul state were selected by: farmers' consent; extensive raising system; availability of calves aged from 7 to 9 months naturally infected by gastrointestinal nematodes; absence of anthelmintic treatment for 60 days before the study; and presence of 70-100 calves or more of both genders with ≥ 200 eggs per gram of feces (EPG) (sensitivity of 50 EPG). These calves were distributed into 10 groups (of 7-10 animals) per farm and treated with ivermectin, doramectin, eprinomectin, fenbendazole, closantel, nitroxynil, disophenol, levamisole, albendazole, or moxidectin. Feces were collected 2 days before treatment and 14 days after treatment. Additional groups of 7-10 calves were used to test six different two-drug combinations at four of the studied farms. In general terms, fenbendazole was the most effective drug, followed by levamisole, disophenol, and moxidectin. However, parasite resistance to multiple drugs was found in all herds, especially in the genera Cooperia spp., Trichostrongylus spp., and Haemonchus spp.. Some of the two-drug combinations were effective against nematode populations identified as resistant to the same compounds when used as single drugs. The most effective combinations were moxidectin + levamisole, doramectin + fenbendazole, and levamisole + closantel. In this study, parasites resistant to the main commercially available anthelmintics were found in all herds, and some combinations of two active components belonging to different chemical groups were effective

  1. Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil

    Science.gov (United States)

    Ramos, Fernanda; Portella, Luiza Pires; Rodrigues, Fernando de Souza; Reginato, Caroline Zamperete; Pötter, Luciana; Cezar, Alfredo Skrebsky; Sangioni, Luís Antônio; Vogel, Fernanda Silveira Flores

    2016-01-01

    Gastrointestinal nematodes resistant to anthelmintics have been reported in several regions of Brazil, and they may be associated with economic losses for the cattle industry. This study aimed to evaluate the resistance status of gastrointestinal nematodes from naturally infected beef cattle to several commercially available anthelmintics, as well as to test the efficacy of combinations of anthelmintics against multi-resistant gastrointestinal nematodes. Ten farms located in Rio Grande do Sul state were selected by: farmers' consent; extensive raising system; availability of calves aged from 7 to 9 months naturally infected by gastrointestinal nematodes; absence of anthelmintic treatment for 60 days before the study; and presence of 70–100 calves or more of both genders with ≥200 eggs per gram of feces (EPG) (sensitivity of 50 EPG). These calves were distributed into 10 groups (of 7–10 animals) per farm and treated with ivermectin, doramectin, eprinomectin, fenbendazole, closantel, nitroxynil, disophenol, levamisole, albendazole, or moxidectin. Feces were collected 2 days before treatment and 14 days after treatment. Additional groups of 7–10 calves were used to test six different two-drug combinations at four of the studied farms. In general terms, fenbendazole was the most effective drug, followed by levamisole, disophenol, and moxidectin. However, parasite resistance to multiple drugs was found in all herds, especially in the genera Cooperia spp., Trichostrongylus spp., and Haemonchus spp.. Some of the two-drug combinations were effective against nematode populations identified as resistant to the same compounds when used as single drugs. The most effective combinations were moxidectin + levamisole, doramectin + fenbendazole, and levamisole + closantel. In this study, parasites resistant to the main commercially available anthelmintics were found in all herds, and some combinations of two active components belonging to different chemical groups

  2. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Thomas B Duguet

    2016-07-01

    Full Text Available Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the

  3. Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance

    Directory of Open Access Journals (Sweden)

    Atul Kakrana

    2017-12-01

    Full Text Available The root-knot nematode (RKN, Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.

  4. Diversity and incidence of plant-parasitic nematodes in Belgian turf grass

    NARCIS (Netherlands)

    Vandenbossche, B.; Viaene, N.; Sutter, de N.; Maes, M.; Karssen, G.; Bert, W.

    2011-01-01

    Eleven golf courses and eight football pitches, located in Belgium, were surveyed for plant-parasitic nematodes. This revealed a remarkably high diversity: 52 different species/taxa were identified morphologically, belonging to 23 genera and nine families. Among the most prevalent nematodes on both

  5. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.

    Science.gov (United States)

    Guo, Xiaoli; Chronis, Demosthenis; De La Torre, Carola M; Smeda, John; Wang, Xiaohong; Mitchum, Melissa G

    2015-08-01

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant-parasitic cyst nematodes secrete CLE-like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode-induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock-down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Seasonal prevalence of gastrointestinal nematode parasites of sheep in Northern region of Nile Delta, Egypt.

    Science.gov (United States)

    Khalafalla, Reda E; Elseify, Mahmoud A; Elbahy, Nasr M

    2011-02-01

    Over 1 year, from January to December 1999, a total of 173 slaughtered sheep at Al-Mahala abattoir were examined for presence of nematode parasites. Eighteen sheep (10.4%) were infected with eight different species of nematodes. The prevalence rates of detected nematode parasites were; Haemonchus contortus (3.5%), Haemonchus placei (1.7%), Trichuris ovis (5.8%), Parabronema skrjabini (2.9%), Ostertagia trifurcata (1.2%), Chabertia ovina (0.6%) and Strongyloides papillosus (0.6%), and Graphidiops species (2.9%). The seasonal prevalence of the infection with the nematode parasites was studied and the highest rate was during autumn (15.2%) followed by summer (11.1%) and winter (9.4%) while the lowest rate was during spring (5.6%).

  7. A Consideration of Resistance and Tolerance for Ruminant Nematode Infections

    Directory of Open Access Journals (Sweden)

    Steve eBishop

    2012-12-01

    Full Text Available Debates on the relative merits of resistance (the ability of the host to control the parasite lifecycle and tolerance (the net impact of infection on host performance are often lively and unhindered by data or evidence. Resistance generally shows continuous, heritable variation but data are sparser for tolerance, the utility of which will depend upon the disease prevalence. Prevalence is a function of group mean resistance and infection pressure, which itself is influenced by mean resistance. Tolerance will have most value for endemic diseases with a high prevalence, but will be of little value for low prevalence diseases. The conditionality of tolerance on infection status, and hence resistance, makes it difficult to estimate independently of resistance.Tolerance is potentially tractable for nematode infections, as the prevalence of infection is ca. 100% in animals grazing infected pasture, and infection level can be quantified by faecal egg count (FEC. Whilst individual animal phenotypes for tolerance are difficult to estimate, breeding values are estimable if related animals graze pastures of different contamination levels. Selection for resistance, i.e. FEC, provides both direct and indirect benefits from ever decreased pasture contamination and hence decreased infectious challenge. Modelling and experimental studies have shown that such reductions in pasture contamination may lead to substantially increased performance.It is proposed that selection goals addressing nematode infections should include both resistance and performance under challenging conditions. However, there may be benefits from exploiting large datasets in which sires are used across cohorts differing in infection level, to further explore tolerance. This may help to customise breeding objectives, with tolerance given greater weight in heavily parasitized environments.

  8. SLO-1-channels of parasitic nematodes reconstitute locomotor behaviour and emodepside sensitivity in Caenorhabditis elegans slo-1 loss of function mutants.

    Directory of Open Access Journals (Sweden)

    Claudia Welz

    2011-04-01

    Full Text Available The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379. Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379 and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831. Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5' flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379 and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms

  9. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Laetsch, Dominik R; Thorpe, Peter; Lilley, Catherine J; Danchin, Etienne G J; Da Rocha, Martine; Rancurel, Corinne; Holroyd, Nancy E; Cotton, James A; Szitenberg, Amir; Grenier, Eric; Montarry, Josselin; Mimee, Benjamin; Duceppe, Marc-Olivier; Boyes, Ian; Marvin, Jessica M C; Jones, Laura M; Yusup, Hazijah B; Lafond-Lapalme, Joël; Esquibet, Magali; Sabeh, Michael; Rott, Michael; Overmars, Hein; Finkers-Tomczak, Anna; Smant, Geert; Koutsovoulos, Georgios; Blok, Vivian; Mantelin, Sophie; Cock, Peter J A; Phillips, Wendy; Henrissat, Bernard; Urwin, Peter E; Blaxter, Mark; Jones, John T

    2016-06-10

    The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.

  10. The Transcriptome of Nacobbus aberrans Reveals Insights into the Evolution of Sedentary Endoparasitism in Plant-Parasitic Nematodes

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J.; Danchin, Etienne G. J.; Rancurel, Corinne; Cock, Peter J. A.; Urwin, Peter E.; Jones, John T.

    2014-01-01

    Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, “specific” have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes. PMID:25123114

  11. Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda Ramos

    2016-04-01

    Full Text Available Gastrointestinal nematodes resistant to anthelmintics have been reported in several regions of Brazil, and they may be associated with economic losses for the cattle industry. This study aimed to evaluate the resistance status of gastrointestinal nematodes from naturally infected beef cattle to several commercially available anthelmintics, as well as to test the efficacy of combinations of anthelmintics against multi-resistant gastrointestinal nematodes. Ten farms located in Rio Grande do Sul state were selected by: farmers' consent; extensive raising system; availability of calves aged from 7 to 9 months naturally infected by gastrointestinal nematodes; absence of anthelmintic treatment for 60 days before the study; and presence of 70–100 calves or more of both genders with ≥200 eggs per gram of feces (EPG (sensitivity of 50 EPG. These calves were distributed into 10 groups (of 7–10 animals per farm and treated with ivermectin, doramectin, eprinomectin, fenbendazole, closantel, nitroxynil, disophenol, levamisole, albendazole, or moxidectin. Feces were collected 2 days before treatment and 14 days after treatment. Additional groups of 7–10 calves were used to test six different two-drug combinations at four of the studied farms. In general terms, fenbendazole was the most effective drug, followed by levamisole, disophenol, and moxidectin. However, parasite resistance to multiple drugs was found in all herds, especially in the genera Cooperia spp., Trichostrongylus spp., and Haemonchus spp.. Some of the two-drug combinations were effective against nematode populations identified as resistant to the same compounds when used as single drugs. The most effective combinations were moxidectin + levamisole, doramectin + fenbendazole, and levamisole + closantel. In this study, parasites resistant to the main commercially available anthelmintics were found in all herds, and some combinations of two active components belonging to different

  12. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Directory of Open Access Journals (Sweden)

    Wim Grunewald

    2009-01-01

    Full Text Available Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  13. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Science.gov (United States)

    Grunewald, Wim; Cannoot, Bernard; Friml, Jirí; Gheysen, Godelieve

    2009-01-01

    Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  14. The gastropod shell has been co-opted to kill parasitic nematodes.

    Science.gov (United States)

    Rae, R

    2017-07-06

    Exoskeletons have evolved 18 times independently over 550 MYA and are essential for the success of the Gastropoda. The gastropod shell shows a vast array of different sizes, shapes and structures, and is made of conchiolin and calcium carbonate, which provides protection from predators and extreme environmental conditions. Here, I report that the gastropod shell has another function and has been co-opted as a defense system to encase and kill parasitic nematodes. Upon infection, cells on the inner layer of the shell adhere to the nematode cuticle, swarm over its body and fuse it to the inside of the shell. Shells of wild Cepaea nemoralis, C. hortensis and Cornu aspersum from around the U.K. are heavily infected with several nematode species including Caenorhabditis elegans. By examining conchology collections I show that nematodes are permanently fixed in shells for hundreds of years and that nematode encapsulation is a pleisomorphic trait, prevalent in both the achatinoid and non-achatinoid clades of the Stylommatophora (and slugs and shelled slugs), which diverged 90-130 MYA. Taken together, these results show that the shell also evolved to kill parasitic nematodes and this is the only example of an exoskeleton that has been co-opted as an immune system.

  15. Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival.

    Science.gov (United States)

    Lok, James B

    2016-12-01

    Signaling or communication between host and parasite may occur over relatively long ranges to enable host finding and acquisition by infective parasitic nematode larvae. Innate behaviors in infective larvae transmitted from the soil that enhance the likelihood of host contact, such as negative geotaxis and hypermotility, are likely mediated by mechanoreception and neuromuscular signaling. Host cues such as vibration of the substratum, elevated temperature, exhaled CO 2 , and other volatile odorants are perceived by mechanosensory and chemosensory neurons of the amphidial complex. Beyond this, the molecular systems that transduce these external cues within the worm are unknown at this time. Overall, the signal transduction mechanisms that regulate switching between dauer and continuous reproductive development in Caenorhabditis elegans , and doubtless other free-living nematodes, have provided a useful framework for testing hypotheses about how the morphogenesis and development of infective parasitic nematode larvae and the lifespan of adult parasites are regulated. In C. elegans , four major signal transduction pathways, G protein-coupled receptor signaling, insulin/insulin-like growth factor signaling, TGFβ-like signaling and steroid-nuclear hormone receptor signaling govern the switch between dauer and continuous development and regulate adult lifespan. Parasitic nematodes appear to have conserved the functions of G-protein-coupled signaling, insulin-like signaling and steroid-nuclear hormone receptor signaling to regulate larval development before and during the infective process. By contrast, TGFβ-like signaling appears to have been adapted for some other function, perhaps modulation of the host immune response. Of the three signal transduction pathways that appear to regulate development in parasitic nematodes, steroid-nuclear hormone signaling is the most straightforward to manipulate with administered small molecules and may form the basis of new

  16. Nematode parasite control of livestock in the tropics/subtropics: the need for novel approaches.

    Science.gov (United States)

    Waller, P J

    1997-10-01

    Because parasites are more abundant, small ruminants in the tropical/subtropical regions of the world experience much greater ravages from internal parasitic disease than those in the temperate regions. In the tropics/subtropics, the limiting ecological factor influencing the severity of parasitism is rainfall, as temperatures almost always favour hatching and development of the free-living stages. Attempts to expand sheep and goat production by replacing traditional village production systems, which rarely involve anthelmintic treatment, with large-scale intensive commercial enterprises invariably induce complete reliance on anthelmintics to control nematode parasites. This has led to the widespread development of high level, multiple anthelmintic resistance throughout the tropics/subtropics, and in certain regions this has reached the ultimate disastrous scenario of total chemotherapeutic failure. Immediate concerted efforts are needed to resolve this crisis. Significant benefits are likely to emerge from research into non-chemotherapeutic approaches to nematode parasite control, such as grazing management, worm vaccines, breed selection and biological control. However, it is likely that none, in isolation or collectively, will completely replace the need for effective anthelmintics. What is needed is the integration of all methods of parasite control as they come to hand, with the underlying aim of reducing the use and thus preserving the effectiveness of anthelmintics. Although cheap and simple procedures, based on sound epidemiological principles, can achieve dramatic benefits in worm control, they have been poorly adopted by livestock owners. Clearly then, the greatest need is for technology transfer and education programmes, but these activities are generally found to be chronically under-resourced.

  17. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    Science.gov (United States)

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  18. The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Danchin, Etienne G J; Rancurel, Corinne; Cock, Peter J A; Urwin, Peter E; Jones, John T

    2014-08-13

    Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, "specific" have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato.

    Science.gov (United States)

    Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K

    2006-07-01

    The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.

  20. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    Science.gov (United States)

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  1. PLANT-PARASITIC NEMATODES ON STONE FRUITS AND CITRUS IN LEBANON

    Directory of Open Access Journals (Sweden)

    Said K. Ibrahim

    2016-06-01

    Full Text Available Ibrahim Said K., Ibrahim Azar, Christian Naser, Badran Akikki and Ludmilla Ibrahim. 2016. Plant-parasitic nematodes on stone fruits and citrus in Lebanon. Lebanese Science Journal, 17(1: 9-24. This study aimed to determine the occurrence, distribution of plant parasitic nematodes on stone fruits in Lebanon and to determine the effect of plant extracts on the mortality of several nematode species. A total of 308 soil samples were collected from five different crops. Almost all surveyed areas showed infection with nematodes. The soil infestation rate with nematodes in collected soil samples from all 10 surveyed crops ranged from 66.6 to 100%. Eighteen out of 308 soil samples were free of nematodes (5.8%. All the collected soil samples from nectarine and plum orchards were infested with nematodes (100%, followed by citrus (97.6%, apple (88.7%, pear and quince (85.7%, and cherry (81.4%. The lowest infection (66.6% was detected on almond and apricot. The level of infestation varied from one area to another and ranged between 0.1 and 28 nematodes per 1 g of soil, with the highest number obtained on cherry. Several genera were identified based on morphological characters including: root-knot nematodes (Meloidogyne spp., Tylenchulus, Xiphinema, Rotylenchus, Pratylenchus, and Longidorus. Tylenchulus and Radopholus spp. were the most common on citrus trees, whereas Pratylechus and Meloidogyne spp. were detected almost in all the samples collected from all the crops. Six chopped aromatic plants were tested in pot experiments to control nematodes population densities. The results revealed that carbofuran (nematicide was the most effective (88.48% in comparison to the plant materials. Allium sativum gave the highest control (76.52% followed by Tageta patula (72.0%, Cucurbita maxima (71.84% and Inula viscosa (63.96%. Origanum syriacum (55.04% and Thymus (53.72% were less effective in comparison to the rest of tested plant materials.

  2. Characterization of the abomasal transcriptome for mechanisms of resistance to gastrointestinal nematodes in cattle

    Science.gov (United States)

    2011-01-01

    The response of the abomasal transcriptome to gastrointestinal parasites was evaluated in parasite-susceptible and parasite-resistant Angus cattle using RNA-seq at a depth of 23.7 million sequences per sample. These cattle displayed distinctly separate resistance phenotypes as assessed by fecal egg counts. Approximately 65.3% of the 23 632 bovine genes were expressed in the fundic abomasum. Of these, 13 758 genes were expressed in all samples tested and likely represent core components of the bovine abomasal transcriptome. The gene (BT14427) with the most abundant transcript, accounting for 10.4% of sequences in the transcriptome, is located on chromosome 29 and has unknown functions. Additionally, PIGR (1.6%), Complement C3 (0.7%), and Immunoglobulin J chain (0.5%) were among the most abundant transcripts in the transcriptome. Among the 203 genes impacted, 64 were significantly over-expressed in resistant animals at a stringent cutoff (FDR parasite resistance in cattle. Our results provide insights into the development of host immunity to gastrointestinal nematode infection and will facilitate understanding of mechanism underlying host resistance. PMID:22129081

  3. Pasteuria spp.: Systematics and Phylogeny of These Bacterial Parasites of Phytopathogenic Nematodes.

    Science.gov (United States)

    Preston, J F; Dickson, D W; Maruniak, J E; Nong, G; Brito, J A; Schmidt, L M; Giblin-Davis, R M

    2003-06-01

    Pasteuria spp. include endospore-forming bacterial pathogens of cladoceran crustaceans and plant-parasitic nematodes. Propagation of these nematode pathogens requires attachment of soilborne endospores to nematode hosts, infection, growth, sporulation, and release of endospores to repeat the cycle of infection and propagation. The ability of these bacteria to suppress the levels of plant-parasitic nematodes in the field has made them particularly promising candidates for biocontrol of nematode diseases of plants. Genes encoding 16S ribosomal RNA have been sequenced for the cladoceran (water flea) parasite and type species, Pasteuria ramosa, and for Pasteuria spp. isolated from root-knot (Meloidogyne arenaria race 1 and Meloidogyne sp.), soybean cyst (Heterodera glycines), and sting (Belonolaimus longicaudatus) nematodes. These have provided a phylogenetic basis for their designation to a distinct clade within the family Alicyclobacillaceae of the gram-positive endospore-forming bacteria. Two apparent biotypes of P. penetrans demonstrating a host preference for different Meloidogyne spp. showed identical 16S rDNA sequences, suggesting host-recognition evolves within a given species. The sequences of genes encoding sporulation transcription factors, sigE and sigF, from P. penetrans biotype P-20 show different phylogenetic relationships to other endospore-forming bacteria, supporting their application to further discriminate Pasteuria spp. and biotypes. Distribution of an adhesin-associated epitope on polypeptides from different Pasteuria isolates provides an immunochemical approach to differentiate species and biotypes with specific host preferences. Application of bioinformatics to genomic data, as well as further characterization of the biochemical basis for host recognition, will facilitate development of Pasteuria spp. as benign alternatives to chemical nematicides.

  4. Biogeography of Parasitic Nematode Communities in the Galápagos Giant Tortoise: Implications for Conservation Management.

    Directory of Open Access Journals (Sweden)

    Guillaume Fournié

    Full Text Available The Galápagos giant tortoise is an icon of the unique, endemic biodiversity of Galápagos, but little is known of its parasitic fauna. We assessed the diversity of parasitic nematode communities and their spatial distributions within four wild tortoise populations comprising three species across three Galápagos islands, and consider their implication for Galápagos tortoise conservation programmes. Coprological examinations revealed nematode eggs to be common, with more than 80% of tortoises infected within each wild population. Faecal samples from tortoises within captive breeding centres on Santa Cruz, Isabela and San Cristobal islands also were examined. Five different nematode egg types were identified: oxyuroid, ascarid, trichurid and two types of strongyle. Sequencing of the 18S small-subunit ribosomal RNA gene from adult nematodes passed with faeces identified novel sequences indicative of rhabditid and ascaridid species. In the wild, the composition of nematode communities varied according to tortoise species, which co-varied with island, but nematode diversity and abundance were reduced or altered in captive-reared animals. Evolutionary and ecological factors are likely responsible for the variation in nematode distributions in the wild. This possible species/island-parasite co-evolution has not been considered previously for Galápagos tortoises. We recommend that conservation efforts, such as the current Galápagos tortoise captive breeding/rearing and release programme, be managed with respect to parasite biogeography and host-parasite co-evolutionary processes in addition to the biogeography of the host.

  5. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes.

    Science.gov (United States)

    Youssef, Reham M; MacDonald, Margaret H; Brewer, Eric P; Bauchan, Gary R; Kim, Kyung-Hwan; Matthews, Benjamin F

    2013-04-25

    The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes.

  6. Evaluation of Clonostachys rosea for Control of Plant-Parasitic Nematodes in Soil and in Roots of Carrot and Wheat.

    Science.gov (United States)

    Iqbal, Mudassir; Dubey, Mukesh; McEwan, Kerstin; Menzel, Uwe; Franko, Mikael Andersson; Viketoft, Maria; Jensen, Dan Funck; Karlsson, Magnus

    2018-01-01

    Biological control is a promising approach to reduce plant diseases caused by nematodes. We tested the effect of the fungus Clonostachys rosea strain IK726 inoculation on nematode community composition in a naturally nematode infested soil in a pot experiment, and the effect of C. rosea on plant health. The numbers of plant-parasitic nematode genera extracted from soil and plant roots decreased by 40 to 73% when C. rosea was applied, while genera of nonparasitic nematodes were not affected. Soil inoculation of C. rosea increased fresh shoot weight and shoot length of wheat plants by 20 and 24%, respectively, while only shoot dry weight increased by 48% in carrots. Light microscopy of in vitro C. rosea-nematode interactions did not reveal evidence of direct parasitism. However, culture filtrates of C. rosea growing in potato dextrose broth, malt extract broth and synthetic nutrient broth exhibited toxicity toward nematodes and immobilized 57, 62, and 100% of the nematodes, respectively, within 48 h. This study demonstrates that C. rosea can control plant-parasitic nematodes and thereby improve plant growth. The most likely mechanism responsible for the antagonism is antibiosis through production of nematicidal compounds, rather than direct parasitism.

  7. Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in pakistan

    International Nuclear Information System (INIS)

    Hamad, K.K.

    2014-01-01

    Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in Pakistan Antinematicidal resistance has been rooted on all the continents particularly in areas where ovine and caprine are being reared intensively due to frequent annual use of broad-spectrum dewormers. Farmers rely on mono-strategic scheme by using synthetic drugs to treat their livestock which is deemed the easier way to control gastrointestinal nematode infections as compared to the other strategies. On the other hand, recurrent employment of antinematicidal chemotherapeutics has conduced to development and prevalence of resistance among nematode populations. In this regard, other advocating strategies such as grazing management, rotation of antinematicidal drugs (although it is too late), amelioration of animal immunity, genetic approaches, biological control, nutritional supplementation, avoidance of mass treatment, improvement of management, eradication of concurrent diseases, and phytotherapy should be considered too. Although, by far there are no commercialized substantial alternatives to chemotherapy, but the current substitutes could decrease the parasitic burden, which, in turn, restrict indiscriminate use of synthetic drugs. The resistance is more rampant on organized farms as compared to non organized farms in rural areas in Asian, African and South Latin American countries because tamed animal raisers in those areas depend on ethnobotanicals to treat parasitism due to high cost of allopathic drugs. Therefore, in this review, the different strategies to control the antinematicidal resistance on organized farms in Pakistan will be elaborated. (author)

  8. Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, K. K. [University of Agriculture, Faisalabad (Pakistan). Dept. of Parasitology

    2014-03-15

    Combined strategies to control antinematicidal -resistant gastrointestinal nematodes in small ruminants on organized farms in Pakistan Antinematicidal resistance has been rooted on all the continents particularly in areas where ovine and caprine are being reared intensively due to frequent annual use of broad-spectrum dewormers. Farmers rely on mono-strategic scheme by using synthetic drugs to treat their livestock which is deemed the easier way to control gastrointestinal nematode infections as compared to the other strategies. On the other hand, recurrent employment of antinematicidal chemotherapeutics has conduced to development and prevalence of resistance among nematode populations. In this regard, other advocating strategies such as grazing management, rotation of antinematicidal drugs (although it is too late), amelioration of animal immunity, genetic approaches, biological control, nutritional supplementation, avoidance of mass treatment, improvement of management, eradication of concurrent diseases, and phytotherapy should be considered too. Although, by far there are no commercialized substantial alternatives to chemotherapy, but the current substitutes could decrease the parasitic burden, which, in turn, restrict indiscriminate use of synthetic drugs. The resistance is more rampant on organized farms as compared to non organized farms in rural areas in Asian, African and South Latin American countries because tamed animal raisers in those areas depend on ethnobotanicals to treat parasitism due to high cost of allopathic drugs. Therefore, in this review, the different strategies to control the antinematicidal resistance on organized farms in Pakistan will be elaborated. (author)

  9. Superoxide Dismutase as a Tool for the Mulacular Identification of Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    S. Molinari

    2004-08-01

    Full Text Available Superoxide dismutase (SOD is a constitutive family of enzymes produced by all aerobic organisms. Varying amounts of SOD activity have been found at all life stages of the most diffused plant parasitic nematodes. SOD is important to aerobic metabolism and parasitism of nematodes in that it catalyzes the first step of the neutralization of the highly toxic superoxide anion (O2 •-, which is largely produced in plant-nematode incompatible reactions. SOD has also been shown to be a significant tool to diagnose root-knot, cyst-, and longidorid nematodes. A high SOD polymorphism has been revealed by Native-Page on gradient polyacrylamide gels for Meloidogyne spp. and by isoelectrofocusing for Globodera, Xiphinema and Longidorus spp. The sensitivity of such procedures has been improved by using the PhastSystem (Amersham Biosciences, Piscata, NJ, USA, an automated equipment for electrophoresis. An accurate discrimination of species of all the nematode genera tested has been achieved and an attempt was made to group populations of the Xiphinema americanum-group and to detect Globodera rostochiensis and G. pallida pathotypes.

  10. The plant-parasitic nematode collections of RRIP: The realization of an ISTC project

    Science.gov (United States)

    Plant-parasitic nematodes are important pests of agricultural and wild plants throughout Russia and the world. The best strategy for management of nematode damage is an integrated approach to the problem: i.e., the use of agrotechnological approaches (crop rotation, soil amendments, etc.), reasonabl...

  11. Some Plant Parasitic Nematodes of Fruit Trees in Northern Khorasan Province, Iran

    Directory of Open Access Journals (Sweden)

    N. Heidarzadeh

    2017-08-01

    Full Text Available Introduction: Nematodes (Phylum Nematoda are considered as one of the most abundant and diverse animals on earth. They are found in terrestrial, freshwater, brackish, and marine environments and play important ecological roles in soil ecosystems. The order Tylenchida includes the largest and economically most important group of plant-parasitic nematodes so they have always received ample taxonomic attention. Many plant parasitic nematode species are important pests of fruit trees. They damage the plant by directly attacking roots and subsequently predisposing them to secondary infections by bacteria, fungi by causing replant and pre-plant problems of orchards and also by transmission of viruses. Plant parasitic nematodes feed on a plant root system, ability to take up water and minerals and to transport nutrients to the shoot. This restricts root growth reduce plant vitality and inhibits shoot growth, the combination of which results in decreased in quality and yield. The economically most important species belong to the genera Meloidogyne, Pratylenchus, criconemella, Logidorus, Xiphinema, Trichodorus and Paratrichodorus and are widely distributed in fruit orchards throughout the world. Nematode species are classically defined on the basis of these qualitative and quantitative characters. Although morphological information might help species diagnostics, these characters are homoplasious features in many cases and do not adequately consider the possibility of convergent evolution. As a result, new species descriptions are increasingly supported by molecular evidence. However, the study of morphology remains a critical necessity as morphology is the primary interface of an organism with its environment with key implications for development and ecology. Therefore, a more robust phylogeny based on a combination of morphological and molecular approaches is needed to clarify important relationships within Tylenchomorpha. The purpose of the present

  12. On the track of transfer cell formation by specialized plant-parasitic nematodes.

    Science.gov (United States)

    Rodiuc, Natalia; Vieira, Paulo; Banora, Mohamed Youssef; de Almeida Engler, Janice

    2014-01-01

    Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  13. On the track of transfer cells formation by specialized plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Natalia eRodiuc

    2014-05-01

    Full Text Available Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structural, functional and morphogenetic characteristics function and formation of these specialized multinucleate cells that act as nutrient transfer cells to accumulate and synthesize components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  14. Effects of Php Gene-Associated versus Induced Resistance to Tobacco Cyst Nematode in Flue-Cured Tobacco

    Science.gov (United States)

    Johnson, Charles S.; Eisenback, Jon D.

    2009-01-01

    Effects of the systemic acquired resistance (SAR)-inducing compound acibenzolar-S-methyl (ASM) and the plant-growth promoting rhizobacterial mixture Bacillus subtilis A13 and B. amyloliquefaciens IN937a (GB99+GB122) were assessed on the reproduction of a tobacco cyst nematode (TCN- Globodera tabacum solanacearum) under greenhouse conditions. Two sets of two independent experiments were conducted, each involving soil or root sampling. Soil sample experiments included flue-cured tobacco cultivars with (Php+: NC71 and NC102) and without (Php-: K326 and K346) a gene (Php) suppressing TCN parasitism. Root sample experiments examined TCN root parasitism of NC71 and K326. Cultivars possessing the Php gene (Php+) were compared with Php- cultivars to assess the effects of resistance mediated via Php gene vs. induced resistance to TCN. GB99+GB122 consistently reduced nematode reproductive ratio on both Php+ and Php- cultivars, but similar effects of ASM across Php- cultivars were less consistent. In addition, ASM application resulted in leaf yellowing and reduced root weight. GB99+GB122 consistently reduced nematode development in roots of both Php+ and Php- cultivars, while similar effects of ASM were frequently less consistent. The results of this study indicate that GB99+GB122 consistently reduced TCN reproduction in all flue-cured tobacco cultivars tested, while the effects of ASM were only consistent in Php+ cultivars. Under most circumstances, GB99+GB122 suppressed nematode reproduction more consistently than ASM compared to the untreated control. PMID:22736824

  15. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes.

    Science.gov (United States)

    Lee, Joon Ha; Dillman, Adler R; Hallem, Elissa A

    2016-05-06

    Entomopathogenic nematodes (EPNs) are lethal parasites of insects that are of interest as biocontrol agents for insect pests and disease vectors. Although EPNs have been successfully commercialized for pest control, their efficacy in the field is often inconsistent for reasons that remain elusive. EPN infective juveniles (IJs) actively search for hosts to infect using a diverse array of host-emitted odorants. Here we investigate whether their host-seeking behavior is subject to context-dependent modulation. We find that EPN IJs exhibit extreme plasticity of olfactory behavior as a function of cultivation temperature. Many odorants that are attractive for IJs grown at lower temperatures are repulsive for IJs grown at higher temperatures and vice versa. Temperature-induced changes in olfactory preferences occur gradually over the course of days to weeks and are reversible. Similar changes in olfactory behavior occur in some EPNs as a function of IJ age. EPNs also show temperature-dependent changes in their host-seeking strategy: IJs cultured at lower temperatures appear to more actively cruise for hosts than IJs cultured at higher temperatures. Furthermore, we find that the skin-penetrating rat parasite Strongyloides ratti also shows temperature-dependent changes in olfactory behavior, demonstrating that such changes occur in mammalian-parasitic nematodes. IJs are developmentally arrested and long-lived, often surviving in the environment through multiple seasonal temperature changes. Temperature-dependent modulation of behavior may enable IJs to optimize host seeking in response to changing environmental conditions, and may play a previously unrecognized role in shaping the interactions of both beneficial and harmful parasitic nematodes with their hosts.

  16. Parasitic nematodes in the chimpanzee population on Rubondo Island, Tanzania

    Czech Academy of Sciences Publication Activity Database

    Petrželková, Klára Judita; Hasegawa, H.; Moscovice, L. R.; Kaur, T.; Issa, M. H.; Huffman, M. A.

    2006-01-01

    Roč. 27, č. 3 (2006), s. 767-777 ISSN 0164-0291 Institutional research plan: CEZ:AV0Z60930519 Keywords : chimpanzee * introduced population * nematode * new parasite record * Rubondo Island Subject RIV: EG - Zoology Impact factor: 1.331, year: 2006

  17. Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction

    Science.gov (United States)

    Background: Plant parasitic nematodes (PPNs) are obligate parasites that feed on the roots of living host plants. Often, these nematodes can lay hundreds of eggs, each capable of surviving in the soil for as long as 12 years. When it comes to wreaking havoc on agricultural yield, few nematodes can c...

  18. Anthelmintic resistance in equine nematodes

    Directory of Open Access Journals (Sweden)

    Jacqueline B. Matthews

    2014-12-01

    Full Text Available Anthelmintics have been applied indiscriminately to control horse nematodes for over 40 years. Three broad-spectrum anthelmintic classes are currently registered for nematode control in horses: benzimidazoles (fenbendazole, oxibendazole, tetrahydropyrimidines (pyrantel and macrocyclic lactones (ivermectin, moxidectin. Generally, control strategies have focused on nematode egg suppression regimens that involve the frequent application of anthelmintics to all horses at intervals based on strongyle egg reappearance periods after treatment. The widespread use of such programmes has substantially reduced clinical disease, especially that associated with large strongyle species; however, high treatment frequency has led to considerable selection pressure for anthelmintic resistance, particularly in cyathostomin species. Field studies published over the last decade indicate that benzimidazole resistance is widespread globally in cyathostomins and there are also many reports of resistance to pyrantel in these worms. Cyathostomin resistance to macrocyclic lactone compounds is emerging, principally measured as a reduction in strongyle egg reappearance time observed after treatment. Ivermectin resistance is a further concern in the small intestinal nematode, Parascaris equorum, an important pathogen of foals. These issues indicate that horse nematodes must now be controlled using methods less dependent on anthelmintic use and more reliant on management practices designed to reduce the force of infection in the environment. Such strategies include improved grazing management integrated with targeted anthelmintic administration involving faecal egg count (FEC-directed treatments. The latter require that the supporting diagnostic tests available are robust and practically applicable. Recent research has focused on maximising the value of FEC analysis in horses and on optimizing protocols for anthelmintic efficacy testing. Other studies have sought to develop

  19. Anatomical Alterations in Plant Tissues Induced by Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Juan E. Palomares-Rius

    2017-11-01

    Full Text Available Plant-parasitic nematodes (PPNs interact with plants in different ways, for example, through subtle feeding behavior, migrating destructively through infected tissues, or acting as virus-vectors for nepoviruses. They are all obligate biotrophic parasites as they derive their nutrients from living cells which they modify using pharyngeal gland secretions prior to food ingestion. Some of them can also shield themselves against plant defenses to sustain a relatively long lasting interaction while feeding. This paper is centered on cell types or organs that are newly induced in plants during PPN parasitism, including recent approaches to their study based on molecular biology combined with cell biology-histopathology. This issue has already been reviewed extensively for major PPNs (i.e., root-knot or cyst nematodes, but not for other genera (viz. Nacobbus aberrans, Rotylenchulus spp.. PPNs have evolved with plants and this co-evolution process has allowed the induction of new types of plant cells necessary for their parasitism. There are four basic types of feeding cells: (i non-hypertrophied nurse cells; (ii single giant cells; (iii syncytia; and (iv coenocytes. Variations in the structure of these cells within each group are also present between some genera depending on the nematode species viz. Meloidogyne or Rotylenchulus. This variability of feeding sites may be related in some way to PPN life style (migratory ectoparasites, sedentary ectoparasites, migratory ecto-endoparasites, migratory endoparasites, or sedentary endoparasites. Apart from their co-evolution with plants, the response of plant cells and roots are closely related to feeding behavior, the anatomy of the nematode (mainly stylet size, which could reach different types of cells in the plant, and the secretory fluids produced in the pharyngeal glands. These secretory fluids are injected through the stylet into perforated cells where they modify plant cytoplasm prior to food removal

  20. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita.

    Directory of Open Access Journals (Sweden)

    Olga A Postnikova

    Full Text Available Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp. are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against these pests and specifically against RKN. In this work, we performed root transcriptome analysis of resistant (cv. Moapa 69 and susceptible (cv. Lahontan alfalfa cultivars infected with RKN Meloidogyne incognita, widespread root-knot nematode species and a major pest worldwide. A total of 1,701,622,580 pair-end reads were generated on an Illumina Hi-Seq 2000 platform from the roots of both cultivars and assembled into 45,595 and 47,590 transcripts in cvs Moapa 69 and Lahontan, respectively. Bioinformatic analysis revealed a number of common and unique genes that were differentially expressed in susceptible and resistant lines as a result of nematode infection. Although the susceptible cultivar showed a more pronounced defense response to the infection, feeding sites were successfully established in its roots. Characteristically, basal gene expression levels under normal conditions differed between the two cultivars as well, which may confer advantage to one of the genotypes toward resistance to nematodes. Differentially expressed genes were subsequently assigned to known Gene Ontology categories to predict their functional roles and associated biological processes. Real-time PCR validated expression changes in genes arbitrarily selected for experimental confirmation. Candidate genes that contribute to protection against M. incognita in alfalfa were proposed and alfalfa-nematode interactions with

  1. Discrimination of plant-parasitic nematodes from complex soil communities using ecometagenetics.

    Science.gov (United States)

    Porazinska, Dorota L; Morgan, Matthew J; Gaspar, John M; Court, Leon N; Hardy, Christopher M; Hodda, Mike

    2014-07-01

    Many plant pathogens are microscopic, cryptic, and difficult to diagnose. The new approach of ecometagenetics, involving ultrasequencing, bioinformatics, and biostatistics, has the potential to improve diagnoses of plant pathogens such as nematodes from the complex mixtures found in many agricultural and biosecurity situations. We tested this approach on a gradient of complexity ranging from a few individuals from a few species of known nematode pathogens in a relatively defined substrate to a complex and poorly known suite of nematode pathogens in a complex forest soil, including its associated biota of unknown protists, fungi, and other microscopic eukaryotes. We added three known but contrasting species (Pratylenchus neglectus, the closely related P. thornei, and Heterodera avenae) to half the set of substrates, leaving the other half without them. We then tested whether all nematode pathogens-known and unknown, indigenous, and experimentally added-were detected consistently present or absent. We always detected the Pratylenchus spp. correctly and with the number of sequence reads proportional to the numbers added. However, a single cyst of H. avenae was only identified approximately half the time it was present. Other plant-parasitic nematodes and nematodes from other trophic groups were detected well but other eukaryotes were detected less consistently. DNA sampling errors or informatic errors or both were involved in misidentification of H. avenae; however, the proportions of each varied in the different bioinformatic pipelines and with different parameters used. To a large extent, false-positive and false-negative errors were complementary: pipelines and parameters with the highest false-positive rates had the lowest false-negative rates and vice versa. Sources of error identified included assumptions in the bioinformatic pipelines, slight differences in primer regions, the number of sequence reads regarded as the minimum threshold for inclusion in analysis

  2. Top 10 plant-parasitic nematodes in molecular plant pathology

    NARCIS (Netherlands)

    Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N.

    2013-01-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a ‘top 10’ list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region

  3. Nematodes Parasites of Teiid Lizards from the Brazilian Amazon Rainforest.

    Science.gov (United States)

    Macedo, L C; Gardner, S L; Melo, F T V; Giese, E G; Santos, J N

    2017-04-01

    This study presents the helminth composition and parameters of infection by several species of nematodes in teiid lizards, Ameiva ameiva ameiva (Linnaeus, 1758), Cnemidophorus cryptus Cole and Dessauer, 1993, and Kentropyx calcarata Spix, 1825 from the Brazilian Amazonian Rainforest. The population of lizards studied were parasitized by 6 species of Phylum Nemata including: Spinicauda spinicauda (Olfers, 1919), Parapharyngodon alvarengai Freitas, 1957, Physaloptera sp. (adults), Physaloptera sp. (larvae), Piratuba digiticauda Lent and Freitas, 1941, and Anisakidae (larvae). The overall prevalence was 66.17% and the mean intensity of infection was 19.40 ± 25.48. The association between the body-length of lizards and the abundance and richness of parasitic nematodes was statistically significant only in Ameiva a. ameiva. A new host record is reported here with 1 specimen of the family Anasakidae in Ameiva a. ameiva. Both S. spinicauda and Physaloptera sp. represent new records from C. cryptus.

  4. Biochemical and Molecular Characterization of Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    I.M. de O. Abrantes

    2004-08-01

    Full Text Available Nematologists need correct species identification to carry out research, teaching, extension and other activities. Therefore, nematode taxonomy must be pursued diligently at all levels. The identification of plant-parasitic nematodes is not always easy and that of some species is especially difficult. Most of the information that nematologists use when characterizing and identifying specimens is based on morphological and morphometrical characters. Although these characters are of primary importance, in the last three decades they have been supplemented by biochemical/ molecular characters. Biochemical approaches include the separation of proteins (general proteins and isozymes by one-dimensional gel electrophoresis, isoelectric focusing, two-dimensional gel electrophoresis, and sodium dodecyl sulphate-capillary gel electrophoresis. Serology has also been found effective in the identification and quantification of nematodes, monoclonal antibodies being a more useful immunological tool than polyclonal antibodies. Identification based on the direct examination of DNA is potentially a more powerful method to characterize inter- and intra-specific variability. The development of techniques such as the polymerase chain reaction, restriction fragment length polymorphism, randomly amplified polymorphic DNA, and amplified fragment length polymorphism has increased the accuracy and speed of nematode characterization/identification. Progress continues to be made and more and more nematologists are using molecular techniques for diagnostic purposes and to assess genetic variation.

  5. Nematodes (Mermithidae parasitizing grasshoppers (Orthoptera: Acrididae in the Pampean region, Argentina

    Directory of Open Access Journals (Sweden)

    J. M. Rusconi

    Full Text Available Abstract This work provides the results of a survey of entomonematodes parasites of grasshoppers in grasslands of the Pampean Region, Argentina. Nymphs of Staurorhectus longicornis Giglio-Tos, Laplatacris dispar Rhen, 1939, Dichroplus elongatus Giglio-Tos, 1894 and Metaleptea brevicornis (L. (Orthoptera: Acrididae were collected. Mermithidae was the only family registered with seven species: Agamermis decaudata Cobb, Steiner and Christie, 1923, Amphimermis bonaerensis Miralles and Camino, 1983, Amphimermis dichroplusi Camino and Lange, 1997, Amphimermis ronderosi Camino and Lange, 1997, Hexamermis coclhearius Stock and Camino, 1992, Hexamermis ovistriata Stock and Camino, 1992, and Longimermis acridophila Camino and Stock, 1989. The values of parasitism ranged between 1-12%, and intensity not overcome the number of 5.0 nematodes per larva. The nematodes observed showed specificity, not registering the same species of parasite in more than one host species. The Pampean region constituted an area with high diversity of mermithids where new species could be consider as bioregulator agents of this troublesome insect pests in agricultural areas of Argentina.

  6. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes

    Science.gov (United States)

    Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand

    2017-01-01

    Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  7. Evaluation of tomato genotypes for resistance to root-knot nematodes

    African Journals Online (AJOL)

    Tomato (Solanum lycopersicum) is one of the most popular vegetable crops worldwide, owing to its high nutritive value and diversified use. Tomato production in Ghana is threatened by plant parasitic nematodes, especially the root knot nematodes (Meloidogyne spp.), which are responsible for huge economic yield losses.

  8. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    Science.gov (United States)

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  9. Resistance and Resistant Reaction of Gossypium arboreum to the Reniform, Nematode, Rotylenchulus reniformis

    Science.gov (United States)

    Carter, William W.

    1981-01-01

    Gossypium arboreum 'Nanking CB 1402' possessed a high level of resistance to Rotylenchulus reniformis. Within 16 h, the nematode penetrated roots of resistant and susceptible cottons equally. After 36 h, significantly fewer nematodes were found in resistant roots. Larvae fed in either an endodermal or pericyclic cell and had no specificity for root tissue of a particular age. In roots of resistant G. arboreum '1402,' wall breakdown of pericyclic cells was evident after 3 d, endodermal and cortical cells collapsed, and the hypertrophied pericyclic cells disintegrated within 12 d. Cell walls immediately adjacent to the nematode's head were thickened and more safranin positive in resistant than in susceptible cotton cultivars. Several other cultivars of G. arboreum were also resistant to R. reniformis, based on nematode fecundity and percent egg reduction. PMID:19300777

  10. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism

    Science.gov (United States)

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Wang, Gaofeng; Xiao, Xueqiong; Xiao, Yannong

    2016-01-01

    Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita. PMID:27446188

  11. On the modulation of innate immunity by plant-parasitic cyst nematodes

    NARCIS (Netherlands)

    Postma, W.J.

    2013-01-01

    Plant-parasitic cyst nematodes are major agricultural pests worldwide. These obligate endoparasites invade the roots of host plants where they transform cells near the vascular cylinder into a permanent feeding site. Plants possess a multilayered innate immune system consisting of different

  12. Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis.

    Science.gov (United States)

    Hölscher, Dirk; Dhakshinamoorthy, Suganthagunthalam; Alexandrov, Theodore; Becker, Michael; Bretschneider, Tom; Buerkert, Andreas; Crecelius, Anna C; De Waele, Dirk; Elsen, Annemie; Heckel, David G; Heklau, Heike; Hertweck, Christian; Kai, Marco; Knop, Katrin; Krafft, Christoph; Maddula, Ravi K; Matthäus, Christian; Popp, Jürgen; Schneider, Bernd; Schubert, Ulrich S; Sikora, Richard A; Svatoš, Aleš; Swennen, Rony L

    2014-01-07

    The global yield of bananas-one of the most important food crops-is severely hampered by parasites, such as nematodes, which cause yield losses up to 75%. Plant-nematode interactions of two banana cultivars differing in susceptibility to Radopholus similis were investigated by combining the conventional and spatially resolved analytical techniques (1)H NMR spectroscopy, matrix-free UV-laser desorption/ionization mass spectrometric imaging, and Raman microspectroscopy. This innovative combination of analytical techniques was applied to isolate, identify, and locate the banana-specific type of phytoalexins, phenylphenalenones, in the R. similis-caused lesions of the plants. The striking antinematode activity of the phenylphenalenone anigorufone, its ingestion by the nematode, and its subsequent localization in lipid droplets within the nematode is reported. The importance of varying local concentrations of these specialized metabolites in infected plant tissues, their involvement in the plant's defense system, and derived strategies for improving banana resistance are highlighted.

  13. Survival and Movement of Insect Parasitic Nematodes in Poultry Manure and Their Infectivity Against Musca domestica

    OpenAIRE

    Georgis, Ramon; Mullens, Bradley A.; Meyer, Jeffery A.

    1987-01-01

    Survival, infectivity, and movement of three insect parasitic nematodes (Steinernema feltiae All strain, S. bibionis SN strain, and Heterorhabditis heliothidis NC strain) in poultry manure were tested under laboratory conditions. The majority (70-100%) of the nematodes died within 18 hours after exposure to the manure. Nematodes exposed to manure slurry for 6 hours killed at least 95% of the house fly larvae, Musca domestica, but nematodes exposed for 12 hours achieved less than 40% larval mo...

  14. Identification and functional analysis of secreted effectors from phytoparasitic nematodes.

    Science.gov (United States)

    Rehman, Sajid; Gupta, Vijai K; Goyal, Aakash K

    2016-03-21

    Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant-parasitic

  15. The effects of Brassica green manures on plant parasitic and free living nematodes used in combination with reduced rates of synthetic nematicides.

    Science.gov (United States)

    Riga, Ekaterini

    2011-06-01

    Brassica plants once incorporated into soil as green manures have recently been shown to have biofumigant properties and have the potential of controlling plant-parasitic nematodes. In Washington State, plant-parasitic nematodes are successfully managed with synthetic nematicides. However, some of the synthetic nematicides became unavailable recently or their supply is limited leaving growers with few choices to control plant-parasitic nematodes. The objective of this project was to evaluate the effects of Brassica green manures on their own and in combination with reduced rates of synthetic nematicides on plant-parasitic nematodes and free living nematodes. In a greenhouse experiment and field trials in three seasons, Brassica green manures in combination with half the recommended rate of 1,3-dichloropropene (1,3-D, Telone) reduced root knot nematode, Meloidogyne chitwoodi to below detection levels, and reduced lesion nematodes, Pratylenchus penetrans and stubby root nematodes, Paratrichodorus allius, to below economic thresholds. The combination treatments did not affect the beneficial free-living nematode populations and the non-pathogenic Pseudomonas. The total cost of growing and soil-incorporating Brassica crops as green manures in combination with reduced rates of 1,3-D was approximately 35% lower than the present commercial costs for application for the full rate of this fumigant. Integrating conventional management practices with novel techniques fosters sustainability of production systems and can increase economic benefit to producers while reducing chemical input.

  16. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode.

    Science.gov (United States)

    Cotton, James A; Lilley, Catherine J; Jones, Laura M; Kikuchi, Taisei; Reid, Adam J; Thorpe, Peter; Tsai, Isheng J; Beasley, Helen; Blok, Vivian; Cock, Peter J A; Eves-van den Akker, Sebastian; Holroyd, Nancy; Hunt, Martin; Mantelin, Sophie; Naghra, Hardeep; Pain, Arnab; Palomares-Rius, Juan E; Zarowiecki, Magdalena; Berriman, Matthew; Jones, John T; Urwin, Peter E

    2014-03-03

    Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.

  17. Population Genetics of Hirsutella rhossiliensis, a Dominant Parasite of Cyst Nematode Juveniles on a Continental Scale.

    Science.gov (United States)

    Wang, Niuniu; Zhang, Yongjie; Jiang, Xianzhi; Shu, Chi; Hamid, M Imran; Hussain, Muzammil; Chen, Senyu; Xu, Jianping; Xiang, Meichun; Liu, Xingzhong

    2016-11-01

    Hirsutella rhossiliensis is a parasite of juvenile nematodes, effective against a diversity of plant-parasitic nematodes. Its global distribution on various nematode hosts and its genetic variation for several geographic regions have been reported, while the global population genetic structure and factors underlying patterns of genetic variation of H. rhossiliensis are unclear. In this study, 87 H. rhossiliensis strains from five nematode species (Globodera sp., Criconemella xenoplax, Rotylenchus robustus, Heterodera schachtii, and Heterodera glycines) in Europe, the United States, and China were investigated by multilocus sequence analyses. A total of 280 variable sites (frequency, 0.6%) at eight loci and six clustering in high accordance with geographic populations or host nematode-associated populations were identified. Although H. rhossiliensis is currently recognized as an asexual fungus, recombination events were frequently detected. In addition, significant genetic isolation by geography and nematode hosts was revealed. Overall, our analyses showed that recombination, geographic isolation, and nematode host adaptation have played significant roles in the evolutionary history of H. rhossiliensis IMPORTANCE: H. rhossiliensis has great potential for use as a biocontrol agent to control nematodes in a sustainable manner as an endoparasitic fungus. Therefore, this study has important implications for the use of H. rhossiliensis as a biocontrol agent and provides interesting insights into the biology of this species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. PLANT-PARASITIC NEMATODES ON STONE FRUITS AND CITRUS IN LEBANON

    International Nuclear Information System (INIS)

    Ibrahim, S.K.; Azar, I.; Naser, CH.; Akikki, B; Ibrahim, L.

    2016-01-01

    This study aimed to determine the occurrence, distribution of plant parasitic nematodes on stone fruits in Lebanon and to determine the effect of plant extracts on the mortality of several nematode species. A total of 308 soil samples were collected from five different crops. Almost all surveyed areas showed infection with nematodes.The soil infestation rate with nematodes in collected soil samples from all 10 surveyed crops ranged from 66.6 to 100%. Eighteen out of 308 soil samples were free of nematodes (5.8%). All the collected soil samples from nectarine and plum orchards were infested with nematodes (100%), followed by citrus (97.6%), apple (88.7%), pear and quince (85.7%), and cherry (81.4%). The lowest infection (66.6%) was detected on almond and apricot. The level of infestation varied from one area to another and ranged between 0.1and 28 nematodes per 1 g of soil, with the highest number obtained on cherry. Several genera were identified based on morphological characters including:root-knot nematodes (Meloidogynespp.), Tylenchulus, Xiphinema, Rotylenchus, Pratylenchus, and Longidorus. Tylenchulus and Radopholus spp. were the most common on citrus trees, whereas Pratylechus and Meloidogyne spp. were detected almost in all the samples collected from all the crops. Six chopped aromatic plants were tested in pot experiments to control nematodes population densities. The results revealed that carbofuran (nematicide) was the most effective (88.48%) in comparison to the plant materials. Allium sativum gave the highest control (76.52%) followed by Tageta patula (72.0%), Cucurbita maxima (71.84%) and Inula viscosa (63.96%). Origanum syriacum (55.04%)d Thymus (53.72%) were less effective in comparison to the rest of tested plant materials. (author)

  19. In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites.

    Directory of Open Access Journals (Sweden)

    Yan Hu

    2018-05-01

    Full Text Available The soil-transmitted nematodes (STNs or helminths (hookworms, whipworms, large roundworms infect the intestines of ~1.5 billion of the poorest peoples and are leading causes of morbidity worldwide. Only one class of anthelmintic or anti-nematode drugs, the benzimidazoles, is currently used in mass drug administrations, which is a dangerous situation. New anti-nematode drugs are urgently needed. Bacillus thuringiensis crystal protein Cry5B is a powerful, promising new candidate. Drug combinations, when properly made, are ideal for treating infectious diseases. Although there are some clinical trials using drug combinations against STNs, little quantitative and systemic work has been performed to define the characteristics of these combinations in vivo.Working with the hookworm Ancylostoma ceylanicum-hamster infection system, we establish a laboratory paradigm for studying anti-nematode combinations in vivo using Cry5B and the nicotinic acetylcholine receptor (nAChR agonists tribendimidine and pyrantel pamoate. We demonstrate that Cry5B strongly synergizes in vivo with both tribendimidine and pyrantel at specific dose ratios against hookworm infections. For example, whereas 1 mg/kg Cry5B and 1 mg/kg tribendimidine individually resulted in only a 0%-6% reduction in hookworm burdens, the combination of the two resulted in a 41% reduction (P = 0.020. Furthermore, when mixed at synergistic ratios, these combinations eradicate hookworm infections at doses where the individual doses do not. Using cyathostomin nematode parasites of horses, we find based on inhibitory concentration 50% values that a strongylid parasite population doubly resistant to nAChR agonists and benzimidazoles is more susceptible or "hypersusceptible" to Cry5B than a cyathostomin population not resistant to nAChR agonists, consistent with previous Caenhorhabditis elegans results.Our study provides a powerful means by which anthelmintic combination therapies can be examined in vivo

  20. Motility in the L3 stage is a poor phenotype for detecting and measuring resistance to avermectin/milbemycin drugs in gastrointestinal nematodes of livestock

    Directory of Open Access Journals (Sweden)

    Melissa M. George

    2018-04-01

    Full Text Available Motility is a commonly used in vitro phenotype for assessing anthelmintic activity of candidate compounds, and for detecting anthelmintic resistance in nematodes. Third-stage larvae (L3 of parasitic nematodes are commonly used in motility-based assays because L3 are simple to obtain and can remain viable in storage for extended periods. To improve the measurement of motility of microscopic stages of nematodes, our laboratory developed the Worminator, which quantitatively measures motility of parasites. Using the Worminator, we compared the dose-response characteristics of several avermectin/milbemycin (AM compounds using L3 from both AM-susceptible and AM-resistant Cooperia spp. (abamectin, doramectin, eprinomectin, ivermectin, moxidectin and Haemonchus contortus (eprinomectin, ivermectin, moxidectin. Concentrations tested with the Worminator ranged from 0.156 to 40 μM. Differences in EC50 between AM-susceptible and AM-resistant isolates of Cooperia spp. and Haemonchus contortus were small, with resistance ratios ranging from 1.00 to 1.34 for Cooperia spp., 0.99 to 1.65 for Haemonchus contortus. Larval migration inhibition assays were conducted using the same isolates and were equally ineffective for detection of resistance with resistance ratios less than 2.0. These results contrast with those of the Larval Development Assay where we obtained a resistance ratio of 16.48 using the same isolates of Haemonchus contortus. Moreover, even at the highest concentration tested (40 μM, 100% inhibition of motility was never achieved and EC50 for Worminator assays were more than 100× higher than peak plasma levels achieved in vivo following treatment. These data demonstrate that dose-response characteristics for inhibition of motility in L3 of gastrointestinal nematodes of livestock do not significantly differ for AM-susceptible and AM-resistant isolates. These data challenge the suitability of motility as a phenotype for detecting and measuring

  1. Olfactory circuits and behaviors of nematodes.

    Science.gov (United States)

    Rengarajan, Sophie; Hallem, Elissa A

    2016-12-01

    Over one billion people worldwide are infected with parasitic nematodes. Many parasitic nematodes actively search for hosts to infect using volatile chemical cues, so understanding the olfactory signals that drive host seeking may elucidate new pathways for preventing infections. The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: because sensory neuroanatomy is conserved across nematode species, an understanding of the microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes that lays the groundwork for future studies of their olfactory microcircuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nematode parasites of fishes: recent advances and problems of their research

    Czech Academy of Sciences Publication Activity Database

    Moravec, František

    2007-01-01

    Roč. 49, č. 3 (2007), s. 155-160 ISSN 0048-2951 R&D Projects: GA ČR(CZ) GA524/06/0170; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : parasitic nematode * research * fish Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine

  3. Plant parasitic nematode effectors target host defence and nuclear functions to establish feeding cells

    Directory of Open Access Journals (Sweden)

    Michaël eQuentin

    2013-03-01

    Full Text Available Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells. Effectors synthesised in the oesophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized feeding cells requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defence responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalised within feeding cell nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesised roles in the unique feeding behaviour of these pests.

  4. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode

    KAUST Repository

    Cotton, James A

    2014-03-03

    Background: Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. Results: We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. Conclusions: The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens. 2014 Cotton et al.; licensee BioMed Central Ltd.

  5. Investigating anti-parasitic effects of plant secondary metabolites: effects on swine nematodes

    DEFF Research Database (Denmark)

    Williams, Andrew; Pena-Espinoza, Miguel Angel; Fryganas, Christos

    2014-01-01

    Organic and outdoor animal production presents challenges to animal health and productivity. In organic pig production, animals must have access to outdoor pastures which increases exposure to pathogens such as gastrointestinal nematodes. Moreover, the routine use of synthetic anti-parasitic drugs...

  6. Motility in the L3 stage is a poor phenotype for detecting and measuring resistance to avermectin/milbemycin drugs in gastrointestinal nematodes of livestock.

    Science.gov (United States)

    George, Melissa M; Lopez-Soberal, Lorraine; Storey, Bob E; Howell, Sue B; Kaplan, Ray M

    2018-04-01

    Motility is a commonly used in vitro phenotype for assessing anthelmintic activity of candidate compounds, and for detecting anthelmintic resistance in nematodes. Third-stage larvae (L3) of parasitic nematodes are commonly used in motility-based assays because L3 are simple to obtain and can remain viable in storage for extended periods. To improve the measurement of motility of microscopic stages of nematodes, our laboratory developed the Worminator, which quantitatively measures motility of parasites. Using the Worminator, we compared the dose-response characteristics of several avermectin/milbemycin (AM) compounds using L3 from both AM-susceptible and AM-resistant Cooperia spp. (abamectin, doramectin, eprinomectin, ivermectin, moxidectin) and Haemonchus contortus (eprinomectin, ivermectin, moxidectin). Concentrations tested with the Worminator ranged from 0.156 to 40 μM. Differences in EC 50 between AM-susceptible and AM-resistant isolates of Cooperia spp. and Haemonchus contortus were small, with resistance ratios ranging from 1.00 to 1.34 for Cooperia spp., 0.99 to 1.65 for Haemonchus contortus. Larval migration inhibition assays were conducted using the same isolates and were equally ineffective for detection of resistance with resistance ratios less than 2.0. These results contrast with those of the Larval Development Assay where we obtained a resistance ratio of 16.48 using the same isolates of Haemonchus contortus. Moreover, even at the highest concentration tested (40 μM), 100% inhibition of motility was never achieved and EC 50 for Worminator assays were more than 100× higher than peak plasma levels achieved in vivo following treatment. These data demonstrate that dose-response characteristics for inhibition of motility in L3 of gastrointestinal nematodes of livestock do not significantly differ for AM-susceptible and AM-resistant isolates. These data challenge the suitability of motility as a phenotype for detecting and measuring resistance to AM

  7. Prevalence of common gastrointestinal nematode parasites in scavenging pigs of different ages and sexes in Eastern Centre province, Burkina Faso

    Directory of Open Access Journals (Sweden)

    H.H. Tamboura

    2006-09-01

    Full Text Available The range and infestation intensities of gastrointestinal parasitic nematode species depend on the type of swine production system. The present study focused mainly on nematodes of veterinary importance in scavenging pigs in Burkina Faso, and aimed at determining the prevalence of gastro-intestinal nematode parasites by means of faecal egg per gram (EPG counts. Between November 2001 and October 2002, faecal samples from 383 pigs of different sexes and ages ( 12 months were collected from the rectum and examined for gastrointestinal nematodes parasites using the Mc Master method. Of the 383 pigs examined, 91 % were infected by one or more para sites. Ascaris suum (40 %; 100-1 400 EPG was the most prevalent parasite followed by Strongyloides ransomi (21 %; 100-4 200 EPG, Oesophagostomum spp. (18 %; 100-1 000 EPG, Hyostrongylus rubidus (11 %; 100-1 800 EPG, Globocephalus spp. 10 %; 100-400 EPG and Trichuris suis (1 %; 100-200 EPG. The prevalence was significantly higher in female pigs (n = 239 than in males. In addition, females excreted significantly (P < 0.05 more eggs in their faeces than males, except in the case of Globocephalus spp. The age of the animal had no effect on the prevalence of A. suum whereas there were significant differences in age categories concerning S. ransomi, H. rubidus, Oesophagostumum spp. and Globocephalus spp. Unexpectedly, the high prevalence of these common parasites was not accompanied by elevated EPG values, which suggests the existence of moderate infestations. The present work indicates that the common nematode infestations in pigs do not necessarily need a systematic herd anthelmintic treatment, as only a small number of worms is required to induce immunity. A further study is needed to formulate appropriate and cost-effective strategies for the control of gastro-intestinal nematode parasites in pigs in Burkina Faso.

  8. How do humans affect wildlife nematodes?

    Science.gov (United States)

    Weinstein, Sara B.; Lafferty, Kevin D.

    2015-01-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host–parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.

  9. Nematode cholinergic pharmacology

    International Nuclear Information System (INIS)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe [ 3 H]N-methylscopolamine ([ 3 H]NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs

  10. Interspecific nematode signals regulate dispersal behavior.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2 of plant parasitic Meloidogyne spp. and infective juveniles (IJs of entomopathogenic nematodes (EPN, e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs.Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9. A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9 and C. elegans (ascr#2 dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers.Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.

  11. Induction of mutations for nematode resistance in tomato

    International Nuclear Information System (INIS)

    Alameddine, A.

    1976-01-01

    The objective of this work is to develop resistance to root-knot nematodes in tomato by induction, selection and utilization of the newly created resistant strains. Seeds of two varieties of tomato Lycopersicon esculentum L., namely Amcopack and Supermarmande, were subjected to various doses of gamma rays ranging from 10 Krads to 40 Krads in an effort to gain resistance to Meloidogyne incognita Chitwood, the prevalent species of nematodes in Lebanon. The variety Supermarmande seemed not to be affected by irradiation while Amcopack gained some resistance with a corresponding increase in the dose of radiation. The data suggest that in a variety like Amcopack, irradiation may stimulate resistance while in others like Supermarmande, susceptibility is not reduced with a corresponding increase of dosage. Those alterations in reaction within varieties may be due to genetic differences which allow some varieties to acquire resistance to nematodes when exposed to certain dosages, while others to suffer seriously due to sensitivity. (author)

  12. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode

    KAUST Repository

    Cotton, James A; Lilley, Catherine J; Jones, Laura M; Kikuchi, Taisei; Reid, Adam J; Thorpe, Peter; Tsai, Isheng J; Beasley, Helen; Blok, Vivian; Cock, Peter J A; den Akker, Sebastian Eves-van; Holroyd, Nancy; Hunt, Martin; Mantelin, Sophie; Naghra, Hardeep; Pain, Arnab; Palomares-Rius, Juan E; Zarowiecki, Magdalena; Berriman, Matthew; Jones, John T; Urwin, Peter E

    2014-01-01

    -knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. Results: We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life

  13. Distribution and Prevalence of Parasitic Nematodes of Cowpea (Vigna unguiculata) in Burkina Faso.

    Science.gov (United States)

    Sawadogo, A; Thio, B; Kiemde, S; Drabo, I; Dabire, C; Ouedraogo, J; Mullens, T R; Ehlers, J D; Roberts, P A

    2009-06-01

    A comprehensive survey of the plant parasitic nematodes associated with cowpea (Vigna unguiculata) production fields was carried out in the three primary agro-climatic zones of Burkina Faso in West Africa. Across the three zones, a total of 109 samples were collected from the farms of 32 villages to provide a representative coverage of the cowpea production areas. Samples of rhizosphere soil and samples of roots from actively growing cowpea plants were collected during mid- to late-season. Twelve plant-parasitic nematode genera were identified, of which six appeared to have significant parasitic potential on cowpea based on their frequency and abundance. These included Helicotylenchus, Meloidogyne, Pratylenchus, Scutellonema, Telotylenchus, and Tylenchorhynchus. Criconemella and Rotylenchulus also had significant levels of abundance and frequency, respectively. Of the primary genera, Meloidogyne, Pratylenchus, and Scutellonema contained species which are known or suspected to cause losses of cowpea yield in other parts of the world. According to the prevalence and distribution of these genera in Burkina Faso, their potential for damage to cowpea increased from the dry Sahelian semi-desert zone in the north (annual rainfall < 600 mm/year), through the north-central Soudanian zone (annual rainfall of 600-800 mm/year), to the wet Soudanian zone (annual rainfall ≥ 1000 mm) in the more humid south-western region of the country. This distribution trend was particularly apparent for the endoparasitic nematode Meloidogyne and the migratory endoparasite Pratylenchus.

  14. The expression of R genes in genetic and induced resistance to potato cyst nematode Globodera rostochiensis (Wollenweber, 1923) Behrens, 1975.

    Science.gov (United States)

    Lavrova, V V; Matveeva, E M; Zinovieva, S V

    2015-01-01

    The characteristics of expression of two genes, H1 and Gro1-4, which determine the resistance to the sedentary parasitic nematode Globodera rostochiensis (Wollenweber, 1923) Behrens, 1975, in the resistant (Krepysh) and susceptible (Nevskii) potato cultivars was studied under a short-term exposure to low temperatures. Such treatment of susceptible plants at the early stages of ontogeny led to the activation of expression of H1 and Gro1-4 genes in roots and the H1 gene in leaves. The transcriptional activity of R genes was detected not only in roots but also in leaves (i.e., in tissue remote from the site of direct injury by the nematode) in the case of both genetic and induced resistance, indicating the development of a systemic defense response of plants to infection.

  15. Molecular and Morphological Characterization and Biological Control Capabilities of a Pasteuria ssp. Parasitizing Rotylenchulus reniformis, the Reniform Nematode.

    Science.gov (United States)

    Schmidt, Liesbeth M; Hewlett, Thomas E; Green, April; Simmons, Lee J; Kelley, Karen; Doroh, Mark; Stetina, Salliana R

    2010-09-01

    Rotylenchulus reniformis is one of 10 described species of reniform nematodes and is considered the most economically significant pest within the genus, parasitizing a variety of important agricultural crops. Rotylenchulus reniformis collected from cotton fields in the Southeastern US were observed to have the nematode parasitic bacterium Pasteuria attached to their cuticles. Challenge with a Pasteuria-specific monoclonal antibody in live immuno-fluorescent assay (IFA) confirmed the discovery of Pasteuria infecting R. reniformis. Scanning and transmission electron microscopy were employed to observe endospore ultrastructure and sporogenesis within the host. Pasteuria were observed to infect and complete their life-cycle in juvenile, male and female R. reniformis. Molecular analysis using Pasteuria species-specific and degenerate primers for 16s rRNA and spoII, and subsequent phylogenetic assessment, placed the Pasteuria associated with R. reniformis in a distinct clade within established assemblages for the Pasteuria infecting phytopathogenic nematodes. A global phylogenetic assessment of Pasteuria 16s rDNA using the Neighbor-Joining method resulted in a clear branch with 100% boot-strap support that effectively partitioned the Pasteuria infecting phytopathogenic nematodes from the Pasteuria associated with bacterivorous nematodes. Phylogenetic analysis of the R. reniformis Pasteuria and Pasteuria spp. parasitizing a number of economically important plant parasitic nematodes revealed that Pasteuria with different host specificities are closely related and likely constitute biotypes of the same species. This suggests host preference, and thus effective differentiation and classification are most likely predicated by an influential virulence determinant(s) that has yet to be elucidated. Pasteuria Pr3 endospores produced by in vitro fermentation demonstrated efficacy as a commercial bionematicide to control R. reniformis on cotton in pot tests, when applied as a seed

  16. Functional characterization of CLE peptides from a plant-parasitic nematode Globodera rostochiensis

    Science.gov (United States)

    Plant CLAVATA3/ESR (CLE) proteins are a large family of secreted peptide ligands that play important roles in plant growth and development. Recent evidence suggests that plant-parasitic cyst nematodes secrete ligand mimics of plant CLE peptides to modify selected host root cells into multinucleate f...

  17. Species Composition and Structure of the Communities of Plant-Parasitic and Free-Living Soil Nematodes in the Greenhouses of Botanical Gardens of Ukraine

    Directory of Open Access Journals (Sweden)

    Gubin A.I.

    2014-07-01

    Full Text Available Species Composition and Structure of the Communities of Plant-Parasitic and Free-Living Soil Nematodes in the Greenhouses of Botanical Gardens of Ukraine. Gubin, A. I., Sigareva, D. D. — In greenhouses of botanical gardens of Ukraine 81 species of nematodes were found. The richest by the number of species was Tylenchida order that was presented by 25 species (31 % of species composition. The dominant group of nematodes was plant-parasitic (most frequent was Rotylenchus robustus (de Man, 1876 Filipjev, 1936 and Meloidogyne incognita (Kofoid et White, 1919 Chitwood, 1949. The group of saprobiotic nematodes, which was presented by 52 species (64 %, appeared to be the richest by the number of species. It is shown, that formation of nematode communities in greenhouses of botanical gardens was caused by the interaction of many related factors, crucial of which is the composition of plant collections. The structure of communities is quite constant and almost independent of the quantity of nematodes species. Plant-parasitic species dominate by the number and frequency of detection, and represent a kind of a core of nematode communities.

  18. Philippine Survey of Nematode Parasite Infection and Load in the Giant African Snail Achatina fulica indicate Angiostrongylus cantonensis infection in Mindanao

    Directory of Open Access Journals (Sweden)

    Daisy May A. Constantino-Santos

    2014-12-01

    Full Text Available Achatina fulica is a ubiquitous land snail commonly found throughout the Philippines. As a generalist feeder and being able to survive in a wide range of habitat types and conditions, the snail can easily establish itself in a new area after introduction. It also acts as host to a variety of parasites, including nematodes, which may accidentally infect humans. In this study, A. fulica individuals from 13 areas in the Philippines were sampled and analyzed for nematode infection rate and load. Of the 393 individuals sampled, 80 (20% were found to be infected, with 5049 nematodes isolated. The infection rates and parasite load were highly variable. Overall, the parasite load ranges from 1 to 867 per snail. Representative nematodes from A. fulica from Plaridel (n=8 and Davao City (n=26 in Mindanao were subjected to DNA extraction, PCR amplification, and sequencing of the SSU rRNA gene, which is the universal barcode for nematodes. Sequences successfully matched with the dog lungworm Oslerus osleri for the Plaridel nematodes and the rat lungworm Angiostrongylus cantonensis for the Davao City nematodes, respectively. The latter is known to infect humans and can cause eosinophilic meningoencephalitis. This study presents the first report of A. cantonensis in A. fulica from Mindanao and raises a public health concern.

  19. Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes.

    Science.gov (United States)

    Shapiro-Ilan, David; Raymond, Ben

    2016-03-01

    Cooperative secretion of virulence factors by pathogens can lead to social conflict when cheating mutants exploit collective secretion, but do not contribute to it. If cheats outcompete cooperators within hosts, this can cause loss of virulence. Insect parasitic nematodes are important biocontrol tools that secrete a range of significant virulence factors. Critically, effective nematodes are hard to maintain without live passage, which can lead to virulence attenuation. Using experimental evolution, we tested whether social cheating might explain unstable virulence in the nematode Heterorhabditis floridensis by manipulating relatedness via multiplicity of infection (MOI), and the scale of competition. Passage at high MOI, which should reduce relatedness, led to loss of fitness: virulence and reproductive rate declined together and all eight independent lines suffered premature extinction. As theory predicts, relatedness treatments had more impact under stronger global competition. In contrast, low MOI passage led to more stable virulence and increased reproduction. Moreover, low MOI lineages showed a trade-off between virulence and reproduction, particularly for lines under stronger between-host competition. Overall, this study indicates that evolution of virulence theory is valuable for the culture of biocontrol agents: effective nematodes can be improved and maintained if passage methods mitigate possible social conflicts.

  20. Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V

    NARCIS (Netherlands)

    Achenbach, U.; Caldas Paulo, M.J.; Ilarionova, E.; Lübeck, J.; Strahwald, J.; Tacke, E.; Hofferbert, H.R.

    2009-01-01

    The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker 'HC', which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that

  1. Anatomo-pathological aspects of parasitism by nematodes of the superfamily Metastrongyloidea in wild crab-eating fox (Cerdocyon thous in Midwestern Brazil

    Directory of Open Access Journals (Sweden)

    Jair Alves Ferreira Júnior

    Full Text Available ABSTRACT: Nematodes of the superfamily Metastrongyloidea affect the respiratory, cardiovascular, and nervous systems of domestic carnivores and are uncommonly detected in wild animals. This report describes the lesions associated with pulmonary parasitism by nematodes of the superfamily Metastrongyloidea in a wild crab-eating fox ( Cerdocyon thous in the Federal District, Brazil. Grossly, there was pulmonary hyperemia, edema, and emphysema. Microscopically, there was granulomatous arteritis associated with intravascular metastrongylid. The anatomical location, characteristic lesion, and histological features of the parasite suggested that the nematode involved in this case is Angiostrongylus vasorum . This worm is frequently reported parasitizing pulmonary arteries of domestic canids but is uncommonly described in wild canids in Midwestern Brazil.

  2. Identification of Nematode Fauna in Vineyards of South of Western Azerbaijan and Determination of the Dominant Parasitic Species

    Directory of Open Access Journals (Sweden)

    E. Mohajeri

    2017-12-01

    Full Text Available Introduction: Grapevine belongs to the Vitaceae family that consists of 14 genera and about 700 species. Only in the genus Vitis fruits are edible. Italy is the largest producer of grapes and Iran has the seventh position in the world from this point of view. Western Azarbaijan province comprises a high diversity of crops including wild grapes. Although, some nematodes are free living and antagonists of another soil microfauna, the other are plant parasitic agents. Most of which live in the agricultural soils where they are widely dispersed. Effectiveness of the disease management strategies are affected by the accurate identification of the plant disease causal agents and the nematodal diseases are not the exception from this rule. Therefore, for control of the diseases caused by the nematodes, it is necessary to separate the parasitic nematodes from the suspected contaminated soils and identify them. Although separation and identification of the nematodes are partly time-consuming, it is not very complicated. Some nematodes likeXiphinema, Longidorus and Ditylenchus are cosmopolitan and catastrophic nematodes in vineyards worldwide. So far no study has been performed regarding the plant parasitic nematode in vineyards of the south of Western Azerbaijan. Therefore, in this study as an introduction to the management ofthe vineyard parasitic nematodes, the dominant nematodes of the plant were identified. In the next step, investigation of nematodes bioecology, the interaction of nematodes with the other plant pathogens, their host range and their damages to the host plants would be studied. Materials and Methods: In order to identify the fauna of plant parasitic nematodes in vineyards of the south of Western Azarbaijan, during 2013-2014, 50 soil samples were collected from the rhizosphere of grapevine. The sampling was carried out from the vineyards of five grapevine growing cities including Mahabad, Bookan, Sardasht, Piranshahr and Miyandoab. The

  3. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Fernandez, Ivan; Lok, Gerrit B; Pozo, María J; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Characterization and Function of the Inflammatory Response to Infection by a Gastrointestinal Nematode Parasite: New Insights into Protective Th2 Responses

    Science.gov (United States)

    2006-01-01

    gastrointestinal nematode parasites;T. trichuris, T. muris , T suis. WT wild type. 1 Dissertation Introduction Background and Significance...and hosts2. Infectious parasites are responsible for a wide range of human diseases, including Leishmanisis, Malaria, Schistosomaisis, Giardia ...the gut to define more clearly protective mechanisms against gastrointestinal nematodes. Using a mouse whipworm model of Trichuris 81 muris

  5. Prevalence and Molecular Identification of Nematode and Dipteran Parasites in an Australian Alpine Grasshopper (Kosciuscola tristis)

    Science.gov (United States)

    Umbers, Kate D. L.; Byatt, Lachlan J.; Hill, Nichola J.; Bartolini, Remo J.; Hose, Grant C.; Herberstein, Marie E.; Power, Michelle L

    2015-01-01

    In alpine Australia, Orthoptera are abundant, dominant herbivores, important prey species, and hosts for parasites and parasitoids. Despite the central role of orthopterans in alpine ecosystems, the impact of parasites on orthopteran populations is under-explored. In this study we describe the relationship between parasite prevalence and host sex, body size and year of collection. We accessed an existing, preserved collection of 640 Kosciuscola tristis collected from across its range between 2007 and 2011. Upon dissection we collected juvenile parasites and used molecular tools to identify them to three families (Nematoda; Mermithidae, and Arthropoda: Diptera: Tachinidae and Sarcophagidae). The prevalence of nematodes ranged from 3.5% to 25.0% and dipterans from 2.4% to 20.0%. Contrary to predictions, we found no associations between parasite prevalence and grasshopper sex or size. Although there was an association between prevalence of both nematodes and dipterans with year of collection, this is likely driven by a small sample size in the first year. Our results provide a foundation for future studies into parasite prevalence within the alpine environment and the abiotic factors that might influence these associations. PMID:25919745

  6. [Recent findings on the genetics of gastro-intestinal nematode resistance in ruminants].

    Science.gov (United States)

    Carta, A; Scala, A

    2004-06-01

    The control of helminthiases in ruminants raised in open pasture has been mainly undertaken by using prophylactic measures in the environment, but these are often inadequate due to incorrect application. With the appearance of anthelmintics, the strategy for controlling these parasitoses, passed to pharmacological treatments which became effective in reducing their impact. However, the frequent and incorrect utilisation of these molecules resulted in resistance to anthelmintics and the presence of chemical residues in animal products for human consumption. Anthelmintic resistance is widespread throughout the world, heterogeneous and probably underestimated. This has encouraged the introduction of homeopathic agents and products derived from plants whose effectiveness has not been scientifically assessed. It is well known that it is possible to detect differences in resistance to the most important parasites between breeds. In Europe, it has been reported that some ovine autochthonous breeds, Scottish Blackface and Lacaune, showed higher resistance. The implementation of breeding strategies aimed at obtaining animals with naturally low susceptibility to nematode infestations could therefore play an increasingly important role. Standard animal breeding techniques have been largely successful in improving the performance of domestic animals in the last century. Standard quantitative selection requires field data on: i) individual phenotype performance; ii) expected covariance among animals due to blood relationship between them. The whole process of predicting the breeding value of animals in order to select subsequently the genetically superior parents of the next generation is entirely based on sophisticated computations (BLUP-animal model). In sheep, the main objective is always selecting for milk yield and sometimes, in addition, milk composition. However, due to the evolution of the EU agricultural policy and consumer demand in terms of healthy and organic food

  7. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene

    Science.gov (United States)

    Lilley, Catherine J.; Maqbool, Abbas; Wu, Duqing; Yusup, Hazijah B.; Jones, Laura M.; Birch, Paul R. J.; Urwin, Peter E.

    2018-01-01

    Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to “GS-like effectors”. Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function. PMID:29641602

  8. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards.

    Science.gov (United States)

    Aballay, E; Prodan, S; Zamorano, A; Castaneda-Alvarez, C

    2017-07-01

    The action of metabolites and exoenzymes from rhizobacteria on different plant-parasitic nematodes has an influence on the nematicidal efficacy of the microbe. Seven rhizobacteria, divided into two bacterial groups, were evaluated in vitro for nematicidal activity on Meloidogyne ethiopica and Xiphinema index. The direct effect of their filtrates on egg hatching and juveniles of M. ethiopica as well as mobile stages of X. index was evaluated during a 72-h period. The production of four exoenzymes and two metabolites associated with nematode mortality was investigated. Molecular characterization of three isolates was performed, and the physiological profiles and lipase activity of all isolates were obtained using the BIOLOG EcoPlate system. While chitinase and collagenase were measured using the BIOLOG MT2 plate system, protease, hydrogen cyanide and hydrogen sulphide were directly determined in Petri dishes. Nematode mobile stages exposure to the bacterial filtrate revealed a nematicidal effect up to 93.7% on X. Index and up to 83.3% on M. ethiopica. The control of egg hatching varied between 35 and 85%. A positive correlation was found between the mortality of both nematode mobile stages and the concerted activities of the bacterial enzymes as well as the level of the volatile metabolites. The nematicidal effect of rhizobacteria strains varies by nematode genera and among the developmental stages evaluated.

  9. Practical application of insect-parasitic nematodes and sterile flies

    International Nuclear Information System (INIS)

    Galle, F.; Loosjes, M.

    1987-01-01

    The company 'de Groene Vlieg' started with commercial control of the onion fly by means of the sterile insect technique. At the moment 10 per cent of the Dutch spring sown onions are treated with this method. The mass-rearing, the estimations of populations and the repeated releases of sterilized flies make it a rather complicated method. It can be applied economically per field, but only in areas with a concentration of onion growing. For export we see no possibilities yet. In principle the sterile insect technique can be applied also to other flies (carrot rust fly, cabbage root fly), but a suitable artificial diet is still lacking. Since some years we also rear the insect parasitic nematodes Heterorhabditis sp. and Neoaplectana bibionis. The later is experimentally used with success against Agrotis segetum caterpillars in lettuce. Research will yield more applications of nematodes against different pests. We use Heterorhabditis sp. in practice against the black vine weevil (Otiorhynchus sulcatus), a serious pest in glass houses, tree nurseries and gardens. Good control is achieved with a dose of one half to one million nematodes per square meter in moist soil and with temperatures above 12 degrees C. The application is similar to that of a chemical insecticide. The pest is killed by symbiontic bacteria, released by the nematodes after penetrating into the body cavity of the larvae. The nematodes are delivered by mail. If cooled they can be kept alive for over four weeks in the package. We export already to Switzerland and plan to export also to Western Germany. At this moment a possible admittance is under investigation in the Netherlands for application of a nuclear polyhedrosis virus against Spodoptera exigua caterpillars

  10. The unique resistance and resilience of the Nigerian West African Dwarf goat to gastrointestinal nematode infections

    Science.gov (United States)

    2011-01-01

    Background West African Dwarf (WAD) goats serve an important role in the rural village economy of West Africa, especially among small-holder livestock owners. They have been shown to be trypanotolerant and to resist infections with Haemonchus contortus more effectively than any other known breed of goat. Methods In this paper we review what is known about the origins of this goat breed, explain its economic importance in rural West Africa and review the current status of our knowledge about its ability to resist parasitic infections. Conclusions We suggest that its unique capacity to show both trypanotolerance and resistance to gastrointestinal (GI) nematode infections is immunologically based and genetically endowed, and that knowledge of the underlying genes could be exploited to improve the capacity of more productive wool and milk producing, but GI nematode susceptible, breeds of goats to resist infection, without recourse to anthelmintics. Either conventional breeding allowing introgression of resistance alleles into susceptible breeds, or transgenesis could be exploited for this purpose. Appropriate legal protection of the resistance alleles of WAD goats might provide a much needed source of revenue for the countries in West Africa where the WAD goats exist and where currently living standards among rural populations are among the lowest in the world. PMID:21291550

  11. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  12. Molecular and genetic analyses of potato cyst nematode resistance loci

    NARCIS (Netherlands)

    Bakker, E.H.

    2003-01-01

    This thesis describes the genomic localisation and organisation of loci that harbour resistance to the potato cyst nematode species Globodera pallida and G. rostochiensis . Resistance to the potato cyst nematodes G. pallida and G. rostochiensis is an important aspect in potato breeding. To gain

  13. A novel copro-diagnostic molecular method for qualitative detection and identification of parasitic nematodes in amphibians and reptiles.

    Directory of Open Access Journals (Sweden)

    Lucas G Huggins

    Full Text Available Anthropogenic disturbance via resource acquisition, habitat fragmentation and climate change, amongst other factors, has led to catastrophic global biodiversity losses and species extinctions at an accelerating rate. Amphibians are currently one of the worst affected classes with at least a third of species categorised as being threatened with extinction. At the same time, they are also critically important for many habitats and provide man with a powerful proxy for ecosystem health by acting as a bioindicator group. Whilst the causes of synchronised amphibian losses are varied recent research has begun to highlight a growing role that macroparasites are playing in amphibian declines. However, diagnosing parasite infection in the field can be problematic, principally relying on collection and euthanasia of hosts, followed by necropsy and morphological identification of parasites in situ. The current study developed a non-invasive PCR-based methodology for sensitive detection and identification of parasitic nematode DNA released in the faeces of infected amphibians as egg or tissue fragments (environmental DNA. A DNA extraction protocol optimised for liberation of DNA from resilient parasite eggs was developed alongside the design of a novel, nematode universal, degenerate primer pair, thus avoiding the difficulties of using species specific primers in situations where common parasite species are unknown. Used in conjunction this protocol and primer pair was tested on a wide range of faecal samples from captive and wild amphibians. The primers and protocol were validated and detected infections, including a Railletnema nematode infection in poison dart frogs from ZSL London Zoo and Mantella cowani frogs in the wild. Furthermore, we demonstrate the efficacy of our PCR-based protocol for detecting nematode infection in other hosts, such as the presence of pinworm (Aspiculuris in two tortoise species and whipworm (Trichuris muris in mice. Our

  14. A novel copro-diagnostic molecular method for qualitative detection and identification of parasitic nematodes in amphibians and reptiles.

    Science.gov (United States)

    Huggins, Lucas G; Michaels, Christopher J; Cruickshank, Sheena M; Preziosi, Richard F; Else, Kathryn J

    2017-01-01

    Anthropogenic disturbance via resource acquisition, habitat fragmentation and climate change, amongst other factors, has led to catastrophic global biodiversity losses and species extinctions at an accelerating rate. Amphibians are currently one of the worst affected classes with at least a third of species categorised as being threatened with extinction. At the same time, they are also critically important for many habitats and provide man with a powerful proxy for ecosystem health by acting as a bioindicator group. Whilst the causes of synchronised amphibian losses are varied recent research has begun to highlight a growing role that macroparasites are playing in amphibian declines. However, diagnosing parasite infection in the field can be problematic, principally relying on collection and euthanasia of hosts, followed by necropsy and morphological identification of parasites in situ. The current study developed a non-invasive PCR-based methodology for sensitive detection and identification of parasitic nematode DNA released in the faeces of infected amphibians as egg or tissue fragments (environmental DNA). A DNA extraction protocol optimised for liberation of DNA from resilient parasite eggs was developed alongside the design of a novel, nematode universal, degenerate primer pair, thus avoiding the difficulties of using species specific primers in situations where common parasite species are unknown. Used in conjunction this protocol and primer pair was tested on a wide range of faecal samples from captive and wild amphibians. The primers and protocol were validated and detected infections, including a Railletnema nematode infection in poison dart frogs from ZSL London Zoo and Mantella cowani frogs in the wild. Furthermore, we demonstrate the efficacy of our PCR-based protocol for detecting nematode infection in other hosts, such as the presence of pinworm (Aspiculuris) in two tortoise species and whipworm (Trichuris muris) in mice. Our environmental DNA

  15. Characterization of the Pratylenchus penetrans transcriptome including data mining of putative nematode genes involved in plant parasitism

    Science.gov (United States)

    The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic ne...

  16. Conservation of a microRNA cluster in parasitic nematodes and profiling of miRNAs in excretory-secretory products and microvesicles of Haemonchus contortus.

    Directory of Open Access Journals (Sweden)

    Henry Y Gu

    2017-11-01

    Full Text Available microRNAs are small non-coding RNAs that are important regulators of gene expression in a range of animals, including nematodes. We have analysed a cluster of four miRNAs from the pathogenic nematode species Haemonchus contortus that are closely linked in the genome. We find that the cluster is conserved only in clade V parasitic nematodes and in some ascarids, but not in other clade III species nor in clade V free-living nematodes. Members of the cluster are present in parasite excretory-secretory products and can be detected in the abomasum and draining lymph nodes of infected sheep, indicating their release in vitro and in vivo. As observed for other parasitic nematodes, H. contortus adult worms release extracellular vesicles (EV. Small RNA libraries were prepared from vesicle-enriched and vesicle-depleted supernatants from both adult worms and L4 stage larvae. Comparison of the miRNA species in the different fractions indicated that specific miRNAs are packaged within vesicles, while others are more abundant in vesicle-depleted supernatant. Hierarchical clustering analysis indicated that the gut is the likely source of vesicle-associated miRNAs in the L4 stage, but not in the adult worm. These findings add to the growing body of work demonstrating that miRNAs released from parasitic helminths may play an important role in host-parasite interactions.

  17. [Effect of the soil contamination with a potato cyst-forming nematode on the community structure of soil-inhabiting nematodes].

    Science.gov (United States)

    Gruzdeva, L I; Suzhchuk, A A

    2008-01-01

    Nematode community structure of the potato fields with different infection levels of potato cyst-forming nematode (PCN) such as 10, 30 and 214 cysts per 100 g of soil has been investigated. The influence of specialized parasite on nematode fauna and dominance character of different ecological-trophic groups were described. Parasitic nematode genera in natural meadow biocenosis and agrocenoses without PCN are Paratylenchus, Tylenchorhynchus, and Helicotylenchus. It is established, that Paratylenchus nanus was the prevalent species among plant parasites at low infection level. Larvae of Globodera prevailed in the soil with middle and high infection levels and substituted individuals of other genera of parasitic nematodes. The fact of increase in number of hyphal-feeding nematode Aphelenchus avenae was revealed.

  18. In planta processing and glycosylation of a nematode CLE effector and its interaction with a CLV2-like receptor to promote parasitism

    Science.gov (United States)

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ESR (CLE)-like proteins have been identified in several cyst nematodes including the potato cyst nematode (PCN); however, th...

  19. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy.

    Science.gov (United States)

    Espada, Margarida; Silva, Ana Cláudia; Eves van den Akker, Sebastian; Cock, Peter J A; Mota, Manuel; Jones, John T

    2016-02-01

    The migratory endoparasitic nematode Bursaphelenchus xylophilus, which is the causal agent of pine wilt disease, has phytophagous and mycetophagous phases during its life cycle. This highly unusual feature distinguishes it from other plant-parasitic nematodes and requires profound changes in biology between modes. During the phytophagous stage, the nematode migrates within pine trees, feeding on the contents of parenchymal cells. Like other plant pathogens, B. xylophilus secretes effectors from pharyngeal gland cells into the host during infection. We provide the first description of changes in the morphology of these gland cells between juvenile and adult life stages. Using a comparative transcriptomics approach and an effector identification pipeline, we identify numerous novel parasitism genes which may be important for the mediation of interactions of B. xylophilus with its host. In-depth characterization of all parasitism genes using in situ hybridization reveals two major categories of detoxification proteins, those specifically expressed in either the pharyngeal gland cells or the digestive system. These data suggest that B. xylophilus incorporates effectors in a multilayer detoxification strategy in order to protect itself from host defence responses during phytophagy. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  20. Small RNAs and extracellular vesicles in filarial nematodes: From nematode development to diagnostics.

    Science.gov (United States)

    Quintana, J F; Babayan, S A; Buck, A H

    2017-02-01

    Parasitic nematodes have evolved sophisticated mechanisms to communicate with their hosts in order to survive and successfully establish an infection. The transfer of RNA within extracellular vesicles (EVs) has recently been described as a mechanism that could contribute to this communication in filarial nematodes. It has been shown that these EVs are loaded with several types of RNAs, including microRNAs, leading to the hypothesis that parasites could actively use these molecules to manipulate host gene expression and to the exciting prospect that these pathways could result in new diagnostic and therapeutic strategies. Here, we review the literature on the diverse RNAi pathways that operate in nematodes and more specifically our current knowledge of extracellular RNA (exRNA) and EVs derived from filarial nematodes in vitro and within their hosts. We further detail some of the issues and questions related to the capacity of RNA-mediated communication to function in parasite-host interactions and the ability of exRNA to enable us to distinguish and detect different nematode parasites in their hosts. © 2016 The Authors. Parasite Immunology published by John Wiley & Sons Ltd.

  1. Progress in the development of subunit vaccines for gastrointestinal nematodes of ruminants.

    Science.gov (United States)

    Matthews, J B; Geldhof, P; Tzelos, T; Claerebout, E

    2016-12-01

    The global increase in anthelmintic resistant nematodes of ruminants, together with consumer concerns about chemicals in food, necessitates the development of alternative methods of control for these pathogens. Subunit recombinant vaccines are ideally placed to fill this gap. Indeed, they are probably the only valid option for the long-term control of ruminant parasitic nematodes given the increasing ubiquity of multidrug resistance in a range of worm species across the world. The development of a subunit multicellular parasite vaccine to the point of practical application would be a groundbreaking step in the control of these important endemic infections of livestock. This review summarizes the current status of subunit vaccine development for a number of important gastrointestinal nematodes of cattle and sheep, with a focus on the limitations and problems encountered thus far, and suggestions as to how these hurdles might be overcome. © 2016 John Wiley & Sons Ltd.

  2. Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis

    Science.gov (United States)

    Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE)-like effector proteins. These proteins act as ligand mimics of plant CLE peptides and are required for successful nematode infection. Previously, we showed that CLV2 and CORYNE (CRN), a heterodimer recept...

  3. Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi.

    Directory of Open Access Journals (Sweden)

    Samad Ashrafi

    Full Text Available Cyst nematodes are globally important pathogens in agriculture. Their sedentary lifestyle and long-term association with the roots of host plants render cyst nematodes especially good targets for attack by parasitic fungi. In this context fungi were specifically isolated from nematode eggs of the cereal cyst nematode Heterodera filipjevi. Here, Ijuhya vitellina (Ascomycota, Hypocreales, Bionectriaceae, encountered in wheat fields in Turkey, is newly described on the basis of phylogenetic analyses, morphological characters and life-style related inferences. The species destructively parasitises eggs inside cysts of H. filipjevi. The parasitism was reproduced in in vitro studies. Infected eggs were found to harbour microsclerotia produced by I. vitellina that resemble long-term survival structures also known from other ascomycetes. Microsclerotia were also formed by this species in pure cultures obtained from both, solitarily isolated infected eggs obtained from fields and artificially infected eggs. Hyphae penetrating the eggshell colonised the interior of eggs and became transformed into multicellular, chlamydospore-like structures that developed into microsclerotia. When isolated on artificial media, microsclerotia germinated to produce multiple emerging hyphae. The specific nature of morphological structures produced by I. vitellina inside nematode eggs is interpreted as a unique mode of interaction allowing long-term survival of the fungus inside nematode cysts that are known to survive periods of drought or other harsh environmental conditions. Generic classification of the new species is based on molecular phylogenetic inferences using five different gene regions. I. vitellina is the only species of the genus known to parasitise nematodes and produce microsclerotia. Metabolomic analyses revealed that within the Ijuhya species studied here, only I. vitellina produces chaetoglobosin A and its derivate 19-O-acetylchaetoglobosin A. Nematicidal

  4. Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi.

    Science.gov (United States)

    Ashrafi, Samad; Helaly, Soleiman; Schroers, Hans-Josef; Stadler, Marc; Richert-Poeggeler, Katja R; Dababat, Abdelfattah A; Maier, Wolfgang

    2017-01-01

    Cyst nematodes are globally important pathogens in agriculture. Their sedentary lifestyle and long-term association with the roots of host plants render cyst nematodes especially good targets for attack by parasitic fungi. In this context fungi were specifically isolated from nematode eggs of the cereal cyst nematode Heterodera filipjevi. Here, Ijuhya vitellina (Ascomycota, Hypocreales, Bionectriaceae), encountered in wheat fields in Turkey, is newly described on the basis of phylogenetic analyses, morphological characters and life-style related inferences. The species destructively parasitises eggs inside cysts of H. filipjevi. The parasitism was reproduced in in vitro studies. Infected eggs were found to harbour microsclerotia produced by I. vitellina that resemble long-term survival structures also known from other ascomycetes. Microsclerotia were also formed by this species in pure cultures obtained from both, solitarily isolated infected eggs obtained from fields and artificially infected eggs. Hyphae penetrating the eggshell colonised the interior of eggs and became transformed into multicellular, chlamydospore-like structures that developed into microsclerotia. When isolated on artificial media, microsclerotia germinated to produce multiple emerging hyphae. The specific nature of morphological structures produced by I. vitellina inside nematode eggs is interpreted as a unique mode of interaction allowing long-term survival of the fungus inside nematode cysts that are known to survive periods of drought or other harsh environmental conditions. Generic classification of the new species is based on molecular phylogenetic inferences using five different gene regions. I. vitellina is the only species of the genus known to parasitise nematodes and produce microsclerotia. Metabolomic analyses revealed that within the Ijuhya species studied here, only I. vitellina produces chaetoglobosin A and its derivate 19-O-acetylchaetoglobosin A. Nematicidal and nematode

  5. Molecular contest between potato and the potato cyst nematode Globodera pallida: modulation of Gpa2-mediated resistance

    NARCIS (Netherlands)

    Koropacka, K.B.

    2010-01-01

    Gpa2 recognition specificity
    Among all the multicellular animals, nematodes are the most numerous. In soil, a high variety
    of free living nematodes feeding on bacteria can be found as well as species that parasitize
    insects, animals or plants. The potato cyst nematode (PCN)

  6. Reindeer as hosts for nematode parasites of sheep and cattle.

    Science.gov (United States)

    Hrabok, J T; Oksanen, A; Nieminen, M; Rydzik, A; Uggla, A; Waller, P J

    2006-03-31

    The reindeer husbandry range of Scandinavia overlaps with sheep, goat, and cattle pastures. The aim of this study was to determine whether reindeer are suitable hosts for ovine or bovine nematode parasites, and thus may spread these parasites into the reindeer husbandry regions. To render worm-free, twelve 4-month-old male reindeer calves, six lambs, and six bovine calves were given ivermectin at 200 microg/kg body weight. Five weeks post-treatment, six reindeer calves were each artificially dosed with 10,000 third-stage larvae (L3) of gastrointestinal nematodes derived from sheep, and an additional six reindeer with L3 derived from cattle. Lambs and bovine calves received the same dose of ovine and bovine larvae as reindeer, from the same larval source, respectively. Faecal samples collected on five occasions after the larval dosing revealed that by the fourth week, all reindeer calves, lambs, and bovine calves were infected. Animals were slaughtered on days 40 (reindeer) or 47 (lambs and bovine calves) after the larval dosing. Reindeer calves were most susceptible to L3 derived from sheep. The overall mean intensity of Haemochus contortus, Trichostrongylus axei, and Teladorsagia circumcincta, did not differ between reindeer and sheep; however, early fourth-stage larvae of H. contortus were more abundant in reindeer (p = 0.002). The establishment of bovine-derived Ostertagia ostertagi was similar in reindeer (62%) and bovine calves (57%), but larval inhibition was much higher in reindeer (91%, p bovine derived Cooperia oncophora was recorded in reindeer calves (2%) compared with bovine calves (59%). These results show that young reindeer are susceptible hosts to the important gastrointestinal parasites of sheep (T. circumcincta, H. contortus) and cattle (O. ostertagi), as well as being a suitable host for T. axei.

  7. Plant-parasitic nematodes associated with olive trees in Al-Jouf region, north Saudi Arabia

    Science.gov (United States)

    A preliminary survey of plant-parasitic nematodes associated with olive was performed in Al-Jouf region, north Saudi Arabia. Olive is a newly introduced crop in this region, and is cultivated in the agricultural enterprises of some of the biggest Saudi agricultural companies. Seedlings are mostly im...

  8. Molecular aspects of cyst nematodes.

    Science.gov (United States)

    Lilley, Catherine J; Atkinson, Howard J; Urwin, Peter E

    2005-11-01

    SUMMARY Taxonomy: Superkingdom Eukaryota; kingdom Metazoa; phylum Nematoda; class Chromadorea; order Tylenchida; suborder Tylenchina; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; main genera Heterodera and Globodera. Cyst nematodes comprise approximately 100 known species in six genera. They are pathogens of temperate, subtropical and tropical plant species and the host range of many species is narrow. The most economically important species are within the Globodera and Heterodera genera. Globodera pallida and G. rostochiensis are important pathogens of potato crops. There are many economic species in the Heterodera genus, including Heterodera glycines (soybean cyst nematode), H. avenae (cereal cyst nematode) and H. schachtii (sugar beet cyst nematode), the last of which attacks a range of Chenopodiaceae and Cruciferae, including Arabidopsis thaliana. Disease symptoms: Field symptoms of severe cyst nematode infection are often stunting, wilting and chlorosis, but considerable yield loss can occur without obvious symptoms. The only unique indicator of cyst nematode infection is the presence of adult female nematodes attached to host roots after several weeks of parasitism. Disease control: This is usually achieved by using integrated pest management involving cultural practices such as crop rotation, resistant cultivars if available and chemical control when economically justified.

  9. A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.).

    Science.gov (United States)

    Huynh, Bao-Lam; Matthews, William C; Ehlers, Jeffrey D; Lucas, Mitchell R; Santos, Jansen R P; Ndeve, Arsenio; Close, Timothy J; Roberts, Philip A

    2016-01-01

    Genome resolution of a major QTL associated with the Rk locus in cowpea for resistance to root-knot nematodes has significance for plant breeding programs and R gene characterization. Cowpea (Vigna unguiculata L. Walp.) is a susceptible host of root-knot nematodes (Meloidogyne spp.) (RKN), major plant-parasitic pests in global agriculture. To date, breeding for host resistance in cowpea has relied on phenotypic selection which requires time-consuming and expensive controlled infection assays. To facilitate marker-based selection, we aimed to identify and map quantitative trait loci (QTL) conferring the resistance trait. One recombinant inbred line (RIL) and two F2:3 populations, each derived from a cross between a susceptible and a resistant parent, were genotyped with genome-wide single nucleotide polymorphism (SNP) markers. The populations were screened in the field for root-galling symptoms and/or under growth-chamber conditions for nematode reproduction levels using M. incognita and M. javanica biotypes. One major QTL was mapped consistently on linkage group VuLG11 of each population. By genotyping additional cowpea lines and near-isogenic lines derived from conventional backcrossing, we confirmed that the detected QTL co-localized with the genome region associated with the Rk locus for RKN resistance that has been used in conventional breeding for many decades. This chromosomal location defined with flanking markers will be a valuable target in marker-assisted breeding and for positional cloning of genes controlling RKN resistance.

  10. Management of pest mole crickets in Florida and Puerto Rico with a nematode and parasitic wasp

    International Nuclear Information System (INIS)

    Leppla, N.C.; Frank, J.H.; Adjei, M.B.; Vicente, N.E.

    2007-01-01

    Non-indigenous invasive mole crickets, Scapteriscus vicinus Scudder (Orthoptera: Gryllotalpidae) in Florida and S. didactylus (Latreille) (the 'changa') in Puerto Rico, are being managed with an entomopathogenic nematode, Steinernema scapterisci (Nguyen and Smart) (Rhabditida: Steinernematidae), and a parasitic wasp, Larra bicolor L. (Hymenoptera: Sphecidae). Pest mole cricket populations have declined by 95% in north central Florida since these specialist natural enemies were released and established in the 1980s. Commercial production of the nematode was initiated, nearly 70 billion were applied in 34 Florida counties, and their establishment, spread, and impact on mole crickets were monitored. The infected mole crickets dispersed the nematode rapidly, so that within 6 months these parasites were present in most of the insects trapped in experimental pastures. Three years later, mole cricket populations were reduced to acceptable levels and the bahiagrass had recovered. The nematode was released for the first time in Puerto Rico during 2001 and has persisted; the wasp was introduced in the late 1930s. The geographical distribution of the wasp is being expanded in Florida and Puerto Rico by planting plots of Spermacoce verticillata (L.), a wildflower indigenous to Puerto Rico and widely distributed in southern Florida. Pastures, sod farms, golf courses, landscapes, and vegetable farms in Florida and Puerto Rico are benefiting from biological control of invasive mole crickets. (author) [es

  11. Genetic and Immunological Comparison of the Cladoceran Parasite Pasteuria ramosa with the Nematode Parasite Pasteuria penetrans▿

    Science.gov (United States)

    Schmidt, Liesbeth M.; Mouton, Laurence; Nong, Guang; Ebert, Dieter; Preston, James F.

    2008-01-01

    Pasteuria penetrans, an obligate endospore-forming parasite of Meloidogyne spp. (root knot nematodes), has been identified as a promising agent for biocontrol of these destructive agricultural crop pests. Pasteuria ramosa, an obligate parasite of water fleas (Daphnia spp.), has been shown to modulate cladoceran populations in natural ecosystems. Selected sporulation genes and an epitope associated with the spore envelope of these related species were compared. The sigE and spoIIAA/spoIIAB genes differentiate the two species to a greater extent than 16S rRNA and may serve as probes to differentiate the species. Single-nucleotide variations were observed in several conserved genes of five distinct populations of P. ramosa, and while most of these variations are silent single-nucleotide polymorphisms, a few result in conservative amino acid substitutions. A monoclonal antibody directed against an adhesin epitope present on P. penetrans P20 endospores, previously determined to be specific for Pasteuria spp. associated with several phytopathogenic nematodes, also detects an epitope associated with P. ramosa endospores. Immunoblotting provided patterns that differentiate P. ramosa from other Pasteuria spp. This monoclonal antibody thus provides a probe with which to detect and discriminate endospores of different Pasteuria spp. The presence of a shared adhesin epitope in two species with such ecologically distant hosts suggests that there is an ancient and ecologically significant recognition process in these endospore-forming bacilli that contributes to the virulence of both species in their respective hosts. PMID:17933927

  12. Genetic and immunological comparison of the cladoceran parasite Pasteuria ramosa with the nematode parasite Pasteuria penetrans.

    Science.gov (United States)

    Schmidt, Liesbeth M; Mouton, Laurence; Nong, Guang; Ebert, Dieter; Preston, James F

    2008-01-01

    Pasteuria penetrans, an obligate endospore-forming parasite of Meloidogyne spp. (root knot nematodes), has been identified as a promising agent for biocontrol of these destructive agricultural crop pests. Pasteuria ramosa, an obligate parasite of water fleas (Daphnia spp.), has been shown to modulate cladoceran populations in natural ecosystems. Selected sporulation genes and an epitope associated with the spore envelope of these related species were compared. The sigE and spoIIAA/spoIIAB genes differentiate the two species to a greater extent than 16S rRNA and may serve as probes to differentiate the species. Single-nucleotide variations were observed in several conserved genes of five distinct populations of P. ramosa, and while most of these variations are silent single-nucleotide polymorphisms, a few result in conservative amino acid substitutions. A monoclonal antibody directed against an adhesin epitope present on P. penetrans P20 endospores, previously determined to be specific for Pasteuria spp. associated with several phytopathogenic nematodes, also detects an epitope associated with P. ramosa endospores. Immunoblotting provided patterns that differentiate P. ramosa from other Pasteuria spp. This monoclonal antibody thus provides a probe with which to detect and discriminate endospores of different Pasteuria spp. The presence of a shared adhesin epitope in two species with such ecologically distant hosts suggests that there is an ancient and ecologically significant recognition process in these endospore-forming bacilli that contributes to the virulence of both species in their respective hosts.

  13. Biological control potential of the obligate parasite Pasteuria penetransagainst the root-knot nematode, Meloidogyne incognita infestation in Brinjal.

    Science.gov (United States)

    Kumari, N Swarna; Sivakumar, C V

    2005-01-01

    The efficacy of the obligate bacterial parasite, Pasteuria penetrans against the rootknot nematode, Meloidogyne incognita infestation was assessed in brinjal. The seedling pans with sterilized soil were inoculated with nematodes and root powder of P. penetrans were applied at different dosages viz., 0 x 10(6), 0.5 x 10(6) spores and 1 x 10(6) spores/pan. Seeds of brinjal cv Co2 were sown in the pans and seedlings were allowed to grow. The seedlings were transplanted to microplots containing sterilized soil. Observations on nematode infestation and plant growth were recorded at seedling, flowering, and fruiting stages. Nematode infestation was significantly reduced by P. penetrans treatment. There was 22, 75 and 86% reduction in nematode population of soil over control at seedling, flowering and fruiting stages, respectively, at higher spore density (1 x 10(6)). Egg mass production was decreased by 63, 78 and 89% over control at 35 (seedling), 100 (flowering) and 160 (fruiting) days after sowing respectively, at 1 x 10(6) spores treated soil. The parasitizing ability of P. penetrans increased with the age of the crop. At higher spore density the percentage of parasitization was increased from 52.0 (35 days after sowing) to 90.0 (160 days after sowing) %. At these stages of the crop, the spore load per juvenile also increased at the higher dose. The P. penetrans application enhanced the plant growth. The weight of the shoot was increased by 17.6% whereas root weight by 41.0% over the control at fruiting stage. The experimental results revealed the potential use of P. penetrans as biological control agent of M. incognita. Application of P. penetrans spores in the nursery is a good strategy since the mass multiplication is quite difficult.

  14. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways.

    Directory of Open Access Journals (Sweden)

    Jonathan D Stoltzfus

    Full Text Available The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i. The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP signaling, insulin/IGF-1-like signaling (IIS, transforming growth factor β (TGFβ signaling, and biosynthesis of dafachronic acid (DA ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between

  15. Potential of Tissue Culture for Breeding Root-Knot Nematode Resistance into Vegetables

    OpenAIRE

    Fassuliotis, G.; Bhatt, D. P.

    1982-01-01

    Plant protoplast technology is being investigated as a means of transferring root-knot nematode resistance factors from Solanum sisymbriifolium into the susceptible S. melongena. Solanum sisymbriifolium plants regenerated from callus lost resistance to Meloidogyne javanica but retained resistance to M. incognita. Tomato plants cloned from leaf discs of the root-knot nematode resistant 'Patriot' were completely susceptible to M. incognita, while sections of stems and leaves rooted in sand in t...

  16. Phylogency and Evolution of Nematodes

    NARCIS (Netherlands)

    Bert, W.; Karssen, G.; Helder, J.

    2011-01-01

    Many plant-parasitic nematodes including members of the genera Meloidogyne (root-knot nematodes), Heterodera and Globodera (cyst nematodes) and Pratylenchus (lesion nematodes) are studied as they cause major damage to crops such as potato, tomato, soybean and sugar beet. Both for fundamental reasons

  17. Generalists at the interface: Nematode transmission between wild and domestic ungulates.

    Science.gov (United States)

    Walker, Josephine G; Morgan, Eric R

    2014-12-01

    Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host-parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog) and 76% (for mouflon) of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse) and 77% (for llamas/alpacas) of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide evidence to answer this

  18. Generalists at the interface: Nematode transmission between wild and domestic ungulates

    Directory of Open Access Journals (Sweden)

    Josephine G. Walker

    2014-12-01

    Full Text Available Many parasitic nematode species are generalists capable of infecting multiple host species. The complex life cycle of nematodes, involving partial development outside of the host, facilitates transmission of these parasites between host species even when there is no direct contact between hosts. Infective nematode larvae persist in the environment, and where grazing or water sources are shared ingestion of parasite larvae deposited by different host species is likely. In this paper we examine the extent to which nematode parasite species have been observed in sympatric wild and domestic ungulates. First, using existing host–parasite databases, we describe expected overlap of 412 nematode species between 76 wild and 8 domestic ungulate host species. Our results indicate that host-specific parasites make up less than half of the nematode parasites infecting any particular ungulate host species. For wild host species, between 14% (for common warthog and 76% (for mouflon of parasitic nematode species are shared with domestic species. For domestic host species, between 42% (for horse and 77% (for llamas/alpacas of parasitic nematode species are shared with wild species. We also present an index of liability to describe the risk of cross-boundary parasites to each host species. We then examine specific examples from the literature in which transmission of nematode parasites between domestic and wild ungulates is described. However, there are many limitations in the existing data due to geographical bias and certain host species being studied more frequently than others. Although we demonstrate that many species of parasitic nematode are found in both wild and domestic hosts, little work has been done to demonstrate whether transmission is occurring between species or whether similar strains circulate separately. Additional research on cross-species transmission, including the use of models and of genetic methods to define strains, will provide

  19. RNA-Seq Based Identification of Candidate Parasitism Genes of Cereal Cyst Nematode (Heterodera avenae during Incompatible Infection to Aegilops variabilis.

    Directory of Open Access Journals (Sweden)

    Minghui Zheng

    Full Text Available One of the reasons for the progressive yield decline observed in cereals production is the rapid build-up of populations of the cereal cyst nematode (CCN, Heterodera avenae. These nematodes secrete so-call effectors into their host plant to suppress the plant defense responses, alter plant signaling pathways and then induce the formation of syncytium after infection. However, little is known about its molecular mechanism and parasitism during incompatible infection. To gain insight into its repertoire of parasitism genes, we investigated the transcriptome of the early parasitic second-stage (30 hours, 3 days and 9 days post infection juveniles of the CCN as well as the CCN infected tissue of the host Aegilops variabilis by Illumina sequencing. Among all assembled unigenes, 681 putative genes of parasitic nematode were found, in which 56 putative effectors were identified, including novel pioneer genes and genes corresponding to previously reported effectors. All the 681 CCN unigenes were mapped to 229 GO terms and 200 KEGG pathways, including growth, development and several stimulus-related signaling pathways. Sixteen clusters were involved in the CCN unigene expression atlas at the early stages during infection process, and three of which were significantly gene-enriched. Besides, the protein-protein interaction network analysis revealed 35 node unigenes which may play an important role in the plant-CCN interaction. Moreover, in a comparison of differentially expressed genes between the pre-parasitic juveniles and the early parasitic juveniles, we found that hydrolase activity was up-regulated in pre J2s whereas binding activity was upregulated in infective J2s. RT-qPCR analysis on some selected genes showed detectable expression, indicating possible secretion of the proteins and putative role in infection. This study provided better insights into the incompatible interaction between H. avenae and the host plant Ae. varabilis. Moreover, RNAi

  20. The effect of a nematode parasite on feeding and dung-burying behavior of an ecosystem engineer.

    Science.gov (United States)

    Boze, Broox G V; Moore, Janice

    2014-07-01

    Dung beetles (genus Phanaeus) consume feces in both their larval and adults forms and because of their unique dietary niche, and behaviors associated with the burial of feces, are considered ecosystem engineers. In addition, because these insects subsist on a diet composed exclusively of feces, it is likely they encounter parasitic propagules more frequently than other animals do. Parasites often alter their host's behavior, so we set out to test whether Physocephalus sexalatus (a cosmopolitan nematode parasite of ungulates) does so in ways that affect the dung beetle's role as an ecosystem engineer and/or its predator-prey relationships (transmission of the parasite). Classic tests of anti-predator behavior did not reveal behavioral differences based on the beetles' infection status. However, this parasite did alter the beetles' behaviors in ways that could be critical for its role in fecal processing and therefore ecosystem engineering. Infected beetles exhibited anorexic behavior and consumed only half the amount of feces ingested by similar uninfected beetles. Infected beetles also buried less feces and did so in tunnels that were significantly shorter than those created by uninfected beetles. Fecal burial is naturally beneficial because it aerates the soil, incorporates nitrogenous compounds, and increases the flow of water thereby making soil and pastureland more productive. We showed that the nematode parasite P. sexalatus itself becomes an ecosystem engineer as it modifies the behavior of its already influential intermediate host. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Caenorhabditis elegans: nature and nurture gift to nematode parasitologists.

    Science.gov (United States)

    Salinas, Gustavo; Risi, Gastón

    2017-12-06

    The free-living nematode Caenorhabditis elegans is the simplest animal model organism to work with. Substantial knowledge and tools have accumulated over 50 years of C. elegans research. The use of C. elegans relating to parasitic nematodes from a basic biology standpoint or an applied perspective has increased in recent years. The wealth of information gained on the model organism, the use of the powerful approaches and technologies that have advanced C. elegans research to parasitic nematodes and the enormous success of the omics fields have contributed to bridge the divide between C. elegans and parasite nematode researchers. We review key fields, such as genomics, drug discovery and genetics, where C. elegans and nematode parasite research have convened. We advocate the use of C. elegans as a model to study helminth metabolism, a neglected area ready to advance. How emerging technologies being used in C. elegans can pave the way for parasitic nematode research is discussed.

  2. Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V.

    Science.gov (United States)

    Achenbach, Ute; Paulo, Joao; Ilarionova, Evgenyia; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Gebhardt, Christiane

    2009-02-01

    The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker 'HC', which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that has been introgressed from the wild potato species Solanum vernei into the Solanum tuberosum tetraploid breeding pool. The major quantitative trait locus (QTL) controlling this nematode resistance maps on potato chromosome V in a hot spot for resistance to various pathogens including nematodes and the oomycete Phytophthora infestans. An unstructured sample of 79 tetraploid, highly heterozygous varieties and breeding clones was selected based on presence (41 genotypes) or absence (38 genotypes) of the HC marker. Testing the clones for resistance to G. pallida confirmed the diagnostic power of the HC marker. The 79 individuals were genotyped for 100 single nucleotide polymorphisms (SNPs) at 10 loci distributed over 38 cM on chromosome V. Forty-five SNPs at six loci spanning 2 cM in the interval between markers GP21-GP179 were associated with resistance to G. pallida. Based on linkage disequilibrium (LD) between SNP markers, six LD groups comprising between 2 and 18 SNPs were identified. The LD groups indicated the existence of multiple alleles at a single resistance locus or at several, physically linked resistance loci. LD group C comprising 18 SNPs corresponded to the 'HC' marker. LD group E included 16 SNPs and showed an association peak, which positioned one nematode resistance locus physically close to the R1 gene family.

  3. Prevalence of drug-resistant gastrointestinal nematodes in an organized sheep farm

    Directory of Open Access Journals (Sweden)

    Ambalathaduvar Meenakshisundaram

    2014-12-01

    Full Text Available Aim: The present study was aimed to determine the resistance against albendazole, fenbendazole, levamisole and closantel in gastrointestinal (GI nematodes of sheep. Introduction: Anthelmintics are used traditionally as an integral part of helminthic control strategies for grazing livestock to prevent production losses from parasitic infections. The continuous and indiscriminate use of the same anthelmintics over years together as the sole means of control are now failing due to the emergence of resistance strains of helminths. Resistance to the commonly used anthelmintics in GI nematodes of sheep has become an increasingly widespread problem throughout the world. Materials and Methods: Fifty-five naturally infected Madras Red lambs of 6-12 months of age were selected and distributed randomly into five treatment groups of 11 animals each. Four groups were treated orally with albendazole (5 mg/kg, fenbendazole (7 mg/kg, levamisole (7.5 mg/kg and closantel (10 mg/kg respectively, whereas the fifth group served as untreated control. Fecal samples were collected per rectum of each lamb just prior to treatment (pre-treatment and on 7, 14, 21 and 28 days post-treatment. The anthelmintic resistance was evaluated by in vivo fecal egg count reduction test (FECRT, post-treatment larval culture and in vitro egg hatch assay. Results: In the FECRT, albendazole reduced the faecal egg count by 86.50%, 84.81%, 85.28% and 84.47% respectively for 4 weeks after treatment. Fecal egg count reduction using fenbendazole was 92.64, 93.04, 90.80 and 90.06% respectively for 4 weeks after treatment. The percent efficacy for levamisole and closantel was more than 95%. The post-treatment larval culture contained only Haemonchus contortus. In the in vitro egg hatch assay, the ED50 value for benzimidazole was 0.299 μg albendazole/ml and levamisole showed an ED50 value of 0.283 μg/ml. Conclusion: Our study confirmed the resistance of H. contortus to benzimidazole in sheep. .

  4. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes

    Science.gov (United States)

    Danchin, Etienne G.J.; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Sokolova (Guzeeva), Elena; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T.

    2017-01-01

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum. PMID:29065523

  5. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes.

    Science.gov (United States)

    Danchin, Etienne G J; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Guzeeva, Elena Sokolova; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T; den Akker, Sebastian Eves-van

    2017-10-23

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus , representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus , respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.

  6. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes

    Directory of Open Access Journals (Sweden)

    Etienne G.J. Danchin

    2017-10-01

    Full Text Available Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.

  7. Occurrence, hosts, morphology, and molecular characterisation of Pasteuria bacteria parasitic in nematodes of the family Plectidae.

    Science.gov (United States)

    Sturhan, Dieter; Shutova, Tatyana S; Akimov, Vladimir N; Subbotin, Sergei A

    2005-01-01

    Parasitic bacteria of the genus Pasteuria are reported for three Anaplectus and four identified and several unidentified Plectus species found in eight countries in various habitats. The pasteurias from plectids agree in essential morphological characters of sporangia and endospores as well as in developmental cycle with those of the Pasteuria species and strains described from tylenchid nematodes, but appear to be mainly distinguished from these by absence of a distinct perisporium in the spores and the endospores obviously not being cup- or saucer-shaped. The wide range of measurements and morphological peculiarities of sporangia and endospores suggest that probably several Pasteuria species have to be distinguished as parasites in Plectidae. From an infected juvenile of an unidentified plectid species the 16S rRNA gene sequence of Pasteuria sp. was obtained. Substantial sequence divergence from described Pasteuria species and its phylogenetic position on molecular trees indicate that this Pasteuria sp. could be considered as a new species. Preliminary results of the analysis of DNA phylogeny of Pasteuria spp. and their nematode hosts provide evidence for incongruence of their phylogenetic history and of host switching events during evolution of the bacterial parasites.

  8. Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes.

    Science.gov (United States)

    Maboreke, Hazel R; Feldhahn, Lasse; Bönn, Markus; Tarkka, Mika T; Buscot, Francois; Herrmann, Sylvie; Menzel, Ralph; Ruess, Liliane

    2016-08-12

    Pedunculate oak (Quercus robur L.), an important forest tree in temperate ecosystems, displays an endogenous rhythmic growth pattern, characterized by alternating shoot and root growth flushes paralleled by oscillations in carbon allocation to below- and aboveground tissues. However, these common plant traits so far have largely been neglected as a determining factor for the outcome of plant biotic interactions. This study investigates the response of oak to migratory root-parasitic nematodes in relation to rhythmic growth, and how this plant-nematode interaction is modulated by an ectomycorrhizal symbiont. Oaks roots were inoculated with the nematode Pratylenchus penetrans solely and in combination with the fungus Piloderma croceum, and the systemic impact on oak plants was assessed by RNA transcriptomic profiles in leaves. The response of oaks to the plant-parasitic nematode was strongest during shoot flush, with a 16-fold increase in the number of differentially expressed genes as compared to root flush. Multi-layered defence mechanisms were induced at shoot flush, comprising upregulation of reactive oxygen species formation, hormone signalling (e.g. jasmonic acid synthesis), and proteins involved in the shikimate pathway. In contrast during root flush production of glycerolipids involved in signalling cascades was repressed, suggesting that P. penetrans actively suppressed host defence. With the presence of the mycorrhizal symbiont, the gene expression pattern was vice versa with a distinctly stronger effect of P. penetrans at root flush, including attenuated defence, cell and carbon metabolism, likely a response to the enhanced carbon sink strength in roots induced by the presence of both, nematode and fungus. Meanwhile at shoot flush, when nutrients are retained in aboveground tissue, oak defence reactions, such as altered photosynthesis and sugar pathways, diminished. The results highlight that gene response patterns of plants to biotic interactions, both

  9. Relationship between Psidium species (Myrtaceae) by resistance gene analog markers: focus on nematode resistance.

    Science.gov (United States)

    Noia, L R; Tuler, A C; Ferreira, A; Ferreira, M F S

    2017-03-16

    Guava (Psidium guajava L.) crop is severely affected by the nematode Meloidogyne enterolobii. Native Psidium species have been reported as sources of resistance against this nematode. Knowledge on the molecular relationship between Psidium species based on plant resistance gene analogs (RGA) can be useful in the genetic breeding of guava for resistance to M. enterolobii. In this study, RGA markers from conserved domains, and structural features of plant R genes, were employed to characterize Psidium species and establish genetic proximity, with a focus on nematode resistance. SSR markers were also applied owing to their neutral nature, thus differing from RGA markers. For this, species reported as sources of resistance to M. enterolobii, such as P. cattleianum and P. friedrichsthalianum, as well as species occurring in the Atlantic Rainforest and susceptible genotypes, were investigated. In 10 evaluated Psidium species, high interspecific genetic variability was verified through RGA and SSR markers, with intraspecific variation in P. guajava higher with SSR, as was expected. Resistant species were clustered by RGA markers, and differential amplicons among genotypes resistant and susceptible to M. enterolobii were identified. Knowledge on the molecular relationships between Psidium species constitutes useful information for breeding of the guava tree, providing direction for hybridization and material for rootstocks. Additionally, the genetic relationship between native species, which have been little studied, and P. guajava were estimated by RGAs, which were confirmed as important markers for genetic diversity related to pathogen resistance.

  10. Transcriptomic analysis of the rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    Full Text Available BACKGROUND: The rice white tip nematode Aphelenchoides besseyi, a devastating nematode whose genome has not been sequenced, is distributed widely throughout almost all the rice-growing regions of the world. The aims of the present study were to define the transcriptome of A. besseyi and to identify parasite-related, mortality-related or host resistance-overcoming genes in this nematode. METHODOLOGY AND PRINCIPAL FINDINGS: Using Solexa/Illumina sequencing, we profiled the transcriptome of mixed-stage populations of A. besseyi. A total of 51,270 transcripts without gaps were produced based on high-quality clean reads. Of all the A. besseyi transcripts, 9,132 KEGG Orthology assignments were annotated. Carbohydrate-active enzymes of glycoside hydrolases (GHs, glycosyltransferases (GTs, carbohydrate esterases (CEs and carbohydrate-binding modules (CBMs were identified. The presence of the A. besseyi GH45 cellulase gene was verified by in situ hybridization. Given that 13 unique A. besseyi potential effector genes were identified from 41 candidate effector homologs, further studies of these homologs are merited. Finally, comparative analyses were conducted between A. besseyi contigs and Caenorhabditis elegans genes to look for orthologs of RNAi phenotypes, neuropeptides and peptidases. CONCLUSIONS AND SIGNIFICANCE: The present results provide comprehensive insight into the genetic makeup of A. besseyi. Many of this species' genes are parasite related, nematode mortality-related or necessary to overcome host resistance. The generated transcriptome dataset of A. besseyi reported here lays the foundation for further studies of the molecular mechanisms related to parasitism and facilitates the development of new control strategies for this species.

  11. RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi.

    Science.gov (United States)

    Pandit, Ramesh; Patel, Reena; Patel, Namrata; Bhatt, Vaibhav; Joshi, Chaitanya; Singh, Pawan Kumar; Kunjadia, Anju

    2017-04-01

    Nematode-trapping fungi are well known for their inherent potential to trap and kill nematodes using specialized trapping devices. However, the molecular mechanisms underlying the trapping and subsequent processes are still unclear. Therefore, in this study, we examined differential genes expression in two nematode-trapping fungi after baiting with nematode extracts. In Arthrobotrys conoides, 809 transcripts associated with diverse functions such as signal transduction, morphogenesis, stress response and peroxisomal proteins, proteases, chitinases and genes involved in the host-pathogen interaction showed differential expression with fold change (>±1.5 fold) in the presence of nematode extract with FDR (p-value nematode-trapping fungi for its host. The findings illustrate the molecular mechanism of fungal parasitism in A. conoides which may be helpful in developing a potential biocontrol agent against parasitic nematodes.

  12. Conjoint effect of oil-seed cakes and Pseudomonas fluorescens on the growth of chickpea in relation to the management of plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Rose Rizvi

    2012-12-01

    Full Text Available Soil application of organics has been explored as an alternative means of organic management of plant-parasitic nematodes. Efficiency of different oil-seed cakes of neem (Azadirachta indica, castor (Ricinus communis, groundnut (Arachis hypogaea, linseed (Linum usitatissimum, sunflower (Helianthus annuus and soybean (Glycine max were evaluated in field conditions with association of Pseudomonas fluorescens in relation to growth parameters of chickpea and population of plant-parasitic nematodes. Their efficacious nature was highly effective in reducing the population of these dominant soil nematodes. Significant improvement was observed in plant-growth parameters such as plant weight, percent pollen fertility, pod numbers, root-nodulation and chlorophyll content of chickpea, seemed to be due to reduction in disease incidence and might be due to growth promoting substances secreted by P. fluorescens. The multiplication rate of nematodes was less in the presence of P. fluorescens as compared to its absence. Most effective combination of P. fluorescens was observed with neem cake.

  13. Benzimidazole resistance of sheep nematodes in Norway confirmed through controlled efficacy test

    Directory of Open Access Journals (Sweden)

    Domke Atle V

    2012-08-01

    Full Text Available Abstract Background Resistance against benzimidazoles (BZ has recently been detected in Norwegian sheep flocks through a large scale prevalence survey based on the faecal egg count reduction test (FECRT. The use of this test in combination with bulk larval culture only gives an indication of which gastrointestinal nematodes genera that are involved and these results have to be confirmed by a controlled efficacy test (CET to get accurate information about resistant nematodes populations at species level. A CET was therefore performed with larvae from two flocks where BZ resistance was previously detected through FECRT. Results The latter test confirmed the previous results in both flocks. In flock A, the BZ resistant nematode population consisted solely of Haemonchus contortus, whereas H. contortus and Teladorsagia circumcincta comprised the resistant worm population in flock B. Conclusions Some discrepancies that have been recorded between FECRT and CET results regarding time for post-treatment coproscopical examination and a temporary suppression of faecal egg excretion are discussed.

  14. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    Science.gov (United States)

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  15. Identification of a bacteria-like ferrochelatase in Strongyloides venezuelensis, an animal parasitic nematode.

    Directory of Open Access Journals (Sweden)

    Eiji Nagayasu

    Full Text Available Heme is an essential molecule for vast majority of organisms serving as a prosthetic group for various hemoproteins. Although most organisms synthesize heme from 5-aminolevulinic acid through a conserved heme biosynthetic pathway composed of seven consecutive enzymatic reactions, nematodes are known to be natural heme auxotrophs. The completely sequenced Caenorhabditis elegans genome, for example, lacks all seven genes for heme biosynthesis. However, genome/transcriptome sequencing of Strongyloides venezuelensis, an important model nematode species for studying human strongyloidiasis, indicated the presence of a gene for ferrochelatase (FeCH, which catalyzes the terminal step of heme biosynthesis, whereas the other six heme biosynthesis genes are apparently missing. Phylogenetic analyses indicated that nematode FeCH genes, including that of S. venezuelensis (SvFeCH have a fundamentally different evolutionally origin from the FeCH genes of non-nematode metazoa. Although all non-nematode metazoan FeCH genes appear to be inherited vertically from an ancestral opisthokont, nematode FeCH may have been acquired from an alpha-proteobacterium, horizontally. The identified SvFeCH sequence was found to function as FeCH as expected based on both in vitro chelatase assays using recombinant SvFeCH and in vivo complementation experiments using an FeCH-deficient strain of Escherichia coli. Messenger RNA expression levels during the S. venezuelensis lifecycle were examined by real-time RT-PCR. SvFeCH mRNA was expressed at all the stages examined with a marked reduction at the infective third-stage larvae. Our study demonstrates the presence of a bacteria-like FeCH gene in the S. venezuelensis genome. It appeared that S. venezuelensis and some other animal parasitic nematodes reacquired the once-lost FeCH gene. Although the underlying evolutionary pressures that necessitated this reacquisition remain to be investigated, it is interesting that the presence of Fe

  16. Implications of nutrition for the ability of ruminants to withstand gastrointestinal nematode infections.

    Science.gov (United States)

    van Houtert, M F; Sykes, A R

    1996-11-01

    Resistance and resilience of the ruminant host to gastrointestinal (GI) parasitic nematode infections are influenced by many factors, including nutrition. This review examines the effects of host nutrition on the ability of ruminants to withstand GI nematode infections. Firstly the effects of infection on host metabolism are summarised briefly. An important factor in the pathogenesis is a reduction in feed intake by the host. Gut nematodes also increase endogenous protein losses, which result in net loss of amino acids to the parasitised host, though energy and mineral metabolism are also perturbed. The indications are that the major nutritional change is in protein metabolism. Resilience (the ability of an animal to withstand the effects of infection) can be enhanced markedly by increasing metabolisable protein supply and to a lesser extent metabolisable energy supply. Resistance to GI nematodes (ability of host to prevent establishment and/or development of infection) is also influenced by diet, particularly metabolisable protein supply. While there do not appear to be any effects of host nutrition on establishment of infective larvae, the rate of rejection of adult worms can be enhanced by improved nutrition. The exact nutritional requirements or the mechanisms involved are not known. It appears that the effects of improving nutritional status on host resilience are more clearly defined than effects on host resistance. The implication of changes in host resistance with nutritional state for host productivity need to be better described. Understanding the role of nutrition in improving both resistance and resilience of the host to GI parasites will be important if producers are to make better use of host acquired immunity and reduce dependence on pesticides for prophylaxis.

  17. Reciprocal Interactions between Nematodes and Their Microbial Environments.

    Science.gov (United States)

    Midha, Ankur; Schlosser, Josephine; Hartmann, Susanne

    2017-01-01

    Parasitic nematode infections are widespread in nature, affecting humans as well as wild, companion, and livestock animals. Most parasitic nematodes inhabit the intestines of their hosts living in close contact with the intestinal microbiota. Many species also have tissue migratory life stages in the absence of severe systemic inflammation of the host. Despite the close coexistence of helminths with numerous microbes, little is known concerning these interactions. While the environmental niche is considerably different, the free-living nematode Caenorhabditis elegans ( C. elegans ) is also found amongst a diverse microbiota, albeit on decaying organic matter. As a very well characterized model organism that has been intensively studied for several decades, C. elegans interactions with bacteria are much more deeply understood than those of their parasitic counterparts. The enormous breadth of understanding achieved by the C. elegans research community continues to inform many aspects of nematode parasitology. Here, we summarize what is known regarding parasitic nematode-bacterial interactions while comparing and contrasting this with information from work in C. elegans . This review highlights findings concerning responses to bacterial stimuli, antimicrobial peptides, and the reciprocal influences between nematodes and their environmental bacteria. Furthermore, the microbiota of nematodes as well as alterations in the intestinal microbiota of mammalian hosts by helminth infections are discussed.

  18. Identification of plant parasitic nematodes in guava (Psidium guajava L.), at the municipality of Manizales (Caldas), Colombia

    International Nuclear Information System (INIS)

    Guzman Piedrahita, Oscar Adrian; Castano Zapata, Jairo

    2010-01-01

    The future of the colombian fruticulture is in permanent crops, such as tropical fruits, amongst them guava. This research had as objective to identify the parasitic nematodes of this crop. The study was conducted at the region of La Cabana, municipality of Manizales, Caldas, located at 1.100 most, average annual temperature of 24 Celsius degrade and annual precipitation of 2.100 mm. The sampling was carried out in a plantation of guava Pera of 3 years old. At random were sampled 10 trees, and from each one was obtained samples of 100 g of roots and 500 g of soil. The extraction of nematodes was done by following the method of centrifugation and sugar flotation. It was identified: Meloidogyne, Helicotylenchus and Pratylenchus, being the most important the root-knob nematode Meloidogyne spp.

  19. Current Status for Gastrointestinal Nematode Diagnosis in Small Ruminants: Where Are We and Where Are We Going?

    Directory of Open Access Journals (Sweden)

    Sarah Jane Margaret Preston

    2014-01-01

    Full Text Available Gastrointestinal nematode (GIN parasites pose a significant economic burden particularly in small ruminant production systems. Anthelmintic resistance is a serious concern to the effective control of GIN parasites and has fuelled the focus to design and promote sustainable control of practices of parasite control. Many facets of sustainable GIN parasite control programs rely on the ability to diagnose infection both qualitatively and quantitatively. Diagnostics are required to determine anthelmintic efficacies, for targeted treatment programs and selection of animals for parasite resistant breeding. This review describes much of the research investigated to date to improve the current diagnostic for the above practices which is based on counting the number of parasite eggs in faeces.

  20. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida.

    Science.gov (United States)

    Reitz, M; Rudolph, K; Schröder, I; Hoffmann-Hergarten, S; Hallmann, J; Sikora, R A

    2000-08-01

    Recent studies have shown that living and heat-killed cells of the rhizobacterium Rhizobium etli strain G12 induce in potato roots systemic resistance to infection by the potato cyst nematode Globodera pallida. To better understand the mechanisms of induced resistance, we focused on identifying the inducing agent. Since heat-stable bacterial surface carbohydrates such as exopolysaccharides (EPS) and lipopolysaccharides (LPS) are essential for recognition in the symbiotic interaction between Rhizobium and legumes, their role in the R. etli-potato interaction was studied. EPS and LPS were extracted from bacterial cultures, applied to potato roots, and tested for activity as an inducer of plant resistance to the plant-parasitic nematode. Whereas EPS did not affect G. pallida infection, LPS reduced nematode infection significantly in concentrations as low as 1 and 0.1 mg ml(-1). Split-root experiments, guaranteeing a spatial separation of inducing agent and challenging pathogen, showed that soil treatments of one half of the root system with LPS resulted in a highly significant (up to 37%) systemic induced reduction of G. pallida infection of potato roots in the other half. The results clearly showed that LPS of R. etli G12 act as the inducing agent of systemic resistance in potato roots.

  1. Biological control of Otiorhynchus sulcatus by insect parasitic nematodes, Heterorhabditis spp., at low temperatures : a systems analytical approach

    NARCIS (Netherlands)

    Westerman, P.R.

    1997-01-01

    The black vine weevil, Otiorhynchus sulcatus, is an important pest in ornamentals and nursery stock in The Netherlands. The larvae, which feed on the root system of the plant, can be controlled by insect parasitic nematodes, Heterorhabditis.

  2. [Biological cycle of Cyrnea (Procyrnea) mansoni Seurat, 1914, a habronemid nematode parasite of birds of prey in Togo].

    Science.gov (United States)

    Quentin, J C; Seureau, C; Railhac, C

    1983-01-01

    A habronemid nematode in birds of prey, Milvus migrans Bonaparti and Accipiter badius Linné, in Togo, is identified as Cyrnea (Procyrnea) mansioni (Seurat, 1914). Larval development is experimentally studied in the orthopteran Acrididae Tylotropidius patagiatus Karsch. The first three larval stages are described and illustrated. The biology of this spiruroid nematode is distinguished by the unusual rapidity of larval development (infective larvae at 10 days). Comparison of the life cycle of C. mansioni with life cycles of other Habronemid Nematodes parasitizing birds, points out an evolution of larvae from primitive forms of large size and slow development to evolved forms of small size and rapid development. Observations concerning the encapsulation of infective larvae in the intermediate host confirm this larval evolution.

  3. [Nematodes (Nematoda) from bats (Chiroptera) of the Samarskaya Luka Peninsula (Russia)].

    Science.gov (United States)

    Kirillova, N Iu; Kirillov, A A; Vekhnik, V P

    2008-01-01

    Fauna of parasitic nematodes from Chiroptera of the Samarskaya Luka has been studied. Seven nematode species has been recorded. Numbers of host specimens, indices of extensiveness and intensiveness of the invasion, parasite abundance, and brief characteristics of the nematode species are given. Some nematode species were for the first time recorded in bats of Russia.

  4. Conserving and enhancing biological control of nematodes.

    Science.gov (United States)

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  5. A method to evaluate relative ovicidal effects of soil microfungi on thick-shelled eggs of animal-parasitic nematodes

    DEFF Research Database (Denmark)

    Thapa, Sundar; Meyling, Nicolai Vitt; Katakam, Kiran Kumar

    2015-01-01

    Thick-shelled eggs of animal-parasitic ascarid nematodes can survive and remain infective in the environment for years. The present study evaluated a simple in vitro method and evaluation scheme to assess the relative effect of two species of soil microfungi, Pochonia chlamydosporia Biotype 10...

  6. Identification of Virulence Factors in Nematode-Trapping Fungi - Insights from Genomics, Transcriptomics and Proteomics

    OpenAIRE

    Andersson, Karl-Magnus

    2013-01-01

    Nematode-trapping fungi are soil-living organisms with the unique ability to capture and infect free-living nematodes. The interest in studying these fungi arises from their potential use as biological control agents for plant- and animal-parasitic nematodes. To enter the parasitic stage, nematode-trapping fungi develop different kinds of trapping structures. In order to understand more about the evolution of parasitism in the nematode-trapping fungi and to identify virulence factors in these...

  7. The influence of Amylostereum areolatum diversity and competitive interations on the fitness of the Sirex parasitic nematode Deladenus siricidicola

    Science.gov (United States)

    B.P. Hurley; H.J. Hatting; M.J. Wingfield; Kier Klepzig; B. Slippers

    2012-01-01

    The Sirex noctilio (woodwasp - Amylostereum areolatum (fungus) complex has caused substantial losses to pine industries in its introduced range. The nematode Deladenus siricidicola that parasitizes S. noctilio and feeds on A. areolatum is widely used as a biological control...

  8. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI.

    Science.gov (United States)

    Chen, Shiyan; Chronis, Demosthenis; Wang, Xiaohong

    2013-09-01

    The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development, (1) nematode secreted effectors are becoming recognized as suppressors of plant immunity. (2)(-) (4) Recently we reported that the effector ubiquitin carboxyl extension protein (GrUBCEP12) from G. rostochiensis is processed into free ubiquitin and a 12-amino acid GrCEP12 peptide in planta. Transgenic potato lines overexpressing the derived GrCEP12 peptide showed increased susceptibility to G. rostochiensis and to an unrelated bacterial pathogen Streptomyces scabies, suggesting that GrCEP12 has a role in suppressing host basal defense or possibly pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) during the parasitic interaction. (3) To determine if GrCEP12 functions as a PTI suppressor we evaluated whether GrCEP12 suppresses flg22-induced PTI responses in Nicotiana benthamiana. Interestingly, we found that transient expression of GrCEP12 in N. benthamiana leaves suppressed reactive oxygen species (ROS) production and the induction of two PTI marker genes triggered by the bacterial PAMP flg22, providing direct evidence that GrCEP12 indeed has an activity in PTI suppression.

  9. Identifying energy constraints to parasite resistance.

    Science.gov (United States)

    Allen, D E; Little, T J

    2011-01-01

    Life-history theory suggests that energetically expensive traits may trade off against each other, resulting in costs associated with the development or maintenance of a particular phenotype. The deployment of resistance mechanisms during parasite exposure is one such trait, and thus their potential benefit in fighting off parasites may be offset by costs to other fitness-related traits. In this study, we used trade-off theory as a basis to test whether stimulating an increased development rate in juvenile Daphnia would reveal energetic constraints to its ability to resist infection upon subsequent exposure to the castrating parasite, Pasteuria ramosa. We show that the presumably energetically expensive process of increased development rate does result in more infected hosts, suggesting that parasite resistance requires the allocation of resources from a limited source, and thus has the potential to be costly.

  10. First report of the spiral nematode Helicotylenchus microlobus infecting soybean in North Dakota

    Science.gov (United States)

    Spiral nematodes (Helicotylenchus spp.) are common plant-parasitic nematodes in fields of many crops. In June 2015, two soil samples were collected from a soybean field in Richland County, ND. Nematodes were extracted from soil using the sugar centrifugal flotation method. Plant-parasitic nematodes ...

  11. In planta processing and glycosylation of a nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-like effector and its interaction with a host CLAVATA2-like receptor to promote parasitism.

    Science.gov (United States)

    Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S; Mitchum, Melissa G; Wang, Xiaohong

    2015-01-01

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Exploitation of FTA cartridges for the sampling, long-term storage, and DNA-based analyses of plant-parasitic nematodes.

    Science.gov (United States)

    Marek, Martin; Zouhar, Miloslav; Douda, Ondřej; Maňasová, Marie; Ryšánek, Pavel

    2014-03-01

    The use of DNA-based analyses in molecular plant nematology research has dramatically increased over recent decades. Therefore, the development and adaptation of simple, robust, and cost-effective DNA purification procedures are required to address these contemporary challenges. The solid-phase-based approach developed by Flinders Technology Associates (FTA) has been shown to be a powerful technology for the preparation of DNA from different biological materials, including blood, saliva, plant tissues, and various human and plant microbial pathogens. In this work, we demonstrate, for the first time, that this FTA-based technology is a valuable, low-cost, and time-saving approach for the sampling, long-term archiving, and molecular analysis of plant-parasitic nematodes. Despite the complex structure and anatomical organization of the multicellular bodies of nematodes, we report the successful and reliable DNA-based analysis of nematode high-copy and low-copy genes using the FTA technology. This was achieved by applying nematodes to the FTA cards either in the form of a suspension of individuals, as intact or pestle-crushed nematodes, or by the direct mechanical printing of nematode-infested plant tissues. We further demonstrate that the FTA method is also suitable for the so-called "one-nematode-assay", in which the target DNA is typically analyzed from a single individual nematode. More surprisingly, a time-course experiment showed that nematode DNA can be detected specifically in the FTA-captured samples many years after initial sampling occurs. Collectively, our data clearly demonstrate the applicability and the robustness of this FTA-based approach for molecular research and diagnostics concerning phytonematodes; this research includes economically important species such as the stem nematode (Ditylenchus dipsaci), the sugar beet nematode (Heterodera schachtii), and the Northern root-knot nematode (Meloidogyne hapla).

  13. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event

    Directory of Open Access Journals (Sweden)

    Gheysen Godelieve

    2008-11-01

    Full Text Available Abstract Background Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5 have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN. The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Results Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea; all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida. Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. Conclusion We conclude that the ancestral

  14. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event.

    Science.gov (United States)

    Kyndt, Tina; Haegeman, Annelies; Gheysen, Godelieve

    2008-11-03

    Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5) have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN). The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria) or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea); all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida). Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. We conclude that the ancestral PPN GHF5 endoglucanase gene most probably consisted of

  15. Transcriptome Analysis of Cotton (Gossypium hirsutum L. Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis.

    Directory of Open Access Journals (Sweden)

    Ruijuan Li

    Full Text Available Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.. An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747, resistant (BARBREN-713, and hypersensitive (LONREN-1 genotypes of cotton (Gossypium hirsutum L. with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.

  16. Inter- and intra-specific cuticle variation between amphimictic and parthenogenetic species of root-knot nematode (Meloidogyne spp.) as revealed by a bacterial parasite (Pasteuria penetrans).

    Science.gov (United States)

    Davies, K G; Rowe, J A; Williamson, V M

    2008-06-01

    Specific host-parasite interactions exist between species and strains of plant parasitic root-knot nematodes and the Gram-positive bacterial hyperparasite Pasteuria penetrans. This bacterium produces endospores that adhere to the cuticle of migrating juveniles, germinate and colonise the developing female within roots. Endospore attachment of P. penetrans populations to second-stage juveniles of the root-knot nematode species Meloidogyne incognita and Meloidogyne hapla showed there were interactive differences between bacterial populations and nematode species. Infected females of M. incognita produced a few progeny which were used to establish two nematode lines from single infective juveniles encumbered with either three or 26 endospores. Single juvenile descent lines of each nematode species were produced to test whether cuticle variation was greater within M. hapla lines that reproduce by facultative meiotic parthenogenesis than within lines of M. incognita, which reproduces by obligate parthenogenesis. Assays revealed variability between broods of individual females derived from single second-stage juvenile descent lines of both M. incognita and M. hapla suggesting that progeny derived from a single individual can differ in spore adhesion in both sexual and asexual nematode species. These results suggest that special mechanisms that produced these functional differences in the cuticle surface may have evolved in both sexually and asexually reproducing nematodes as a strategy to circumvent infection by this specialised hyperparasite.

  17. EFFICACY OF ENDOPHYTIC BACTERIA IN REDUCING PLANT PARASITIC NEMATODE Pratylenchus brachyurus

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2014-04-01

    Full Text Available Pratylenchus brachyurus is a major parasitic nematode on patchouli that reduces plant production up to 85%. The use of endophytic bacteria is promising for controlling nematode and promoting plant growth through production of phytohormones and enhancing the availability of soil nutrients. The objective of the study was to evaluate the efficacy of endophytic bacteria to control P. brachyurus on patchouli plant and its influence on plant productions (plant fresh weight and patchouli oil. The study was conducted at Cimanggu Experimental Garden and Laboratory of the Indonesian Spice and Medicinal Crops Research Institute (ISMECRI, Bogor, West Java. The experi-ment was designed in a randomized block with seven treatments and eight replications; each replication consisted of 10 plants. The treatments evaluated were five isolates of endophytic bacteria (Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK and Bacillus subtilis NJ57, synthetic nematicide as a reference, and non-treated plant as a control.  Four-week old patchouli plants of cv. Sidikalang were treated by soaking the roots in suspension of endophytic bacteria (109 cfu  ml-1 for one hour before trans-planting to the field. At one month after planting, the plants were drenched with the bacterial suspension as much as 100 ml per plant. The results showed that applications of the endophytic bacteria could suppress the nematode populations (52.8-80% and increased plant weight (23.62-57.48% compared to the control. The isolate of endophytic bacterium Achromobacter xylosoxidans TT2 was the best and comparable with carbofuran.

  18. In Planta Processing and Glycosylation of a Nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-Like Effector and Its Interaction with a Host CLAVATA2-Like Receptor to Promote Parasitism1[OPEN

    Science.gov (United States)

    Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S.; Mitchum, Melissa G.

    2015-01-01

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. PMID:25416475

  19. A survey of anthelmintic resistance on ten sheep farms in Mashonaland East Province, Zimbabwe : research communication

    Directory of Open Access Journals (Sweden)

    S. Mukaratirwa

    1997-07-01

    Full Text Available A survey to detect anthelmintic resistance in nematode parasites of sheep was conducted on 10 randomly-distributed farms in the Chivhu District, Mashonaland East Province, Zimbabwe. Before the survey, a questionnaire was circulated to the farmers concerning nematode parasite control. Results showed that parasite control using anthelmintic treatment was the only method practised and that the benzimidazoles were the most frequently used anthelmintic drugs. The faecal egg count reduction test was used to detect resistance. The anthelmintic groups tested were benzimidazoles, levamisole and ivermectin. Resistance to benzimidazoles was detected on 6 of 10 farms and levamisole resistance on 2 of 3 farms. Ivermectin resistance was not observed on the farms surveyed. Post-treatment larval cultures indicated that Haemonchus contortus survived administration of fenbendazole, albendazole, oxfendazole and levamisole. A Cooperia sp. strain resistant to albendazole was detected and this is the first report in Zimbabwe of a resistant parasite in this genus.

  20. Efficacy of a combined oral formulation of derquantel-abamectin against the adult and larval stages of nematodes in sheep, including anthelmintic-resistant strains.

    Science.gov (United States)

    Little, Peter R; Hodge, Andrew; Maeder, Steven J; Wirtherle, Nicole C; Nicholas, David R; Cox, George G; Conder, George A

    2011-09-27

    Derquantel (DQL), a semi-synthetic member of a novel anthelmintic class, the spiroindoles, in combination with abamectin (ABA) [as the combination product STARTECT(®)] is a new entry for the treatment and control of parasites in sheep. The 19 studies reported herein were conducted in Australia, New Zealand, South Africa and the United Kingdom to demonstrate the efficacy of derquantel-abamectin (DQL-ABA) against a broad spectrum of gastrointestinal and respiratory nematodes of sheep, and to support registration of the combination product. Eleven studies were conducted using natural or experimental parasite infections with unknown or unconfirmed resistance, while eight studies utilised isolates/strains with confirmed or well characterised resistance to one or more currently available anthelmintics, including macrocyclic lactones. All studies included DQL-ABA and negative control groups, and in selected studies one or more reference anthelmintic groups were included. In all studies the commercial formulation of DQL-ABA was administered orally at 2mg/kg DQL and 0.2mg/kg ABA; placebo was administered in the same volume as DQL-ABA; and reference anthelmintics were administered as per label recommendations, except in one instance where levamisole was administered at twice the label dose. Infection, necropsy, worm collection and worm counting procedures were performed using standard techniques. Efficacy was calculated based on the percentage reduction in geometric mean worm count relative to negative control for each nematode species and lifecycle stage targeted. Twenty-two isolates/strains used in the eight studies targeting resistant worms had proven resistance: three to one anthelmintic class, eleven to two classes and eight to three or more classes; of these resistant strains, 16 demonstrated resistance to a macrocyclic lactone anthelmintic. Regardless of resistance status in the 19 studies, DQL-ABA controlled a broad range of economically important gastrointestinal

  1. A Secreted SPRY Domain-Containing Protein (SPRYSEC) from the Plant-Parasitic Nematode Globodera rostochiensis Interacts with a CC-NB-LRR Protein from a Susceptible Tomato

    NARCIS (Netherlands)

    Rehman, S.; Postma, W.J.; Tytgat, T.O.G.; Prins, J.C.P.; Qin Ling,; Overmars, H.A.; Vossen, J.; Spiridon, L.N.; Petrescu, A.J.; Goverse, A.; Bakker, J.; Smant, G.

    2009-01-01

    Esophageal gland secretions from nematodes are believed to include effectors that play important roles in plant parasitism. We have identified a novel gene family encoding secreted proteins specifically expressed in the dorsal esophageal gland of Globodera rostochiensis early in the parasitic cycle,

  2. Observations on two nematode species parasitizing freshwater fishes in Thailand, including Spinitectus thaiensis sp nov (Cystidicolidae) from Pseudomystus siamensis (Bagridae)

    Czech Academy of Sciences Publication Activity Database

    Moravec, František; Yooyen, T.

    2011-01-01

    Roč. 56, č. 1 (2011), 58-66 ISSN 1230-2821 Institutional research plan: CEZ:AV0Z60220518 Keywords : Parasitic nematode * freshwater fish * Thailand Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 0.789, year: 2011

  3. The diversity and evolution of nematodes (Pharyngodonidae) infecting New Zealand lizards.

    Science.gov (United States)

    Mockett, Sarah; Bell, Trent; Poulin, Robert; Jorge, Fátima

    2017-04-01

    Host-parasite co-evolutionary studies can shed light on diversity and the processes that shape it. Molecular methods have proven to be an indispensable tool in this task, often uncovering unseen diversity. This study used two nuclear markers (18S rRNA and 28S rRNA) and one mitochondrial (cytochrome oxidase subunit I) marker to investigate the diversity of nematodes of the family Pharyngodonidae parasitizing New Zealand (NZ) lizards (lygosomine skinks and diplodactylid geckos) and to explore their co-evolutionary history. A Bayesian approach was used to infer phylogenetic relationships of the parasitic nematodes. Analyses revealed that nematodes parasitizing skinks, currently classified as Skrjabinodon, are more closely related to Spauligodon than to Skrjabinodon infecting NZ geckos. Genetic analyses also uncovered previously undetected diversity within NZ gecko nematodes and provided evidence for several provisionally cryptic species. We also examined the level of host-parasite phylogenetic congruence using a global-fit approach. Significant congruence was detected between gecko-Skrjabinodon phylogenies, but our results indicated that strict co-speciation is not the main co-evolutionary process shaping the associations between NZ skinks and geckos and their parasitic nematodes. However, further sampling is required to fully resolve co-phylogenetic patterns of diversification in this host-parasite system.

  4. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis.

    Science.gov (United States)

    Jones, J T; Reavy, B; Smant, G; Prior, A E

    2004-01-07

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for secretion from animal cells while the other is predicted to be intracellular. Both genes are expressed in all parasite stages tested. The mRNA encoding the intracellular GpX is present throughout the nematode second stage juvenile and is particularly abundant in metabolically active tissues including the genital primordia. The mRNA encoding the secreted GpX is restricted to the hypodermis, the outermost cellular layer of the nematode, a location from which it is likely to be secreted to the parasite surface. Biochemical studies confirmed the secreted protein as a functional GpX and showed that, like secreted GpXs of other parasitic nematodes, it does not metabolise hydrogen peroxide but has a preference for larger hydroperoxide substrates. The intracellular protein is likely to have a role in metabolism of active oxygen species derived from internal body metabolism while the secreted protein may protect the parasite from host defences. Other functional roles for this protein are discussed.

  5. Towards the molecular characterisation of parasitic nematode assemblages: an evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis.

    Science.gov (United States)

    Lott, M J; Hose, G C; Power, M L

    2014-09-01

    Identifying factors which regulate temporal and regional structuring within parasite assemblages requires the development of non-invasive techniques which facilitate both the rapid discrimination of individual parasites and the capacity to monitor entire parasite communities across time and space. To this end, we have developed and evaluated a rapid fluorescence-based method, terminal restriction fragment length polymorphism (T-RFLP) analysis, for the characterisation of parasitic nematode assemblages in macropodid marsupials. The accuracy with which T-RFLP was capable of distinguishing between the constituent taxa of a parasite community was assessed by comparing sequence data from two loci (the ITS+ region of nuclear ribosomal DNA and the mitochondrial CO1) across ∼20 species of nematodes (suborder Strongylida). Our results demonstrate that with fluorescent labelling of the forward and reverse terminal restriction fragments (T-RFs) of the ITS+ region, the restriction enzyme Hinf1 was capable of generating species specific T-RFLP profiles. A notable exception was within the genus Cloacina, in which closely related species often shared identical T-RFs. This may be a consequence of the group's comparatively recent evolutionary radiation. While the CO1 displayed higher sequence diversity than the ITS+, the subsequent T-RFLP profiles were taxonomically inconsistent and could not be used to further differentiate species within Cloacina. Additionally, several of the ITS+ derived T-RFLP profiles exhibited unexpected secondary peaks, possibly as a consequence of the restriction enzymes inability to cleave partially single stranded amplicons. These data suggest that the question of T-RFLPs utility in monitoring parasite communities cannot be addressed without considering the ecology and unique evolutionary history of the constituent taxa. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Introgression of ivermectin resistance genes into a susceptible Haemonchus contortus strain by multiple backcrossing.

    Directory of Open Access Journals (Sweden)

    Elizabeth Redman

    2012-02-01

    Full Text Available Anthelmintic drug resistance in livestock parasites is already widespread and in recent years there has been an increasing level of anthelmintic drug selection pressure applied to parasitic nematode populations in humans leading to concerns regarding the emergence of resistance. However, most parasitic nematodes, particularly those of humans, are difficult experimental subjects making mechanistic studies of drug resistance extremely difficult. The small ruminant parasitic nematode Haemonchus contortus is a more amenable model system to study many aspects of parasite biology and investigate the basic mechanisms and genetics of anthelmintic drug resistance. Here we report the successful introgression of ivermectin resistance genes from two independent ivermectin resistant strains, MHco4(WRS and MHco10(CAVR, into the susceptible genome reference strain MHco3(ISE using a backcrossing approach. A panel of microsatellite markers were used to monitor the procedure. We demonstrated that after four rounds of backcrossing, worms that were phenotypically resistant to ivermectin had a similar genetic background to the susceptible reference strain based on the bulk genotyping with 18 microsatellite loci and individual genotyping with a sub-panel of 9 microsatellite loci. In addition, a single marker, Hcms8a20, showed evidence of genetic linkage to an ivermectin resistance-conferring locus providing a starting point for more detailed studies of this genomic region to identify the causal mutation(s. This work presents a novel genetic approach to study anthelmintic resistance and provides a "proof-of-concept" of the use of forward genetics in an important model strongylid parasite of relevance to human hookworms. The resulting strains provide valuable resources for candidate gene studies, whole genome approaches and for further genetic analysis to identify ivermectin resistance loci.

  7. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes

    NARCIS (Netherlands)

    Danchin, Etienne G.J.; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Rocha, Da Martine; Bajew, Simon; Neilson, Roy; Sokolova, Elena; Silva, Da Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Hans; Jones, John T.; Eves-van den Akker, Sebastian

    2017-01-01

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been

  8. Development and reproductive potential of Tyrophagus putrescentiae (Acari: Acaridae) on plant-parasitic nematodes and artificial diets.

    Science.gov (United States)

    Abou El-Atta, Doaa Abd El-Maksoud; Osman, Mohamed Ali

    2016-04-01

    This study investigated development, reproduction and life table parameters of the astigmatid mold mite Tyrophagus putrescentiae (Schrank) (Acari: Acaridae) feeding on egg-masses or adult females of the nematode Meloidogyne incognita, egg-masses of the nematode Rotylenchulus reniformis, ras cheese or yeast at 25 ± 1 °C, 70 ± 10 % RH in the dark. Immature developmental times were shorter when the mite was fed females of M. incognita followed by yeast. Different prey/diet types had no significant effect on longevity and lifespan of both males and females. Daily oviposition rate (eggs/female/day) was highest for mites fed yeast (20.8 ± 1.8 eggs) and lowest for mites fed females of M. incognita (6.6 ± 0.5). Intrinsic rate of natural increase (r m) was highest for mites fed yeast compared to other prey/diet; no significant differences in r m were observed among mites fed on non-yeast diets. This result may suggest a role of T. putrescentiae as biocontrol agent of plant-parasitic nematodes and the yeast may be used for mite mass-production purposes.

  9. Novel RNA viruses within plant parasitic cyst nematodes.

    Science.gov (United States)

    Ruark, Casey L; Gardner, Michael; Mitchum, Melissa G; Davis, Eric L; Sit, Tim L

    2018-01-01

    The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.

  10. A SNARE-Like Protein and Biotin Are Implicated in Soybean Cyst Nematode Virulence.

    Directory of Open Access Journals (Sweden)

    Sadia Bekal

    Full Text Available Phytoparasitic nematodes that are able to infect and reproduce on plants that are considered resistant are referred to as virulent. The mechanism(s that virulent nematodes employ to evade or suppress host plant defenses are not well understood. Here we report the use of a genetic strategy (allelic imbalance analysis to associate single nucleotide polymorphisms (SNPs with nematode virulence genes in Heterodera glycines, the soybean cyst nematode (SCN. To accomplish this analysis, a custom SCN SNP array was developed and used to genotype SCN F3-derived populations grown on resistant and susceptible soybean plants. Three SNPs reproducibly showed allele imbalances between nematodes grown on resistant and susceptible plants. Two candidate SCN virulence genes that were tightly linked to the SNPs were identified. One SCN gene encoded biotin synthase (HgBioB, and the other encoded a bacterial-like protein containing a putative SNARE domain (HgSLP-1. The two genes mapped to two different linkage groups. HgBioB contained sequence polymorphisms between avirulent and virulent nematodes. However, the gene encoding HgSLP-1 had reduced copy number in virulent nematode populations and appears to produce multiple forms of the protein via intron retention and alternative splicing. We show that HgSLP-1 is an esophageal-gland protein that is secreted by the nematode during plant parasitism. Furthermore, in bacterial co-expression experiments, HgSLP-1 co-purified with the SCN resistance protein Rhg1 α-SNAP, suggesting that these two proteins physically interact. Collectively our data suggest that multiple SCN genes are involved in SCN virulence, and that HgSLP-1 may function as an avirulence protein and when absent it helps SCN evade host defenses.

  11. A Survey of Nematode Infection in Oreochromis niloticus (L ...

    African Journals Online (AJOL)

    The incidence and intensity of nematode infection was investigated in Nile tilapia Oreochromis niloticus from Lake Kyoga, Uganda and 11% of the 406 fish examined were parasitized by nematodes of the genus Contracaecum. The prevalence of these parasites was greatest in the smallest and largest size classes, but this ...

  12. Nematode eel parasite found inside acanthocephalan cysts--a "Trojan horse" strategy?

    Science.gov (United States)

    Emde, Sebastian; Rueckert, Sonja; Kochmann, Judith; Knopf, Klaus; Sures, Bernd; Klimpel, Sven

    2014-11-18

    The invasive eel parasite Anguillicoloides crassus (syn. Anguillicola crassus) is considered one of the major causes for the decline of the European eel (Anguilla anguilla) panmictic population. It impairs the swim bladder function and reduces swimming performance of its host. The life cycle of this parasite involves different intermediate and paratenic hosts. Despite an efficient immune system of the paratenic fish hosts acting against infections with A. crassus, levels of parasitized eels remain high in European river systems. Recently, the round goby Neogobius melanostomus (Gobiidae) has become dominant in many rivers in Europe and is still spreading at a rapid pace. This highly invasive species might potentially act as an important, so far neglected paratenic fish host for A. crassus. Based on own observations and earlier single sightings of A. crassus in N. melanostomus, 60 fresh individuals of N. melanostomus were caught in the Rhine River and examined to assess the infection levels with metazoan parasites, especially A. crassus. Glycerin preparations were used for parasite identification. The parasite most frequently found in N. melanostomus was the acanthocephalan Pomphorhynchus sp. (subadult stage) which occurred mainly encysted in the mesenteries and liver. Every third gobiid (P = 31.7%) was infected by A. crassus larvae (L3) which exclusively occurred inside the acanthocephalan cysts. No intact or degenerated larvae of A. crassus were detected elsewhere in the goby, neither in the body cavity and mesenteries nor in other organs. Affected cysts contained the acanthocephalan larvae and 1-12 (mI =3) living A. crassus larvae. Additionally, encysted larvae of the nematode Raphidascaris acus were detected in the gobies, but only in the body cavity and not inside the acanthocephalan cysts. Based on our observations, we suggest that A. crassus might actively bypass the immune response of N. melanostomus by invading the cysts of acanthocephalan parasites of the

  13. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock

    DEFF Research Database (Denmark)

    Hoste, H.; Torres-Acosta, J. F. J.; Sandoval-Castro, C. A.

    2015-01-01

    Parasitic infections with gastrointestinal nematodes (GINs) still represent a worldwide major pathological threat associated with the outdoor production of various livestock species. Because of the widespread resistance to synthetic chemical anthelmintics, there is a strong impetus to explore nov...

  14. Analysis of nematode motion using an improved light-scatter based system.

    Directory of Open Access Journals (Sweden)

    Chuck S Nutting

    2015-02-01

    Full Text Available The detailed assessment of nematode activity and viability still remains a relatively undeveloped area of biological and medical research. Computer-based approaches to assessing the motility of larger nematode stages have been developed, yet these lack the capability to detect and analyze the more subtle and important characteristics of the motion of nematodes. There is currently a need to improved methods of assessing the viability and health of parasitic worms.We describe here a system that converts the motion of nematodes through a light-scattering system into an electrical waveform, and allows for reproducible, and wholly non-subjective, assessment of alterations in motion, as well as estimation of the number of nematode worms of different forms and sizes. Here we have used Brugia sp. microfilariae (L1, infective larvae (L3 and adults, together with the free-living nematode Caenorhabditis elegans.The motion of worms in a small (200 ul volume can be detected, with the presence of immotile worms not interfering with the readings at practical levels (up to at least 500 L1 /200 ul. Alterations in the frequency of parasite movement following the application of the anti-parasitic drugs, (chloroquine and imatinib; the anti-filarial effect of the latter agent is the first demonstrated here for the first time. This system can also be used to estimate the number of parasites, and shortens the time required to estimate parasites numbers, and eliminates the need for microscopes and trained technicians to provide an estimate of microfilarial sample sizes up to 1000 parasites/ml. Alterations in the form of motion of the worms can also be depicted.This new instrument, named a "WiggleTron", offers exciting opportunities to further study nematode biology and to aid drug discovery, as well as contributing to a rapid estimate of parasite numbers in various biological samples.

  15. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking x 7605 under two ecological sites.

    Science.gov (United States)

    Li, Yongchun; Guo, Na; Zhao, Jinming; Zhou, Bin; Xu, Ran; Ding, Hui; Zhao, Weiguo; Gai, Junyi; Xing, Han

    2016-12-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F 2:8:11 lines) and JN(RN)P7 (248 F 2:7:9 lines) were developed from the cross of the cultivars Peking x 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= -16.68, P< 0.01). This indicated that natural selection may affect resistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.

  16. The genomic organization of four b-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications.

    NARCIS (Netherlands)

    Yan, Y.; Smant, G.; Stokkermans, J.P.W.G.; Qin Ling,; Baum, T.J.; Schots, A.; Davis, E.L.

    1998-01-01

    The genomic organization of genes encoding -1,4-endoglucanases (cellulases) from the plant-parasitic cyst nematodes Heterodera glycines and Globodera rostochiensis (HG-eng1, Hg-eng2, GR-eng1, and GR-eng2) was investigated. HG-eng1 and GR-eng1 both contained eight introns and structural domains of

  17. Taxonomic status of Cyathostoma nematodes (Nematoda: Syngaminae parasitizing respiratory tracts of birds of prey and owls in Europe and North America: how many species are there?

    Directory of Open Access Journals (Sweden)

    Kanarek G.

    2016-03-01

    Full Text Available So far, the identity of Cyathostoma (Hovorkonema nematodes collected from respiratory tracts of birds of prey (Accipitriformes, Falconiformes and owls (Strigiformes in Europe and North America is extremely inconsistent. Our results, based on analyses of ITS-2 sequences suggest that the Cyathostoma (Hovorkonema nematodes found in the birds of prey and owls from Central Europe and North America probably belong to the same species, C. (Hovorkonema americana Chapin, 1925. We are convinced, that described in recent literature high ITS-2 divergence among C. (Hovorkonema nematodes collected from Europe, has occurred as a result of invalid synonimisation of some C. (Hovorkonema species. In our opinion C. (Hovorkonema americana (typically parasites of tracheae and air sacs of raptors and C. (Hovorkonema variegatum (Creplin, 1849 (typically parasites of tracheae of cranes and storks are valid molecular and morphologically distinct species.

  18. Microbial ecology and nematode control in natural ecosystems

    NARCIS (Netherlands)

    Costa, S.R.; Van der Putten, W.H.; Kerry, B.R.

    2011-01-01

    Plant-parasitic nematodes have traditionally been studied in agricultural systems, where they can be pests of importance on a wide range of crops. Nevertheless, nematode ecology in natural ecosystems is receiving increasing interest because of the role of nematodes in soil food webs, nutrient

  19. Transcriptome Sequencing Analysis and Functional Identification of Sex Differentiation Genes from the Mosquito Parasitic Nematode, Romanomermis wuchangensis.

    Directory of Open Access Journals (Sweden)

    Mingyue Duan

    Full Text Available Mosquito-transmitted diseases like malaria and dengue fever are global problem and an estimated 50-100 million of dengue or dengue hemorrhagic fever cases are reported worldwide every year. The mermithid nematode Romanomermis wuchangensis has been successfully used as an ecosystem-friendly biocontrol agent for mosquito prevention in laboratory studies. However, this nematode can not undergo sex differentiation in vitro culture, which has seriously affected their application of biocontrol in the field. In this study, based on transcriptome sequencing analysis of R. wuchangensis, Rwucmab-3, Rwuclaf-1 and Rwuctra-2 were cloned and used to investigate molecular regulatory function of sex differentiation. qRT-PCR results demonstrated that the expression level of Rwucmab-3 between male and female displayed obvious difference on the 3rd day of parasitic stage, which was earlier than Rwuclaf-1 and Rwuctra-2, highlighting sex differentiation process may start on the 3rd day of parasitic stage. Besides, FITC was used as a marker to test dsRNA uptake efficiency of R. wuchangensis, which fluorescence intensity increased with FITC concentration after 16 h incubation, indicating this nematode can successfully ingest soaking solution via its cuticle. RNAi results revealed the sex ratio of R. wuchangensis from RNAi treated groups soaked in dsRNA of Rwucmab-3 was significantly higher than gfp dsRNA treated groups and control groups, highlighting RNAi of Rwumab-3 may hinder the development of male nematodes. These results suggest that Rwucmab-3 mainly involves in the initiation of sex differentiation and the development of male sexual dimorphism. Rwuclaf-1 and Rwuctra-2 may play vital role in nematode reproductive and developmental system. In conclusion, transcript sequences presented in this study could provide more bioinformatics resources for future studies on gene cloning and other molecular regulatory mechanism in R. wuchangensis. Moreover, identification

  20. Species discovery and diversity in Lobocriconema (Criconematidae: Nematoda) and related plant-parasitic nematodes from North American ecoregions.

    Science.gov (United States)

    Powers, T O; Bernard, E C; Harris, T; Higgins, R; Olson, M; Olson, S; Lodema, M; Matczyszyn, J; Mullin, P; Sutton, L; Powers, K S

    2016-03-03

    deciduous forest, but definitive glacial refugia for this group of plant parasitic nematodes have yet to be identified. Unlike agricultural pest species of plant-parasitic nematodes, there is little evidence of long-distance dispersal in Lobocriconema as revealed by haplotype distribution. Most haplotype groups were characterized by low levels of intragroup genetic variation and large genetic distances between haplotype groups. The localization of nematode haplotypes together with their characteristic plant communities could provide insight into the historical formation of these belowground biotic communities.

  1. Nematode pests threatening soybean production in South Africa, with reference to Meloidogyne

    Directory of Open Access Journals (Sweden)

    Hendrika Fourie

    2015-09-01

    Full Text Available The area planted to soybean in South Africa has increased by 54% since the 2009 growing season, mainly as a result of the increasing demand for protein-rich food and fodder sources. Moreover, the introduction of advanced technology, namely the availability of genetically modified herbicide tolerant soybean cultivars also contributed towards increased soybean production. The omnipresence of plant-parasitic nematodes in local agricultural soils, however, poses a threat to the sustainable expansion and production of soybean and other rotation crops. Meloidogyne incognita and M. javanica are the predominant nematode pests in local soybean production areas and those where other grain-, legume- and/or vegetable crops are grown. The lack of registered nematicides for soybean locally, crop production systems that are conducive to nematode pest build-ups as well as the limited availability of genetic host plant resistance to root-knot nematode pests, complicate their management. Research aimed at various aspects related to soybean-nematode research, namely, audits of nematode assemblages associated with the crop, identification of genetic host plant resistance in soybean germplasm to M. incognita and M. javanica, the use of molecular markers that are linked to such genetic resistance traits as well as agronomic performance of pre-released cultivars that can be valuable to producers and the industry are accentuated in this review. Evaluation of synthetically-derived as well as biological-control agents are also discussed as complementary management tactics. It is important that lessons learned through extensive research on soybean-nematode interactions in South Africa be shared with researchers and industries in other countries as they might experience or expect similar problems and/or challenges.

  2. Utilization of computer processed high definition video imaging for measuring motility of microscopic nematode stages on a quantitative scale: "The Worminator".

    Science.gov (United States)

    Storey, Bob; Marcellino, Chris; Miller, Melissa; Maclean, Mary; Mostafa, Eman; Howell, Sue; Sakanari, Judy; Wolstenholme, Adrian; Kaplan, Ray

    2014-12-01

    A major hindrance to evaluating nematode populations for anthelmintic resistance, as well as for screening existing drugs, new compounds, or bioactive plant extracts for anthelmintic properties, is the lack of an efficient, objective, and reproducible in vitro assay that is adaptable to multiple life stages and parasite genera. To address this need we have developed the "Worminator" system, which objectively and quantitatively measures the motility of microscopic stages of parasitic nematodes. The system is built around the computer application "WormAssay", developed at the Center for Discovery and Innovation in Parasitic Diseases at the University of California, San Francisco. WormAssay was designed to assess motility of macroscopic parasites for the purpose of high throughput screening of potential anthelmintic compounds, utilizing high definition video as an input to assess motion of adult stage (macroscopic) parasites (e.g. Brugia malayi). We adapted this assay for use with microscopic parasites by modifying the software to support a full frame analysis mode that applies the motion algorithm to the entire video frame. Thus, the motility of all parasites in a given well are recorded and measured simultaneously. Assays performed on third-stage larvae (L3) of the bovine intestinal nematode Cooperia spp., as well as microfilariae (mf) of the filarioid nematodes B. malayi and Dirofilaria immitis, yielded reproducible dose responses using the macrocyclic lactones ivermectin, doramectin, and moxidectin, as well as the nicotinic agonists, pyrantel, oxantel, morantel, and tribendimidine. This new computer based-assay is simple to use, requires minimal new investment in equipment, is robust across nematode genera and developmental stage, and does not require subjective scoring of motility by an observer. Thus, the "Worminator" provides a relatively low-cost platform for developing genera- and stage-specific assays with high efficiency and reproducibility, low labor input

  3. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism.

    Directory of Open Access Journals (Sweden)

    Jiansong Chen

    2017-04-01

    Full Text Available Plant pathogen effectors can recruit the host post-translational machinery to mediate their post-translational modification (PTM and regulate their activity to facilitate parasitism, but few studies have focused on this phenomenon in the field of plant-parasitic nematodes. In this study, we show that the plant-parasitic nematode Meloidogyne graminicola has evolved a novel effector, MgGPP, that is exclusively expressed within the nematode subventral esophageal gland cells and up-regulated in the early parasitic stage of M. graminicola. The effector MgGPP plays a role in nematode parasitism. Transgenic rice lines expressing MgGPP become significantly more susceptible to M. graminicola infection than wild-type control plants, and conversely, in planta, the silencing of MgGPP through RNAi technology substantially increases the resistance of rice to M. graminicola. Significantly, we show that MgGPP is secreted into host plants and targeted to the ER, where the N-glycosylation and C-terminal proteolysis of MgGPP occur. C-terminal proteolysis promotes MgGPP to leave the ER, after which it is transported to the nucleus. In addition, N-glycosylation of MgGPP is required for suppressing the host response. The research data provide an intriguing example of in planta glycosylation in concert with proteolysis of a pathogen effector, which depict a novel mechanism by which parasitic nematodes could subjugate plant immunity and promote parasitism and may present a promising target for developing new strategies against nematode infections.

  4. Phylogenetic relationships of some spirurine nematodes (Nematoda: Chromadorea: Rhabditida: Spirurina) parasitic in fishes inferred from SSU rRNA gene sequences.

    Science.gov (United States)

    Cernotíková, Eva; Horák, Ales; Moravec, Frantisek

    2011-06-01

    Abstract: Small subunit rRNA sequences were obtained from 38 representatives mainly of the nematode orders Spirurida (Camallanidae, Cystidicolidae, Daniconematidae, Philometridae, Physalopteridae, Rhabdochonidae, Skrjabillanidae) and, in part, Ascaridida (Anisakidae, Cucullanidae, Quimperiidae). The examined nematodes are predominantly parasites of fishes. Their analyses provided well-supported trees allowing the study ofphylogenetic relationships among some spirurine nematodes. The present results support the placement of Cucullanidae at the base of the suborder Spirurina and, based on the position of the genus Philonema (subfamily Philoneminae) forming a sister group to Skrjabillanidae (thus Philoneminae should be elevated to Philonemidae), the paraphyly of the Philometridae. Comparison of a large number of sequences of representatives of the latter family supports the paraphyly of the genera Philometra, Philometroides and Dentiphilometra. The validity of the newly included genera Afrophilometra and Caranginema is not supported. These results indicate geographical isolation has not been the cause of speciation in this parasite group and no coevolution with fish hosts is apparent. On the contrary, the group of South-American species ofAlinema, Nilonema and Rumai is placed in an independent branch, thus markedly separated from other family members. Molecular data indicate that the skrjabillanid subfamily Esocineminae (represented by Esocinema bohemicum) should be either elevated to the rank of an independent family or Daniconematidae (Mexiconema africanum) should be decreased to Daniconematinae and transferred to the family Skrjabillanidae. Camallanid genera Camallanus and Procamallanus, as well as the subgenera Procamallanus and Spirocamallanus are confirmed to be paraphyletic. Paraphyly has also been found within Filarioidea, Habronematoidea and Thelazioidea and in Cystidicolidae, Physalopteridae and Thelaziidae. The results of the analyses also show that

  5. Fitness of Leishmania donovani parasites resistant to drug combinations.

    Directory of Open Access Journals (Sweden)

    Raquel García-Hernández

    2015-04-01

    Full Text Available Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line. In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.

  6. Evolution of plant parasitism in the phylum Nematoda.

    Science.gov (United States)

    Quist, Casper W; Smant, Geert; Helder, Johannes

    2015-01-01

    Within the species-rich and trophically diverse phylum Nematoda, at least four independent major lineages of plant parasites have evolved, and in at least one of these major lineages plant parasitism arose independently multiple times. Ribosomal DNA data, sequence information from nematode-produced, plant cell wall-modifying enzymes, and the morphology and origin of the style(t), a protrusible piercing device used to penetrate the plant cell wall, all suggest that facultative and obligate plant parasites originate from fungivorous ancestors. Data on the nature and diversification of plant cell wall-modifying enzymes point at multiple horizontal gene transfer events from soil bacteria to bacterivorous nematodes resulting in several distinct lineages of fungal or oomycete-feeding nematodes. Ribosomal DNA frameworks with sequence data from more than 2,700 nematode taxa combined with detailed morphological information allow for explicit hypotheses on the origin of agronomically important plant parasites, such as root-knot, cyst, and lesion nematodes.

  7. Parasitic nematodes of the genus Syphacia Seurat, 1916 infecting Muridae in the British Isles, and the peculiar case of Syphacia frederici.

    NARCIS (Netherlands)

    Stewart, Alex; Lowe, Ann; Smales, Lesley; Bajer, Anna; Bradley, Jan; Dwużnik, Dorota; Franssen, Frits; Griffith, Jack; Stuart, Peter; Turner, Cyan; Zaleśny, Grzegorz; Behnke, Jerzy M

    2017-01-01

    Syphacia stroma (von Linstow, 1884) Morgan, 1932 and Syphacia frederici Roman, 1945 are oxyurid nematodes that parasitize two murid rodents, Apodemus sylvaticus and Apodemus flavicollis, on the European mainland. Only S. stroma has been recorded previously in Apodemus spp. from the British Isles.

  8. Variation in the susceptibility of Drosophila to different entomopathogenic nematodes.

    Science.gov (United States)

    Peña, Jennifer M; Carrillo, Mayra A; Hallem, Elissa A

    2015-03-01

    Entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are lethal parasites of insects that are of interest as models for understanding parasite-host interactions and as biocontrol agents for insect pests. EPNs harbor a bacterial endosymbiont in their gut that assists in insect killing. EPNs are capable of infecting and killing a wide range of insects, yet how the nematodes and their bacterial endosymbionts interact with the insect immune system is poorly understood. Here, we develop a versatile model system for understanding the insect immune response to parasitic nematode infection that consists of seven species of EPNs as model parasites and five species of Drosophila fruit flies as model hosts. We show that the EPN Steinernema carpocapsae, which is widely used for insect control, is capable of infecting and killing D. melanogaster larvae. S. carpocapsae is associated with the bacterium Xenorhabdus nematophila, and we show that X. nematophila induces expression of a subset of antimicrobial peptide genes and suppresses the melanization response to the nematode. We further show that EPNs vary in their virulence toward D. melanogaster and that Drosophila species vary in their susceptibilities to EPN infection. Differences in virulence among different EPN-host combinations result from differences in both rates of infection and rates of postinfection survival. Our results establish a powerful model system for understanding mechanisms of host-parasite interactions and the insect immune response to parasitic nematode infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Genetic regulation of parasite infection: empirical evidence of the functional significance of an IL4 gene SNP on nematode infections in wild primates

    Directory of Open Access Journals (Sweden)

    Kappeler Peter M

    2011-04-01

    Full Text Available Abstract Background Susceptibility to parasite infection affects fitness-related processes, such as mate choice and survival, yet its genetic regulation remains poorly understood. Interleukin-4 (IL4 plays a central role in the humoral immune defence against nematode parasite infections, inducing IgE switch and regulation of worm expulsion from the intestines. The evolutionary and functional significance of single nucleotide polymorphisms (SNPs in IL4-genes is known, yet empirical information on the effect of IL4 SNPs on gastro-intestinal infections is lacking. Using samples from a population of wild red-fronted lemurs (Eulemur fulvus rufus, Primates: Lemuridae, from western Madagascar, we explored the association of IL4-gene promoter polymorphisms with nematode infections and investigated a possible functional role of the IL4 polymorphism on male reproductive success. Results Using sequence analyses of lemur DNA we detected a new SNP in the IL4 gene promoter area. Carriers of the genotype T/T showed higher nematode infection intensities than individuals of genotypes C/T and C/C. Genetic population analyses using data from more than 10 years, suggested higher reproductive success of T/T males than expected. Conclusions Our results suggest a regulatory effect of an IL4 gene promoter polymorphism on the intensity of parasite infections in a natural population of red-fronted lemurs, with a seemingly disadvantageous genotype represented in low frequencies. Long-term population analyses, however, point in the direction of a negative frequency-dependent association, giving a fitness advantage to the rare genotype. Due to low frequencies of the genotype in question conclusive evidence of a functional role of IL4 polymorphism cannot be drawn here; still, we suggest the use of IL4 polymorphism as a new molecular tool for quick assessment of individual genetic constitution with regard to nematode infection intensities, contributing to a better

  10. Screening fusarium resistant rootstocks for plant parasitic nematode resistance

    Science.gov (United States)

    The phase out of methyl bromide has directed research toward alternative methods of managing soil-borne pathogens. A limiting factor in many watermelon producing regions is Fusarium wilt caused by the soil-borne fungi Fusarium oxysporum f.sp. niveum (FON). There is no varietal resistance to FON depl...

  11. Canine and feline cardiopulmonary parasitic nematodes in Europe: emerging and underestimated

    Directory of Open Access Journals (Sweden)

    Conboy Gary

    2010-07-01

    Full Text Available Abstract Cardiopulmonary nematodes of dogs and cats cause parasitic diseases of central relevance in current veterinary practice. In the recent past the distribution of canine and feline heartworms and lungworms has increased in various geographical areas, including Europe. This is true especially for the metastrongyloids Aelurostrongylus abstrusus, Angiostrongylus vasorum and Crenosoma vulpis, the filarioid Dirofilaria immitis and the trichuroid Eucoleus aerophilus (syn. Capillaria aerophila. The reasons of this emergence are little known but many drivers such as global warming, changes in vector epidemiology and movements in animal populations, may be taken into account. The purpose of this article is to review the knowledge of the most important heartworm and lungworm infections of dogs and cats in Europe. In particular recent advances in epidemiology, clinical and control are described and discussed.

  12. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp.

    Science.gov (United States)

    Davies, Keith G

    2009-01-01

    Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.

  13. Redescription of Heliconema africanum (Linstow, 1899) n. comb. (Nematoda: Physalopteridae), a nematode parasite of freshwater eels (Anguilla spp.) in South Africa

    Czech Academy of Sciences Publication Activity Database

    Moravec, František; Taraschewski, H.; Weyl, O.L.F.

    2013-01-01

    Roč. 85, č. 3 (2013), s. 263-269 ISSN 0165-5752 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Parasitic nematode * Heliconema * South Africa Subject RIV: EA - Cell Biology Impact factor: 1.035, year: 2013

  14. Expression of a cystatin transgene in eggplant provides resistance to root-knot nematode, Meloidogyne incognita

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Papolu

    2016-07-01

    Full Text Available Root-knot nematodes (RKN cause substantial yield decline in eggplant and sustainable management options to minimize crop damage due to nematodes are still limited. A number of genetic engineering strategies have been developed to disrupt the successful plant-nematode interactions. Among them, delivery of proteinase inhibitors from the plant to perturb nematode development and reproduction is arguably the most effective strategy. In the present study, transgenic eggplant expressing a modified rice cystatin (OC-IΔD86 gene under the control of the root-specific promoter, TUB-1, was generated to evaluate the genetically modified nematode resistance. Five putative transformants were selected through PCR and genomic Southern blot analysis. Expression of the cystatin transgene was confirmed in all the events using western blotting, ELISA and qPCR assay. Upon challenge inoculation, all the transgenic events exhibited a detrimental effect on RKN development and reproduction. The best transgenic line (a single copy event showed 78.3% inhibition in reproductive success of RKN. Our results suggest that cystatins can play an important role for improving nematode resistance in eggplant and their deployment in gene pyramiding strategies with other proteinase inhibitors could ultimately enhance crop yield.

  15. In Vitro Pharmacodynamics of Benzimidazole and Tetrahydropyrimidine Derivatives in European Bison Gastro-Intestinal Nematodes

    Directory of Open Access Journals (Sweden)

    Laura CĂTANĂ

    2017-11-01

    Full Text Available The present study was aimed to evaluate the efficacy of anthelmintic agents against intestinal nematodes found in European bison. It was performed between October 2016 and May 2017, using Egg Hatch Assay (EHA and Larval Development Assay (LDA. The parasites were obtained from faecal samples, harvested from bisons in Romania and Sweden. The efficacy of albendazole (ABZ, mebendazole (MBZ thiabendazole (TBZ and pyrantel (PYR was tested. In EHA, the maximum efficacy was observed in MBZ (EC50 = - 0.227 μg/ml, and then TBZ (EC50 = - 0.2228. ABZ had a weaker result, EC50 being 0.326 μg/ml. All tested benzimidazoles registered hatching percentages below 50%, reflecting the lack of parasitic resistance. MIC obtained in the LDA tests were 0.2144 μg/ml for TBZ, 0.2792 μg/ml for PYR, 0.5429 μg/ml for MBZ, while ABZ came last (MIC = 0.8187 μg/ml. The in vitro tests proved the antiparasitic molecules efficacy against bisons nematode population and a limited risk of inducing resistance phenomena.

  16. Nematode effector proteins: an emerging paradigm of parasitism

    Science.gov (United States)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  17. An improved method for generating axenic entomopathogenic nematodes.

    Science.gov (United States)

    Yadav, Shruti; Shokal, Upasana; Forst, Steven; Eleftherianos, Ioannis

    2015-09-19

    Steinernema carpocapsae are parasitic nematodes that invade and kill insects. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila and together form an excellent model to study pathogen infection processes and host anti-nematode/antibacterial immune responses. To determine the contribution of S. carpocapsae and their associated X. nematophila to the successful infection of insects as well as to investigate the interaction of each mutualistic partner with the insect immune system, it is important to develop and establish robust methods for generating nematodes devoid of their bacteria. To produce S. carpocapsae nematodes without their associated X. nematophila bacteria, we have modified a previous method, which involves the use of a X. nematophila rpoS mutant strain that fails to colonize the intestine of the worms. We confirmed the absence of bacteria in the nematodes using a molecular diagnostic and two rounds of an axenicity assay involving appropriate antibiotics and nematode surface sterilization. We used axenic and symbiotic S. carpocapsae to infect Drosophila melanogaster larvae and found that both types of nematodes were able to cause insect death at similar rates. Generation of entomopathogenic nematodes lacking their mutualistic bacteria provides an excellent tool to dissect the molecular and genetic basis of nematode parasitism and to identify the insect host immune factors that participate in the immune response against nematode infections.

  18. [Larval biology of Cyrnea (Cyrnea) eurycerca Seurat, 1914, a habronemid nematode parasite of the francolin in Togo].

    Science.gov (United States)

    Seureau, C; Quentin, J C

    1983-01-01

    Larval biology of the habronemid nematode Cyrnea (Cyrnea) eurycerca Seurat, 1914, parasite of the Double-spurred Francolin Francolinus bicalcaratus, in Togo, is experimentally studied with the orthopteran Acrididae Tylotropidius patagiatus Karsch as intermediate host. The first three larval stages are described and illustrated. Infective larvae, which occur after two weeks of development at 30 degrees C, are unusually large (3 mm). The biology of this habronemid nematode is compared with the biology of the other Spirurids. It differs by: --an asynchronous penetration of the first stage larvae in the insect adipose tissue, --a short stay in this tissue (about 5 days) with a cell reaction of encapsulation, followed by an active escape of second stage larvae out of their capsule, --free and movable infective larvae in the hemocoele of the insect.

  19. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection.

    Science.gov (United States)

    Yadav, Shruti; Frazer, Joanna; Banga, Ashima; Pruitt, Katherine; Harsh, Sneh; Jaenike, John; Eleftherianos, Ioannis

    2018-01-01

    Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms.

  20. Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability.

    Science.gov (United States)

    Djian-Caporalino, Caroline; Palloix, Alain; Fazari, Ariane; Marteu, Nathalie; Barbary, Arnaud; Abad, Pierre; Sage-Palloix, Anne-Marie; Mateille, Thierry; Risso, Sabine; Lanza, Roger; Taussig, Catherine; Castagnone-Sereno, Philippe

    2014-02-22

    Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.

  1. Sensory Neuroanatomy of Parastrongyloides trichosuri, a Nematode Parasite of Mammals: Amphidial Neurons of the First-Stage Larva

    Science.gov (United States)

    Zhu, He; Li, Jian; Nolan, Thomas J.; Schad, Gerhard A.; Lok, James B.

    2011-01-01

    Owing to its ability to switch between free-living and parasitic modes of development, Parastrongyloides trichosuri represents a valuable model with which to study the evolution of parasitism among the nematodes, especially aspects pertaining to morphogenesis of infective third-stage larvae. In the free-living nematode Caenorhabditis elegans, developmental fates of third-stage larvae are determined in part by environmental cues received by chemosensory neurons in the amphidial sensillae. As a basis for comparative study, we have described the neuroanatomy of the amphidial sensillae of P. trichosuri. Using computational methods we incorporated serial electron micrographs into a three-dimensional reconstruction of the amphidial neurons of this parasite. Each amphid is innervated by 13 neurons, and the dendritic processes of 10 of these extend nearly to the amphidial pore. Dendritic processes of two specialized neurons leave the amphidial channel and terminate within invaginations of the sheath cell. One of these is similar to the finger cell of C. elegans, terminating in digitiform projections. The other projects a single cilium into the sheath cell. The dendritic process of a third specialized neuron terminates within the tight junction of the amphid. Each amphidial neuron was traced from the tip of its dendrite(s) to its cell body in the lateral ganglion. Positions of these cell bodies approximate those of morphologically similar amphidial neurons in Caenorhabditis elegans, so the standard nomenclature for amphidial neurons in C. elegans was adopted. A map of cell bodies within the lateral ganglion of P. trichosuri was prepared to facilitate functional study of these neurons. PMID:21456026

  2. Association analysis of resistance to cereal cyst nematodes (Heterodera avenae) and root lesion nematodes (Pratylenchus neglectus and P. thornei) in CIMMYT advanced spring wheat lines for semi-arid conditions.

    Science.gov (United States)

    Dababat, Abdelfattah A; Ferney, Gomez-Becerra Hugo; Erginbas-Orakci, Gul; Dreisigacker, Susanne; Imren, Mustafa; Toktay, Halil; Elekcioglu, Halil I; Mekete, Tesfamariam; Nicol, Julie M; Ansari, Omid; Ogbonnaya, Francis

    2016-12-01

    To identify loci linked to nematode resistance genes, a total of 126 of CIMMYT advanced spring wheat lines adapted to semi-arid conditions were screened for resistance to Heterodera avenae , Pratylenchus neglectus , and P. thornei , of which 107 lines were genotyped with 1,310 DArT. Association of DArT markers with nematode response was analyzed using the general linear model. Results showed that 11 markers were associated with resistance to H. avenae (pathotype Ha21), 25 markers with resistance to P. neglectus , and 9 significant markers were identified to be linked with resistance to P. thornei . In this work we confirmed that chromosome 4A (~90-105 cM) can be a source of resistance to P. thornei as has been recently reported. Other significant markers were also identified on chromosomal regions where no resistant genes have been reported for both nematodes species. These novel QTL were mapped to chromosomes 5A, 6A, and 7A for H. avenae ; on chromosomes 1A, 1B, 3A, 3B, 6B, 7AS, and 7D for P. neglectus ; and on chromosomes 1D, 2A, and 5B for P. thornei and represent potentially new loci linked to resistance that may be useful for selecting parents and deploying resistance into elite germplasm adapted to regions where nematodes are causing problem.

  3. First report of multiple anthelmintic resistance in nematodes of sheep in Colombia

    Directory of Open Access Journals (Sweden)

    Carlos M.B. Gárcia

    2016-03-01

    Full Text Available This study aimed to report the presence of parasites resistant to the most used anthelmintic drugs in sheep in Colombia. Four farms (denominated farm 1, 2, 3 and 4 were selected where the animals were not treated with anthelmintics for two months before the trial. Animals with faecal egg count (FEC above 150 and of different ages were allocated into six groups, each consisting of at least 5 animals. The drugs and dosages used were: ivermectin 1% (0.2 mg/kg, albendazole 25% (5 mg/kg, fenbendazole 10% (5 mg/kg, levamisole 10% (5 mg/kg, and moxidectin 1% (0.2 mg/kg. Anthelmintic efficacy was determined by the FEC reduction test (FECRT with a second sampling 14 days post-treatment. The efficacy of albendazole and fenbendazole at farm 1 was above 95%, which was different from the others farms. The FECRT indicated the presence of multidrug resistance in the other farms where no tested drugs showed activity higher than 79% (albendazole: 0 to 55%, fenbendazole: 51.4 to 76.6%, ivermectin: 67.3 to 93.1%, levamisole: 0 to 78.1%, and moxidectin: 49.2 to 64.1%.Haemonchus contortus was the predominant (96% species, followed by a small presence of Trichostrongylus sp. (3% andCooperia sp. (1%. Therefore, we report for the first time the existence of multiple anthelmintic resistance in gastrointestinal nematodes of sheep in Colombia.

  4. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits.

    Directory of Open Access Journals (Sweden)

    Sally M Williamson

    2009-07-01

    Full Text Available Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect approximately 1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5:1 (Asu-unc-38ratioAsu-unc-29, nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1:5 Asu-unc-38ratioAsu-unc-29, levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the

  5. Connection between the decline of spruce and occurrence of animal pests, especially nematodes

    Energy Technology Data Exchange (ETDEWEB)

    Timans, U.

    1986-12-01

    In various regions of Bavaria, affected by the decline of spruce, attack by insects and especially nematodes was examined on diseased and healthy spruces. A connection between harmful forest insects and the decline of spruce did not become evident, neither over wide areas nor by examination of single trees. Attack by nematodes was examined in soil and wood samples and also in fine feeder roots of diseased and healthy trees. Plant-parasitic nematodes were not found in the wood and in feeder roots. Although root-parasitic nematodes were present in soil samples, their density was too little to account for a direct damage to spruce. They occurred likewise in samples from healthy and diseased trees. Plant-parasitic nematodes can thus be excluded as a possible causal agent for the decline of spruce.

  6. Stress Response and Artemisinin Resistance in Malaria Parasite

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...13. SUPPLEMENTARY NOTES 14. ABSTRACT In malaria , drug resistance is a major treat to disease control efforts. Unfortunately, there is a significant

  7. Anti-parasitic activity of pelleted sainfoin (Onobrychis viciifolia) against Ostertagia ostertagi and Cooperia oncophora in calves

    DEFF Research Database (Denmark)

    Desrues, O.; Pena-Espinoza, Miguel Angel; Hansen, T. V.

    2016-01-01

    BACKGROUND: Increasing anthelmintic-resistance in nematodes of ruminants emphasises the need for sustainable parasite control. Condensed tannin-containing legume forages such as sainfoin (Onobrychis viciifolia) have shown promising anthelmintic properties in small ruminants but this has never been...

  8. Nematode neuropeptides as transgenic nematicides.

    Directory of Open Access Journals (Sweden)

    Neil D Warnock

    2017-02-01

    Full Text Available Plant parasitic nematodes (PPNs seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  9. Assessment of weeds as alternative hosts of plant-parasitic nematodes in coffee plantations in Costa Rica

    OpenAIRE

    Walter Peraza-Padilla; Martha Orozco-Aceves

    2018-01-01

    There is potential for weeds to be alternative hosts of plant-parasitic nematodes (PPN), but a methodology that assesses the phytosanitary risk derived from the presence of weeds in plantations is not available. This research was conducted in order to determine if the presence of weeds in coffee plantations (organic and conventional) represented a phytosanitary risk due to their role as alternative hosts of PPN. The research was developed into two plantation located in Aserrí, San José, Costa...

  10. Nematode parasitism in adult dairy cows in Belgium

    NARCIS (Netherlands)

    Agneessens, J.; Claerebout, E.; Dorny, P.; Borgsteede, F.H.M.; Vercruysse, J.

    2000-01-01

    Over a period of 1 year, from November 1997 to October 1998, the abomasa, blood and faecal samples of 121 dairy cows in Belgium were collected and examined for nematode infections. Nematodes were present in the abomasa of 110 animals. Ostertagia was found in all 110, Trichostrongylus was seen in 65

  11. Phenotypic and molecular analysis of a pasteuria strain parasitic to the sting nematode.

    Science.gov (United States)

    Bekal, S; Borneman, J; Springer, M S; Giblin-Davis, R M; Becker, J O

    2001-06-01

    Pasteuria strain S-1 was found to parasitize the sting nematode Belonolaimus longicaudatus. S-1 spores attached to several strains of B. longicaudatus from different geographical locations within the United States. However, they did not adhere to any of the following species: Heterodera schachtii, Longidorus africanus, Meloidogyne hapla, M. incognita, M. javanica, Pratylenchus brachyurus, P. scribneri, P. neglectus, P. penetrans, P. thornei, P. vulnus, and Xiphinema spp. The 16S rRNA genes from Pasteuria strain S-1 and P. penetrans strain Pp from Senegal were obtained by PCR amplification. A DNA sequence analysis showed that the S-1 16S rRNA had 96% or less similarity to the 16S rRNA genes from all previously reported Pasteuria species. Diverse phylogenetic methods all provided robust support for an association of Pasteuria strain S-1, Pasteuria strain NA parasitic to H. glycines, and P. penetrans strain Pp, to the exclusion of P. ramosa. In addition, our study showed intraspecific variation within P. penetrans as inferred by its 98% similarity to P. penetrans strain Pp.

  12. Description and identification of four species of plant parasitic nematodes associated with grassland, fruit trees and maize in Romania.

    Science.gov (United States)

    Badi, M; Geraert, E

    2002-01-01

    Three species of plant parasitic nematodes present in two romanian soil samples were described and identified in the present study. The species belong to order tylenchida and to taxonomical families Tylenchidae (Basiria aberrans) and Belonolaimidae (Tylenchorhynchus georgiensis and Merlinius brevidens). The identification of the present specimens was based on the classical taxonomy, following morphological and morphometrical characters in the species specific identification keys.

  13. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts.

    Science.gov (United States)

    Emelianoff, Vanya; Chapuis, Elodie; Le Brun, Nathalie; Chiral, Magali; Moulia, Catherine; Ferdy, Jean-Baptiste

    2008-04-01

    In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.

  14. Anthelmintics Resistance; How to Overcome it?

    Directory of Open Access Journals (Sweden)

    Hatem A Shalaby

    2013-03-01

    Full Text Available Many parasitic helminthes of veterinary importance have genetic features that favor development of anthelmintic resistance, this becoming a major worldwide constrain in livestock production. The develop­ment of anthelmintic resistance poses a large threat to future production and welfare of graz­ing animals. Development of variable degrees of resistance among different species of gastrointes­tinal nematodes has been reported for all the major groups of anthelmintic drugs. It has been ob­served that frequent usage of the same group of anthelmintic; use of anthelmintics in sub-optimal doses, prophylactic mass treatment of domestic animals and frequent and continuous use of a single drug have contributed to the widespread development of anthelmintic resistance in helminthes. The degree and extent of this problem especially with respect to multidrug resistance in nematode popula­tions is likely to increase. Maintaining parasites in refugia and not exposed to anthelmintics, seems to be a key point in controlling and delaying the development of resistance, because the suscepti­ble genes are preserved. Targeted selective treatments attract the interest of scientists to­wards this direction. Additionally, adoption of strict quarantine measures and a combination drug strategy are two important methods of preventing of anthelmintic resistance. Experience from the development of anthelmintic resistance suggests that modern control schemes should not rely on sole use of anthelmintics, but employ other, more complex and sustainable recipes, including parasite resistant breeds, nutrition, pasture management, nematode-trapping fungi, antiparasitic vaccines and botanical dewormers. Most of them reduce reliance on the use of chemicals and are environmental friendly. Finally, if new anthelmintic products are released, an important question will be raised about how they should be used. It is suggested that slowing the development of resistance to a new

  15. In Vivo Production of Entomopathogenic Nematodes.

    Science.gov (United States)

    Shapiro-Ilan, David I; Morales-Ramos, Juan A; Rojas, M Guadalupe

    2016-01-01

    In nature, entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are obligate parasites of insects. The nematodes are used widely as biopesticides for suppression of insect pests. More than a dozen entomopathogenic nematode species have been commercialized for use in biological control. Most nematodes intended for commercial application are produced in artificial media via solid or liquid fermentation. However, for laboratory research and small greenhouse or field trials, in vivo production of entomopathogenic nematodes is the common method of propagation. Additionally, small companies continue to produce nematodes using in vivo methods for application in niche markets. Advances in mechanization and alternative production routes (e.g., production geared toward application of nematodes in infected host cadavers) can improve efficiency and economy of scale. The objective of this chapter is to describe basic and advanced procedures for in vivo production of entomopathogenic nematodes.

  16. First Report of Anthelmintic Resistance in Gastrointestinal Nematodes of Sheep from Costa Rica

    Science.gov (United States)

    Maroto, R.; Jiménez, A. E.; Romero, J. J.; Alvarez, V.; De Oliveira, J. B.; Hernández, J.

    2011-01-01

    As the prevalence and severity of anthelmintic resistance continue to rise, nematode infections in sheep correspondingly reduce the profitability of the sheep industry. In Costa Rica, sheep production systems are increasing in both number and importance. A field trial study was carried out to detect the level of anthelmintic resistance to albendazole and ivermectin in gastrointestinal nematodes (GIN) of sheep from seven farms in Costa Rica. Resistance was determined using the fecal egg count reduction test (FECRT). Three treatment groups were assessed on each farm: control, albendazole, and ivermectin. Haemonchus spp. (71%), Strongyloides sp. (57%), and Trichostrongylus spp. (43%) presented resistance levels to albendazole, whereas Strongyloides sp. (43%), Haemonchus spp. (29%), and Trichostrongylus spp. (29%) were resistant to ivermectin. Haemonchus spp., Strongyloides sp., and Trichostrongylus spp. were the most resistant GIN to both products. This study suggests that frequency of treatment, exclusive chemical control, and visual estimation of animal weight to calculate dosage may contribute to the high levels of anthelmintic resistance that were observed on the farms analyzed herein. PMID:21772962

  17. Draft genome of neurotropic nematode parasite Angiostrongylus cantonensis, causative agent of human eosinophilic meningitis.

    Science.gov (United States)

    Yong, Hoi-Sen; Eamsobhana, Praphathip; Lim, Phaik-Eem; Razali, Rozaimi; Aziz, Farhanah Abdul; Rosli, Nurul Shielawati Mohamed; Poole-Johnson, Johan; Anwar, Arif

    2015-08-01

    Angiostrongylus cantonensis is a bursate nematode parasite that causes eosinophilic meningitis (or meningoencephalitis) in humans in many parts of the world. The genomic data from A. cantonensis will form a useful resource for comparative genomic and chemogenomic studies to aid the development of diagnostics and therapeutics. We have sequenced, assembled and annotated the genome of A. cantonensis. The genome size is estimated to be ∼260 Mb, with 17,280 genomic scaffolds, 91X coverage, 81.45% for complete and 93.95% for partial score based on CEGMA analysis of genome completeness. The number of predicted genes of ≥300 bp was 17,482. A total of 7737 predicted protein-coding genes of ≥50 amino acids were identified in the assembled genome. Among the proteins of known function, kinases are the most abundant followed by transferases. The draft genome contains 34 excretory-secretory proteins (ES), a minimum of 44 Nematode Astacin (NAS) metalloproteases, 12 Homeobox (HOX) genes, and 30 neurotransmitters. The assembled genome size (260 Mb) is larger than those of Pristionchus pacificus, Caenorhabditis elegans, Necator americanus, Caenorhabditis briggsae, Trichinella spiralis, Brugia malayi and Loa loa, but smaller than Haemonchus contortus and Ascaris suum. The repeat content (25%) is similar to H. contortus. The GC content (41.17%) is lower compared to P. pacificus (42.7%) and H. contortus (43.1%) but higher compared to C. briggsae (37.69%), A. suum (37.9%) and N. americanus (40.2%) while the scaffold N50 is 42,191. This draft genome will facilitate the understanding of many unresolved issues on the parasite and the disorder it causes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Practical application of insect-parasitic nematodes and sterile flies; Praktische Anwendung insektenparasitischer Nematoden und sterilisierter Fliegen

    Energy Technology Data Exchange (ETDEWEB)

    Galle, F. [Bayerisches Staatsministerium fuer Ernaehrung, Landwirtschaft und Forsten, Muenchen (Germany); Loosjes, M. [De Groene Vlieg, Nieuwe Tonge (Netherlands)

    1987-07-01

    The company 'de Groene Vlieg' started with commercial control of the onion fly by means of the sterile insect technique. At the moment 10 per cent of the Dutch spring sown onions are treated with this method. The mass-rearing, the estimations of populations and the repeated releases of sterilized flies make it a rather complicated method. It can be applied economically per field, but only in areas with a concentration of onion growing. For export we see no possibilities yet. In principle the sterile insect technique can be applied also to other flies (carrot rust fly, cabbage root fly), but a suitable artificial diet is still lacking. Since some years we also rear the insect parasitic nematodes Heterorhabditis sp. and Neoaplectana bibionis. The later is experimentally used with success against Agrotis segetum caterpillars in lettuce. Research will yield more applications of nematodes against different pests. We use Heterorhabditis sp. in practice against the black vine weevil (Otiorhynchus sulcatus), a serious pest in glass houses, tree nurseries and gardens. Good control is achieved with a dose of one half to one million nematodes per square meter in moist soil and with temperatures above 12 degrees C. The application is similar to that of a chemical insecticide. The pest is killed by symbiontic bacteria, released by the nematodes after penetrating into the body cavity of the larvae. The nematodes are delivered by mail. If cooled they can be kept alive for over four weeks in the package. We export already to Switzerland and plan to export also to Western Germany. At this moment a possible admittance is under investigation in the Netherlands for application of a nuclear polyhedrosis virus against Spodoptera exigua caterpillars.

  19. Origanum vulgare (Lamiaceae OVICIDAL POTENTIAL ON GASTROINTESTINAL NEMATODES OF CATTLE

    Directory of Open Access Journals (Sweden)

    Luciana Laitano Dias de Castro

    2013-12-01

    Full Text Available Due to anthelmintic resistance in nematodes, several research studies have been developed seeking control alternatives to these parasites. This study evaluated the in vitro action of Origanum vulgare on gastrointestinal nematode eggs of cattle. In order to evaluate the ability to inhibit egg hatch, different dried leaves extracts of this plant were tested, such as dye, hydroalcoholic and aqueous extracts at concentrations varying from 0.62 to 80 mg/mL. Each assay was accompanied by control containing levamisole hydrochloride (0.2 mg/mL, distilled water and 70 ºGL grain alcohol at the same concentration of the extracts. Test results showed that the different O. vulgare extracts inhibited egg hatch of cattle gastrointestinal nematodes at a percentage that varied from 8.8 to 100%; dye and hydroalcoholic extract were the most promising inhibitors. In view of this ovicidal property, O. vulgare may be an important source of viable antiparasitic compounds for nematodiosis control in ruminants.

  20. Two crystal forms of a helix-rich fatty acid- and retinol-binding protein, Na-FAR-1, from the parasitic nematode Necator americanus

    International Nuclear Information System (INIS)

    Gabrielsen, Mads; Rey-Burusco, M. Florencia; Griffiths, Kate; Roe, Andrew J.; Cooper, Alan; Smith, Brian O.; Kennedy, Malcolm W.; Corsico, Betina

    2012-01-01

    Na-FAR-1, a fatty acid- and retinol-binding protein, was expressed in bacteria, purified and crystallized. Crystals grew in two different morphologies under the same conditions. Na-FAR-1 is an unusual α-helix-rich fatty acid- and retinol-binding protein from Necator americanus, a blood-feeding intestinal parasitic nematode of humans. It belongs to the FAR protein family, which is unique to nematodes; no structural information is available to date for FAR proteins from parasites. Crystals were obtained with two different morphologies that corresponded to different space groups. Crystal form 1 exhibited space group P432 (unit-cell parameters a = b = c = 120.80 Å, α = β = γ = 90°) and diffracted to 2.5 Å resolution, whereas crystal form 2 exhibited space group F23 (unit-cell parameters a = b = c = 240.38 Å, α = β = γ = 90°) and diffracted to 3.2 Å resolution. Crystal form 2 showed signs of significant twinning

  1. Genome-wide scan of gastrointestinal nematode resistance in closed Angus population selected for minimized influence of MHC.

    Science.gov (United States)

    Kim, Eui-Soo; Sonstegard, Tad S; da Silva, Marcos V G B; Gasbarre, Louis C; Van Tassell, Curtis P

    2015-01-01

    Genetic markers associated with parasite indicator traits are ideal targets for study of marker assisted selection aimed at controlling infections that reduce herd use of anthelminthics. For this study, we collected gastrointestinal (GI) nematode fecal egg count (FEC) data from post-weaning animals of an Angus resource population challenged to a 26 week natural exposure on pasture. In all, data from 487 animals was collected over a 16 year period between 1992 and 2007, most of which were selected for a specific DRB1 allele to reduce the influence of potential allelic variant effects of the MHC locus. A genome-wide association study (GWAS) based on BovineSNP50 genotypes revealed six genomic regions located on bovine Chromosomes 3, 5, 8, 15 and 27; which were significantly associated (-log10 p=4.3) with Box-Cox transformed mean FEC (BC-MFEC). DAVID analysis of the genes within the significant genomic regions suggested a correlation between our results and annotation for genes involved in inflammatory response to infection. Furthermore, ROH and selection signature analyses provided strong evidence that the genomic regions associated BC-MFEC have not been affected by local autozygosity or recent experimental selection. These findings provide useful information for parasite resistance prediction for young grazing cattle and suggest new candidate gene targets for development of disease-modifying therapies or future studies of host response to GI parasite infection.

  2. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Fernandez, Ivan; Lok, Gerrit B; Pozo, María J; Pieterse, Corné M J|info:eu-repo/dai/nl/113115113; Van Wees, Saskia C M|info:eu-repo/dai/nl/185445373

    Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the

  3. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  4. Identification of virus and nematode resistance genes in the Chilota Potato Genebank of the Universidad Austral de Chile

    Directory of Open Access Journals (Sweden)

    Marlon López

    2015-09-01

    Full Text Available Potato Genebank of the Universidad Austral de Chile (UACh is an important gene bank in Chile. The accessions collected all over the country possess high genetic diversity, present interesting agronomic and cooking traits, and show resistance to biotic and abiotic stress. A particularly interesting subgroup of the gene bank includes the accessions collected in the South of Chile, the Chilota Potato Genebank. The focus of this study is the identification of virus and nematode resistant genes in potatoes (Solatium tuberosum L., using the RYSC3 and YES3-3B molecular markers. The Potato virus Y(PVY resistance genes Ry adg and Ry sto were identified. Furthermore, the CP60 marker was used to assess the Rx resistance gene that confers resistance to Potato virus X (PVX. In addition, the HC and GRO1-4 markers were utilized to identify the GpaVvrn_QTL and Gro1-4, resistance genes of Globodera pallida and Globodera rostochiensis, respectively. Both G. pallida and G. rostochiensis are Potato Cyst Nematodes (PCN. The plant material used in this study included leaves from 271 accessions of the gene bank. These samples were collected in the field where natural pathogen pressure of potential viruses and diseases exists. ELISA assays were run for field detection of PVY and PVX. However, there have been no previous reports of nematode presence in the plant material. The results herein presented indicate presence of virus and nematode resistance genes in accessions of the Chilota Potato Genebank. In terms of virus resistance, 99 accessions out of the 271 tested possess the Ry adg resistance gene and 17 accessions of these 271 tested have the Ry sto resistance gene. Also, 10 accessions showed positive amplification of the Rxl resistant gene marker. As to nematode resistance, 99 accessions have possible resistance to G. pallida and 54 accessions show potential resistance to G. rostochiensis as detected using the available molecular markers.

  5. CHEMOTHERAPY, WITHIN-HOST ECOLOGY AND THE FITNESS OF DRUG-RESISTANT MALARIA PARASITES

    OpenAIRE

    Huijben, Silvie; Nelson, William A.; Wargo, Andrew R.; Sim, Derek G.; Drew, Damien R.; Read, Andrew F.

    2010-01-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria mod...

  6. Molecular identification of parasitic nematodes (Nematoda: Strongylida) in feces of wild ruminants from Tunisia.

    Science.gov (United States)

    Said, Yousra; Gharbi, Mohamed; Mhadhbi, Moez; Dhibi, Moktar; Lahmar, Samia

    2017-11-08

    In Tunisia and other North African countries, there is a lack of knowledge about parasite biodiversity within threatened wild ruminants and there are not any studies on their gastrointestinal nematodes. Thus the aim of this study was to identify gastrointestinal fauna in the faecal samples of Tunisian wild ruminants. A total of 262 faecal samples were collected from domestic sheep and goat, and wild ruminants (Addax, Barbary sheep, Barbary red deer, Dorcas gazelle, Slender-horned gazelle and Scimitar-horned Oryx) living in protected areas. Samples were examined with floatation (saturated sodium chloride solution), polymerase chain reaction and sequencing of the second internal transcribed spacer region of the rDNA. Microscopic analysis allowed the identification of only Nematodirus genus or molecular tools allowed a first identification of five gastrointestinal nematode species in North African wild ruminants: Chabertia ovina (1.6%), Camelostrongylus mentulatus (1.6%), Marshallagia marshalli (4.7%), Nematodirus helvetianus (62.5%) and Nematodirus spathiger (29.7%). This study reported the first records of C. mentulatus and M. marshalli in Addax and of M. marshalli in Dorcas gazelle and it was the first reported record of N. helvetianus and M. marshalli in Tunisia.

  7. Research and implementation of novel approaches for the control of nematode parasites in Latin America and the Caribbean: is there sufficient incentive for a greater extension effort?

    Science.gov (United States)

    Torres-Acosta, J F J; Molento, M; Mendoza de Gives, P

    2012-05-04

    The widespread presence of anthelmintic resistant gastrointestinal parasitic nematodes in outdoor ruminant production systems has driven the need to identify and develop novel approaches for the control of helminths with the intention to reduce the dependence on commercial anthelmintic drugs. This paper identifies what has been done in Latin America (LA) in terms of estimating the prevalence of anthelmintic resistance (AR) in ruminant production systems and the application of different novel approaches for the control of helminths in those systems, including research and extension activities. Firstly, the paucity of knowledge of AR is discussed in the context of different countries, as well as, the available economic resources for research, the technical infrastructure available and the practical difficulties of the production systems. It is then proposed that the search for novel approaches is not only driven by AR but also by the need for techniques that are feasible for application by resource-poor farmers in non-commercial subsistence farming systems. However, the commercial benefits of these approaches are often limited and so are funding inputs in most countries. The workers participating in the research into different novel approaches are identified as well as the different methods being studied in the different areas of LA according to their published results. In addition, the difficulties experienced during extension efforts to reach farmers and help them to adopt novel approaches for the control of parasitic nematodes in LA are discussed. The role of regulatory authorities in these countries is discussed as some methods of control might need an official confirmation of their efficacy as well as authorization prior to application as they may affect animal products (i.e. residues) and/or impose a hazard for animal welfare. The role of the pharmaceutical companies is also discussed. Copyright © 2011. Published by Elsevier B.V.

  8. Utilization of computer processed high definition video imaging for measuring motility of microscopic nematode stages on a quantitative scale: “The Worminator”

    Directory of Open Access Journals (Sweden)

    Bob Storey

    2014-12-01

    Full Text Available A major hindrance to evaluating nematode populations for anthelmintic resistance, as well as for screening existing drugs, new compounds, or bioactive plant extracts for anthelmintic properties, is the lack of an efficient, objective, and reproducible in vitro assay that is adaptable to multiple life stages and parasite genera. To address this need we have developed the “Worminator” system, which objectively and quantitatively measures the motility of microscopic stages of parasitic nematodes. The system is built around the computer application “WormAssay”, developed at the Center for Discovery and Innovation in Parasitic Diseases at the University of California, San Francisco. WormAssay was designed to assess motility of macroscopic parasites for the purpose of high throughput screening of potential anthelmintic compounds, utilizing high definition video as an input to assess motion of adult stage (macroscopic parasites (e.g. Brugia malayi. We adapted this assay for use with microscopic parasites by modifying the software to support a full frame analysis mode that applies the motion algorithm to the entire video frame. Thus, the motility of all parasites in a given well are recorded and measured simultaneously. Assays performed on third-stage larvae (L3 of the bovine intestinal nematode Cooperia spp., as well as microfilariae (mf of the filarioid nematodes B. malayi and Dirofilaria immitis, yielded reproducible dose responses using the macrocyclic lactones ivermectin, doramectin, and moxidectin, as well as the nicotinic agonists, pyrantel, oxantel, morantel, and tribendimidine. This new computer based-assay is simple to use, requires minimal new investment in equipment, is robust across nematode genera and developmental stage, and does not require subjective scoring of motility by an observer. Thus, the “Worminator” provides a relatively low-cost platform for developing genera- and stage-specific assays with high efficiency and

  9. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  10. Book review: Systematics of Cyst Nematodes (Nematoda: Heteroderinae)

    Science.gov (United States)

    The cyst nematodes are an important group of plant-parasitic nematodes that cause billions of dollars in economic damage to crops every year. This article reviews a recently published, two-volume monograph that describes the morphological and molecular characteristics of these agriculturally signif...

  11. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE

    Science.gov (United States)

    Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ESR(CLE)-like effector proteins. These proteins have been shown to act as ligand mimics of plant CLE peptides and are required for successful nematode infection; however, the receptors for nematode CLE-like peptides have not been identified. Her...

  12. Bacterial microbiome and nematode occurrence in different potato agricultural soils

    Science.gov (United States)

    Pratylenchus neglectus and Meloidogyne chitwoodi are the main plant-parasitic nematodes in potato crops of the San Luis Valley, Colorado. Bacterial microbiome (16S rRNA copies per gram of soil) and nematode communities (nematodes per 200 gr of soil) from five different potato farms were analyzed to ...

  13. Mining the secretome of root-knot nematodes for cell wall modifying proteins

    NARCIS (Netherlands)

    Roze, E.H.A.

    2008-01-01

    The products of parasitism genes in nematodes must be secreted to reach their targets at the nematode-plant interface. These nematode secretory proteins are therefore recognised to play an important role in the nematode-plant interaction and as a result have been subject of intense study for years.

  14. Biocontrol: Bacillus penetrans and Related Parasites of Nematodes

    OpenAIRE

    Sayre, R. M.

    1980-01-01

    Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, partic...

  15. NemaPath: online exploration of KEGG-based metabolic pathways for nematodes

    Directory of Open Access Journals (Sweden)

    Wang Zhengyuan

    2008-11-01

    Full Text Available Abstract Background Nematode.net http://www.nematode.net is a web-accessible resource for investigating gene sequences from parasitic and free-living nematode genomes. Beyond the well-characterized model nematode C. elegans, over 500,000 expressed sequence tags (ESTs and nearly 600,000 genome survey sequences (GSSs have been generated from 36 nematode species as part of the Parasitic Nematode Genomics Program undertaken by the Genome Center at Washington University School of Medicine. However, these sequencing data are not present in most publicly available protein databases, which only include sequences in Swiss-Prot. Swiss-Prot, in turn, relies on GenBank/Embl/DDJP for predicted proteins from complete genomes or full-length proteins. Description Here we present the NemaPath pathway server, a web-based pathway-level visualization tool for navigating putative metabolic pathways for over 30 nematode species, including 27 parasites. The NemaPath approach consists of two parts: 1 a backend tool to align and evaluate nematode genomic sequences (curated EST contigs against the annotated Kyoto Encyclopedia of Genes and Genomes (KEGG protein database; 2 a web viewing application that displays annotated KEGG pathway maps based on desired confidence levels of primary sequence similarity as defined by a user. NemaPath also provides cross-referenced access to nematode genome information provided by other tools available on Nematode.net, including: detailed NemaGene EST cluster information; putative translations; GBrowse EST cluster views; links from nematode data to external databases for corresponding synonymous C. elegans counterparts, subject matches in KEGG's gene database, and also KEGG Ontology (KO identification. Conclusion The NemaPath server hosts metabolic pathway mappings for 30 nematode species and is available on the World Wide Web at http://nematode.net/cgi-bin/keggview.cgi. The nematode source sequences used for the metabolic pathway

  16. Prevalence of common gastro-intestinal nematode infections in ...

    African Journals Online (AJOL)

    ACSS

    (GIN) infection and identified the common GIN parasites in commercial goat production in. Central Uganda. .... Table 1. Prevalence of gastro-intestinal nematode parasites in goats in Central Uganda .... ILCA, Addis Ababa, Ethiopia. pp. 40-76.

  17. A matching-allele model explains host resistance to parasites.

    Science.gov (United States)

    Luijckx, Pepijn; Fienberg, Harris; Duneau, David; Ebert, Dieter

    2013-06-17

    The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lead to an ongoing advantage for rare genotypes, parasites should infect specific host genotypes and hosts should resist specific parasite genotypes. The most prominent genetics capturing such specificity are matching-allele models (MAMs), which have the key feature that resistance for two parasite genotypes can reverse by switching one allele at one host locus. Despite the lack of empirical support, MAMs have played a central role in the theoretical development of antagonistic coevolution, local adaptation, speciation, and sexual selection. Using genetic crosses, we show that resistance of the crustacean Daphnia magna against the parasitic bacterium Pasteuria ramosa follows a MAM. Simulation results show that the observed genetics can explain the maintenance of genetic variation and contribute to the maintenance of sex in the facultatively sexual host as predicted by the Red Queen Theory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Anthelmintic Resistance of Strongyle Nematodes to Ivermectin and Fenbendazole on Cart Horses in Gondar, Northwest Ethiopia

    Directory of Open Access Journals (Sweden)

    Zewdu Seyoum

    2017-01-01

    Full Text Available A study was conducted from November 2015 to April 2016 to determine fenbendazole and ivermectin resistance status of intestinal nematodes of cart horses in Gondar, Northwest Ethiopia. Forty-five strongyle infected animals were used for this study. The animals were randomly allocated into three groups (15 horses per group. Group I was treated with fenbendazole and Group II with ivermectin and Group III was left untreated. Faecal samples were collected from each cart horse before and after treatment. Accordingly, the reduction in the mean fecal egg count at fourteen days of treatment for ivermectin and fenbendazole was 97.25% and 79.4%, respectively. It was significantly different in net egg count between treatment and control groups after treatment. From the study, resistance level was determined for fenbendazole and suspected for ivermectin. In addition, a questionnaire survey was also conducted on 90 selected cart owners to assess their perception on anthelmintics. In the survey, the most available drugs in the study area used by the owners were fenbendazole and ivermectin. Most respondents have no knowledge about drug management techniques. Hence, animal health extension services to create awareness regarding anthelmintic management that plays a key role in reducing the anthelmintic resistance parasites.

  19. Anthelmintic Resistance of Strongyle Nematodes to Ivermectin and Fenbendazole on Cart Horses in Gondar, Northwest Ethiopia.

    Science.gov (United States)

    Seyoum, Zewdu; Zewdu, Alemu; Dagnachew, Shimelis; Bogale, Basazinew

    2017-01-01

    A study was conducted from November 2015 to April 2016 to determine fenbendazole and ivermectin resistance status of intestinal nematodes of cart horses in Gondar, Northwest Ethiopia. Forty-five strongyle infected animals were used for this study. The animals were randomly allocated into three groups (15 horses per group). Group I was treated with fenbendazole and Group II with ivermectin and Group III was left untreated. Faecal samples were collected from each cart horse before and after treatment. Accordingly, the reduction in the mean fecal egg count at fourteen days of treatment for ivermectin and fenbendazole was 97.25% and 79.4%, respectively. It was significantly different in net egg count between treatment and control groups after treatment. From the study, resistance level was determined for fenbendazole and suspected for ivermectin. In addition, a questionnaire survey was also conducted on 90 selected cart owners to assess their perception on anthelmintics. In the survey, the most available drugs in the study area used by the owners were fenbendazole and ivermectin. Most respondents have no knowledge about drug management techniques. Hence, animal health extension services to create awareness regarding anthelmintic management that plays a key role in reducing the anthelmintic resistance parasites.

  20. The Role of Cytokinin During Infection of Arabidopsis thaliana by the Cyst Nematode Heterodera schachtii.

    Science.gov (United States)

    Shanks, Carly M; Rice, J Hollis; Zubo, Yan; Schaller, G Eric; Hewezi, Tarek; Kieber, Joseph J

    2016-01-01

    Plant-parasitic cyst nematodes induce the formation of hypermetabolic feeding sites, termed syncytia, as their sole source of nutrients. The formation of the syncytium is orchestrated by the nematode, in part, by modulation of phytohormone responses, including cytokinin. In response to infection by the nematode Heterodera schachtii, cytokinin signaling is transiently induced at the site of infection and in the developing syncytium. Arabidopsis lines with reduced cytokinin sensitivity show reduced susceptibility to nematode infection, indicating that cytokinin signaling is required for optimal nematode development. Furthermore, lines with increased cytokinin sensitivity also exhibit reduced nematode susceptibility. To ascertain why cytokinin hypersensitivity reduces nematode parasitism, we examined the transcriptomes in wild type and a cytokinin-hypersensitive type-A arr Arabidopsis mutant in response to H. schachtii infection. Genes involved in the response to biotic stress and defense response were elevated in the type-A arr mutant in the absence of nematodes and were hyperinduced following H. schachtii infection, which suggests that the Arabidopsis type-A arr mutants impede nematode development because they are primed to respond to pathogen infection. These results suggest that cytokinin signaling is required for optimal H. schachtii parasitism of Arabidopsis but that elevated cytokinin signaling triggers a heightened immune response to nematode infection.

  1. evaluation of tomato genotypes for resistance to root-knot

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Tomato production in Ghana is threatened by plant parasitic nematodes, especially the root knot ... to be highly resistant to Meloidogyne spp. and also recorded the lowest reproductive factors of 0.71 and 0.53, respectively. ..... VII International.

  2. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Directory of Open Access Journals (Sweden)

    Elise Courtot

    2015-12-01

    Full Text Available Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  3. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    Science.gov (United States)

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  4. Nematodes parasites de quatre especes de Carangoides (Osteichthyes: Carangidae) des eaux de Nouvelle-Caledonie, avec description de Philometra dispar n. sp. (Philometridae)

    Czech Academy of Sciences Publication Activity Database

    Moravec, František; Gey, D.; Justine, J.-L.

    2016-01-01

    Roč. 23, Sep 12 (2016), č. článku 40. ISSN 1252-607X R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:60077344 Keywords : parasitic nematode * new species * marine fish * New Caledonia * South Pacific Subject RIV: EG - Zoology Impact factor: 2.545, year: 2016

  5. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-06-01

    Full Text Available Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  6. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    Science.gov (United States)

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  7. Parasitic nematodes of amphibians from Lombok Island, Indonesia with description of Camallanus senaruensis sp. nov. and Meteterakis lombokensis sp. nov.

    Directory of Open Access Journals (Sweden)

    Endang Purwaningsih

    2016-09-01

    Full Text Available Objective: To determine and describe the nematode species of amphibians collected from Lombok Island, West Nusa Tenggara, Indonesia. Methods: The materials examined were found in the intestines of twenty-four Fejervarya cancrivora (F. cancrivora, sixteen Fejervarya verruculosa, six Duttaphyrnus melanostictus (D. melanostictus from Senaru and Gangga District, Lombok Island on April 2015. The amphibian hosts were collected by hand. Before observing the nematodes, the hosts were anesthesized to death with chloroform. The ventral of the host was opened by longitudinal incision and the internal organs were removed, placed separately in the Petri-dish and then examined under a dissecting microscope. The nematodes found were fixed with warm 70% alcohol.The specimens for light microscope observation were cleared in glycerol and mounted in the same solution, and for the SEM (JSM 5310 LV were re-fixed in caccodylate buffer and glutaraldehyde, dehydrated through a graded series of alcohol and vacuum-dried using TAITEC VC-96N, prior to attaching to stubs with double sided cello-tape, coated with gold 400 Å thickness in an Eico I-B2 ion coater. Drawings were made with the aid of a drawing tube attached to a Nikon compound microscope. Measurements were given in micrometers (µm as the average, followed by the range in parentheses, unless otherwise stated. Results: Two new species of nematodes were found and described herein: Camallanus senaruensis sp. nov., and Meteterakis lombokensis sp. nov., parasitic in the intestine of F. cancrivora and D. melanostictus, respectively. C. senaruensis differs from other congeners in having a bluntly rounded tip of tail in the male and female, the structure of trident and having teeth in the buccal capsule. Meteterakis lombokensis differs from other previously described species in having no vulval flap, has a strongly widened proximal end of spicules, forming a cup shaped, and the number of caudal papillae. Others species

  8. Medicinal Plants: A Source of Anti-Parasitic Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Michael Wink

    2012-10-01

    Full Text Available This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation, membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials.

  9. Parasitic resistive switching uncovered from complementary resistive switching in single active-layer oxide memory device

    Science.gov (United States)

    Zhu, Lisha; Hu, Wei; Gao, Chao; Guo, Yongcai

    2017-12-01

    This paper reports the reversible transition processes between the bipolar and complementary resistive switching (CRS) characteristics on the binary metal-oxide resistive memory devices of Pt/HfO x /TiN and Pt/TaO x /TiN by applying the appropriate bias voltages. More interestingly, by controlling the amplitude of the negative bias, the parasitic resistive switching effect exhibiting repeatable switching behavior is uncovered from the CRS behavior. The electrical observation of the parasitic resistive switching effect can be explained by the controlled size of the conductive filament. This work confirms the transformation and interrelationship among the bipolar, parasitic, and CRS effects, and thus provides new insight into the understanding of the physical mechanism of the binary metal-oxide resistive switching memory devices.

  10. Expression of Arabidopsis genes AtNPR1 and AtTGA2 in transgenic soybean roots of composite plants confers resistance to root-knot nematode (Meloidogyne incognita)

    Science.gov (United States)

    Root-knot nematodes (RKN; Meloidogyne spp.) are among the most destructive of the plant parasitic nematodes, infecting almost all cultivated plants and resulting in yield losses of billions of dollars annually. NPR1 (nonexpresser of pathogenesis related genes 1, AtNPR1) plays a positive role in the ...

  11. Assessment of weeds as alternative hosts of plant-parasitic nematodes in coffee plantations in Costa Rica

    Directory of Open Access Journals (Sweden)

    Walter Peraza-Padilla

    2018-01-01

    Full Text Available There is potential for weeds to be alternative hosts of plant-parasitic nematodes (PPN, but a methodology that assesses the phytosanitary risk derived from the presence of weeds in plantations is not available. This research was conducted in order to determine if the presence of weeds in coffee plantations (organic and conventional represented a phytosanitary risk due to their role as alternative hosts of PPN. The research was developed into two plantation located in Aserrí, San José, Costa Rica during August, 2010. The most important weeds were identified in the plantations, also nematodes of the genera Meloidogyne, Pratylenchus and Helicotylenchus were quantified in soil and roots from selected weeds and coffee plants. A permutational analysis of variance was executed in order to determine the genera of PPN that significantly differed from the ones found in weeds to the ones found in coffee plants. Based on these results, the weeds were classified as: reservoir, trap crop, or weak host of PPN. This classification criterion, in addition to life cycle and type of parasitism of the PPN were used to assign numerical values to the weeds. The values were used to calculate the Phytosanitary Risk Index (PRI that acquired a maximum value of 10 for the weed Piper umbellatum in the organic plantation, and a maximum value of 24 for Commelina diffusa, Emilia fosbergii, Spananthe paniculata, Delilia biflora, and Spermacoce hirta in the conventional plantation. The results indicated that from a nematological perspective the presence of these weeds in coffee plantation could be a potential risk for coffee plants

  12. RNA interference in plant parasitic nematodes

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... grower preference or by government restrictions to limit the environmental ... risks associated with chemical control and (c) the pro- vision of ... certain model organisms. The first ... reproductive system (Lilley et al., 2005b), sperm (Urwin .... interference of dual oxidase in the plant nematode Meloidogyne.

  13. Parasites of mammals species abundance near zone Chernobyl

    International Nuclear Information System (INIS)

    Pen'kevich, V.A.

    2014-01-01

    In wildlife reserve parasitize various types of parasites: arachnids (mites) parasitic insects (horseflies, keds, mosquitoes, gnats, midges), helminths (trematodes, cestodes, nematodes and acanthocephalans) and parasitic protozoa. In quantity: 3 (beaver) to 25 species (wolf). (authors)

  14. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria

    OpenAIRE

    Bell, Andrew S.; Huijben, Silvie; Paaijmans, Krijn P.; Sim, Derek G.; Chan, Brian H. K.; Nelson, William A.; Read, Andrew F.

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasm...

  15. Genome-wide scan of gastrointestinal nematode resistance in closed Angus population selected for minimized influence of MHC.

    Directory of Open Access Journals (Sweden)

    Eui-Soo Kim

    Full Text Available Genetic markers associated with parasite indicator traits are ideal targets for study of marker assisted selection aimed at controlling infections that reduce herd use of anthelminthics. For this study, we collected gastrointestinal (GI nematode fecal egg count (FEC data from post-weaning animals of an Angus resource population challenged to a 26 week natural exposure on pasture. In all, data from 487 animals was collected over a 16 year period between 1992 and 2007, most of which were selected for a specific DRB1 allele to reduce the influence of potential allelic variant effects of the MHC locus. A genome-wide association study (GWAS based on BovineSNP50 genotypes revealed six genomic regions located on bovine Chromosomes 3, 5, 8, 15 and 27; which were significantly associated (-log10 p=4.3 with Box-Cox transformed mean FEC (BC-MFEC. DAVID analysis of the genes within the significant genomic regions suggested a correlation between our results and annotation for genes involved in inflammatory response to infection. Furthermore, ROH and selection signature analyses provided strong evidence that the genomic regions associated BC-MFEC have not been affected by local autozygosity or recent experimental selection. These findings provide useful information for parasite resistance prediction for young grazing cattle and suggest new candidate gene targets for development of disease-modifying therapies or future studies of host response to GI parasite infection.

  16. Determination of anthelmintic resistance in goats and sheep using ...

    African Journals Online (AJOL)

    Nematode parasites are known to pose a challenge to small ruminant production in Tanzania due to their fast development of resistance to the commonly used anthelmintics. The objective of this study was to determine the resistance of anthelmintics in small ruminants. A total of 30 sheep and 30 goats aged between 6 and ...

  17. Endogenous cellulases in animals: Isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes

    Science.gov (United States)

    Smant, Geert; Stokkermans, Jack P. W. G.; Yan, Yitang; de Boer, Jan M.; Baum, Thomas J.; Wang, Xiaohong; Hussey, Richard S.; Gommers, Fred J.; Henrissat, Bernard; Davis, Eric L.; Helder, Johannes; Schots, Arjen; Bakker, Jaap

    1998-01-01

    β-1,4-Endoglucanases (EGases, EC 3.2.1.4) degrade polysaccharides possessing β-1,4-glucan backbones such as cellulose and xyloglucan and have been found among extremely variegated taxonomic groups. Although many animal species depend on cellulose as their main energy source, most omnivores and herbivores are unable to produce EGases endogenously. So far, all previously identified EGase genes involved in the digestive system of animals originate from symbiotic microorganisms. Here we report on the synthesis of EGases in the esophageal glands of the cyst nematodes Globodera rostochiensis and Heterodera glycines. From each of the nematode species, two cDNAs were characterized and hydrophobic cluster analysis revealed that the four catalytic domains belong to family 5 of the glycosyl hydrolases (EC 3.2.1, 3.2.2, and 3.2.3). These domains show 37–44% overall amino acid identity with EGases from the bacteria Erwinia chrysanthemi, Clostridium acetobutylicum, and Bacillus subtilis. One EGase with a bacterial type of cellulose-binding domain was identified for each nematode species. The leucine-rich hydrophobic core of the signal peptide and the presence of a polyadenylated 3′ end precluded the EGases from being of bacterial origin. Cyst nematodes are obligatory plant parasites and the identified EGases presumably facilitate the intracellular migration through plant roots by partial cell wall degradation. PMID:9560201

  18. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Science.gov (United States)

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  19. Evaluation of the Tolerance of Some Citrus Rootstocks to Citrus Nematode in Greenhouse (Tylenchulus semipenetrans

    Directory of Open Access Journals (Sweden)

    Y. Mohammad Alian

    2018-02-01

    rootstocks including Citromelo, Poncirus, Sour Orange, Bakraee, Rough lemon and Off-type some of these rootstocks are common citrus rootstocks in the North and south citrus regions of the present time, therefore it is necessary to choose appropriate rootstock. In addition to it, another purpose (aim of this research is to assess tolerance of new off-type biotype, produced from citrus breeding programs, to citrus nematode under greenhouse conditions in comparison with Citromelo, Poncirus, Sour Orange, Bakraee and Rough lemon which are common citrus rootstock in the North and South provinces of the country. Bakraee is one of the natural types of citrus used in citrus regions of Fars, Hormozgan and Kerman as rootstock of mandarin and orange cultivars for many years. Introductory surveys concerning Bakraee tolerance to coldness, the rot of crown and root, and diseases such as Tristeza, Exocortis and Cachexia were carried out but its tolerance to citrus nematode has not surveyed yet. Recent molecular surveys showed Bakraee relationship with Rough lemon beside, because of appearing unknown disease of citrus trees decline on Bakraee rootstock from the beginning of 1389 in Jiroft mountainous regions, doing etiology studies and investigating its tolerance to disease factors such as citrus nematode is of great importance. Since this nematode is soil parasite and can live in the depth of soil, its chemical control is very difficult. Despite the fact that one of the control methods of it is soil sterilization before citrus planting, but because of increasing environmental risks and bad effects on human health, it is recommended that resistant rootstocks such as Poncirus should be planted in the nematode soil. Also, it is necessary to control plants in selling time from the aspect of infection and, if necessary, to sterilize infected plants in order to prevent infection spread and build healthy orchards. Therefore regarding the fact that rootstocks of Poncirus and Citromelo are resistant

  20. Development of a sweet cherry pepper line with resistance to the southern root-knot nematode Meloidogyne incognita

    Science.gov (United States)

    The southern root-knot nematode (Meloidogyne incognita) is a major pathogen of pepper (Capsicum spp.), causing significant yield losses in heavily infected plants. The N-gene confers resistance to M. incognita, and has been successfully used to mitigate nematode damage in specific pepper varieties f...

  1. Prevalence and anthelmintic resistance of strongyle parasites in ...

    African Journals Online (AJOL)

    Prevalence of infection and level of anthelmintic resistance (AR) of strongyle nematodes to ivermectin (IV), albendazole (AB) and levamisole (LV) in Dorper lambs were determined. The overall prevalence was 67.0% and mean eggs per gram (EPG) of faeces was 357. Infection was light in 92.5%, moderate in 4.5% and high ...

  2. Prevalence of Pasteuria SP. on Renfirom Nematode in a Georgia Cotton Field

    Science.gov (United States)

    Pasteuria species are bacterial parasites of nematodes and have been associated with suppression of root-knot, sting, and cyst nematode populations. Little is known about the Pasteuria sp. infecting the reniform nematode. While sampling a cotton field study near Cochran, GA, we found Pasteuria spo...

  3. Evaluation of edible ginger and turmeric cultivars for root-knot nematode resistance

    Science.gov (United States)

    Edible ginger and turmeric roots are important agricultural commodities for the State of Hawaii. Bacterial wilt, Ralstonia solanacearum, and root-knot nematodes, Meloidogyne spp. are major factors hindering optimum production. An evaluation of tolerance and resistance to M. incognita was undertake...

  4. Anthelmintic resistance and associated management practices in local horses in Sokoto metropolis, Nigeria

    Directory of Open Access Journals (Sweden)

    Abubakar Musa Mayaki

    2018-03-01

    Full Text Available This study was carried out to assess the management practices used in the control of gastrointestinal (GI nematodes of horses and to determine the efficacy of three anthelmintics commonly used in Sokoto metropolis. A questionnaire was administered on management practices, while an anthelmintic efficacy test was carried out using 15 horses. The 15 horses were divided into three groups (A, B and C comprising of 5 each and treated with albendazole, ivermectin and fenbendazole, respectively. The faecal egg count reduction test (FECRT was used to determine the efficacy and faecal culture was used to determine the parasite species. Majority of the respondents (80% claimed to have worm control strategies, but only 32.5% used anthelmintics for the control of GI parasites. 62.5% of respondents designed their deworming plan, while only 25% relied on veterinarians. Most of the treatments were done by the horse owners and/or handlers and they largely depended on visual judgement in dosage determination. Their selection of anthelmintics was based on familiarity and 52.5% of the respondents dewormed their horses six times a year using a particular class of anthelmintic or herbal remedies. Resistance against albendazole as well as suspected resistance against fenbendazole by the GI nematodes identified was observed, while ivermectin demonstrated high efficacy against all nematodes isolated. In conclusion, a single dose of subcutaneous injection of ivermectin was highly effective against gastrointestinal parasites in horses, while the worm control strategies employed by respondents enhanced the selection of nematode resistance to albendazole and fenbendazole.

  5. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii.

    Directory of Open Access Journals (Sweden)

    John Fosu-Nyarko

    Full Text Available The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668 with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.. Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.

  6. Unexpected variation in neuroanatomy among diverse nematode species

    Directory of Open Access Journals (Sweden)

    Ziduan eHan

    2016-01-01

    Full Text Available Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and Ascaris suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research, had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapse, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent

  7. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis

    NARCIS (Netherlands)

    Jones, J.T.; Reavy, B.; Smant, G.; Prior, A.E.

    2004-01-01

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for

  8. Helminth parasite communities in anuran amphibians of Kalesar Wildlife Sanctuary (Haryana), India.

    Science.gov (United States)

    Rizvi, Anjum N; Bhutia, Pasang T

    2010-10-01

    Helminth parasite fauna in anuran amphibia were investigated during the general faunistic surveys of Kalesar Wildlife Sanctuary, situated in Haryana state. Three species of amphibian hosts were found to harbour 12 genera of helminth parasites. The prevalence, intensity and abundance were studied. Euphlyctis cyanophlyctis harboured maximum parasite species followed by Fejervarya limnocharis and Duttaphrynus melanostictus. In E. cyanophlyctis, among nematode parasites, the genus Camallanus was most prevalent followed by Cosmocerca and Cosmocercoides, whereas, Rhabdias and Aplectana were the least prevalent genera. Among trematode parasites, Ganeo was the most prevalent genus and least was Diplodiscus. Acanthocephalus was recovered only once and no cestode infection was found. In F. limnocharis, the most prevalent nematode genus was Oxysomatium, followed by Cosmocerca and the only trematode recorded was Ganeo, whereas, cestode Proteocephalus was also recovered once. In D. melanostictus, only two nematode genera were recovered of which Oxysomatium was dominant followed by Cosmocerca. The helminth parasite community in anuran amphibia of Kalesar WLS comprised 52.9% of nematodes, 46.2% of trematodes, 0.58% cestodes and 0.29% acanthocephala.

  9. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus.

    Directory of Open Access Journals (Sweden)

    Taisei Kikuchi

    2011-09-01

    Full Text Available Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in

  10. Sewage sludge amendment and inoculation with plant-parasitic nematodes do not facilitate the internalization of Salmonella Typhimurium LT2 in lettuce plants.

    Science.gov (United States)

    Fornefeld, Eva; Baklawa, Mohamed; Hallmann, Johannes; Schikora, Adam; Smalla, Kornelia

    2018-05-01

    Contamination of fruits and vegetables with Salmonella is a serious threat to human health. In order to prevent possible contaminations of fresh produce it is necessary to identify the contributing ecological factors. In this study we investigated whether the addition of sewage sludge or the presence of plant-parasitic nematodes foster the internalization of Salmonella enterica serovar Typhimurium LT2 into lettuce plants, posing a potential threat for human health. Greenhouse experiments were conducted to investigate whether the amendment of sewage sludge to soil or the presence of plant-parasitic nematodes Meloidogyne hapla or Pratylenchus crenatus promote the internalization of S. Typhimurium LT2 from soil into the edible part of lettuce plants. Unexpectedly, numbers of cultivable S. Typhimurium LT2 decreased faster in soil with sewage sludge than in control soil but not in root samples. Denaturing gradient gel electrophoresis analysis revealed shifts of the soil bacterial communities in response to sewage sludge amendment and time. Infection and proliferation of nematodes inside plant roots were observed but did not influence the number of cultivable S. Typhimurium LT2 in the root samples or in soil. S. Typhimurium LT2 was not detected in the leaf samples 21 and 49 days after inoculation. The results indicate that addition of sewage sludge, M. hapla or P. crenatus to soil inoculated with S. Typhimurium LT2 did not result in an improved survival in soil or internalization of lettuce plants. Copyright © 2017. Published by Elsevier Ltd.

  11. The Romanomermis iyengari parasite for Anopheles pseudopunctipennis suppression in natural habitats in Oaxaca State, Mexico

    Directory of Open Access Journals (Sweden)

    Santamarina Mijares Alberto

    1999-01-01

    Full Text Available In September and November 1996 Romanomermis iyengari Welch, a parasite of larval mosquitoes, was released in 44 natural larval habitat sites of Anopheles pseudopunctipennis Theobald in an attempt to reduce the larval populations of this important malaria vector. The selected treatment sites ranged in size from 5 to 500 m². The study was carried out in Pochutla District of Oaxaca State, on the Pacific coast of Mexico. Chemical pesticides to reduce vector populations have been the principal tool in malaria suppression campaigns. However, the excessive use of these chemicals has created pesticide resistance and other serious collateral problems. Therefore, a biological control project using agents that are pathogens of Anopheles larvae was initiated in 1996. The principal objective was to establish mass rearing capacities for R. iyengari. Detailed methodology for rearing and introducing these nematodes into mosquito larval habitats was established at the National Polytechnic Institute of Oaxaca State. Before application of the parasites to larval habitats, site characteristics were determined, including size, depth, aquatic vegetation, salinity, pH, conductivity, temperature, and pretreatment larval density. With a compressed air sprayer, infective mermithid parasites were released at rates of either 2000 or 3000/m², and the parasites produced high levels of infection. Anopheles populations were sampled 72 h posttreatment, and the larvae obtained were taken to the laboratory and examined through microscopic dissection to determine infection levels and mean parasitism. Nematode parasitism ranged from 85 to 100% at all the treatment sites, even though no previous information concerning field parasitism of An. pseudopunctipennis by R. iyengari has been reported. In addition, a significant reduction of mosquito larval density at the treatment sites was found five days after the nematode application. Levels of parasitism were indicative of the number

  12. Cloning and structural analysis of partial acetylcholine receptor subunit genes from the parasitic nematode Teladorsagia circumcincta

    NARCIS (Netherlands)

    Walker, J.; Hoekstra, R.; Roos, M. H.; Wiley, L. J.; Weiss, A. S.; Sangster, N. C.; Tait, A.

    2001-01-01

    Nematode nicotinic acetylcholine receptors (nAChRs) are the sites of action for the anthelmintic drug levamisole. Recent findings indicate that the molecular mechanism of levamisole resistance may involve changes in the number and/or functions of target nAChRs. Accordingly, we have used an RT-PCR

  13. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes.

    Directory of Open Access Journals (Sweden)

    Romain Blanc-Mathieu

    2017-06-01

    Full Text Available Root-knot nematodes (genus Meloidogyne exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by

  14. A nematode that can manipulate the behaviour of slugs.

    Science.gov (United States)

    Morris, Alex; Green, Michael; Martin, Hayley; Crossland, Katie; Swaney, William T; Williamson, Sally M; Rae, Robbie

    2018-06-01

    The ability of parasites to manipulate the behaviour of their hosts has evolved multiple times, and has a clear fitness benefit to the parasite in terms of facilitating growth, reproduction and transfer to suitable hosts. The mechanisms by which these behavioural changes are induced are poorly understood, but in many cases parasite manipulation of serotonergic signalling in the host brain is implicated. Here we report that Phasmarhabditis hermaphrodita, a parasite of terrestrial gastropod molluscs, can alter the behaviour of slugs. Uninfected slugs (Deroceras panormitanum, Arion subfuscus and Arion hortensis) avoid areas where P. hermaphrodita is present, but slugs infected with P. hermaphrodita are more likely to be found where the nematodes are present. This ability is specific to P. hermaphrodita and other nematodes (Steinernema carpocapsae and Heterorhabditis bacteriophora) do not induce this behavioural change. To investigate how P. hermaphrodita changes slug behaviour we exposed slugs to fluoxetine (a selective serotonin reuptake inhibitor) and cyproheptadine (a serotonin receptor antagonist). Uninfected slugs fed fluoxetine no longer avoided areas where P. hermaphrodita was present; and conversely, infected slugs fed cyproheptadine showed no increased attraction to areas with nematodes. These findings suggest that a possible mechanism by which P. hermaphrodita is able to manipulate parasite avoidance behaviour in host slugs is by manipulating serotonergic signalling in the brain, and that increased serotonin levels are potentially associated with a reduction in parasite avoidance. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Nematóides do Brasil. Parte V: nematóides de mamíferos Brazillan nematodes. Part V: nematodes of mammals

    Directory of Open Access Journals (Sweden)

    Joaquim Júlio Vicente

    1997-01-01

    Full Text Available A survey of nematode species parasitizing Brazilian mammals is presented, with enough data to provide their specific identification. The tirst section refers to the survey ofthe species, related to 21 superfamilies, 45 families, 160 genera and 495 species that are illustrated and measurement tables are given. The second section is concerned to the catalogue ofhost mammals which includes 34 families, 176 species and their respective parasite nematodes. The identification of these helminths is achieved by means of keys to the superfamilies, families and genera. Specific determination is induced through the figures and tables as above mentioned.

  16. Natural selection on individual variation in tolerance of gastrointestinal nematode infection.

    Directory of Open Access Journals (Sweden)

    Adam D Hayward

    2014-07-01

    Full Text Available Hosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host-parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites. On average, individuals lost weight as parasite burden increased, but whereas some lost weight slowly as burden increased (exhibiting high tolerance, other individuals lost weight significantly more rapidly (exhibiting low tolerance. We then investigated associations between tolerance and fitness using selection gradients that accounted for selection on correlated traits, including body weight. We found evidence for positive phenotypic selection on tolerance: on average, individuals who lost weight more slowly with increasing parasite burden had higher lifetime breeding success. This variation did not have an additive genetic basis. These results reveal that selection on tolerance operates under natural conditions. They also support theoretical predictions for the erosion of additive genetic variance of traits under strong directional selection and fixation of genes conferring tolerance. Our findings provide the first evidence of selection on individual tolerance of infection in animals and suggest practical applications in animal and human disease management in the face of highly prevalent parasites.

  17. Cross-Resistance: A Consequence of Bi-partite Host-Parasite Coevolution

    Science.gov (United States)

    Joop, Gerrit

    2018-01-01

    Host-parasite coevolution can influence interactions of the host and parasite with the wider ecological community. One way that this may manifest is in cross-resistance towards other parasites, which has been observed to occur in some host-parasite evolution experiments. In this paper, we test for cross-resistance towards Bacillus thuringiensis and Pseudomonas entomophila in the red flour beetle Tribolium castaneum, which was previously allowed to coevolve with the generalist entomopathogenic fungus Beauveria bassiana. We combine survival and gene expression assays upon infection to test for cross-resistance and underlying mechanisms. We show that larvae of T. castaneum that evolved with B. bassiana under coevolutionary conditions were positively cross-resistant to the bacterium B. thuringiensis, but not P. entomophila. Positive cross-resistance was mirrored at the gene expression level with markers that were representative of the oral route of infection being upregulated upon B. bassiana exposure. We find that positive cross-resistance towards B. thuringiensis evolved in T. castaneum as a consequence of its coevolutionary interactions with B. bassiana. This cross-resistance appears to be a consequence of resistance to oral toxicity. The fact that coevolution with B. bassiana results in resistance to B. thuringiensis, but not P. entomophila implies that B. thuringiensis and B. bassiana may share mechanisms of infection or toxicity not shared by P. entomophila. This supports previous suggestions that B. bassiana may possess Cry-like toxins, similar to those found in B. thuringiensis, which allow it to infect orally. PMID:29495405

  18. Cross-Resistance: A Consequence of Bi-partite Host-Parasite Coevolution

    Directory of Open Access Journals (Sweden)

    Tilottama Biswas

    2018-02-01

    Full Text Available Host-parasite coevolution can influence interactions of the host and parasite with the wider ecological community. One way that this may manifest is in cross-resistance towards other parasites, which has been observed to occur in some host-parasite evolution experiments. In this paper, we test for cross-resistance towards Bacillus thuringiensis and Pseudomonas entomophila in the red flour beetle Tribolium castaneum, which was previously allowed to coevolve with the generalist entomopathogenic fungus Beauveria bassiana. We combine survival and gene expression assays upon infection to test for cross-resistance and underlying mechanisms. We show that larvae of T. castaneum that evolved with B. bassiana under coevolutionary conditions were positively cross-resistant to the bacterium B. thuringiensis, but not P. entomophila. Positive cross-resistance was mirrored at the gene expression level with markers that were representative of the oral route of infection being upregulated upon B. bassiana exposure. We find that positive cross-resistance towards B. thuringiensis evolved in T. castaneum as a consequence of its coevolutionary interactions with B. bassiana. This cross-resistance appears to be a consequence of resistance to oral toxicity. The fact that coevolution with B. bassiana results in resistance to B. thuringiensis, but not P. entomophila implies that B. thuringiensis and B. bassiana may share mechanisms of infection or toxicity not shared by P. entomophila. This supports previous suggestions that B. bassiana may possess Cry-like toxins, similar to those found in B. thuringiensis, which allow it to infect orally.

  19. Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa.

    Science.gov (United States)

    Slootweg, Erik; Koropacka, Kamila; Roosien, Jan; Dees, Robert; Overmars, Hein; Lankhorst, Rene Klein; van Schaik, Casper; Pomp, Rikus; Bouwman, Liesbeth; Helder, Johannes; Schots, Arjen; Bakker, Jaap; Smant, Geert; Goverse, Aska

    2017-09-01

    Plants have evolved a limited repertoire of NB-LRR disease resistance ( R ) genes to protect themselves against myriad pathogens. This limitation is thought to be counterbalanced by the rapid evolution of NB-LRR proteins, as only a few sequence changes have been shown to be sufficient to alter resistance specificities toward novel strains of a pathogen. However, little is known about the flexibility of NB-LRR R genes to switch resistance specificities between phylogenetically unrelated pathogens. To investigate this, we created domain swaps between the close homologs Gpa2 and Rx1 , which confer resistance in potato ( Solanum tuberosum ) to the cyst nematode Globodera pallida and Potato virus X , respectively. The genetic fusion of the CC-NB-ARC of Gpa2 with the LRR of Rx1 (Gpa2 CN /Rx1 L ) results in autoactivity, but lowering the protein levels restored its specific activation response, including extreme resistance to Potato virus X in potato shoots. The reciprocal chimera (Rx1 CN /Gpa2 L ) shows a loss-of-function phenotype, but exchange of the first three LRRs of Gpa2 by the corresponding region of Rx1 was sufficient to regain a wild-type resistance response to G. pallida in the roots. These data demonstrate that exchanging the recognition moiety in the LRR is sufficient to convert extreme virus resistance in the leaves into mild nematode resistance in the roots, and vice versa. In addition, we show that the CC-NB-ARC can operate independently of the recognition specificities defined by the LRR domain, either aboveground or belowground. These data show the versatility of NB-LRR genes to generate resistance to unrelated pathogens with completely different lifestyles and routes of invasion. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Multifaceted effects of host plants on entomopathogenic nematodes.

    Science.gov (United States)

    Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn

    2016-03-01

    The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs. Copyright © 2016

  1. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis.

    Science.gov (United States)

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Yan-Tao; Wang, Dong-Wei; Xu, Chun-Lin; Huang, Xin; Wang, De-Sen

    2015-01-01

    Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis.

  2. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis.

    Directory of Open Access Journals (Sweden)

    Yu Li

    Full Text Available Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt, which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis.

  3. Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi.

    Science.gov (United States)

    Chen, Qing; Rehman, S; Smant, G; Jones, John T

    2005-07-01

    RNA interference (RNAi) has been used widely as a tool for examining gene function and a method that allows its use with plant-parasitic nematodes recently has been described. Here, we use a modified method to analyze the function of secreted beta-1,4, endoglucanases of the potato cyst nematode Globodera rostochiensis, the first in vivo functional analysis of a pathogenicity protein of a plant-parasitic nematode. Knockout of the beta-1,4, endoglucanases reduced the ability of the nematodes to invade roots. We also use RNAi to show that gr-ams-1, a secreted protein of the main sense organs (the amphids), is essential for host location.

  4. Dissecting host plant manipulation by cyst and root-knot nematodes

    NARCIS (Netherlands)

    Karczmarek, A.

    2006-01-01

    Cyst ( Globodera spp. and Heterodera spp.) and root-knot nematodes ( Meloidogyne spp.), one of the most damaging crop pests, are a perfect example of highly adapted, sophisticated root parasites. These nematodes induces specialized feeding structures (cyst

  5. Stomach nematodes (Mastophorus muris) in rats (Rattus rattus) are associated with coconut (Cocos nucifera) habitat at Palmyra Atoll.

    Science.gov (United States)

    Lafferty, Kevin D; Hathaway, Stacie A; Wegmann, Alex S; Shipley, Frank S; Backlin, Adam R; Helm, Joel; Fisher, Robert N

    2010-02-01

    Black rats ( Rattus rattus ) and their stomach nematodes (Mastophorus muris) were historically introduced to islets at Palmyra Atoll in the central Pacific Line Islands. To investigate patterns of parasitism, we trapped rats and quantified nematodes on 13 islets of various sizes and habitat types. Most rats were parasitized (59%) with an average of 12 worms per infected rat. Islet size did not greatly influence parasite population biology. Nematodes also did not appear to affect rat condition (weight to skull length). The only strong and consistent factor associated with the mean abundance of nematodes in rats was habitat (dominant cover and locally dominant plant species). Thus, nematodes were much more abundant in rats from sites dominated by coconut trees (Cocos nucifera). Coconut trees may also be an introduced species at Palmyra Atoll.

  6. Regulation of Population Densities of Heterodera cajani and Other Plant-Parasitic Nematodes by Crop Rotations on Vertisols, in Semi-Arid Tropical Production Systems in India

    Science.gov (United States)

    Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.

    1996-01-01

    The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141

  7. [Biomorphology of gastrointestinal nematodes of small ruminants].

    Science.gov (United States)

    Giannetto, S

    2006-09-01

    Under the term gastrointestinal nematodes are included numerous parasites species of livestock belonging to the families Strongyloididae (Strongyloides), Strongylidae (Chabertia, Oesophagostomum) Trichostrongylidae (Trichostrongylus, Ostertagia, Teladorsagia, Cooperia, Marshallagia), Molineidae (Nematodirus), Ancylostomatidae (Bunostomum) and Trichuridae (Trichuris). This paper reviews the biomorphology aspects of these parasites as well as the controversy by the taxonomists in the classifications.

  8. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes.

    Science.gov (United States)

    Tytgat, Tom; Vanholme, Bartel; De Meutter, Jan; Claeys, Myriam; Couvreur, Marjolein; Vanhoutte, Isabelle; Gheysen, Greetje; Van Criekinge, Wim; Borgonie, Gaetan; Coomans, August; Gheysen, Godelieve

    2004-08-01

    By performing cDNA AFLP on pre- and early parasitic juveniles, we identified genes encoding a novel type of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in the cyst nematode Heterodera schachtii. The proteins consist of three domains, a signal peptide for secretion, a mono-ubiquitin domain, and a short C-terminal positively charged domain. A gfp-fusion of this protein is targeted to the nucleolus in tobacco BY-2 cells. We hypothesize that the C-terminal peptide might have a regulatory function during syncytium formation in plant roots.

  9. IMMUNE REGULATING ES-PRODUCTS IN PARASITIC NEMATODES

    DEFF Research Database (Denmark)

    Bahlool, Qusay Zuhair Mohammad; Buchmann, Kurt; Kania, Per Walter

    work elucidates the effect of ES substances on the fish immune system by measuring immune gene expression in spleen and liver of rainbow trout (Oncorhynchus mykiss) injected intraperitoneally with ES products isolated from A. simplex third stage larvae. The overall gene expression profile of exposed...... fish showed a generalized down-regulation of the immune genes tested, suggesting a role of ES proteins in minimizing the immune reaction of rainbow trout against invading nematodes. We also tested the enzymatic activity of the ES proteins and found that lipase, esterase lipase, valine and cysteine...... arylamidases, naphthol-AS-BI-phosphohydrolase and a-galactosidase activities were present in the ES solution. This type of hydrolytic enzyme activity may play a role in nematode penetration of host tissue. Based on the notion that A. simplex ES-proteins may have an immune-depressive effect, it could also...

  10. Microarray analysis of gender- and parasite-specific gene transcription in Strongyloides ratti

    NARCIS (Netherlands)

    Evans, Helen; Mello, Luciane V.; Fang, Yongxiang; Wit, Ernst; Thompson, Fiona J.; Viney, Mark E.; Paterson, Steve

    2008-01-01

    The molecular mechanisms by which parasitic nematodes reproduce and have adapted to life within a host are unclear. In the present study, microarray analysis was used to explore differential transcription among the different stages and sexes of Strongyloides ratti, a parasitic nematode of brown

  11. Comparison of three methods for gastrointestinal nematode diagnosis determination in grazing dairy cattle in relation to milk production.

    Science.gov (United States)

    Mejía, M E; Perri, A F; Licoff, N; Miglierina, M M; Cseh, S; Ornstein, A M; Becu-Villalobos, D; Lacau-Mengido, I M

    2011-12-29

    Development of resistance to anthelmintic drugs has motivated the search for diagnostic methods to identify animals for targeted selective treatments. We compared three methods for the diagnosis of nematode infection in relation to milk production in a fully grazing dairy herd of 150 cows in the humid Pampa (Argentina). Animals had feces, blood and milk sampled during the first postpartum month for EPG, pepsinogen and anti-Ostertagia antibody determination, respectively. With the results obtained two groups of cows, divided in high and low parasite burden, were conformed for each method, and milk production was then compared between groups. When cows were separated by the EPG method (EPG=0 (N=106) vs. EPG>0 (N=44)) a difference of nearly 800 l of milk per cow per lactation was found (P 1000) or by anti-Ostertagia (ODR ≤ 0.5 vs. ODR > 0.5) results did not differ. Interestingly, proportion of cows in each group differed between methods (P<0.0001), and the anti-Ostertagia method yielded significantly more cows in the high index group compared to results using the EPG or Pepsinogen method. No correlations were found between parasite indexes determined by the different methods. High parasite burden estimation found may be ascribed to the production system, fully grazing all year round, and to the sampling time, at the beginning of lactation with cows in negative energy balance and depressed immunity. The fact that the cows were born and reared outside, on pasture with continuous nematode larvae exposure, may also account for the results obtained. In conclusion, EPG counting during the first postpartum month may be a useful tool for the diagnosis of production impairment induced by high nematode burden in adult grazing dairy cows. The anthelmintic treatment of only the EPG-positive recently calved cows would improve milk production, while reducing selective pressure on nematode population for the development of resistance. Copyright © 2011 Elsevier B.V. All rights

  12. Efficacy of an energy block containing Duddingtonia flagrans in the control of gastrointestinal nematodes of sheep.

    Science.gov (United States)

    Sagüés, María F; Fusé, Luis A; Fernández, Alicia S; Iglesias, Lucía E; Moreno, Fabiana C; Saumell, Carlos A

    2011-09-01

    The efficacy of the nematode-trapping fungus Duddingtonia flagrans incorporated into an energy block was evaluated for the control of gastrointestinal nematodes in sheep. Four naturally parasitised sheep with average nematode egg counts of 2,470 eggs per gram grazed by pairs on two similar parasite-free paddocks for 30 days. During that period, one pair of sheep (treated animals, T1) received an energy block containing chlamydospores of D. flagrans at a dose of 200,000 chlamydopores/kg bw/day, while the second pair (control animals, C1) received a fungus-free energy block. The animals in both groups were taken off the paddocks after contaminating the pastures for a month with either nematode eggs plus fungal chlamydospores (T1) or nematode eggs alone (C1). Twelve parasite-free sheep were divided into two groups of six animals each, the treated group (T2) was placed on the paddock previously contaminated with parasites and fungus, while the control group (C2) was placed on the parasite-only paddock. These two groups grazed on their respective paddocks during 30 days and were then housed for 15 days, after which period they were slaughtered in order to determine the parasite burden present in each animal. Results showed that animals in group T2 harboured significantly less nematodes than their counterpart in group C2. The efficacy of D. flagrans was 92% against the total parasite burden, 100% against Haemonchus contortus and Teladorsagia circumcincta, 89.9% against Trichostrongylus colubriformis, 87.5% against Cooperia onchopora, and 90% against Trichostrongylus axei. No efficacy was detected against Nematodirus spathiger, Trichuris ovis and T. skrjabini.

  13. Stomach nematodes (Mastophorus Muris) in rats (Rattus rattus) are associated with coconut (Cocos nucifera) Habitat at palmyra atoll

    Science.gov (United States)

    Lafferty, K.D.; Hathaway, S.A.; Wegmann, A.S.; Shipley, F.S.; Backlin, A.R.; Helm, J.; Fisher, R.N.

    2010-01-01

    Black rats (Rattus rattus) and their stomach nematodes (Mastophorus muris) were historically introduced to islets at Palmyra Atoll in the central Pacific Line Islands. To investigate patterns of parasitism, we trapped rats and quantified nematodes on 13 islets of various sizes and habitat types. Most rats were parasitized (59) with an average of 12 worms per infected rat. Islet size did not greatly influence parasite population biology. Nematodes also did not appear to affect rat condition (weight to skull length). The only strong and consistent factor associated with the mean abundance of nematodes in rats was habitat (dominant cover and locally dominant plant species). Thus, nematodes were much more abundant in rats from sites dominated by coconut trees (Cocos nucifera). Coconut trees may also be an introduced species at Palmyra Atoll. ?? American Society of Parasitologists 2010.

  14. Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; MacDonald, Margaret H; Kabir, Sara; Youssef, Reham M; Hosseini, Parsa; Brewer, Eric

    2013-05-01

    During pathogen attack, the host plant induces genes to ward off the pathogen while the pathogen often produces effector proteins to increase susceptibility of the host. Gene expression studies of syncytia formed in soybean root by soybean cyst nematode (Heterodera glycines) identified many genes altered in expression in resistant and susceptible roots. However, it is difficult to assess the role and impact of these genes on resistance using gene expression patterns alone. We selected 100 soybean genes from published microarray studies and individually overexpressed them in soybean roots to determine their impact on cyst nematode development. Nine genes reduced the number of mature females by more than 50 % when overexpressed, including genes encoding ascorbate peroxidase, β-1,4-endoglucanase, short chain dehydrogenase, lipase, DREPP membrane protein, calmodulin, and three proteins of unknown function. One gene encoding a serine hydroxymethyltransferase decreased the number of mature cyst nematode females by 45 % and is located at the Rhg4 locus. Four genes increased the number of mature cyst nematode females by more than 200 %, while thirteen others increased the number of mature cyst nematode females by more than 150 %. Our data support a role for auxin and ethylene in susceptibility of soybean to cyst nematodes. These studies highlight the contrasting gene sets induced by host and nematode during infection and provide new insights into the interactions between host and pathogen at the molecular level. Overexpression of some of these genes result in a greater decrease in the number of cysts formed than recognized soybean cyst nematode resistance loci.

  15. Quantitative characterization of texture used for identification of eggs of bovine parasitic nematodes

    DEFF Research Database (Denmark)

    Sommer, C.

    1998-01-01

    This study investigates the use of texture, i.e. the grey level variation in digital images, as a basis for identification of strongylid eggs. Texture features were defined by algorithms applied to digital images of eggs from the bovine parasitic nematodes, Ostertagia ostertagi, Cooperia oncophora...... criterion based on these ten texture features, an average of 91.2% of eggs from the three species were correctly classified. All O. radiatum eggs were correctly classified, 11.8% of O. ostertagi and C. oncophora were reciprocally misclassified, and 2.9% of O. ostertagi were identified as O. radiatum. When...... the ten texture features were used singly an average of 51.2 to 37.9% of the species could be classified correctly. When texture was used together with the shape and size features, a higher percentage of eggs were correctly classified compared with the classification based on either texture, or shape...

  16. Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode.

    Directory of Open Access Journals (Sweden)

    Georgios Koutsovoulos

    2014-06-01

    Full Text Available Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm. In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host-promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts may have been the source of filarial Wolbachia infections.

  17. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved.

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.

  18. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved

    Directory of Open Access Journals (Sweden)

    Nele eSchouteden

    2015-11-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF are obligate root symbionts that can protect their host plant against biotic stress factors such as plant parasitic nematode (PPN infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead towards future field applications of AMF against PPN. The scientific community has entered an exciting era that provide the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.

  19. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M.

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead. PMID:26635750

  20. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants.

    Science.gov (United States)

    Ajjappala, Hemavathi; Chung, Ha Young; Sim, Joon-Soo; Choi, Inchan; Hahn, Bum-Soo

    2015-03-01

    The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.

  1. Gastrointestinal nematodes and anthelmintic resistance in Danish goat herds

    DEFF Research Database (Denmark)

    Holm, Signe A.; Sørensen, Camilla; Thamsborg, Stig M.

    2014-01-01

    The prevalence of gastrointestinal parasites in Danish goats and the presence of anthelmintic resistance (AR) in 10 selected herds were investigated during April-September 2012. All Danish herds (n = 137) with 10 or more adult goats were invited to participate, and of these 27 herds met......, resistance to the most commonly used anthelmintics is widespread in larger goat herds throughout Denmark....

  2. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Natalia Soto-Barrientos

    2011-03-01

    Full Text Available In tropical and subtropical regions of the world, parasitic diseases are a main cause of losses in livestock productivity. The increased acquired resistence to anthelmintics by gastrointestinal nematodes, requires biological control be considered as a potential feasible and effective alternative. The most effective natural soil enemies of nematodes are nematophagous fungi. In order to collect and identify predator nematophagous fungi (PNF, samples were obtained from 51 farms distributed throughout the seven provinces of Costa Rica. The origin samples included: soil from different crops (potatoes, tomatoes, bananas, ornamental plants, squash and coffee; animal feces (cattle, sheep, goat and horse; soil and fallen leaves from forest; and plants with signs of nematode infection. Each sample was processed using three techniques for the extraction of fungi from soil: sprinkling technique, soil dilution and humidity chamber. Twenty four strains of nematophagous fungi were found in 19 farms; 83.3% of the fungi were isolated by sprinkling technique. The following fungi were idenified: Arthrobotrys oligospora (n=13; Candelabrella musiformis (n=9; and for the first time there was isolation of A. conoides (n=1 and A. dactyloides (n=1 in the country. Moreover, 16 strains from Trichoderma (n=13, Beauveria (n=1, Clonostachys (n=1 and Lecanicillium (n=1 were obtained. In addition, pH of each possible fungal isolation source was measured, and it varied from 5.2 to 9.9, however PNF isolates fell within the range of 5.6 to 7.5. The PNF strains were cultivated in four different media for the production of chhlamydospores: potato dextrose agar (PDA; corn meal agar (CMA; malt extract agar (MEA and potato carrot agar (PCA. Out of these cultures, 95.8% of the strains formed chlamydospores primarily in the PCA. Of these strains, the profilic spore producers were subjected to ruminant artificial gastrointestinal conditions. A total of 14 fungi were tested, out of which

  3. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes.

    Science.gov (United States)

    Soto-Barrientos, Natalia; de Oliveira, Jaqueline; Vega-Obando, Rommel; Montero-Caballero, Danilo; Vargas, Bernardo; Hernández-Gamboa, Jorge; Orozco-Solano, Claudio

    2011-03-01

    In tropical and subtropical regions of the world, parasitic diseases are a main cause of losses in livestock productivity. The increased acquired resistence to anthelmintics by gastrointestinal nematodes, requires biological control be considered as a potential feasible and effective alternative. The most effective natural soil enemies of nematodes are nematophagous fungi. In order to collect and identify predator nematophagous fungi (PNF), samples were obtained from 51 farms distributed throughout the seven provinces of Costa Rica. The origin samples included: soil from different crops (potatoes, tomatoes, bananas, ornamental plants, squash and coffee); animal feces (cattle, sheep, goat and horse); soil and fallen leaves from forest; and plants with signs of nematode infection. Each sample was processed using three techniques for the extraction of fungi from soil: sprinkling technique, soil dilution and humidity chamber. Twenty four strains of nematophagous fungi were found in 19 farms; 83.3% of the fungi were isolated by sprinkling technique. The following fungi were identified: Arthrobotrys oligospora (n = 13); Candelabrella musiformis (n = 9); and for the first time there was isolation of A. conoides (n = 1) and A. dactyloides (n = 1) in the country. Moreover, 16 strains from Trichoderma (n=13), Beauveria (n = 1), Clonostachys (n = 1) and Lecanicillium (n = 1) were obtained. In addition, pH of each possible fungal isolation source was measured, and it varied from 5.2 to 9.9, however PNF isolates fell within the range of 5.6 to 7.5. The PNF strains were cultivated in four different media for the production of chhlamydospores: potato dextrose agar (PDA); corn meal agar (CMA); malt extract agar (MEA) and potato carrot agar (PCA). Out of these cultures, 95.8% of the strains formed chlamydospores primarily in the PCA. Of these strains, the profilic spore producers were subjected to ruminant artificial gastrointestinal conditions. A total of 14 fungi were tested, out

  4. Prevalence of Strongylida nematodes associated with African Snail, Achatina fulica, in Valle del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Diego Córdoba-R

    2017-09-01

    Full Text Available Objectives. To establish the presence and prevalence of Strongylida nematode parasites in Achatina fulica in the Valle del Cauca, especially of nematodes that are potentially pathogenic for humans. Materials and methods. A. fulica individuals were collected in nine cities of the Valle del Cauca, Colombia. Direct visual examination was used to identify A. fulica parasites. Nematodes were separated from tissue or collected from mucus, washed in saline solution, and fixed in a hot AFA solution. Samples were mounted in glycerine and observed under the microscope. Results. The general nematode parasite prevalence was 35% in 2013. The city with highest prevalence during 2013 was Cartago (60%, following by Buenaventura (42.9% and Cali (33%, while during 2014 were Cali (30% and Buenaventura (30%. The Strongylida nematodes registered were classified in three genera: Angiostrongylus (14.7% prevalence, Aelurostrongylus (2.6%,and Strongyluris (2.6%. The city with highest positive records of Angiostrongylus was Cali during 2014 and Aelurostrongylus was Buenaventura during 2013. Strongyluris genus was recorded only in Cali during 2013, with a prevalence of 11%. Of the nine evaluated cities, five has presence of Angiostrongylus. Conclusions. Three genera of Strongylida nematode were recorded associated with A. fulicas specimens in the Valle del Cauca during 2013 and 2014. Therefore, the role that A. fulica and native mollusk species could be playing in the life cycle of these parasites at the local level should not underestimated.

  5. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    Science.gov (United States)

    Lozano-Torres, Jose L.; Wilbers, Ruud H. P.; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C.; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  6. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    Science.gov (United States)

    Lozano-Torres, Jose L; Wilbers, Ruud H P; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-12-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize

  7. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    Directory of Open Access Journals (Sweden)

    Jose L Lozano-Torres

    2014-12-01

    Full Text Available Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes

  8. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Jones, John T; Urwin, Peter E

    2014-09-01

    Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  9. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Directory of Open Access Journals (Sweden)

    Jansen Rodrigo Pereira Santos

    Full Text Available Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN. Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  10. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining.

    Directory of Open Access Journals (Sweden)

    Etienne G J Danchin

    2013-10-01

    Full Text Available Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when

  11. Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness.

    Science.gov (United States)

    Muregi, Francis W; Ohta, Isao; Masato, Uchijima; Kino, Hideto; Ishih, Akira

    2011-01-01

    The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan

  12. Nematóides que parasitam a soja na região de Bauru Nematode parasites of soybean in the Bauru region

    Directory of Open Access Journals (Sweden)

    Luiz Gonzaga E. Lordello

    1956-01-01

    Full Text Available Entre os sérios fatôres que atuam contra a expansão da cultura da soja no Estado de São Paulo, acha-se o representado por nematóides parasitos. Dêstes, os que mais têm atraído a atenção dos cultivadores e fitopatologistas são as espécies formadoras de galhas no sistema radicular (Meloidogyne spp.. O estudo do material atacado coligido em Bauru revelou que, naquela região, três formas se acham envolvidas, a saber : Pratylenchus sp., Meloidogyne incognita (Kofoid & White, 1919 Chitwood, 1949 e M. javanica bauruensis n. subsp. Neste trabalho é estudada a nova subespécie, sendo também apresentadas algumas observações sobre a população de M. incognita.One of the serious detriments to soybean (Glycine max (L. Merr. cultivation in the State of S. Paulo, Brazil, are root-parasitic nematodes. A study of infected material collected at Bauru, where at least two distinct soybean varieties were cultivated, disclosed that three forms were involved: a meadow nematode (Pralylenchus sp. and two root-knot nematodes (Meloidogyne incognita (Kofoid & White, 1919 Chitwood, 1949, and M. javanica bauruensis n. subsp.. Silva, Lordello & Miyasaka (3 published some observations about the resistance of several soybean varieties to the attacks by root-knot nematodes in Campinas. A detailed study of the nematodes involved in those experiments, which were considered as related do M. incognita, has not yet been made. One of the varieties tested, La 41-1219, proved to be resistant, thereby providing promising material for further studies and breeding. Unfortunately, such a variety when planted in Bauru, was severely attacked by a root-knot species, which is identified as M. incognita. Attacks by M. javanica bauruensis was not noted in that variety but was noted in another variety (Abura growing adjacent in the same field. The host preference of those two nematodes was specific and very marked. M. incognita attacked only var. La 41-1219 and M. javanica

  13. Salicylic acid-induced glutathione status in tomato crop and resistance to root-knot nematode, Meloidogyne incognita (Kofoid & White Chitwood

    Directory of Open Access Journals (Sweden)

    Hari C. Meher

    2011-10-01

    Full Text Available Salicylic acid-(SA is a plant defense stimulator. Exogenous application of SA might influence the status of glutathione-(GSH. GSH activates and SA alters the expression of defense genes to modulate plant resistance against pathogens. The fate of GSH in a crop following SA treatment is largely unknown. The SA-induced profiles of free reduced-, free oxidized-(GSSG and protein bound-(PSSG glutathione in tomato crop following foliar treatment of transplant at 5.0-10.0 μg mL–1 were measured by liquid chromatography. Resistance to root-knot nematode, Meloidogyne incognita damaging tomato and crop performance were also evaluated. SA treatment at 5.0-10.0 μg mL–1 to tomato transplants increased GSH, GSSG and PSSG in plant leaf and root, more so in leaf, during crop growth and development. As the fruits ripened, GSH and PSSG increased and GSSG declined. SA reduced the root infection by M. incognita, nematode reproduction and thus, improved the resistance of tomato var. Pusa Ruby, but reduced crop growth and redox status. SA at 5.0 μg mL–1 improved yield and fruit quality. The study firstly linked SA with activation of glutathione metabolism and provided an additional dimension to the mechanism of induced resistance against obligate nematode pathogen. SA increased glutathione status in tomato crop, imparted resistance against M. incognita, augmented crop yield and functional food quality. SA can be applied at 5.0 μg mL–1 for metabolic engineering of tomato at transplanting to combine host-plant resistance and health benefits in formulating a strategic nematode management decision.

  14. Soil nematode community under the non-native trees in the Botanic Garden of Petrozavodsk State University

    Directory of Open Access Journals (Sweden)

    Sushchuk Anna

    2016-12-01

    Full Text Available The particularities of soil nematode communities of the rhizosphere of non-native trees were studied in the Botanic Garden of Petrozavodsk State University (Republic of Karelia. Taxonomic diversity, abundance, community structure and ecological indices derived from nematode fauna analysis were used as the evaluation parameters. Nematode fauna included 51 genera, 6 of them were plant parasitic. The dominant eco-trophic group in the nematode community structure of coniferous trees was bacterial feeders; fungal feeders in most cases were observed in the second numbers. The contribution of bacterial feeders was decreased and plant parasites were increased in eco-trophic structure of nematode communities of deciduous trees in compared with coniferous trees. Analysis of ecological indices showed that the state of soil nematode communities reflects complex, structured (stable soil food web in the biocenoses with deciduous trees, and degraded (basal food web – under coniferous trees.

  15. Unraveling flp-11/flp-32 dichotomy in nematodes.

    Science.gov (United States)

    Atkinson, Louise E; Miskelly, Iain R; Moffett, Christy L; McCoy, Ciaran J; Maule, Aaron G; Marks, Nikki J; Mousley, Angela

    2016-10-01

    FMRFamide-like peptide (FLP) signalling systems are core to nematode neuromuscular function. Novel drug discovery efforts associated with nematode FLP/FLP receptor biology are advanced through the accumulation of basic biological data that can reveal subtle complexities within the neuropeptidergic system. This study reports the characterisation of FMRFamide-like peptide encoding gene-11 (flp-11) and FMRFamide-like peptide encoding gene-32 (flp-32), two distinct flp genes which encode the analogous peptide, AMRN(A/S)LVRFamide, in multiple nematode species - the only known example of this phenomenon within the FLPergic system of nematodes. Using bioinformatics, in situ hybridisation, immunocytochemistry and behavioural assays we show that: (i) flp-11 and -32 are distinct flp genes expressed individually or in tandem across multiple nematode species, where they encode a highly similar peptide; (ii) flp-11 does not appear to be the most widely expressed flp in Caenorhabditis elegans; (iii) in species expressing both flp-11 and flp-32, flp-11 displays a conserved, restricted expression pattern across nematode clades and lifestyles; (iv) in species expressing both flp-11 and flp-32, flp-32 expression is more widespread and less conserved than flp-11; (v) in species expressing only flp-11, the flp-11 expression profile is more similar to the flp-32 profile observed in species expressing both; and (vi) FLP-11 peptides inhibit motor function in multiple nematode species. The biological significance and evolutionary origin of flp-11 and -32 peptide duplication remains unclear despite attempts to identify a common ancestor; this may become clearer as the availability of genomic data improves. This work provides insight into the complexity of the neuropeptidergic system in nematodes, and begins to examine how nematodes may compensate for structural neuronal simplicity. From a parasite control standpoint, this work underscores the importance of basic biological data, and has

  16. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Directory of Open Access Journals (Sweden)

    Sebastian Eves-van den Akker

    2014-09-01

    Full Text Available Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  17. Prevalence and burden of gastrointestinal parasites of Djallonke sheep in Ayeduase, Kumasi, Ghana

    Directory of Open Access Journals (Sweden)

    Moses Owusu

    2016-04-01

    Full Text Available Aim: This study was conducted to determine the prevalence and burden of gastrointestinal (GIT parasites of Djallonke sheep in Ayeduase, Kumasi from January 2015 to July 2015. Materials and Methods: The presence of nematodal eggs and coccidial oocysts in fecal samples were analyzed using the saturated sodium chloride floatation technique. Identification of eggs or oocysts was done on the basis of morphology and size of the eggs or oocysts. Results: Out of 110 fecal samples of sheep examined, 108 were infected with GIT parasites, representing a prevalence rate of 98.2%. The total infection rate of GIT nematodes and coccidia oocysts were 94.5% and 51.8%, respectively. Strongyle nematode (94.5% was the most prevalent GIT nematode detected, followed by strongyloides (27.3%. The average nematodal burden in g/feces was significantly higher (p0.05 from each other. The average coccidia oocysts count in g/feces was significantly higher (p0.05 in the coccidia oocysts count of rams under 1 year, gimmers, ewes, and rams over 1 year. From the studied animals, 40%, 6.36%, 48.18%, and 5.45% had heavy, moderate, light, and no infestation, respectively, with GIT nematodes. Conclusion: Djallonke sheep in Ayeduase, Kumasi, were infested with varying amounts of GIT parasites. The infestation of Djallonke sheep by GIT parasites also varies among different age groups and sexes.

  18. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.

    Science.gov (United States)

    Sternberg, Eleanore D; Lefèvre, Thierry; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D; de Roode, Jacobus C

    2012-11-01

    Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  19. Helminths parasitizing larval fish from Pantanal, Brazil.

    Science.gov (United States)

    Lacerda, A C F; Santin, M; Takemoto, R M; Pavanelli, G C; Bialetzki, A; Tavernari, F C

    2009-03-01

    Fish larvae of 'corvinas' (Pachyurus bonariensis and Plagioscion ternetzi) from Sinhá Mariana Lagoon, Mato Grosso State, were collected from March 2000 to March 2004, in order to determine the parasitic fauna of fishes. Larvae from the two species were parasitized by the same endoparasites: Contracaecum sp. Type 2 (larvae) (Nematoda: Anisakidae) in the mesentery and Neoechinorhynchus (Neoechinorhynchus) paraguayensis (Acanthocephala: Neoechinorhynchidae) in the stomach and the terminal portion of the intestine. Statistical analysis showed that there was a significant positive correlation between the standard length of hosts and the abundance of acanthocephalans and nematodes, and that the prevalence of nematodes presented a significant positive correlation with the standard length of the two species of hosts, indicating the presence of a cumulative process of infection. The present study constitutes the first record of nematodes and acanthocephalans parasitizing larval fish, as well as the first record of endoparasites in fish larvae in Brazil. In addition, it lists a new locality and two species of hosts for Contracaecum sp. Type 2 (larva) and N. (N.) paraguayensis.

  20. Infection by anisakid nematodes contracaecum spp. in the Mayan cichlid fish 'Cichlasoma (Nandopsis)' urophthalmus (Gunther 1862).

    Science.gov (United States)

    Bergmann, Gaddy T; Motta, Philip J

    2004-04-01

    Larval nematodes that parasitize the Mayan cichlid fish 'Cichlasoma (Nandopsis)' urophthalmus (Günther 1862) in southern Florida were identified as Contracaecum spp. (Nematoda: Anisakidae, Anisakinae). The objective of this study was to determine whether infection intensity and prevalence of these parasites differ between a brackish water and freshwater habitat or through ontogeny in the freshwater habitat only. The nematodes were removed from the abdominal cavity of the fishes and counted. Infection intensity was compared between habitats using analysis of covariance and evaluated through ontogeny using Spearman rank order correlation. Prevalence was compared between habitats and between adults and juveniles from the freshwater habitat using a z-test. Although infection intensity did not differ between habitats, infection prevalence was greater at the freshwater site (FWS). Both the prevalence and intensity of nematode infection increased through ontogeny at the FWS, and no nematode was found in fishes that were smaller than 93 mm standard length. Thus, the parasites appear to accumulate during the lifetime of the fishes.

  1. Host pharmacokinetics and drug accumulation of anthelmintics within target helminth parasites of ruminants.

    Science.gov (United States)

    Lifschitz, A; Lanusse, C; Alvarez, L

    2017-07-01

    Anthelmintic drugs require effective concentrations to be attained at the site of parasite location for a certain period to assure their efficacy. The processes of absorption, distribution, metabolism and excretion (pharmacokinetic phase) directly influence drug concentrations attained at the site of action and the resultant pharmacological effect. The aim of the current review article was to provide an overview of the relationship between the pharmacokinetic features of different anthelmintic drugs, their availability in host tissues, accumulation within target helminths and resulting therapeutic efficacy. It focuses on the anthelmintics used in cattle and sheep for which published information on the overall topic is available; benzimidazoles, macrocyclic lactones and monepantel. Physicochemical properties, such as water solubility and dissolution rate, determine the ability of anthelmintic compounds to accumulate in the target parasites and consequently final clinical efficacy. The transcuticular absorption process is the main route of penetration for different drugs in nematodes and cestodes. However, oral ingestion is a main route of drug entry into adult liver flukes. Among other factors, the route of administration may substantially affect the pharmacokinetic behaviour of anthelmintic molecules and modify their efficacy. Oral administration improves drug efficacy against nematodes located in the gastroinestinal tract especially if parasites have a reduced susceptibility. Partitioning of the drug between gastrointestinal contents, mucosal tissue and the target parasite is important to enhance the drug exposure of the nematodes located in the lumen of the abomasum and/or small intestine. On the other hand, large inter-animal variability in drug exposure and subsequent high variability in efficacy is observed after topical administration of anthelmintic compounds. As it has been extensively demonstrated under experimental and field conditions, understanding

  2. Excretory/secretory products of anisakid nematodes

    DEFF Research Database (Denmark)

    Mehrdana, Foojan; Buchmann, Kurt

    2017-01-01

    Parasites from the family Anisakidae are widely distributed in marine fish populations worldwide and mainly nematodes of the three genera Anisakis, Pseudoterranova and Contracaecum have attracted attention due to their pathogenicity in humans. Their life cycles include invertebrates and fish as i...

  3. First report of the root-knot nematode Meloidogyne ethiopica on tomato in Slovenia

    NARCIS (Netherlands)

    Sirca, S.; Urek, G.; Karssen, G.

    2004-01-01

    The root-knot nematode Meloidogyne ethiopica Whitehead originally described from Tanzania is also distributed in South Africa, Zimbabwe, and Ethiopia (3). Although this species is a relatively unknown root-knot nematode, M. ethiopica parasitizes several economical important crops, such as tomato,

  4. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes.

    Science.gov (United States)

    Dimkpa, Stanley O N; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H

    2016-02-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and 100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Parasitic infections of the external eye.

    Science.gov (United States)

    Pahuja, Shivani; Puranik, Charuta; Jelliti, Bechir; Khairallah, Moncef; Sangwan, Virender S

    2013-08-01

    To review the published literature on parasitic infections of external eye. Published articles and case reports on parasitic infections of external eye were reviewed and relevant information was collected. Parasitic infections of the eye are rare. However, being more commonly seen in developing nations, they require active measures for screening, diagnosis, and therapy. Parasites of importance causing external ocular disease are protozoan parasites, such as Leishmania; metazoans, such as nematodes (roundworms), cestodes (tapeworms), and trematodes (flatworms); or ectoparasites, such as Phthirus pubis and Demodex.

  6. Comparison of transcript profiles in different life stages of the nematode Globodera pallida under different host potato genotypes.

    Science.gov (United States)

    Palomares-Rius, Juan E; Hedley, Pete E; Cock, Peter J A; Morris, Jenny A; Jones, John T; Vovlas, Nikos; Blok, Vivian

    2012-12-01

    The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second-stage juveniles (J2s) and sedentary parasitic-stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  7. Prevalence and seasonal incidence of nematode parasites and fluke infections of sheep and goats in eastern Ethiopia.

    Science.gov (United States)

    Sissay, Menkir M; Uggla, Arvid; Waller, Peter J

    2007-10-01

    A 2-year abattoir survey was carried out to determine the prevalence, abundance and seasonal incidence of gastro-intestinal (GI) nematodes and trematodes (flukes) of sheep and goats in the semi-arid zone of eastern Ethiopia. During May 2003 to April 2005, viscera including liver, lungs and GI tracts were collected from 655 sheep and 632 goats slaughtered at 4 abattoirs located in the towns of Haramaya, Harar, Dire Dawa and Jijiga in eastern Ethiopia. All animals were raised in the farming areas located within the community boundaries for each town. Collected materials were transported within 24 h to the parasitology laboratory of Haramaya University for immediate processing. Thirteen species belonging to 9 genera of GI nematodes (Haemonchus contortus, Trichostrongylus axei, T. colubriformis, T. vitrinus, Nematodirus filicollis, N. spathiger Oesopha-gostomum columbianum, O. venulosum, Strongyloides papillosus, Bunostomum trigonocephalum, Trichuris ovis, Cooperia curticei and Chabertia ovina), and 4 species belonging to 3 genera of trematodes (Fasciola hepatica, F. gigantica, Paramphistomum {Calicohoron} microbothrium and Dicrocoelium dendriticum) were recorded in both sheep and goats. All animals in this investigation were infected with multiple species to varying degrees. The mean burdens of adult nematodes were generally moderate in both sheep and goats and showed patterns of seasonal abundance that corresponded with the bi-modal annual rainfall pattern, with highest burdens around the middle of the rainy season. In both sheep and goats there were significant differences in the mean worm burdens and abundance of the different nematode species between the four geographic locations, with worm burdens in the Haramaya and Harar areas greater than those observed in the Dire Dawa and Jijiga locations. Similar seasonal variations were also observed in the prevalence of flukes. But there were no significant differences in the prevalence of each fluke species between the

  8. Mercury in parasitic nematodes and trematodes and their double-crested cormorant hosts: Bioaccumulation in the face of sequestration by nematodes

    International Nuclear Information System (INIS)

    Robinson, Stacey A.; Forbes, Mark R.; Hebert, Craig E.

    2010-01-01

    Endoparasites can alter their host's heavy metal concentrations by sequestering metals in their own tissues. Contracaecum spp. (a nematode), but not Drepanocephalus spathans (a trematode), were bioaccumulating mercury to concentrations 1.5 times above cormorant hosts. Nematodes did not have significantly greater stable nitrogen isotope values (δ 15 N) than their hosts, which is contradictory to prey-predator trophic enrichment studies, but is in agreement with other endoparasite-host relationships. However, Contracaecum spp. δ 13 C values were significantly greater than their hosts, which suggest that nematodes were consuming host tissues. Nematodes were accumulating and thus sequestering some of their cormorant hosts' body burden of methyl mercury; however, they were not dramatically reducing their hosts' accumulation of methyl mercury.

  9. Infective Juveniles of the Entomopathogenic Nematode Steinernema scapterisci Are Preferentially Activated by Cricket Tissue.

    Directory of Open Access Journals (Sweden)

    Dihong Lu

    Full Text Available Entomopathogenic nematodes are a subgroup of insect-parasitic nematodes that are used in biological control as alternatives or supplements to chemical pesticides. Steinernema scapterisci is an unusual member of the entomopathogenic nematode guild for many reasons including that it is promiscuous in its association with bacteria, it can reproduce in the absence of its described bacterial symbiont, and it is known to have a narrow host range. It is a powerful comparative model within the species and could be used to elucidate parasite specialization. Here we describe a new method of efficiently producing large numbers of S. scapterisci infective juveniles (IJs in house crickets and for quantifying parasitic activation of the IJs upon exposure to host tissue using morphological features. We found that parasite activation is a temporal process with more IJs activating over time. Furthermore, we found that activated IJs secrete a complex mixture of proteins and that S. scapterisci IJs preferentially activate upon exposure to cricket tissue, reaffirming the description of S. scapterisci as a cricket specialist.

  10. Potensi Jamur Parasit Telur Sebagai Agens Hayati Pengendali Nematoda Puru Akar Meloidogyne incognita pada Tanaman Tomat

    Directory of Open Access Journals (Sweden)

    Siwi Indarti

    2014-12-01

    Full Text Available Root-knot nematodes Meloidogyne spp. are sedentary endoparasitic that attacks various economically important plants. Utilization of nematode’s fungal egg parasite as biocontrol agents of sedentary endoparasitic nematodes have a good possibility of potential success to be applied in the field level, because this fungi is able to colonize in and causes damage to eggs as well as female nematodes inside the root. The purpose of this research are to know the parasitism ability of this parasitic fungi to Meloidogyne incognita eggs, and its effects on second stage larvae hatching rate and the development of galls number in the host. The result shows that the parasitic fungi, those of Trichoderma, Penicillium, Talaromyces, Fusarium genera were able to parasitize root-knot nematode eggs (25.09 to 89.79%, caused root-knot nematode egg hatching to decrease, suppressed the formation of galls, and reduced the population of second stage nematode larvae in the greenhouse. Nematoda puru-akar Meloidogyne spp. adalah nematoda endoparasitik sedentari, bersifat polifag, dan mempunyai nilai ekonomi tinggi. Pemanfaatan jamur parasit telur sebagai agens hayati pengendali nematoda endoparasitik sedentari mempunyai potensi tingkat keberhasilan tinggi untuk diterapkan pada aras lapangan karena mampu mengoloni dan merusak telur maupun stadium nematoda betina yang terlindungi jaringan tanaman. Tujuan penelitian adalah untuk mengetahui kemampuan parasitasi isolat-isolat jamur parasit telur terhadap telur nematoda Meloidogyne incognita, dan pengaruhnya terhadap tingkat penetasan telur menjadi L-2, serta pembentukan jumlah puru pada tanaman terserang. Hasil penelitian didapatkan bahwa jamur parasit telur yang termasuk genera Tricoderma, Penicillium, Talaromyces, dan Fusarium mampu memarasit telur M. incognita berkisar antara 25,09–89,79%, mengakibatkan penurunan persentase jumlah L-2 nematoda yang bersangkutan, serta menekan pembentukan puru akar pada aplikasi aras

  11. Natural product synthesis: Making nematodes nervous

    Science.gov (United States)

    Snyder, Scott A.

    2011-06-01

    A highly inventive route for the synthesis of a key substance that stimulates potato cyst nematodes to hatch has been developed. This discovery has potential to impact food supplies, as treatment of crops with this compound could alleviate the devastating effect of these parasites.

  12. Observações sôbre a resistência de algumas variedades de soja ao nematóide das galhas

    Directory of Open Access Journals (Sweden)

    J. Gomes da Silva

    1952-03-01

    Full Text Available Soybean varieties cultivated at present in Brazil (Abura and Rio Grande, as well as some other promissing strains (455, Chosen, Georgian, Pereira Barreto, Arksoy, Acadian, etc. have shown severe attacks by the rootknot nematodes. The study of the parasite showed that two forms are present, attacking the soybean roots, both being closely related to Meloidogyne incognita (Kofoid & White, 1919 Chitwood, 1949. Variety N 46-2652, considered to be resistent in the Southern part of the United States, proved to be susceptible to the mentioned nematodes, according to results of two pot test, discussed in this paper. Palmeto, La 41-1219, N 45-3799 and Otootan varieties were considered resistent to these nematodes, judged by the results of one field trial here reported. The resistence of varieties Palmeto and La 41-1219 was also confirmed by two pot experiments in which artificial infestation by nematodes was produced.

  13. Efficacy of the nematode-trapping fungus Duddingtonia flagrans against three species of gastro-intestinal nematodes in laboratory faecal cultures from sheep and goats.

    Science.gov (United States)

    Waghorn, T S; Leathwick, D M; Chen, L-Y; Skipp, R A

    2003-12-30

    The ability of the nematode-killing fungus Duddingtonia flagrans to reduce number of infective larvae of three species of gastro-intestinal parasitic nematodes developing in dung was investigated in both goats and sheep. Groups of lambs and kids (12-20 weeks old) were given mono-specific infections of Haemonchus contortus, Ostertagia (Teladorsagia) circumcincta or Trichostrongylus colubriformis. Following patency of the infections (t1) faecal samples were collected for determination of faecal nematode egg count (FEC) and culture of parasite larvae. Groups of animals were then dosed on 2 consecutive days with one of the two dose rates of the fungus (250,000 or 500,000 spores/kg liveweight). One (t2) and 5 (t3) days after the second dose of fungus samples were again collected for FEC and culture. The number of larvae recovered from the faecal cultures at t1 and t3 were used as controls to assess the efficacy of the experimental treatment at t2. Average efficacy was 78% with group means ranging from 40 to 93%. Dose rate of fungus appeared to influence efficacy against O. circumcincta but not against H. contortus or T. colubriformis. Overall, there were no differences in the efficacy of the fungus against any of the parasite species or in either host animal. The results of this trial indicate the potential use of this fungus as a broad spectrum anti-parasite agent for use in both goats and sheep.

  14. Investigation of gastrointestinal parasites of dairy cattle around Taiwan.

    Science.gov (United States)

    Huang, Chiu-Chen; Wang, Lian-Chen; Pan, Chien-Hung; Yang, Cheng-Hsiung; Lai, Cheng-Hung

    2014-02-01

    Parasitic nematodes are one of the most important causes of production losses in most cattle-producing countries of the world. The aim of the present study is to make a through estimate of helminth and protozoan infection prevalence in dairy cattle around Taiwan. Coprological techniques, including direct fecal smear, simple flotation, and simple sedimentation, were used to detect gastrointestinal helminths and protozoan in dairy cattle. A total of 1259 rectal fecal samples were collected from Holstein dairy cattle at 94 farms in 13 counties in Taiwan. The overall prevalence of gastrointestinal parasitic infection was 86.9%. The infection rates of protozoa, nematodes, trematodes, and cestodes were 81.3%, 7.9%, 1.6%, and 0.6%, respectively. Among all parasites, Buxtonella sulcata (61.7%) was the most predominant one, followed with Cryptosporidium spp. (32.6%) and Eimeria spp. (11.8%). There were significant differences in the prevalence of protozoa and nematodes between different age groups and distributional area groups. The present study demonstrated that gastrointestinal parasitic infections occur frequently in dairy cattle around Taiwan, especially protozoan infections. The results indicated that a superior management system and regular anthelmintic treatment should be used for the control of parasitic infections in dairy cattle farms. Copyright © 2012. Published by Elsevier B.V.

  15. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  16. The importance, biology and management of cereal cyst nematodes (Heterodera spp.

    Directory of Open Access Journals (Sweden)

    F. Mokrini

    2018-01-01

    Full Text Available Cereals are exposed to biotic and abiotic stresses. Among the biotic stresses, plant-parasitic nematodes play an important role in decreasing crop yield. Cereal cyst nematodes (CCNs are known to be a major constraint to wheat production in several parts of the world. Significant economic losses due to CCNs have been reported. Recognition and identification of CCNs are the first steps in nematode management. This paper reviews the current distribution of CCNs in different parts of the world and the recent advances in nematode identification. The different approaches for managing CCNs are also discussed.

  17. Mercury in parasitic nematodes and trematodes and their double-crested cormorant hosts: Bioaccumulation in the face of sequestration by nematodes

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Stacey A., E-mail: srobinsc@connect.carleton.ca [Department of Biology, Carleton University, 209 Nesbitt Bldg, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada); Forbes, Mark R., E-mail: mforbes6@gmail.com [Department of Biology, Carleton University, 209 Nesbitt Bldg, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada); Hebert, Craig E., E-mail: Craig.Hebert@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1A 0H3 (Canada)

    2010-10-15

    Endoparasites can alter their host's heavy metal concentrations by sequestering metals in their own tissues. Contracaecum spp. (a nematode), but not Drepanocephalus spathans (a trematode), were bioaccumulating mercury to concentrations 1.5 times above cormorant hosts. Nematodes did not have significantly greater stable nitrogen isotope values ({delta}{sup 15}N) than their hosts, which is contradictory to prey-predator trophic enrichment studies, but is in agreement with other endoparasite-host relationships. However, Contracaecum spp. {delta}{sup 13}C values were significantly greater than their hosts, which suggest that nematodes were consuming host tissues. Nematodes were accumulating and thus sequestering some of their cormorant hosts' body burden of methyl mercury; however, they were not dramatically reducing their hosts' accumulation of methyl mercury.

  18. Host immune status affects maturation time in two nematode species--but not as predicted by a simple life-history model.

    Science.gov (United States)

    Guinnee, M A; Gemmill, A W; Chan, B H K; Viney, M E; Read, A F

    2003-11-01

    In theory, the age at which maturation occurs in parasitic nematodes is inversely related to pre-maturational mortality rate, and cross-species data on mammalian nematodes are consistent with this prediction. Immunity is a major source of parasite mortality and parasites stand to gain sizeable fitness benefits through short-term adjustments of maturation time in response to variation in immune-mediated mortality. The effects of thymus-dependent immune responses on maturation in the nematode parasites Strongyloides ratti and Nippostrongylus brasiliensis were investigated using congenitally thymus-deficient (nude) rats. As compared with worms in normal rats, reproductive maturity of parasites (presence of eggs in utero) in nude rats occurred later in S. ratti but earlier in N. brasiliensis. Immune-mediated differences in maturation time were not associated with differences in worm length. Thymus-dependent immunity had no effect on prematurational mortality. Results are discussed in relation to theoretical expectations and possible explanations for the observed patterns in parasite maturation.

  19. Anthelmintic resistance impact on tropical beef cattle productivity: effect on weight gain of weaned calves.

    Science.gov (United States)

    Borges, Fernando A; Almeida, Gabriel D; Heckler, Rafael P; Lemes, Raul T; Onizuka, Marcel K V; Borges, Dyego G L

    2013-03-01

    The performance of grazing cattle in tropical areas is deeply influenced by parasitism, and the increasing reports of resistance are a threat to effective nematode control. The present study aimed to evaluate the effect of avermectins on the performance of weaned calves naturally infected by ivermectin-resistant gastrointestinal nematodes. The effect of four commercial endectocides (ivermectin 2.25 % + abamectin 1.25 %, ivermectin 3.15 %, doramectin 3.15 %, and doramectin 1 %) on parasitism and performance of a hundred weaned Nellore calves were evaluated during 112 days. The most effective anthelmintic showed efficacy of 84 % and resulted in an increase (P < 0.05) of live weight gain of 11.85 kg, compared to untreated group, 9.05 and 9.41 kg compared to those treated with more ineffective avermectins which showed efficacy of 0 and 48.2 %, respectively. A significant (P < 0.05) and weak negative correlation (r = -0.22) between the eggs per gram (EPG) and body weight was observed, indicating that even the low mean EPG (175 ± 150) observed at day 0 in the control group, with predominance of Haemonchus sp., was responsible for production losses. These results indicate that control of nematode parasites in beef cattle in the weaning phase may not result in increased productivity when carried out without technical criteria.

  20. Epidemiological studies of parasitic gastrointestinal nematodes, cestodes and coccidia infections in cattle in the highveld and lowveld communal grazing areas of Zimbabwe

    Directory of Open Access Journals (Sweden)

    D.M. Pfukenyi

    2007-09-01

    Full Text Available Between January 1999 and December 2000 faecal samples from 16 264 cattle at 12 dipping sites in the highveld and nine in the lowveld communal grazing areas of Zimbabwe were examined for gastrointestinal (GI nematode and cestodes eggs, and coccidia oocysts. Strongyle larvae were identified following culture of pooled faecal samples collected at monthly intervals. The effects of region, age, sex and season on the prevalence of GI nematodes, cestodes and coccidia were determined. Faecal egg and oocyst counts showed an overall prevalence of GI nematodes of 43 %, coccidia 19.8 % and cestodes 4.8 %. A significantly higher prevalence of infection with GI nematodes, cestodes and coccidia was recorded in calves (P < 0.01 than in adults. Pregnant and lactating cows had significantly higher prevalences than bulls, oxen and non-lactating (dry cows (P < 0.01. The general trend of eggs per gram (epg of faeces and oocysts per gram (opg of faeces was associated with the rainfall pattern in the two regions, with high epg and opg being recorded during the wet months. The most prevalent genera of GI nematodes were Cooperia, Haemonchus and Trichostrongylus in that order. Strongyloides papillosus was found exclusively in calves. Haemonchus was significantly more prevalent during the wet season than the dry season (P < 0.01. In contrast, Trichostrongylus was present in significantly (P < 0.01 higher numbers during the dry months than the wet months, while Cooperia and Oesophagostomum revealed no significant differences between the wet and dry season. These findings are discussed with reference to their relevance for strategic control of GI parasites in cattle in communal grazing areas of Zimbabwe.

  1. Plant nematodes in South Africa. 11. Checklist of plant nematodes of the protected areas of KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    Mariette Marais

    2013-03-01

    Full Text Available Nematodes are some of the most abundant soil organisms and are an essential part of soil ecology. These organisms are used as indicator organisms and can be linked to soil health. Biological collections contain vast amounts of data, with the National Collection of Nematodes housed at the Plant Protection Research Institute, Agricultural Research Council being no different. During the digitising of the collection a number of unpublished records of plant nematodes reported from protected areas in KwaZulu-Natal were found in the South African Plant-Parasitic Nematode Survey database. A total of 222 plant nematode species belonging to 39 genera were reported from the province, with only 94 of these species reported from the protected areas and 172 and 159 species reported from uncultivated (outside the protected areas and cultivated areas, respectively. Only nine species, Criconema silvum, Criconema talanum, Helicotylenchus marethae, Ogma dracomontanum, Ogma louisi, Ogma ueckermanni, Paralongidorus deborae, Trichodorus rinae and Xiphinemella marindae were described from protected areas, whilst O. dracomontanum, P. deborae and T. rinae were subsequently also reported from other provinces. Conservation implications: A higher degree of diversity of nematodes was observed in the unprotected areas of the province. The observation suggests that nematode fauna, and by implication also other invertebrates, are not adequately protected.

  2. Plant nematodes in South Africa. 11. Checklist of plant nematodes of the protected areas of KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    Mariette Marais

    2013-02-01

    Full Text Available Nematodes are some of the most abundant soil organisms and are an essential part of soil ecology. These organisms are used as indicator organisms and can be linked to soil health. Biological collections contain vast amounts of data, with the National Collection of Nematodes housed at the Plant Protection Research Institute, Agricultural Research Council being no different. During the digitising of the collection a number of unpublished records of plant nematodes reported from protected areas in KwaZulu-Natal were found in the South African Plant-Parasitic Nematode Survey database. A total of 222 plant nematode species belonging to 39 genera were reported from the province, with only 94 of these species reported from the protected areas and 172 and 159 species reported from uncultivated (outside the protected areas and cultivated areas, respectively. Only nine species, Criconema silvum, Criconema talanum, Helicotylenchus marethae, Ogma dracomontanum, Ogma louisi, Ogma ueckermanni, Paralongidorus deborae, Trichodorus rinae and Xiphinemella marindae were described from protected areas, whilst O. dracomontanum, P. deborae and T. rinae were subsequently also reported from other provinces. Conservation implications: A higher degree of diversity of nematodes was observed in the unprotected areas of the province. The observation suggests that nematode fauna, and by implication also other invertebrates, are not adequately protected.

  3. Host-Induced Silencing of Two Pharyngeal Gland Genes Conferred Transcriptional Alteration of Cell Wall-Modifying Enzymes of Meloidogyne incognita vis-à-vis Perturbed Nematode Infectivity in Eggplant.

    Science.gov (United States)

    Shivakumara, Tagginahalli N; Chaudhary, Sonam; Kamaraju, Divya; Dutta, Tushar K; Papolu, Pradeep K; Banakar, Prakash; Sreevathsa, Rohini; Singh, Bhupinder; Manjaiah, K M; Rao, Uma

    2017-01-01

    The complex parasitic strategy of Meloidogyne incognita appears to involve simultaneous expression of its pharyngeal gland-specific effector genes in order to colonize the host plants. Research reports related to effector crosstalk in phytonematodes for successful parasitism of the host tissue is yet underexplored. In view of this, we have used in planta effector screening approach to understand the possible interaction of pioneer genes ( msp-18 and msp-20 , putatively involved in late and early stage of M. incognita parasitism, respectively) with other unrelated effectors such as cell-wall modifying enzymes (CWMEs) in M. incognita . Host-induced gene silencing (HIGS) strategy was used to generate the transgenic eggplants expressing msp-18 and msp-20 , independently. Putative transformants were characterized via qRT-PCR and Southern hybridization assay. SiRNAs specific to msp-18 and msp - 20 were also detected in the transformants via Northern hybridization assay. Transgenic expression of the RNAi constructs of msp-18 and msp-20 genes resulted in 43.64-69.68% and 41.74-67.30% reduction in M. incognita multiplication encompassing 6 and 10 events, respectively. Additionally, transcriptional oscillation of CWMEs documented in the penetrating and developing nematodes suggested the possible interaction among CWMEs and pioneer genes. The rapid assimilation of plant-derived carbon by invading nematodes was also demonstrated using 14 C isotope probing approach. Our data suggests that HIGS of msp-18 and msp-20 , improves nematode resistance in eggplant by affecting the steady-state transcription level of CWME genes in invading nematodes, and safeguard the plant against nematode invasion at very early stage because nematodes may become the recipient of bioactive RNA species during the process of penetration into the plant root.

  4. Anisakid nematodes associated with aquatic orga- nisms and ...

    African Journals Online (AJOL)

    spamer

    and respond to long- and medium-term physical, chemical and biological .... that the formation of fibrotic capsules around nematode larvae might prevent further ... capabilities and function primarily in the encapsulation of large parasitic ...

  5. Genetics of host-parasite relationships and the stability of resistance

    International Nuclear Information System (INIS)

    Eenink, A.H.

    1977-01-01

    Between host and parasite there is an intimate relationship controlled by matching gene systems. Stability of resistance is determined by the genetics of this relationship and not by the genetics of resistance. Both monogenic and polygenic resistances can be stable or unstable. Research on the backgrounds of stable resistances is of great importance. (author)

  6. Trematodes enhance the development of the nematode-trapping fungus Arthrobotrys (Duddingtonia) flagrans.

    Science.gov (United States)

    Arias, María Sol; Suárez, José; Cazapal-Monteiro, Cristiana Filipa; Francisco, Iván; López-Arellano, María Eugenia; Piñeiro, Pablo; Suárez, José Luis; Sánchez-Andrade, Rita; Mendoza de Gives, Pedro; Paz-Silva, Adolfo

    2013-01-01

    The capability of helminth (nematode and trematode) parasites in stimulating nematode trap and chlamydospore development of the nematophagous fungus Arthrobotrys (formerly Duddingtonia) flagrans was explored. Dead adult specimens of trematodes (the liver fluke Fasciola hepatica and the rumen fluke Calicophoron daubneyi) and nematodes (the ascarid Parascaris equorum and the strongylid Oesophagostomum spp.), as well as their secretory products, were placed onto corn meal agar plates concurrently inoculated with A. flagrans. Trapping organs were observed after 5 d and chlamydospores after 16 d, including in the control plates in the absence of parasitic stimulus. However, our data shows that both nematodes and trematodes increase trap and chlamydospore production compared with controls. We show for the first time that significantly higher numbers of traps and chlamydospores were observed in the cultures coinoculated with adult trematodes. We conclude that both the traps and chlamydospores formation are not only related to nematode-specific stimuli. The addition of secretory products of the trematode C. daubneyi to culture medium has potential for use in the large scale production of chlamydospores. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. In vivo effects of Sainfoin (Onobrychis viciifolia) on parasitic nematodes in calves

    DEFF Research Database (Denmark)

    Desrues, Oliver; Pena-Espinoza, Miguel Angel; Hansen, T.V.A.

    Sainfoin (Onobrychis viciifolia) is a fodder legume containing condensed tannins known to improve protein self-sufficiency, animal health and environment. In addition, anthelmintic effects have been demonstrated in vitro against cattle nematodes, and in vivo against nematodes of small ruminants...

  8. The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny

    Science.gov (United States)

    2013-01-01

    Background Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages. Results We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement. Conclusions Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome

  9. Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode.

    Science.gov (United States)

    Afzal, Ahmed J; Srour, Ali; Saini, Navinder; Hemmati, Naghmeh; El Shemy, Hany A; Lightfoot, David A

    2012-04-01

    Host resistance to "yellow dwarf" or "moonlight" disease cause by any population (Hg type) of Heterodera glycines I., the soybean cyst nematode (SCN), requires a functional allele at rhg1. The host resistance encoded appears to mimic an apoptotic response in the giant cells formed at the nematode feeding site about 24-48 h after nematode feeding commences. Little is known about how the host response to infection is mediated but a linked set of 3 genes has been identified within the rhg1 locus. This study aimed to identify the role of the genes within the locus that includes a receptor-like kinase (RLK), a laccase and an ion antiporter. Used were near isogeneic lines (NILs) that contrasted at their rhg1 alleles, gene-based markers, and a new Hg type 0 and new recombination events. A syntenic gene cluster on Lg B1 was found. The effectiveness of SNP probes from the RLK for distinguishing homolog sequence variants on LgB1 from alleles at the rhg1 locus on LgG was shown. The resistant allele of the rhg1 locus was shown to be dominant in NILs. None of the recombination events were within the cluster of the three candidate genes. Finally, rhg1 was shown to reduce the plant root development. A model for rhg1 as a dominant multi-gene resistance locus based on the developmental control was inferred.

  10. First description of gastrointestinal nematodes of Barbary sheep (Ammotragus lervia): the case of Camelostrongylus mentulatus as a paradigm of phylogenic and specific relationship between the parasite and its ancient host.

    Science.gov (United States)

    Mayo, E; Ortiz, J; Martínez-Carrasco, C; Garijo, M M; Espeso, G; Hervías, S; Ruiz de Ybáñez, M R

    2013-09-01

    The gastrointestinal helminth fauna of 24 Barbary sheep or Aoudad (Ammotragus lervia sahariensis) maintained in the Parque de Rescate de la Fauna Sahariana (PRFS, CSIC, Almeria, Spain) was analyzed. Most animals (87.5 %) were parasitized, and multiple infections were highly present. The following species were identified: Camelostrongylus mentulatus, Teladorsagia circumcincta, Marshallagia marshalli, Ostertagia ostertagi, O. leptospicularis, O. lyrata, Haemonchus contortus, Teladorsagia trifurcata, Trichostrongylus vitrinus, T. colubriformis, T. probolorus, T. capricola, Nematodirus spathiger, N. abnormalis, N. filicollis, N. helvetianus, Trichuris spp. and Skrjabinema ovis. Teladorsagia circumcincta was the most prevalent nematode in abomasum (52.6 %) followed by C. mentulatus (50 %). However, this latter nematode had the greater mean intensity and abundance. In the small intestine, T. colubriformis and T. vitrinus had the highest prevalence (36.4 %); the last one showed also the greater mean intensity and abundance. It should be emphasized the presence of Skrjabinema ovis (prevalence 39.1 %) in the large intestine, showing the greater mean abundance and intensity, although with a low values. Camelostrongylus mentulatus could be the most primitive nematode of the family trichostrongylidae recovered in this study; attending to its high prevalence, mean abundance and mean intensity, the possible specificity between this parasite and the Aoudad is discussed.

  11. Crystallization and preliminary crystallographic studies of a cysteine protease inhibitor from the human nematode parasite Ascaris lumbricoides

    International Nuclear Information System (INIS)

    Liu, Sanling; Dong, Jianmei; Mei, Guoqiang; Liu, Guiyun; Xu, Wei; Su, Zhong; Liu, Jinsong

    2011-01-01

    A recombinant cysteine protease inhibitor from the human nematode parasite A. lumbricoides has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.1 Å resolution. The cysteine protease inhibitor from Ascaris lumbricoides, a roundworm that lives in the human intestine, may be involved in the suppression of human immune responses. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of the cysteine protease inhibitor from A. lumbricoides are reported. The rod-shaped crystal belonged to space group C2, with unit-cell parameters a = 99.40, b = 37.52, c = 62.92 Å, β = 118.26°. The crystal diffracted to 2.1 Å resolution and contained two molecules in the asymmetric unit

  12. Adaptive radiation within marine anisakid nematodes: a zoogeographical modeling of cosmopolitan, zoonotic parasites.

    Directory of Open Access Journals (Sweden)

    Thomas Kuhn

    Full Text Available Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584 from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area.

  13. The fitness of drug-resistant malaria parasites in a rodent model: multiplicity of infection

    OpenAIRE

    Huijben, Silvie; Sim, Derek G.; Nelson, William, A.; Read, Andrew F.

    2011-01-01

    Malaria infections normally consist of more than one clonally-replicating lineage. Within-host interactions between sensitive and resistant parasites can have profound effects on the evolution of drug resistance. Here, using the Plasmodium chabaudi mouse malaria model, we ask whether the costs and benefits of resistance are affected by the number of co-infecting strains competing with a resistant clone. We found strong competitive suppression of resistant parasites in untreated infections and...

  14. Nematodes as bioindicators of ecosystem recovery during phytoremediation of crude oil contaminated soil.

    Science.gov (United States)

    Savin, Mary C; Wolf, Duane C; Davis, K Jody; Gbur, Edward E; Thoma, Greg J

    2015-01-01

    Restoration of a weathered crude oil contaminated site undergoing phytoremediation was evaluated using nematodes as bioindicators. Samples were collected twice per year equating to spring and fall/winter. Mean annual total abundances ranged from 18-130 in the non-fertilized non-vegetated control (CTR) to 69-728 in tall fescue-ryegrass (FES) to 147-749 (100 g(-1)) in the fertilized bermudagrass-fescue (BER) treatment. Proportions of plant-parasitic (PP) and free-living (FL) nematodes were significantly impacted by treatment, but not year, with PP nematodes accounting for 27, 59, and 68% of CTR, FES, and BER communities, respectively. There was no significant year by season by treatment or treatment by year effect for total, PP, or FL nematode abundances. Diversity did not increase over time. The BER and FES treatments had more mature communities as indicated by higher plant-parasitic index (PPI) values. Phytoremediation accelerates petroleum degradation and alters the soil habitat which is reflected in the nematode community. However, low numbers and inconsistent presence of persister strategist omnivores and predators, and the lack in improvement over time in treatment effects for total and PP nematode abundances, PP and FL proportions, or PPI indicate the system is being rehabilitated but has not been restored after 69 months of phytoremediation.

  15. [Nematodes with zoonotic potential in parks of the city of Tunja, Colombia].

    Science.gov (United States)

    Díaz-Anaya, Adriana María; Pulido-Medellín, Martín Orlando; Giraldo-Forero, Julio César

    2015-01-01

    To identify the presence of parasites with zoonotic potential in major parks in the city of Tunja, Boyacá. Twenty eight parks in the city were selected, where 124 samples of feces of dogs and soil were collected with the help of a spatula, gathering approximately 150 g per sample. They were processed by the method of concentration of Ritchie modified making the identification of parasitic forms in an optical microscope. A 60.7% of the parks were positive to nematodes in samples of canine fecal material and 100% on soil. Found nematodes were eggs and larvae of Toxocara spp., Ancylostoma spp., Trichuris vulpis and Strongiloides spp. This study demonstrated the potential risk of transmission of zoonoses caused by nematodes in canines and for the need to strengthen public health measures to reduce the risk shows the population exposed to such zoonoses.

  16. Between-breed variations in resistance/resilience to gastrointestinal nematodes among indigenous goat breeds in Uganda

    NARCIS (Netherlands)

    Onzima, R.B.; Mukiibi, Robert; Ampaire, A.; Benda-Beckmann, von K.; Kanis, E.

    2017-01-01

    Gastrointestinal nematodes (GINs), Haemonchus contortus, are a major health problem in goat production. Resistance to H. contortus, the most prevalent GIN in Uganda, was studied among three indigenous goat breeds to assess their differences. Twelve male goats of each breed approximately 7 months old

  17. Allopatric speciation of Meteterakis (Heterakoidea: Heterakidae), a highly dispersible parasitic nematode, in the East Asian islands.

    Science.gov (United States)

    Sata, Naoya

    2018-04-25

    To clarify how the species diversity of highly dispersible parasites has developed, molecular phylogenetic analyses of Meteterakis spp., multi-host endoparasitic nematodes of reptiles and amphibians from the East Asian islands, were conducted. The results demonstrated the existence of two major clades, the J- and A-groups, with exclusive geographic ranges that are discordant with the host faunal province. However, diversification within the J-group was concordant with the host biogeography and suggested co-divergence of this group with vicariance of the host fauna. In contrast, the phylogenetic pattern within the A-group was discordant with host biogeography and implied diversification by repeated colonization. In addition, the mosaic distribution pattern of a J-group and an A-group species in the Japanese Archipelago, along with comparison of population genetic parameters and the genetic distance from their closest relatives, suggested the initial occurrence of a J-group lineage followed by exclusion in the western part of this region caused by invasion of an A-group lineage. Thus, the present study suggested that the species diversity of highly dispersible parasites including Meteterakis is formed not only by co-divergence with host faunal vicariance but also by peripatric speciation and exclusive interactions between species. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Survey of nematodes associated with terrestrial slugs in Norway.

    Science.gov (United States)

    Ross, J L; Ivanova, E S; Hatteland, B A; Brurberg, M B; Haukeland, S

    2016-09-01

    A survey of nematodes associated with terrestrial slugs was conducted for the first time in Norway. A total of 611 terrestrial slugs were collected from 32 sample sites. Slugs were identified by means of morphological examination, dissection of genitalia and molecular analysis using mitochondrial DNA. Twelve slug species were identified, representing four different slug families. Internal nematodes were identified by means of morphological analysis and the sequencing of the 18S rRNA gene. Of the sample sites studied, 62.5% were found to be positive for nematode parasites, with 18.7% of all slugs discovered being infected. Five nematode species were identified in this study: Alloionema appendiculatum, Agfa flexilis, Angiostoma limacis, Angiostoma sp. and Phasmarhabditis hermaphrodita. Of these species, only one nematode was previously undescribed (Angiostoma sp.). This is the first record of the presence of A. appendiculatum, A. flexilis and A. limacis in Norway.

  19. IDENTIFIKASI NEMATODA PARASIT PADA SALURAN PENCERNAAN MARMUT (Cavia cobaya SEBAGAI SUMBER BELAJAR BIOLOGI PADA MATERI INVERTEBRATA

    Directory of Open Access Journals (Sweden)

    Septia Nurhasanah

    2014-05-01

    Full Text Available The research was conducted in the Laboratory of Science Education, University of Muhammadiyah Metro. The research is a descriptive analysis, morphological observations were made by identifying the nematode parasite found that Trichostrongylus sp, Strongyloides sp, Trichuris sp, Trichuris sp. The results showed the prevalence and intensity values is the large number of guinea pigs to parasites divided by the number of guinea pigs that are 100% inspected. While the intensity is seen from the total number of nematode parasites that infect in the number of guinea pigs infected with a parasite that is 2,3. The population in this study was 10 cows pigs (Cavia cobaya . This study took a part in the digestion of marmots (Cavia cobaya the intestines and stomach , then cut and taken part in the large intestine and be Indian ink or coloring 2-3 drops to be easily identified microscopically . Put the preparations into a petri dish , and given alcohol as much as 96 % with 2-3 drops . Taking part in the examination of the large intestine to taste then used the nematode worm structure with Indian ink dye to be observed , and placed in the glass object . Observed with a microscope. Document if the parasites are found by using the camera Erlina 2008. Identification of the observations made have found 3 types of parasites that attack the guinea pig (Cavia cobaya is Strongyloides sp on samples 1,2,3,4,5,6 , dan10 . Then parasite Trichuris sp species found in samples 8 and 9. Trichostrongylus sp parasite species found in sample 7 . Parasitic nematodes found were 3 types of Trichostrongylus sp, Strongyloides sp, Trichuris sp. Number of samples that have been observed as many as 10 cows pigs (Cavia cobaya , with the overall result is as much as 23 tails parasites.               Kata kunci: nematode parasit, marmut (Cavia cobaya, sumber belajar biologi.

  20. Heterodera schachtii Tyrosinase-like protein a novel nematode effector modulating plant hormone homeostasis

    Czech Academy of Sciences Publication Activity Database

    Habash, S.; Radakovic, Z.S.; Vaňková, Radomíra; Siddique, S.; Dobrev, Petre; Gleason, C.; Grundler, F.M.W.; Elashry, A.

    2017-01-01

    Roč. 7, JUL 31 (2017), č. článku 6874. ISSN 2045-2322 Institutional support: RVO:61389030 Keywords : arabidopsis-thaliana * cyst-nematode * parasitic nematode * transient expression * host plants * sequence * identification * infection * model * transformation Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 4.259, year: 2016

  1. Fast, automated measurement of nematode swimming (thrashing without morphometry

    Directory of Open Access Journals (Sweden)

    Sattelle David B

    2009-07-01

    Full Text Available Abstract Background The "thrashing assay", in which nematodes are placed in liquid and the frequency of lateral swimming ("thrashing" movements estimated, is a well-established method for measuring motility in the genetic model organism Caenorhabditis elegans as well as in parasitic nematodes. It is used as an index of the effects of drugs, chemicals or mutations on motility and has proved useful in identifying mutants affecting behaviour. However, the method is laborious, subject to experimenter error, and therefore does not permit high-throughput applications. Existing automation methods usually involve analysis of worm shape, but this is computationally demanding and error-prone. Here we present a novel, robust and rapid method of automatically counting the thrashing frequency of worms that avoids morphometry but nonetheless gives a direct measure of thrashing frequency. Our method uses principal components analysis to remove the background, followed by computation of a covariance matrix of the remaining image frames from which the interval between statistically-similar frames is estimated. Results We tested the performance of our covariance method in measuring thrashing rates of worms using mutations that affect motility and found that it accurately substituted for laborious, manual measurements over a wide range of thrashing rates. The algorithm used also enabled us to determine a dose-dependent inhibition of thrashing frequency by the anthelmintic drug, levamisole, illustrating the suitability of the system for assaying the effects of drugs and chemicals on motility. Furthermore, the algorithm successfully measured the actions of levamisole on a parasitic nematode, Haemonchus contortus, which undergoes complex contorted shapes whilst swimming, without alterations in the code or of any parameters, indicating that it is applicable to different nematode species, including parasitic nematodes. Our method is capable of analyzing a 30 s movie in

  2. Induction of traps by Ostertagia ostertagi larvae, chlamydospore production and growth rate in the nematode-trapping fungus Duddingtonia flagrans

    DEFF Research Database (Denmark)

    Grønvold, J.; Nansen, P.; Henriksen, S. A.

    1996-01-01

    Biological control of parasitic nematodes of domestic animals can be achieved by feeding host animals chlamydospores of the nematode-trapping fungus Duddingtonia flagrans. In the host faeces, D. flagrans develop traps that may catch nematode larvae. In experiments on agar, D. flagrans had a growth...

  3. Assessment of the effects of Hirsutella minnesotensis on Soybean Cyst Nematode and growth of soybean

    Science.gov (United States)

    Hirsutella minnesotensis is a fungal endoparasite of nematodes juvenile and parasitizes soybean cyst nematodes (SCN) with high frequency. In this study, the effects of two H. minnesotensis isolates on population and distribution of SCN and growth of soybean were evaluated. Experiments were conducted...

  4. Gastrointestinal parasites in Danish goats - prevalence and risk factors

    DEFF Research Database (Denmark)

    Sörensen, C.; Holm, S. A.; Thamsborg, S. M.

    2012-01-01

    The aims were to examine prevalence of gastrointestinal parasites in Danish goats, based on faecal examination, in relation to geographical distribution and risk factors, and to investigate the occurrence of anthelmintic resistance in nematodes in selected farms. In April 2012 all Danish goat farms...... with ≥10 female goats (N=132) according to the Central Husbandry Register, were invited to participate. Of these, 25 herds each submitted faecal samples, collected approximately 1 month after turn out, from 4‐12 kids born earlier the same year. During May‐July, a total of 232 samples were examined using...

  5. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    Science.gov (United States)

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  6. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots.

    Science.gov (United States)

    Cai, Daguang; Thurau, Tim; Tian, Yanyan; Lange, Tina; Yeh, Kai-Wun; Jung, Christian

    2003-04-01

    Sporamin, a sweet potato tuberous storage protein, is a Kunitz-type trypsin inhibitor. Its capability of conferring insect-resistance on transgenic tobacco and cauliflower has been confirmed. To test its potential as an anti-feedant for the beet cyst nematode (Heterodera schachtii Schm.), the sporamin gene SpTI-1 was introduced into sugar beet (Beta vulgaris L.) by Agrobacterium rhizogenes-mediated transformation. Twelve different hairy root clones expressing sporamin were selected for studying nematode development. Of these, 8 hairy root clones were found to show significant efficiency in inhibiting the growth and development of the female nematodes whereas 4 root clones did not show any inhibitory effects even though the SpTI-1 gene was regularly expressed in all of the tested hairy roots as revealed by northern and western analyses. Inhibition of nematode development correlated with trypsin inhibitor activity but not with the amount of sporamin expressed in hairy roots. These data demonstrate that the trypsin inhibitor activity is the critical factor for inhibiting growth and development of cyst nematodes in sugar beet hairy roots expressing the sporamin gene. Hence, the sweet potato sporamin can be used as a new and effective anti-feedant for controlling cyst nematodes offering an alternative strategy for establishing nematode resistance in crops.

  7. Seasonal distribution of gastrointestinal nematode infections in sheep in a semiarid region, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Maria de Fátima de Souza

    Full Text Available The objective of this study was to determine the seasonal distribution and gastrointestinal nematode parasite load in crossbred Santa Inês tracer lambs, and to correlate the rainfall during the study period with occurrences of parasitic infections. Sixty-four male tracer lambs between the ages of four and eight months were used in the study. Two tracer lambs were inserted into the herd every 28 days to determine the pattern of infective larvae available in the environment. Variation in the fecal egg count (FEC of nematodes was observed at the study site, with many samples containing undetectable parasite loads during the dry season. The larvae identified in coprocultures wereHaemonchus sp., Trichostrongylus sp.,Cooperia sp., Strongyloides sp. andOesophagostomum sp. The nematodes recovered at necropsy were Haemonchus contortus, Trichostrongylus colubriformis, Cooperia punctata, C. pectinata, Trichuris sp.,Oesophagostomum sp. and Skrajabinema ovis. The total number of larvae and the total number of immature and adult forms recovered from the tracers showed seasonal distributions that significantly correlated with the amount of rainfall received that month (p value ≅ 0.000 in all cases . The species H. contortus was predominant in the herd and should be considered to be main pathogenic nematode species in these hosts under these conditions.

  8. Seasonal distribution of gastrointestinal nematode infections in sheep in a semiarid region, northeastern Brazil.

    Science.gov (United States)

    de Souza, Maria de Fátima; Pimentel-Neto, Manoel; de Pinho, André Luís Santos; da Silva, Rízia Maria; Farias, Albeísa Cleyse Batista; Guimarães, Marcos Pezzi

    2013-01-01

    The objective of this study was to determine the seasonal distribution and gastrointestinal nematode parasite load in crossbred Santa Inês tracer lambs, and to correlate the rainfall during the study period with occurrences of parasitic infections. Sixty-four male tracer lambs between the ages of four and eight months were used in the study. Two tracer lambs were inserted into the herd every 28 days to determine the pattern of infective larvae available in the environment. Variation in the fecal egg count (FEC) of nematodes was observed at the study site, with many samples containing undetectable parasite loads during the dry season. The larvae identified in coprocultures were Haemonchus sp., Trichostrongylus sp., Cooperia sp., Strongyloides sp. and Oesophagostomum sp. The nematodes recovered at necropsy were Haemonchus contortus, Trichostrongylus colubriformis, Cooperia punctata, C. pectinata, Trichuris sp., Oesophagostomum sp. and Skrajabinema ovis. The total number of larvae and the total number of immature and adult forms recovered from the tracers showed seasonal distributions that significantly correlated with the amount of rainfall received that month (p value ≅ 0.000 in all cases ). The species H. contortus was predominant in the herd and should be considered to be main pathogenic nematode species in these hosts under these conditions.

  9. Parasites and hepatic histopathological lesions in lisa (Mugil incilis from Totumo mash, North of Colombia

    Directory of Open Access Journals (Sweden)

    Jesús Olivero V.

    2013-03-01

    Full Text Available Objective. To assess the levels of parasitism by nematodes and trematodes, as well as the hepatic histopathological alterations present in Mugil incilis (Lisa from Totumo marsh, North of Colombia. Materials and methods. Between July 2004 and June 2005, 500 fish were collected at Totumo Marsh (75°16’W and 10°44´N, North of Colombia. Morphometric and parasitic parameters were determined for each specimen, and the hepatic histopathological status of the liver was assessed by analyzing liver slides stained with hematoxylin and eosin. Results. Nematode larvae isolated from Mugil incilis corresponded to Contracaecum spp. Parasite prevalence was 60.49%. Parasitic mean abundance and mean intensity were 4.8±1.05 and 7.02±1.49, nematodes per fish, respectively. The correlation between nematode mean abundance and fish length was significant and positive (r=0.525, p<0.0001, but negative for condition factor (r=-0.109, p=0.014. Hepatic histopathological analysis revealed the presence of encapsulated trematode larvae as the main finding. However, the presence of inflammation, granulomas, steatosis and necrosis, were also registered as secondary alterations. Conclusions. Lisas collected at Totumo Marsh are parasitized with nematodes and trematodes. These fish have different histopathological lesions in the liver tissue, being the most important the presence of trematode encapsulated cyst that generate inflammatory reactions, and negatively correlate with morphometric markers of fish health.

  10. Host partitioning by parasites in an intertidal crustacean community.

    Science.gov (United States)

    Koehler, Anson V; Poulin, Robert

    2010-10-01

    Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.

  11. Herring parasite and tissue alterations following the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Moles, A.D.; Rice, S.D.; Okihiro, M.S.

    1993-01-01

    The authors examined the intensity and prevalence of larval nematodes (Anisakis simplex) and alterations in selected tissues of spawning Pacific herring (Clupea harengus pallasi) exposed to crude oil, in the laboratory under controlled conditions and in Prince William Sound 14 days after the Exxon Valdez oil spill. In the laboratory, intensity and prevalence of nematodes in the body cavities of herring exposed to the water-soluble fraction of oil declined when exposed to doses above 1.2 mg/L total aromatics. In Prince William Sound, nematodes were rare in spawning herring from oiled sites and abundant among herring from areas outside the spill. Oil exposure apparently induced the nematodes to migrate from the body cavity to the body wall with the lower intensity reflecting a change in parasite location. A coccidian, Eimeria clupearum, was found in greater numbers in oil-exposed herring. To verify exposure effects and to link parasite and tissue alteration with oil exposure, histological examination was used. Liver coagulative necrosis indicated hepatotoxic exposure. Necrosis was followed by macrophage aggregation in the resolution phase. The laboratory exposures allowed confirmation of oil exposure in Prince William Sound and permitted analysis of effects on two internal parasites

  12. A temporal assessment of nematode community structure and diversity in the rhizosphere of cisgenic Phytophthora infestans-resistant potatoes.

    Science.gov (United States)

    Ortiz, Vilma; Phelan, Sinead; Mullins, Ewen

    2016-12-01

    Nematodes play a key role in soil processes with alterations in the nematode community structure having the potential to considerably influence ecosystem functioning. As a result fluctuations in nematode diversity and/or community structure can be gauged as a 'barometer' of a soil's functional biodiversity. However, a deficit exists in regards to baseline knowledge and on the impact of specific GM crops on soil nematode populations and in particular in regard to the impact of GM potatoes on the diversity of nematode populations in the rhizosphere. The goal of this project was to begin to address this knowledge gap in regards to a GM potato line, cisgenically engineered for resistance to Phytophthora infestans (responsible organism of the Irish potato famine causing late blight disease). For this, a 3 year (2013, 2014, 2015) field experimental study was completed, containing two conventional genotypes (cvs. Desiree and Sarpo Mira) and a cisgenic genotype (cv. Desiree + Rpi-vnt1). Each potato genotype was treated with different disease management strategies (weekly chemical applications and corresponding no spray control). Hence affording the opportunity to investigate the temporal impact of potato genotype, disease management strategy (and their interaction) on the potato rhizosphere nematode community. Nematode structure and diversity were measured through established indices, accounts and taxonomy with factors recording a significant effect limited to the climatic conditions across the three seasons of the study and chemical applications associated with the selected disease management strategy. Based on the metrics studied, the cultivation of the cisgenic potato genotype exerted no significant effect (P > 0.05) on nematode community diversity or structure. The disease management treatments led to a reduction of specific trophic groups (e.g. Predacious c-p = 4), which of interest appeared to be counteracted by a potato genotype with vigorous growth phenotype

  13. Seasonality of helminth infection in wild red deer varies between individuals and between parasite taxa.

    Science.gov (United States)

    Albery, Gregory F; Kenyon, Fiona; Morris, Alison; Morris, Sean; Nussey, Daniel H; Pemberton, Josephine M

    2018-03-09

    Parasitism in wild mammals can vary according to myriad intrinsic and extrinsic factors, many of which vary seasonally. However, seasonal variation in parasitism is rarely studied using repeated samples from known individuals. Here we used a wild population of individually recognized red deer (Cervus elaphus) on the Isle of Rum to quantify seasonality and intrinsic factors affecting gastrointestinal helminth parasitism over the course of a year. We collected 1020 non-invasive faecal samples from 328 known individuals which we then analysed for propagules of three helminth taxa: strongyle nematodes, the common liver fluke Fasciola hepatica and the tissue nematode Elaphostrongylus cervi. Zero-inflated Poisson models were used to investigate how season, age and sex were associated with parasite prevalence and count intensity, while Poisson models were used to quantify individual repeatability within and between sampling seasons. Parasite intensity and prevalence varied according to all investigated factors, with opposing seasonality, age profiles and sex biases between parasite taxa. Repeatability was moderate, decreased between seasons and varied between parasites; both F. hepatica and E. cervi showed significant between-season repeatability, while strongyle nematode counts were only repeatable within-season and showed no repeatability within individuals across the year.

  14. Differential water mite parasitism, phenoloxidase activity, and resistance to mites are unrelated across pairs of related damselfly species.

    Directory of Open Access Journals (Sweden)

    Julia J Mlynarek

    Full Text Available Related host species often demonstrate differences in prevalence and/or intensity of infection by particular parasite species, as well as different levels of resistance to those parasites. The mechanisms underlying this interspecific variation in parasitism and resistance expression are not well understood. Surprisingly, few researchers have assessed relations between actual levels of parasitism and resistance to parasites seen in nature across multiple host species. The main goal of this study was to determine whether interspecific variation in resistance against ectoparasitic larval water mites either was predictive of interspecific variation in parasitism for ten closely related species of damselflies (grouped into five "species pairs", or was predicted by interspecific variation in a commonly used measure of innate immunity (total Phenoloxidase or potential PO activity. Two of five species pairs had interspecific differences in proportions of individuals resisting larval Arrenurus water mites, only one of five species pairs had species differences in prevalence of larval Arrenurus water mites, and another two of five species pairs showed species differences in mean PO activity. Within the two species pairs where species differed in proportion of individuals resisting mites the species with the higher proportion did not have correspondingly higher PO activity levels. Furthermore, the proportion of individuals resisting mites mirrored prevalence of parasitism in only one species pair. There was no interspecific variation in median intensity of mite infestation within any species pair. We conclude that a species' relative ability to resist particular parasites does not explain interspecific variation in parasitism within species pairs and that neither resistance nor parasitism is reflected by interspecific variation in total PO or potential PO activity.

  15. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride.

    Science.gov (United States)

    Medeiros, Hugo Agripino de; Araújo Filho, Jerônimo Vieira de; Freitas, Leandro Grassi de; Castillo, Pablo; Rubio, María Belén; Hermosa, Rosa; Monte, Enrique

    2017-01-10

    Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth.

  16. Parasite resistance and the adaptive significance of sleep

    Directory of Open Access Journals (Sweden)

    Barton Robert A

    2009-01-01

    Full Text Available Abstract Background Sleep is a biological enigma. Despite occupying much of an animal's life, and having been scrutinized by numerous experimental studies, there is still no consensus on its function. Similarly, no hypothesis has yet explained why species have evolved such marked variation in their sleep requirements (from 3 to 20 hours a day in mammals. One intriguing but untested idea is that sleep has evolved by playing an important role in protecting animals from parasitic infection. This theory stems, in part, from clinical observations of intimate physiological links between sleep and the immune system. Here, we test this hypothesis by conducting comparative analyses of mammalian sleep, immune system parameters, and parasitism. Results We found that evolutionary increases in mammalian sleep durations are strongly associated with an enhancement of immune defences as measured by the number of immune cells circulating in peripheral blood. This appeared to be a generalized relationship that could be independently detected in 4 of the 5 immune cell types and in both of the main sleep phases. Importantly, no comparable relationships occur in related physiological systems that do not serve an immune function. Consistent with an influence of sleep on immune investment, mammalian species that sleep for longer periods also had substantially reduced levels of parasitic infection. Conclusion These relationships suggest that parasite resistance has played an important role in the evolution of mammalian sleep. Species that have evolved longer sleep durations appear to be able to increase investment in their immune systems and be better protected from parasites. These results are neither predicted nor explained by conventional theories of sleep evolution, and suggest that sleep has a much wider role in disease resistance than is currently appreciated.

  17. Infection Assay of Cyst Nematodes on Arabidopsis Roots.

    Science.gov (United States)

    Bohlmann, Holger; Wieczorek, Krzysztof

    2015-09-20

    Plant parasitic nematodes are devastating pests on many crops. Juveniles (J2) of cyst nematodes invade the roots to induce a syncytium. This feeding site is their only source of nutrients. Male nematodes leave the roots after the fourth molt to mate with females. The females stay attached to their syncytia throughout their life and produce hundreds of eggs, which are contained in their bodies. When the females die their bodies form the cysts, which protect the eggs. Cysts can survive for many years in the soil until favorable conditions induce hatching of the juveniles. The beet cyst nematode Heterodera schachtii ( H. schachtii )is a pathogen of sugar beet ( Beta vulgaris ) but can also complete its life cycle on Arabidopsis roots growing on agar plates under sterile conditions. We present here protocols for a stock culture of H. schachtii and an infection assay on agar plates.

  18. Conflict of interest between a nematode and a trematode in an amphipod host: Test of the "sabotage" hypothesis

    Science.gov (United States)

    Thomas, Frédéric; Fauchier, Jerome; Lafferty, Kevin D.

    2002-01-01

    Microphallus papillorobustus is a manipulative trematode that induces strong behavioural alterations in the gamaridean amphipod Gammarus insensibilis, making the amphipod more vulnerable to predation by aquatic birds (definitive hosts). Conversely, the sympatric nematodeGammarinema gammari uses Gammarus insensibilis as a habitat and a source of nutrition. We investigated the conflict of interest between these two parasite species by studying the consequences of mixed infection on amphipod behaviour associated with the trematode. In the field, some amphipods infected by the trematode did not display the altered behaviour. These normal amphipods also had more nematodes, suggesting that the nematode overpowered the manipulation of the trematode, a strategy that would prolong the nematode's life. We hypothesize that sabotage of the trematode by the nematode would be an adaptive strategy for the nematode consistent with recent speculation about co-operation and conflict in manipulative parasites. A behavioural test conducted in the laboratory from naturally infected amphipods yielded the same result. However, exposing amphipods to nematodes did not negate or decrease the manipulation exerted by the trematode. Similarly, experimental elimination of nematodes from amphipods did not permit trematodes to manipulate behaviour. These experimental data do not support the hypothesis that the negative association between nematodes and manipulation by the trematode is a result of the "sabotage" hypothesis.

  19. Characterization of the abomasal transcriptome for mechanisms of resistance to gastrointestinal nematodes in cattle

    Directory of Open Access Journals (Sweden)

    Li Robert W

    2011-11-01

    Full Text Available Abstract The response of the abomasal transcriptome to gastrointestinal parasites was evaluated in parasite-susceptible and parasite-resistant Angus cattle using RNA-seq at a depth of 23.7 million sequences per sample. These cattle displayed distinctly separate resistance phenotypes as assessed by fecal egg counts. Approximately 65.3% of the 23 632 bovine genes were expressed in the fundic abomasum. Of these, 13 758 genes were expressed in all samples tested and likely represent core components of the bovine abomasal transcriptome. The gene (BT14427 with the most abundant transcript, accounting for 10.4% of sequences in the transcriptome, is located on chromosome 29 and has unknown functions. Additionally, PIGR (1.6%, Complement C3 (0.7%, and Immunoglobulin J chain (0.5% were among the most abundant transcripts in the transcriptome. Among the 203 genes impacted, 64 were significantly over-expressed in resistant animals at a stringent cutoff (FDR

  20. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    Full Text Available The cereal cyst nematode (CCN, Heterodera avenae is a major pest of wheat (Triticum spp that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy revealed fewer glycoside hydrolases (GHs but more glycosyl transferases (GTs and carbohydrate esterases (CEs when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  1. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Science.gov (United States)

    Kumar, Mukesh; Gantasala, Nagavara Prasad; Roychowdhury, Tanmoy; Thakur, Prasoon Kumar; Banakar, Prakash; Shukla, Rohit N; Jones, Michael G K; Rao, Uma

    2014-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  2. Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Thorpe, Peter; Mantelin, Sophie; Cock, Peter Ja; Blok, Vivian C; Coke, Mirela C; Eves-van den Akker, Sebastian; Guzeeva, Elena; Lilley, Catherine J; Smant, Geert; Reid, Adam J; Wright, Kathryn M; Urwin, Peter E; Jones, John T

    2014-10-23

    The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.

  3. PARASITIC INFECTION OF SYNODONTIS BATENSODA (RÜPPELL ...

    African Journals Online (AJOL)

    IYAJI

    2013-05-15

    Trichodinids), two ... Key words: Parasites, protozoan, helminths, nematodes, cestodes, acanthocephalans, Synodontis batensoda,. Rivers Niger-Benue ... including food and feeding habits have been carried out by several ...

  4. Arrested larval development in cattle nematodes.

    Science.gov (United States)

    Armour, J; Duncan, M

    1987-06-01

    Most economically important cattle nematodes are able to arrest their larval development within the host - entering a period of dormancy or hypobiosis. Arrested larvae have a low death rate, and large numbers can accumulate in infected cattle during the grazing season. Because of this, outbreaks of disease caused by such nematodes can occur at times when recent infection with the parasites could not have occurred, for example during winter in temperature northern climates when cattle are normally housed. The capacity to arrest is a heritable trait. It is seen as an adaptation by the parasite to avoid further development to its free-living stages during times when the climate is unsuitable for free-living survival. But levels of arrestment can vary markedly in different regions, in different cattle, and under different management regimes. Climatic factors, previous conditioning, host immune status, and farm management all seem to affect arrestment levels. In this article, James Armour and Mary Duncan review the biological basis of the phenomenon, and discuss the apparently conflicting views on how it is controlled.

  5. Effect of the Entomogenous Nematode Nemplectana carpocapsae on the Tachinid Parasite Compsilura concinnata (Diptera: Tachinidae)

    Science.gov (United States)

    Kaya, Harry K.

    1984-01-01

    The entomogenous nematode Neoaplectana carpocapsae and its associated bacterium, Xenorhabdus nematophilus, could not infect the pupal stage of the tachinid Compsilura concinnata through the puparium. N. carpocapsae had an adverse effect on 1-, 2- and 3-day-old C. concinnata larvae within the armyworm host in petri dish tests. All 1-day-old larvae treated with nematodes died in their hosts, whereas 61% and 69% of 2- and 3-day-old larvae treated with nematodes, respectively, died. However, the survivors developed to adults. Nine to thirty-seven percent of adult tachinids which emerged from nematode-treated soil (50 nematodes/cm²) were infected with N. carpocapsae. The nematode adversely affects C. concinnata directly by the frank infection of the tachinid and indirectly by causing the premature death of the host which results in tachinid death. PMID:19295866

  6. Comparative efficacy of different anthelmintics against fenbendazole-resistant nematodes of pashmina goats.

    Science.gov (United States)

    Ram, H; Rasool, T J; Sharma, A K; Meena, H R; Singh, S K

    2007-08-01

    A trial using albendazole, albendazole plus rafoxanide combination, ivermectin and doramectin was conducted in Pashmina goats having history of fenbendazole resistance to Haemonchus spp. and maintained at high altitude (>2350 m above sea level). Day 0 infection level was variable in different groups of animals and their larval cultures indicated Haemonchus, Trichostrongylus, Ostertagia and Oesophagostomum spp. infection, in addition to Nematodirus spp. as observed in egg counts. Efficacy of drugs was calculated on day 14 post treatment by faecal egg count reduction test (FECRT). Albendazole was least effective (14%) followed by its combination with rafoxanide (54%). However, ivermectin and doramectin were 96% and 94% effective against gastrointestinal nematodes of Pashmina goats. It was concluded that use of albendazole and its combination with rafoxanide are ineffective in controlling the nematodes of goats at this farm; hence, future use must be avoided. However, regular monitoring of the efficacy of ivermectin and doramectin is needed.

  7. Soil properties and olive cultivar determine the structure and diversity of plant-parasitic nematode communities infesting olive orchards soils in southern Spain.

    Science.gov (United States)

    Palomares-Rius, Juan E; Castillo, Pablo; Montes-Borrego, Miguel; Navas-Cortés, Juan A; Landa, Blanca B

    2015-01-01

    This work has studied for the first time the structure and diversity of plant-parasitic nematodes (PPNs) infesting olive orchard soils in a wide-region in Spain that included 92 locations. It aims at determining which agronomical or environmental factors associated to the olive orchards are the main drivers of the PPNs community structure and diversity. Classical morphological and morphometric identification methods were used to determine the frequency and densities of PPNs. Thirteen families, 34 genera and 77 species of PPNs were identified. The highest diversity was found in Helicotylenchus genus, with six species previously reported in Spain and with H. oleae being a first report. Neodolichorhynchus microphasmis and Diptenchus sp., Diphtherophora sp., and Discotylenchus sp., usually considered fungal feeders, were also reported for the first time associated to olive rhizosphere. PPNs abundance ranged from 66 to 16,288 individuals/500-cm3 of soil with Helicotylenchus digonicus being the most prevalent species, followed by Filenchus sp., Merlinius brevidens and Xiphinema pachtaicum. Nematode abundance and diversity indexes were influenced by olive cultivar, and orchard and soil management practices; while olive variety and soil texture were the main factors driving PPN community composition. Soil physicochemical properties and climatic characteristics most strongly associated to the PPN community composition included pH, sand content and exchangeable K, and maximum and minimum average temperature of the sampled locations. Our data suggests that there is a high diversity of PPNs associated to olive in Southern Spain that can exert different damage to olive roots depending on the olive variety and their abundance. Further analysis to determine the resistance levels of most common olive varieties to the prevalent PPNs in Spain will help to choose the most appropriate ones for the establishment of new plantations. This choice will take into consideration the specific

  8. Anthelmintic-resistant nematodes in Irish commercial sheep flocks- the state of play

    Directory of Open Access Journals (Sweden)

    Good Barbara

    2012-12-01

    Full Text Available Abstract Anthelmintic resistance has been reported in most sheep producing countries. Prior to the mid 1990s, reports of anthelmintic resistance in Ireland were sparse and focused on benzimidazole, one of the three classes of anthelmintic available during this period. This evidence for efficacy issues on Irish farms combined with awareness that anthelmintic resistance was increasingly being reported in other countries prompted the need for more comprehensive investigations on Irish farms. Faecal egg count reduction and micro-agar larval development tests were employed to investigate resistance to benzimidazole, levamisole and macrocyclic lactone. There is compelling evidence for resistance to both benzimidazole (>88% of flocks and levamisole (>39% of flocks. Resistance of nematode populations to macrocyclic lactone was suspected on a small number of farms (11% but needs to be confirmed. The recent introduction of two new classes of anthelmintics, after over a 25 year interval, together with the evidence that anthelmintic resistance is reported within a relatively short time following the introduction of a new anthelmintic compound means that the challenge to the industry is immediate. Actions are urgently required to manage anthelmintic resistance so as to prolong the lifespan of anthelmintics.

  9. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species.

    Science.gov (United States)

    Ulloa, M; Wang, C; Saha, S; Hutmacher, R B; Stelly, D M; Jenkins, J N; Burke, J; Roberts, P A

    2016-04-01

    Chromosome substitution (CS) lines in plants are a powerful genetic resource for analyzing the contribution of chromosome segments to phenotypic variance. In this study, a series of interspecific cotton (Gossypium spp.) CS lines were used to identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode or fungal disease resistance traits. The CS lines were developed in the G. hirsutum L. TM-1 background with chromosome or chromosome segment substitutions from G. barbadense L. Pima 3-79 or G. tomentosum. Root-knot nematode (Meloidogyne incognita) and fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) (races 1 and 4) resistance alleles and quantitative trait loci (QTL) previously placed on cotton chromosomes using SSR markers in two interspecific recombinant inbred line populations were chosen for testing. Phenotypic responses of increased resistance or susceptibility in controlled inoculation and infested field assays confirmed the resistance QTLs, based on substitution with the positive or negative allele for resistance. Lines CS-B22Lo, CS-B04, and CS-B18 showed high resistance to nematode root-galling, confirming QTLs on chromosomes 4 and 22 (long arm) with resistance alleles from Pima 3-79. Line CS-B16 had less fusarium race 1-induced vascular root staining and higher percent survival than the TM-1 parent, confirming a major resistance QTL on chromosome 16. Lines CS-B(17-11) and CS-B17 had high fusarium race 4 vascular symptoms and low survival due to susceptible alleles introgressed from Pima 3-79, confirming the localization on chromosome 17 of an identified QTL with resistance alleles from TM1 and other resistant lines. Analyses validated regions on chromosomes 11, 16, and 17 harboring nematode and fusarium wilt resistance genes and demonstrated the value of CS lines as both a germplasm resource for breeding programs and as a powerful genetic analysis tool for determining QTL effects for disease

  10. Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation

    Science.gov (United States)

    Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E.

    2018-01-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes

  11. Mycobiome of Cysts of the Soybean Cyst Nematode Under Long Term Crop Rotation.

    Science.gov (United States)

    Hu, Weiming; Strom, Noah; Haarith, Deepak; Chen, Senyu; Bushley, Kathryn E

    2018-01-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe (Phylum Nematoda), is a major pathogen of soybean. It causes substantial yield losses worldwide and is difficult to control because the cyst protects the eggs which can remain viable for nearly a decade. Crop rotation with non-host crops and use of biocontrol organisms such as fungi and bacteria offer promising approaches, but remain hampered by lack of knowledge of the biology of nematode parasitic organisms. We used a high-throughput metabarcoding approach to characterize fungal communities associated with the SCN cyst, a microenvironment in soil that may harbor both nematode parasites and plant pathogens. SCN cysts were collected from a long-term crop rotation experiment in Southeastern Minnesota at three time points over two growing seasons to characterize diversity of fungi inhabiting cysts and to examine how crop rotation and seasonal variation affects fungal communities. A majority of fungi in cysts belonged to Ascomycota and Basidiomycota, but the presence of several early diverging fungal subphyla thought to be primarily plant and litter associated, including Mortierellomycotina and Glomeromycotina (e.g., arbuscular mycorrhizal fungi), suggests a possible role as nematode egg parasites. Species richness varied by both crop rotation and season and was higher in early years of crop rotation and in fall at the end of the growing season. Crop rotation and season also impacted fungal community composition and identified several classes of fungi, including Eurotiomycetes, Sordariomycetes, and Orbiliomycetes (e.g., nematode trapping fungi), with higher relative abundance in early soybean rotations. The relative abundance of several genera was correlated with increasing years of soybean. Fungal communities also varied by season and were most divergent at midseason. The percentage of OTUs assigned to Mortierellomycotina_cls_Incertae_sedis and Sordariomycetes increased at midseason, while Orbiliomycetes

  12. The dynamics of nematode infections of farmed ruminants

    NARCIS (Netherlands)

    Roberts, M.G.; Heesterbeek, J.A.P.

    1995-01-01

    In this paper the dynamics and control of nematode parasites of farmed ruminants are discussed via a qualitative analysis of a differential equation model. To achieve this a quantity, 'the basic reproduction quotient' (Q0), whose definition coincides with previous definitions of R0 for

  13. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense.

    Directory of Open Access Journals (Sweden)

    Changlong Chen

    Full Text Available Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.

  14. The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla.

    Science.gov (United States)

    Yu, Ziquan; Xiong, Jing; Zhou, Qiaoni; Luo, Haiyan; Hu, Shengbiao; Xia, Liqiu; Sun, Ming; Li, Lin; Yu, Ziniu

    2015-02-01

    Cry6A toxin from Bacillus thuringiensis is a representative nematicidal crystal protein with a variety of nematicidal properties to free-living nematode Caenorhabditis elegans. Cry6A shares very low homology and different structure with Cry5B, another representative nematicidal crystal protein, and probably acts in a distinct pathway. All these strongly indicate that Cry6A toxin is likely a potent candidate for nematicide. The present study dealt with global investigation to determine the detrimental impacts of Cry6Aa2 toxin on Meloidogyne hapla, a root-knot nematode, and evaluated its biocontrol efficacy in pot experiment. Obtained results indicated that Cry6Aa2 toxin exhibits obvious toxicity to second-stage juvenile of M. hapla, and significantly inhibits egg hatch, motility, and penetration to host plant. Pot experiment suggested that soil drenching with spore-crystal mixture of Cry6Aa2 can clearly lighten the disease of root-knot nematode, including reduction of galling index and egg masses on host plant root, decreasing final population of nematode in soil. Moreover, application of Cry6Aa2 can obviously promote plant growth. These results demonstrated that Cry6Aa2 toxin is a promising nematicidal agent, and possesses great potential in plant-parasitic nematode management and construction of transgenic crop with constant resistance to nematode. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Screening of in vitro derived mutants of banana against nematodes ...

    African Journals Online (AJOL)

    The rest of the mutants namely Ro Im V4 6-1-2 and Si Im V4 6-2-5 were found to be susceptible to nematodes. The resistant and moderately resistant mutants of banana could be further used in breeding programmes as well as being recognized as potential cultivars of commerce. Key words: Banana, nematode, resistance, ...

  16. Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race.

    Science.gov (United States)

    Vanaerschot, Manu; Huijben, Silvie; Van den Broeck, Frederik; Dujardin, Jean-Claude

    2014-01-01

    Drug-resistant pathogens emerge faster than new drugs come out of drug discovery pipelines. Current and future drug options should therefore be better protected, requiring a clear understanding of the factors that contribute to the natural history of drug resistance. Although many of these factors are relatively well understood for most bacteria, this proves to be more complex for vectorborne parasites. In this review, we discuss considering three key models (Plasmodium, Leishmania and Schistosoma) how drug resistance can emerge, spread and persist. We demonstrate a multiplicity of scenarios, clearly resulting from the biological diversity of the different organisms, but also from the different modes of action of the drugs used, the specific within- and between-host ecology of the parasites, and environmental factors that may have direct or indirect effects. We conclude that integrated control of drug-resistant vectorborne parasites is not dependent upon chemotherapy only, but also requires a better insight into the ecology of these parasites and how their transmission can be impaired. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Simulated selection responses for breeding programs including resistance and resilience to parasites in Creole goats

    NARCIS (Netherlands)

    Gunia, M.; Phocas, F.; Gourdine, J.L.; Bijma, P.; Mandonnet, N.

    2013-01-01

    The Creole goat is a local breed used for meat production in Guadeloupe (French West Indies). As in other tropical countries, improvement of parasite resistance is needed. In this study, we compared predicted selection responses for alternative breeding programs with or without parasites resistance

  18. Early responses of resistant and susceptible potato roots during invasion by the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Sheridan, Jacqueline P; Miller, Anthony J; Perry, Roland N

    2004-03-01

    Signals from roots of resistant (cv. Maris Piper) and susceptible (cv. Désirée) potato cultivars during invasion by second stage juveniles (J2s) of the potato cyst nematode, Globodera rostochiensis, were investigated. Novel experimental chambers enabled the recording of electrophysiological responses from roots during nematode invasion. The root cell membrane potentials were maintained throughout the 3 d required to assess invasion and feeding site development. The steady-state resting membrane potentials of Désirée were more negative than those of Maris Piper on day 1, but the reverse on day 3. After 5 d there was no difference between the two cultivars. Intracellular microelectrodes detected marked spike activity in roots after the application of J2s and there were distinct and reproducible differences between the two cultivars, with the response from Désirée being much greater than that from Maris Piper. The responses to mechanical stimulation of roots by blunt micropipettes and sharp electrodes were consistent and similar in both cultivars to the responses in Maris Piper obtained after nematode invasion, but could not account for the marked response found in Désirée. Exogenous application of exoenzymes, used to mimic nematode chemical secretions, resulted in a distinct depolarization pattern that, although similar in both cultivars, was different from patterns obtained during nematode invasion or mechanical stimulation. The pH of homogenates prepared from roots of both cultivars was measured and a Ca2+ channel blocker was used to assess the role of Ca2+ in nematode invasion. The results indicated a role for Ca2+ in the signalling events that occur during nematode invasion.

  19. Alternative splicing: a novel mechanism of regulation identified in the chorismate mutase gene of the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Lu, Shun-Wen; Tian, Duanhua; Borchardt-Wier, Harmony B; Wang, Xiaohong

    2008-11-01

    Chorismate mutase (CM) secreted from the stylet of plant-parasitic nematodes plays an important role in plant parasitism. We isolated and characterized a new nematode CM gene (Gr-cm-1) from the potato cyst nematode, Globodera rostochiensis. The Gr-cm-1 gene was found to exist in the nematode genome as a single-copy gene that has two different alleles, Gr-cm-1A and Gr-cm-1B, both of which could give rise to two different mRNA transcripts of Gr-cm-1 and Gr-cm-1-IRII. In situ mRNA hybridization showed that the Gr-cm-1 gene was exclusively expressed within the subventral oesophageal gland cells of the nematode. Gr-cm-1 was demonstrated to encode a functional CM (GR-CM-1) potentially having a dimeric structure as the secreted bacterial *AroQ CMs. Gr-cm-1-IRII, generated by retention of intron 2 of the Gr-cm-1 pre-mRNA through alternative splicing (AS), would encode a truncated protein (GR-CM-1t) lacking the CM domain with no CM activity. The quantitative real-time reverse transcription-PCR assay revealed that splicing of the Gr-cm-1 gene was developmentally regulated; Gr-cm-1 was up-regulated whereas Gr-cm-1-IRII was down-regulated in early nematode parasitic stages compared to the preparasitic juvenile stage. Low-temperature SDS-PAGE analysis revealed that GR-CM-1 could form homodimers when expressed in Escherichia coli and the dimerization domain was retained in the truncated GR-CM-1t protein. The specific interaction between the two proteins was demonstrated in yeast. Our data suggested that the novel splice variant might function as a dominant negative isoform through heterodimerization with the full-length GR-CM-1 protein and that AS may represent an important mechanism for regulating CM activity during nematode parasitism.

  20. The significance of ecology in the development of Verticillium chlamydosporium as a biological control agent against root-knot nematodes (Meloidogyne spp.)

    NARCIS (Netherlands)

    Leij, de F.A.A.M.

    1992-01-01

    A thorough understanding of the interactions which occur between nematode parasites and nematode pests and the influence of biotic and abiotic factors on these interactions, is essential in the development of biological control agents for nematodes. The aim of this study was to develop a

  1. Cereal cyst nematode resistance conferred by the Cre7 gene from Aegilops triuncialis and its relationship with Cre genes from Australian wheat cultivars

    OpenAIRE

    Montes, Maria Jesus; Andrés, María Fe; Sin, E.; Lopez Braña, Isidoro; Martín-Sánchez, J.A.; Romero, M.D.; Delibes Castro, Angeles

    2008-01-01

    Cereal cyst nematode (CCN; Heterodera avenae Woll.) is a root pathogen of cereal crops that can cause severe yield losses in wheat (Triticum aestivum). Differential host–nematode interactions occur in wheat cultivars carrying different CCN resistance (Cre) genes. The objective of this study was to determine the CCN resistance conferred by the Cre7 gene from Aegilops triuncialis in a 42-chromosome introgression line and to assess the effects of the Cre1, Cre3, Cre4, and Cre8 genes present in A...

  2. Comparison of two in vitro methods for the detection of ivermectin resistance in Haemonchus contortus in sheep

    Directory of Open Access Journals (Sweden)

    Urda Dolinská M.

    2016-06-01

    Full Text Available Gastrointestinal parasitic nematodes in sheep cause severe economic losses. Anthelmintics are the most commonly used drugs for prophylaxis and therapy against parasitic helminths. The problem of drug resistance has developed for all commercially available anthelmintics in several genera and classes of helminths. In vitro and in vivo tests are used to detect anthelmintic resistance. Two in vitro methods (larval migration inhibition test and micromotility test for the detection of ivermectin (IVM resistance were compared using IVM-resistant and IVM-susceptible isolates of Haemonchus contortus. The degree of resistance for each test was expressed as a resistance factor (RF. The micromotility test was more sensitive for quantitatively measuring the degree of resistance between susceptible and resistant isolates. The RFs for this test for IVM and eprinomectin ranged from 1.00 to 108.05 and from 3.87 to 32.32, respectively.

  3. Lung and hearth nematodes in some Spanish mammals.

    Science.gov (United States)

    Alvarez, F; Iglesias, R; Bos, J; Rey, J; Sanmartin Durán, M L

    1991-01-01

    Thirteen host species belonging to the orders Rodentia, Insectivora and Carnivora from various localities in Galicia (NW Spain) were examined for heart and lung parasites. The following species were found: Parastrongylus dujardini (5.5%) in Apodemus sylvaticus, Crenosoma striatum in Erinaceus europaeus (83%), Angiostrongylus vasorum, Crenosoma vulpis and Eucoleus aerophilus in Vulpes vulpes (3, 3.46 and 0.50%, respectively), Crenosoma taiga in Putorius putorius (100%) and Crenosoma sp. in Meles meles (25%). In Crocidura russula nematode larvae were found (3.3%). Mus musculus, Rattus norvegicus, Rattus rattus, Talpa caeca, Sorex araneus, Genetta genetta and Canis lupus were not parasitized by lung or heart parasites.

  4. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis

    Science.gov (United States)

    Kammerhofer, Nina; Radakovic, Zoran; Regis, Jully M A; Dobrev, Petre; Vankova, Radomira; Grundler, Florian M W; Siddique, Shahid; Hofmann, Julia; Wieczorek, Krzysztof

    2015-01-01

    Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii–Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage. PMID:25825039

  5. Infection, Reproduction Potential, and Root Galling by Root-knot Nematode Species and Concomitant Populations on Peanut and Tobacco

    Science.gov (United States)

    Hirunsalee, Anan; Barker, K. R.; Beute, M. K.

    1995-01-01

    Single populations of Meloidogyne arenaria races 1 (MA1) and 2 (MA2) and M. hapla (MH), and mixed populations of MA1 + MA2 and MA1 + MH with four inoculum levels of eggs were tested on peanut cv. 'Florigiant' and M. incognita-resistant tobacco cv. 'McNair 373' in a greenhouse experiment. Root infection, female development, and reproduction of MA2 on peanut and MA1 on resistant tobacco were limited at 2 and 6 weeks. MA1, MH, and MA1 + MH on peanut had similar root infection (total parasitic forms per root unit) at both 2 and 6 weeks, and similar female development and reproduction potentials at 6 weeks. MA2 tended to depress root infection, female development, and reproduction of MA1 on peanut. MH had little effect on MA1 on this crop. On tobacco, MA2 population had greater incidence of root infection than did MH at 2 weeks. The two nematode species had similar development in roots at 6 weeks. All of these processes were restricted when either MA2 or MH was present together with MA1. As initial inoculum level of parasitically fit populations increased, relative infection ratio on both peanut and tobacco, and reproduction factor on peanut decreased. Populations that had high infection incidence and reproduction rates induced greater root galling than did other populations. Root galling was suppressed in the presence of antagonistic response between nematode populations. PMID:19277277

  6. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan.

    Science.gov (United States)

    Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji

    2012-06-01

    One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation.

  7. The novel nematicide wact-86 interacts with aldicarb to kill nematodes.

    Directory of Open Access Journals (Sweden)

    Andrew R Burns

    2017-04-01

    Full Text Available Parasitic nematodes negatively impact human and animal health worldwide. The market withdrawal of nematicidal agents due to unfavourable toxicities has limited the available treatment options. In principle, co-administering nematicides at lower doses along with molecules that potentiate their activity could mitigate adverse toxicities without compromising efficacy. Here, we screened for new small molecules that interact with aldicarb, which is a highly effective treatment for plant-parasitic nematodes whose toxicity hampers its utility. From our collection of 638 worm-bioactive compounds, we identified 20 molecules that interact positively with aldicarb to either kill or arrest the growth of the model nematode Caenorhabditis elegans. We investigated the mechanism of interaction between aldicarb and one of these novel nematicides called wact-86. We found that the carboxylesterase enzyme GES-1 hydrolyzes wact-86, and that the interaction is manifested by aldicarb's inhibition of wact-86's metabolism by GES-1. This work demonstrates the utility of C. elegans as a platform to search for new molecules that can positively interact with industrial nematicides, and provides proof-of-concept for prospective discovery efforts.

  8. Modelling nematode movement using time-fractional dynamics.

    Science.gov (United States)

    Hapca, Simona; Crawford, John W; MacMillan, Keith; Wilson, Mike J; Young, Iain M

    2007-09-07

    We use a correlated random walk model in two dimensions to simulate the movement of the slug parasitic nematode Phasmarhabditis hermaphrodita in homogeneous environments. The model incorporates the observed statistical distributions of turning angle and speed derived from time-lapse studies of individual nematode trails. We identify strong temporal correlations between the turning angles and speed that preclude the case of a simple random walk in which successive steps are independent. These correlated random walks are appropriately modelled using an anomalous diffusion model, more precisely using a fractional sub-diffusion model for which the associated stochastic process is characterised by strong memory effects in the probability density function.

  9. A preliminary investigations on infective parasites in King rat snakes(Elaphe carinata and Red-banded wolf snakes(Dinodon rufozonatum in Shanghai

    Directory of Open Access Journals (Sweden)

    WU Youling

    2013-12-01

    Full Text Available To investigate the infective status of parasites in snakes from Shanghai,19 snakes from 2 species ( 9 Dinodon rufozonatum and 10 Elaphe carinata confiscated from the market were dissected.The viscera (body,subcutaneous,muscles,heart,lungs,liver,stomach,intestinal organs and blood smears of the snakes were examined.The parasites from these viscera were collected and observed by microscope.The results showed nematodes,tapeworms and Hepatozoon were found,but no ectoparasites,trematodes and acanthocephalan.The parasitic infection rate of snakes checked was 100%.The infection rate of nematodes,tapeworms and Hepatozoon were 77.88%,100%,0 in Dinodon rufozonatum and 100%,100%,100% in Elaphe carinata, respectively.A total of 192 nematodes and 1236 tapeworms were collected in 19 snakes,and 69.79% of nematodes and 86.55% of tapeworms were from Elaphe carinata.According to the viscera,93.20% of tapeworms were found in subcutaneous and 65.63% of nematodes in stomach.The results indicated the parasitic infection rate and intensity of snakes from Shanghai market were very high.Sparganum mansoni found in this investigation was zoonotic parasite,and it is easy to infect humans through eating snake skin,meat and gall.Therefore,protecting wild animals like snakes is also to protect human themselves.

  10. Rapid evolution of parasite life history traits on an expanding range-edge.

    Science.gov (United States)

    Kelehear, Crystal; Brown, Gregory P; Shine, Richard

    2012-04-01

    Parasites of invading species undergoing range advance may be exposed to powerful new selective forces. Low host density in range-edge populations hampers parasite transmission, requiring the parasite to survive longer periods in the external environment before encountering a potential host. These conditions should favour evolutionary shifts in offspring size to maximise parasite transmission. We conducted a common-garden experiment to compare life history traits among seven populations of the nematode lungworm (Rhabdias pseudosphaerocephala) spanning from the parasite population core to the expanding range-edge in invasive cane toads (Rhinella marina) in tropical Australia. Compared to conspecifics from the population core, nematodes from the range-edge exhibited larger eggs, larger free-living adults and larger infective larvae, and reduced age at maturity in parasitic adults. These results support a priori predictions regarding adaptive changes in offspring size as a function of invasion history, and suggest that parasite life history traits can evolve rapidly in response to the selective forces exerted by a biological invasion. © 2012 Blackwell Publishing Ltd/CNRS.

  11. Coccidian and nematode infections influence prevalence of antibody to myxoma and rabbit hemorrhagic disease viruses in European rabbits.

    Science.gov (United States)

    Bertó-Moran, Alejandro; Pacios, Isabel; Serrano, Emmanuel; Moreno, Sacramento; Rouco, Carlos

    2013-01-01

    The interaction among several parasites in European rabbits (Oryctolagus cuniculus) is crucial to host fitness and to the epidemiology of myxomatosis and rabbit hemorrhagic disease. These diseases have caused significant reductions in rabbit populations on the Iberian Peninsula. Most studies have focused on the epidemiology and pathogenesis of these viruses individually, and little is known about interactions between these viruses and other parasites. Taking advantage of an experimental restocking program in Spain, the effects of coccidian and nematode infections on the probability of having detectable antibody to myxoma and rabbit hemorrhagic disease viruses were tested in European wild rabbits. For 14 mo, we monitored rabbit abundance and parasite loads (coccidia and nematodes) in three reintroduced rabbit populations. While coccidian and nematode loads explained seasonal antibody prevalences to myxoma virus, the pattern was less clear for rabbit hemorrhagic disease. Contrary to expectations, prevalence of antibody to myxoma virus was inversely proportional to coccidian load, while nematode load seemed to play a minor role. These results have implications for viral disease epidemiology and for disease management intended to increase rabbit populations in areas where they are important for ecosystem conservation.

  12. Genetic control of acquired resistance to gastrointestinal nematode parasites in sheep

    International Nuclear Information System (INIS)

    Windon, R.G.; Wagland, B.M.; Dineen, J.K.

    1988-01-01

    A radiation attenuated larval vaccine has been used to evaluate the role of genetic components of the immune response in the control of Trichostrongylus colubriformis in sheep. Through selection based on age dependent responsiveness, lines of sheep have been established in which lambs are either high or low responders to vaccination and challenge infection. The estimated and realized heritabilities for the selected trait are 0.35-0.41. Significant interline differences were demonstrated and, within the lines, ewe lambs were consistently more responsive than rams or wethers. The effect of selection was not antigenically specific, since high responsiveness to T. colubriformis was associated with increased responsiveness to other related (T. rugatus) and unrelated parasites (Ostertagia circumcincta and Haemonchus contortus). In addition, high responders had a more vigorous reaction against naturally acquired infections than low responders. The general immunological competence was also increased in high responders; this was shown by the levels of serum complement fixing antibody to larval antigens after vaccination and challenge, in vitro blastogenic responses stimulated by larval antigens and the phagocytic function of peripheral leucocytes. No production penalty (weight gain and wool growth) was associated with heightened responsiveness. (author). 10 refs, 1 fig

  13. Parasites as Biological Tags for Stock Discrimination of Beaked Redfish (Sebastes mentella: Parasite Infra-Communities vs. Limited Resolution of Cytochrome Markers.

    Directory of Open Access Journals (Sweden)

    Regina Klapper

    Full Text Available The use of parasites as biological tags for discrimination of fish stocks has become a commonly used approach in fisheries management. Metazoan parasite community analysis and anisakid nematode population genetics based on a mitochondrial cytochrome marker were applied in order to assess the usefulness of the two parasitological methods for stock discrimination of beaked redfish Sebastes mentella of three fishing grounds in the North East Atlantic. Multivariate, model-based approaches demonstrated that the metazoan parasite fauna of beaked redfish from East Greenland differed from Tampen, northern North Sea, and Bear Island, Barents Sea. A joint model (latent variable model was used to estimate the effects of covariates on parasite species and identified four parasite species as main source of differences among fishing grounds; namely Chondracanthus nodosus, Anisakis simplex s.s., Hysterothylacium aduncum, and Bothriocephalus scorpii. Due to its high abundance and differences between fishing grounds, Anisakis simplex s.s. was considered as a major biological tag for host stock differentiation. Whilst the sole examination of Anisakis simplex s.s. on a population genetic level is only of limited use, anisakid nematodes (in particular, A. simplex s.s. can serve as biological tags on a parasite community level. This study confirmed the use of multivariate analyses as a tool to evaluate parasite infra-communities and to identify parasite species that might serve as biological tags. The present study suggests that S. mentella in the northern North Sea and Barents Sea is not sub-structured.

  14. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Directory of Open Access Journals (Sweden)

    Mateusz Matuszkiewicz

    2018-03-01

    Full Text Available Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD known as the hypersensitive response (HR, whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1 family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2 revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively. LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators

  15. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Science.gov (United States)

    Matuszkiewicz, Mateusz; Sobczak, Miroslaw; Cabrera, Javier; Escobar, Carolina; Karpiński, Stanislaw; Filipecki, Marcin

    2018-01-01

    Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD) known as the hypersensitive response (HR), whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1) family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2) revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively). LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators belonging to the

  16. Nematode-bacterium symbioses--cooperation and conflict revealed in the "omics" age.

    Science.gov (United States)

    Murfin, Kristen E; Dillman, Adler R; Foster, Jeremy M; Bulgheresi, Silvia; Slatko, Barton E; Sternberg, Paul W; Goodrich-Blair, Heidi

    2012-08-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, "omics"' studies in nematode-bacterial systems, and the wider implications of the findings.

  17. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach.

    Science.gov (United States)

    Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane

    2004-04-01

    The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.

  18. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Directory of Open Access Journals (Sweden)

    Mohamed Adam

    Full Text Available The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  19. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Science.gov (United States)

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  20. Parasites in harbour seals ( Phoca vitulina) from the German Wadden Sea between two Phocine Distemper Virus epidemics

    Science.gov (United States)

    Lehnert, K.; Raga, J. A.; Siebert, U.

    2007-12-01

    Parasites were collected from 107 harbour seals ( Phoca vitulina) found on the coasts of Schleswig-Holstein, Germany, between 1997 and 2000. The prevalence of the parasites and their associated pathology were investigated. Eight species of parasites, primarily nematodes, were identified from the examined organs: two anisakid nematodes ( Pseudoterranova decipiens (sensu lato) , Contracaecum osculatum (sensu lato)) from the stomach, Otostrongylus circumlitus (Crenosomatidae) and Parafilaroides gymnurus (Filaroididae) from the respiratory tract, one filarioid nematode ( Acanthocheilonema spirocauda) from the heart, two acanthocephalans, Corynosoma strumosum and C. semerme (Polymorphidae), from the intestine and an ectoparasite, Echinophthirius horridus (Anoplura, Insecta). Lungworm infection was the most prominent parasitological finding and secondary bacterial bronchopneumonia the most pathogenic lesion correlated with the parasites. Heavy nematode burdens in the respiratory tract were highly age-related and more frequent in young seals. A positive correlation was observed between high levels of pulmonary infection and severity of bronchopneumonia. The prevalence of lungworms in this study was higher than in seals that died during the 1988/1989 Phocine Distemper Virus epidemic, and the prevalence of acanthocephalans and heartworms had decreased compared to findings from the first die-off.

  1. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994.

    Science.gov (United States)

    Koenning, S R; Overstreet, C; Noling, J W; Donald, P A; Becker, J O; Fortnum, B A

    1999-12-01

    Previous reports of crop losses to plant-parasitic nematodes have relied on published results of survey data based on certain commodities, including tobacco, peanuts, cotton, and soybean. Reports on crop-loss assessment by land-grant universities and many commodity groups generally are no longer available, with the exception of the University of Georgia, the Beltwide Cotton Conference, and selected groups concerned with soybean. The Society of Nematologists Extension Committee contacted extension personnel in 49 U.S. states for information on estimated crop losses caused by plant-parasitic nematodes in major crops for the year 1994. Included in this paper are survey results from 35 states on various crops including corn, cotton, soybean, peanut, wheat, rice, sugarcane, sorghum, tobacco, numerous vegetable crops, fruit and nut crops, and golf greens. The data are reported systematically by state and include the estimated loss, hectarage of production, source of information, nematode species or taxon when available, and crop value. The major genera of phytoparasitic nematodes reported to cause crop losses were Heterodera, Hoplolaimus, Meloidogyne, Pratylenchus, Rotylenchulus, and Xiphinema.

  2. MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Qi-Xing Huang

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are considered to be very important in regulating the growth, development, behavior and stress response in animals and plants in post-transcriptional gene regulation. Pinewood nematode, Bursaphelenchus xylophilus, is an important invasive plant parasitic nematode in Asia. To have a comprehensive knowledge about miRNAs of the nematode is necessary for further in-depth study on roles of miRNAs in the ecological adaptation of the invasive species. METHODS AND FINDINGS: Five small RNA libraries were constructed and sequenced by Illumina/Solexa deep-sequencing technology. A total of 810 miRNA candidates (49 conserved and 761 novel were predicted by a computational pipeline, of which 57 miRNAs (20 conserved and 37 novel encoded by 53 miRNA precursors were identified by experimental methods. Ten novel miRNAs were considered to be species-specific miRNAs of B. xylophilus. Comparison of expression profiles of miRNAs in the five small RNA libraries showed that many miRNAs exhibited obviously different expression levels in the third-stage dispersal juvenile and at a cold-stressed status. Most of the miRNAs exhibited obviously down-regulated expression in the dispersal stage. But differences among the three geographic libraries were not prominent. A total of 979 genes were predicted to be targets of these authentic miRNAs. Among them, seven heat shock protein genes were targeted by 14 miRNAs, and six FMRFamide-like neuropeptides genes were targeted by 17 miRNAs. A real-time quantitative polymerase chain reaction was used to quantify the mRNA expression levels of target genes. CONCLUSIONS: Basing on the fact that a negative correlation existed between the expression profiles of miRNAs and the mRNA expression profiles of their target genes (hsp, flp by comparing those of the nematodes at a cold stressed status and a normal status, we suggested that miRNAs might participate in ecological adaptation and behavior regulation of the

  3. [Diversity of soil nematode communities in the subalpine and alpine forests of western Sichuan, China.

    Science.gov (United States)

    Chen, Ya; Yang, Wan Qin; Wu, Fu Zhong; Yang, Fan; Lan, Li Ying; Liu, Yu Wei; Guo, Cai Hong; Tan, Bo

    2017-10-01

    In order to understand the diversity of soil nematodes in the subalpine/alpine forests of the eastern Qinghai-Tibet Plateau, soil nematodes in the primary forest, mixed forest and secondary forest of Abies faxoniana were extracted by elutriation and sugar-centrifugation method in July 2015, and the composition and structure characteristics of soil nematode communities were studied in the three forests at different altitudes. A total of 37950 soil nematodes were collected, which belonged to 20 families and 27 genera, and the mean density was 4217 ind·100 g -1 dry soil. Filenchus was the dominant genus in the primary forest, and Filenchus and Pararotylenchus in the mixed forest and secondary forest, respectively. The individual number of each dominant genus was significantly affected by forest type. All nematode individuals were classified into the four trophic groups of bacterivores, fungivores, plant-parasites and omnivore-predators. The fungivores were dominant in the primary and secondary forest and the bacterivores in the mixed forest. The number of soil nematode c-p (colonizer-persister) groups of c-p 1, c-p 2, c-p 3 and c-p 4 accounted for 6.1%, 51.1%, 30.0% and 12.7% of the total nematode abundance, respectively. The maturity index (MI), the total maturity index (∑MI) and the plant parasitic index (PPI) of soil nematodes decreased gradually with the increase of altitude. The nematode channel ratio in the mixed forest was higher than 0.5, but that in the primary forest and secondary forest was below 0.5. The forest type significantly affected the soil nematode maturity index and channel ratio, but the forest type, soil layer and their interaction had no significant effect on the diversity index. There were obvious diffe-rences in the composition, nutrient structure and energy flow channel of soil nematodes in the subalpine/alpine forests of western Sichuan, providing an important reference for understanding the function of soil nematodes in soil processes

  4. The utility of mtDNA and rDNA for barcoding and phylogeny of plant-parasitic nematodes from Longidoridae (Nematoda, Enoplea).

    Science.gov (United States)

    Palomares-Rius, J E; Cantalapiedra-Navarrete, C; Archidona-Yuste, A; Subbotin, S A; Castillo, P

    2017-09-07

    The traditional identification of plant-parasitic nematode species by morphology and morphometric studies is very difficult because of high morphological variability that can lead to considerable overlap of many characteristics and their ambiguous interpretation. For this reason, it is essential to implement approaches to ensure accurate species identification. DNA barcoding aids in identification and advances species discovery. This study sought to unravel the use of the mitochondrial marker cytochrome c oxidase subunit 1 (coxI) as barcode for Longidoridae species identification, and as a phylogenetic marker. The results showed that mitochondrial and ribosomal markers could be used as barcoding markers, except for some species from the Xiphinema americanum group. The ITS1 region showed a promising role in barcoding for species identification because of the clear molecular variability among species. Some species presented important molecular variability in coxI. The analysis of the newly provided sequences and the sequences deposited in GenBank showed plausible misidentifications, and the use of voucher species and topotype specimens is a priority for this group of nematodes. The use of coxI and D2 and D3 expansion segments of the 28S rRNA gene did not clarify the phylogeny at the genus level.

  5. Anti-parasitic effects of plant secondary metabolites on swine nematodes

    DEFF Research Database (Denmark)

    Williams, A.R.; Pena-Espinoza, Miguel Angel; Fryganas, Christos

    Organic production presents challenges to animal health and productivity. In organic pig production, animals must have access to outdoor pastures which increases exposure to gastrointestinal parasites. Moreover, the routine use of synthetic anti-parasitic drugs is not allowed. Thus, novel parasite...

  6. Biomonitoring Heavy Metal Pollution Using an Aquatic Apex Predator, the American Alligator, and Its Parasites

    Science.gov (United States)

    Tellez, Marisa; Merchant, Mark

    2015-01-01

    Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment. PMID:26555363

  7. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes.

    Science.gov (United States)

    Shah, Syed Jehangir; Anjam, Muhammad Shahzad; Mendy, Badou; Anwer, Muhammad Arslan; Habash, Samer S; Lozano-Torres, Jose L; Grundler, Florian M W; Siddique, Shahid

    2017-12-16

    When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Gastric nematodes of Nile crocodiles, Crocodylus niloticus Laurenti, 1768, in the Okavango River, Botswana

    Directory of Open Access Journals (Sweden)

    K. Junker

    2006-09-01

    Full Text Available The ascaridoid nematodes Dujardinascaris madagascariensis Chabaud & Caballero, 1966, Dujardinascaris dujardini (Travassos, 1920, Gedoelstascaris vandenbrandeni (Baylis, 1929 Sprent, 1978 and Multicaecum agile (Wedl, 1861 Baylis, 1923 were recovered from the stomach contents of Crocodylus niloticus Laurenti, 1768 from the Okavango River, Botswana, together with Eustrongylides sp., a dioctophymatoid nematode usually parasitizing piscivorous birds. Dujardinascaris madagascariensis was present in most of the infected hosts, while the remaining species were mostly represented in single collections in one to three hosts. All four ascaridoid nematodes represent new geographic records.

  9. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes

    Directory of Open Access Journals (Sweden)

    Marie-Stéphane Tranier

    2014-12-01

    Full Text Available Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated with bacteria, viruses or with filamentous fungi, which can destroy and feed on phytoparasitic nematodes. To be used by the farmers, biopesticides must be legalized by the states, which has led to the establishment of a legal framework for their use, devised by various governmental organizations.

  10. THE PREVALENCE OF GASTROINTESTINAL NEMATODES OF BALI CATTLE BREEDERS IN NUSA PENIDA

    Directory of Open Access Journals (Sweden)

    Putu Agus Trisna Kusuma Antara

    2017-08-01

    Full Text Available Nusa Penida is a pure breeding area of bali cattle, in which the cattle are mainly kept in conventional maintenance system and potentially infected by parasite, especially gastrointestinal nematodes. This study aims were to determine the prevalence and type of gastrointestinal nematodes in bali cattle breeders in Nusa Penida. Fecal samples were taken from 50 bali cattle breeders kept in cages (simantri and another 50 samples were from cattle not kept in cage. The floating method was used for morphological examination and prevalence, the data was analyzed with descriptive analysis. The results showed, the prevalence of bovine gastrointestinal nematodes in Nusa Penida was 25%. The prevalence of nematode infection in bali cattle that kept cages was lower compared to the cattle that were not kept in cage. Strongyloides papillosus and Capillaria bovis were the gastrointestinal nematodes found in the infected cattle.

  11. Anthelmintic effects of forage chicory against parasitic nematodes in cattle

    DEFF Research Database (Denmark)

    Pena-Espinoza, Miguel Angel; Williams, Andrew; Thamsborg, Stig Milan

    BACKGROUND: Chicory (Cichorium intybus) has potential as a natural anthelmintic in livestock, however evidence of efficacy against cattle nematodes is lacking. Here, we investigated anthelmintic effects of chicory in stabled calves. METHODS: Jersey male calves (2-4 months) were stratified by live...

  12. Rooting out Defense Mechanisms in Wheat against Plant Parasitic Nematodes

    Science.gov (United States)

    Root-lesion nematodes (Pratylenchus spp.) are soil borne pathogens of many important agricultural crops including wheat. Pratylenchus invade root cells and feed using a stylet, resulting in cell death. Common signs of Pratylenchus damage are root lesions, girdling, and lack of lateral branching. ...

  13. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites.

    Science.gov (United States)

    Knutie, Sarah A; Wilkinson, Christina L; Kohl, Kevin D; Rohr, Jason R

    2017-07-20

    Changes in the early-life microbiota of hosts might affect infectious disease risk throughout life, if such disruptions during formative times alter immune system development. Here, we test whether an early-life disruption of host-associated microbiota affects later-life resistance to infections by manipulating the microbiota of tadpoles and challenging them with parasitic gut worms as adults. We find that tadpole bacterial diversity is negatively correlated with parasite establishment in adult frogs: adult frogs that had reduced bacterial diversity as tadpoles have three times more worms than adults without their microbiota manipulated as tadpoles. In contrast, adult bacterial diversity during parasite exposure is not correlated with parasite establishment in adult frogs. Thus, in this experimental setup, an early-life disruption of the microbiota has lasting reductions on host resistance to infections, which is possibly mediated by its effects on immune system development. Our results support the idea that preventing early-life disruption of host-associated microbiota might confer protection against diseases later in life.Early-life microbiota alterations can affect infection susceptibility later in life, in animal models. Here, Knutie et al. show that manipulating the microbiota of tadpoles leads to increased susceptibility to parasitic infection in adult frogs, in the absence of substantial changes in the adults' microbiota.

  14. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides).

    Science.gov (United States)

    Thies, Judy A; Ariss, Jennifer J; Kousik, Chandrasekar S; Hassell, Richard L; Levi, Amnon

    2016-03-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN.

  15. RNA-Seq de novo assembly and differential transcriptome analysis of the nematode Ascaridia galli in relation to in vivo exposure to flubendazole.

    Directory of Open Access Journals (Sweden)

    Mihaela M Martis

    Full Text Available The nematode Ascaridia galli (order Ascaridida is an economically important intestinal parasite responsible for increased food consumption, reduced performance and elevated mortality in commercial poultry production. This roundworm is an emerging problem in several European countries on farms with laying hens, as a consequence of the recent European Union (EU ban on conventional battery cages. As infection is associated with slow development of low levels of acquired protective immunity, parasite control relies on repeated use of dewormers (anthelmintics. Benzimidazoles (BZ are currently the only anthelmintic registered in the EU for use in controlling A. galli and there is an obvious risk of overuse of one drug class, selecting for resistance. Thus we developed a reference transcriptome of A. galli to investigate the response in gene expression before and after exposure to the BZ drug flubendazole (FLBZ. Transcriptional variations between treated and untreated A. galli showed that transcripts annotated as mitochondrial glutamate dehydrogenase and cytochrome P450 were significantly down-regulated in treated worms, whereas transcripts homologous to heat shock proteins (HSP, catalase, phosphofructokinase, and a multidrug resistance P-glycoprotein (PGP1 were significantly up-regulated in treated worms. Investigation of candidate transcripts responsible for anthelmintic resistance in livestock nematodes led to identification of several tubulins, including six new isoforms of beta-tubulin, and several ligand-gated ionotropic receptors and ABC-transporters. We discovered several transcripts associated with drug binding and processing genes, but further characterisation using a larger set of worms exposed to BZs in functional assays is required to determine how these are involved in drug binding and metabolism.

  16. Introduction of New Parasites in Denmark

    DEFF Research Database (Denmark)

    Enemark, Heidi L.

    examples of such parasites/parasitic diseases: Setaria tundra, a mosquito-borne filarioid nematode which was detected for the first time in Danish deer in 2010. This parasite is usually considered harmless but is capable of causing peritonitis and mortality in ungulates. The newly detected parasite...... was genetically very similar to previously published isolates from France and Italy, and may have been spread to Denmark from southern Europe. Giardia spp. a zoonotic, unicellular parasite (protozoa) well known in Danish livestock but recently found in extremely high numbers in Danish deer with chronic diarrhea...... for the first time in Denmark approximately 10 years ago in 3 foxes from the Copenhagen area. Since then, no systematic surveillance has been performed, and therefore the current prevalence among wildlife and pets is unknown. So far the parasite has not been found in intermediate hosts (rodents) in Denmark...

  17. Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion.

    Science.gov (United States)

    Liu, Peng; Martin, Richard J; Dong, Liang

    2013-02-21

    This paper reports on the development of a lens-less and image-sensor-less micro-electro-fluidic (MEF) approach for real-time monitoring of the locomotion of microscopic nematodes. The technology showed promise for overcoming the constraint of the limited field of view of conventional optical microscopy, with relatively low cost, good spatial resolution, and high portability. The core of the device was microelectrode grids formed by orthogonally arranging two identical arrays of microelectrode lines. The two microelectrode arrays were spaced by a microfluidic chamber containing a liquid medium of interest. As a nematode (e.g., Caenorhabditis elegans) moved inside the chamber, the invasion of part of its body into some intersection regions between the microelectrodes caused changes in the electrical resistance of these intersection regions. The worm's presence at, or absence from, a detection unit was determined by a comparison between the measured resistance variation of this unit and a pre-defined threshold resistance variation. An electronic readout circuit was designed to address all the detection units and read out their individual electrical resistances. By this means, it was possible to obtain the electrical resistance profile of the whole MEF grid, and thus, the physical pattern of the swimming nematode. We studied the influence of a worm's body on the resistance of an addressed unit. We also investigated how the full-frame scanning and readout rates of the electronic circuit and the dimensions of a detection unit posed an impact on the spatial resolution of the reconstructed images of the nematode. Other important issues, such as the manufacturing-induced initial non-uniformity of the grids and the electrotaxic behaviour of nematodes, were also studied. A drug resistance screening experiment was conducted by using the grids with a good resolution of 30 × 30 μm(2). The phenotypic differences in the locomotion behaviours (e.g., moving speed and oscillation

  18. Relationship between production, nematodes and "redness" in strawberries

    Directory of Open Access Journals (Sweden)

    Paula Nogueira Curi

    2016-08-01

    Full Text Available ABSTRACT: In recent years "redness" has increasingly appeared in strawberry plants with leaves taking on a reddish color. No causal agent has been associated with plants. Since strawberries presented problems due to the incidence of nematodes, the purpose of this study was to look at the relationship between production, resistance to the Meloidogyne hapla nematode and the "redness" symptom in strawberry cultivars. Two experiments were performed, both with the 'Camino Real', 'Festival', 'Oso Grande', 'Albion' and 'Camarosa' cultivars. The first experiment was performed in the field, where the following were evaluated: strawberry production, fruit quality, macro and micronutrient contents in fruit and leaves, percentage of plant survival, incidence of nematodes, quantity of eggs in the roots and juveniles in the soil, and the incidence of Botrytis cinerea . In the second experiment, the strawberries were transplanted into pots and filled with pinus bark-based commercial substrate. Half the pots were inocculated with Meloidogyne hapla . Cultivars presented differences in fruit production and also in the incidence of "redness". Lowest performance in production was related to the high incidence of the nematode Meloidogyne hapla. 'Oso Grande' and 'Albion' presented nematode-resistant behavior. It was possible find a relationship between the incidence of the Meloidogyne hapla nematode, and the incidence of "redness" only 'Camino Real' cultivar.

  19. Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines

    Science.gov (United States)

    The secreted proteins encoded by “parasitism genes” expressed within the esophageal glands cells of cyst nematodes play important roles in plant parasitism. Homologous transcripts and encoded proteins of the Heterodera glycines pioneer parasitism genes Hgsyv46, Hg4e02 and Hg5d08 were identified and ...

  20. Seasonal and demographic factors influencing gastrointestinal parasitism in ungulates of Etosha National Park.

    Science.gov (United States)

    Turner, Wendy C; Getz, Wayne M

    2010-10-01

    Host-parasite dynamics can be strongly affected by seasonality and age-related host immune responses. We investigated how observed variation in the prevalence and intensity of parasite egg or oocyst shedding in four co-occurring ungulate species may reflect underlying seasonal variation in transmission and host immunity. This study was conducted July 2005-October 2006 in Etosha National Park, Namibia, using indices of parasitism recorded from 1,022 fecal samples collected from plains zebra (Equus quagga), springbok (Antidorcas marsupialis), blue wildebeest (Connochaetes taurinus), and gemsbok (Oryx gazella). The presence and intensity of strongyle nematodes, Strongyloides spp. and Eimeria spp. parasites, were strongly seasonal for most host-parasite combinations, with more hosts infected in the wet season than the dry season. Strongyle intensity in zebra was significantly lower in juveniles than adults, and in springbok hosts, Eimeria spp. intensity was significantly greater in juveniles than adults. These results provide evidence that acquired immunity is less protective against strongyle nematodes than Eimeria spp. infections. The seasonal patterns in parasitism further indicate that the long dry season may limit development and survival of parasite stages in the environment and, as a result, host contact and parasite transmission.

  1. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    NARCIS (Netherlands)

    Lozano Torres, J.L.; Wilbers, R.H.P.; Warmerdam, S.; Finkers-Tomczak, A.M.; Diaz Granados Muñoz, A.; Schaik, van C.C.; Helder, J.; Bakker, J.; Goverse, A.; Schots, A.; Smant, G.

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of

  2. Anti-parasitic activity of pelleted sainfoin (Onobrychis viciifolia) against Ostertagia ostertagi and Cooperia oncophora in calves

    DEFF Research Database (Denmark)

    Desrues, O.; Pena-Espinoza, Miguel Angel; Hansen, T. V.

    2016-01-01

    BACKGROUND: Increasing anthelmintic-resistance in nematodes of ruminants emphasises the need for sustainable parasite control. Condensed tannin-containing legume forages such as sainfoin (Onobrychis viciifolia) have shown promising anthelmintic properties in small ruminants but this has never been......) or concentrate and grass-clover hay (Group CO; n = 6, two pens). After 16 days of adaptation, all animals were experimentally infected with 10,000 and 66,000 third-stage larvae of Ostertagia ostertagi and Cooperia oncophora, respectively. Egg excretion, blood parameters and bodyweights were recorded throughout...

  3. Ecological aspects of nematode parasites of introduced salmonids from Valdivia river basin, Chile

    Directory of Open Access Journals (Sweden)

    Patricio Torres

    1991-03-01

    Full Text Available Between 1986 and 1987 fishes distributed among the following species introduced in Chile, and from different sectors of the Valdivia river basin (39º30' - 40º00', 73º30' - 71º45'W, were examined: 348 Salmo trutta, 242 Salmo gairdneri, 24 Cyprinus carpio and 52 Gambusia affinis holbrooki. The presence of Camallanus corderoi and Contracaecum sp. in S. gairdneri and of C. corderoi in S. trutta is recorded in Chile for the first time. Cyprinus carpio and G. a. holbrooki did not present infections by nematodes. The prevalence and mean intensity of the infections by nematodes presented significant differences among some sectors of the Valdivia river basin. In general, the prevalence and intensity of the infections by C. corderoi were greater than those by Contracaecum sp. The infections in S. gairdneri were higher than in S. trutta. The sex of the hosts had no influence on the prevalence and intensity of the infections by both nematodes. The length of the hosts did have an influence, except in the case of the infections by Contracaecum sp. in S, gairdneri. The infrapopulations of both nematode species showed over dispersion in most cases. The diet of the examined salmonids suggests that they would become infected principally throught the consuption of autochthonous fishes.

  4. Gray fox (Urocyon cinereoargenteus parasite diversity in central Mexico

    Directory of Open Access Journals (Sweden)

    Norma Hernández-Camacho

    2016-08-01

    Full Text Available Mexico has a long history of parasitological studies in communities of vertebrates. However, the mega diversity of the country makes fauna inventories an ongoing priority. Presently, there is little published on the parasite fauna of gray foxes (Urocyon cinereoargenteus Schereber, 1775 and this study provides new records of parasites for gray foxes in central Mexico. It is a continuation of a series of previous parasitological studies conducted with this carnivore in Mexico from 2003 to the present. A total of 24 foxes in the Parque Nacional El Cimatario (PANEC were trapped, anaesthetized, and parasites recovered. The species found were Dirofilaria immitis, Ctenocephalides canis, C. felis, Euhoplopsillus glacialis affinis (first report for gray foxes in Mexico Pulex simulants, and Ixodes sp. Three additional gray fox carcasses were necropsied and the parasites collected were adult nematodes Physaloptera praeputialis and Toxocara canis. The intensive study of the gray fox population selected for the 2013–2015 recent period allowed for a two-fold increase in the number of parasite species recorded for this carnivore since 2003 (nine to 18 parasite species, mainly recording parasitic arthropods, Dirofilaria immitis filariae and adult nematodes. The parasite species recorded are generalists that can survive in anthropic environments; which is characteristic of the present ecological scenario in central Mexico. The close proximity of the PANEC to the city of Santiago de Queretaro suggests possible parasite transmission between the foxes and domestic and feral dogs. Furthermore, packs of feral dogs in the PANEC might have altered habitat use by foxes, with possible impacts on transmission.

  5. Molecular diversity of bacterial endosymbionts associated with dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) reveals a high degree of phylogenetic congruence with their host.

    Science.gov (United States)

    Palomares-Rius, Juan E; Archidona-Yuste, Antonio; Cantalapiedra-Navarrete, Carolina; Prieto, Pilar; Castillo, Pablo

    2016-12-01

    Bacterial endosymbionts have been detected in some groups of plant-parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal-parasitic or free-living nematodes. This study was performed on a wide variety of plant-parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty-seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus 'Candidatus Xiphinematobacter' (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil-plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long-term evolutionary persistence between hosts and endosymbionts. © 2016 John Wiley & Sons Ltd.

  6. Anthelmintic resistance and multidrug resistance in sheep gastro-intestinal nematodes in France, Greece and Italy.

    Science.gov (United States)

    Geurden, Thomas; Hoste, Herve; Jacquiet, Philippe; Traversa, Donato; Sotiraki, Smaragda; Frangipane di Regalbono, Antonio; Tzanidakis, Nikolaos; Kostopoulou, Despoina; Gaillac, Christie; Privat, Simon; Giangaspero, Annunziata; Zanardello, Claudia; Noé, Laura; Vanimisetti, Bindu; Bartram, David

    2014-03-17

    Anthelmintic resistance (AR) in ovine gastro-intestinal nematodes has been reported to affect the health and productivity of sheep globally. The objective of the present study was to evaluate the efficacy of commonly used oral drenches in sheep in France, Greece and Italy. In each country, 10 farms were selected. On each farm, 50 animals were blocked based on the pre-treatment faecal egg count (FEC). Within each block, animals were randomly allocated to one of 5 treatment groups. In addition to an untreated control group, there were 4 groups treated per oral route: moxidectin (MOX) and ivermectin (IVM), both at 0.2mg/kg bodyweight, levamisole (LEV; at 7.5mg/kg bodyweight) and a benzimidazole (BZ; at 3.75-5mg/kg bodyweight). In France, animals were not treated with LEV, but with netobimin (NET; at 7.5mg/kg bodyweight). The FEC was monitored using a modified McMaster technique. Two weeks after treatment, individual faecal samples were taken from all animals and efficacy was calculated as the difference between arithmetic mean FEC of the control group versus each respective treatment group. The results of the present study indicate the high efficacy of treatment with oral formulations of MOX (99-100%) and IVM (98-100%) on all farms, except on 1 farm in Greece. On this farm, multi drug resistance (MDR) was identified involving 4 anthelmintics (efficacy MOX: 91%; IVM: 0%; BZ: 58% and LEV: 87%). In Greece and Italy, AR against LEV and BZ was observed on some farms, with MDR involving both anthelmintics on 3 farms in Greece and on 2 farms in Italy. In France, AR against BZ and NET was observed on all 10 farms included. In all countries, Teladorsagia sp. was the most common nematode larva identified after treatment, followed by Haemonchus sp. and Trichostrongylus sp., with differences among farms and treatments. The current study confirms the high efficacy of oral treatments with MOX and IVM, even on farms with worm populations resistant to BZ, LEV or NET. This study also

  7. Environmental and individual determinants of parasite richness across seasons in a free-ranging population of Mandrills (Mandrillus sphinx).

    Science.gov (United States)

    Poirotte, Clémence; Basset, Didier; Willaume, Eric; Makaba, Fred; Kappeler, Peter M; Charpentier, Marie J E

    2016-03-01

    Parasites are ubiquitous and evolve fast. Therefore, they represent major selective forces acting on their hosts by influencing many aspects of their biology. Humans are no exception, as they share many parasites with animals and some of the most important outbreaks come from primates. While it appears important to understand the factors involved in parasite dynamics, we still lack a clear understanding of the determinants underlying parasitism. In this 2-year study, we identified several factors that influence parasite patterns in a wild population of free-ranging mandrills (Mandrillus sphinx). We explored the potential impact of seasonal factors-rainfall and temperature-and host characteristics, including sex, age, rank, and reproductive status, on parasite richness. We analyzed 12 parasite taxa found in 870 fecal samples collected from 63 individuals. Because nematodes and protozoa have different life-cycles, we analyzed these two types of parasites separately. Contrary to other studies where humid conditions seem favorable to parasite development, we report here that rainfall and high temperatures were associated with lower nematode richness and were not associated with lower protozoa richness. In contrast, female reproductive status seemed to reflect the seasonal patterns found for protozoa richness, as early gestating females harbored more protozoa than other females. Sex and dominance rank had no impact on overall parasite richness. However, age was associated with a specific decrease in nematode richness. Our study emphasizes the need to consider the ecological context, such as climatic conditions and habitat type, as well as the biology of both parasite and host when analyzing determinants of parasite richness. © 2015 Wiley Periodicals, Inc.

  8. Anthelmintic activity of Cocos nucifera L. against sheep gastrointestinal nematodes.

    Science.gov (United States)

    Oliveira, L M B; Bevilaqua, C M L; Costa, C T C; Macedo, I T F; Barros, R S; Rodrigues, A C M; Camurça-Vasconcelos, A L F; Morais, S M; Lima, Y C; Vieira, L S; Navarro, A M C

    2009-01-22

    The development of anthelmintic resistance has made the search for alternatives to control gastrointestinal nematodes of small ruminants imperative. Among these alternatives are several medicinal plants traditionally used as anthelmintics. This work evaluated the efficacy of Cocos nucifera fruit on sheep gastrointestinal parasites. The ethyl acetate extract obtained from the liquid of green coconut husk fiber (LGCHF) was submitted to in vitro and in vivo tests. The in vitro assay was based on egg hatching (EHT) and larval development tests (LDT) with Haemonchus contortus. The concentrations tested in the EHT were 0.31, 0.62, 1.25, 2.5 and 5 mg ml(-1), while in the LDT they were 5, 10, 20, 40 and 80 mg ml(-1). The in vivo assay was a controlled test. In this experiment, 18 sheep infected with gastrointestinal nematodes were divided into three groups (n=6), with the following doses administered: G1-400 mg kg(-1) LGCHF ethyl acetate extract, G2-0.2 mg kg(-1) moxidectin (Cydectin) and G3-3% DMSO. The worm burden was analyzed. The results of the in vitro and in vivo tests were submitted to ANOVA and analyzed by the Tukey and Kruskal-Wallis tests, respectively. The extract efficacy in the EHT and LDT, at the highest concentrations tested, was 100% on egg hatching and 99.77% on larval development. The parameters evaluated in the controlled test were not statistically different, showing that despite the significant results of the in vitro tests, the LGCHF ethyl acetate extract showed no activity against sheep gastrointestinal nematodes.

  9. Potential Nematode Alarm Pheromone Induces Acute Avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Zhou, Ying; Loeza-Cabrera, Mario; Liu, Zheng; Aleman-Meza, Boanerges; Nguyen, Julie K; Jung, Sang-Kyu; Choi, Yuna; Shou, Qingyao; Butcher, Rebecca A; Zhong, Weiwei

    2017-07-01

    It is crucial for animal survival to detect dangers such as predators. A good indicator of dangers is injury of conspecifics. Here we show that fluids released from injured conspecifics invoke acute avoidance in both free-living and parasitic nematodes. Caenorhabditis elegans avoids extracts from closely related nematode species but not fruit fly larvae. The worm extracts have no impact on animal lifespan, suggesting that the worm extract may function as an alarm instead of inflicting physical harm. Avoidance of the worm extract requires the function of a cGMP signaling pathway that includes the cGMP-gated channel TAX-2/TAX-4 in the amphid sensory neurons ASI and ASK. Genetic evidence indicates that the avoidance behavior is modulated by the neurotransmitters GABA and serotonin, two common targets of anxiolytic drugs. Together, these data support a model that nematodes use a nematode-specific alarm pheromone to detect conspecific injury. Copyright © 2017 by the Genetics Society of America.

  10. Influence of industrial heavy metal pollution on soil free-living nematode population

    International Nuclear Information System (INIS)

    Pen-Mouratov, Stanislav; Shukurov, Nosir; Steinberger, Yosef

    2008-01-01

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution

  11. Influence of industrial heavy metal pollution on soil free-living nematode population

    Energy Technology Data Exchange (ETDEWEB)

    Pen-Mouratov, Stanislav [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel); Shukurov, Nosir [Institute of Geology and Geophysics, Academy of Sciences, Tashkent 700041 (Uzbekistan); Steinberger, Yosef [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900 (Israel)], E-mail: steinby@mail.biu.ac.il

    2008-03-15

    The effect of distance from a heavy metal pollution source on the soil nematode community (trophic structure, sex structure, and taxa composition) was investigated along a 15-km transect originating at the Almalyk Industrial Complex, Uzbekistan (pollution source). The soil nematode community was exposed to heavy metal influence both directly and through soil properties changes. Pollution effect on the density and biomass of soil free-living nematodes was found to be highest at pollution source, with fungivores and plant parasites dominating at the upper and deeper soil layers next to the pollution source. These groups decreased along the transect, yielding domination to bacteria- and fungi-feeders. The sex ratio of nematode communities was found to be dependent on heavy metal pollution levels, with the juveniles being the most sensitive nematode group. The Maturity and modified Maturity Indices, reflecting the degree of disturbance of the soil ecosystem, were found to be the most sensitive indices. - Trophic structure and sex ratio of soil nematode population are sensitive tools for monitoring industrial pollution.

  12. Study of the resistance of Oryza sativa to Pyricularia oryzae by applying mutagenic techniques to the parasite

    International Nuclear Information System (INIS)

    Notteghem, J.L.

    1977-01-01

    The strategy for using resistant varieties is often based on hypotheses about the development of the genetic potential of the parasite when it encounters the resistance in question. An attempt has been made to find a method of studying experimentally how such resistance evolves through analysis of the pathogenic ability of artificial mutants of the parasite which are specific to the varieties of rice studied. With physical and chemical mutagens it has been possible to obtain a multivirulent strain and also variants similar to those found in nature. The results demonstrate the effectiveness of the method for investigating the variability of the parasite and the behaviour of resistant varieties in the face of this variability. (author)

  13. Impact of the post-weaning parasitism history on an experimental Haemonchus contortus infection in Creole goat kids.

    Science.gov (United States)

    Ceï, W; Mahieu, M; Philibert, L; Arquet, R; Alexandre, G; Mandonnet, N; Bambou, J C

    2015-01-15

    Gastrointestinal nematode (GIN) infections have an important negative impact on small ruminant production. The selection of genotypes resistant to these parasitic infections is a promising alternative control strategy. Thus, resistance against GIN is an important component of small ruminant breeding schemes, based on phenotypic measurements of resistance in immune mature infected animals. In this study we evaluated both the impact of the post-weaning parasitism history on the response to an experimental Haemonchus contortus infection of resistant and susceptible Creole kids chosen on the basis of their estimated breeding value, and the interaction with the kid's genetic status. During the post-weaning period (from 3 months until 7 months of age) Creole kids were reared at pasture according to four different levels of a mixed rotational stocking system with Creole cattle: 100% (control), 75% (GG75), 50% (GG50), and 25% (GG25) of the total stocking rate of the pasture. The level of infection of the kids decreased significantly at 50% and 25% of the total stocking rate. After the post-weaning period at pasture, at 11 months of age kids were experimentally infected with H. contortus. The faecal egg counts (FEC) were significantly lower in the groups showing the highest FEC at pasture. This result suggests that a degree of protection against an experimental H. contortus infection occurred during the post-weaning period and was dependant on the level of parasitism. Interestingly, no interaction was observed between this level of protection and the genetic status. In conclusion, the level of post-weaning natural parasitism history at pasture would not influence the genetic status evaluation. More generally our results suggest that it would be better to expose kids to a high level of gastrointestinal parasitism during the post-weaning period in order to increase the basal level of resistance thereafter. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Heterorhabditis sp. (Nematoda: Heterorhabditidae): A Nematode Parasite Isolated from the Banded Cucumber Beetle Diabrotica balteata

    Science.gov (United States)

    Creighton, C. S.; Fassuliotis, G.

    1985-01-01

    A nematode identified as Heterorhabditis sp. was discovered in June 1982 in larval cadavers of the banded cucumber beetle, Diabrotica balteata, in soil on wooded land. Effective beetle control (over 95%) was obtained when larvae were exposed to potted soil containing infective stage nematode juveniles or infected larval cadavers. The nematode was propagated in vivo on larvae of D. balteata, Diaphania nitidalis (the pickleworm), and Galleria mellonella (the greater wax moth). This Heterorhabditis sp. has promising potential as a biocontrol agent for the banded cucumber beetle. PMID:19294074

  15. [On the occurrence of the nematode Oswaldocruzia filiformis (Strongylida: Molineidae) in Karelia].

    Science.gov (United States)

    Novokhatskaia, O V

    2008-01-01

    Contents of the intestines of the viper Vipera berus (L., 1758) from Kizhi archipelago (Lake Onego) was examined. Helminth fauna of the viper was found to include single nematode species, Oswaldocruzia filiformis Goeze, 1782 (Strongylida: Molineidae). Prevalence of the invasion was 60%, intensity of the invasion was 1-8 specimens per host, index of abundance was 1.92 specimens. Measurements and pictures of the parasite are given. Morphometric data on the nematode from viper are compared with those from other host species.

  16. Chitosan Increases Tomato Root Colonization by Pochonia chlamydosporia and Their Combination Reduces Root-Knot Nematode Damage

    Directory of Open Access Journals (Sweden)

    Nuria Escudero

    2017-09-01

    Full Text Available The use of biological control agents could be a non-chemical alternative for management of Meloidogyne spp. [root-knot nematodes (RKN], the most damaging plant-parasitic nematodes for horticultural crops worldwide. Pochonia chlamydosporia is a fungal parasite of RKN eggs that can colonize endophytically roots of several cultivated plant species, but in field applications the fungus shows a low persistence and efficiency in RKN management. The combined use of P. chlamydosporia with an enhancer could help its ability to develop in soil and colonize roots, thereby increasing its efficiency against nematodes. Previous work has shown that chitosan enhances P. chlamydosporia sporulation and production of extracellular enzymes, as well as nematode egg parasitism in laboratory bioassays. This work shows that chitosan at low concentrations (up to 0.1 mg ml-1 do not affect the viability and germination of P. chlamydosporia chlamydospores and improves mycelial growth respect to treatments without chitosan. Tomato plants irrigated with chitosan (same dose limit increased root weight and length after 30 days. Chitosan irrigation increased dry shoot and fresh root weight of tomato plants inoculated with Meloidogyne javanica, root length when they were inoculated with P. chlamydosporia, and dry shoot weight of plants inoculated with both P. chlamydosporia and M. javanica. Chitosan irrigation significantly enhanced root colonization by P. chlamydosporia, but neither nematode infection per plant nor fungal egg parasitism was affected. Tomato plants cultivated in a mid-suppressive (29.3 ± 4.7% RKN egg infection non-sterilized clay loam soil and irrigated with chitosan had enhanced shoot growth, reduced RKN multiplication, and disease severity. Chitosan irrigation in a highly suppressive (73.7 ± 2.6% RKN egg infection sterilized-sandy loam soil reduced RKN multiplication in tomato. However, chitosan did not affect disease severity or plant growth irrespective of

  17. Study of Enhanced Radiation Impact on the Resistance of Plant - Parasite System

    International Nuclear Information System (INIS)

    Damianova, A.; Sivriev, I.; Baicheva, O.; Ivanova, I

    2004-01-01

    The paper aimed to report the results from the experiments carried out in order to investigate the dependence between the increasing radiation doses and the vitality and reproductivity of the wide spread in the natural and agroecosystems nematodes Meloidogyne arenaria used as a laboratory model. In this study the influence of different doses of α- and γ- radiation have been examined using isotopes of 241 Am and 60 Co. As a result of the performed experiments a conclusion could be made for the protective role of the glycoproteid structures of the parasite sac against α-radiation. Part of the effects observed probably are due to the development in the process of evolution of a protective mechanism in order to adapt the organisms to the modifying of the radiation background

  18. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System

    Directory of Open Access Journals (Sweden)

    Brian K. Lohman

    2017-09-01

    Full Text Available Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.

  19. Blood parasites of penguins: a critical review.

    Science.gov (United States)

    Vanstreels, Ralph Eric Thijl; Braga, Érika Martins; Catão-Dias, José Luiz

    2016-07-01

    Blood parasites are considered some of the most significant pathogens for the conservation of penguins, due to the considerable morbidity and mortality they have been shown to produce in captive and wild populations of these birds. Parasites known to occur in the blood of penguins include haemosporidian protozoans (Plasmodium, Leucocytozoon, Haemoproteus), piroplamid protozoans (Babesia), kinetoplastid protozoans (Trypanosoma), spirochete bacteria (Borrelia) and nematode microfilariae. This review provides a critical and comprehensive assessment of the current knowledge on these parasites, providing an overview of their biology, host and geographic distribution, epidemiology, pathology and implications for public health and conservation.

  20. A new oomycete species parasitic in nematodes, Chlamydomyzium dictyuchoides sp. nov.: developmental biology and phylogenetic studies.

    Science.gov (United States)

    Beakes, Gordon W; Glockling, Sally L; James, Timothy Y

    2014-07-01

    The genus Chlamydomyzium is a little studied holocarpic oomycete parasite of nematodes of uncertain phylogenetic and taxonomic position. A new holocarpic species, Chlamydomyzium dictyuchoides, is described which has usually refractile cytoplasm and a dictyuchoid pattern of spore release. This new species infects bacteriotrophic rhabditid nematodes and was isolated from diverse geographical locations. Infection was initiated by zoospore encystment on the host surface and direct penetration of the cuticle. A sparsely branched, constricted, refractile thallus was formed which eventually occupied almost the entire host body cavity, often accompanied by complete dissolution of the host cuticle. Walled primary cysts formed throughout the thallus and each cyst released a single zoospore via an individual exit papillum, leaving a characteristic dictyuchoid wall net behind. At later stages of infection some thalli formed thick-walled stellate resting spores in uniseriate rows. Resting spore formation appeared to be parthenogenetic and was not accompanied by the formation of antheridial compartments. These spores had ooplast-like vacuoles and thick multi-layered walls, both of which suggest they were oospores. The maximum likelihood tree of sequences of the small ribosomal subunit (SSU) gene placed this new isolate in a clade before the main saprolegnialean and peronosporalean lines diverge. A second undescribed Chlamydomyzium sp., which has direct spore release forms a paraphyletic clade, close to C. dictyuchoides and Sapromyces. The fine structure of other documented Chlamydomyzium species was compared, including an undescribed (but sequenced) isolate, SL02, from Japan, Chlamydomyzium anomalum and Chlamydomyzium oviparasiticum. Chlamydomyzium as currently constituted is a paraphyletic genus that is part of a group of phylogenetically problematic early diverging clades that lie close to both the Leptomitales and Rhipidiales. Crown Copyright © 2014. Published by Elsevier