WorldWideScience

Sample records for nematode feeding site

  1. Phloem development in nematode-induced feeding sites: The implications of auxin and cytokinin

    Directory of Open Access Journals (Sweden)

    Birgit eAbsmanner

    2013-07-01

    Full Text Available Sedentary plant parasitic nematodes such as root-knot nematodes and cyst nematodes induce giant cells or syncytia, respectively, in their host plant’s roots. These highly specialized structures serve as feeding sites from which exclusively the nematodes withdraw nutrients. While giant cells are symplastically isolated and obtain assimilates by transporter-mediated processes syncytia are massively connected to the phloem by plasmodesmata. To support the feeding sites and the nematode during their development, phloem is induced around syncytia and giant cells. In the case of syncytia the unloading phloem consists of sieve elements and companion cells and in the case of root knots it consists exclusively of sieve elements. We applied immunohistochemistry to identify the cells within the developing phloem that responded to auxin and cytokinin. Both feeding sites themselves did not respond to either hormone. We were able to show that in root knots an auxin response precedes the differentiation of these auxin responsive cells into phloem elements. This process appears to be independent of B-type Arabidopsis response regulators. Using additional markers for tissue identity we provide evidence that around giant cells protophloem is formed and proliferates dramatically. In contrast, the phloem around syncytia responded to both hormones. The presence of companion cells as well as hormone-responsive sieve elements suggests that metaphloem development occurs. The implication of auxin and cytokinin in the further development of the metaphloem is discussed.

  2. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    Science.gov (United States)

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  3. The plant cell wall in the feeding sites of cyst nematodes.

    Science.gov (United States)

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  4. The plant cell wall in the feeding sites of cyst nematodes

    Directory of Open Access Journals (Sweden)

    Holger eBohlmann

    2014-03-01

    Full Text Available Plant parasitic cyst nematodes (genera Heterodera and Globodera are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2 and migrate intracellularly towards the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.

  5. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Dowd, Carola D; Chronis, Demosthenis; Radakovic, Zoran S; Siddique, Shahid; Schmülling, Thomas; Werner, Tomáš; Kakimoto, Tatsuo; Grundler, Florian M W; Mitchum, Melissa G

    2017-10-01

    Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. A Phenotyping Method of Giant Cells from Root-Knot Nematode Feeding Sites by Confocal Microscopy Highlights a Role for CHITINASE-LIKE 1 in Arabidopsis

    Science.gov (United States)

    Cabrera, Javier; Olmo, Rocio; Ruiz-Ferrer, Virginia; Hermans, Christian; Martinez-Argudo, Isabel; Escobar, Carolina

    2018-01-01

    Most effective nematicides for the control of root-knot nematodes are banned, which demands a better understanding of the plant-nematode interaction. Understanding how gene expression in the nematode-feeding sites relates to morphological features may assist a better characterization of the interaction. However, nematode-induced galls resulting from cell-proliferation and hypertrophy hinders such observation, which would require tissue sectioning or clearing. We demonstrate that a method based on the green auto-fluorescence produced by glutaraldehyde and the tissue-clearing properties of benzyl-alcohol/benzyl-benzoate preserves the structure of the nematode-feeding sites and the plant-nematode interface with unprecedented resolution quality. This allowed us to obtain detailed measurements of the giant cells’ area in an Arabidopsis line overexpressing CHITINASE-LIKE-1 (CTL1) from optical sections by confocal microscopy, assigning a role for CTL1 and adding essential data to the scarce information of the role of gene repression in giant cells. Furthermore, subcellular structures and features of the nematodes body and tissues from thick organs formed after different biotic interactions, i.e., galls, syncytia, and nodules, were clearly distinguished without embedding or sectioning in different plant species (Arabidopsis, cucumber or Medicago). The combination of this method with molecular studies will be valuable for a better understanding of the plant-biotic interactions. PMID:29389847

  7. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development.

    Science.gov (United States)

    Lee, Chris; Chronis, Demosthenis; Kenning, Charlotte; Peret, Benjamin; Hewezi, Tarek; Davis, Eric L; Baum, Thomas J; Hussey, Richard; Bennett, Malcolm; Mitchum, Melissa G

    2011-02-01

    Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.

  8. The feeding tube of cyst nematodes: characterisation of protein exclusion.

    Directory of Open Access Journals (Sweden)

    Sebastian Eves-van den Akker

    Full Text Available Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.

  9. The feeding tube of cyst nematodes: characterisation of protein exclusion.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Ault, James R; Ashcroft, Alison E; Jones, John T; Urwin, Peter E

    2014-01-01

    Plant parasitic nematodes comprise several groups; the most economically damaging of these are the sedentary endoparasites. Sedentary endoparasitic nematodes are obligate biotrophs and modify host root tissue, using a suite of effector proteins, to create a feeding site that is their sole source of nutrition. They feed by withdrawing host cell assimilate from the feeding site though a structure known as the feeding tube. The function, composition and molecular characteristics of feeding tubes are poorly characterised. It is hypothesised that the feeding tube facilitates uptake of host cell assimilate by acting as a molecular sieve. Several studies, using molecular mass as the sole indicator of protein size, have given contradictory results about the exclusion limits of the cyst nematode feeding tube. In this study we propose a method to predict protein size, based on protein database coordinates in silico. We tested the validity of these predictions using travelling wave ion mobility spectrometry--mass spectrometry, where predictions and measured values were within approximately 6%. We used the predictions, coupled with mass spectrometry, analytical ultracentrifugation and protein electrophoresis, to resolve previous conflicts and define the exclusion characteristics of the cyst nematode feeding tube. Heterogeneity was tested in the liquid, solid and gas phase to provide a comprehensive evaluation of three proteins of particular interest to feeding tube size exclusion, GFP, mRFP and Dual PI. The data and procedures described here could be applied to the design of plant expressed defence compounds intended for uptake into cyst nematodes. We also highlight the need to assess protein heterogeneity when creating novel fusion proteins.

  10. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    Directory of Open Access Journals (Sweden)

    Rocío Olmo

    2017-05-01

    Full Text Available Root-knot nematodes (RKNs; Meloidogyne spp. induce feeding cells (giant cells; GCs inside a pseudo-organ (gall from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs, auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those

  11. Genes co-regulated with LBD16 in nematode feeding sites inferred from in silico analysis show similarities to regulatory circuits mediated by the auxin/cytokinin balance in Arabidopsis.

    Science.gov (United States)

    Cabrera, Javier; Fenoll, Carmen; Escobar, Carolina

    2015-01-01

    Plant endoparasitic nematodes, root-knot and cyst nematodes (RKNs and CNs) induce within the root vascular cylinder transfer cells used for nourishing, termed giant cells (GCs) and syncytia. Understanding the molecular mechanisms behind this process is essential to develop tools for nematode control. Based on the crucial role in gall development of LBD16, also a key component of the auxin pathway leading to the divisions in the xylem pole pericycle during lateral root (LR) formation, we investigated genes co-regulated with LBD16 in different transcriptomes and analyzed their similarities and differences with those of RKNs and CNs feeding sites (FS). This analysis confirmed LBD16 and its co-regulated genes, integrated in signaling cascades mediated by auxins during LR and callus formation, as a particular feature of RKN-FS distinct to CNs. However, LBD16, and its positively co-regulated genes, were repressed in syncytia, suggesting a selective down- regulation of the LBD16 auxin mediated pathways in CNs-FS. Interestingly, cytokinin-induced genes are enriched in syncytia and we encountered similarities between the transcriptome of shoot regeneration from callus, modulated by cytokinins, and that of syncytia. These findings establish differences in the regulatory networks leading to both FS formation, probably modulated by the auxin/cytokinin balance.

  12. Transcriptional profiling of root-knot nematode induced feeding sites in cowpea (Vigna unguiculata L. Walp. using a soybean genome array

    Directory of Open Access Journals (Sweden)

    Das Sayan

    2010-08-01

    Full Text Available Abstract Background The locus Rk confers resistance against several species of root-knot nematodes (Meloidogyne spp., RKN in cowpea (Vigna unguiculata. Based on histological and reactive oxygen species (ROS profiles, Rk confers a delayed but strong resistance mechanism without a hypersensitive reaction-mediated cell death process, which allows nematode development but blocks reproduction. Results Responses to M. incognita infection in roots of resistant genotype CB46 and a susceptible near-isogenic line (null-Rk were investigated using a soybean Affymetrix GeneChip expression array at 3 and 9 days post-inoculation (dpi. At 9 dpi 552 genes were differentially expressed in incompatible interactions (infected resistant tissue compared with non-infected resistant tissue and 1,060 genes were differentially expressed in compatible interactions (infected susceptible tissue compared with non-infected susceptible tissue. At 3 dpi the differentially expressed genes were 746 for the incompatible and 623 for the compatible interactions. When expression between infected resistant and susceptible genotypes was compared, 638 and 197 genes were differentially expressed at 9 and 3 dpi, respectively. Conclusions In comparing the differentially expressed genes in response to nematode infection, a greater number and proportion of genes were down-regulated in the resistant than in the susceptible genotype, whereas more genes were up-regulated in the susceptible than in the resistant genotype. Gene ontology based functional categorization revealed that the typical defense response was partially suppressed in resistant roots, even at 9 dpi, allowing nematode juvenile development. Differences in ROS concentrations, induction of toxins and other defense related genes seem to play a role in this unique resistance mechanism.

  13. Feeding cells induced by phytoparasitic nematodes require γ-tubulin ring complex for microtubule reorganization.

    Directory of Open Access Journals (Sweden)

    Mohamed Youssef Banora

    2011-12-01

    Full Text Available Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or microtubule-bound γ-tubulin ring complexes. Here we investigate the requirement of γ-tubulin complexes for giant feeding cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical analyses demonstrate that γ-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells where it can associate with microtubules. The transcripts of two Arabidopsis γ-tubulin (TUBG1 and TUBG2 and two γ-tubulin complex proteins genes (GCP3 and GCP4 are upregulated in galls. Electron microscopy demonstrates association of GCP3 and γ-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both γ-tubulin genes results in the gene dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that the γ-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.

  14. A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes.

    Science.gov (United States)

    Wieczorek, K; Elashry, A; Quentin, M; Grundler, F M W; Favery, B; Seifert, G J; Bohlmann, H

    2014-09-01

    Pectin in the primary plant cell wall is thought to be responsible for its porosity, charge density, and microfibril spacing and is the main component of the middle lamella. Plant-parasitic nematodes secrete cell wall-degrading enzymes that macerate the plant tissue, facilitating the penetration and migration within the roots. In sedentary endoparasitic nematodes, these enzymes are released only during the migration of infective juveniles through the root. Later, nematodes manipulate the expression of host plant genes, including various cell wall enzymes, in order to induce specific feeding sites. In this study, we investigated expression of two Arabidopsis pectate lyase-like genes (PLL), PLL18 (At3g27400) and PLL19 (At4g24780), together with pectic epitopes with different degrees of methylesterification in both syncytia induced by the cyst nematode Heterodera schachtii and giant cells induced by the root-knot nematode Meloidogyne incognita. We confirmed upregulation of PLL18 and PLL19 in both types of feeding sites with quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ RT-PCR. Furthermore, the functional analysis of mutants demonstrated the important role of both PLL genes in the development and maintenance of syncytia but not giant cells. Our results show that both enzymes play distinct roles in different infected root tissues as well as during parasitism of different nematodes.

  15. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats.

    Science.gov (United States)

    Schuelke, Taruna; Pereira, Tiago José; Hardy, Sarah M; Bik, Holly M

    2018-04-01

    Studies of host-associated microbes are critical for advancing our understanding of ecology and evolution across diverse taxa and ecosystems. Nematode worms are ubiquitous across most habitats on earth, yet little is known about host-associated microbial assemblages within the phylum. Free-living nematodes are globally abundant and diverse in marine sediments, with species exhibiting distinct buccal cavity (mouth) morphologies that are thought to play an important role in feeding ecology and life history strategies. Here, we investigated patterns in marine nematode microbiomes, by characterizing host-associated microbial taxa in 281 worms isolated from a range of habitat types (deep-sea, shallow water, methane seeps, Lophelia coral mounds, kelp holdfasts) across three distinct geographic regions (Arctic, Southern California and Gulf of Mexico). Microbiome profiles were generated from single worms spanning 33 distinct morphological genera, using a two-gene metabarcoding approach to amplify the V4 region of the 16S ribosomal RNA (rRNA) gene targeting bacteria/archaea and the V1-V2 region of the 18S rRNA gene targeting microbial eukaryotes. Contrary to our expectations, nematode microbiome profiles demonstrated no distinct patterns either globally (across depths and ocean basins) or locally (within site); prokaryotic and eukaryotic microbial assemblages did not correlate with nematode feeding morphology, host phylogeny or morphological identity, ocean region or marine habitat type. However, fine-scale analysis of nematode microbiomes revealed a variety of novel ecological interactions, including putative parasites and symbionts, and potential associations with bacterial/archaeal taxa involved in nitrogen and methane cycling. Our results suggest that in marine habitats, free-living nematodes may utilize diverse and generalist foraging strategies that are not correlated with host genotype or feeding morphology. Furthermore, some abiotic factors such as geographic region

  16. Statistical and Economic Techniques for Site-specific Nematode Management.

    Science.gov (United States)

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L

    2014-03-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

  17. Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus

    Directory of Open Access Journals (Sweden)

    Misako Okumura

    2017-11-01

    Full Text Available Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.

  18. Seasonal dynamics and vertical distribution of plant-feeding nematode communities in grasslands

    NARCIS (Netherlands)

    Verschoor, B.C.; Goede, de R.G.M.; Hoop, de J.W.; Vries, de F.W.

    2001-01-01

    The vertical distribution and seasonal dynamics of plant- and fungal-feeding nematode taxa in permanent grasslands were investigated. Dolichodoridae, Paratylenchus, Pratylenchus, Tylenchidae and Aphelenchoides dominated the upper 10 cm soil and their numbers strongly decreased with depth. The

  19. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes.

    Science.gov (United States)

    Meyer, Susan L F; Halbrendt, John M; Carta, Lynn K; Skantar, Andrea M; Liu, Ting; Abdelnabby, Hazem M E; Vinyard, Bryan T

    2009-12-01

    The antibiotic 2,4-diacetylphloroglucinol (DAPG) is produced by some isolates of the beneficial bacterium Pseudomonas fluorescens. DAPG is toxic to many organisms, and crop yield increases have been reported after application of DAPG-producing P. fluorescens. This study was conducted to determine whether DAPG is toxic to selected nematodes. The plant-parasitic nematodes Heterodera glycines, Meloidogyne incognita, Pratylenchus scribneri and Xiphinema americanum, and the bacterial-feeding nematodes Caenorhabditis elegans, Pristionchus pacificus, and Rhabditis rainai, were immersed in concentrations ranging from 0 to 100 μg/ml DAPG. Egg hatch and viability of juveniles and adults were determined. DAPG was toxic to X. americanum adults, with an LD₅₀ of 8.3 μg/ml DAPG. DAPG decreased M. incognita egg hatch, but stimulated C. elegans hatch during the first hours of incubation. Viability of M. incognita J2 and of C. elegans J1 and adults was not affected. There were no observed effects on the other nematodes. The study indicated that DAPG is not toxic to all nematodes, and did not affect the tested species of beneficial bacterial-feeding nematodes. Augmentation of DAPG-producing P. fluorescens populations for nematode biocontrol could be targeted to specific nematode species known to be affected by this compound and by other antibiotics produced by the bacteria, or these bacteria could be used for other possible effects, such as induced plant resistance.

  20. Nematodes

    International Nuclear Information System (INIS)

    Suzuki, Kenshi; Ishii, Naoaki

    1977-01-01

    Utilization of nematodes for a study of radiation biology was considered. Structure, generation, rearing method, and genetic nature of nematodes (Caenorhabditis elegans, Turbatri acetic, etc.) were given an outline. As the advantage of a study using nematodes as materials, shortness of one generation time, simplicity in structure, and smallness of the whole cells, specific regular movement, and heliotaxis to chemical substances and light were mentioned. Effect of x-ray on survival rate of nematodes and effect of ultraviolet on nematodes and their eggs were described. It was suggested that nematodes was useful for studies on aging and radiation biology, and a possibility existed that nematodes would be used in studies of cancer and malformation. (Serizawa, K.)

  1. Population dynamics of host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass

    NARCIS (Netherlands)

    Stoel, C.D.; Duyts, H.; Putten, van der W.H.

    2006-01-01

    Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes (Heterodera spp.) are dominant in the soil nematode community and

  2. Population dynamics of a host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass

    NARCIS (Netherlands)

    Van der Stoel, C.D.; Duyts, H.; Van der Putten, W.H.

    2006-01-01

    Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes (Heterodera spp.) are dominant in the soil nematode community and

  3. Feeding and the rhodopsin family G-Protein Coupled Receptors (GPCRs in nematodes and arthropods

    Directory of Open Access Journals (Sweden)

    Joao Carlos dos Reis Cardoso

    2012-12-01

    Full Text Available In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologues of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster, suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologues of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  4. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Fonseca, Vera G; Power, Deborah M

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  5. Differentiation of bacterial feeding nematodes in soil ecological studies by means of arbitrarily primed PCR

    Science.gov (United States)

    Van Der Knaap, Esther; Rodriguez, Russell J.; Freckman, Diana W.

    1993-01-01

    Arbitrarily-primed polymerase chain reaction (ap-PCR) was used to differentiate closely related bacterial-feeding nematodes of the genera: Caenorhabditis, Acrobeloides, Cephalobus and Zeldia. Average percentage similarity of bands generated by ap-PCR with seven different primers between 14 isolates of Caenorhabditis elegans was ⪢ 90%, whereas between C. elegans, C. briggsae and C. remanei similarity was nematode populations were also obtained from ap-PCR analysis of single worms. Due to the difficulty of identification of soil nematodes, the ap-PCR offers potential as a rapid and reliable technique to assess biodiversity. Ap-PCR will make it feasible, for the first time, to study the ecological interactions of unique nematode genotypes in soil habitats.

  6. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    2017-02-01

    Full Text Available Stem cell pools in the SAM (shoot apical meristem, RAM (root apical meristem and vascular procambium/cambium are regulated by CLE-receptor kinase-WOX signaling modules. Previous data showed that cyst nematode CLE-like effector proteins delivered into host cells through a stylet, act as ligand mimics of plant A-type CLE peptides and are pivotal for successful parasitism. Here we report the identification of a new class of CLE peptides from cyst nematodes with functional similarity to the B-type CLE peptide TDIF (tracheary element differentiation inhibitory factor encoded by the CLE41 and CLE44 genes in Arabidopsis. We further demonstrate that the TDIF-TDR (TDIF receptor-WOX4 pathway, which promotes procambial meristem cell proliferation, is involved in beet cyst nematode Heterodera schachtii parasitism. We observed activation of the TDIF pathway in developing feeding sites, reduced nematode infection in cle41 and tdr-1 wox4-1 mutants, and compromised syncytium size in cle41, tdr-1, wox4-1 and tdr-1 wox4-1 mutants. By qRT-PCR and promoter:GUS analyses, we showed that the expression of WOX4 is decreased in a clv1-101 clv2-101 rpk2-5 mutant, suggesting that WOX4 is a potential downstream target of nematode CLEs. Exogenous treatment with both nematode A-type and B-type CLE peptides induced massive cell proliferation in wild type roots, suggesting that the two types of CLEs may regulate cell proliferation during feeding site formation. These findings highlight an important role of the procambial cell proliferation pathway in cyst nematode feeding site formation.

  7. Diatom feeding across trophic guilds in tidal flat nematodes, and the importance of diatom cell size

    Science.gov (United States)

    Moens, Tom; Vafeiadou, Anna-Maria; De Geyter, Ellen; Vanormelingen, Pieter; Sabbe, Koen; De Troch, Marleen

    2014-09-01

    We examine the capacity of nematodes from three feeding types (deposit feeder, epistrate feeder, predator) to utilize microphytobenthos (MPB), and assess whether diatom cell size and consumer body size are important drivers of their feeding. We analyzed natural stable isotope ratios of carbon and nitrogen in abundant nematode genera and a variety of carbon sources at an estuarine intertidal flat. All nematodes had δ13C indicating that MPB is their major carbon source. δ15N, however, demonstrated that only one deposit and one epistrate feeder genus obtained most of their carbon from direct grazing on MPB, whereas other deposit feeders and predators obtained at least part of their carbon by predation on MPB grazers. We then performed a microcosm experiment in which equal cell numbers of each of three differently sized strains of the pennate diatom Seminavis were offered as food to four, one and one genera of deposit feeders, epistrate feeders and predators, respectively. Previous studies have shown that all but the epistrate feeder ingest whole diatoms, whereas the epistrate feeder pierces cells and sucks out their contents. Most genera showed markedly higher carbon absorption from medium and large cells than from small ones. When considering the number of cells consumed, however, none of the nematodes which ingest whole cells exhibited a clear preference for any specific diatom size. The epistrate feeder was the smallest nematode taxon considered here, yet it showed a marked preference for large cells. These results highlight that the feeding mechanism is much more important than consumer size as a driver of particle size selection in nematodes grazing MPB.

  8. Plant parasitic nematode effectors target host defence and nuclear functions to establish feeding cells

    Directory of Open Access Journals (Sweden)

    Michaël eQuentin

    2013-03-01

    Full Text Available Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells. Effectors synthesised in the oesophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized feeding cells requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defence responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalised within feeding cell nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesised roles in the unique feeding behaviour of these pests.

  9. Comparative transcriptomics of the nematode gut identifies global shifts in feeding mode and pathogen susceptibility.

    Science.gov (United States)

    Lightfoot, James W; Chauhan, Veeren M; Aylott, Jonathan W; Rödelsperger, Christian

    2016-03-05

    The nematode Pristionchus pacificus has been established as a model for comparative studies using the well known Caenorhabditis elegans as a reference. Despite their relatedness, previous studies have revealed highly divergent development and a number of morphological differences including the lack of a pharyngal structure, the grinder, used to physically lyse the ingested bacteria in C. elegans. To complement current knowledge about developmental and ecological differences with a better understanding of their feeding modes, we have sequenced the intestinal transcriptomes of both nematodes. In total, we found 464 intestine-enriched genes in P. pacificus and 724 in C. elegans, of which the majority (66%) has been identified by previous studies. Interestingly, only 15 genes could be identified with shared intestinal enrichment in both species, of which three genes are Hedgehog signaling molecules supporting a highly conserved role of this pathway for intestinal development across all metazoa. At the level of gene families, we find similar divergent trends with only five families displaying significant intestinal enrichment in both species. We compared our data with transcriptomic responses to various pathogens. Strikingly, C. elegans intestine-enriched genes showed highly significant overlaps with pathogen response genes whereas this was not the case for P. pacificus, indicating shifts in pathogen susceptibility that might be explained by altered feeding modes. Our study reveals first insights into the evolution of feeding systems and the associated changes in intestinal gene expression that might have facilitated nematodes of the P. pacificus lineage to colonize new environments. These findings deepen our understanding about how morphological and genomic diversity is created during the course of evolution.

  10. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Science.gov (United States)

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  11. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  12. Stable isotope analysis (δ (13)C and δ (15)N) of soil nematodes from four feeding groups.

    Science.gov (United States)

    Melody, Carol; Griffiths, Bryan; Dyckmans, Jens; Schmidt, Olaf

    2016-01-01

    Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis ((13)C/(12)C and (15)N/(14)N, expressed as δ (13)C and δ (15)N) has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000) to achieve required minimum sample weights (typically >100 µg C and N). Here, micro-sample near-conventional elemental analysis-isotopic ratio mass spectrometry (μEA-IRMS) of C and N using microgram samples (typically 20 µg dry weight), was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus), bacterial feeders (Plectus and Rhabditis), omnivores (Aporcelaimidae and Qudsianematidae) and plant feeder (Rotylenchus). Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ (15)N (p = 0.290) or δ (13)C (p = 0.706) between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ (15)N = 1.08 to 3.22 mUr‰, δ (13)C = -29.58 to -27.87 mUr) and all other groups. There was an average difference of 9.62 mUr in δ (15)N between the plant feeder and the predator group (δ (15)N = 9.89 to 12.79 mUr, δ (13)C = -27.04 to -25.51 mUr). Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr(2)) and the predators (1.73 mUr(2)), but largest for

  13. Stable isotope analysis (δ13C and δ15N of soil nematodes from four feeding groups

    Directory of Open Access Journals (Sweden)

    Carol Melody

    2016-09-01

    Full Text Available Soil nematode feeding groups are a long-established trophic categorisation largely based on morphology and are used in ecological indices to monitor and analyse the biological state of soils. Stable isotope ratio analysis (13C/12C and 15N/14N, expressed as δ13C and δ15N has provided verification of, and novel insights into, the feeding ecology of soil animals such as earthworms and mites. However, isotopic studies of soil nematodes have been limited to date as conventional stable isotope ratio analysis needs impractically large numbers of nematodes (up to 1,000 to achieve required minimum sample weights (typically >100 µg C and N. Here, micro-sample near-conventional elemental analysis–isotopic ratio mass spectrometry (μEA–IRMS of C and N using microgram samples (typically 20 µg dry weight, was employed to compare the trophic position of selected soil nematode taxa from four feeding groups: predators (Anatonchus and Mononchus, bacterial feeders (Plectus and Rhabditis, omnivores (Aporcelaimidae and Qudsianematidae and plant feeder (Rotylenchus. Free-living nematodes were collected from conventionally and organically managed arable soils. As few as 15 nematodes, for omnivores and predators, were sufficient to reach the 20 µg dry weight target. There was no significant difference in δ15N (p = 0.290 or δ13C (p = 0.706 between conventional and organic agronomic treatments but, within treatments, there was a significant difference in N and C stable isotope ratios between the plant feeder, Rotylenchus (δ15N = 1.08 to 3.22 mUr‰, δ13C = –29.58 to –27.87 mUr and all other groups. There was an average difference of 9.62 mUr in δ15N between the plant feeder and the predator group (δ15N = 9.89 to 12.79 mUr, δ13C = –27.04 to –25.51 mUr. Isotopic niche widths were calculated as Bayesian derived standard ellipse areas and were smallest for the plant feeder (1.37 mUr2 and the predators (1.73 mUr2, but largest for omnivores (3.83 mUr2

  14. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    Science.gov (United States)

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes.

  15. Administration of copper oxide wire particles in a capsule or feed for gastrointestinal nematode control in goats.

    Science.gov (United States)

    Burke, J M; Soli, F; Miller, J E; Terrill, T H; Wildeus, S; Shaik, S A; Getz, W R; Vanguru, M

    2010-03-25

    Widespread anthelmintic resistance in small ruminants has necessitated alternative means of gastrointestinal nematode (GIN) control. The objective was to determine the effectiveness of copper oxide wire particles (COWP) administered as a gelatin capsule or in a feed supplement to control GIN in goats. In four separate experiments, peri-parturient does (n=36), yearling does (n=25), weaned kids (n=72), and yearling bucks (n=16) were randomly assigned to remain untreated or administered 2g COWP in a capsule (in Experiments 1, 2, and 3) or feed supplement (all experiments). Feces and blood were collected every 7 days between Days 0 and 21 (older goats) or Day 42 (kids) for fecal egg counts (FEC) and blood packed cell volume (PCV) analyses. A peri-parturient rise in FEC was evident in the untreated does, but not the COWP-treated does (COWP x date, P<0.02). In yearling does, FEC of the COWP-treated does tended to be lower than the untreated (COWP, P<0.02). FEC of COWP-treated kids were reduced compared with untreated kids (COWP x date, P<0.001). FEC of treated and untreated bucks were similar, but Haemonchus contortus was not the predominant nematode in these goats. However, total worms were reduced in COWP-fed bucks (P<0.03). In summary, it appeared that COWP in the feed was as effective as COWP in a gelatin capsule to reduce FEC in goats. COWP administration may have a limited effect where H. contortus is not the predominant nematode.

  16. Nematode communities in contaminated river sediments

    International Nuclear Information System (INIS)

    Heininger, Peter; Hoess, Sebastian; Claus, Evelyn; Pelzer, Juergen; Traunspurger, Walter

    2007-01-01

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure

  17. Nematode communities in contaminated river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Heininger, Peter [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Hoess, Sebastian [Ecossa - Ecological Sediment and Soil Assessment, Thierschstr. 43, 80538 Munich (Germany); Claus, Evelyn [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Pelzer, Juergen [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Traunspurger, Walter [University of Bielefeld, Department of Animal Ecology, Morgenbreede 45, 33615 Bielefeld (Germany)]. E-mail: traunspurger@uni-bielefeld.de

    2007-03-15

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure.

  18. A Plant-Feeding Nematode Indirectly Increases the Fitness of an Aphid

    Directory of Open Access Journals (Sweden)

    Grace A. Hoysted

    2017-11-01

    Full Text Available Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L. host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida, and a phloem-sucking herbivore (Myzus persicae. The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests.

  19. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes

    Science.gov (United States)

    Kotwicki, Lech; Grzelak, Katarzyna; Bełdowski, Jacek

    2016-06-01

    Assessment of biological effects of chemical warfare agents (CWAs) dumped in the Baltic Sea has been one of the tasks of the Chemical Munitions Search & Assessment (CHEMSEA) project. Three sites have been selected for investigation: Bornholm Deep, Gotland Deep and Gdansk Deep. Fauna collected from these locations were compared with the reference area located between the studied regions at similar depths below 70 m. In total, four scientific cruises occurred in different seasons between 2011 and 2013. The total lack of any representatives of macrozoobenthos in all of the investigated dumping sites was noted. As a practical matter, the Baltic deeps were inhabited by nematodes as the only meiofauna representatives. Therefore, nematodes were used as a key group to explore the faunal communities inhabiting chemical dumping sites in the Baltic deeps. In total, 42 nematode genera belonging to 18 families were identified, and the dominant genus was Sabatieria (Comesomatidae), which constituted 37.6% of the overall nematode community. There were significant differences in nematode community structure (abundance and taxa composition) between the dumping areas and the reference site (Kruskal-Wallis H=30.96, pnematode assemblages could mirror the environmental conditions.

  20. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signalling.

    Directory of Open Access Journals (Sweden)

    Javier eCabrera

    2014-03-01

    Full Text Available Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs in their hosts, termed syncytia and giant cells (GCs for cyst and root-knot nematodes, respectively. They differ in their ontogeny and global transcriptional signatures, but both develop cell wall ingrowths to facilitate high rates of apoplastic/symplastic solute exchange showing transfer cell (TC characteristics. Regulatory signals for TC differentiation are not still well known. The two-component signalling system (2CS and reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related genes are not major contributors to differential gene expression in early developing NFCs. Additionally, transcriptomic and functional studies have assigned a major role to auxin and ethylene as regulatory signals on early developing TCs. Genes encoding proteins with similar functions expressed in both early developing NFCs and typical TCs are putatively involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no function directly associated to the TCs identity of NFCs, such as the formation of cell wall ingrowths is described for most of them. Thus we reviewed similarities between transcriptional changes observed during the early stages of NFCs formation and those described during differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation of NFCs with particular emphasis on auxin an ethylene.

  1. Effect of feeding urea-molasses blocks with incorporated fenbendazole on grazing dairy heifers naturally infected with gastrointestinal nematodes

    Directory of Open Access Journals (Sweden)

    R.M. Waruiru

    2003-06-01

    Full Text Available Between June 1999 and August 2000, the effects of feeding medicated urea-molasses supplement blocks on the growth of dairy heifers in a marginal area of central Kenya were assessed by comparing the live-weight gain of supplemented and unsupplemented heifers grazing the same pasture. Thirty-nine heifers with an average age of 9.6 months were initially treated orally with albendazole (10 mg / kg body weight and assigned to 3 groups : group I was fed urea-molasses blocks with incorporated fenbendazole (MUMB, group II was fed urea-molasses blocks (UMB and group III heifers (control received no block supplementation (NBS. Body weights of the heifers and faecal egg counts (FECs were measured monthly and larval cultures were made of positive faecal samples of each group. The mean cumulative live-weight responses of the MUMB and UMB groups were significantly greater than the NBS group (P 0.05. The FECs were moderate to low in all groups and decreased progressively with increasing age of the animals; FECs for the urea-molasses-supplemented groups remained significantly lower than those of the NBS group throughout the experimental period (P <0.05. Haemonchus and Trichostrongylus were the predominant nematode genera found in the heifers, but Cooperia, Bunostomum and Oesophagostomum were also present. These results indicate that feeding of urea-molasses blocks substantially reduced production losses attributable to nematode infection of young grazing cattle, and confirms previous observations that well-fed animals are better able to overcome the effects of helminth infections.

  2. Spatial and temporal infaunal dynamics of the Blanes submarine canyon-slope system (NW Mediterranean); changes in nematode standing stocks, feeding types and gender-life stage ratios

    Science.gov (United States)

    Ingels, Jeroen; Vanreusel, Ann; Romano, Chiara; Coenjaerts, Johan; Mar Flexas, M.; Zúñiga, Diana; Martin, Daniel

    2013-11-01

    Despite recent advances in the knowledge of submarine canyons ecosystems, our understanding of the faunal patterns and processes in these environments is still marginal. In this study, meiobenthic nematode communities (from 300 m to 1600 m depth) obtained in November 2003 and May 2004 at eight stations inside and outside Blanes submarine canyon were analysed for nematode standing stocks (SSs), feeding types and gender-life stage distributions. Environmental data were obtained by sediment traps and current meters, attached to moorings (April 2003-May 2004), and sediments samples analysed for biogeochemistry and grain size (May 2004). In November 2003, nematode SSs decreased with increasing depth (367.2 individuals and 7.31 μg C per 10 cm2 at 388 m water depth to 7.7 individuals and 0.18 μg C per 10 cm2 at 1677 m water depth), showing a significant negative relation (abundance: R2 = 0.620, p = 0.020; biomass: R2 = 0.512, p = 0.046). This was not the case in May 2004 (283.5 individuals and 3.53 μg C per 10 cm2 at 388 m water depth to 490.8 individuals and 4.93 μg C per 10 cm2 at 1677 m water depth; abundance: R2 = 0.003, p = 0.902; biomass: R2 = 0.052, p = 0.587), suggesting a temporal effect that overrides the traditional decrease of SSs with increasing water depth. Both water depth and sampling time played a significant role in explaining nematode SSs, but with differences between stations. No overall differences were observed between canyon and open slope stations. Nematode standing stock (SS) patterns can be explained by taking into account the interplay of phytodetrital input and disturbance events, with station differences such as topography playing an important role. Individual nematode size decreased from November 2003 to May 2004 and was explained by a food-induced genera shift and/or a food-induced transition from a ‘latent’ to a ‘reproductive’ nematode community. Our results suggest that size patterns in nematode communities are not solely

  3. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  4. Free-living nematode species (Nematoda) dwelling in hydrothermal sites of the North Mid-Atlantic Ridge

    Science.gov (United States)

    Tchesunov, Alexei V.

    2015-12-01

    Morphological descriptions of seven free-living nematode species from hydrothermal sites of the Mid-Atlantic Ridge are presented. Four of them are new for science: Paracanthonchus olgae sp. n. (Chromadorida, Cyatholaimidae), Prochromadora helenae sp. n. (Chromadorida, Chromadoridae), Prochaetosoma ventriverruca sp. n. (Desmodorida, Draconematidae) and Leptolaimus hydrothermalis sp. n. (Plectida, Leptolaimidae). Two species have been previously recorded in hydrothermal habitats, and one species is recorded for the first time in such an environment. Oncholaimus scanicus (Enoplida, Oncholaimidae) was formerly known from only the type locality in non-hydrothermal shallow milieu of the Norway Sea. O. scanicus is a very abundant species in Menez Gwen, Lucky Strike and Lost City hydrothermal sites, and population of the last locality differs from other two in some morphometric characteristics. Desmodora marci (Desmodorida, Desmodoridae) was previously known from other remote deep-sea hydrothermal localities in south-western and north-eastern Pacific. Halomonhystera vandoverae (Monhysterida, Monhysteridae) was described and repeatedly found in mass in Snake Pit hydrothermal site. The whole hydrothermal nematode assemblages are featured by low diversity in comparison with either shelf or deep-sea non-hydrothermal communities. The nematode species list of the Atlantic hydrothermal vents consists of representatives of common shallow-water genera; the new species are also related to some shelf species. On the average, the hydrothermal species differ from those of slope and abyssal plains of comparable depths by larger sizes, diversity of buccal structures, presence of food content in the gut and ripe eggs in uteri.

  5. Assessment of nematode community structure as a bioindicator in river monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.C.; Chen, P.C. [Department of Plant Pathology, National Chung Hsing University, 250 Kuo Kuan Rd, Taichung 402, Taiwan (China); Tsay, T.T., E-mail: tttsay@nchu.edu.t [Department of Plant Pathology, National Chung Hsing University, 250 Kuo Kuan Rd, Taichung 402, Taiwan (China)

    2010-05-15

    Nematode communities from river water and sediments were assessed for the abundance, feeding types, maturity indices and nematode channel ratio (NCR). The sampling sites studied included different levels of pollution and contamination from agricultural, industrial and sewage sources. The nematode abundance found in the sediment samples was more than that in the water samples. The lowest nematode abundance in sediment samples and the lowest NCR in water samples were both found at the industrial pollution site. Water samples showed positive correlation between the NCR and river pollution index (RPI). Mean maturity indices in sediment samples were inversely correlated with RPI. The pollutant source determined the relationship between NCR and pollution level, while maturity index always showed negative correlation with pollutant level regardless of the pollutant sources. The nematode abundance and its community structure were both reliable bioindicators for monitoring long-term river pollution in both qualitative and quantitative aspects. - Nematode community structure in rivers is related to the contamination source and level.

  6. Assessment of nematode community structure as a bioindicator in river monitoring

    International Nuclear Information System (INIS)

    Wu, H.C.; Chen, P.C.; Tsay, T.T.

    2010-01-01

    Nematode communities from river water and sediments were assessed for the abundance, feeding types, maturity indices and nematode channel ratio (NCR). The sampling sites studied included different levels of pollution and contamination from agricultural, industrial and sewage sources. The nematode abundance found in the sediment samples was more than that in the water samples. The lowest nematode abundance in sediment samples and the lowest NCR in water samples were both found at the industrial pollution site. Water samples showed positive correlation between the NCR and river pollution index (RPI). Mean maturity indices in sediment samples were inversely correlated with RPI. The pollutant source determined the relationship between NCR and pollution level, while maturity index always showed negative correlation with pollutant level regardless of the pollutant sources. The nematode abundance and its community structure were both reliable bioindicators for monitoring long-term river pollution in both qualitative and quantitative aspects. - Nematode community structure in rivers is related to the contamination source and level.

  7. Effects of temperature on the life-history traits of Sancassania (Caloglyphus) berlesei (Acari: Astigmatina: Acaridae) feeding on root-knot nematodes, Meloidogyne spp. (Nematoda: Meloidogynidae).

    Science.gov (United States)

    Abou El-Atta, Doaa Abd El-Maksoud; Ghazy, Noureldin Abuelfadl; Osman, Mohamed Ali

    2014-11-01

    Sancassania (Caloglyphus) berlesei (Michael) is a cosmopolitan and free-living mite that inhabits soil as well as laboratory colonies of insects and fungi and may have a role as a biocontrol agent of nematodes. In this study, we investigated the effects of temperature on the development, reproduction, and food consumption of S. berlesei fed egg masses of root-knot nematodes, Meloidogyne spp., an important group of agricultural pests. Mites were reared at 20, 25 or 30 °C in the dark. The mites could feed on the nematode egg masses, and their developmental time decreased at higher temperatures. Time from the egg to adult was similar in females and males reared at the same temperature. Adult females lived longer than males at 25 °C, but not at 20 or 30 °C. Generally, females showed a higher rate of food consumption than males. Females laid the largest number of eggs at 20 and 25 °C (199.7 and 189.8 eggs/female, respectively), but the intrinsic rate of natural increase was highest at 30 °C (r m = 0.29). In comparing our data with previous reports, we noted that S. berlesei that fed on egg masses of root-knot nematodes showed a longer developmental time and a lower reproductive rate than Sancassania mites that fed on other diets. Nonetheless, the relatively high value of r m (e.g., at 25 and 30 °C) suggests that this mite may have certain advantages as a biocontrol agent of root-knot nematodes.

  8. Nematode community structure along a central Chile margin transect influenced by the oxygen minimum zone

    Science.gov (United States)

    Neira, Carlos; King, Ian; Mendoza, Guillermo; Sellanes, Javier; De Ley, Paul; Levin, Lisa A.

    2013-08-01

    Nematodes are among the metazoans most tolerant of low-oxygen conditions and play major roles in seafloor ecosystem processes. Nematode communities were studied in sediments off Concepción, Central Chile, spanning the outer shelf within the OMZ (122 m) to the mid-lower continental slope (972 m) beneath the OMZ. The total density and biomass of nematodes (core depth 0-10 cm) ranged from 677 to 2006 ind. 10 cm-2, and 168.4 to 506.5 μg DW 10 cm-2, respectively. Among metazoan meiofaunal taxa, nematodes predominated at all sites both in terms of relative abundance (83.7-99.4%) and biomass (53.8-88.1%), followed by copepods, nauplii and polychaetes. Nematodes were represented by 33 genera distributed among 17 families, with densities greatest at low oxygen sites (122-364 m; ~2000 ind. 10 cm-2). Nematode generic and trophic diversity, and individual biomass were lowest, and Rank 1 dominance was highest, at the most oxygen-depleted site (122 m), despite the fact that the organic carbon content of the sediment was maximal at this depth. At the most oxygenated slope sites (827 and 972 m), all of Wieser's nematode feeding groups were represented. In contrast, at the lowest-oxygen site, only selective deposit (bacterial) feeders (1A) were present, indicating a reduction in trophic complexity. A large percentage of nematodes inhabited subsurface sediment layers (>1 cm). At deeper, more oxygenated sites (827 and 972 m), nematode individual biomass increased downcore, while within the OMZ, nematode biomass was low and remained relatively uniform through the sediment column. The concentration of nematodes in deeper sediment layers, the vertical distribution of the feeding groups, as well as the high nutritional quality of the deeper layers, suggest a differential resource partitioning of the food available, which may reduce interspecific competition.

  9. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    International Nuclear Information System (INIS)

    Guastella, J.; Stretton, A.O.

    1991-01-01

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, located at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA

  10. The Role of Cytokinin During Infection of Arabidopsis thaliana by the Cyst Nematode Heterodera schachtii.

    Science.gov (United States)

    Shanks, Carly M; Rice, J Hollis; Zubo, Yan; Schaller, G Eric; Hewezi, Tarek; Kieber, Joseph J

    2016-01-01

    Plant-parasitic cyst nematodes induce the formation of hypermetabolic feeding sites, termed syncytia, as their sole source of nutrients. The formation of the syncytium is orchestrated by the nematode, in part, by modulation of phytohormone responses, including cytokinin. In response to infection by the nematode Heterodera schachtii, cytokinin signaling is transiently induced at the site of infection and in the developing syncytium. Arabidopsis lines with reduced cytokinin sensitivity show reduced susceptibility to nematode infection, indicating that cytokinin signaling is required for optimal nematode development. Furthermore, lines with increased cytokinin sensitivity also exhibit reduced nematode susceptibility. To ascertain why cytokinin hypersensitivity reduces nematode parasitism, we examined the transcriptomes in wild type and a cytokinin-hypersensitive type-A arr Arabidopsis mutant in response to H. schachtii infection. Genes involved in the response to biotic stress and defense response were elevated in the type-A arr mutant in the absence of nematodes and were hyperinduced following H. schachtii infection, which suggests that the Arabidopsis type-A arr mutants impede nematode development because they are primed to respond to pathogen infection. These results suggest that cytokinin signaling is required for optimal H. schachtii parasitism of Arabidopsis but that elevated cytokinin signaling triggers a heightened immune response to nematode infection.

  11. Wildlife Contact Rates at Artificial Feeding Sites in Texas

    Science.gov (United States)

    Campbell, Tyler A.; Long, David B.; Shriner, Susan A.

    2013-06-01

    Given the popularity of feeding white-tailed deer ( Odocoileus virginianus) in Texas and the increasing amount of corn that is distributed, more information is needed on the impacts of this activity on non-target wildlife. Our objectives were to report visitation, intra- and interspecific contact, and contact rates of wildlife at artificial feeding sites in Texas. Our study was conducted at three sites in Kleberg and Nueces counties, Texas. We trapped animals from February to April and August to September, 2009 and marked animals with passive integrated transponder (PIT) tags. At each site and season, we placed one feeder system containing a PIT tag reader within 600 m of trap locations. Readers detected PIT tags from a distance of 25 cm. We determined a contact event to occur when two different PIT tags were detected by feeder systems within 5 s. We recorded 62,719 passes by raccoons ( Procyon lotor), 103,512 passes by collared peccaries ( Pecari tajacu), 2,923 passes by feral swine ( Sus scrofa), 1,336 passes by fox squirrels ( Sciurus niger), and no passes by opossums ( Didelphis virginiana) at feeder systems. For site-season combinations in which contact events occurred, we found intraspecific contact rates (contacts per day) for raccoons, collared peccaries, and feral swine to be 0.81-124.77, 0.69-38.08, and 0.0-0.66, respectively. Throughout our study we distributed ~2,625 kg of whole kernel corn, which resulted in 6,351 contact events between marked wildlife (2.4 contacts per kg of corn). If 136 million kg of corn is distributed in Texas annually, we would expect >5.2 billion unnatural contact events between wildlife would result from this activity each year in Texas. Consequently, we do not believe that it is wise for natural resource managers to maintain artificial feeding sites for white-tailed deer or other wildlife due to pathogen transmission risks.

  12. Identification and functional analysis of secreted effectors from phytoparasitic nematodes.

    Science.gov (United States)

    Rehman, Sajid; Gupta, Vijai K; Goyal, Aakash K

    2016-03-21

    Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant

  13. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone.

    Science.gov (United States)

    Lecomte-Pradines, C; Bonzom, J-M; Della-Vedova, C; Beaugelin-Seiller, K; Villenave, C; Gaschak, S; Coppin, F; Dubourg, N; Maksimenko, A; Adam-Guillermin, C; Garnier-Laplace, J

    2014-08-15

    In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h(-1). These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H'). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h(-1). This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites. This might

  14. Infection Assay of Cyst Nematodes on Arabidopsis Roots.

    Science.gov (United States)

    Bohlmann, Holger; Wieczorek, Krzysztof

    2015-09-20

    Plant parasitic nematodes are devastating pests on many crops. Juveniles (J2) of cyst nematodes invade the roots to induce a syncytium. This feeding site is their only source of nutrients. Male nematodes leave the roots after the fourth molt to mate with females. The females stay attached to their syncytia throughout their life and produce hundreds of eggs, which are contained in their bodies. When the females die their bodies form the cysts, which protect the eggs. Cysts can survive for many years in the soil until favorable conditions induce hatching of the juveniles. The beet cyst nematode Heterodera schachtii ( H. schachtii )is a pathogen of sugar beet ( Beta vulgaris ) but can also complete its life cycle on Arabidopsis roots growing on agar plates under sterile conditions. We present here protocols for a stock culture of H. schachtii and an infection assay on agar plates.

  15. Functionality of resistance gene Hero, which controls plant root-infecting potato cyst nematodes, in leaves of tomato.

    Science.gov (United States)

    Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K

    2006-07-01

    The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.

  16. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone

    International Nuclear Information System (INIS)

    Lecomte-Pradines, C.; Bonzom, J.-M.; Della-Vedova, C.; Beaugelin-Seiller, K.; Villenave, C.; Gaschak, S.; Coppin, F.; Dubourg, N.; Maksimenko, A.; Adam-Guillermin, C.; Garnier-Laplace, J.

    2014-01-01

    In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h −1 . These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H′). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h −1 . This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites. This might

  17. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Pradines, C., E-mail: catherine.lecomte-pradines@irsn.fr [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Bonzom, J.-M. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Della-Vedova, C. [Magelis, 6, rue Frederic Mistral, 84160 Cadenet (France); Beaugelin-Seiller, K. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LM2E, Building 159, Cadarache 13115 Saint Paul lez Durance cedex (France); Villenave, C. [ELISOL Environment, Building 12, Campus de la Gaillarde, 2 place Viala, 34060 Montpellier cedex 2 (France); Gaschak, S. [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Coppin, F. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, L2BT, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Dubourg, N. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, GARM Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Maksimenko, A. [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Adam-Guillermin, C. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO, Building 186, Cadarache 13115 Saint Paul lez Durance cedex (France); Garnier-Laplace, J. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, Building 159, Cadarache 13115 Saint Paul lez Durance cedex (France)

    2014-08-15

    In radioecology, the need to understand the long-term ecological effects of radioactive contamination has been emphasised. This requires that the health of field populations is evaluated and linked to an accurate estimate of received radiological dose. The aim of the present study was to assess the effects of current radioactive contamination on nematode assemblages at sites affected by the fallout from the Chernobyl accident. First, we estimated the total dose rates (TDRs) absorbed by nematodes, from measured current soil activity concentrations, Dose Conversion Coefficients (DCCs, calculated using EDEN software) and soil-to-biota concentration ratios (from the ERICA tool database). The impact of current TDRs on nematode assemblages was then evaluated. Nematodes were collected in spring 2011 from 18 forest sites in the Chernobyl Exclusion Zone (CEZ) with external gamma dose rates, measured using radiophotoluminescent dosimeters, varying from 0.2 to 22 μGy h{sup −1}. These values were one order of magnitude below the TDRs. A majority of bacterial-, plant-, and fungal-feeding nematodes and very few of the disturbance sensitive families were identified. No statistically significant association was observed between TDR values and nematode total abundance or the Shannon diversity index (H′). The Nematode Channel Ratio (which defines the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR, suggesting that radioactive contamination may influence nematode assemblages either directly or indirectly by modifying their food resources. A greater Maturity Index (MI), usually characterising better soil quality, was associated with higher pH and TDR values. These results suggest that in the CEZ, nematode assemblages from the forest sites were slightly impacted by chronic exposure at a predicted TDR of 200 μGy h{sup −1}. This may be imputable to a dominant proportion of pollutant resistant nematodes in all sites

  18. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking x 7605 under two ecological sites.

    Science.gov (United States)

    Li, Yongchun; Guo, Na; Zhao, Jinming; Zhou, Bin; Xu, Ran; Ding, Hui; Zhao, Weiguo; Gai, Junyi; Xing, Han

    2016-12-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F 2:8:11 lines) and JN(RN)P7 (248 F 2:7:9 lines) were developed from the cross of the cultivars Peking x 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= -16.68, P< 0.01). This indicated that natural selection may affect resistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.

  19. Gene expression reprogramming during the formation of feeding sites induced by plant endoparasitic nematodes

    OpenAIRE

    Cabrera Chaves, Javier

    2016-01-01

    Los nematodos parásitos de plantas constituyen una de las principales plagas para la agricultura, causando pérdidas en la producción estimadas en un 12-15% a nivel mundial cada año. Entre ellos, los nematodos endoparásitos sedentarios, establecen una relación altamente sofisticada con la planta, induciendo sus propias células de alimentación en el interior de las raíces, las células gigantes (CGs) y los sincitios en el caso de los nematodos formadores de agallas o formadores de quistes, respe...

  20. Assessing an Infant Feeding Web Site as a Nutrition Education Tool for Child Care Providers

    Science.gov (United States)

    Clark, Alena; Anderson, Jennifer; Adams, Elizabeth; Baker, Susan; Barrett, Karen

    2009-01-01

    Objective: Determine child care providers' infant feeding knowledge, attitude and behavior changes after viewing the infant feeding Web site and determine the effectiveness of the Web site and bilingual educational materials. Design: Intervention and control groups completed an on-line pretest survey, viewed a Web site for 3 months, and completed…

  1. Effects of anthelmintic treatment and feed supplementation on grazing Tuli weaner steers naturally infected with gastrointestinal nematodes

    Directory of Open Access Journals (Sweden)

    A. Magaya

    2000-07-01

    Full Text Available A study was carried out to determine the epidemiology of gastrointestinal nematodes in indigenous Tuli cattle and the effect of dietary protein supplementation and anthelmintic treatment on productivity in young growing cattle. Forty steers with an average age of 18 months were divided into 4 groups; 1 fenbendazole (slow release bolus and cottonseed meal (FCSM group, 2 fenbendazole (FBZ group, 3 cottonseed meal (CSM group and 4 control (no cottonseed meal and no fenbendazole (control group. Performance parameters measured included wormeggs per gram of faeces (EPG, packed cell volume (PCV, albumin and live-weight gain. Results showed that faecal worm egg counts were lower and PCV was higher in the FCSM and FBZ groups than in the CSM and control groups (P < 0.01. Weight gains were higher in the CSMand FCSM groups than in the FBZ and control groups (P < 0.05. The cost benefits of anthelmintic treatment and dietary supplementation were apparent in this study. The improved growth performance of the FCSM, FBZ and CSM groups reflected a financial gain over the controls on termination of the study. The dominant genera of gastrointestinal nematodes on faecal culture, pasture larval counts and necropsy were Cooperia and Haemonchus. The incidences of Trichostrongylus, Oesophagostomum and Bunostomum were low.

  2. Soil Nematodes and Their Prokaryotic Prey Along an Elevation Gradient in The Mojave Desert (Death Valley National Park, California, USA

    Directory of Open Access Journals (Sweden)

    Alyxandra Pikus

    2012-10-01

    Full Text Available We characterized soil communities in the Mojave Desert across an elevation gradient. Our goal was to test the hypothesis that as soil quality improved with increasing elevation (due to increased productivity, the diversity of soil prokaryotes and nematodes would also increase. Soil organic matter and soil moisture content increased with elevation as predicted. Soil salinity did not correlate to elevation, but was highest at a mid-gradient, alluvial site. Soil nematode density, community trophic structure, and diversity did not show patterns related to elevation. Similar results were obtained for diversity of bacteria and archaea. Relationships between soil properties, nematode communities, and prokaryotic diversity were site-specific. For example, at the lowest elevation site, nematode communities contained a high proportion of fungal-feeding species and diversity of bacteria was lowest. At a high-salinity site, nematode density was highest, and overall, nematode density showed an unexpected, positive correlation to salinity. At the highest elevation site, nematode density and species richness were attenuated, despite relatively high moisture and organic matter content for the soils. Our results support emerging evidence for the lack of a relationship between productivity and the diversity of soil nematodes and prokaryotes.

  3. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode.

    Science.gov (United States)

    Cotton, James A; Lilley, Catherine J; Jones, Laura M; Kikuchi, Taisei; Reid, Adam J; Thorpe, Peter; Tsai, Isheng J; Beasley, Helen; Blok, Vivian; Cock, Peter J A; Eves-van den Akker, Sebastian; Holroyd, Nancy; Hunt, Martin; Mantelin, Sophie; Naghra, Hardeep; Pain, Arnab; Palomares-Rius, Juan E; Zarowiecki, Magdalena; Berriman, Matthew; Jones, John T; Urwin, Peter E

    2014-03-03

    Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.

  4. The effect of a nematode parasite on feeding and dung-burying behavior of an ecosystem engineer.

    Science.gov (United States)

    Boze, Broox G V; Moore, Janice

    2014-07-01

    Dung beetles (genus Phanaeus) consume feces in both their larval and adults forms and because of their unique dietary niche, and behaviors associated with the burial of feces, are considered ecosystem engineers. In addition, because these insects subsist on a diet composed exclusively of feces, it is likely they encounter parasitic propagules more frequently than other animals do. Parasites often alter their host's behavior, so we set out to test whether Physocephalus sexalatus (a cosmopolitan nematode parasite of ungulates) does so in ways that affect the dung beetle's role as an ecosystem engineer and/or its predator-prey relationships (transmission of the parasite). Classic tests of anti-predator behavior did not reveal behavioral differences based on the beetles' infection status. However, this parasite did alter the beetles' behaviors in ways that could be critical for its role in fecal processing and therefore ecosystem engineering. Infected beetles exhibited anorexic behavior and consumed only half the amount of feces ingested by similar uninfected beetles. Infected beetles also buried less feces and did so in tunnels that were significantly shorter than those created by uninfected beetles. Fecal burial is naturally beneficial because it aerates the soil, incorporates nitrogenous compounds, and increases the flow of water thereby making soil and pastureland more productive. We showed that the nematode parasite P. sexalatus itself becomes an ecosystem engineer as it modifies the behavior of its already influential intermediate host. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. The effect of supplementary feeding on the resilience and resistance of browsing Criollo kids against natural gastrointestinal nematode infections during the rainy season in tropical Mexico.

    Science.gov (United States)

    Torres-Acosta, J F J; Jacobs, D E; Aguilar-Caballero, A; Sandoval-Castro, C; May-Martinez, M; Cob-Galera, L A

    2004-10-05

    The objective was to determine the effect of supplementary feeding on the resilience and resistance of Criollo kids against natural gastrointestinal nematode (GIN) infections, when browsing native vegetation during the wet season in tropical Mexico. Thirty-four 2-month old Criollo kids, raised nematode free, were included at weaning in a 22-week trial. The kids were placed into four groups. Two groups of 8 kids were offered 100g/day soybean and sorghum meal (26%:74%, respectively fresh basis) (treated/supplemented (T-S) and infected/supplemented (I-S)). Two groups remained with no supplement for the duration of the trial (infected/non-supplemented (I-NS) (n = 10) and treated/non-supplemented (T-NS) (n = 8)). Kids in groups T-S and T-NS were drenched with 0.2mg of moxidectin/kg body weight orally (Cydectin, Fort Dodge) every 28 days. Groups I-S and I-NS were naturally infected with GIN. The animals browsed native vegetation (for an average of 7h/day) together with a herd of 120 naturally infected adult goats. Cumulative live weight gain (CLWG), packed cell volume (PCV), haemoglobin (Hb), total plasma protein and plasma albumin were recorded every 14 days as measurements of resilience. Resistance parameters (faecal egg counts (FEC) and peripheral eosinophil counts (PEC)) were also measured. Bulk faecal cultures were made for each group every 28 days. Every month a new pair of tracer kids assessed the infectivity of the vegetation browsed by the animals. The T-S group had the highest CLWG, PCV and Hb compared to the other three groups (P 0.05), while the I-NS group had the poorest CLWG, PCV and Hb (P Criollo kids against natural GIN infections and was economically feasible. Improved resistance was also suggested by the PEC but was not confirmed in the FEC.

  6. Spatial and temporal variation of intertidal nematodes in the northern Gulf of Mexico after the Deepwater Horizon oil spill.

    Science.gov (United States)

    Brannock, Pamela M; Sharma, Jyotsna; Bik, Holly M; Thomas, W Kelley; Halanych, Kenneth M

    2017-09-01

    Nematodes are an abundant and diverse interstitial component of sedimentary habitats that have been reported to serve as important bioindicators. Though the 2010 Deepwater Horizon (DWH) disaster occurred 60 km offshore in the Gulf of Mexico (GOM) at a depth of 1525 m, oil rose to the surface and washed ashore, subjecting large segments of coastline in the northern GOM to contamination. Previous metabarcoding work shows intertidal nematode communities were negatively affected by the oil spill. Here we examine the subsequent recovery of nematode community structure at five sites along the Alabama coast over a two-year period. The latter part of the study (July 2011-July 2012) also included an examination of nematode vertical distribution in intertidal sediments. Results showed nematode composition within this region was more influenced by sample locality than time and depth. The five sampling sites were characterized by distinct nematode assemblages that varied by sampling dates. Nematode diversity decreased four months after the oil spill but increased after one year, returning to previous levels at all sites except Bayfront Park (BP). There was no significant difference among nematode assemblages in reference to vertical distribution. Although the composition of nematode assemblages changed, the feeding guilds they represented were not significantly different even though some variation was noted. Data from morphological observations integrated with metabarcoding data indicated similar spatial variation in nematode distribution patterns, indicating the potential of using these faster approaches to examine overall disturbance impact trends within communities. Heterogeneity of microhabitats in the intertidal zone indicates that future sampling and fine-scale studies of nematodes are needed to examine such anthropogenic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. On the modulation of innate immunity by plant-parasitic cyst nematodes

    NARCIS (Netherlands)

    Postma, W.J.

    2013-01-01

    Plant-parasitic cyst nematodes are major agricultural pests worldwide. These obligate endoparasites invade the roots of host plants where they transform cells near the vascular cylinder into a permanent feeding site. Plants possess a multilayered innate immune system consisting of different

  8. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Jones, John T; Urwin, Peter E

    2014-09-01

    Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  9. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Directory of Open Access Journals (Sweden)

    Sebastian Eves-van den Akker

    2014-09-01

    Full Text Available Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  10. A Standardized Method to Assess Infection Rates of Root-Knot and Cyst Nematodes in Arabidopsis thaliana Mutants with Alterations in Root Development Related to Auxin and Cytokinin Signaling.

    Science.gov (United States)

    Olmo, Rocío; Silva, Ana Cláudia; Díaz-Manzano, Fernando E; Cabrera, Javier; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Plant parasitic nematodes cause a great impact in agricultural systems. The search for effective control methods is partly based on the understanding of underlying molecular mechanisms leading to the formation of nematode feeding sites. In this respect, crosstalk of hormones such as auxins and cytokinins (IAA, CK) between the plant and the nematode seems to be crucial. Thence, the study of loss of function or overexpressing lines with altered IAA and CK functioning is entailed. Those lines frequently show developmental defects in the number, position and/or length of the lateral roots what could generate a bias in the interpretation of the nematode infection parameters. Here we present a protocol to assess differences in nematode infectivity with the lowest interference of root architecture phenotypes in the results. Thus, tailored growth conditions and normalization parameters facilitate the standardized phenotyping of nematode infection.

  11. Hemlock woolly adelgid (Homoptera: Adelgidae): stylet bundle insertion and feeding sites

    Science.gov (United States)

    Rebecca F. Young; Kathleen S. Shields; Graeme P. Berlyn

    1995-01-01

    Stylet bundle insertion site, path traveled, and feeding site were examined for the hemlock woolly adelgid, Adelges tsugae Annand, on needles from current and previous years of eastern hemlock, Tsuga canadensis Carriere. The stylet bundle is composed of 4 individual stylets--2 outer mandibular stylets and 2 inner maxillary stylets...

  12. Continuous feed, on-site composting of kitchen garbage.

    Science.gov (United States)

    Hwang, Eung-Ju; Shin, Hang-Sik; Tay, Joo-Hwa

    2002-04-01

    Kitchen garbage generated at a school cafeteria was treated and stabilised in a controlled on-site composting unit for volume reduction and on-site utilisation of processed garbage. The on-site composter was fed with the garbage on a daily basis during the two-months experimental period. Compost was not removed from the unit but was entirely reused as a bulking agent in order to minimise the need for additional bulking agent and compost handling. Performance of the composter tinder this condition was investigated. Most of the easily degradable organic matter (EDM) in the garbage was biodegraded rapidly, and the final product had a low content of EDM. Lipids, total sugar, and hemi-cellulose were degraded 96%, 81%, and 66% respectively. Free air space (FAS) was higher than 0.5 all the time, so accumulation of dry matter in the unit was not significant in reducing reaction efficiency. Other reaction parameters such as pH and MC were kept within a suitable range; however, it was advisable to maintain MC at over 46%. As a result, this method of operation was able to stabilise the garbage with low sawdust demand and little compost production.

  13. Feeding-Danger Trade-Offs Underlie Stopover Site Selection by Migrants

    Directory of Open Access Journals (Sweden)

    Andrea C. Pomeroy

    2008-06-01

    Full Text Available To migrate successfully, birds need to store adequate fat reserves to fuel each leg of the journey. Migrants acquire their fuel reserves at stopover sites; this often entails exposure to predators. Therefore, the safety attributes of sites may be as important as the feeding opportunities. Furthermore, site choice might depend on fuel load, with lean birds more willing to accept danger to obtain good feeding. Here, we evaluate the factors underlying stopover-site usage by migrant Western Sandpipers (Calidris mauri on a landscape scale. We measured the food and danger attributes of 17 potential stopover sites in the Strait of Georgia and Puget Sound region. We used logistic regression models to test whether food, safety, or both were best able to predict usage of these sites by Western Sandpipers. Eight of the 17 sites were used by sandpipers on migration. Generally, sites that were high in food and safety were used, whereas sites that were low in food and safety were not. However, dangerous sites were used if there was ample food abundance, and sites with low food abundance were used if they were safe. The model including both food and safety best-predicted site usage by sandpipers. Furthermore, lean sandpipers used the most dangerous sites, whereas heavier birds (which do not need to risk feeding in dangerous locations used safer sites. This study demonstrates that both food and danger attributes are considered by migrant birds when selecting stopover sites, thus both these attributes should be considered to prioritize and manage stopover sites for conservation.

  14. Studies on Lasioseius scapulatus, a Mesostigmatid mite predaceous on nematodes

    OpenAIRE

    Imbriani, I.; Mankau, R.

    1983-01-01

    The life history and feeding habits of Lasioseius scapulatus, an ascid predator and potential biocontrol agent of nematodes, was examined. Reproduction was asexual, and the life cycle was 8-10 days at room temperature. Life history consisted of the egg, protonymph, deutonymph, and adult. Both nymphal stages and the adult captured and consumed nematodes. Two fungal genera and eight genera of nematodes were suitable food sources. Second-stage root-knot nematode juveniles were eaten, but eggs an...

  15. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Directory of Open Access Journals (Sweden)

    Wim Grunewald

    2009-01-01

    Full Text Available Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  16. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.

    Science.gov (United States)

    Grunewald, Wim; Cannoot, Bernard; Friml, Jirí; Gheysen, Godelieve

    2009-01-01

    Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.

  17. Study of bioaccumulation and biotransformation by microanalytical X-ray techniques: investigation of distribution and speciation of Cu and Cr in the body of the plant-feeding nematode, Xiphinema vuittenezi

    International Nuclear Information System (INIS)

    Sávoly, Zoltán; Záray, Gyula

    2014-01-01

    the elemental mapping. For Cu, the sample spectrum was fitted by the spectra of reference compounds, and Cu 3 (PO 4 ) 2 , was found to be the main component, which harmonized with the results of the elemental distribution measurements. However, the role of S-containing ligands in Cu detoxification cannot be excluded, since the spectrum of Cu-cysteine complex was a minor component of the fit. It was also established that in the chromate treated nematodes a considerable part of Cr(VI) was reduced to Cr(III). - Highlights: • X-ray spectrometric measurements in the plant-feeding nematode, Xiphinema vuittenezi. • Differences in the uptake of Cr(III) and Cr(VI). • Distribution of Cr and Cu, correlation with distribution of essential elements, especially the P. • Cu speciation, important role of P-containing ligands in binding of Cu. • Significant reduction of Cr(VI) to Cr(III) in the body of the nematode

  18. Study of bioaccumulation and biotransformation by microanalytical X-ray techniques: investigation of distribution and speciation of Cu and Cr in the body of the plant-feeding nematode, Xiphinema vuittenezi

    Energy Technology Data Exchange (ETDEWEB)

    Sávoly, Zoltán; Záray, Gyula, E-mail: zaray@ludens.elte.hu

    2014-11-01

    method was the same as in the case of the elemental mapping. For Cu, the sample spectrum was fitted by the spectra of reference compounds, and Cu{sub 3}(PO{sub 4}){sub 2}, was found to be the main component, which harmonized with the results of the elemental distribution measurements. However, the role of S-containing ligands in Cu detoxification cannot be excluded, since the spectrum of Cu-cysteine complex was a minor component of the fit. It was also established that in the chromate treated nematodes a considerable part of Cr(VI) was reduced to Cr(III). - Highlights: • X-ray spectrometric measurements in the plant-feeding nematode, Xiphinema vuittenezi. • Differences in the uptake of Cr(III) and Cr(VI). • Distribution of Cr and Cu, correlation with distribution of essential elements, especially the P. • Cu speciation, important role of P-containing ligands in binding of Cu. • Significant reduction of Cr(VI) to Cr(III) in the body of the nematode.

  19. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes

    2009-07-01

    Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.

  20. The impact of a parasitic nematode Thripinema fuscum (Tylenchida: Allantonematidae) on the feeding behavior and vector competence of Frankliniella fusca (Thysanoptera: Thripidae)

    Science.gov (United States)

    Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) is the predominant thrips species found inhabiting and reproducing in peanut (Arachis hypogaea L.) and is one of at least seven thrips species reported to transmit Tomato spotted wilt virus (TSWV). The entomogenous nematode Thripinema fuscum Tipp...

  1. Paleoparasitological finding of eggs of nematodes in rodent coprolites dated at the early Holocene from the archaeological site Cerro Casa de Piedra 7, Santa Cruz, Argentina.

    Science.gov (United States)

    Sardella, N H; Fugassa, M H

    2011-12-01

    The aim of the present study was to examine the parasite remains present in rodent coprolites collected from the archaeological site Cerro Casa de Piedra 7 (CCP7), located in the Perito Moreno National Park (47°57'S, 72°05'W), Santa Cruz Province, Argentina. Eight coprolites obtained from the layer 17, dated at 10,620 ± 40 to 9,390 ± 40 yr B.P., were examined for parasites. Feces were processed whole, rehydrated, homogenized, subjected to spontaneous sedimentation, and examined via light microscopy. Eggs of parasites were measured and photographed. Seven of 8 coprolites possessed 199 eggs of 2, probably new, species of nematodes, including 43 eggs of Heteroxynema sp. Hall, 1916 (Cavioxyura sp. Quentin, 1975) (Oxyurida, Heteroxynematidae), and 156 eggs of Trichuris sp. Roederer, 1761 (Trichinellida, Trichuridae). Heteroxynema sp. is cited for the first time from ancient material worldwide. The finding of Trichuris spp. in both rodents and other host samples from the area under study is indicative of the stability of the biological and environmental conditions for this nematode genus to establish in the Patagonian Early Holocene. The rodent host was assigned to an unknown species of Caviomorpha (Hystricognathi) that lived during the Pleistocenic transition in Patagonia.

  2. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode

    KAUST Repository

    Cotton, James A

    2014-03-03

    Background: Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. Results: We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. Conclusions: The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens. 2014 Cotton et al.; licensee BioMed Central Ltd.

  3. Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae).

    Science.gov (United States)

    Rotheray, Graham E

    2014-12-19

    Two hundred and ninety-eight rearing records and 87 larvae and puparia were obtained of seven species of Palloptera Fallén (Diptera, Pallopteridae), mainly in Scotland during 2012-2013. The third stage larva and puparium of each species were assessed morphologically and development sites and feeding modes investigated by rearing, observation and feeding tests. Early stages appear to be distinguished by the swollen, apico-lateral margins of the prothorax which are coated in vestiture and a poorly developed anal lobe with few spicules. Individual pallopteran species are separated by features of the head skeleton, locomotory spicules and the posterior respiratory organs. Five species can be distinguished by unique character states. Observations and feeding tests suggest that the frequently cited attribute of zoophagy is accidental and that saprophagy is the primary larval feeding mode with autumn/winter as the main period of development. Food plants were confirmed for flowerhead and stem developing species and rain is important for maintaining biofilms on which larvae feed. Due to difficulties in capturing adults, especially males, the distribution and abundance of many pallopteran species is probably underestimated. Better informed estimates are possible if early stages are included in biodiversity assessments. To facilitate this for the species investigated, a key to the third stage larva and puparium along with details on finding them, is provided. 

  4. Females and males of root-parasitic cyst nematodes induce different symplasmic connections between their syncytial feeding cells and the phloem in Arabidopsis thaliana.

    Science.gov (United States)

    Hofmann, Julia; Grundler, Florian M W

    2006-01-01

    Root syncytia induced by the beet cyst nematode Heterodera schachtii were thought to be symplasmically isolated. A recent study with mobile and immobile GFP constructs expressed in transgenic Arabidopsis plants under the control of pAtSUC2 showed that only mobile GFP could be detected in syncytia and suggested the existence of plasmodesmata between syncytia and the phloem. In the present study the existence of plasmodesmata between syncytia and the phloem is proven by grafting experiments. This technique rules out the possibility that GFP accumulation in syncytia is due to GFP expression in syncytia. Mobile GFP could be followed from transgenic scions carrying a pAtSUC2-gfp fusion construct via wild-type rootstocks into nematode-induced syncytia. While GFP could be detected in all syncytia associated to female nematodes, it was never observed in syncytia of male juveniles. As no GFP-mRNA could be detected in the rootstock we postulate that GFP as protein entered syncytia of females via plasmodesmata, while the protein was excluded from syncytia of male juveniles by plasmodesmata with a lower size exclusion limit.

  5. Transfer coefficient of 137Cs and 40K from feed to milk in Kakrapar Gujarat site

    International Nuclear Information System (INIS)

    Wagh, S.S.; Patra, A.K.; John, Jaison T.; Ravi, P.M.; Tripathi, R.M.

    2018-01-01

    117 Cs is one of the most important contaminant from nuclear fall out because of its long physical half-life, affinity for biological systems and its uptake to man through diet. Cesium behaves like Potassium because of its similar physical and chemical properties. One of the important ingestion pathways of 137 Cs is grass to cow, cow to milk and exposed to man due to consumption of milk. Therefore it is necessary to measure the concentration of 137 Cs in grass and milk samples and to calculate the dose to human being due to the consumption of milk. This paper presents 137 Cs and 40 K concentration in feed and milk samples and the respective site-specific transfer coefficients from feed to milk for Kakrapar Gujarat Site

  6. Expression of Two Functionally Distinct Plant Endo-ß-1,4-Glucanases Is Essential for the Compatible Interaction Between Potato Cyst Nematode and Its Hosts

    NARCIS (Netherlands)

    Karczmarek, A.; Fudali, S.; Lichocka, M.; Sobczak, M.; Kurek, W.; Janakowski, S.; Roosien, J.; Golinowski, W.; Bakker, J.; Goverse, A.; Helder, J.

    2008-01-01

    For the proliferation of their feeding sites (syncytia), the potato cyst nematode Globodera rostochiensis is thought to recruit plant endo-ß-1,4-glucanases (EGases, EC. 3.2.1.4). Reverse-transcription polymerase chain reaction experiments on tomato (Solanum lycopersicum) indicated that the

  7. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants

    Czech Academy of Sciences Publication Activity Database

    Siddique, S.; Radakovic, Z.S.; De La Torre, C.M.; Chronis, D.; Novák, Ondřej; Ramireddy, E.; Holbein, J.; Matera, C.; Hutten, M.; Gutbrod, P.; Anjam, M.S.; Rozanska, E.; Habash, S.; Elashry, A.; Sobczak, M.; Kakimoto, T.; Strnad, Miroslav; Schmülling, T.; Mitchum, M.G.; Grundler, F.M.W.

    2015-01-01

    Roč. 112, č. 41 (2015), s. 12669-12674 ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * cell cycle * cytokinin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  8. Host preferences and feeding patterns of Anopheles sinensis Wiedemann in three sites of Shandong province, China.

    Science.gov (United States)

    Zhang, Chongxing; Shi, Guihong; Cheng, Peng; Liu, Lijuan; Gong, Maoqing

    2017-01-01

    Anopheles sinensis Wiedemann is a major vector of malaria and is among the dominant species in Shandong province of China. Knowledge of the blood-feeding patterns of mosquitoes is crucial for elimination of malaria vectors. However, little information is available on the blood-feeding behaviour of An. sinensis mosquitoes in Shandong province. This study was carried out to compare the blood-feeding behaviour of An. sinensis in malaria-endemic areas of Shandong province China. Adult Anopheles mosquitoes were collected from three malaria-endemic areas (Jimo, Yinan and Shanxian), during the peak months of mosquito population (August and September) from 2014 to 2015. Indoor-resting mosquitoes and outdoor-resting blood-fed females were sampled in the morning hours (0600 to 0900 hrs) from 10 randomly selected houses using pyrethrum spray catch method, and sweeping with an insect net. ELISA was used for the identification of blood meal. The blood meal of each mosquito was tested against antisera specific to human, pig, dog, cow, goat, horse (mule) and fowl. At all indoor study locations of Jimo, Yinan and Shanxian, 59.4, 68.1 and 98.8% blood-engorged female An. sinensis collected from cattle sheds fed almost exclusively on bovines, respectively. For outdoor locations, at Jimo site, 27.27 and 49.55% An. sinensis fed on cattle and pigs; at Yinan, 30.42% fed on cattle and 36.88% fed both on cattle and goats, while no pig antibodies were detected. At Shanxian, percent of An. sinensis that fed on cattle, pigs and cattle-goat was 20.72, 27.62 and 21.78%, respectively. The analysis of An. sinensis blood meals in all the three studied areas from human houses, cattle sheds, pig sheds and mixed dwellings revealed that An. sinensis prefers cattle hosts, and can feed on other available animal hosts if the cattle hosts are absent, and the mosquitoes readily feed on humans when domestic animals (cattle and pigs) are not nearby for feeding. The analysis of blood meal revealed that An

  9. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita.

    Directory of Open Access Journals (Sweden)

    Olga A Postnikova

    Full Text Available Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp. are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against these pests and specifically against RKN. In this work, we performed root transcriptome analysis of resistant (cv. Moapa 69 and susceptible (cv. Lahontan alfalfa cultivars infected with RKN Meloidogyne incognita, widespread root-knot nematode species and a major pest worldwide. A total of 1,701,622,580 pair-end reads were generated on an Illumina Hi-Seq 2000 platform from the roots of both cultivars and assembled into 45,595 and 47,590 transcripts in cvs Moapa 69 and Lahontan, respectively. Bioinformatic analysis revealed a number of common and unique genes that were differentially expressed in susceptible and resistant lines as a result of nematode infection. Although the susceptible cultivar showed a more pronounced defense response to the infection, feeding sites were successfully established in its roots. Characteristically, basal gene expression levels under normal conditions differed between the two cultivars as well, which may confer advantage to one of the genotypes toward resistance to nematodes. Differentially expressed genes were subsequently assigned to known Gene Ontology categories to predict their functional roles and associated biological processes. Real-time PCR validated expression changes in genes arbitrarily selected for experimental confirmation. Candidate genes that contribute to protection against M. incognita in alfalfa were proposed and alfalfa-nematode interactions with

  10. Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction

    Science.gov (United States)

    Background: Plant parasitic nematodes (PPNs) are obligate parasites that feed on the roots of living host plants. Often, these nematodes can lay hundreds of eggs, each capable of surviving in the soil for as long as 12 years. When it comes to wreaking havoc on agricultural yield, few nematodes can c...

  11. Trait-mediated diversification in nematode predator–prey systems

    NARCIS (Netherlands)

    Mulder, C.; Helder, J.; Vervoort, M.T.W.; Vonk, J.A.

    2011-01-01

    Nematodes are presumably the most numerous Metazoans in terrestrial habitats. They are represented at all trophic levels and are known to respond to nutrient limitation, prey availability, and microbial resources. Predatory nematodes reside at the highest trophic level, and as such their feeding

  12. A model of nematode dynamics in the Westerschelde estuary

    NARCIS (Netherlands)

    Li, J.; Vincx, M.; Herman, P.M.J.

    1996-01-01

    We developed a time dynamic model to investigate the temporal dynamics of nematode community in the brackish zone of the Westerschelde Estuary. The biomass of four nematode feeding groups observed from March 1991 to February 1992 is used to calibrate the model. Using environmental data as the input,

  13. Cyst nematode-induced changes in plant development

    NARCIS (Netherlands)

    Goverse, A.

    1999-01-01

    This thesis describes a first attempt to investigate the biological activity of cyst nematode secretions on plant cell proliferation and the molecular mechanisms underlying feeding cell development in plant roots upon cyst nematode infection.

    To investigate the role of

  14. First use of soil nematode communities as bioindicator of radiation impact in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, C.; Bonzom, J.M.; Adam-Guillermin, C. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LECO (France); Della-Vedova, C. [Magelis, Cadenet (France); Beaugelin-Seiller, K. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, LM2E (France); Gaschak, S. [Chernobyl Center for Nuclear safety, Radioactive waste and Radioecology, International Radioecology Laboratory (Ukraine); Coppin, F. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS, L2BT (France); Garnier-Laplace, J. [Institute for Radioprotection and Nuclear Safety, IRSN/PRP-ENV/SERIS (France)

    2014-07-01

    The aim of the study was to assess the effects of former radioactive contamination on the structure of the nematode community in sites affected by the fallout from the Chernobyl accident that occurred on 26, April 1986. Nematodes were collected in spring 2011 from 18 forest sites of the Chernobyl Exclusion Zone (CEZ). The external gamma dose rates, measured from radiophotoluminescent dosimeters (RPL) varied from 0.2 to 22 μGy h{sup -1} between sites. In parallel, the Total dose rates (TDR) absorbed by nematodes were predicted from measured soil activity concentrations, Dose Conversion Coefficients (DCC, calculated by the EDEN software) and Soil-to-biota concentration ratios (from the ERICA tool database). Results showed that TDR were one order of magnitude above the external gamma dose rate measured from RPL. This is mainly due to the contribution of alpha ({sup 241}Am,{sup 238,239,240}Pu) and beta ({sup 90}Sr, and {sup 137}Cs) emitters in the external dose rate. The small size (in the order of mm) of nematodes promoted a high energy deposition throughout the organisms without fading, giving more weight to external dose rate induced by alpha-and beta-emitters, relatively to gamma-emitters. Analysis of the nematode community showed a majority of bacterial-, plant-, and fungal- feeder nematodes and almost none of the disturbance sensitive families whatever the level of radioactive contamination. Multiple regression analysis was used to establish relationships between ecological features (nematodes abundance and family diversity, indices of ecosystem structure and function) to the environmental characteristics (TDR and soil physico-chemical properties). No evidence was found that nematode total abundance and family diversity were impaired by the radiological contamination. However, the Nematode Channel Ratio (defining the relative abundance of bacterial- versus fungal-feeding nematodes) decreased significantly with increasing TDR suggesting that the radioactive

  15. Role of dung beetle feeding mechanisms in limiting the suitability of species as hosts for the nematode Spirocerca lupi

    DEFF Research Database (Denmark)

    du Toit, C. A.; Holter, P.; Lutermann, H.

    2012-01-01

    Various species of dung beetle serve as intermediate hosts after ingesting the embryonated eggs (1115 x 3037 mu m) of Spirocerca lupi (Spirurida: Spirocercidae) in dog faeces. The feeding mechanisms of coprophagous dung beetles restrict the size of the food particles they can ingest and hence may...

  16. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone.

    Science.gov (United States)

    Thakur, Madhav Prakash; Reich, Peter B; Fisichelli, Nicholas A; Stefanski, Artur; Cesarz, Simone; Dobies, Tomasz; Rich, Roy L; Hobbie, Sarah E; Eisenhauer, Nico

    2014-06-01

    Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.

  17. Nematode survival in relation to soil moisture

    NARCIS (Netherlands)

    Simons, W.R.

    1973-01-01

    Established nematode populations are very persistent in the soil. It is known that they need sufficient soil moisture for movement, feeding and reproduction (fig. 5), and that there are adverse soil moisture conditions which they cannot survive. The influence of soil moisture on survival

  18. Seasonal and long-term changes in relative abundance of bull sharks from a tourist shark feeding site in Fiji.

    Science.gov (United States)

    Brunnschweiler, Juerg M; Baensch, Harald

    2011-01-27

    Shark tourism has become increasingly popular, but remains controversial because of major concerns originating from the need of tour operators to use bait or chum to reliably attract sharks. We used direct underwater sampling to document changes in bull shark Carcharhinus leucas relative abundance at the Shark Reef Marine Reserve, a shark feeding site in Fiji, and the reproductive cycle of the species in Fijian waters. Between 2003 and 2009, the total number of C. leucas counted on each day ranged from 0 to 40. Whereas the number of C. leucas counted at the feeding site increased over the years, shark numbers decreased over the course of a calendar year with fewest animals counted in November. Externally visible reproductive status information indicates that the species' seasonal departure from the feeding site may be related to reproductive activity.

  19. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  20. The AAP gene family for amino acid permeases contributes to development of the cyst nematode Heterodera schachtii in roots of Arabidopsis.

    Science.gov (United States)

    Elashry, Abdelnaser; Okumoto, Sakiko; Siddique, Shahid; Koch, Wolfgang; Kreil, David P; Bohlmann, Holger

    2013-09-01

    The beet cyst nematode Heterodera schachtii is able to infect Arabidopsis plants and induce feeding sites in the root. These syncytia are the only source of nutrients for the nematodes throughout their life and are a nutrient sink for the host plant. We have studied here the role of amino acid transporters for nematode development. Arabidopsis contains a large number of different amino acid transporters in several gene families but those of the AAP family were found to be especially expressed in syncytia. Arabidopsis contains 8 AAP genes and they were all strongly expressed in syncytia with the exception of AAP5 and AAP7, which were slightly downregulated. We used promoter::GUS lines and in situ RT-PCR to confirm the expression of several AAP genes and LHT1, a lysine- and histidine-specific amino acid transporter, in syncytia. The strong expression of AAP genes in syncytia indicated that these transporters are important for the transport of amino acids into syncytia and we used T-DNA mutants for several AAP genes to test for their influence on nematode development. We found that mutants of AAP1, AAP2, and AAP8 significantly reduced the number of female nematodes developing on these plants. Our study showed that amino acid transport into syncytia is important for the development of the nematodes. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  1. Early responses of resistant and susceptible potato roots during invasion by the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Sheridan, Jacqueline P; Miller, Anthony J; Perry, Roland N

    2004-03-01

    Signals from roots of resistant (cv. Maris Piper) and susceptible (cv. Désirée) potato cultivars during invasion by second stage juveniles (J2s) of the potato cyst nematode, Globodera rostochiensis, were investigated. Novel experimental chambers enabled the recording of electrophysiological responses from roots during nematode invasion. The root cell membrane potentials were maintained throughout the 3 d required to assess invasion and feeding site development. The steady-state resting membrane potentials of Désirée were more negative than those of Maris Piper on day 1, but the reverse on day 3. After 5 d there was no difference between the two cultivars. Intracellular microelectrodes detected marked spike activity in roots after the application of J2s and there were distinct and reproducible differences between the two cultivars, with the response from Désirée being much greater than that from Maris Piper. The responses to mechanical stimulation of roots by blunt micropipettes and sharp electrodes were consistent and similar in both cultivars to the responses in Maris Piper obtained after nematode invasion, but could not account for the marked response found in Désirée. Exogenous application of exoenzymes, used to mimic nematode chemical secretions, resulted in a distinct depolarization pattern that, although similar in both cultivars, was different from patterns obtained during nematode invasion or mechanical stimulation. The pH of homogenates prepared from roots of both cultivars was measured and a Ca2+ channel blocker was used to assess the role of Ca2+ in nematode invasion. The results indicated a role for Ca2+ in the signalling events that occur during nematode invasion.

  2. Induction of traps by Ostertagia ostertagi larvae, chlamydospore production and growth rate in the nematode-trapping fungus Duddingtonia flagrans

    DEFF Research Database (Denmark)

    Grønvold, J.; Nansen, P.; Henriksen, S. A.

    1996-01-01

    Biological control of parasitic nematodes of domestic animals can be achieved by feeding host animals chlamydospores of the nematode-trapping fungus Duddingtonia flagrans. In the host faeces, D. flagrans develop traps that may catch nematode larvae. In experiments on agar, D. flagrans had a growth...

  3. Molecular contest between potato and the potato cyst nematode Globodera pallida: modulation of Gpa2-mediated resistance

    NARCIS (Netherlands)

    Koropacka, K.B.

    2010-01-01

    Gpa2 recognition specificity
    Among all the multicellular animals, nematodes are the most numerous. In soil, a high variety
    of free living nematodes feeding on bacteria can be found as well as species that parasitize
    insects, animals or plants. The potato cyst nematode (PCN)

  4. Delineation of surf scoter habitat in Chesapeake Bay, Maryland: macrobenthic and sediment composition of surf scoter feeding sites

    Science.gov (United States)

    Kidwell, D.M.; Perry, M.C.

    2005-01-01

    Surveys of surf scoters (Melanitta perspicillata) along the Atlantic coast of the United States have shown population declines in recent decades. The Chesapeake Bay has traditionally been a key wintering area for surf scoters. Past and present research has shown that bivalves constitute a major food item for seaducks in the Chesapeake Bay, with surf scoters feeding primarily on hooked mussel (Ischadium recurvum) and dwarf surf clam (Mulinia lateralis). Degraded water quality conditions in the Chesapeake Bay have been well documented and have been shown to greatly influence the composition of benthic communities. Large concentrations of feeding surf scoters (>500 individuals) in the Bay were determined through monthly boat surveys. Locations consistently lacking surf scoters were also determined. Macrobenthos were seasonally sampled at 3 locations containing scoters and 3 locations without scoters. A 1 kilometer square grid was superimposed over each location using GIS and sampling sites within the square were randomly chosen. Benthos were sampled at each site using SCUBA and a meter square quadrat. Biomass and size class estimates were determined for all bivalves within each kilometer square. Results indicated that scoter feeding sites contained significantly greater biomass of M. lateralis, I. recurvum, and Gemma gemma than locations where no scoters were present. Substrate differences were also detected, with scoter feeding sites being composed of a sand/shell mix while non-scoter sites consisted primarily of mud. This data indicates that surf scoters in the Chesapeake Bay are selecting areas with high densities of preferred food items, potentially maximizing there foraging energetics. In addition, two scoter feeding sites also contained a patchwork of eastern oyster (Crassostrea virginica) and oyster shell, on which much of the I. recurvum was attached. This suggests the possibility that surf scoters utilize eastern oyster habitat and the dramatic depletion of

  5. DDT in fishes from four different Amazon sites: exposure assessment for breast feeding infants

    Energy Technology Data Exchange (ETDEWEB)

    D' Amato, C.; Torres, J.P.; Malm, O. [Lab. de Radioisotopos Eduardo Penna Franca, Inst. de Biofisica, UFRJ, RJ (Brazil); Bastos, W. [Lab. de Biogeoquimica, UNIR, Porto Velho (Brazil); Claudio, L.; Markowitz, S. [International Training Program on Environmental and Occupational Health, Mount Sinai School of Medicine, Queens Coll., NY (United States)

    2004-09-15

    Concerning DDT in food, based on clinical observations as well as experimental animals, the annual Joint FAO/WHO Meetings on Pesticide Residues held in 2000 estimated a Provisional Tolerable Daily Intake (PTDI) for DDT in 0.01 mg/kg/day. Marien and Laflamme have proposed a Tolerable Daily Intake (TDI) for breast feedings infants of 5 x 10{sup -3} mg/kg/day, and conducted an assessment to evaluate the public health significance of eating {sigma}ODDT contaminated fish, accomplished by establishing a daily intake level of DDT for the population of greatest concern, like breastfeeding infants. Their results indicated that mothers who frequently consume contaminated fish could have breast milk DDT concentrations highly enough to expose their infants to levels above the TDI. The aim of this study was to evaluate the ODDT (o,p'-DDT + p,p'-DDT + o,p'-DDE + p,p'-DDE + o,p'-DDD) levels in commercial fish samples from distinct Brazilian Amazon sites, which are consumed by the riverine populations, and to assess the potential health impacts from eating these fishes, especially for breastfeeding infants.

  6. Conserving and enhancing biological control of nematodes.

    Science.gov (United States)

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  7. The effect of long-term feeding of fresh and ensiled cassava (Manihot esculenta) foliage on gastrointestinal nematode infections in goats.

    Science.gov (United States)

    Sokerya, S; Waller, P J; Try, P; Höglund, J

    2009-02-01

    The benefit of long-term feeding of fresh or ensiled cassava foliage on gastrointestinal parasite in goats was evaluated. Eighteen male goats (15.15 +/- 2.83 kg and between 4-6 months) were randomly allocated into three treatments supplemented with 200 g of wheat bran head(-1) day(-1). All groups were fed ad-libitum on either grass (CO), fresh cassava (CaF) or ensiled cassava foliage (CaS). At the beginning of the trial, each goat was inoculated with 3000 L3 containing approximately 50% Haemonchus contortus. Individual LWt, FEC and PCV were measured at weekly intervals for 10 weeks. At the termination of the experiment all goats were slaughtered for worm recovery and enumeration. The goats in CaF and CaS had similar weight gains while those in CO lost weight (p goats. PCV of all groups decreased from above 30% to around 25% at the end of the trial. The compositions of established worm burdens were mainly H. contortus (19-40%) and Trichostrongylus colubriformis (55-76%). TWB did not differ among the groups, however, CaS significantly reduced H. contortus burdens, as compared to CaF and CO (p < or = 0.005). Thus, ensiled cassava foliage reduced the H. contortus population while the fresh foliage only reduced worm fecundity.

  8. BASIDIOMYCETE-BASED METHOD FOR BIOCONTROL OF PHYTOPATHOGENIC NEMATODES

    Directory of Open Access Journals (Sweden)

    Tiberius BALAEŞ

    2015-12-01

    Full Text Available Phytopathogenic nematodes represent one of the most important groups of pathogens in crops. The use of chemical to control the nematodes attack in crops is decreasing every year due to the concern of the toxicity and side effects of such compounds. In the course for finding alternatives to the use of chemicals, biological control of nematodes is gaining much attention. Some saprotrophic fungi are able to feed on invertebrates, thus becoming efficient agents of control. In this study, three species of basidiomycetes were analyzed for their potential to be used as control agents of phytopathogenic nematodes. Through on in vitro investigation of these potential, one strain – Gymnopilus junonius was further selected for a pot test against Meloidogyne incognita, a very important phytopathogenic species of nematodes. The fungal treatment strongly decreased the M. incognita population on the tested pots, proving the potential of G. junonius strain to be used in biocontrol.

  9. Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay.

    Directory of Open Access Journals (Sweden)

    Zhaowei Zhang

    Full Text Available Aflatoxin B1 poses grave threats to food and feed safety due to its strong carcinogenesis and toxicity, thus requiring ultrasensitive rapid on-site determination. Herein, a portable immunosensor based on chromatographic time-resolved fluoroimmunoassay was developed for sensitive and on-site determination of aflatoxin B1 in food and feed samples. Chromatographic time-resolved fluoroimmunoassay offered a magnified positive signal and low signal-to-noise ratio in time-resolved mode due to the absence of noise interference caused by excitation light sources. Compared with the immunosensing performance in previous studies, this platform demonstrated a wider dynamic range of 0.2-60 μg/kg, lower limit of detection from 0.06 to 0.12 µg/kg, and considerable recovery from 80.5% to 116.7% for different food and feed sample matrices. It was found to be little cross-reactivity with other aflatoxins (B2, G1, G2, and M1. In the case of determination of aflatoxin B1 in peanuts, corn, soy sauce, vegetable oil, and mouse feed, excellent agreement was found when compared with aflatoxin B1 determination via the conversational high-performance liquid chromatography method. The chromatographic time-resolved fluoroimmunoassay affords a powerful alternative for rapid on-site determination of aflatoxin B1 and holds a promise for food safety in consideration of practical food safety and environmental monitoring.

  10. Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay.

    Science.gov (United States)

    Zhang, Zhaowei; Tang, Xiaoqian; Wang, Du; Zhang, Qi; Li, Peiwu; Ding, Xiaoxia

    2015-01-01

    Aflatoxin B1 poses grave threats to food and feed safety due to its strong carcinogenesis and toxicity, thus requiring ultrasensitive rapid on-site determination. Herein, a portable immunosensor based on chromatographic time-resolved fluoroimmunoassay was developed for sensitive and on-site determination of aflatoxin B1 in food and feed samples. Chromatographic time-resolved fluoroimmunoassay offered a magnified positive signal and low signal-to-noise ratio in time-resolved mode due to the absence of noise interference caused by excitation light sources. Compared with the immunosensing performance in previous studies, this platform demonstrated a wider dynamic range of 0.2-60 μg/kg, lower limit of detection from 0.06 to 0.12 µg/kg, and considerable recovery from 80.5% to 116.7% for different food and feed sample matrices. It was found to be little cross-reactivity with other aflatoxins (B2, G1, G2, and M1). In the case of determination of aflatoxin B1 in peanuts, corn, soy sauce, vegetable oil, and mouse feed, excellent agreement was found when compared with aflatoxin B1 determination via the conversational high-performance liquid chromatography method. The chromatographic time-resolved fluoroimmunoassay affords a powerful alternative for rapid on-site determination of aflatoxin B1 and holds a promise for food safety in consideration of practical food safety and environmental monitoring.

  11. Anatomical Alterations in Plant Tissues Induced by Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Juan E. Palomares-Rius

    2017-11-01

    Full Text Available Plant-parasitic nematodes (PPNs interact with plants in different ways, for example, through subtle feeding behavior, migrating destructively through infected tissues, or acting as virus-vectors for nepoviruses. They are all obligate biotrophic parasites as they derive their nutrients from living cells which they modify using pharyngeal gland secretions prior to food ingestion. Some of them can also shield themselves against plant defenses to sustain a relatively long lasting interaction while feeding. This paper is centered on cell types or organs that are newly induced in plants during PPN parasitism, including recent approaches to their study based on molecular biology combined with cell biology-histopathology. This issue has already been reviewed extensively for major PPNs (i.e., root-knot or cyst nematodes, but not for other genera (viz. Nacobbus aberrans, Rotylenchulus spp.. PPNs have evolved with plants and this co-evolution process has allowed the induction of new types of plant cells necessary for their parasitism. There are four basic types of feeding cells: (i non-hypertrophied nurse cells; (ii single giant cells; (iii syncytia; and (iv coenocytes. Variations in the structure of these cells within each group are also present between some genera depending on the nematode species viz. Meloidogyne or Rotylenchulus. This variability of feeding sites may be related in some way to PPN life style (migratory ectoparasites, sedentary ectoparasites, migratory ecto-endoparasites, migratory endoparasites, or sedentary endoparasites. Apart from their co-evolution with plants, the response of plant cells and roots are closely related to feeding behavior, the anatomy of the nematode (mainly stylet size, which could reach different types of cells in the plant, and the secretory fluids produced in the pharyngeal glands. These secretory fluids are injected through the stylet into perforated cells where they modify plant cytoplasm prior to food removal

  12. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.

    Science.gov (United States)

    Zheng, Jinshui; Peng, Donghai; Chen, Ling; Liu, Hualin; Chen, Feng; Xu, Mengci; Ju, Shouyong; Ruan, Lifang; Sun, Ming

    2016-07-27

    Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans, the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants. © 2016 The Author(s).

  13. 5 Spatial Distribution of Nematodes at Organic.cdr

    African Journals Online (AJOL)

    user

    in organic crop production fields can favour or inhibit nematode build-up. ... that nematode control strategies employed on the organic field might be less effective than expected. ... Method. Study site. Soil samples were collected from an organic vegetable field and a conventional ..... chemical analysis: a practical handbook.

  14. Unexpected variation in neuroanatomy among diverse nematode species

    Directory of Open Access Journals (Sweden)

    Ziduan eHan

    2016-01-01

    Full Text Available Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and Ascaris suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research, had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapse, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent

  15. Biocontrol of ticks by entomopathogenic nematodes. Research update.

    Science.gov (United States)

    Samish, M; Alekseev, E; Glazer, I

    2000-01-01

    Entomopathogenic nematodes (EPNs) are lethal to ticks even though they do not use their normal propagation cycle within tick cadavers. The tick Boophilus annulatus was found to be far more susceptible to EPNs than Hyalomma excavatum, Rhipicephalus bursa, or Rhipicephalus sanguineus. Ticks seem to be less susceptible to nematodes when feeding on a host. Preimaginal tick stages were less susceptible to nematodes than adult ticks. The mortality rate of unfed females was highest, followed by unfed males, and engorged females. The virulence of nematodes to ticks varied greatly among different nematode strains. In most cases, the Heterorhabditis sp. strains were the most virulent strains tested in petri dishes. In buckets containing sandy soil sprayed with 50 nematodes/cm2 and engorged B. annulatus females, the LT50 of the ticks was less than five days. The addition of manure to soil or a manure extract to petri dishes reduced nematode virulence. Since ticks spend most of their life cycle in the upper humid layer of the ground, and many nematode strains share this same ecological niche, the use of EPNs for biocontrol of ticks appears promising.

  16. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  17. Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission.

    Directory of Open Access Journals (Sweden)

    Pascale Schellenberger

    2011-05-01

    Full Text Available Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV, a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP, carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.

  18. Survey of nematodes associated with terrestrial slugs in Norway.

    Science.gov (United States)

    Ross, J L; Ivanova, E S; Hatteland, B A; Brurberg, M B; Haukeland, S

    2016-09-01

    A survey of nematodes associated with terrestrial slugs was conducted for the first time in Norway. A total of 611 terrestrial slugs were collected from 32 sample sites. Slugs were identified by means of morphological examination, dissection of genitalia and molecular analysis using mitochondrial DNA. Twelve slug species were identified, representing four different slug families. Internal nematodes were identified by means of morphological analysis and the sequencing of the 18S rRNA gene. Of the sample sites studied, 62.5% were found to be positive for nematode parasites, with 18.7% of all slugs discovered being infected. Five nematode species were identified in this study: Alloionema appendiculatum, Agfa flexilis, Angiostoma limacis, Angiostoma sp. and Phasmarhabditis hermaphrodita. Of these species, only one nematode was previously undescribed (Angiostoma sp.). This is the first record of the presence of A. appendiculatum, A. flexilis and A. limacis in Norway.

  19. Phylogency and Evolution of Nematodes

    NARCIS (Netherlands)

    Bert, W.; Karssen, G.; Helder, J.

    2011-01-01

    Many plant-parasitic nematodes including members of the genera Meloidogyne (root-knot nematodes), Heterodera and Globodera (cyst nematodes) and Pratylenchus (lesion nematodes) are studied as they cause major damage to crops such as potato, tomato, soybean and sugar beet. Both for fundamental reasons

  20. Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Kont, Riin; Kari, Jeppe; Borch, Kim

    2016-01-01

    systems. TrCel7A consists of catalytic domain (CD) and a smaller carbohydrate binding module (CBM) connected through the glycosylated linker peptide. A tunnel shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two...... to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient......Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme...

  1. [Effect of the soil contamination with a potato cyst-forming nematode on the community structure of soil-inhabiting nematodes].

    Science.gov (United States)

    Gruzdeva, L I; Suzhchuk, A A

    2008-01-01

    Nematode community structure of the potato fields with different infection levels of potato cyst-forming nematode (PCN) such as 10, 30 and 214 cysts per 100 g of soil has been investigated. The influence of specialized parasite on nematode fauna and dominance character of different ecological-trophic groups were described. Parasitic nematode genera in natural meadow biocenosis and agrocenoses without PCN are Paratylenchus, Tylenchorhynchus, and Helicotylenchus. It is established, that Paratylenchus nanus was the prevalent species among plant parasites at low infection level. Larvae of Globodera prevailed in the soil with middle and high infection levels and substituted individuals of other genera of parasitic nematodes. The fact of increase in number of hyphal-feeding nematode Aphelenchus avenae was revealed.

  2. Dispersal strategy of cyst nematodes (Heterodera arenaria) in the plant root zone of mobile dunes and consequences for emergence, survival and reproductive success

    NARCIS (Netherlands)

    Stoel, C.D.; Putten, van der W.H.

    2006-01-01

    Root-feeding nematodes may play an important role in generating spatial and temporal variation in natural plant communities, but little is known about the performance of the nematodes in the plant root zone. We studied the emergence, survival and reproductive success of the cyst nematode Heterodera

  3. Dispersal strategy of cyst nematodes (Heterodera Arenaria) in the plant root zone of mobile dunes and consequences for emergence, survival and reproductive success

    NARCIS (Netherlands)

    Van der Stoel, C.D.; Van der Putten, W.H.

    2006-01-01

    Root-feeding nematodes may play an important role in generating spatial and temporal variation in natural plant communities, but little is known about the performance of the nematodes in the plant root zone. We studied the emergence, survival and reproductive success of the cyst nematode Heterodera

  4. Does Nilaparvata lugens gain tolerance to rice resistance genes through conspecifics at shared feeding sites?

    NARCIS (Netherlands)

    Ferrater, Jedeliza B.; Horgan, Finbarr G.

    2016-01-01

    This study examines the possibility of horizontal and vertical transmission of virulence (the ability to tolerate a given resistant plant or resistance gene) between individuals from brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), populations with distinct feeding abilities

  5. Environmental quality and natural food performance at feeding sites in a carp (Cyprinus carpio) pond

    Czech Academy of Sciences Publication Activity Database

    Adámek, Z.; Mrkvová, Markéta; Zukal, Jan; Roche, Kevin Francis; Mikl, Libor; Šlapanský, Luděk; Janáč, Michal; Jurajda, Pavel

    2016-01-01

    Roč. 24, č. 6 (2016), s. 1591-1606 ISSN 0967-6120 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:68081766 Keywords : Pond aquaculture * Supplemental feeding * Zooplankton * Macrozoobenthos * Oxygen * Turbidity Subject RIV: GL - Fishing Impact factor: 1.095, year: 2016

  6. Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa.

    Science.gov (United States)

    Ramirez, Ricardo A; Spears, Lori R

    2014-10-01

    Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,-), aphids only (-,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (-,-). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.

  7. Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida

    NARCIS (Netherlands)

    Thorpe, P.; Mantelin, S.; Cock, P.J.A.; Blok, V.C.; Coke, M.C.; Evers-van den Akker, S.; Guzeeva, E.; Lilley, C.J.; Smant, G.; Reid, A.J.; Wright, K.M.; Urwin, P.E.; Jones, J.T.

    2014-01-01

    Background The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure – the syncytium – which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage.

  8. Dissecting host plant manipulation by cyst and root-knot nematodes

    NARCIS (Netherlands)

    Karczmarek, A.

    2006-01-01

    Cyst ( Globodera spp. and Heterodera spp.) and root-knot nematodes ( Meloidogyne spp.), one of the most damaging crop pests, are a perfect example of highly adapted, sophisticated root parasites. These nematodes induces specialized feeding structures (cyst

  9. Performans Produksi, Jumlah Nematoda Usus, dan Profil Metabolik Darah Kambing yang Diberi Pakan Hijauan Rawa Kalimantan (PRODUCTION PERFORMANS, INTESTINE NEMATODE NUMBER AND METABOLIC BLOOD PROFILE OF GOAT FEED WITH BORNEO SWAMP FORAGE

    Directory of Open Access Journals (Sweden)

    Tintin Rostini

    2017-09-01

    Full Text Available This study aims were to determine the effect of the use of swamp forage on the performances, the number of nematodes and the blood metabolic profile in goats. In this study, as many as 24 male goats were used; consisted of 12 local male goats (kacang goat with the average weight ranged from 12.65±1.65kg (diversity coefficient 11.34% and 12 PE goats with the average weight of 18.05±0.62 kg (diversity coefficient 7.54%. This research used a completely randomized factorial design (CRD 2x4 with 2 main treatments x 4 factorials and three replications. The first factor was based on the goat breed being used (Kacang and Peranakan Etawah. The second factor was based on four differents feed percentages that used, i.e.: (PR0 40% grass forage and 60% concentrate, (PR1 60% grass forage and 40% concentrate, (PR2, 40% of swamp forage and concentrates 60%, (PR3 60% swamp forage and 40% concentrate. Data were analyzed by using analysis of variance, then continued with Duncan test. The results of this study showed that the consumption of nutrients, daily weight gain and feed efficiency in treatment provision of swamp forage up to 60% (PR3 gave best result based on the metabolic profile of blood (total protein, glucose, cholesterol, Ca and P. The number of worm eggs in the goat feces were still in normal range. It was concluded that swamp forage is a potential forage that can be used as an alternative towards grass forage for the goats. ABSTRAK Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan hijauan rawa terhadap performans, jumlah nematoda, dan profil metabolik darah kambing. Pada penelitian ini digunakan ternak kambing jantan sebanyak 24 ekor. Kambing yang digunakan terdiri dari 12 ekor kambing kacang jantan dengan rataan bobot badan berkisar antara 12,65 ± 1,65 kg (koefisien keragaman 11,34% dan 12 ekor kambing peranakan etawah (PE dengan rataan bobot badan 18,05 ± 0,62 kg (koefisien keragaman 7,54%. Dalam penelitian ini digunakan rancangan

  10. Variation in estuarine littoral nematode populations over three spatial scales

    Science.gov (United States)

    Hodda, M.

    1990-04-01

    The population characteristics of the nematode fauna from five replicate cores taken over four seasons at nine sites within mangroves, at three different estuaries on the south-east coast of Australia, are compared. Using cluster analysis, principal co-ordinate analysis and other statistical techniques, the variation in nematode populations is identified as arising from several sources: temperature changes between the more northerly and southerly estuaries (5%); changes in grain size and organic content of the sediment between sites (22%); changes between sites in the frequency of samples containing certain types of food, particularly associated with pools of water and surface topography (30%); stochastic changes in nematode populations within individual samples, probably caused by small scale spatial and temporal variability in food sources (35%); and seasonal changes at all the sites and estuaries (8%). The implications of this pattern of variation for the biology of the nematodes is discussed.

  11. Effects of Supplementary Feeding on the Breeding Ecology of the Buff-Throated Partridge in a Tibetan Sacred Site, China.

    Science.gov (United States)

    Yang, Nan; Moermond, Timothy C; Lloyd, Huw; Xu, Yu; Dou, Liang; Zhang, Kai; Yue, Bisong; Ran, Jianghong

    2016-01-01

    Our goal was to document effects of year-round supplemental feeding on breeding ecology of the Buff-throated Partridge, Tetraophasis szechenyii, within a Tibetan sacred site. We evaluated effects of supplemental feeding used as religious/cultural practices which could potentially aid conservation of endangered phasianids. We compared fed breeding groups to neighboring nonfed groups. Fed groups initiated first clutches significantly earlier than nonfed groups. Earlier laying groups within fed and nonfed groups showed significantly lower hatching rates than later groups; however, fed groups showed significantly higher hatching rates than nonfed groups laying in the same period. Earlier laying increased opportunities to renest. All six fed groups with clutch failures renested compared to only one of five nonfed groups with clutch failures. Fed female breeders showed significantly greater investment in their young with larger clutches and larger eggs, which likely increased survivability of early hatchlings. We observed no predation on birds at feeding sites and recorded only four cases of predation on incubating females, which showed no detectable difference between fed and nonfed groups. Ground-nesting birds typically face high risks of predation. Ten of the 48 groups nested in trees, which occurs in few phasianid species. Tree nests showed significantly higher hatching rates compared to ground nests; however, we found no significant difference in tree nesting between fed and nonfed groups. This partridge is one of four gallinaceous species with cooperative breeding. Breeding groups with helpers had significantly greater reproductive success than single pairs, and fed female breeders with helpers laid bigger eggs than single pairs. Comparing annual reproductive output per group, fed groups not only produced significantly more independent young (≥ 150 days post-hatching), their young hatched significantly earlier, which likely have greater reproductive value over

  12. Application of Nuclear Volume Measurements to Comprehend the Cell Cycle in Root-Knot Nematode-Induced Giant Cells

    Directory of Open Access Journals (Sweden)

    José Dijair Antonino de Souza Junior

    2017-06-01

    Full Text Available Root-knot nematodes induce galls that contain giant-feeding cells harboring multiple enlarged nuclei within the roots of host plants. It is recognized that the cell cycle plays an essential role in the set-up of a peculiar nuclear organization that seemingly steers nematode feeding site induction and development. Functional studies of a large set of cell cycle genes in transgenic lines of the model host Arabidopsis thaliana have contributed to better understand the role of the cell cycle components and their implication in the establishment of functional galls. Mitotic activity mainly occurs during the initial stages of gall development and is followed by an intense endoreduplication phase imperative to produce giant-feeding cells, essential to form vigorous galls. Transgenic lines overexpressing particular cell cycle genes can provoke severe nuclei phenotype changes mainly at later stages of feeding site development. This can result in chaotic nuclear phenotypes affecting their volume. These aberrant nuclear organizations are hampering gall development and nematode maturation. Herein we report on two nuclear volume assessment methods which provide information on the complex changes occurring in nuclei during giant cell development. Although we observed that the data obtained with AMIRA tend to be more detailed than Volumest (Image J, both approaches proved to be highly versatile, allowing to access 3D morphological changes in nuclei of complex tissues and organs. The protocol presented here is based on standard confocal optical sectioning and 3-D image analysis and can be applied to study any volume and shape of cellular organelles in various complex biological specimens. Our results suggest that an increase in giant cell nuclear volume is not solely linked to increasing ploidy levels, but might result from the accumulation of mitotic defects.

  13. Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode.

    Science.gov (United States)

    Afzal, Ahmed J; Srour, Ali; Saini, Navinder; Hemmati, Naghmeh; El Shemy, Hany A; Lightfoot, David A

    2012-04-01

    Host resistance to "yellow dwarf" or "moonlight" disease cause by any population (Hg type) of Heterodera glycines I., the soybean cyst nematode (SCN), requires a functional allele at rhg1. The host resistance encoded appears to mimic an apoptotic response in the giant cells formed at the nematode feeding site about 24-48 h after nematode feeding commences. Little is known about how the host response to infection is mediated but a linked set of 3 genes has been identified within the rhg1 locus. This study aimed to identify the role of the genes within the locus that includes a receptor-like kinase (RLK), a laccase and an ion antiporter. Used were near isogeneic lines (NILs) that contrasted at their rhg1 alleles, gene-based markers, and a new Hg type 0 and new recombination events. A syntenic gene cluster on Lg B1 was found. The effectiveness of SNP probes from the RLK for distinguishing homolog sequence variants on LgB1 from alleles at the rhg1 locus on LgG was shown. The resistant allele of the rhg1 locus was shown to be dominant in NILs. None of the recombination events were within the cluster of the three candidate genes. Finally, rhg1 was shown to reduce the plant root development. A model for rhg1 as a dominant multi-gene resistance locus based on the developmental control was inferred.

  14. Potential impact of mangrove clearance on biomass and biomass size spectra of nematode along the Sudanese Red Sea coast.

    Science.gov (United States)

    Sabeel, Rasha Adam Osman; Vanreusel, Ann

    2015-02-01

    The potential effect of mangrove clearance on nematode assemblage biomass, biomass size spectra (NBSS) and abundance/biomass curves (ABC) was investigated in three sites representing a varying degree of mangrove clearance as well as in three stations established at each sites representing high-, mid- and low-water levels. Results revealed significant differences in sediment and nematode characteristics between the three sites. Although both the cleared and the intact mangrove had comparable biomass values, clear differences in biomass size spectra and abundance biomass curves were observed. The results suggested that the variation in the silt fraction and the food quality positively affected the total biomass. Mangrove clearance has caused a shift from a unimodal to a bimodal biomass size spectrum at all water levels, owing to an increase in smaller-bodied opportunistic non-selective deposit feeding nematodes. The ABC further confirmed the effect of clearance by classifying the cleared mangrove as moderately to grossly disturbed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Suppression of NGB and NAB/ERabp1 in tomato modifies root responses to potato cyst nematode infestation.

    Science.gov (United States)

    Dąbrowska-Bronk, Joanna; Czarny, Magdalena; Wiśniewska, Anita; Fudali, Sylwia; Baranowski, Łukasz; Sobczak, Mirosław; Święcicka, Magdalena; Matuszkiewicz, Mateusz; Brzyżek, Grzegorz; Wroblewski, Tadeusz; Dobosz, Renata; Bartoszewski, Grzegorz; Filipecki, Marcin

    2015-05-01

    Plant-parasitic nematodes cause significant damage to major crops throughout the world. The small number of genes conferring natural plant resistance and the limitations of chemical control require the development of new protective strategies. RNA interference or the inducible over-expression of nematicidal genes provides an environment-friendly approach to this problem. Candidate genes include NGB, which encodes a small GTP-binding protein, and NAB/ERabp1, which encodes an auxin-binding protein, which were identified as being up-regulated in tomato roots in a transcriptome screen of potato cyst nematode (Globodera rostochiensis) feeding sites. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization confirmed the localized up-regulation of these genes in syncytia and surrounding cells following nematode infection. Gene-silencing constructs were introduced into tomato, resulting in a 20%-98% decrease in transcription levels. Nematode infection tests conducted on transgenic plants showed 57%-82% reduction in the number of G. rostochiensis females in vitro and 30%-46% reduction in pot trials. Transmission electron microscopy revealed a deterioration of cytoplasm, and degraded mitochondria and plastids, in syncytia induced in plants with reduced NAB/ERabp1 expression. Cytoplasm in syncytia induced in plants with low NGB expression was strongly electron translucent and contained very few ribosomes; however, mitochondria and plastids remained intact. Functional impairments in syncytial cytoplasm of silenced plants may result from NGB's role in ribosome biogenesis; this was confirmed by localization of yellow fluorescent protein (YFP)-labelled NGB protein in nucleoli and co-repression of NGB in plants with reduced NAB/ERabp1 expression. These results demonstrate that NGB and NAB/ERabp1 play important roles in the development of nematode-induced syncytia. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  16. Rooting out Defense Mechanisms in Wheat against Plant Parasitic Nematodes

    Science.gov (United States)

    Root-lesion nematodes (Pratylenchus spp.) are soil borne pathogens of many important agricultural crops including wheat. Pratylenchus invade root cells and feed using a stylet, resulting in cell death. Common signs of Pratylenchus damage are root lesions, girdling, and lack of lateral branching. ...

  17. Nematode cholinergic pharmacology

    International Nuclear Information System (INIS)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe [ 3 H]N-methylscopolamine ([ 3 H]NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs

  18. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.

    Science.gov (United States)

    Kont, Riin; Kari, Jeppe; Borch, Kim; Westh, Peter; Väljamäe, Priit

    2016-12-09

    Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two of them, Trp-40 and Trp-38, in the substrate binding sites near the tunnel entrance. Although addressed in numerous studies the elucidation of the role of CBM and active site aromatics has been obscured by a complex multistep mechanism of processive GHs. Here we studied the role of the CBM-linker and Trp-38 of TrCel7A with respect to binding affinity, on- and off-rates, processivity, and synergism with endoglucanase. The CBM-linker increased the on-rate and substrate affinity of the enzyme. The Trp-38 to Ala substitution resulted in increased off-rates and decreased processivity. The effect of the Trp-38 to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient degradation of cellulose in the presence of endoglucanase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Selling a service: experiences of peer supporters while promoting exclusive infant feeding in three sites in South Africa

    Directory of Open Access Journals (Sweden)

    Nkonki Lungiswa L

    2010-10-01

    Full Text Available Abstract Background Even though it has been shown that peer support to mothers at home helps to increase exclusive breastfeeding, little is known about the experiences of peer supporters themselves and what is required of them to fulfil their day-to-day tasks. Therefore, a community-based randomised control trial using trained "lay" women to support exclusive infant feeding at home was implemented in three different sites across South Africa. The aim of this paper is to describe the experiences of peer supporters who promote exclusive infant feeding. Methods Three focus group discussions were held, in a language of their choice, with peer supporters. These meetings focused on how the peer educators utilised their time in the process of delivering the intervention. Data from the discussions were transcribed, with both verbatim and translated transcripts being used in the analysis. Results Unlike the services provided by mainstream health care, peer supporters had to market their services. They had to negotiate entry into the mother's home and then her life. Furthermore, they had to demonstrate competence and come across as professional and trustworthy. An HIV-positive mother's fear of being stigmatised posed an added burden - subsequent disclosure of her positive status would lead to an increased workload and emotional distress. Peer supporters spent most of their time in the field and had to learn the skill of self-management. Their support-base was enhanced when supervision focused on their working conditions as well as the delivery of their tasks. Despite this, they faced other insurmountable issues, such as mothers being compelled to offer their infants mixed feeding simultaneously due to normative practices and working in the fields postpartum. Conclusion Designers of peer support interventions should consider the skills required for delivering health messages and the skills required for selling a service. Supportive supervision should be

  20. Selling a service: experiences of peer supporters while promoting exclusive infant feeding in three sites in South Africa.

    Science.gov (United States)

    Nkonki, Lungiswa L; Daniels, Karen L

    2010-10-26

    Even though it has been shown that peer support to mothers at home helps to increase exclusive breastfeeding, little is known about the experiences of peer supporters themselves and what is required of them to fulfil their day-to-day tasks. Therefore, a community-based randomised control trial using trained "lay" women to support exclusive infant feeding at home was implemented in three different sites across South Africa. The aim of this paper is to describe the experiences of peer supporters who promote exclusive infant feeding. Three focus group discussions were held, in a language of their choice, with peer supporters. These meetings focused on how the peer educators utilised their time in the process of delivering the intervention. Data from the discussions were transcribed, with both verbatim and translated transcripts being used in the analysis. Unlike the services provided by mainstream health care, peer supporters had to market their services. They had to negotiate entry into the mother's home and then her life. Furthermore, they had to demonstrate competence and come across as professional and trustworthy. An HIV-positive mother's fear of being stigmatised posed an added burden - subsequent disclosure of her positive status would lead to an increased workload and emotional distress. Peer supporters spent most of their time in the field and had to learn the skill of self-management. Their support-base was enhanced when supervision focused on their working conditions as well as the delivery of their tasks. Despite this, they faced other insurmountable issues, such as mothers being compelled to offer their infants mixed feeding simultaneously due to normative practices and working in the fields postpartum. Designers of peer support interventions should consider the skills required for delivering health messages and the skills required for selling a service. Supportive supervision should be responsive both to the health care task and the challenges faced in

  1. Short-term effects of forest disturbances on soil nematode communities in European mountain spruce forests.

    Science.gov (United States)

    Čerevková, A; Renčo, M; Cagáň, L

    2013-09-01

    The nematode communities in spruce forests were compared with the short-term effects of forest damage, caused by windstorm, wildfire and management practices of forest soils. Soil samples were collected in June and October from 2006 to 2008 in four different sites: (1) forest unaffected by the wind (REF); (2) storm-felled forest with salvaged timber (EXT); (3) modified forest affected by timber salvage (wood removal) and forest fire (FIR); and (4) storm-felled forest where timber had been left unsalvaged (NEX). Nematode analysis showed that the dominant species in all four investigated sites were Acrobeloides nanus and Eudorylaimus silvaticus. An increase of A. nanus (35% of the total nematode abundance) in the first year in the FIR site led to the highest total abundance of nematodes compared with other sites, where nematode abundance reached the same level in the third year. In the FIR site bacterial feeders appeared to be the most representative trophic group, although in the second and third year, after disturbance, the abundance of this trophic group gradually decreased. In the NEX site, the number of nematode species, population densities and Maturity Index were similar to that recorded for the FIR site. In EXT and NEX sites, the other dominant species was the plant parasitic nematode Paratylenchus microdorus. Analyses of nematodes extracted from different forest soil samples showed that the highest number of species and diversity index for species (H'spp) were in the REF site. Differences between the nematode fauna in REF and other localities were clearly depicted by cluster analysis. The greatest Structure Index and Enrichment Index values were also in REF. In the EXT site, the number of nematode species, their abundance, H'spp and Maturity Index were not significantly different from those recorded in the reference site.

  2. Expression of two functionally distinct plant endo-beta-1,4-glucanases is essential for the compatible interaction between potato cyst nematode and its hosts.

    Science.gov (United States)

    Karczmarek, Aneta; Fudali, Sylwia; Lichocka, Malgorzata; Sobczak, Miroslaw; Kurek, Wojciech; Janakowski, Slawomir; Roosien, Jan; Golinowski, Wladyslaw; Bakker, Jaap; Goverse, Aska; Helder, Johannes

    2008-06-01

    For the proliferation of their feeding sites (syncytia), the potato cyst nematode Globodera rostochiensis is thought to recruit plant endo-beta-1,4-glucanases (EGases, EC. 3.2.1.4). Reverse-transcription polymerase chain reaction experiments on tomato (Solanum lycopersicum) indicated that the expression of two out of the at least eight EGases, namely Sl-cel7 and Sl-cel9C1, is specifically upregulated during syncytium formation. In situ hybridization and immunodetection studies demonstrated that both EGases are specifically expressed inside and adjacent to proliferating syncytia. To assess the importance of Sl-cel7 and Sl-cel9C1 for nematode development, we decided to knock them out individually. Sl-cel9C1 probably is the only class C EGase in tomato, and we were unable to regenerate Sl-cel9C1-silenced plants. Potato (S. tuberosum), a close relative of tomato, harbors at least two class C EGases, and St-cel7-or St-cel9C1-silenced potato plants showed no obvious aberrant phenotype. Infection with potato cyst nematodes resulted in a severe reduction of the number of adult females (up to 60%) and a sharp increase in the fraction of females without eggs (up to 89%). Hence, the recruitment of CEL7, an enzyme that uses xyloglucan and noncrystalline cellulose as natural substrates, and CEL9C1, an enzyme that uses crystalline cellulose, is essential for growth and development of potato cyst nematodes.

  3. The evolutionary position of nematodes

    Directory of Open Access Journals (Sweden)

    Gojobori Takashi

    2002-04-01

    Full Text Available Abstract Background The complete genomes of three animals have been sequenced by global research efforts: a nematode worm (Caenorhabditis elegans, an insect (Drosophila melanogaster, and a vertebrate (Homo sapiens. Remarkably, their relationships have yet to be clarified. The confusion concerns the enigmatic position of nematodes. Traditionally, nematodes have occupied a basal position, in part because they lack a true body cavity. However, the leading hypothesis now joins nematodes with arthropods in a molting clade, Ecdysozoa, based on data from several genes. Results We tested the Ecdysozoa hypothesis with analyses of more than 100 nuclear protein alignments, under conditions that would expose biases, and found that it was not supported. Instead, we found significant support for the traditional hypothesis, Coelomata. Our result is robust to different rates of sequence change among genes and lineages, different numbers of taxa, and different species of nematodes. Conclusion We conclude that insects (arthropods are genetically and evolutionarily closer to humans than to nematode worms.

  4. 'David and Goliath' of the soil food web - Flagellates that kill nematodes

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Rønn, Regin

    2008-01-01

    Nematodes and flagellates are important bacterial predators in soil and sediments. Generally, these organisms are considered to be competitors for bacterial food. We studied the interaction among flagellates and nematodes using axenic liquid cultures amended with heat-killed bacteria as food...... and showed for the first time that a small and common soil flagellate (Cercomonas sp.) is able to attack and kill the much larger nematode Caenorhabditis elegans. The killing process is not caused by soluble metabolites but requires direct contact between the flagellate cells and the nematode surface...... and occurs rapidly (within a few hours) at high flagellate density. At lower flagellate density, adult nematodes sometimes avoid attachment of flagellates, feed on them and become the dominant bacterial predator. Considering that bacterial feeders affect bacterial communities differently, and that one...

  5. The influence of Amylostereum areolatum diversity and competitive interations on the fitness of the Sirex parasitic nematode Deladenus siricidicola

    Science.gov (United States)

    B.P. Hurley; H.J. Hatting; M.J. Wingfield; Kier Klepzig; B. Slippers

    2012-01-01

    The Sirex noctilio (woodwasp - Amylostereum areolatum (fungus) complex has caused substantial losses to pine industries in its introduced range. The nematode Deladenus siricidicola that parasitizes S. noctilio and feeds on A. areolatum is widely used as a biological control...

  6. Acquired Smell? Mature Females of the Common Green Bottle Fly Shift Semiochemical Preferences from Feces Feeding Sites to Carrion Oviposition Sites.

    Science.gov (United States)

    Brodie, Bekka S; Babcock, Tamara; Gries, Regine; Benn, Arlan; Gries, Gerhard

    2016-01-01

    We investigated foraging decisions by adult females of the common green bottle fly, Lucilia sericata, in accordance with their physiological state. When we gave female flies a choice between visually occluded, fresh canine feces (feeding site) and a CO2-euthanized rat (carrion oviposition site), 3-d-old "protein-starved" females responded equally well to feces and carrion, whereas protein-fed gravid females with mature oocytes responded only to carrion, indicating resource preferences based on a fly's physiological state. Dimethyl trisulfide (DMTS) is known to attract gravid L. sericata females to carrion. Therefore, we analyzed headspace from canine feces by gas chromatographic-electroantennographic detection (GC-EAD) and GC/mass spectrometry. In bioassays, of the 17 fecal odorants that elicited GC-EAD responses from fly antennae, a blend of indole and one or more of the alcohols phenol, m-/p-cresol and 1-octen-3-ol proved as attractive to flies as canine feces. Unlike young females, gravid females need to locate carrion for oviposition and distinguish between fresh and aging carrion, the latter possibly detrimental to offspring. Gravid female L. sericata accomplish this task, in part, by responding to trace amounts of DMTS emanating from fresh carrion and by discriminating against carrion as soon it begins to produce appreciable amounts of indole, which is also the second-most abundant semiochemical in fresh canine feces, and apparently serves as an indicator of food rather than oviposition resources. Our results emphasize the importance of studying foraging choices by flies in accordance with their physiological stage.

  7. The FMRFamide-like peptide family in nematodes

    Directory of Open Access Journals (Sweden)

    Katleen ePeymen

    2014-06-01

    Full Text Available In the three decades since the FMRFamide peptide was isolated from the mollusk Macrocallista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have been identified across the animal kingdom. FMRFamide-like peptides (FLPs represent the largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least 32 flp genes are classified, making the FLP system of nematodes unusually complex. The diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed in the majority of the 302 C. elegans neurons including interneurons, sensory and motor neurons. The vast expression of FLPs is reflected in the broad functional repertoire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects on locomotory activity, reproduction, feeding, and behavior. In contrast to the many identified nematode FLPs, only few peptides have been assigned a receptor and there is the need to clarify the pathway components and working mechanisms of the FLP signaling network. Here, we review the diversity, distribution, and functions of FLPs in nematodes.

  8. Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-10-01

    Full Text Available Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.

  9. Interactions Between Nutrition and Infections With Haemonchus contortus and Related Gastrointestinal Nematodes in Small Ruminants.

    Science.gov (United States)

    Hoste, H; Torres-Acosta, J F J; Quijada, J; Chan-Perez, I; Dakheel, M M; Kommuru, D S; Mueller-Harvey, I; Terrill, T H

    2016-01-01

    Interactions between host nutrition and feeding behaviour are central to understanding the pathophysiological consequences of infections of the digestive tract with parasitic nematodes. The manipulation of host nutrition provides useful options to control gastrointestinal nematodes as a component of an integrated strategy. Focussed mainly on the Haemonchus contortus infection model in small ruminants, this chapter (1) illustrates the relationship between quantitative (macro- and micro-nutrients) and qualitative (plant secondary metabolites) aspects of host nutrition and nematode infection, and (2) shows how basic studies aimed at addressing some generic questions can help to provide solutions, despite the considerable diversity of epidemiological situations and breeding systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.

    Science.gov (United States)

    Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J

    2009-01-01

    Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.

  11. Latitudinal variation in nematode diversity and ecological roles along the Chinese coast.

    Science.gov (United States)

    Wu, Jihua; Chen, Huili; Zhang, Youzheng

    2016-11-01

    To test changes in the phylogenetic relatedness, niche breadth, and life-history strategies of nematodes along a latitudinal gradient. Sixteen wetland locations along the Pacific coast of China, from 20°N to 40°N. Linear regression was used to relate nematode phylogenetic relatedness (average taxonomic distinctness (AvTD) and average phylogenetic diversity [AvPD]), life-history group (based on " c - p " colonizer-persister group classification), and dietary specificity (based on guild classification of feeding selectivity) to latitude. Wetland nematode taxonomic diversity (richness and Shannon diversity indices) decreased with increasing latitude along the Chinese coast. Phylogenetic diversity indices (AvTD and AvPD) significantly increased with increasing latitude. This indicates that at lower latitudes, species within the nematode community were more closely related. With increasing latitude, the nematode relative richness and abundance decreased for selective deposit feeders but increased for nonselective deposit feeders. The proportion of general opportunists decreased with increasing latitude, but persisters showed the opposite trend. The annual temperature range and the pH of sediments were more important than vegetation type in structuring nematode communities. Nematode niche breadth was narrower at lower latitudes with respect to dietary specificity. Higher latitudes with a more variable climate favor r over K life-history strategists. Nematode communities at lower latitudes contained more closely related species.

  12. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Sagar Banerjee

    2017-05-01

    Full Text Available Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  13. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  14. Cell wall ingrowths in nematode induced syncytia require UGD2 and UGD3.

    Directory of Open Access Journals (Sweden)

    Shahid Siddique

    Full Text Available The cyst nematode Heterodera schachtii infects roots of Arabidopsis plants and establishes feeding sites called syncytia, which are the only nutrient source for nematodes. Development of syncytia is accompanied by changes in cell wall structures including the development of cell wall ingrowths. UDP-glucuronic acid is a precursor of several cell wall polysaccharides and can be produced by UDP-glucose dehydrogenase through oxidation of UDP-glucose. Four genes in Arabidopsis encode this enzyme. Promoter::GUS analysis revealed that UGD2 and UGD3 were expressed in syncytia as early as 1 dpi while expression of UGD1 and UGD4 could only be detected starting at 2 dpi. Infection assays showed no differences between Δugd1 and Δugd4 single mutants and wild type plants concerning numbers of males and females and the size of syncytia and cysts. On single mutants of Δugd2 and Δugd3, however, less and smaller females, and smaller syncytia formed compared to wild type plants. The double mutant ΔΔugd23 had a stronger effect than the single mutants. These data indicate that UGD2 and UGD3 but not UGD1 and UGD4 are important for syncytium development. We therefore studied the ultrastructure of syncytia in the ΔΔugd23 double mutant. Syncytia contained an electron translucent cytoplasm with degenerated cellular organelles and numerous small vacuoles instead of the dense cytoplasm as in syncytia developing in wild type roots. Typical cell wall ingrowths were missing in the ΔΔugd23 double mutant. Therefore we conclude that UGD2 and UGD3 are needed for the production of cell wall ingrowths in syncytia and that their lack leads to a reduced host suitability for H. schachtii resulting in smaller syncytia, lower number of developing nematodes, and smaller females.

  15. Assaying environmental nickel toxicity using model nematodes.

    Directory of Open Access Journals (Sweden)

    David Rudel

    Full Text Available Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water, we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  16. Assaying environmental nickel toxicity using model nematodes

    Science.gov (United States)

    Rudel, David; Douglas, Chandler; Huffnagle, Ian; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegansand P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  17. Molecular aspects of cyst nematodes.

    Science.gov (United States)

    Lilley, Catherine J; Atkinson, Howard J; Urwin, Peter E

    2005-11-01

    SUMMARY Taxonomy: Superkingdom Eukaryota; kingdom Metazoa; phylum Nematoda; class Chromadorea; order Tylenchida; suborder Tylenchina; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; main genera Heterodera and Globodera. Cyst nematodes comprise approximately 100 known species in six genera. They are pathogens of temperate, subtropical and tropical plant species and the host range of many species is narrow. The most economically important species are within the Globodera and Heterodera genera. Globodera pallida and G. rostochiensis are important pathogens of potato crops. There are many economic species in the Heterodera genus, including Heterodera glycines (soybean cyst nematode), H. avenae (cereal cyst nematode) and H. schachtii (sugar beet cyst nematode), the last of which attacks a range of Chenopodiaceae and Cruciferae, including Arabidopsis thaliana. Disease symptoms: Field symptoms of severe cyst nematode infection are often stunting, wilting and chlorosis, but considerable yield loss can occur without obvious symptoms. The only unique indicator of cyst nematode infection is the presence of adult female nematodes attached to host roots after several weeks of parasitism. Disease control: This is usually achieved by using integrated pest management involving cultural practices such as crop rotation, resistant cultivars if available and chemical control when economically justified.

  18. Nematodes, exotic earthworms and nitrogen addition: interactions between global change factors lead to cancellation effects.

    Science.gov (United States)

    De Long, Jonathan R

    2017-07-01

    Photos from the experiment described in Shao et al. (): (a) the endogeic (i.e. earthworms that typically live in the soil, burrowing horizontally to acquire nutrients) earthworm Pontoscolex corethrurus that was added to the plots; (b) P. corethrurus in a quiescence state in response to drought; (c) set-up of the control plots (i.e. no earthworms, ambient nitrogen) used in this experiment. [Colour figure can be viewed at wileyonlinelibrary.com] In Focus: Shao, Y., Zhang, W., Eisenhauer, N., Liu, T., Xiong, Y., Liang, C. & Fu, S. (2017) Nitrogen deposition cancels out exotic earthworm effects on plant-feeding nematode communities. Journal of Animal Ecology, 86, 708-717. In this issue of Journal of Animal Ecology, Shao et al. () explored how N addition and exotic earthworms interacted to impact on the plant-feeding nematode community. They demonstrate that exotic earthworm presence alone increased the abundance of less harmful plant-feeding nematodes and decreased the abundance of the more harmful plant-feeding nematodes. However, in plots receiving both exotic earthworms and N addition, such earthworm effects on the nematode community were negated. These findings pull focus on the need to simultaneously consider multiple global change factors (e.g. exotic species invasions and N deposition) when making predictions about how such factors might affect above- and below-ground interactions and thereby alter ecosystem function. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  19. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  20. The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes.

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J; Danchin, Etienne G J; Rancurel, Corinne; Cock, Peter J A; Urwin, Peter E; Jones, John T

    2014-08-13

    Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, "specific" have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. The Transcriptome of Nacobbus aberrans Reveals Insights into the Evolution of Sedentary Endoparasitism in Plant-Parasitic Nematodes

    Science.gov (United States)

    Eves-van den Akker, Sebastian; Lilley, Catherine J.; Danchin, Etienne G. J.; Rancurel, Corinne; Cock, Peter J. A.; Urwin, Peter E.; Jones, John T.

    2014-01-01

    Within the phylum Nematoda, plant-parasitism is hypothesized to have arisen independently on at least four occasions. The most economically damaging plant-parasitic nematode species, and consequently the most widely studied, are those that feed as they migrate destructively through host roots causing necrotic lesions (migratory endoparasites) and those that modify host root tissue to create a nutrient sink from which they feed (sedentary endoparasites). The false root-knot nematode Nacobbus aberrans is the only known species to have both migratory endoparasitic and sedentary endoparasitic stages within its life cycle. Moreover, its sedentary stage appears to have characteristics of both the root-knot and the cyst nematodes. We present the first large-scale genetic resource of any false-root knot nematode species. We use RNAseq to describe relative abundance changes in all expressed genes across the life cycle to provide interesting insights into the biology of this nematode as it transitions between modes of parasitism. A multigene phylogenetic analysis of N. aberrans with respect to plant-parasitic nematodes of all groups confirms its proximity to both cyst and root-knot nematodes. We present a transcriptome-wide analysis of both lateral gene transfer events and the effector complement. Comparing parasitism genes of typical root-knot and cyst nematodes to those of N. aberrans has revealed interesting similarities. Importantly, genes that were believed to be either cyst nematode, or root-knot nematode, “specific” have both been identified in N. aberrans. Our results provide insights into the characteristics of a common ancestor and the evolution of sedentary endoparasitism of plants by nematodes. PMID:25123114

  2. On the track of transfer cell formation by specialized plant-parasitic nematodes.

    Science.gov (United States)

    Rodiuc, Natalia; Vieira, Paulo; Banora, Mohamed Youssef; de Almeida Engler, Janice

    2014-01-01

    Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  3. On the track of transfer cells formation by specialized plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Natalia eRodiuc

    2014-05-01

    Full Text Available Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structural, functional and morphogenetic characteristics function and formation of these specialized multinucleate cells that act as nutrient transfer cells to accumulate and synthesize components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes.

  4. The pinewood nematode, Bursaphelenchus xylophilus

    OpenAIRE

    Mota, Manuel; Vieira, Paulo

    2004-01-01

    According to the European Plant Protection Organization, the pinewood nematode (PWN), Bursaphelenchus xylophilus is a quarantine organism at the top of the list of the pathogenic species. PWN may be found in North America (Canada, USA and Mexico) and in East Asia (Japan, Korea, China and Taiwan) and has a highly destructive capability towards conifers, in a relatively short time, causing serious economic damage in Japan, China and Korea. This nematode surveying is extremely imp...

  5. Population Genetics of Hirsutella rhossiliensis, a Dominant Parasite of Cyst Nematode Juveniles on a Continental Scale.

    Science.gov (United States)

    Wang, Niuniu; Zhang, Yongjie; Jiang, Xianzhi; Shu, Chi; Hamid, M Imran; Hussain, Muzammil; Chen, Senyu; Xu, Jianping; Xiang, Meichun; Liu, Xingzhong

    2016-11-01

    Hirsutella rhossiliensis is a parasite of juvenile nematodes, effective against a diversity of plant-parasitic nematodes. Its global distribution on various nematode hosts and its genetic variation for several geographic regions have been reported, while the global population genetic structure and factors underlying patterns of genetic variation of H. rhossiliensis are unclear. In this study, 87 H. rhossiliensis strains from five nematode species (Globodera sp., Criconemella xenoplax, Rotylenchus robustus, Heterodera schachtii, and Heterodera glycines) in Europe, the United States, and China were investigated by multilocus sequence analyses. A total of 280 variable sites (frequency, 0.6%) at eight loci and six clustering in high accordance with geographic populations or host nematode-associated populations were identified. Although H. rhossiliensis is currently recognized as an asexual fungus, recombination events were frequently detected. In addition, significant genetic isolation by geography and nematode hosts was revealed. Overall, our analyses showed that recombination, geographic isolation, and nematode host adaptation have played significant roles in the evolutionary history of H. rhossiliensis IMPORTANCE: H. rhossiliensis has great potential for use as a biocontrol agent to control nematodes in a sustainable manner as an endoparasitic fungus. Therefore, this study has important implications for the use of H. rhossiliensis as a biocontrol agent and provides interesting insights into the biology of this species. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. 'Landscape Mirror' & 'Feed the Wind' : Teaching Landscape Architecture on Site at Oerol Festival in the Wadden Sea

    NARCIS (Netherlands)

    Jauslin, D.T.; Bobbink, I.

    2012-01-01

    In the projects 'Landscape Mirror' 2011 and 'Feed the Wind' 2012 students of the Master of Landscape Architecture of the TU Delft have made an interactive project that evolved over the course of Oerol, a unique yearly recurring festival on the Wadden-Sea island Terschelling for landscape theatre &

  7. In Vivo Production of Entomopathogenic Nematodes.

    Science.gov (United States)

    Shapiro-Ilan, David I; Morales-Ramos, Juan A; Rojas, M Guadalupe

    2016-01-01

    In nature, entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are obligate parasites of insects. The nematodes are used widely as biopesticides for suppression of insect pests. More than a dozen entomopathogenic nematode species have been commercialized for use in biological control. Most nematodes intended for commercial application are produced in artificial media via solid or liquid fermentation. However, for laboratory research and small greenhouse or field trials, in vivo production of entomopathogenic nematodes is the common method of propagation. Additionally, small companies continue to produce nematodes using in vivo methods for application in niche markets. Advances in mechanization and alternative production routes (e.g., production geared toward application of nematodes in infected host cadavers) can improve efficiency and economy of scale. The objective of this chapter is to describe basic and advanced procedures for in vivo production of entomopathogenic nematodes.

  8. Basic and applied research: Entomopathogenic nematodes

    Science.gov (United States)

    Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema kill arthropods with the aid of their bacterial symbionts. These nematodes are potent microbial control agents that have been widely commercialized for control of economically important insect pests. Biocontrol efficacy relies...

  9. Nematode consumption by mite communities varies in different forest microhabitats as indicated by molecular gut content analysis.

    Science.gov (United States)

    Heidemann, Kerstin; Ruess, Liliane; Scheu, Stefan; Maraun, Mark

    2014-01-01

    Soil animals live in complex and heterogeneous habitats including litter of various types but also microhabitats such as mosses, fungal mats and grass patches. Soil food webs have been separated into a slow fungal and a fast bacterial energy channel. Bacterial-feeding nematodes are an important component of the bacterial energy channel by consuming bacteria and forming prey for higher trophic levels such as soil microarthropods. Investigating the role of nematodes as prey for higher trophic level consumers has been hampered by methodological problems related to their small body size and lack in skeletal structures which can be traced in the gut of consumers. Recent studies using molecular gut content analyses suggest that nematodes form major prey of soil microarthropods including those previously assumed to live as detritivores. Using molecular markers we traced nematode prey in fourteen abundant soil microarthropod taxa of Mesostigmata and Oribatida (both Acari) from three different microhabitats (litter, grass and moss). Consumption of nematodes varied between mite species indicating that trophic niche variation contributes to the high diversity of microarthropods in deciduous forests. Further, consumption of nematodes by Mesostigmata (but not Oribatida) differed between microhabitats indicating that trophic niches vary with habitat characteristics. Overall, the results suggest that free-living bacterial-feeding nematodes form important prey for soil microarthropods including those previously assumed to live as detritivores.

  10. Serotonin Regulates the Feeding and Reproductive Behaviors of Pratylenchus penetrans.

    Science.gov (United States)

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E

    2017-07-01

    The success of all plant-parasitic nematodes is dependent on the completion of several complex behaviors. The lesion nematode Pratylenchus penetrans is an economically important parasite of a diverse range of plant hosts. Unlike the cyst and root-knot nematodes, P. penetrans moves both within and outside of the host roots and can feed from both locations. Adult females of P. penetrans require insemination by actively moving males for reproduction and can lay eggs both within and outside of the host roots. We do not have a complete understanding of the molecular basis for these behaviors. One candidate modulator of these behaviors is the neurotransmitter serotonin. Previous research demonstrated an effect of exogenously applied serotonin on the feeding and male mating behaviors of cyst and root-knot nematodes. However, there are no data on the role of exogenous serotonin on lesion nematodes. Similarly, there are no data on the presence and function of endogenous serotonin in any plant-parasitic nematode. Here, we establish that exogenous serotonin applied to P. penetrans regulates both feeding and sex-specific behaviors. Furthermore, using immunohistochemistry and pharmacological assays, our data suggest that P. penetrans utilizes endogenous serotonin to regulate both feeding and sex-specific behaviors.

  11. Nematode neuropeptides as transgenic nematicides.

    Directory of Open Access Journals (Sweden)

    Neil D Warnock

    2017-02-01

    Full Text Available Plant parasitic nematodes (PPNs seriously threaten global food security. Conventionally an integrated approach to PPN management has relied heavily on carbamate, organophosphate and fumigant nematicides which are now being withdrawn over environmental health and safety concerns. This progressive withdrawal has left a significant shortcoming in our ability to manage these economically important parasites, and highlights the need for novel and robust control methods. Nematodes can assimilate exogenous peptides through retrograde transport along the chemosensory amphid neurons. Peptides can accumulate within cells of the central nerve ring and can elicit physiological effects when released to interact with receptors on adjoining cells. We have profiled bioactive neuropeptides from the neuropeptide-like protein (NLP family of PPNs as novel nematicides, and have identified numerous discrete NLPs that negatively impact chemosensation, host invasion and stylet thrusting of the root knot nematode Meloidogyne incognita and the potato cyst nematode Globodera pallida. Transgenic secretion of these peptides from the rhizobacterium, Bacillus subtilis, and the terrestrial microalgae Chlamydomonas reinhardtii reduce tomato infection levels by up to 90% when compared with controls. These data pave the way for the exploitation of nematode neuropeptides as a novel class of plant protective nematicide, using novel non-food transgenic delivery systems which could be deployed on farmer-preferred cultivars.

  12. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    Science.gov (United States)

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  13. Plant-parasitic nematodes in Hawaiian agriculture

    Science.gov (United States)

    Hawaii’s diverse and mild climate allows for the cultivation of many crops. The introduction of each crop plant brought along its associated nematode pests. These plant-parasitic nematodes became established and are now endemic to the islands. Plantation agriculture determined the major nematode ...

  14. Entomopathogenic nematodes for the biocontrol of ticks.

    Science.gov (United States)

    Samish, M; Glazer, I

    2001-08-01

    Entomopathogenic steinemematid and heterorhabditid nematodes are increasingly used to control insect pests of economically important crops. Laboratory and field simulation trials show that ticks are also susceptible to these nematodes. The authors review the potential of entomogenous nematodes for the control of ticks.

  15. Long-term effects of plant diversity and composition on soil nematode communities in grassland.

    NARCIS (Netherlands)

    Viketoft, M.; Bengtsson, J.; Sohlenius, B.; Berg, M.P.; Petchey, O.; Palmborg, C.; Huss-Daniel, K.

    2009-01-01

    An important component of plant-soil feedbacks is how plant species identity and diversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years

  16. Cellular targeting and host-specific recognition of cyst nematode CLE proteins

    Science.gov (United States)

    Cyst nematodes produce secreted peptide mimics of plant CLAVATA3/ESR (CLE) peptides likely involved in redirecting CLE signaling pathways active in roots to form unique and essential feeding cells. The hallmark structure of plant CLEs, which includes an N-terminal signal peptide, a highly variable d...

  17. Trophic position of soil nematodes in boreal forests as indicated by stable isotope analysis

    Science.gov (United States)

    Kudrin, Alexey; Tsurikov, Sergey

    2016-04-01

    Despite the well-developed trophic classification of soil nematodes, their position in soil food webs is still little understood. Observed deviations from the typical feeding strategy indicate that a simplified trophic classification probably does not fully reflect actual trophic interactions. Furthermore, the extent and functional significance of nematodes as prey for other soil animals remains unknown. Stable isotope analysis (SIA) is powerful tool for investigating the structure of soil food webs, but its application to the study of soil nematodes has been limited to only a few studies. We used stable isotope analysis to gain a better understanding of trophic links of several groups of soil nematodes in two boreal forests on albeluvisol. We investigated four taxonomic groups of nematodes: Mononchida, Dorylaimida, Plectidae and Tylenchidae (mostly from the genus Filenchus), that according to the conventional trophic classification represent predators, omnivores, bacterivores and root-fungal feeders, respectively. To assess the trophic position of nematodes, we used a comparison against a set of reference species including herbivorous, saprophagous and predatory macro-invertebrates, oribatid and mesostigmatid mites, and collembolans. Our results suggest that trophic position of the investigated groups of soil nematodes generally corresponds to the conventional classification. All nematodes were enriched in 13C relative to Picea abies roots and litter, and mycorrhizal fungal mycelium. Root-fungal feeders Tylenchidae had δ15N values similar to those of earthworms, enchytraeids and Entomobrya collembolans, but slightly lower δ13C values. Bacterivorous Plectidae were either equal or enriched in 15N compared with saprophagous macroinvertebrates and most mesofauna species. Omnivorous Dorylaimida and predatory Mononchida were further enriched in 15N and their isotopic signature was similar to that of predatory arthropods. These data confirm a clear separation of

  18. Susceptibility of the Giant African snail (Achatina fulica) exposed to the gastropod parasitic nematode Phasmarhabditis hermaphrodita.

    Science.gov (United States)

    Williams, A J; Rae, R

    2015-05-01

    The Giant African snail (Achatina fulica) is a major pest in tropical countries. Current control methods involve the use of slug pellets (metaldehyde) but they are ineffective, therefore new methods of control are needed. We investigated whether A. fulica is susceptible to the gastropod parasitic nematode Phasmarhabditis hermaphrodita, which has been developed as a biological control agent for slugs and snails in northern Europe. We exposed A. fulica to P. hermaphrodita applied at 30 and 150nematodes per cm(2) for 70days and also assessed feeding inhibition and changes in snail weight. We show that unlike the susceptible slug species Deroceras panormitanum, which is killed less than 30days of exposure to P. hermaphrodita, A. fulica is remarkably resistant to the nematode at both doses. Also P. hermaphrodita does not reduce feeding in A. fulica nor did it have any effect on weight gain over 70days. Upon dissection of infected A. fulica we found that hundreds of P. hermaphrodita had been encapsulated, trapped and killed in the snail's shell. We found that A. fulica is able to begin encapsulating P. hermaphrodita after just 3days of exposure and the numbers of nematodes encapsulated increased over time. Taken together, we have shown that A. fulica is highly resistant to P. hermaphrodita, which could be due to an immune response dependent on the snail shell to encapsulate and kill invading parasitic nematodes. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Tidal-Flat Macrobenthos as Diets of the Japanese Eel Anguilla japonica in Western Japan, with a Note on the Occurrence of a Parasitic Nematode Heliconema anguillae in Eel Stomachs.

    Science.gov (United States)

    Kan, Kotaro; Sato, Masanori; Nagasawa, Kazuya

    2016-02-01

    Dietary items of the Japanese eel Anguilla japonica inhabiting estuaries were examined by analyses of the gut (stomach and intestine) contents in two areas in Kyushu, western Japan. In a small estuary in Kagoshima Bay, where seven eel guts were examined, almost all of the dietary organisms consisted of Hemigrapsus crabs and Hediste polychaetes, both of which commonly occurred on tidal flats of this site during our survey on the macrobenthic fauna. In another large estuary in the innermost part of the Ariake Sea, where 14 eel guts were examined, 11 macrobenthic species (nine crustaceans, a polychaete, and a gastropod) were found in the gut contents, mostly consisting of mudflat-specific species. The dietary items are almost completely different not only between the two estuaries, but also among three neighboring sites within the large estuary in the Ariake Sea. These results show that Japanese eels feed on various macrobenthic invertebrates inhabiting estuarine tidal flats at each site. The variety of the prey species occupying different habitats indicates that their foraging areas extend to a wide range of estuarine tidal flats from the upper to lower littoral zones. The physalopterid nematode Heliconema anguillae was found parasitic in eel stomachs in both estuaries. The prevalence of the nematode was higher in the estuary in Kagoshima Bay (100%) than that in the Ariake Sea (43%), although the intensity in the former (4-94 nematodes per infected stomach) was comparable to that of the latter (2-96). The relationship between the nematode infection and the dietary items of Japanese eels is discussed.

  20. Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin.

    Science.gov (United States)

    Vidal-Diez de Ulzurrun, Guillermo; Hsueh, Yen-Ping

    2018-05-01

    Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.

  1. Olfactory circuits and behaviors of nematodes.

    Science.gov (United States)

    Rengarajan, Sophie; Hallem, Elissa A

    2016-12-01

    Over one billion people worldwide are infected with parasitic nematodes. Many parasitic nematodes actively search for hosts to infect using volatile chemical cues, so understanding the olfactory signals that drive host seeking may elucidate new pathways for preventing infections. The free-living nematode Caenorhabditis elegans is a powerful model for parasitic nematodes: because sensory neuroanatomy is conserved across nematode species, an understanding of the microcircuits that mediate olfaction in C. elegans may inform studies of olfaction in parasitic nematodes. Here we review circuit mechanisms that allow C. elegans to respond to odorants, gases, and pheromones. We also highlight work on the olfactory behaviors of parasitic nematodes that lays the groundwork for future studies of their olfactory microcircuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Benthic-pelagic coupling: effects on nematode communities along southern European continental margins.

    Directory of Open Access Journals (Sweden)

    Ellen Pape

    Full Text Available Along a west-to-east axis spanning the Galicia Bank region (Iberian margin and the Mediterranean basin, a reduction in surface primary productivity and in seafloor flux of particulate organic carbon was mirrored in the in situ organic matter quantity and quality within the underlying deep-sea sediments at different water depths (1200, 1900 and 3000 m. Nematode standing stock (abundance and biomass and genus and trophic composition were investigated to evaluate downward benthic-pelagic coupling. The longitudinal decline in seafloor particulate organic carbon flux was reflected by a reduction in benthic phytopigment concentrations and nematode standing stock. An exception was the station sampled at the Galicia Bank seamount, where despite the maximal particulate organic carbon flux estimate, we observed reduced pigment levels and nematode standing stock. The strong hydrodynamic forcing at this station was believed to be the main cause of the local decoupling between pelagic and benthic processes. Besides a longitudinal cline in nematode standing stock, we noticed a west-to-east gradient in nematode genus and feeding type composition (owing to an increasing importance of predatory/scavenging nematodes with longitude governed by potential proxies for food availability (percentage of nitrogen, organic carbon, and total organic matter. Within-station variability in generic composition was elevated in sediments with lower phytopigment concentrations. Standing stock appeared to be regulated by sedimentation rates and benthic environmental variables, whereas genus composition covaried only with benthic environmental variables. The coupling between deep-sea nematode assemblages and surface water processes evidenced in the present study suggests that it is likely that climate change will affect the composition and function of deep-sea nematodes.

  3. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.

    Science.gov (United States)

    Guo, Xiaoli; Chronis, Demosthenis; De La Torre, Carola M; Smeda, John; Wang, Xiaohong; Mitchum, Melissa G

    2015-08-01

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant-parasitic cyst nematodes secrete CLE-like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode-induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock-down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Immunity to gastrointestinal nematode infections

    DEFF Research Database (Denmark)

    Sorobetea, D.; Svensson Frej, M.; Grencis, R.

    2018-01-01

    Numerous species of nematodes have evolved to inhabit the gastrointestinal tract of animals and humans, with over a billion of the world's population infected with at least one species. These large multicellular pathogens present a considerable and complex challenge to the host immune system give...

  5. What´s in the tank? Nematodes and other major components of the meiofauna of bromeliad phytotelms in lowland Panama.

    Science.gov (United States)

    Zotz, Gerhard; Traunspurger, Walter

    2016-03-15

    Nematodes are a very diverse and extremely abundant group of animals, but their occurrence in the tropics is surprisingly little understood. We investigated the meiofauna of epiphytic tank bromeliads in the lowlands of Panama with particular emphasis on nematodes. We encountered 89 morphospecies of nematodes in 54 bromeliad tanks, which were sampled in the wet and the dry season. Rotifers were by far the most abundant group in both the dry and the wet season (with up to 960 individual ml(-1)), followed by nematodes, annelids and harpacticoid copepods. Individual plants hosted up to 25 nematode species. These nematodes represented a diversity of feeding guilds, suction-feeders and deposit-feeders being most abundant. The relative abundances of feeding-types of nematodes differed considerably in the wet and dry season. Both species richness and abundance were strongly correlated with the size of the phytotelms and the season, while species diversity assessed with the Shannon-index was affected by neither of the two. This is the first study with a particular focus on the diversity of nematodes in tank bromeliads. We document a meiofauna of considerable abundance and diversity, which suggests important functional roles in ecological processes such as decomposition, which in turn warrants further study.

  6. Combined analyses of bacterial, fungal and nematode communities in andosolic agricultural soils in Japan.

    Science.gov (United States)

    Bao, Zhihua; Ikunaga, Yoko; Matsushita, Yuko; Morimoto, Sho; Takada-Hoshino, Yuko; Okada, Hiroaki; Oba, Hirosuke; Takemoto, Shuhei; Niwa, Shigeru; Ohigashi, Kentaro; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya

    2012-01-01

    We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.

  7. Effect of tillage and crop residue management on nematode densities on corn.

    Science.gov (United States)

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P cover crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.

  8. A new look into the small-scale dispersal of free-living marine nematodes

    Directory of Open Access Journals (Sweden)

    Micheli C Thomas

    2011-08-01

    Full Text Available We tested experimentally the hypothesis that prevailing locomotion/feeding strategies and body morphology may lead to more active dispersal of free-living marine nematodes, besides passive transport. Neutral Red was applied to the sediment inside cores and the red plume formed during the flood tide was divided into near, middle, and distant zones. At 0.5 m and 1 m from the stained cores, sampling nets were suspended 5 and 10 cm above the sediment-water interface. Dispersion behaviors were defined as a function of a the numbers of stained recaptured nematodes in comparison to their mean densities in the sediment, b movement in the sediment or swimming in the water column, and c body morphology. Tidal currents with average velocities of 9 cm/s resuspended the numerically dominant nematode taxa Sabatieria sp., Terschellingia longicaudata de Man, 1907, Metachromadora sp. and Viscosia sp. The recapture of stained nematodes as far as 2 m from the original stained cores showed that, despite their small body size, they can disperse through relatively large distances, either passively or actively, via the water column during a single tidal event. Recapture patterns in the sediment and in the water column indicate that nematode dispersal is directly influenced by their body morphology and swimming ability, and indirectly by their feeding strategies, which ultimately define their position in the sediment column. Besides stressing the role played by passive transport in the water column, our experiment additionally showed that mobility and feeding strategies also need to be considered as determinant of short-scale nematode dispersal.

  9. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO; 1550 clusters were assigned enzyme commission (EC numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to

  10. Anthelmintic resistance in equine nematodes

    Directory of Open Access Journals (Sweden)

    Jacqueline B. Matthews

    2014-12-01

    Full Text Available Anthelmintics have been applied indiscriminately to control horse nematodes for over 40 years. Three broad-spectrum anthelmintic classes are currently registered for nematode control in horses: benzimidazoles (fenbendazole, oxibendazole, tetrahydropyrimidines (pyrantel and macrocyclic lactones (ivermectin, moxidectin. Generally, control strategies have focused on nematode egg suppression regimens that involve the frequent application of anthelmintics to all horses at intervals based on strongyle egg reappearance periods after treatment. The widespread use of such programmes has substantially reduced clinical disease, especially that associated with large strongyle species; however, high treatment frequency has led to considerable selection pressure for anthelmintic resistance, particularly in cyathostomin species. Field studies published over the last decade indicate that benzimidazole resistance is widespread globally in cyathostomins and there are also many reports of resistance to pyrantel in these worms. Cyathostomin resistance to macrocyclic lactone compounds is emerging, principally measured as a reduction in strongyle egg reappearance time observed after treatment. Ivermectin resistance is a further concern in the small intestinal nematode, Parascaris equorum, an important pathogen of foals. These issues indicate that horse nematodes must now be controlled using methods less dependent on anthelmintic use and more reliant on management practices designed to reduce the force of infection in the environment. Such strategies include improved grazing management integrated with targeted anthelmintic administration involving faecal egg count (FEC-directed treatments. The latter require that the supporting diagnostic tests available are robust and practically applicable. Recent research has focused on maximising the value of FEC analysis in horses and on optimizing protocols for anthelmintic efficacy testing. Other studies have sought to develop

  11. Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots.

    Science.gov (United States)

    Tian, Bao-Yu; Cao, Yi; Zhang, Ke-Qin

    2015-11-25

    Endophytes are known to play important roles in plant's health and productivity. In this study, we investigated the root microbiome of tomato in association with infection by root knot nematodes. Our objectives were to observe the effects and response of the bacterial endophytes before nematode attacks and to reveal the functional attributes of microbes in plant health and nematode pathogenesis. Community analysis of root-associated microbiomes in healthy and nematode-infected tomatoes indicated that nematode infections were associated with variation and differentiation of the endophyte and rhizosphere bacterial populations in plant roots. The community of the resident endophytes in tomato root was significantly affected by nemato-pathogenesis. Remarkably, some bacterial groups in the nematode feeding structure, the root gall, were specifically enriched, suggesting an association with nematode pathogenesis. Function-based metagenomic analysis indicated that the enriched bacterial populations in root gall harbored abundant genes related to degradation of plant polysaccharides, carbohydrate and protein metabolism, and biological nitrogen fixation. Our data indicated that some of the previously assumed beneficial endophytes or bacterial associates with nematode might be involved in nematode infections of the tomato roots.

  12. Modeling the C. elegans nematode and its environment using a particle system.

    Science.gov (United States)

    Rönkkö, Mauno; Wong, Garry

    2008-07-21

    A particle system, as understood in computer science, is a novel technique for modeling living organisms in their environment. Such particle systems have traditionally been used for modeling the complex dynamics of fluids and gases. In the present study, a particle system was devised to model the movement and feeding behavior of the nematode Caenorhabditis elegans in three different virtual environments: gel, liquid, and soil. The results demonstrate that distinct movements of the nematode can be attributed to its mechanical interactions with the virtual environment. These results also revealed emergent properties associated with modeling organisms within environment-based systems.

  13. Penetration and post-infection development of root-knot nematodes in watermelon

    Energy Technology Data Exchange (ETDEWEB)

    López-Gómez, M.; Verdejo-Lucas, S.

    2017-07-01

    Meloidogyne javanica has showed less reproductive success than M. incognita in watermelon genotypes. This study was conducted to elucidate the low reproduction of M. javanica in watermelon. The post-infection development of M. javanica in watermelon ‘Sugar Baby’ was determined at progressively higher initial population (Pi) levels at two time points during the life cycle. Plants were inoculated with 0, 25, 50, 100, 200, and 300 second-stage juveniles (J2)/plant. The increase in Pi was correlated with the penetration rates (R2= 0.603, p<0.001) and total numbers of nematodes in the root (R2 =0.963, p< 0.001) but there was no correlation between the Pi and the reproduction factor (eggs/plant/Pi). The population in the roots at 26 days post-inoculation (dpi) consisted primarily of third-stage juveniles (J3) with a small presence of J2 and fourth stages, and egg-laying females. The dominance of the J3, when egg-laying females are expected, point to the malfunction of the feeding sites that failed to support nematode development beyond the J3 stage. The similarities in egg-laying females at 26 and 60 dpi imply the disruption of the life cycle. Watermelon compensated for M. javanica parasitism by increasing vine length (19% to 33%) and dry top weight (40%) in comparison with the non-inoculated plants. The area under the vine length progress curve was significantly larger as the Pi progressively increased (R²=0.417, p<0.001). Physiological variation was detected between the M. incognita populations. M. arenaria had less ability to invade watermelon roots than did M. incognita and M. javanica.

  14. Sequence mining and transcript profiling to explore cyst nematode parasitism

    Directory of Open Access Journals (Sweden)

    Recknor Justin

    2009-01-01

    Full Text Available Abstract Background Cyst nematodes are devastating plant parasites that become sedentary within plant roots and induce the transformation of normal plant cells into elaborate feeding cells with the help of secreted effectors, the parasitism proteins. These proteins are the translation products of parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants. Results We present here the expression patterns of all previously described parasitism genes of the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These insights were gained by analyzing our gene expression dataset from experiments using the Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes, we searched for predicted protein sequences that showed their highest similarities to plant or microbial proteins and identified 156 H. glycines genes, some of which also contained a signal peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses about potential roles in parasitism. This is the first study combining sequence analyses of a substantial EST dataset with microarray expression data of all major life stages (except adult males for the identification and characterization of putative parasitism-associated proteins in any parasitic nematode. Conclusion We have established an expression atlas for all known H. glycines parasitism genes. Furthermore, in an effort to identify additional H. glycines genes with putative functions in parasitism, we have reduced the

  15. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A*

    OpenAIRE

    Kont, Riin; Kari, Jeppe; Borch, Kim; Westh, Peter; Väljamäe, Priit

    2016-01-01

    Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and ...

  16. An On-Site Simultaneous Semi-Quantification of Aflatoxin B1, Zearalenone, and T-2 Toxin in Maize- and Cereal-Based Feed via Multicolor Immunochromatographic Assay

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2018-02-01

    Full Text Available Multiple-mycotoxin contamination has been frequently found in the agro-food monitoring due to the coexistence of fungi. However, many determination methods focused on a single mycotoxin, highlighting the demand for on-site determination of multiple mycotoxins in a single run. We develop a multicolor-based immunochromatographic strip (ICS for simultaneous determination of aflatoxin B1 (AFB1, zearalenone (ZEN and T-2 toxin in maize- and cereal-based animal feeds. The nanoparticles with different colors are conjugated with three monoclonal antibodies, which serve as the immunoassay probes. The decrease in color intensity is observed by the naked eyes, providing simultaneous quantification of three mycotoxins. The visible limits of detection for AFB1, ZEN and T-2 are estimated to be 0.5, 2, and 30 ng/mL, respectively. The cut-off values are 1, 10, and 50 ng/mL, respectively. Considerable specificity and stability are found using real samples. The results are in excellent agreement with those from high-performance liquid chromatography/tandem mass spectrometry. The multi-color ICS boasts sensitive and rapid visual differentiation and simultaneous semi-quantification of aflatoxin B1, zearalenone and T-2 toxin in maize- and cereal-based feed samples within 20 min.

  17. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford site low-level waste

    International Nuclear Information System (INIS)

    Shade, J.W.

    1996-01-01

    Commercially available melter technologies were tested for application to vitrification of Hanford site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW simulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO x generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented

  18. Craving Ravens: Individual ‘haa’ Call Rates at Feeding Sites as Cues to Personality and Levels of Fission-Fusion Dynamics?

    Directory of Open Access Journals (Sweden)

    Georgine Szipl

    2014-08-01

    Full Text Available Common ravens aggregate in large non-breeder flocks for roosting and foraging until they achieve the status of territorial breeders. When discovering food, they produce far-reaching yells or ‘haa’ calls, which attract conspecifics. Due to the high levels of fission-fusion dynamics in non-breeders’ flocks, assemblies of feeding ravens were long thought to represent anonymous aggregations. Yet, non-breeders vary in their degree of vagrancy, and ‘haa’ calls convey individually distinct acoustic features, which are perceived by conspecifics. These findings give rise to the assumption that raven societies are based on differential social relationships on an individual level. We investigated the occurrence of ‘haa’ calling and individual call rates in a group of individually marked free-ranging ravens. Calling mainly occurred in subadult and adult females, which showed low levels of vagrancy. Call rates differed significantly between individuals and with residency status, and were correlated with calling frequency and landing frequency. Local ravens called more often and at higher rates, and were less likely to land at the feeding site than vagrant birds. The results are discussed with respect to individual degrees of vagrancy, which may have an impact on social knowledge and communication in this species.

  19. Stomach nematodes (Mastophorus Muris) in rats (Rattus rattus) are associated with coconut (Cocos nucifera) Habitat at palmyra atoll

    Science.gov (United States)

    Lafferty, K.D.; Hathaway, S.A.; Wegmann, A.S.; Shipley, F.S.; Backlin, A.R.; Helm, J.; Fisher, R.N.

    2010-01-01

    Black rats (Rattus rattus) and their stomach nematodes (Mastophorus muris) were historically introduced to islets at Palmyra Atoll in the central Pacific Line Islands. To investigate patterns of parasitism, we trapped rats and quantified nematodes on 13 islets of various sizes and habitat types. Most rats were parasitized (59) with an average of 12 worms per infected rat. Islet size did not greatly influence parasite population biology. Nematodes also did not appear to affect rat condition (weight to skull length). The only strong and consistent factor associated with the mean abundance of nematodes in rats was habitat (dominant cover and locally dominant plant species). Thus, nematodes were much more abundant in rats from sites dominated by coconut trees (Cocos nucifera). Coconut trees may also be an introduced species at Palmyra Atoll. ?? American Society of Parasitologists 2010.

  20. Stomach nematodes (Mastophorus muris) in rats (Rattus rattus) are associated with coconut (Cocos nucifera) habitat at Palmyra Atoll.

    Science.gov (United States)

    Lafferty, Kevin D; Hathaway, Stacie A; Wegmann, Alex S; Shipley, Frank S; Backlin, Adam R; Helm, Joel; Fisher, Robert N

    2010-02-01

    Black rats ( Rattus rattus ) and their stomach nematodes (Mastophorus muris) were historically introduced to islets at Palmyra Atoll in the central Pacific Line Islands. To investigate patterns of parasitism, we trapped rats and quantified nematodes on 13 islets of various sizes and habitat types. Most rats were parasitized (59%) with an average of 12 worms per infected rat. Islet size did not greatly influence parasite population biology. Nematodes also did not appear to affect rat condition (weight to skull length). The only strong and consistent factor associated with the mean abundance of nematodes in rats was habitat (dominant cover and locally dominant plant species). Thus, nematodes were much more abundant in rats from sites dominated by coconut trees (Cocos nucifera). Coconut trees may also be an introduced species at Palmyra Atoll.

  1. Qualidade das informações sobre aleitamento materno e alimentação complementar em sites brasileiros de profissionais de saúde disponíveis na internet The quality of information on maternal breast feeding and complementary feeding on Brazilian internet sites available for health professionals

    Directory of Open Access Journals (Sweden)

    Rosângela Quirino da Silva

    2010-09-01

    Full Text Available OBJETIVOS: analisar as informações de sites da internet sobre o aleitamento materno e alimentação complementar de acordo com a adequação às recomendações do Ministério da Saúde do Brasil. MÉTODOS: realizado estudo transversal, com amostra de 103 sites de profissionais de saúde. Analisaram-se informações sobre aleitamento materno (AM e alimentação complementar (AC. As informações foram quantificadas e analisadas qualitativamente. RESULTADOS: as recomendações relativas ao AM foram: exclusivo até 6º mês (64,1%; sem água e chá (31,1%; duração de dois anos ou mais (36,9%; e não utilizar mamadeira e chupeta (33%. Para a AC foi utilizada a terminologia desmame (30,1%, recomendada a introdução alimentar no 6º mês (47,9%, introdução da primeira papa com fruta (11,6% ou suco (9,7%; e a oferta de sopa (14,6% como refeição. Na análise qualitativa, entre as informações incorretas, constavam recomendações de consumo de carne no 12º mês, horários regulares para refeições, introdução de alimentos no 7º mês e consumo de leite de vaca no 6º mês. CONCLUSÕES: a maior parte das informações sobre aleitamento materno está de acordo com o preconizado pelo Ministério da Saúde, mas são insuficientes para estimular a prática do aleitamento materno. Já as informações sobre alimentação complementar na sua maioria divergem do recomendado.OBJECTIVES: to analyze the information available on internet sites regarding maternal breast feeding and complementary feeding according to the recommendations of the Brazilian Ministry of Health. METHODS: a cross-sectional study was carried out using a sample of 103 sites for professional healthcare workers. Information was analyzed on maternal breast feeding (MB and complementary feeding (CF. The information was quantified and analyzed qualitatively. RESULTS: the recommendations for MB were: that it should be exclusive up to the 6th month of life (64.1%; that no water or tea

  2. Biocontrol: Fungal Parasites of Female Cyst Nematodes

    OpenAIRE

    Kerry, Brian

    1980-01-01

    Three species of fungi, Catenaria auxiliarls (Kühn) Tribe, Nematophthora gynophila Kerry and Crump, and a Lagenidiaceous fungus have been found attacking female cyst nematodes. All are zoosporic fungi which parasitize females on the root surface, cause the breakdown of the nematode cuticle, and prevent cyst formation. Their identification and some aspects of their biology are reviewed. N. gynophila is widespread in Britain and reduces populations of the cereal cyst nematode, Heterodera avenae...

  3. Feeding the world's largest fish: highly variable whale shark residency patterns at a provisioning site in the Philippines.

    Science.gov (United States)

    Thomson, Jordan A; Araujo, Gonzalo; Labaja, Jessica; McCoy, Emer; Murray, Ryan; Ponzo, Alessandro

    2017-09-01

    Provisioning wildlife for tourism is a controversial yet widespread practice. We analysed the residency patterns of juvenile whale sharks ( Rhincodon typus ) in Oslob, Philippines, where provisioning has facilitated a large shark-watching operation since 2011. We identified 208 individual sharks over three years, with an average of 18.6 (s.d. = 7.8, range = 6-43) individuals sighted per week. Weekly shark abundance varied seasonally and peak-season abundance (approx. May-November) increased across years. Whale sharks displayed diverse individual site visitation patterns ranging from a single visit to sporadic visits, seasonal residency and year-round residency. Nine individuals became year-round residents, which represents a clear response to provisioning. The timing of the seasonal peak at Oslob did not align with known non-provisioned seasonal aggregations elsewhere in the Philippines, which could suggest that seasonal residents at Oslob exploit this food source when prey availability at alternative sites is low. Since prolonged residency equates to less time foraging naturally, provisioning could influence foraging success, alter distributions and lead to dependency in later life stages. Such impacts must be carefully weighed against the benefits of provisioning (i.e. tourism revenue in a remote community) to facilitate informed management decisions.

  4. Epidemiological studies of nematodes in fishes

    International Nuclear Information System (INIS)

    Qamar, M.F.; Butt, K.; Qureshi, N.A.

    2014-01-01

    Three hundred fresh water fishes of six species were collected from six different fish farms of Lahore for the prevalence of nematodes. Out of 300 fishes examined, 12 were found to be infected with the helminthes, majority of them were isolated from the stomach and intestines. The following two species of nematodes were recorded; Capillaria spp. and Eustrongylides spp. The overall prevalence of intestinal nematodes was recorded as 4%(12/300). The prevalence of nematodes was recorded on monthly basis which ranged from 0-8%. The highest prevalence of nematodes was 8% (4/50) during March, while the lowest prevalence was noted in June 0%.Singharee (Sperata sawari) showed the maximum infestation of nematodes of 8% (4/50), whereas in Silver Carp (Hypopthaimichthys molitrix) minimum prevalence of nematode (0%) was noted. The prevalence of different nematode in a particular fish specie was also recorded, and it was stated that overall prevalence of capillaria spp. was 6% in Rahu (Labeo rohita) and Saul (Channa marullius). Similarly overall infestation of Eustrongylides sp. was recorded as 4% in Singharee (Sperata sawari) and Silver carp (Hypopthaimichthys molitrix). The nematode intensity might be linked with the genetic makeup, intestinal vigor, and other managemental and environmental factors. (author)

  5. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii.

    Directory of Open Access Journals (Sweden)

    John Fosu-Nyarko

    Full Text Available The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668 with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.. Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.

  6. Nematode assemblages in the deep-sea benthos of the Norwegian Sea

    Science.gov (United States)

    Jensen, Preben

    1988-07-01

    The deep-sea benthos of the Norwegian Sea contains 20-204 nematodes per 10 cm 2 down to 3 cm depth at seven stations sampled between 970 and 3294 m water depth. The majority of nematodes occur in the uppermost cm. Biomass varies from 3 to 73 μg C per 10 cm 2. Individual adult weight of the most dominant species differs by a factor of almost 1000, i.e. from 3-4 ng C to 3400 ng C; however, the majority of the nematodes is small-sized. Species diversity and evenness are high at all stations and each station harbours its specific fauna with little overlap between stations. Analysis of trophic group composition suggests that microbial feeding types (deposit and epistrate feeders) prevail in the deep-sea benthos; predators and scavengers are scarce. It is concluded that the nematode assemblage at each station consists of a mosaic of many microhabitats. The small nematode body weight probably results from limited food supply and/or poor food quality.

  7. Nematodes as bioindicators of ecosystem recovery during phytoremediation of crude oil contaminated soil.

    Science.gov (United States)

    Savin, Mary C; Wolf, Duane C; Davis, K Jody; Gbur, Edward E; Thoma, Greg J

    2015-01-01

    Restoration of a weathered crude oil contaminated site undergoing phytoremediation was evaluated using nematodes as bioindicators. Samples were collected twice per year equating to spring and fall/winter. Mean annual total abundances ranged from 18-130 in the non-fertilized non-vegetated control (CTR) to 69-728 in tall fescue-ryegrass (FES) to 147-749 (100 g(-1)) in the fertilized bermudagrass-fescue (BER) treatment. Proportions of plant-parasitic (PP) and free-living (FL) nematodes were significantly impacted by treatment, but not year, with PP nematodes accounting for 27, 59, and 68% of CTR, FES, and BER communities, respectively. There was no significant year by season by treatment or treatment by year effect for total, PP, or FL nematode abundances. Diversity did not increase over time. The BER and FES treatments had more mature communities as indicated by higher plant-parasitic index (PPI) values. Phytoremediation accelerates petroleum degradation and alters the soil habitat which is reflected in the nematode community. However, low numbers and inconsistent presence of persister strategist omnivores and predators, and the lack in improvement over time in treatment effects for total and PP nematode abundances, PP and FL proportions, or PPI indicate the system is being rehabilitated but has not been restored after 69 months of phytoremediation.

  8. Mechanisms of host seeking by parasitic nematodes.

    Science.gov (United States)

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. root nematode control and crop yield

    African Journals Online (AJOL)

    SARAH

    2016-05-31

    May 31, 2016 ... The relationship between cost and benefit of the nematicide applications was also estimated. ... based on nematode threshold (100 nematodes per g of fresh root) which resulted in two applications; ..... France. Araya M, 2004. Situación actual del manejo de nematodos en banano (Musa AAA) y plátano.

  10. Benthic freshwater nematode community dynamics under conditions ...

    African Journals Online (AJOL)

    Studies of the influence of fish aquaculture on benthic freshwater nematode assemblages are scarce, but could provide a way of gauging environmental effects. The abundance and diversity of nematode assemblages in response to Oreochromis niloticus aquaculture were investigated in Kafr El-Sheikh Governorate, Egypt, ...

  11. Biological control of Otiorhynchus sulcatus by insect parasitic nematodes, Heterorhabditis spp., at low temperatures : a systems analytical approach

    NARCIS (Netherlands)

    Westerman, P.R.

    1997-01-01

    The black vine weevil, Otiorhynchus sulcatus, is an important pest in ornamentals and nursery stock in The Netherlands. The larvae, which feed on the root system of the plant, can be controlled by insect parasitic nematodes, Heterorhabditis.

  12. How do humans affect wildlife nematodes?

    Science.gov (United States)

    Weinstein, Sara B.; Lafferty, Kevin D.

    2015-01-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host–parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.

  13. Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst nematode Heterodera schachtii in Arabidopsis.

    Science.gov (United States)

    Hewezi, Tarek; Piya, Sarbottam; Richard, Geoffrey; Rice, J Hollis

    2014-09-01

    Plant-parasitic cyst nematodes induce the formation of a multinucleated feeding site in the infected root, termed the syncytium. Recent studies point to key roles of the phytohormone auxin in the regulation of gene expression and establishment of the syncytium. Nevertheless, information about the spatiotemporal expression patterns of the transcription factors that mediate auxin transcriptional responses during syncytium formation is limited. Here, we provide a gene expression map of 22 auxin response factors (ARFs) during the initiation, formation and maintenance stages of the syncytium induced by the cyst nematode Heterodera schachtii in Arabidopsis. We observed distinct and overlapping expression patterns of ARFs throughout syncytium development phases. We identified a set of ARFs whose expression is predominantly located inside the developing syncytium, whereas others are expressed in the neighbouring cells, presumably to initiate specific transcriptional programmes required for their incorporation within the developing syncytium. Our analyses also point to a role of certain ARFs in determining the maximum size of the syncytium. In addition, several ARFs were found to be highly expressed in fully developed syncytia, suggesting a role in maintaining the functional phenotype of mature syncytia. The dynamic distribution and overlapping expression patterns of various ARFs seem to be essential characteristics of ARF activity during syncytium development. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  14. Biology and predatory attributes of a diplogasterid nematode, Fictor composticola Khan et al., 2008

    Directory of Open Access Journals (Sweden)

    Bajaj H. K.

    2015-02-01

    Full Text Available Biology of Fictor composticola has been studied on Aphelenchus avenae in vitro. It reproduces by amphimixis, embryonic development is completed in 24 - 27 h and life cycle in 3 - 4 days. Fusion of sperm and egg pronuclei occurs in the uteri. Pulsation of median oesophageal bulb and pressing of lips against egg shell is seen just prior to hatching but teeth seem to play no role in this process. No moulting occurs inside the egg shell and the first stage juvenile hatches out. Female and male undergo mating upon addition of water in the culture plates and continue to swim in copula for a considerable time. A female lays 1.6 - 4.0 eggs in 24 h while feeding upon A. radicicolus. Predation and reproduction is affected by the temperature and 25 - 35 °C is the optimum range for these phenomena. Process of feeding as recorded with a CCTV attached to a compound microscope is described. F. composticola engulfs small preys; sucks the intestinal contents while holding them or cuts the body wall of large-sized preys and then feeds on prolapsed organs. Two sexes differ in their efficiencies of predation, a female on an average kills 53 A. avenae as compared to 11 by a male in 24 h. F. composticola feeds and reproduces on mycophagous nematodes and juveniles of root- knot, cyst and citrus nematodes but does not prey upon adult nematodes having coarsely annulated cuticle. Cannibalism in this species is also observed. F. composticola and Seinura paratenuicaudata prey upon each other. Biocontrol potential of F. composticola for managing nematode problems in button mushroom and agricultural crops has also been discussed.

  15. Interspecific nematode signals regulate dispersal behavior.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    Full Text Available Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2 of plant parasitic Meloidogyne spp. and infective juveniles (IJs of entomopathogenic nematodes (EPN, e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs.Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9. A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9 and C. elegans (ascr#2 dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers.Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.

  16. Nematode assemblages of some insular and continental lizard hosts of the genus Mabuya Fitzinger (Reptilia, Scincidae along the eastern Brazilian coast

    Directory of Open Access Journals (Sweden)

    Carlos Frederico D. Rocha

    2003-12-01

    Full Text Available Nematode assemblages associated to three species of lizards of the genus Mabuya Fitzinger, 1826 [M. agilis (Raddi, 1823, M. caissara Rebouças-spieker, 1974 and M. macrorhyncha Hoge, 1946] from three mainland sites and three island sites along the eastern Brazilian coast were analyzed. A total of six nematode species were recorded, with total nematode richness varying from one to four and overall nematode prevalences varying from 6.7% to 90.5% among host populations. Number of nematode species per host individual (including all hosts, infected and uninfected varied among host populations from 0.07 to 1.05, but most infected lizards in all six host populations harbored a single nematode species. Both insular and continental populations of Mabuya spp. exhibited generally poor nematode assemblages, and no clear tendency for insular host populations to have more depauperate nematode faunas and/or lower infection rates compared to mainland ones (or vice versa was evident on the basis of the present data.

  17. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    Full Text Available The cereal cyst nematode (CCN, Heterodera avenae is a major pest of wheat (Triticum spp that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy revealed fewer glycoside hydrolases (GHs but more glycosyl transferases (GTs and carbohydrate esterases (CEs when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  18. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Science.gov (United States)

    Kumar, Mukesh; Gantasala, Nagavara Prasad; Roychowdhury, Tanmoy; Thakur, Prasoon Kumar; Banakar, Prakash; Shukla, Rohit N; Jones, Michael G K; Rao, Uma

    2014-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  19. Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Thorpe, Peter; Mantelin, Sophie; Cock, Peter Ja; Blok, Vivian C; Coke, Mirela C; Eves-van den Akker, Sebastian; Guzeeva, Elena; Lilley, Catherine J; Smant, Geert; Reid, Adam J; Wright, Kathryn M; Urwin, Peter E; Jones, John T

    2014-10-23

    The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.

  20. Feeding Tubes

    Science.gov (United States)

    ... feeding therapies have been exhausted. Please review product brand and method of placement carefully with your physician ... Total Parenteral Nutrition. Resources: Oley Foundation Feeding Tube Awareness Foundation Children’s Medical Nutrition Alliance APFED’s Educational Webinar ...

  1. IMPORTANT NEMATODE INFECTIONS IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Sri Oemijati

    2012-09-01

    Full Text Available At least 13 species of intestinal nematodes and 4 species of blood and tissue nematodes have been reported infecting man in Indonesia. Five species of intestinal nematodes are very common and highly prevalent, especially in the rural areas and slums of the big cities. Those species are Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, Trichuris trichiura and Oxyuris vermicularis, while Strongyloides stercoralis is disappearing. The prevalence of the soil transmitted helminths differs from place to place, depending on many factors such as the type of soil, human behaviour etc. Three species of lymph dwelling filarial worms are known to be endemic, the urban Wuchereria bancrofti is low endemic in Jakarta and a few other cities along the north coast of Java, with Culex incriminated as vector, high endemicity is found in Irian Jaya, where Anopheline mosquitoes act as vectors. Brugia malayi is widely distributed and is still highly endemic in many areas. The zoonotic type is mainly endemic in swampy areas, and has many species of Mansonia mosquitoes as vectors. B.timori so far has been found only in the south eastern part of the archipelago and has Anopheles barbirostris as vector. Human infections with animal parasites have been diagnosed properly only when adult stages were found either in autopsies or removed tissues. Cases of infections with A. caninum, A.braziliense, A.ceylanicum, Trichostrongylus colubriformis, T.axei and Oesophagostomum apiostomum have been desribed from autopsies, while infections with Gnathostoma spiningerum have been reported from removed tissues. Infections with the larval stages such as VLM, eosinophylic meningitis, occult filanasis and other could only be suspected, since the diagnosis was extremely difficult and based on the finding and identification of the parasite. Many cases of creeping eruption which might be caused by the larval stages of A.caninum and A.braziliense and Strongyloides stercoralis

  2. Microbeam irradiation of the C. elegans nematode

    International Nuclear Information System (INIS)

    Bertucci, Antonella; Brenner, David J.; Pocock, Roger D.J.; Randers-Pehrson, Gerhard

    2009-01-01

    The understanding of complex radiation responses in biological systems, such as non-targeted effects as represented by the bystander response, can be enhanced by the use of genetically amenable model organisms. Almost all bystander studies to date have been carried out by using conventional single-cell in vitro systems, which are useful tools to characterize basic cellular and molecular responses. A few studies have been reported in monolayer explants and bystander responses have been also investigated in a three-dimensional normal human tissue system. However, despite the well-know usefulness of in vitro models, they cannot capture the complexity of radiation responses of living systems such as animal models. To carry out in vivo studies on the bystander effect we have developed a new technique to expose living organisms using proton microbeams. We report the use of a nematode C. elegans strain with a Green Fluorescent Protein (GFP) reporter for the hsp-4 heat-shock gene as an in vivo model for radiation studies. Exposing animals to heat and chemicals stressors leads to whole body increases in the hsp-4 protein reflected by enhanced fluorescence. We report here that γ-rays also can induce stress response in a dose dependent manner. However, whole body exposure to stress agents does not allow for evaluation of distance dependent response in non targeted tissues: the so-called bystander effect. We used the RARAF microbeam to site specifically deliver 3 MeV protons to a site in the tail of young worms. GFP expression was enhanced after 24 hours in a number dependent manner at distances > 100 μm from the site of irradiation. (author)

  3. Isolating genes involved with genotoxic drug response in the nematode Caenorhabditis elegans using genome-wide RNAi screening

    DEFF Research Database (Denmark)

    Schøler, Lone Vedel; Møller, Tine Hørning; Nørgaard, Steffen

    2012-01-01

    The soil nematode Caenorhabditis elegans has become a popular genetic model organism used to study a broad range of complex biological processes, including development, aging, apoptosis, and DNA damage responses. Many genetic tools and tricks have been developed in C. elegans including knock down...... of gene expression via RNA interference (RNAi). In C. elegans RNAi can effectively be administrated via feeding the nematodes bacteria expressing double-stranded RNA targeting the gene of interest. Several commercial C. elegans RNAi libraries are available and hence gene inactivation using RNAi can...

  4. Cloning and structural analysis of partial acetylcholine receptor subunit genes from the parasitic nematode Teladorsagia circumcincta

    NARCIS (Netherlands)

    Walker, J.; Hoekstra, R.; Roos, M. H.; Wiley, L. J.; Weiss, A. S.; Sangster, N. C.; Tait, A.

    2001-01-01

    Nematode nicotinic acetylcholine receptors (nAChRs) are the sites of action for the anthelmintic drug levamisole. Recent findings indicate that the molecular mechanism of levamisole resistance may involve changes in the number and/or functions of target nAChRs. Accordingly, we have used an RT-PCR

  5. Nematode communities of natural and managed beech forests - a pilot study

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Madsen, Mette Vestergård; Johansson, Sanne

    2002-01-01

    forests is discussed. We suggest dead wood input to be the driving variable leading to the observed differences in the nematode community between managed and natural forests of Zealand, Denmark. The marked site differences found in this study emphasizes the need to carefully choose reference areas where...

  6. Comparison of transcript profiles in different life stages of the nematode Globodera pallida under different host potato genotypes.

    Science.gov (United States)

    Palomares-Rius, Juan E; Hedley, Pete E; Cock, Peter J A; Morris, Jenny A; Jones, John T; Vovlas, Nikos; Blok, Vivian

    2012-12-01

    The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second-stage juveniles (J2s) and sedentary parasitic-stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  7. Parasitic Nematode Interactions with Mammals and Plants

    NARCIS (Netherlands)

    Jasmer, D.P.; Goverse, A.; Smant, G.

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent

  8. Genome Evolution of Plant-Parasitic Nematodes.

    Science.gov (United States)

    Kikuchi, Taisei; Eves-van den Akker, Sebastian; Jones, John T

    2017-08-04

    Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.

  9. WormBase: Annotating many nematode genomes.

    Science.gov (United States)

    Howe, Kevin; Davis, Paul; Paulini, Michael; Tuli, Mary Ann; Williams, Gary; Yook, Karen; Durbin, Richard; Kersey, Paul; Sternberg, Paul W

    2012-01-01

    WormBase (www.wormbase.org) has been serving the scientific community for over 11 years as the central repository for genomic and genetic information for the soil nematode Caenorhabditis elegans. The resource has evolved from its beginnings as a database housing the genomic sequence and genetic and physical maps of a single species, and now represents the breadth and diversity of nematode research, currently serving genome sequence and annotation for around 20 nematodes. In this article, we focus on WormBase's role of genome sequence annotation, describing how we annotate and integrate data from a growing collection of nematode species and strains. We also review our approaches to sequence curation, and discuss the impact on annotation quality of large functional genomics projects such as modENCODE.

  10. Naturally induced secretions of the potato cyst nematode co-stimulate the proliferation of both tobacco leaf protoplasts and human peripheral blood mononuclear cells.

    Science.gov (United States)

    Goverse, A; Rouppe van der Voort, J; Roppe van der Voort, C; Kavelaars, A; Smant, G; Schots, A; Bakker, J; Helder, J

    1999-10-01

    Naturally induced secretions from infective juveniles of the potato cyst nematode Globodera rostochiensis co-stimulate the proliferation of tobacco leaf protoplasts in the presence of the synthetic phytohormones alpha-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). With the use of a protoplast-based bioassay, a low-molecular-weight peptide(s) (cyst nematode secretions also co-stimulated mitogenesis in human peripheral blood mononuclear cells (PBMC). The stimulation of plant cells isolated from nontarget tissue--these nematodes normally invade the roots of potato plants--suggests the activation of a general signal transduction mechanism(s) by an oligopeptide(s) secreted by the nematode. Whether a similar oligopeptide-induced mechanism underlies human PBMC activation remains to be investigated. Reactivation of the cell cycle is a crucial event in feeding cell formation by cyst nematodes. The secretion of a mitogenic low-molecular-weight peptide(s) by infective juveniles of the potato cyst nematode could contribute to the redifferentiation of plant cells into such a feeding cell.

  11. Fungi associated with free-living soil nematodes in Turkey

    Directory of Open Access Journals (Sweden)

    Karabörklü Salih

    2015-01-01

    Full Text Available Free-living soil nematodes have successfully adapted world-wide to nearly all soil types from the highest to the lowest of elevations. In the current study, nematodes were isolated from soil samples and fungi associated with these free-living soil nematodes were determined. Large subunit (LSU rDNAs of nematode-associated fungi were amplified and sequenced to construct phylogenetic trees. Nematode-associated fungi were observed in six nematode strains belonging to Acrobeloides, Steinernema and Cephalobus genera in different habitats. Malassezia and Cladosporium fungal strains indicated an association with Acrobeloides and Cephalobus nematodes, while Alternaria strains demonstrated an association with the Steinernema strain. Interactions between fungi and free-living nematodes in soil are discussed. We suggest that nematodes act as vectors for fungi.

  12. Habitat Characterization of Entomopathogenic Nematodes in North Lebanon

    International Nuclear Information System (INIS)

    Noujeim Abi Nader, E.; El Hayek, P.; Darwich, T.; Khater, C.; Nemer, N.; Thaler, O.

    2010-01-01

    Entomopathogenic nematodes are soil organisms, adapted to most climatic conditions in hot, temperate, and cold zones, distributed from lowlands to high alpine altitudes (Steiner, 1996). During a previous survey of entomopathogenic nematodes-EPNs in Lebanon (Noujeim Abi Nader et al., in review), 3 out of 19 sites were estimated positive in EPNs. The reasons for the presence of EPNs in some sites in Lebanon rather than others, are still not well established. Even less is known about the correlation between EPNs distribution in land and soil texture, soil pH, insect hosts, and vegetation cover. In the current study, assessment of habitat preference of EPNs is conducted in a positive site previously sampled for EPNs occurrence. The relationship between EPNs, entomofauna, vegetation cover and soil characteristics is determined using a gridded method and baiting with Galleria mellonella tubes introduced in situ into soil. The method used allows precision sampling with minimal soil disturbance. Results showed a correlation between EPNs and some soil characteristics (humidity, organic matter, texture, porosity) and also communities of invertebrates. No significant linkages were demonstrated between the presence of EPNs and the vegetation nor with the soil pH or any specific entomofauna order. (author)

  13. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants

    Directory of Open Access Journals (Sweden)

    Silvestre A.

    2004-06-01

    Full Text Available In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control ? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole. Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial : it is not possible to avoid it, but only to delay its development in farm animal industry.

  14. Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations.

    Science.gov (United States)

    Cesarz, Simone; Ciobanu, Marcel; Wright, Alexandra J; Ebeling, Anne; Vogel, Anja; Weisser, Wolfgang W; Eisenhauer, Nico

    2017-07-01

    The magnitude and frequency of extreme weather events are predicted to increase in the future due to ongoing climate change. In particular, floods and droughts resulting from climate change are thought to alter the ecosystem functions and stability. However, knowledge of the effects of these weather events on soil fauna is scarce, although they are key towards functioning of terrestrial ecosystems. Plant species richness has been shown to affect the stability of ecosystem functions and food webs. Here, we used the occurrence of a natural flood in a biodiversity grassland experiment that was followed by a simulated summer drought experiment, to investigate the interactive effects of plant species richness, a natural flood, and a subsequent summer drought on nematode communities. Three and five months after the natural flooding, effects of flooding severity were still detectable in the belowground system. We found that flooding severity decreased soil nematode food-web structure (loss of K-strategists) and the abundance of plant feeding nematodes. However, high plant species richness maintained higher diversity and abundance of higher trophic levels compared to monocultures throughout the flood. The subsequent summer drought seemed to be of lower importance but reversed negative flooding effects in some cases. This probably occurred because the studied grassland system is well adapted to drought, or because drought conditions alleviated the negative impact of long-term soil waterlogging. Using soil nematodes as indicator taxa, this study suggests that high plant species richness can maintain soil food web complexity after consecutive environmental perturbations.

  15. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  16. The roles of nematodes in nitrogen and phosphorous availability, plant uptake and growth in organically amended soils

    Science.gov (United States)

    Gebremikael, Mesfin; Buchan, David; De Neve, Stefaan

    2017-04-01

    Several studies have shown that soil biota contributes significantly to the crucial ecosystem functions and services such as organic matter decomposition and nutrient cycling. The contribution of each group of soil organisms may vary depending primarily on their feeding behavior. The magnitude of the ecosystem services by the biota may also depend on the interactions amongst the soil biota groups and their surrounding environment, for instance, biochemical characteristics of the externally added organic material. However, only a few studies considered these interactions concurrently. Here, we investigated the effects of fauna-microbe-plant interactions on organic matter decomposition and nutrient cycling by applying different organic materials spanning a range of C:N ratios and presumed N availability. Nematodes were selected as model fauna because they are the most abundant soil metazoans that have a diversified feeding strategy and interact very intimately with microbes, other fauna, and plants. A series of incubation experiments were conducted in bare and planted microcosms under controlled conditions using fresh soil collected from an agricultural field and defaunated by gamma irradiation. In the first experiment without plants, the defaunated soil cores were either left unamended (UNA) or received lignin-rich low N compost (COI), N-rich compost (COV), fresh manure (MAN) or chopped clover (CLO). The entire free-living soil nematode community was extracted from unirradiated fresh soil and reinoculated into half of the soil cores that had been defaunated by gamma irradiation. Two treatments: with (+Nem) and without (-Nem) nematodes were compared for soil nitrogen and phosphorus availability, plant uptake, and PLFA signatures over time during a 105-days incubation. The same experimental setup was used to investigate further the CLO amendment in the presence of plants (rye grass was used as a model plant). Nematodes were extracted and assigned to feeding groups

  17. Nematode communities in sediments of the Kermadec Trench, Southwest Pacific Ocean

    Science.gov (United States)

    Leduc, Daniel; Rowden, Ashley A.

    2018-04-01

    Hadal trenches are characterized by environmental conditions not found in any other deep-sea environment, such as steep topography and periodic disturbance by turbidity flows, which are likely responsible for the distinct nature of benthic communities of hadal trenches relative to those of the abyssal plain. Nematodes are the most abundant metazoans in the deep-sea benthos, but it is not yet clear if different trenches host distinct nematode communities, and no data are yet available on the communities of most trenches, including the Kermadec Trench in the Southwest Pacific. Quantitative core samples from the seafloor of the Kermadec Trench were recently obtained from four sites at 6000-9000 m depth which allowed for analyses of meiofauna, and nematodes in particular, for the first time. Nematode community and trophic structure was also compared with other trenches using published data. There was a bathymetric gradient in meiofauna abundance, biomass, and community structure within the Kermadec Trench, but patterns for species richness were ambiguous depending on which metric was used. There was a change in community structure from shallow to deep sites, as well as a consistent change in community structure from the upper sediment layers to the deeper sediment layers across the four sites. These patterns are most likely explained by variation in food availability within the trench, and related to trench topography. Together, deposit and microbial feeders represented 48-92% of total nematode abundance in the samples, which suggests that fine organic detritus and bacteria are major food sources. The relatively high abundance of epigrowth feeders at the 6000 and 9000 m sites (38% and 31%, respectively) indicates that relatively freshly settled microalgal cells represent another important food source at these sites. We found a significant difference in species community structure between the Kermadec and Tonga trenches, which was due to both the presence/absence of

  18. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis

    Science.gov (United States)

    Kammerhofer, Nina; Radakovic, Zoran; Regis, Jully M A; Dobrev, Petre; Vankova, Radomira; Grundler, Florian M W; Siddique, Shahid; Hofmann, Julia; Wieczorek, Krzysztof

    2015-01-01

    Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii–Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage. PMID:25825039

  19. Description of free-living marine nematodes found in the intestine of fishes from the Brazilian coast.

    Science.gov (United States)

    Abolafia, Joaquín; Ruiz-Cuenca, Alba N; Fernandes, Berenice M M; Cohen, Simone C; Cárdenas, Melissa Q

    2015-04-22

    The marine nematodes usually comprise free-living species, although a few are parasitic. However, several cases of free-living nematodes found accidentally in the digestive tract of certain vertebrates, especially fishes, have sometimes been recorded and categorized as pseudoparasites. In the present work, two species of marine fishes, the rhomboid crappie, Diapterus rhombeus, and the silvered crappie, Eucinostomus argenteus (Perciformes: Gerreidae), from Angra dos Reis on the coast of Rio de Janeiro (Brazil) were examined. Seven species of free-living marine nematodes were found in the digestive tract of these fish. Several of these species remain unknown as free-living forms in Brazil. The combination of the fish feeding strategies and the poor preservation of the body of the nematode specimens found could indicate that these nematodes are pseudoparasites, appearing in the fishes' digestive tracts through accidental ingestion and thereafter surviving for brief periods of time. Descriptions, illustrations and tables of measurements are provided for all species. Six of these species (Croconema torquens, Dorylaimopsis pellucida, Oncholaimellus labiatus, Parodontophora breviamphida, Prooncholaimus ornatus, Trissonchulus latus) have been reported for the first time from the Brazilian coast.

  20. Root-lesion nematodes suppress cabbage aphid population development by reducing aphid daily reproduction

    Directory of Open Access Journals (Sweden)

    W. H. Gera eHol

    2016-02-01

    Full Text Available Empirical studies have shown that belowground feeding herbivores can affect the performance of aboveground herbivores in different ways. Often the critical life-history parameters underlying the observed performance effects remain unexplored. In order to better understand the cause for the observed effects on aboveground herbivores, these ecological mechanisms must be better understood. In this study we combined empirical experiments with a modelling approach to analyse the effect of two root feeding endoparasitic nematodes with different feeding strategies on the population growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica nigra. The aim was to test whether emerging differences in life history characteristics (days until reproduction, daily reproduction would be sufficient to explain observed differences in aphid population development on plants with and without two species of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment showed that aphid daily reproduction was lower on plants with P. penetrans (3.08 offspring per female per day in comparison to both uninfested plants and plants with Meloidogyne spp. (3.50 offspring per female per day. The species-specific reduction of aphid reproduction appeared independent of changes in amino acids, soluble sugars or the glucosinolate sinigrin in the phloem. An individual-based model revealed that relatively small differences in reproduction rate per female were sufficient to yield a similar difference in aphid populations as was found in the empirical experiments.

  1. Extended phenotype: nematodes turn ants into bird-dispersed fruits

    DEFF Research Database (Denmark)

    Hughes, D P; Kronauer, D J C; Boomsma, J J

    2008-01-01

    A recent study has discovered a novel extended phenotype of a nematode which alters its ant host to resemble ripe fruit. The infected ants are in turn eaten by frugivorous birds that disperse the nematode's eggs.......A recent study has discovered a novel extended phenotype of a nematode which alters its ant host to resemble ripe fruit. The infected ants are in turn eaten by frugivorous birds that disperse the nematode's eggs....

  2. Biocontrol: The Potential of Entomophilic Nematodes in Insect Management

    OpenAIRE

    Webster, John M.

    1980-01-01

    A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management.

  3. Parasitic nematode interactions with mammals and plants.

    Science.gov (United States)

    Jasmer, Douglas P; Goverse, Aska; Smant, Geert

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent reinfection of host species. In addition, development of resistance to nematicides and anthelmintics by these parasites and reduced availability of some nematicides, for environmental protection, pose significant obstacles for current and future prospects of effective parasite control. Due to marked differences in host species, research on animal and plant parasitic nematodes often proceeds independently. Despite the differences between animals and plants, basic cellular properties are shared among these host organisms. Some common properties may be important for mechanisms [homologous or convergent (homoplastic)] by which nematodes successfully infect these diverse hosts or by which animal and plant hosts resist infections by these pathogens. Here we compare host/parasite interactions between plant parasitic nematodes (PPN) and animal parasitic nematodes, with an emphasis on mammalian hosts (MPN). Similarities and differences are considered in the context of progress on molecular dissection of these interactions. A comprehensive coverage is not possible in the space allotted. Instead, an illustrative approach is used to establish examples that, it is hoped, exemplify the value of the comparative approach.

  4. Management of Root-Nematode (Meloidogyne SPP)

    International Nuclear Information System (INIS)

    Miano, D.W

    2002-01-01

    Greenhouse and field experiments were undertaken to determine the possibility of using soil amendments with different C:N levels or applied at different rates and times in the control of root-knot nematodes (Meloidogyne spp.)in tomato c.v Cal J.A naturally infested field was used while artificial inoculation was done in the greenhouse. Root galling was rated on a scale of 0-10, nematode population was estimated by counting second stage juveniles extracted from 200 cm 3 soil and fruit yields were recorded at the end of the season. Nematode population densities and galling indices were significantly (P< or=0.05) lower in amended soils compared to the control. Application of the amendments also resulted in significant (P< or=0.05) increase in yields. Chicken manure, compost manure, neem products and pig manure were were the most effective amendments. Fresh chicken manure had a more suppressive effect on nematode than when the manure was decomposed within or outside a nematode infested field. A general decrease in juvenile populations and galling was observed with increase of organic amendments applied

  5. Some Plant Parasitic Nematodes of Fruit Trees in Northern Khorasan Province, Iran

    Directory of Open Access Journals (Sweden)

    N. Heidarzadeh

    2017-08-01

    Full Text Available Introduction: Nematodes (Phylum Nematoda are considered as one of the most abundant and diverse animals on earth. They are found in terrestrial, freshwater, brackish, and marine environments and play important ecological roles in soil ecosystems. The order Tylenchida includes the largest and economically most important group of plant-parasitic nematodes so they have always received ample taxonomic attention. Many plant parasitic nematode species are important pests of fruit trees. They damage the plant by directly attacking roots and subsequently predisposing them to secondary infections by bacteria, fungi by causing replant and pre-plant problems of orchards and also by transmission of viruses. Plant parasitic nematodes feed on a plant root system, ability to take up water and minerals and to transport nutrients to the shoot. This restricts root growth reduce plant vitality and inhibits shoot growth, the combination of which results in decreased in quality and yield. The economically most important species belong to the genera Meloidogyne, Pratylenchus, criconemella, Logidorus, Xiphinema, Trichodorus and Paratrichodorus and are widely distributed in fruit orchards throughout the world. Nematode species are classically defined on the basis of these qualitative and quantitative characters. Although morphological information might help species diagnostics, these characters are homoplasious features in many cases and do not adequately consider the possibility of convergent evolution. As a result, new species descriptions are increasingly supported by molecular evidence. However, the study of morphology remains a critical necessity as morphology is the primary interface of an organism with its environment with key implications for development and ecology. Therefore, a more robust phylogeny based on a combination of morphological and molecular approaches is needed to clarify important relationships within Tylenchomorpha. The purpose of the present

  6. Developmental systems of plasticity and trans-generational epigenetic inheritance in nematodes.

    Science.gov (United States)

    Serobyan, Vahan; Sommer, Ralf J

    2017-08-01

    Several decades of research provided detailed insight into how genes control development and evolution, whereas recent studies have expanded this purely genetic perspective by presenting strong evidence for environmental and epigenetic influences. We summarize examples of phenotypic plasticity and trans-generational epigenetic inheritance in the nematode model organisms Pristionchus pacificus and Caenorhabditis elegans, which indicate that the response of developmental systems to environmental influences is hardwired into the organismś genome. We argue that genetic programs regulating these organismal-environmental interactions are themselves subject to natural selection. Indeed, macro-evolutionary studies of nematode feeding structures indicate evolutionary trajectories in which plasticity followed by genetic assimilation results in extreme diversity highlighting the role of plasticity as major facilitator of phenotypic diversification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes

    Directory of Open Access Journals (Sweden)

    Marie-Stéphane Tranier

    2014-12-01

    Full Text Available Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated with bacteria, viruses or with filamentous fungi, which can destroy and feed on phytoparasitic nematodes. To be used by the farmers, biopesticides must be legalized by the states, which has led to the establishment of a legal framework for their use, devised by various governmental organizations.

  8. The prevalence of gastrointestinal nematode infection and their ...

    African Journals Online (AJOL)

    GIN infection was associated with 1.4 litres per cow per day less milk and this ... Gastrointestinal nematode (GIN) infections in cattle are of considerable economic importance .... Table 2. Mean faecal egg counts of gastrointestinal nematodes and the 95% confidence ... 3.2 Gastrointestinal nematode species. The pooled ...

  9. Ecology of the Pinewood Nematode in Southern Pine Chip Piles

    Science.gov (United States)

    L. David Dwinell

    1986-01-01

    The optimum temperature range for pinewood nematodes in southern pine chips was 35 to 40° C. Nematode populations declined at temperatures of -20°C. at temperatures above 45°C. and in anaerobic environments. Wood moisture content and presence of bluestain fungus also influenced nematode populations.

  10. Microbial ecology and nematode control in natural ecosystems

    NARCIS (Netherlands)

    Costa, S.R.; Van der Putten, W.H.; Kerry, B.R.

    2011-01-01

    Plant-parasitic nematodes have traditionally been studied in agricultural systems, where they can be pests of importance on a wide range of crops. Nevertheless, nematode ecology in natural ecosystems is receiving increasing interest because of the role of nematodes in soil food webs, nutrient

  11. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE

    Science.gov (United States)

    Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ESR(CLE)-like effector proteins. These proteins have been shown to act as ligand mimics of plant CLE peptides and are required for successful nematode infection; however, the receptors for nematode CLE-like peptides have not been identified. Her...

  12. Opportunity to use native nematodes for pest control

    Science.gov (United States)

    We have surveyed wild cranberry bogs in WI and found three isolates of native nematodes. We have been testing these nematodes as potential biological control agents in for cranberry insect pests including sparganothis fruitworm and flea beetle. The nematodes seem to be effective at finding and killi...

  13. Bacterial microbiome and nematode occurrence in different potato agricultural soils

    Science.gov (United States)

    Pratylenchus neglectus and Meloidogyne chitwoodi are the main plant-parasitic nematodes in potato crops of the San Luis Valley, Colorado. Bacterial microbiome (16S rRNA copies per gram of soil) and nematode communities (nematodes per 200 gr of soil) from five different potato farms were analyzed to ...

  14. 77 FR 22185 - Golden Nematode; Removal of Regulated Areas

    Science.gov (United States)

    2012-04-13

    ...-0036] Golden Nematode; Removal of Regulated Areas AGENCY: Animal and Plant Health Inspection Service..., without change, an interim rule that amended the golden nematode regulations by removing the townships of... that the fields in these two townships are free of golden nematode, and we determined that regulation...

  15. 76 FR 60357 - Golden Nematode; Removal of Regulated Areas

    Science.gov (United States)

    2011-09-29

    .... APHIS-2011-0036] Golden Nematode; Removal of Regulated Areas AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule and request for comments. SUMMARY: We are amending the golden nematode... infested areas. Surveys have shown that the fields in these two townships are free of golden nematode, and...

  16. Remote Sensing of Parasitic Nematodes in Plants

    Science.gov (United States)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  17. Nematode taxonomy: from morphology to metabarcoding

    Science.gov (United States)

    Ahmed, M.; Sapp, M.; Prior, T.; Karssen, G.; Back, M.

    2015-11-01

    Nematodes represent a species rich and morphologically diverse group of metazoans inhabiting both aquatic and terrestrial environments. Their role as biological indicators and as key players in nutrient cycling has been well documented. Some groups of nematodes are also known to cause significant losses to crop production. In spite of this, knowledge of their diversity is still limited due to the difficulty in achieving species identification using morphological characters. Molecular methodology has provided very useful means of circumventing the numerous limitations associated with classical morphology based identification. We discuss herein the history and the progress made within the field of nematode systematics, the limitations of classical taxonomy and how the advent of high throughput sequencing is facilitating advanced ecological and molecular studies.

  18. Host feeding patterns and preference of Anopheles minimus (Diptera: Culicidae) in a malaria endemic area of western Thailand: baseline site description.

    Science.gov (United States)

    Tisgratog, Rungarun; Tananchai, Chatchai; Juntarajumnong, Waraporn; Tuntakom, Siripun; Bangs, Michael J; Corbel, Vincent; Chareonviriyaphap, Theeraphap

    2012-06-07

    Host feeding patterns of Anopheles minimus in relation to ambient environmental conditions were observed during a 2-year period at Tum Sua Village, located in Mae Sot District, Tak Province, in western Thailand, where An. minimus is found in abundance and regarded as the most predominant malaria vector species. Detailed information on mosquito behavior is important for understanding the epidemiology of disease transmission and developing more effective and efficient vector control methods. Adult mosquitoes were collected every 2 months for two consecutive nights from 1800 to 0600 hrs. Three collection methods were used; indoor human-landing collections (HLC), outdoor HLC, and outdoor cattle-bait collections (CBC). A total of 7,663 female Anopheles mosquitoes were collected of which 5,392 were identified as members of 3 different species complexes, the most prevalent being Anopheles minimus complex (50.36%), followed by Anopheles maculatus complex (19.68%) and Anopheles dirus complex (0.33%). An. minimus s.s. comprised virtually all (> 99.8 percent) of Minimus Complex species captured. Blood feeding behavior of An. minimus was more pronounced during the second half of the evening, showing a slight preference to blood feed outdoors (~60%) versus inside structures. Significantly (P feeding behavior. Although a significant difference in total number of mosquitoes from the HLC was recorded between the first and second year, the mean biting frequency over the course of the evening hours remained similar. The Human landing activity of An. minimus in Tum Sua Village showed a stronger preference/attraction for humans compared to a cow-baited collection method. This study supports the incrimination of An. minimus as the primary malaria vector in the area. A better understanding of mosquito behavior related to host preference, and the temporal and spatial blood feeding activity will help facilitate the design of vector control strategies and effectiveness of vector

  19. Anthelmintic resistance in cattle nematodes in the US.

    Science.gov (United States)

    Gasbarre, Louis C

    2014-07-30

    The first documented case of macrocyclic lactone resistance in gastrointestinal (GI) nematodes of cattle was seen in the US approximately 10 years ago. Since that time the increase incidence of anthelmintic resistance has continued at an alarming rate. Currently parasites of the genera Cooperia and/or Haemonchus resistant to generic or brand-name macrocyclic lactones have be demonstrated in more than half of all operations examined. Both of these parasite genera are capable of causing economic losses by decreasing food intake and subsequently animal productivity. Currently, there are no easy and quick means to detect anthelmintic resistant GI nematodes. Definitive identification requires killing of cattle. The most commonly used field detection method is the fecal egg count reduction test (FECRT). This method can be adapted for use as a screening agent for Veterinarians and producers to identify less than desired clearance of the parasites after anthelmintic treatment. Further studies can then define the reasons for persistence of the egg counts. The appearance of anthelmintic resistance is largely due to the development of very effective nematode control programs that have significantly improved the productivity of the US cattle industry, but at the same time has placed a high level of selective pressure on the parasite genome. The challenges ahead include the development of programs that control the anthelmintic resistant nematodes but at the same time result in more sustainable parasite control. The goal is to maintain high levels of productivity but to exert less selective pressures on the parasites. One of the most effective means to slow the development of drug resistance is through the simultaneous use of multiple classes of anthelmintics, each of which has a different mode of action. Reduction of the selective pressure on the parasites can be attained through a more targeted approach to drug treatments where the producer's needs are met by selective

  20. Venereal worms: sexually transmitted nematodes in the decorated cricket.

    Science.gov (United States)

    Luong, L T; Platzer, E G; Zuk, M; Giblin-Davis, R M

    2000-06-01

    The nematode, Mehdinema alii, occurs in the alimentary canal of the decorated cricket Gryllodes sigillatus. Adult nematodes occur primarily in the hindgut of mature male crickets, whereas juvenile nematodes are found in the genital chambers of mature male and female crickets. Here, we present experimental evidence for the venereal transmission of M. alii in G. sigillatus. Infectivity experiments were conducted to test for transmission via oral-fecal contamination, same-sex contact, and copulation. The infective dauers of the nematode are transferred from male to female crickets during copulation. Adult female crickets harboring infective dauers subsequently transfer the nematode to their next mates. Thus, M. alii is transmitted sexually during copulation.

  1. A temporal assessment of nematode community structure and diversity in the rhizosphere of cisgenic Phytophthora infestans-resistant potatoes.

    Science.gov (United States)

    Ortiz, Vilma; Phelan, Sinead; Mullins, Ewen

    2016-12-01

    e.g. cv. Sarpo Mira. The fluctuating climates led to disparate conditions, with enrichment conditions (bacterial feeding c-p = 1) dominating during the wet seasons of 2014 and 2015 versus the dry season of 2013 which induced an environmental stress (functional guild c-p = 2) on nematode communities. Overall the functional guild indices in comparison to other indices or absolutes values, delivered the most accurate quantitative measurement with which to determine the occurrence of a specific disturbance relative to the cultivation of the studied cisgenic P. infestans-resistant potatoes.

  2. Identification of Angiostrongylus cantonensis and other nematodes using the SSU rDNA in Achatina fulica populations of Metro Manila.

    Science.gov (United States)

    Constantino-Santos, M A; Basiao, Z U; Wade, C M; Santos, B S; Fontanilla I, K C

    2014-06-01

    Angiostrongylus cantonensis is a parasitic nematode that causes eosinophilic meningitis in humans. Accidental infection occurs by consumption of contaminated intermediates, such as the giant African land snail, Achatina fulica. This study surveyed the presence of A. cantonensis juveniles in A. fulica populations from 12 sites in Metropolitan Manila, Philippines using the SSU rDNA. Fourteen distinct sequences from 226 nematodes were obtained; of these, two matched A. cantonensis and Ancylostoma caninum, respectively, with 100% identity. Exact identities of the remaining twelve sequences could not be determined due to low percent similarities. Of the sequenced nematodes, A. cantonensis occurred with the highest frequency (139 out of 226). Most of these (131 out of 139) were collected in just one area in Quezon City. Nematode infection of A. fulica in this area and two others from Makati and another area in Quezon City, respectively, were highest, combining for 95% of the total infection. Ancylostoma caninum, on the other hand, was detected in four different sites. A. caninum is a canine parasite, and this is the first report of the nematode in A. fulica. These results cause public health concerns as both A. cantonensis and A. caninum are zoonotic to humans.

  3. FMRFamide-related peptides in potato cyst nematodes.

    Science.gov (United States)

    Kimber, M J; Fleming, C C; Bjourson, A J; Halton, D W; Maule, A G

    2001-09-03

    This study presents data demonstrating the presence of FMRFamide-related peptides (FaRPs) in potato cyst nematodes (PCN). Five transcripts of FaRP encoding genes, designated gpflp-1 to gpflp-5, were characterised using RACE. In terms of ORFs, gpflp-1 was 444 base pairs (bp) long and coded for four copies of the FaRP, PF3 (KSAYMRFamide) whilst gpflp-2 was 309 bp long and encoded one copy of the peptide, KNKFEFIRFamide. gpflp-3 (420 bp) Encoded two copies of KHEYLRFamide (AF2) and the genes gpflp-4 and gpflp-5 encoded a total of 11 FaRPs, most of which are novel to PCN. FMRFamide-related peptide (FaRP)-like immunoreactivity was observed in both PCN species, Globodera pallida and Globodera rostochiensis, using an antiserum raised against the invertebrate peptide, FMRFamide. Immunopositive neurones were found throughout the central nervous system in the ventral and dorsal nerve cords and the circumpharyngeal and perianal nerve rings. Reactive neurones were also present peripherally, innervating the highly muscular pharynx with a nerve net and ring-like structures. Positive immunostaining was also observed in neurones running toward the stylet protractor muscles and/or the anterior sensory apparatus. This study implicates a role for FaRPs in feeding, host penetration and sensory function of PCN. This is the first study to characterise FaRP encoding genes from a plant-parasitic nematode using a targeted PCR based RACE approach and further underlines the importance and diversity of this neuropeptide group in the phylum Nematoda.

  4. An improved method for generating axenic entomopathogenic nematodes.

    Science.gov (United States)

    Yadav, Shruti; Shokal, Upasana; Forst, Steven; Eleftherianos, Ioannis

    2015-09-19

    Steinernema carpocapsae are parasitic nematodes that invade and kill insects. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila and together form an excellent model to study pathogen infection processes and host anti-nematode/antibacterial immune responses. To determine the contribution of S. carpocapsae and their associated X. nematophila to the successful infection of insects as well as to investigate the interaction of each mutualistic partner with the insect immune system, it is important to develop and establish robust methods for generating nematodes devoid of their bacteria. To produce S. carpocapsae nematodes without their associated X. nematophila bacteria, we have modified a previous method, which involves the use of a X. nematophila rpoS mutant strain that fails to colonize the intestine of the worms. We confirmed the absence of bacteria in the nematodes using a molecular diagnostic and two rounds of an axenicity assay involving appropriate antibiotics and nematode surface sterilization. We used axenic and symbiotic S. carpocapsae to infect Drosophila melanogaster larvae and found that both types of nematodes were able to cause insect death at similar rates. Generation of entomopathogenic nematodes lacking their mutualistic bacteria provides an excellent tool to dissect the molecular and genetic basis of nematode parasitism and to identify the insect host immune factors that participate in the immune response against nematode infections.

  5. Distribution and Population Dynamics of Nematodes in a Rice Field and Pasture in India

    Science.gov (United States)

    Mishra, C. C.; Dash, M. C.

    1981-01-01

    Ecological studies on soil nematodes were made in a tropical rice field and pasture. Parasitic species were more diversified in the pasture than in the rice field. Eighty-six and sixty percent of total nematodes occurred in the top 10 cm in rice field and pasture, respectively. Nematodes were not randomly or uniformly dispersed but aggregated. Parasitic forms were most abundant and correlated with root biomass in the 0-15-cm soil layer, the greatest number usually occurring at the 10-15-cm depth at both sites. In summer, however, they were densest at the 15-30-cm depth. Microbivores were most frequent in the top 5 cm of both sites. Micellaneous feeders (food sources uncertain) usually occurred in highest densities at the 15-30-cm depth. Predators showed no distinct depth preference. Temperature and moisture of the soil apparently played an important role in regulating nematode population. Peak densities of 31.3 × 10⁴/m² and 21.6 × 10⁴/m² at a 30-cm depth occurred in January, while minimum densities of 5.0-5.3 × 10⁴/m² and 4.1 × 10⁴/m² occurred in July-October and April in rice field and pasture, respectively. Monthly mean biomass of nematodes was 23.8 ± 4.5 mg/m² in rice field and 11.5 ± 1.5 mg/m² in pasture. PMID:19300801

  6. Cryopreservation of roe deer abomasal nematodes for morphological identification.

    Science.gov (United States)

    Beraldo, Paola; Pascotto, Ernesto

    2014-02-01

    Conventional methods to preserve adult nematodes for taxonomic purposes involve the use of fixative or clearing solutions (alcohol, formaldehyde, AFA and lactophenol), which cause morphological alterations and are toxic. The aim of this study is to propose an alternative method based on glycerol-cryopreservation of nematodes for their subsequent identification. Adults of trichostrongylid nematodes from the abomasum of roe deer (Capreolus capreolus Linnaeus) were glycerol-cryopreserved and compared with those fixed in formaldehyde, fresh and frozen without cryoprotectans. Morphology, transparency and elasticity of the anterior and posterior portion of male nematodes were compared, especially the caudal cuticular bursa and genital accessories. The method presented is quick and easy to use, and the quality of nematode specimens is better than that of nematodes fixed by previously used fixatives. Moreover, glycerol cryopreserved nematodes can be stored for a long time at -20 degrees C in perfect condition and they could be suitable for further analyses, such as histological or ultrastructural examinations.

  7. Meiobenthos and nematode assemblages from different deep-sea habitats of the Strait of Sicily (Central Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    R. SANDULLI

    2015-05-01

    Full Text Available Much attention is currently devoted at upgrading our knowledge on biodiversity and functioning of deep water ecosystems. Information is constantly enriched by researchers, even from basins as the long-studied Mediterranean Sea. In such a perspective, we studied meiobenthic and nematode communities inhabiting muddy sediments from three different habitats at bathyal depths in the Strait of Sicily: a cold-water coral site (CS in the Maltese Coral Province, a muddy bottom in the same area (MS, and a hydrocarbon imprinted pockmark site (PS in the Gela Basin. The average meiofauna density at CS (1343 ind/10 cm2 and MS (1804 ind/10 cm2 is much higher than that reported in literature for similar habitats; it is also markedly more elevated than that recorded at PS (224 ind/10 cm2. Although nematodes of the three sites show different abundances, they share similar assemblage structure. Nematodes (avg. 86% and copepods (avg. 9.3% were the most abundant meiofaunal taxa at all sites followed by annelids, kinorhynchs and turbellarians. Nematodes were composed by 21 families and 46 genera, with Terschellingia, as most abundant genus (12.4%, followed by Microlaimus (11%, Daptonema (11%, Thalassomonhystera (10.8%, Acantholaimus (9.5% and Sabatieria (8.7%. The genera Thalassomonhystera, Terschellingia, Microlaimus, Daptonema, Chromadorita, Sabatieria, and Anticoma display a dominance in at least one station. The taxonomic structure of meiofaunal communities of the studied sites is rather similar but differences in relative abundance are evident.

  8. Rainforest Conversion to Rubber Plantation May Not Result in Lower Soil Diversity of Bacteria, Fungi, and Nematodes.

    Science.gov (United States)

    Kerfahi, Dorsaf; Tripathi, Binu M; Dong, Ke; Go, Rusea; Adams, Jonathan M

    2016-08-01

    Large areas of rainforest in Asia have been converted to plantations, with uncertain effects on soil biodiversity. Using standard metagenetic methods, we compared the soil biota of bacteria, fungi, and nematodes at three rainforest sites in Malaysia with two rubber plantation sites with similar soils and geology. We predicted the following: (1) that the rubber sites would have a lower α- and β-diversity than the rainforest sites, due to the monospecific canopy cover and intensive management with herbicides, pesticides, and fertilizers, and (2) that due to differences in the physical and biotic environment associated with cultivation, there would be distinct communities of bacteria, fungi, and nematodes. However, regarding (1), the results showed no consistent difference in α- and β-diversity of bacteria, fungi, or nematodes between rainforest and rubber plantation sites. It appears that conversion of rainforest to rubber plantations does not necessarily result in a decrease in diversity of soil biota. It may be that heterogeneity associated with the cultivation regimen compensates for loss of biotically imposed heterogeneity of the original rainforest. Regarding (2), as predicted there were statistically significant differences in community composition between rainforest and rubber plantation for bacteria, fungi, and nematodes. These differences could be related to a range of factors including light level, litter fall composition, pH, C and N, selecting a distinct set of soil taxa, and it is possible that this in itself would affect long-term soil function.

  9. The effects of repeated applications of the molluscicide metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: a two-year study in north-west Spain.

    Science.gov (United States)

    Iglesias, Javier; Castillejo, José; Castro, Ramón

    2003-11-01

    Over two years, six consecutive field experiments were done in which the chemical molluscicide metaldehyde and the nematode biocontrol agent Phasmarhabditis hermaphrodita (Schneider) were applied at the standard field rates to replicated mini-plots successively planted with lettuce, Brussels sprouts, leaf beet and cabbage, to compare the effectiveness of different treatments in reducing slug damage to the crops. Soil samples from each plot were taken prior to the start of the experiments, and then monthly, to assess the populations of slugs, snails, earthworms, nematodes, acarids and collembolans. The experiments were done on the same site and each plot received the same treatment in the six experiments. The six treatments were: (1) untreated controls, (2) metaldehyde pellets, (3 and 4) nematodes applied to the planted area 3 days prior to planting without or with previous application of cow manure slurry, (5) nematodes applied to the area surrounding the planted area 3 days prior to planting, and (6) nematodes applied to the planted area once (only in the first of the six consecutive experiments). Only the metaldehyde treatment and the nematodes applied to the planted area at the beginning of each experiment without previous application of manure significantly reduced slug damage to the plants, and only metaldehyde reduced the number of slugs contaminating the harvested plants. The numbers of slugs, snails and earthworms in soil samples were compared among the six treatments tested: with respect to the untreated controls, the numbers of Deroceras reticulatum (Müller) were significantly affected only in the metaldehyde plots, and the numbers of Arion ater L only in the plots treated with nematodes applied to the planted area 3 days prior to planting without previous application of manure; numbers of snails (Ponentina ponentina (Morelet) and Oxychilus helveticus (Blum)) were not affected by the treatment. The total numbers of all earthworm species and of Lumbricus

  10. Host feeding patterns and preference of Anopheles minimus (Diptera: Culicidae in a malaria endemic area of western Thailand: baseline site description

    Directory of Open Access Journals (Sweden)

    Tisgratog Rungarun

    2012-06-01

    Full Text Available Abstract Background Host feeding patterns of Anopheles minimus in relation to ambient environmental conditions were observed during a 2-year period at Tum Sua Village, located in Mae Sot District, Tak Province, in western Thailand, where An. minimus is found in abundance and regarded as the most predominant malaria vector species. Detailed information on mosquito behavior is important for understanding the epidemiology of disease transmission and developing more effective and efficient vector control methods. Methods Adult mosquitoes were collected every 2 months for two consecutive nights from 1800 to 0600 hrs. Three collection methods were used; indoor human-landing collections (HLC, outdoor HLC, and outdoor cattle-bait collections (CBC. Results A total of 7,663 female Anopheles mosquitoes were collected of which 5,392 were identified as members of 3 different species complexes, the most prevalent being Anopheles minimus complex (50.36%, followed by Anopheles maculatus complex (19.68% and Anopheles dirus complex (0.33%. An. minimus s.s. comprised virtually all (> 99.8 percent of Minimus Complex species captured. Blood feeding behavior of An. minimus was more pronounced during the second half of the evening, showing a slight preference to blood feed outdoors (~60% versus inside structures. Significantly (P An. minimus were collected from human-baited methods compared with a tethered cow, indicating a more anthropophilic feeding behavior. Although a significant difference in total number of mosquitoes from the HLC was recorded between the first and second year, the mean biting frequency over the course of the evening hours remained similar. Conclusions The Human landing activity of An. minimus in Tum Sua Village showed a stronger preference/attraction for humans compared to a cow-baited collection method. This study supports the incrimination of An. minimus as the primary malaria vector in the area. A better understanding of mosquito

  11. Large-scale distribution patterns of mangrove nematodes: A global meta-analysis.

    Science.gov (United States)

    Brustolin, Marco C; Nagelkerken, Ivan; Fonseca, Gustavo

    2018-05-01

    Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat-forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small-bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta-analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean-Southwest Atlantic, Western Indian, Central Indo-Pacific, and Southwest Pacific biogeographic regions. We used random-effects meta-analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove-associated taxa. Global-scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small-bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.

  12. Infection by anisakid nematodes contracaecum spp. in the Mayan cichlid fish 'Cichlasoma (Nandopsis)' urophthalmus (Gunther 1862).

    Science.gov (United States)

    Bergmann, Gaddy T; Motta, Philip J

    2004-04-01

    Larval nematodes that parasitize the Mayan cichlid fish 'Cichlasoma (Nandopsis)' urophthalmus (Günther 1862) in southern Florida were identified as Contracaecum spp. (Nematoda: Anisakidae, Anisakinae). The objective of this study was to determine whether infection intensity and prevalence of these parasites differ between a brackish water and freshwater habitat or through ontogeny in the freshwater habitat only. The nematodes were removed from the abdominal cavity of the fishes and counted. Infection intensity was compared between habitats using analysis of covariance and evaluated through ontogeny using Spearman rank order correlation. Prevalence was compared between habitats and between adults and juveniles from the freshwater habitat using a z-test. Although infection intensity did not differ between habitats, infection prevalence was greater at the freshwater site (FWS). Both the prevalence and intensity of nematode infection increased through ontogeny at the FWS, and no nematode was found in fishes that were smaller than 93 mm standard length. Thus, the parasites appear to accumulate during the lifetime of the fishes.

  13. Seasonal distribution of gastrointestinal nematode infections in sheep in a semiarid region, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Maria de Fátima de Souza

    Full Text Available The objective of this study was to determine the seasonal distribution and gastrointestinal nematode parasite load in crossbred Santa Inês tracer lambs, and to correlate the rainfall during the study period with occurrences of parasitic infections. Sixty-four male tracer lambs between the ages of four and eight months were used in the study. Two tracer lambs were inserted into the herd every 28 days to determine the pattern of infective larvae available in the environment. Variation in the fecal egg count (FEC of nematodes was observed at the study site, with many samples containing undetectable parasite loads during the dry season. The larvae identified in coprocultures wereHaemonchus sp., Trichostrongylus sp.,Cooperia sp., Strongyloides sp. andOesophagostomum sp. The nematodes recovered at necropsy were Haemonchus contortus, Trichostrongylus colubriformis, Cooperia punctata, C. pectinata, Trichuris sp.,Oesophagostomum sp. and Skrajabinema ovis. The total number of larvae and the total number of immature and adult forms recovered from the tracers showed seasonal distributions that significantly correlated with the amount of rainfall received that month (p value ≅ 0.000 in all cases . The species H. contortus was predominant in the herd and should be considered to be main pathogenic nematode species in these hosts under these conditions.

  14. A novel approach to biocontrol: Release of live insect hosts pre-infected with entomopathogenic nematodes.

    Science.gov (United States)

    Gumus, Arife; Karagoz, Mehmet; Shapiro-Ilan, David; Hazir, Selcuk

    2015-09-01

    As a new application approach, we tested the efficacy of releasing live insect hosts that were pre-infected with entomopathogenic nematodes against insect pests living in cryptic habitats. We hypothesized that the pre-infected hosts could carry the next generation of emerging nematode infective juveniles to hard-to-reach target sites, and thereby facilitate enhanced control in cryptic habitats. Thus, the infected hosts act as "living insect bombs" against the target pest. We tested this approach using two model insect pests: a chestnut tree pest, the goat moth Cossus cossus (Lepidiptera: Cossidae), and a lawn caterpillar, Spodoptera cilium (Lepidoptera: Noctuidae). One pest is considered hard-to-reach via aqueous spray (C. cossus) and the other is more openly exposed in the environment (S. cilium). C. cossus and S. cilium studies were conducted in chestnut logs and Bermudagrass arenas, respectively. The living bomb approach was compared with standard nematode application in aqueous spray and controls (without nematode application); Steinernema carpocapsae (Rize isolate) was used in all experiments. The percentage larval mortality of C. cossus was 86% in the living insect bomb treatment, whereas, all other treatments and controls exhibited less than 4% mortality. The new approach (living bomb) was equally successful as standard aqueous application for the control of S. cilium larvae. Both methods exhibited more than 90% mortality in the turfgrass arena. Our new approach showed an immense potential to control insect pests living in hard-to-reach cryptic habitats. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Seasonal distribution of gastrointestinal nematode infections in sheep in a semiarid region, northeastern Brazil.

    Science.gov (United States)

    de Souza, Maria de Fátima; Pimentel-Neto, Manoel; de Pinho, André Luís Santos; da Silva, Rízia Maria; Farias, Albeísa Cleyse Batista; Guimarães, Marcos Pezzi

    2013-01-01

    The objective of this study was to determine the seasonal distribution and gastrointestinal nematode parasite load in crossbred Santa Inês tracer lambs, and to correlate the rainfall during the study period with occurrences of parasitic infections. Sixty-four male tracer lambs between the ages of four and eight months were used in the study. Two tracer lambs were inserted into the herd every 28 days to determine the pattern of infective larvae available in the environment. Variation in the fecal egg count (FEC) of nematodes was observed at the study site, with many samples containing undetectable parasite loads during the dry season. The larvae identified in coprocultures were Haemonchus sp., Trichostrongylus sp., Cooperia sp., Strongyloides sp. and Oesophagostomum sp. The nematodes recovered at necropsy were Haemonchus contortus, Trichostrongylus colubriformis, Cooperia punctata, C. pectinata, Trichuris sp., Oesophagostomum sp. and Skrajabinema ovis. The total number of larvae and the total number of immature and adult forms recovered from the tracers showed seasonal distributions that significantly correlated with the amount of rainfall received that month (p value ≅ 0.000 in all cases ). The species H. contortus was predominant in the herd and should be considered to be main pathogenic nematode species in these hosts under these conditions.

  16. PCR detection of potato cyst nematode.

    Science.gov (United States)

    Reid, Alex

    2009-01-01

    Potato cyst nematode (PCN) is responsible for losses in potato production totalling millions of euros every year in the EC. It is important for growers to know which species is present in their land as this determines its subsequent use. The two species Globodera pallida and Globodera rostochiensis can be differentiated using an allele-specific PCR.

  17. [Biomorphology of gastrointestinal nematodes of small ruminants].

    Science.gov (United States)

    Giannetto, S

    2006-09-01

    Under the term gastrointestinal nematodes are included numerous parasites species of livestock belonging to the families Strongyloididae (Strongyloides), Strongylidae (Chabertia, Oesophagostomum) Trichostrongylidae (Trichostrongylus, Ostertagia, Teladorsagia, Cooperia, Marshallagia), Molineidae (Nematodirus), Ancylostomatidae (Bunostomum) and Trichuridae (Trichuris). This paper reviews the biomorphology aspects of these parasites as well as the controversy by the taxonomists in the classifications.

  18. Excretory/secretory products of anisakid nematodes

    DEFF Research Database (Denmark)

    Mehrdana, Foojan; Buchmann, Kurt

    2017-01-01

    Parasites from the family Anisakidae are widely distributed in marine fish populations worldwide and mainly nematodes of the three genera Anisakis, Pseudoterranova and Contracaecum have attracted attention due to their pathogenicity in humans. Their life cycles include invertebrates and fish as i...

  19. Potato cyst nematodes: pests of national importance

    Science.gov (United States)

    Potato cyst nematodes (PCN; G. rostochiensis and G. pallida) are internationally-recognized quarantine pests and considered the most devastating pests of potatoes due to annual worldwide yield losses estimated at 12.2%. PCNs continue to spread throughout North America and were recently detected in I...

  20. Nutritional requirements for soybean cyst nematode

    Science.gov (United States)

    Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean producers confront. This obligate parasi...

  1. Natural product synthesis: Making nematodes nervous

    Science.gov (United States)

    Snyder, Scott A.

    2011-06-01

    A highly inventive route for the synthesis of a key substance that stimulates potato cyst nematodes to hatch has been developed. This discovery has potential to impact food supplies, as treatment of crops with this compound could alleviate the devastating effect of these parasites.

  2. RNA interference in plant parasitic nematodes

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... grower preference or by government restrictions to limit the environmental ... risks associated with chemical control and (c) the pro- vision of ... certain model organisms. The first ... reproductive system (Lilley et al., 2005b), sperm (Urwin .... interference of dual oxidase in the plant nematode Meloidogyne.

  3. Nematodes: Model Organisms in High School Biology

    Science.gov (United States)

    Bliss, TJ; Anderson, Margery; Dillman, Adler; Yourick, Debra; Jett, Marti; Adams, Byron J.; Russell, RevaBeth

    2007-01-01

    In a collaborative effort between university researchers and high school science teachers, an inquiry-based laboratory module was designed using two species of insecticidal nematodes to help students apply scientific inquiry and elements of thoughtful experimental design. The learning experience and model are described in this article. (Contains 4…

  4. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism.

    Science.gov (United States)

    Chronis, Demosthenis; Chen, Shiyan; Lu, Shunwen; Hewezi, Tarek; Carpenter, Sara C D; Loria, Rosemary; Baum, Thomas J; Wang, Xiaohong

    2013-04-01

    Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  5. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    Science.gov (United States)

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  6. Expansion into an herbivorous niche by a customary carnivore : Black-tailed godwits feeding on rhizomes of Zostera at a newly established wintering site

    NARCIS (Netherlands)

    Robin, Frederic; Piersma, Theunis; Meunier, Francis; Bocher, Pierrick

    In expanding populations, individuals may increasingly be forced to use sites of relatively low quality. This process, named the "buffer effect," was previously described for the Black-tailed Godwit (Limosa limosa islandica) in its use of nonbreeding sites in Great Britain and of breeding areas in

  7. Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes.

    Science.gov (United States)

    Mulder, Christian; Maas, Rob

    2017-11-28

    Sustainable use of our soils is a key goal for environmental protection. As many ecosystem services are supported belowground at different trophic levels by nematodes, soil nematodes are expected to provide objective metrics for biological quality to integrate physical and chemical soil variables. Trait measurements of body mass carried out at the individual level can in this way be correlated with environmental properties that influence the performance of soil biota. Soil samples were collected across 200 sites (4 soil types and 5 land-use types resulting in 9 combinations) during a long-term monitoring programme in the Netherlands and the functional diversity of nematode communities was investigated. Using three commonly used functional diversity indices applicable to single traits (Divergence, Evenness and Richness), a unified index of overall body-mass distribution is proposed to better illustrate the application of functional metrics as a descriptor of land use. Effects of land use and soil chemistry on the functional diversity of nematodes were demonstrated and a combination of environmental factors accounts for the low functional value of Scots Pine forest soils in comparison to the high functional value of heathland soils, whereas human factors account for the low functional and chemical values of arable fields. These findings show an unexpected high functional vulnerability of nematodes inhabiting clay-rich soils in comparison to sandy soils and support the notion that soil C:N ratio is a major driver of biodiversity. The higher the C:N ratio, the higher the overall diversity, as soil nematodes cope better with nutrient-poor agroecosystems under less intense fertilization. A trait-based way focusing on size distribution of nematodes is proposed to maintain environmental health by monitoring the overall diversity in soil biota, keeping agriculture and forestry sustainable.

  8. Phylogenetic Analysis of Entomoparasitic Nematodes, Potential Control Agents of Flea Populations in Natural Foci of Plague

    Science.gov (United States)

    Koshel, E. I.; Aleshin, V. V.; Eroshenko, G. A.; Kutyrev, V. V.

    2014-01-01

    Entomoparasitic nematodes are natural control agents for many insect pests, including fleas that transmit Yersinia pestis, a causative agent of plague, in the natural foci of this extremely dangerous zoonosis. We examined the flea samples from the Volga-Ural natural focus of plague for their infestation with nematodes. Among the six flea species feeding on different rodent hosts (Citellus pygmaeus, Microtus socialis, and Allactaga major), the rate of infestation varied from 0 to 21%. The propagation rate of parasitic nematodes in the haemocoel of infected fleas was very high; in some cases, we observed up to 1,000 juveniles per flea specimen. Our study of morphology, life cycle, and rDNA sequences of these parasites revealed that they belong to three distinct species differing in the host specificity. On SSU and LSU rRNA phylogenies, these species representing three genera (Rubzovinema, Psyllotylenchus, and Spilotylenchus), constitute a monophyletic group close to Allantonema and Parasitylenchus, the type genera of the families Allantonematidae and Parasitylenchidae (Nematoda: Tylenchida). We discuss the SSU-ITS1-5.8S-LSU rDNA phylogeny of the Tylenchida with a special emphasis on the suborder Hexatylina. PMID:24804197

  9. Management and control of gastrointestinal nematodes in communal goat farms in Zimbabwe.

    Science.gov (United States)

    Zvinorova, P I; Halimani, T E; Muchadeyi, F C; Katsande, S; Gusha, J; Dzama, K

    2017-02-01

    Goats are an important source of livelihood especially in smallholder communities. Infections with gastrointestinal nematodes (GIN) remain the most prevalent parasitic diseases affecting small ruminants. The study was conducted to assess management, the level of knowledge and control of gastrointestinal nematodes. Surveys were conducted in Chipinge, Shurugwi, Binga, Tsholotsho and Matobo districts, representing the five natural/agro-ecological regions (NR) in Zimbabwe. Data was collected in 135 households using a pre-tested semi-structured questionnaire. Results indicated that goats were ranked the most important livestock species, with high flock sizes in NR IV and V. Partitioning of roles was such that the adult males were involved in decision-making while females and children were involved in day-to-day management of animals. Farmers showed low levels of input use, with natural pasture (98.4%) being the main feed source and indigenous breeds (73.2%) being kept. Farmers ranked food and financial benefits as the main reasons for keeping goats. Gastrointestinal nematodes ranked the highest as the most common disease, with majority of farmers (57%) not controlling or treating animals and 63% of farmers not having knowledge on the spread of GIN. Access to veterinary services, anthelmintic class used and breeds used by the farmers had the highest effects on parasitic infections in households. Farmer education is required for capacitation of farmer in terms of disease prevention and control so as to improve goat production.

  10. Top 10 plant-parasitic nematodes in molecular plant pathology.

    Science.gov (United States)

    Jones, John T; Haegeman, Annelies; Danchin, Etienne G J; Gaur, Hari S; Helder, Johannes; Jones, Michael G K; Kikuchi, Taisei; Manzanilla-López, Rosa; Palomares-Rius, Juan E; Wesemael, Wim M L; Perry, Roland N

    2013-12-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  11. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. © 2016 John Wiley & Sons Ltd.

  12. A survey of entomopathogenic nematode species in continental Portugal.

    Science.gov (United States)

    Valadas, V; Laranjo, M; Mota, M; Oliveira, S

    2014-09-01

    Entomopathogenic nematodes (EPN) are lethal parasites of insects, used as biocontrol agents. The objectives of this work were to survey the presence of EPN in continental Portugal and to characterize the different species. Of the 791 soil samples collected throughout continental Portugal, 53 were positive for EPN. Steinernema feltiae and Heterorhabditis bacteriophora were the two most abundant species. Analysis of EPN geographical distribution revealed an association between nematode species and vegetation type. Heterorhabditis bacteriophora was mostly found in the Alentejo region while S. feltiae was present in land occupied by agriculture with natural vegetation, broadleaved forest, mixed forest and transitional woodland-shrub, agro-forestry areas, complex cultivated patterns and non-irrigated arable land. Although no clear association was found between species and soil type, S. feltiae was typically recovered from cambisols and H. bacteriophora was more abundant in lithosols. Sequencing of the internal transcribed spacer (ITS) region indicated that S. feltiae was the most abundant species, followed by H. bacteriophora. Steinernema intermedium and S. kraussei were each isolated from one site and Steinernema sp. from two sites. Phylogenetic analyses of ITS, D2D3 expansion region of the 28S rRNA gene, as well as mitochondrial cytochrome c oxidase subunit I (COXI) and cytochrome b (cytb) genes, was performed to evaluate the genetic diversity of S. feltiae and H. bacteriophora. No significant genetic diversity was found among H. bacteriophora isolates. However, COXI seems to be the best marker to study genetic diversity of S. feltiae. This survey contributes to the understanding of EPN distribution in Europe.

  13. Entomopathogenic nematode food webs in an ancient, mining pollution gradient in Spain.

    Science.gov (United States)

    Campos-Herrera, Raquel; Rodríguez Martín, José Antonio; Escuer, Miguel; García-González, María Teresa; Duncan, Larry W; Gutiérrez, Carmen

    2016-12-01

    Mining activities pollute the environment with by-products that cause unpredictable impacts in surrounding areas. Cartagena-La Unión mine (Southeastern-Spain) was active for >2500years. Despite its closure in 1991, high concentrations of metals and waste residues remain in this area. A previous study using nematodes suggested that high lead content diminished soil biodiversity. However, the effects of mine pollution on specific ecosystem services remain unknown. Entomopathogenic nematodes (EPN) play a major role in the biocontrol of insect pests. Because EPNs are widespread throughout the world, we speculated that EPNs would be present in the mined areas, but at increased incidence with distance from the pollution focus. We predicted that the natural enemies of nematodes would follow a similar spatial pattern. We used qPCR techniques to measure abundance of five EPN species, five nematophagous fungi species, two bacterial ectoparasites of EPNs and one group of free-living nematodes that compete for the insect-cadaver. The study comprised 193 soil samples taken from mining sites, natural areas and agricultural fields. The highest concentrations of iron and zinc were detected in the mined area as was previously described for lead, cadmium and nickel. Molecular tools detected very low numbers of EPNs in samples found to be negative by insect-baiting, demonstrating the importance of the approach. EPNs were detected at low numbers in 13% of the localities, without relationship to heavy-metal concentrations. Only Acrobeloides-group nematodes were inversely related to the pollution gradient. Factors associated with agricultural areas explained 98.35% of the biotic variability, including EPN association with agricultural areas. Our study suggests that EPNs have adapted to polluted habitats that might support arthropod hosts. By contrast, the relationship between abundance of Acrobeloides-group and heavy-metal levels, revealed these taxa as especially well suited bio

  14. Role of human-mediated dispersal in the spread of the pinewood nematode in China.

    Directory of Open Access Journals (Sweden)

    Christelle Robinet

    Full Text Available Intensification of world trade is responsible for an increase in the number of alien species introductions. Human-mediated dispersal promotes not only introductions but also expansion of the species distribution via long-distance dispersal. Thus, understanding the role of anthropogenic pathways in the spread of invading species has become one of the most important challenges nowadays.We analysed the invasion pattern of the pinewood nematode in China based on invasion data from 1982 to 2005 and monitoring data on 7 locations over 15 years. Short distance spread mediated by long-horned beetles was estimated at 7.5 km per year. Infested sites located further away represented more than 90% of observations and the mean long distance spread was estimated at 111-339 km. Railways, river ports, and lakes had significant effects on the spread pattern. Human population density levels explained 87% of the variation in the invasion probability (P<0.05. Since 2001, the number of new records of the nematode was multiplied by a factor of 5 and the spread distance by a factor of 2. We combined a diffusion model to describe the short distance spread with a stochastic, individual based model to describe the long distance jumps. This combined model generated an error of only 13% when used to predict the presence of the nematode. Under two climate scenarios (stable climate or moderate warming, projections of the invasion probability suggest that this pest could expand its distribution 40-55% by 2025.This study provides evidence that human-induced dispersal plays a fundamental role in the spread of the pinewood nematode, and appropriate control measures should be taken to stop or slow its expansion. This model can be applied to Europe, where the nematode had been introduced later, and is currently expanding its distribution. Similar models could also be derived for other species that could be accidentally transported by humans.

  15. Monoxenic liquid culture with Escherichia coli of the free-living nematode Panagrolaimus sp. (strain NFS 24-5), a potential live food candidate for marine fish and shrimp larvae.

    Science.gov (United States)

    Ayub, Farhana; Seychelles, Laurent; Strauch, Olaf; Wittke, Martina; Ehlers, Ralf-Udo

    2013-09-01

    The free-living, bacterial-feeding nematode Panagrolaimus sp. (strain NFS 24-5) has potential for use as live food for marine shrimp and fish larvae. Mass production in liquid culture is a prerequisite for its commercial exploitation. Panagrolaimus sp. was propagated in monoxenic liquid culture on Escherichia coli and parameters, like nematode density, population dynamics and biomass were recorded and compared with life history table data. A mean maximum nematode density of 174,278 mL(-1) and a maximum of 251,000 mL(-1) were recorded on day 17 after inoculation. Highest average biomass was 40 g L(-1) at day 13. The comparison with life history table data indicated that the hypothetical potential of liquid culture is much higher than documented during this investigation. Nematode development is delayed in liquid culture and egg production per female is more than five times lower than reported from life history trait analysis. The latter assessed a nematode generation time of 7.1 days, whereas the process time at maximum nematode density in liquid culture was 16 days indicating that a reduction of the process time can be achieved by further investigating the influence of nematode inoculum density on population development. The results challenge future research to reduce process time and variability and improve population dynamics also during scale-up of the liquid culture process.

  16. Effects of genetic mutations and chemical exposures on Caenorhabditis elegans feeding: evaluation of a novel, high-throughput screening assay.

    Directory of Open Access Journals (Sweden)

    Windy A Boyd

    2007-12-01

    Full Text Available Government agencies have defined a need to reduce, refine or replace current mammalian-based bioassays with testing methods that use alternative species. Invertebrate species, such as Caenorhabditis elegans, provide an attractive option because of their short life cycles, inexpensive maintenance, and high degree of evolutionary conservation with higher eukaryotes. The C. elegans pharynx is a favorable model for studying neuromuscular function, and the effects of chemicals on neuromuscular activity, i.e., feeding. Current feeding methodologies, however, are labor intensive and only semi-quantitative.Here a high-throughput assay is described that uses flow cytometry to measure C. elegans feeding by determining the size and intestinal fluorescence of hundreds of nematodes after exposure to fluorescent-labeled microspheres. This assay was validated by quantifying fluorescence in feeding-defective C. elegans (eat mutants, and by exposing wild-type nematodes to the neuroactive compounds, serotonin and arecoline. The eat mutations previously determined to cause slow pumping rates exhibited the lowest feeding levels with our assay. Concentration-dependent increases in feeding levels after serotonin exposures were dependent on food availability, while feeding levels decreased in arecoline-exposed nematodes regardless of the presence of food. The effects of the environmental contaminants, cadmium chloride and chlorpyrifos, on wild-type C. elegans feeding were then used to demonstrate an application of the feeding assay. Cadmium exposures above 200 microM led to a sharp drop in feeding levels. Feeding of chlorpyrifos-exposed nematodes decreased in a concentration-dependent fashion with an EC(50 of 2 microM.The C. elegans fluorescence microsphere feeding assay is a rapid, reliable method for the assessment of neurotoxic effects of pharmaceutical drugs, industrial chemicals or environmental agents. This assay may also be applicable to large scale genetic or

  17. Effect of heavy metals on soil nematode communities in the vicinity of a metallurgical plant in North Slovakia

    Directory of Open Access Journals (Sweden)

    Šalamún P.

    2015-09-01

    Full Text Available The effect of industrial pollution from chromium ferroalloys production on soil free-living nematode assemblages, c-p groups and generic composition was investigated along 7-km transect. From trace elements (Cr, Cu, Ni and Pb, only chromium exceeded the thresholds for uncontaminated soils (10 mg.kg-1 near the pollution source. In contrast mobilizable fraction of Cr has increased with the distance from the pollution source and was found to be positively correlated with Cox, soil pH, and moisture. Generic richness (nematode diversity was also higher at remote sites. The low contamination has no significant impact on the nematode communities as illustrated by the c-p groups composition and balanced community structure. Widely applied ecological indices SI and EI also proved maturing ecosystem without any significant stress responses

  18. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes.

    Science.gov (United States)

    Shah, Syed Jehangir; Anjam, Muhammad Shahzad; Mendy, Badou; Anwer, Muhammad Arslan; Habash, Samer S; Lozano-Torres, Jose L; Grundler, Florian M W; Siddique, Shahid

    2017-12-16

    When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Implications of nutrition for the ability of ruminants to withstand gastrointestinal nematode infections.

    Science.gov (United States)

    van Houtert, M F; Sykes, A R

    1996-11-01

    Resistance and resilience of the ruminant host to gastrointestinal (GI) parasitic nematode infections are influenced by many factors, including nutrition. This review examines the effects of host nutrition on the ability of ruminants to withstand GI nematode infections. Firstly the effects of infection on host metabolism are summarised briefly. An important factor in the pathogenesis is a reduction in feed intake by the host. Gut nematodes also increase endogenous protein losses, which result in net loss of amino acids to the parasitised host, though energy and mineral metabolism are also perturbed. The indications are that the major nutritional change is in protein metabolism. Resilience (the ability of an animal to withstand the effects of infection) can be enhanced markedly by increasing metabolisable protein supply and to a lesser extent metabolisable energy supply. Resistance to GI nematodes (ability of host to prevent establishment and/or development of infection) is also influenced by diet, particularly metabolisable protein supply. While there do not appear to be any effects of host nutrition on establishment of infective larvae, the rate of rejection of adult worms can be enhanced by improved nutrition. The exact nutritional requirements or the mechanisms involved are not known. It appears that the effects of improving nutritional status on host resilience are more clearly defined than effects on host resistance. The implication of changes in host resistance with nutritional state for host productivity need to be better described. Understanding the role of nutrition in improving both resistance and resilience of the host to GI parasites will be important if producers are to make better use of host acquired immunity and reduce dependence on pesticides for prophylaxis.

  20. Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats.

    Science.gov (United States)

    McGill, Lorraine M; Shannon, Adam J; Pisani, Davide; Félix, Marie-Anne; Ramløv, Hans; Dix, Ilona; Wharton, David A; Burnell, Ann M

    2015-01-01

    Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent "ecological fitting

  1. Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats.

    Directory of Open Access Journals (Sweden)

    Lorraine M McGill

    Full Text Available Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. Panagrolaimus davidi, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that P. davidi belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that P. superbus, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the davidi and the superbus clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of P. davidi do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by P. davidi and of Surtsey by P. superbus may be examples of recent

  2. Small RNAs and extracellular vesicles in filarial nematodes: From nematode development to diagnostics.

    Science.gov (United States)

    Quintana, J F; Babayan, S A; Buck, A H

    2017-02-01

    Parasitic nematodes have evolved sophisticated mechanisms to communicate with their hosts in order to survive and successfully establish an infection. The transfer of RNA within extracellular vesicles (EVs) has recently been described as a mechanism that could contribute to this communication in filarial nematodes. It has been shown that these EVs are loaded with several types of RNAs, including microRNAs, leading to the hypothesis that parasites could actively use these molecules to manipulate host gene expression and to the exciting prospect that these pathways could result in new diagnostic and therapeutic strategies. Here, we review the literature on the diverse RNAi pathways that operate in nematodes and more specifically our current knowledge of extracellular RNA (exRNA) and EVs derived from filarial nematodes in vitro and within their hosts. We further detail some of the issues and questions related to the capacity of RNA-mediated communication to function in parasite-host interactions and the ability of exRNA to enable us to distinguish and detect different nematode parasites in their hosts. © 2016 The Authors. Parasite Immunology published by John Wiley & Sons Ltd.

  3. Caenorhabditis elegans: nature and nurture gift to nematode parasitologists.

    Science.gov (United States)

    Salinas, Gustavo; Risi, Gastón

    2017-12-06

    The free-living nematode Caenorhabditis elegans is the simplest animal model organism to work with. Substantial knowledge and tools have accumulated over 50 years of C. elegans research. The use of C. elegans relating to parasitic nematodes from a basic biology standpoint or an applied perspective has increased in recent years. The wealth of information gained on the model organism, the use of the powerful approaches and technologies that have advanced C. elegans research to parasitic nematodes and the enormous success of the omics fields have contributed to bridge the divide between C. elegans and parasite nematode researchers. We review key fields, such as genomics, drug discovery and genetics, where C. elegans and nematode parasite research have convened. We advocate the use of C. elegans as a model to study helminth metabolism, a neglected area ready to advance. How emerging technologies being used in C. elegans can pave the way for parasitic nematode research is discussed.

  4. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    Science.gov (United States)

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Efficacy of moxidectin against nematodes in naturally infected sheep.

    Science.gov (United States)

    Coles, G C; Giordano-Fenton, D J; Tritschler, J P

    1994-07-09

    The activity of an oral drench of moxidectin against nematodes in naturally infected sheep known to harbour Nematodirus species was evaluated at doses of 0.2 and 0.4 mg/kg bodyweight. Moxidectin was 100 per cent effective against nematodes in the abomasum and 100 per cent effective against nematodes in the small intestine except for adult Trichostrongylus species, against which its efficacy was 94 per cent. It was 100 per cent effective against nematodes in the large intestine except for Trichuris ovis, against which its efficacy was 83 per cent.

  6. identification of banana varieties with resistance to nematodes in ...

    African Journals Online (AJOL)

    jen

    Institut des Sciences Agronomiques du Rwanda (ISAR), ISAR-Kibungo, Ngoma district, Rwanda ... for sustainable nematode management. Previous studies ..... Technology Development and Transfer project. ... INIBAP, Montpellier, France.

  7. Association of nematodes and dogwood cankers.

    Science.gov (United States)

    Self, L H; Bernard, E C

    1994-03-01

    Dogwood canker is a serious production problem of unknown etiology. From May 1985 through April 1989, cankers from 290 flowering dogwood trees in 15 separate nurseries were sampled for nematodes. Seventy-three percent (213) of the cankers contained nematodes. Panagrolaimus rigidus (Schneider) Thorne (115/290) and Aphelenchoides spp. (91/290) were the most frequently collected taxa. Panagrolaimus rigidus was reared on 2% water agar with unidentified bacteria as the food source. Aphelenchoides spp. were reared in antibiotic-amended agar culture with the fungus Glomerella cingulata (Stoneman) Spauld. &Schrenk as a food source. Repeated attempts to culture Aphelenchoides spp. on dogwood callus tissue were unsuccessful. Artificially created stem wounds inoculated with combinations of Aphelenchoides spp. and P. rigidus callused completely in 60 days with no indication of canker development. Very low numbers of nematodes were recovered from inoculated trees, but P. rigidus and one Aphelenchoides sp. were efficient dispersers and occurred in treatments other than those in which they were inoculated.

  8. Prevalence of intestinal nematodes in alcoholic patients

    Directory of Open Access Journals (Sweden)

    Zago-Gomes Maria P.

    2002-01-01

    Full Text Available We report the results of a retrospective study on the frequency of intestinal nematodes among 198 alcoholic and 440 nonalcoholic patients at the University Hospital Cassiano Antonio Moraes in Vitória, ES, Brazil. The control sample included 194 nonalcoholic patients matched according to age, sex and neighborhood and a random sample of 296 adults admitted at the same hospital. Stool examination by sedimentation method (three samples was performed in all patients. There was a significantly higher frequency of intestinal nematodes in alcoholics than in controls (35.3% and 19.2%, respectively, due to a higher frequency of Strongyloides stercoralis (21.7% and 4.1%, respectively. Disregarding this parasite, the frequency of the other nematodes was similar in both groups. The higher frequency of S. stercoralis infection in alcoholics could be explained by immune modulation and/or by some alteration in corticosteroid metabolism induced by chronic ethanol ingestion. Corticosteroid metabolites would mimic the worm ecdisteroids, that would in turn increase the fecundity of females in duodenum and survival of larvae. Consequently, the higher frequency of Strongyloides larvae in stool of alcoholics does not necessarily reflect an increased frequency of infection rate, but only an increased chance to present a positive stool examination using sedimentation methods.

  9. Life History Responses and Gene Expression Profiles of the Nematode Pristionchus pacificus Cultured on Cryptococcus Yeasts.

    Directory of Open Access Journals (Sweden)

    Gaurav V Sanghvi

    Full Text Available Nematodes, the earth's most abundant metazoa are found in all ecosystems. In order to survive in diverse environments, they have evolved distinct feeding strategies and they can use different food sources. While some nematodes are specialists, including parasites of plants and animals, others such as Pristionchus pacificus are omnivorous feeders, which can live on a diet of bacteria, protozoans, fungi or yeast. In the wild, P. pacificus is often found in a necromenic association with beetles and is known to be able to feed on a variety of microbes as well as on nematode prey. However, in laboratory studies Escherichia coli OP50 has been used as standard food source, similar to investigations in Caenorhabditis elegans and it is unclear to what extent this biases the obtained results and how relevant findings are in real nature. To gain first insight into the variation in traits induced by a non-bacterial food source, we study Pristionchus-fungi interactions under laboratory conditions. After screening different yeast strains, we were able to maintain P. pacificus for at least 50-60 generations on Cryptococcus albidus and Cryptococcus curvatus. We describe life history traits of P. pacificus on both yeast strains, including developmental timing, survival and brood size. Despite a slight developmental delay and problems to digest yeast cells, which are both reflected at a transcriptomic level, all analyses support the potential of Cryptococcus strains as food source for P. pacificus. In summary, our work establishes two Cryptococcus strains as alternative food source for P. pacificus and shows change in various developmental, physiological and morphological traits, including the transcriptomic profiles.

  10. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  11. Water-quality data from ground- and surface-water sites near concentrated animal feeding operations (CAFOs) and non-CAFOs in the Shenandoah Valley and eastern shore of Virginia, January-February, 2004

    Science.gov (United States)

    Rice, Karen C.; Monti, Michele M.; Ettinger, Matthew R.

    2005-01-01

    Concentrated animal feeding operations (CAFOs) result from the consolidation of small farms with animals into larger operations, leading to a higher density of animals per unit of land on CAFOs than on small farms. The density of animals and subsequent concentration of animal wastes potentially can cause contamination of nearby ground and surface waters. This report summarizes water-quality data collected from agricultural sites in the Shenandoah Valley and Eastern Shore of Virginia. Five sites, three non-CAFO and two dairy-operation CAFO sites, were sampled in the Shenandoah Valley. Four sites, one non-CAFO and three poultry-operation CAFO sites were sampled on the Eastern Shore. All samples were collected during January and February 2004. Water samples were analyzed for the following parameters and constituents: temperature, specific conductance, pH, and dissolved oxygen; concentrations of the indicator organisms Escherichia coli (E. coli) and enterococci; bacterial isolates of E. coli, enterococci, Salmonella spp., and Campylobacter spp.; sensitivity to antibiotics of E. coli, enterococci, and Salmonella spp.; arsenic, cadmium, chromium3+, copper, nickel, and mercury; hardness, biological oxygen demand, nitrate, nitrite, ammonia, ortho-phosphate, total Kjeldahl nitrogen, chemical oxygen demand, total organic carbon, and dissolved organic carbon; and 45 dissolved organic compounds, which included a suite of antibiotic compounds.Data are presented in tables 5-21 and results of analyses of replicate samples are presented in tables 22-28. A summary of the data in tables 5-8 and 18-21 is included in the report.

  12. Changes in abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific

    Science.gov (United States)

    Miljutin, Dmitry; Miljutina, Maria; Messié, Monique

    2015-12-01

    Deep-sea fields of polymetallic nodules in the Clarion-Clipperton Zone (CCFZ, tropical NE Pacific) are currently being investigated to assess their potential for commercial mining. During such mining, benthic communities will be inevitably disturbed or destroyed. Therefore, assessments of their standing stock and composition may be helpful for the future evaluation of possible impacts of commercial nodule exploitation. Analysis of nematode communities (at genus level) inhabiting the French license area of the CCFZ were studied based on data from the cruises NODINAUT (2004) and BIONOD (2012). The total nematode density was ca. 1.5-fold higher in 2012 as compared with 2004. This reflected a 2-2.5 times higher density of non-selective deposit-feeders (i.e. possessing a small buccal cavity without armature) in 2012 compared with 2004, whereas no significant differences between sampling periods were observed in the density of the other feeding groups. Consequently, whilst the list of the most abundant genera was identical, their relative abundances changed significantly. The relative abundance of the genus Thalassomonhystera was two times greater in 2012 than in 2004, whereas the relative abundances of the genera Acantholaimus and Theristus were significantly lower in 2012 (10% and 4%, respectively) than in 2004 (28% and 9%). Nematode diversity (including values of diversity indices and total number of recorded genera) was significantly lower in 2012 in comparison with 2004. Although our data do not take into account seasonal and shorter temporal scales of variability in nematode assemblages, we report here that a certain fraction of variations observed between the two sampling periods could be associated with differences in primary production. Future studies should aim to better characterise temporal variability in nematode communities of the CCFZ at seasonal and interannual scales.

  13. Successful application of entomopathogenic nematodes for the biological control of western corn rootworm larvae in Europe – a mini review

    Directory of Open Access Journals (Sweden)

    Toepfer, Stefan

    2014-02-01

    Full Text Available 10 years of joint efforts in research and development have led to a nematode-based biological control solution for one of the most destructive maize pests, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae. Commercially mass-produced Heterorhabditis species of beneficial entomopathogenic nematodes are ready to use. They can be applied into the soil during sowing of maize for controlling the subsequently hatching larvae of D. virgifera virgifera thus preventing root feeding and damage to maize. Policy bodies, decision makers and farmers are advised to consider biological control as one of the alternatives to synthetic pesticides in maize production, and according to the EC Directive on the sustainable use of pesticides and implementation of integrated pest management.

  14. Prevalence of common gastrointestinal nematode parasites in scavenging pigs of different ages and sexes in Eastern Centre province, Burkina Faso

    Directory of Open Access Journals (Sweden)

    H.H. Tamboura

    2006-09-01

    Full Text Available The range and infestation intensities of gastrointestinal parasitic nematode species depend on the type of swine production system. The present study focused mainly on nematodes of veterinary importance in scavenging pigs in Burkina Faso, and aimed at determining the prevalence of gastro-intestinal nematode parasites by means of faecal egg per gram (EPG counts. Between November 2001 and October 2002, faecal samples from 383 pigs of different sexes and ages ( 12 months were collected from the rectum and examined for gastrointestinal nematodes parasites using the Mc Master method. Of the 383 pigs examined, 91 % were infected by one or more para sites. Ascaris suum (40 %; 100-1 400 EPG was the most prevalent parasite followed by Strongyloides ransomi (21 %; 100-4 200 EPG, Oesophagostomum spp. (18 %; 100-1 000 EPG, Hyostrongylus rubidus (11 %; 100-1 800 EPG, Globocephalus spp. 10 %; 100-400 EPG and Trichuris suis (1 %; 100-200 EPG. The prevalence was significantly higher in female pigs (n = 239 than in males. In addition, females excreted significantly (P < 0.05 more eggs in their faeces than males, except in the case of Globocephalus spp. The age of the animal had no effect on the prevalence of A. suum whereas there were significant differences in age categories concerning S. ransomi, H. rubidus, Oesophagostumum spp. and Globocephalus spp. Unexpectedly, the high prevalence of these common parasites was not accompanied by elevated EPG values, which suggests the existence of moderate infestations. The present work indicates that the common nematode infestations in pigs do not necessarily need a systematic herd anthelmintic treatment, as only a small number of worms is required to induce immunity. A further study is needed to formulate appropriate and cost-effective strategies for the control of gastro-intestinal nematode parasites in pigs in Burkina Faso.

  15. Digestive beta-glucosidases from the wood-feeding higher termite, Nasutitermes takasagoensis: intestinal distribution, molecular characterization, and alteration in sites of expression.

    Science.gov (United States)

    Tokuda, Gaku; Miyagi, Mio; Makiya, Hiromi; Watanabe, Hirofumi; Arakawa, Gaku

    2009-12-01

    beta-Glucosidase [EC 3.2.1.21] hydrolyzes cellobiose or cello-oligosaccharides into glucose during cellulose digestion in termites. SDS-PAGE and zymogram analyses of the digestive system in the higher termite Nasutitermes takasagoensis revealed that beta-glucosidase activity is localized in the salivary glands and midgut as dimeric glycoproteins. Degenerate PCR using primers based on the N-terminal amino acid sequences of the salivary beta-glucosidase resulted in cDNA fragments of 1.7 kb, encoding 489 amino acids with a sequence similar to glycosyl hydrolase family 1. Moreover, these primers amplified cDNA fragments from the midgut, and the deduced amino acid sequences are 87-91% identical to those of the salivary beta-glucosidases. Successful expression of the cDNAs in Escherichia coli implies that these sequences also encode functional beta-glucosidases. These results indicate that beta-glucosidases that primarily contribute to the digestive process of N. takasagoensis are produced in the midgut. Reverse transcription-PCR analysis indicated the site-specific expression of beta-glucosidase mRNAs in the salivary glands and midgut. These results suggest that termites have developed the ability to produce beta-glucosidases in the midgut, as is the case for endo-beta-1,4-glucanase, in which the site of expression has shifted from the salivary glands of lower termites to the midgut of higher termites. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. A Survey of Nematode Infection in Oreochromis niloticus (L ...

    African Journals Online (AJOL)

    The incidence and intensity of nematode infection was investigated in Nile tilapia Oreochromis niloticus from Lake Kyoga, Uganda and 11% of the 406 fish examined were parasitized by nematodes of the genus Contracaecum. The prevalence of these parasites was greatest in the smallest and largest size classes, but this ...

  17. Free-living Marine Nematodes. Part 1 British Enoplids

    African Journals Online (AJOL)

    This is the first of three volumes dealing with the most abundant group of animals on the sea-bed and sea-shore, the free-living marine nematodes, and is devoted to those marine nematodes belonging to the subclass Enoplia. Separate volumes will deal with the orders Chromadorida and. Monhysterida. To most marine ...

  18. Nematode effector proteins: an emerging paradigm of parasitism

    Science.gov (United States)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  19. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis

    NARCIS (Netherlands)

    Jones, J.T.; Reavy, B.; Smant, G.; Prior, A.E.

    2004-01-01

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for

  20. Mapping genetic factors controlling potato - cyst nematode interactions

    NARCIS (Netherlands)

    Rouppe van der Voort, J.N.A.M.

    1998-01-01

    The thesis describes strategies for genetic mapping of the genomes of the potato cyst nematode and potato. Mapping in cyst nematodes was achieved by AFLP genotyping of single cysts and subsequent segregation analysis in a family of sibling populations. The genetic map of Globodera

  1. Molecular and genetic analyses of potato cyst nematode resistance loci

    NARCIS (Netherlands)

    Bakker, E.H.

    2003-01-01

    This thesis describes the genomic localisation and organisation of loci that harbour resistance to the potato cyst nematode species Globodera pallida and G. rostochiensis . Resistance to the potato cyst nematodes G. pallida and G. rostochiensis is an important aspect in potato breeding. To gain

  2. Nematode community structure as a bioindicator in environmental monitoring

    NARCIS (Netherlands)

    Bongers, T.; Ferris, H.

    1999-01-01

    Four of every five multicellular animals on the planet are nematodes. They occupy any niche that provides an available source of organic carbon in marine, freshwater and terrestrial environments. Nematodes vary in sensitivity to pollutants and environmental disturbance. Recent development of indices

  3. Human Intraocular Filariasis Caused by Pelecitus sp. Nematode, Brazil

    Science.gov (United States)

    Bain, Odile; Diniz, Daniel G.; Nascimento dos Santos, Jeannie; Pinto de Oliveira, Norimar; Frota de Almeida, Izabela Negrão; Frota de Almeida, Rafael Negrão; Frota de Almeida, Luciana Negrão; Dantas-Torres, Filipe; Sobrinho, Edmundo Frota de Almeida

    2011-01-01

    A male nematode was extracted from iris fibers of a man from the Brazilian Amazon region. This nematode belonged to the genus Pelecitus but was distinct from the 16 known species in this genus. Similarities with Pelecitus spp. from neotropical birds suggested an avian origin for this species. PMID:21529397

  4. 75 FR 11111 - Pale Cyst Nematode; Update of Quarantined Areas

    Science.gov (United States)

    2010-03-10

    ...] Pale Cyst Nematode; Update of Quarantined Areas AGENCY: Animal and Plant Health Inspection Service...: Background The pale cyst nematode (PCN, Globodera pallida) is a major pest of potato crops in cool... made changes to the area in the State of Idaho that is quarantined to prevent the spread of pale cyst...

  5. Book review: Systematics of Cyst Nematodes (Nematoda: Heteroderinae)

    Science.gov (United States)

    The cyst nematodes are an important group of plant-parasitic nematodes that cause billions of dollars in economic damage to crops every year. This article reviews a recently published, two-volume monograph that describes the morphological and molecular characteristics of these agriculturally signif...

  6. Transgenic Strategies for Enhancement of Nematode Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-05-01

    Full Text Available Plant parasitic nematodes (PPNs are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  7. 75 FR 54592 - Pale Cyst Nematode; Update of Quarantined Areas

    Science.gov (United States)

    2010-09-08

    ...] Pale Cyst Nematode; Update of Quarantined Areas AGENCY: Animal and Plant Health Inspection Service... made changes to the area in the State of Idaho that is quarantined to prevent the spread of pale cyst nematode. The description of the quarantined area was updated on April 26, 2010. As a result of these...

  8. Laboratory experiments on the infaunal activity of intertidal nematodes

    NARCIS (Netherlands)

    Steyaert, M.; Moodley, L.; Vanaverbeke, J.; Vandewiele, S.L.; Vincx, M.

    2005-01-01

    The impact of oxygen on the vertical distribution of an intertidal nematode community was investigated in a manipulation experiment with sediments collected from the Oosterschelde (The Netherlands). The vertical distribution of nematodes was examined in response to sediment inversion in perspex

  9. Native nematodes as new bio-insecticides for cranberries

    Science.gov (United States)

    In the summer of 2015, an effort was made in central Wisconsin to find an entomopathogenic nematode capable controlling Wisconsin’s cranberry pests. Using a standard baiting method, a nematode of the Oscheius genus was collected from the mossy, sandy, peat-filled soils of a wild cranberry marsh. Thi...

  10. The cyst nematodes Heterodera and Globodera species in Egypt

    Science.gov (United States)

    Information concerning the occurrence and distribution of the cyst nematodes (Heterodera spp. and Globodera spp.) in Egypt is important to assess their potential to cause economic damage to many crop plants. A nematode survey was conducted in Alexandria, El Behera and Sohag governorates during 2012-...

  11. Screening of in vitro derived mutants of banana against nematodes ...

    African Journals Online (AJOL)

    The rest of the mutants namely Ro Im V4 6-1-2 and Si Im V4 6-2-5 were found to be susceptible to nematodes. The resistant and moderately resistant mutants of banana could be further used in breeding programmes as well as being recognized as potential cultivars of commerce. Key words: Banana, nematode, resistance, ...

  12. Statistical analysis of nematode counts from interlaboratory proficiency tests

    NARCIS (Netherlands)

    Berg, van den W.; Hartsema, O.; Nijs, Den J.M.F.

    2014-01-01

    A series of proficiency tests on potato cyst nematode (PCN; n=29) and free-living stages of Meloidogyne and Pratylenchus (n=23) were investigated to determine the accuracy and precision of the nematode counts and to gain insights into possible trends and potential improvements. In each test, each

  13. Nematode parasitism in adult dairy cows in Belgium

    NARCIS (Netherlands)

    Agneessens, J.; Claerebout, E.; Dorny, P.; Borgsteede, F.H.M.; Vercruysse, J.

    2000-01-01

    Over a period of 1 year, from November 1997 to October 1998, the abomasa, blood and faecal samples of 121 dairy cows in Belgium were collected and examined for nematode infections. Nematodes were present in the abomasa of 110 animals. Ostertagia was found in all 110, Trichostrongylus was seen in 65

  14. Effect of Recreational Fish Feeding on Reef Fish Community ...

    African Journals Online (AJOL)

    ... that the reaction to bread at feeding sites was quicker than at control sites, which indicates that some species learn to feed on this novel source of food. Keywords:human-animal interactions, reef fish, recreational fish feeding, tourism impacts, MPAs, coral reefs, Kenya West Indian Ocean Journal of Marine Science Vol.

  15. Analysis of gene expression profiles for cell wall modifying proteins and ACC synthases in soybean cyst nematode colonized roots, adventitious rooting hypocotyls, root tips, flooded roots, and IBA and ACC treatment roots

    Science.gov (United States)

    We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...

  16. Entomogenous nematode Neoaplectana carpocapsae: radiation and mammalian safety

    International Nuclear Information System (INIS)

    Gaugler, R.R.

    1978-01-01

    Infective-stage juveniles of Neoaplacetana carpocapsae were acutely sensitive to short uv radiation (254 nm) and natural sunlight. High nematode mortality, although delayed, accompanied uv exposure. Irradiation rapidly reduced nematode pathogenicity, so that nematodes exposed for 7 min were unable to cause lethal infections in Galleria mallonella larvae. Moreover, the median survival time of Galleria larvae increased progressively as nematode exposure to uv was lengthened. Inhibition of nematode reproduction and development was noted at exposure periods more than 2.45 and 5 min, respectively. However, irradiation did not appear to affect juvenile motility. Exposure to direct sunlight also reduced pathogenicity, in a range from 6.9 to 94.9% at 30 and 60 min of exposure, respectively. Long uv (366 nm) did not affect juveniles at the exposures tested

  17. Multifaceted effects of host plants on entomopathogenic nematodes.

    Science.gov (United States)

    Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn

    2016-03-01

    The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs. Copyright © 2016

  18. Development of the system nematode, Ditylenchus Dipsaci (Kuehn) Filipjev, and the potato tuber nematode, D. Destructor thore, after gamma irradiation

    International Nuclear Information System (INIS)

    Ignatowicz, S.; Karnkowski, W.

    1996-01-01

    Juvenile and adult nematodes emerged from onion and garlic samples on the 3 rd week after irradiation with doses up to 0.5 kGy and from potato treated with doses up to 2.0 kGy. However, irradiation of onion infected with Ditylenchus dipsaci caused the inhibition of the development and growth of juvenile nematodes to mature forms. Doses of gamma radiation ranging from 0.1 to 0.5 kGy had only a slight effect, if any, on the development and growth of D. dipsaci nematodes infecting garlic, but they increased juvenile mortality. Gamma radiation at doses up to 2.0 kGy induced increased mortality of nematode juveniles of the potato tuber nematode, D. destructor but less so inhibited their development to mature forms. Nematodes were found to be resistant to irradiation treatment. Therefore the use of gamma irradiation for nematode disinfestation of agricultural products seems to be impractical, if the aim of the treatment is to kill these pests within a few weeks. The level of radiation required to kill nematodes in infected plants would damage plant tissues so that the further storage of vegetables will be impossible. (author). 22 refs, 3 figs, 2 tabs

  19. Molecular Diagnostics and Variability of Longidorid Nematodes

    Directory of Open Access Journals (Sweden)

    Francesca De Luca

    2004-08-01

    Full Text Available PCR-RFLP and sequencing approaches of ribosomal DNA are being used to study taxonomy, molecular identification and phylogeny of plant parasitic nematodes. In this paper, we discuss on the usefulness of ITS PCRRFLP analysis to differentiate among longidorid species. In addition, we examined how well ITS PCR-RFLP differentiated between longidorid species, and how well sequencing of two different ribosomal regions, the ITS containing region and D1-D2 domains of the 26S rDNA, were able to infer phylogenetic relationships among those same species. These methods and their advantages in identifying longidorids and establishing their phylogenetic relationships are examined and discussed.

  20. Entomopathogenic nematodes in the European biocontrol market.

    Science.gov (United States)

    Ehlers, R U

    2003-01-01

    In Europe total revenues in the biocontrol market have reached approximately 200 million Euros. The sector with the highest turn-over is the market for beneficial invertebrates with a 55% share, followed by microbial agents with approximately 25%. Annual growth rates of up to 20% have been estimated. Besides microbial plant protection products that are currently in the process of re-registration, several microbial products have been registered or are in the process of registration, following the EU directive 91/414. Entomopathogenic nematodes (EPN) are exceptionally safe biocontrol agents. Until today, they are exempted from registration in most European countries, the reason why SMEs were able to offer economically reasonable nematode-based products. The development of technology for mass production in liquid media significantly reduced the product costs and accelerated the introduction of nematode products in tree nurseries, ornamentals, strawberries, mushrooms, citrus and turf. Progress in storage and formulation technology has resulted in high quality products which are more resistant to environmental extremes occurring during transportation to the user. The cooperation between science, industry and extension within the EU COST Action 819 has supported the development of quality control methods. Today four companies produce EPN in liquid culture, offering 8 different nematode species. Problems with soil insects are increasing. Grubs, like Melolontha melolontha and other scarabaeidae cause damage in orchards and turf. Since the introduction of the Western Corn Rootworm Diabrotica virgifera into Serbia in 1992, this pests as spread all over the Balkan Region and has reached Italy, France and Austria. These soil insect pests are potential targets for EPN. The development of insecticide resistance has opened another sector for EPN. Novel adjuvants used to improve formulation of EPN have enabled the foliar application against Western Flower Thrips and Plutella

  1. Mining the secretome of root-knot nematodes for cell wall modifying proteins

    NARCIS (Netherlands)

    Roze, E.H.A.

    2008-01-01

    The products of parasitism genes in nematodes must be secreted to reach their targets at the nematode-plant interface. These nematode secretory proteins are therefore recognised to play an important role in the nematode-plant interaction and as a result have been subject of intense study for years.

  2. [Nematodes (Nematoda) from bats (Chiroptera) of the Samarskaya Luka Peninsula (Russia)].

    Science.gov (United States)

    Kirillova, N Iu; Kirillov, A A; Vekhnik, V P

    2008-01-01

    Fauna of parasitic nematodes from Chiroptera of the Samarskaya Luka has been studied. Seven nematode species has been recorded. Numbers of host specimens, indices of extensiveness and intensiveness of the invasion, parasite abundance, and brief characteristics of the nematode species are given. Some nematode species were for the first time recorded in bats of Russia.

  3. First report of the spiral nematode Helicotylenchus microlobus infecting soybean in North Dakota

    Science.gov (United States)

    Spiral nematodes (Helicotylenchus spp.) are common plant-parasitic nematodes in fields of many crops. In June 2015, two soil samples were collected from a soybean field in Richland County, ND. Nematodes were extracted from soil using the sugar centrifugal flotation method. Plant-parasitic nematodes ...

  4. Role of human-mediated dispersal in the spread of the pinewood nematode in China.

    Science.gov (United States)

    Robinet, Christelle; Roques, Alain; Pan, Hongyang; Fang, Guofei; Ye, Jianren; Zhang, Yanzhuo; Sun, Jianghua

    2009-01-01

    Intensification of world trade is responsible for an increase in the number of alien species introductions. Human-mediated dispersal promotes not only introductions but also expansion of the species distribution via long-distance dispersal. Thus, understanding the role of anthropogenic pathways in the spread of invading species has become one of the most important challenges nowadays. We analysed the invasion pattern of the pinewood nematode in China based on invasion data from 1982 to 2005 and monitoring data on 7 locations over 15 years. Short distance spread mediated by long-horned beetles was estimated at 7.5 km per year. Infested sites located further away represented more than 90% of observations and the mean long distance spread was estimated at 111-339 km. Railways, river ports, and lakes had significant effects on the spread pattern. Human population density levels explained 87% of the variation in the invasion probability (Pclimate scenarios (stable climate or moderate warming), projections of the invasion probability suggest that this pest could expand its distribution 40-55% by 2025. This study provides evidence that human-induced dispersal plays a fundamental role in the spread of the pinewood nematode, and appropriate control measures should be taken to stop or slow its expansion. This model can be applied to Europe, where the nematode had been introduced later, and is currently expanding its distribution. Similar models could also be derived for other species that could be accidentally transported by humans.

  5. Linear distribution of nematodes in the gastrointestinal tract of tracer lambs.

    Science.gov (United States)

    Makovcová, Katerina; Langrová, Iva; Vadlejch, Jaroslav; Jankovská, Ivana; Lytvynets, Andriy; Borkovcová, Marie

    2008-12-01

    Forty-eight tracer lambs were killed in 2004-2007. The abomasum, duodenum, small intestine (jejunum and ileum), colon and caecum were collected and processed for parasites enumeration and identification-mucosal scrapings of both abomasums and intestines were digested. Out of 48 gastrointestinal tracts examined, all were found to be positive for nematode infection. Seventeen species of gastrointestinal nematodes were recovered: Bunostomum trigonocephalum, Cooperia curticei, Haemonchus contortus, Chabertia ovina, Nematodirus battus, Nematodirus filicollis, Oesophagostomum venulosum, Teladorsagia circumcincta, Trichostrongylus axei, Trichostrongylus colubriformis, Trichostrongylus vitrinus, Strongyloides papillosus, Trichuris ovis, Trichuris globulosa, Trichuris skrjabini and Skrjabinema ovis. All species were searched for in the entire gastrointestinal tract. Six species of nematodes were recovered from abnormal sites, naturally in small numbers of lambs as well as in small amounts: Nematodirus battus in the abomasums (6.67% of lambs), N. filicollis in the caecum and in the colon (%4 and 8%, respectively), T. axei in the colon (9.52%), T. colubriformis in the colon (13.89%), T. vitrinus in the caecum (16.67%), in the colon (20.00%) and in the abomasum (3.33%). T. ovis was found in one case in the small intestine.

  6. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes.

    Science.gov (United States)

    Strange, Rex Meade; Russelburg, L Peyton; Delaney, Kimberly J

    2016-08-01

    Although the mechanism of pre-mRNA splicing has been well characterized, the evolution of spliceosomal proteins is poorly understood. The U1A/U2B″/SNF family (hereafter referred to as the SNF family) of RNA binding spliceosomal proteins participates in both the U1 and U2 small interacting nuclear ribonucleoproteins (snRNPs). The highly constrained nature of this system has inhibited an analysis of co-evolutionary trends between the proteins and their RNA binding targets. Here we report accelerated sequence evolution in the SNF protein family in Phylum Nematoda, which has allowed an analysis of protein:RNA co-evolution. In a comparison of SNF genes from ecdysozoan species, we found a correlation between trans-splicing species (nematodes) and increased phylogenetic branch lengths of the SNF protein family, with respect to their sister clade Arthropoda. In particular, we found that nematodes (~70-80 % of pre-mRNAs are trans-spliced) have experienced higher rates of SNF sequence evolution than arthropods (predominantly cis-spliced) at both the nucleotide and amino acid levels. Interestingly, this increased evolutionary rate correlates with the reliance on trans-splicing by nematodes, which would alter the role of the SNF family of spliceosomal proteins. We mapped amino acid substitutions to functionally important regions of the SNF protein, specifically to sites that are predicted to disrupt protein:RNA and protein:protein interactions. Finally, we investigated SNF's RNA targets: the U1 and U2 snRNAs. Both are more divergent in nematodes than arthropods, suggesting the RNAs have co-evolved with SNF in order to maintain the necessarily high affinity interaction that has been characterized in other species.

  7. Meloidogyne incognita Fatty Acid- and Retinol- Binding Protein (Mi-FAR-1) Affects Nematode Infection of Plant Roots and the Attachment of Pasteuria penetrans Endospores.

    Science.gov (United States)

    Phani, Victor; Shivakumara, Tagginahalli N; Davies, Keith G; Rao, Uma

    2017-01-01

    Root-knot nematode (RKN) Meloidogyne incognita is an economically important pest of crops. Pasteuria penetrans , is a nematode hyperparasitic bacterium capable of suppressing the reproduction of RKN and thereby useful for its management. Secreted fatty acid and retinol-binding proteins are unique in nematodes and are engaged in nutrient acquisition, development and reproduction; they are also a component of the nematode cuticle and thought to be involved in the interface between hosts and parasites. Attachment of endospores to the cuticle of second stage juveniles of RKN is the primary step of infection and several factors have been identified to facilitate attachment. In this study, the full length of Mi-far-1 (573 bp) was cloned from M. incognita and characterized. Analysis revealed that the Mi-far-1 was rich in α-helix structure, contained a predicted consensus casein kinase II phosphorylation site and a glycosylation site. Quantitative PCR showed the highest expression in the fourth stage juveniles and in situ hybridization revealed the presence of Mi-far-1 mRNA in the hypodermis below the cuticle. Single copy insertion pattern of Mi-far-1 in M. incognita genome was detected by Southern blotting. Knockdown of Mi-far-1 showed significantly increased attachment of P. penetrans' endospores on juvenile cuticle surface and also affected host finding, root infection and nematode fecundity.

  8. Meloidogyne incognita Fatty Acid- and Retinol- Binding Protein (Mi-FAR-1 Affects Nematode Infection of Plant Roots and the Attachment of Pasteuria penetrans Endospores

    Directory of Open Access Journals (Sweden)

    Victor Phani

    2017-11-01

    Full Text Available Root-knot nematode (RKN Meloidogyne incognita is an economically important pest of crops. Pasteuria penetrans, is a nematode hyperparasitic bacterium capable of suppressing the reproduction of RKN and thereby useful for its management. Secreted fatty acid and retinol-binding proteins are unique in nematodes and are engaged in nutrient acquisition, development and reproduction; they are also a component of the nematode cuticle and thought to be involved in the interface between hosts and parasites. Attachment of endospores to the cuticle of second stage juveniles of RKN is the primary step of infection and several factors have been identified to facilitate attachment. In this study, the full length of Mi-far-1 (573 bp was cloned from M. incognita and characterized. Analysis revealed that the Mi-far-1 was rich in α-helix structure, contained a predicted consensus casein kinase II phosphorylation site and a glycosylation site. Quantitative PCR showed the highest expression in the fourth stage juveniles and in situ hybridization revealed the presence of Mi-far-1 mRNA in the hypodermis below the cuticle. Single copy insertion pattern of Mi-far-1 in M. incognita genome was detected by Southern blotting. Knockdown of Mi-far-1 showed significantly increased attachment of P. penetrans’ endospores on juvenile cuticle surface and also affected host finding, root infection and nematode fecundity.

  9. Viability Test Device for anisakid nematodes

    Directory of Open Access Journals (Sweden)

    Michael Kroeger

    2018-03-01

    Full Text Available Up to now the visual inspection of mobility of isolated anisakid larvae serves as a measure of viability and possible risk of infection. This paper presents a new method to rule out unreliability – caused by the temporary immobility of the larvae and by the human uncertainty factor of visual observation. By means of a Near infrared (NIR imaging method, elastic curvature energies and geometric shape parameters were determined from contours, and used as a measure of viability. It was based on the modelling of larvae as a cylindrical membrane system. The interaction between curvatures, contraction of the longitudinal muscles, and inner pressure enabled the derivation of viability from stationary form data. From series of spectrally signed images within a narrow wavelength range, curvature data of the larvae were determined. Possible mobility of larvae was taken into account in statistical error variables. Experiments on individual living larvae, long-term observations of Anisakis larvae, and comparative studies of the staining method and the VTD measurements of larvae from the tissue of products confirmed the effectiveness of this method. The VTD differentiated clearly between live and dead nematode larvae isolated from marinated, deep-frozen and salted products. The VTD has been proven as excellent method to detect living anisakid nematode larvae in fishery products and is seen as useful tool for fish processing industry and control authorities. Keywords: Biophysics

  10. Entomopathogenic nematodes in agricultural areas in Brazil.

    Science.gov (United States)

    de Brida, Andressa Lima; Rosa, Juliana Magrinelli Osório; Oliveira, Cláudio Marcelo Gonçalves de; Castro, Bárbara Monteiro de Castro E; Serrão, José Eduardo; Zanuncio, José Cola; Leite, Luis Garrigós; Wilcken, Silvia Renata Siciliano

    2017-04-06

    Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.

  11. Arrested larval development in cattle nematodes.

    Science.gov (United States)

    Armour, J; Duncan, M

    1987-06-01

    Most economically important cattle nematodes are able to arrest their larval development within the host - entering a period of dormancy or hypobiosis. Arrested larvae have a low death rate, and large numbers can accumulate in infected cattle during the grazing season. Because of this, outbreaks of disease caused by such nematodes can occur at times when recent infection with the parasites could not have occurred, for example during winter in temperature northern climates when cattle are normally housed. The capacity to arrest is a heritable trait. It is seen as an adaptation by the parasite to avoid further development to its free-living stages during times when the climate is unsuitable for free-living survival. But levels of arrestment can vary markedly in different regions, in different cattle, and under different management regimes. Climatic factors, previous conditioning, host immune status, and farm management all seem to affect arrestment levels. In this article, James Armour and Mary Duncan review the biological basis of the phenomenon, and discuss the apparently conflicting views on how it is controlled.

  12. The Extent of mRNA Editing Is Limited in Chicken Liver and Adipose, but Impacted by Tissular Context, Genotype, Age, and Feeding as Exemplified with a Conserved Edited Site in COG3

    Directory of Open Access Journals (Sweden)

    Pierre-François Roux

    2016-02-01

    Full Text Available RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors.

  13. Identification of Virulence Factors in Nematode-Trapping Fungi - Insights from Genomics, Transcriptomics and Proteomics

    OpenAIRE

    Andersson, Karl-Magnus

    2013-01-01

    Nematode-trapping fungi are soil-living organisms with the unique ability to capture and infect free-living nematodes. The interest in studying these fungi arises from their potential use as biological control agents for plant- and animal-parasitic nematodes. To enter the parasitic stage, nematode-trapping fungi develop different kinds of trapping structures. In order to understand more about the evolution of parasitism in the nematode-trapping fungi and to identify virulence factors in these...

  14. Changes in soil nematode communities under the impact of fertilizers

    Science.gov (United States)

    Gruzdeva, L. I.; Matveeva, E. M.; Kovalenko, T. E.

    2007-06-01

    Changes taking place in the communities of soil nematodes of an artificially sown meadow under the impact of annually applied mineral fertilizers have been studied in a field experiment for nine years. It is shown that changes in the species composition, trophic structure, and numbers of nematodes from different genera depend on the fertilizer applied and on the competitiveness of the plant species grown. The spectra of nematode genera sensitive to the complete mineral fertilizer (NPK) and to the particular nutrients have been identified with the use of a number of parameters, including the maturity index of nematode communities, the biotope preferences of the particular nematode genera, and the general pattern of nematode habitats. The results obtained in this study can be used to assess the effect of mineral fertilizers on the soil fauna and to suggest optimum application rates of mineral fertilizers ensuring the sustainable development of meadow herbs. The use of the data on the trophic structure of nematode communities for predicting the ways of organic matter decomposition in the soil is discussed.

  15. Novel RNA viruses within plant parasitic cyst nematodes.

    Science.gov (United States)

    Ruark, Casey L; Gardner, Michael; Mitchum, Melissa G; Davis, Eric L; Sit, Tim L

    2018-01-01

    The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.

  16. Reciprocal Interactions between Nematodes and Their Microbial Environments.

    Science.gov (United States)

    Midha, Ankur; Schlosser, Josephine; Hartmann, Susanne

    2017-01-01

    Parasitic nematode infections are widespread in nature, affecting humans as well as wild, companion, and livestock animals. Most parasitic nematodes inhabit the intestines of their hosts living in close contact with the intestinal microbiota. Many species also have tissue migratory life stages in the absence of severe systemic inflammation of the host. Despite the close coexistence of helminths with numerous microbes, little is known concerning these interactions. While the environmental niche is considerably different, the free-living nematode Caenorhabditis elegans ( C. elegans ) is also found amongst a diverse microbiota, albeit on decaying organic matter. As a very well characterized model organism that has been intensively studied for several decades, C. elegans interactions with bacteria are much more deeply understood than those of their parasitic counterparts. The enormous breadth of understanding achieved by the C. elegans research community continues to inform many aspects of nematode parasitology. Here, we summarize what is known regarding parasitic nematode-bacterial interactions while comparing and contrasting this with information from work in C. elegans . This review highlights findings concerning responses to bacterial stimuli, antimicrobial peptides, and the reciprocal influences between nematodes and their environmental bacteria. Furthermore, the microbiota of nematodes as well as alterations in the intestinal microbiota of mammalian hosts by helminth infections are discussed.

  17. Nematode assemblages associated with the parthenogenetic lizard Ameivula nativo in six restinga areas along the eastern coast of Brazil.

    Science.gov (United States)

    Menezes, V A; Mascarenhas, J C; Vrcibradic, D; Rocha, C F D

    2017-10-04

    We surveyed the nematode assemblages associated with populations of the parthenogenetic whiptail lizard Ameivula nativo from six coastal restinga areas in eastern Brazil: Setiba, Comboios and Guriri (State of Espirito Santo) and Guaratiba, Prado and Maraú (State of Bahia). A total of five nematode species (Physaloptera retusa, Physalopteroides venancioi, Skrjabinelazia intermedia, Subulura lacertilia and Parapharyngodon sp.) were recorded from the six different populations of A. nativo. There was considerable variation in overall prevalence of infection (1-42%) among study sites, but geographical distance among areas did not influence similarity in the composition of nematode assemblages. Overall intensity of infection was not affected by lizard body size and did not seem to affect host body condition, based on pooled data of all populations. The studied populations of the unisexual A. nativo had relatively low prevalences and intensities of infection compared to some bisexual congeners and to sympatric lizards from other families for which such data are available. We believe that the low richness of the nematode fauna associated with A. nativo, both locally and regionally, may reflect its narrow geographic distribution and the low diversity of habitats it occupies.

  18. Impact of chemical structure of flavanol monomers and condensed tannins on in vitro anthelmintic activity against bovine nematodes.

    Science.gov (United States)

    Desrues, Olivier; Fryganas, Christos; Ropiak, Honorata M; Mueller-Harvey, Irene; Enemark, Heidi L; Thamsborg, Stig M

    2016-04-01

    Plants containing condensed tannins (CT) may have potential to control gastrointestinal nematodes (GIN) of cattle. The aim was to investigate the anthelmintic activities of four flavan-3-ols, two galloyl derivatives and 14 purified CT fractions, and to define which structural features of CT determine the anti-parasitic effects against the main cattle nematodes. We used in vitro tests targeting L1 larvae (feeding inhibition assay) and adults (motility assay) of Ostertagia ostertagi and Cooperia oncophora. In the larval feeding inhibition assay, O. ostertagi L1 were significantly more susceptible to all CT fractions than C. oncophora L1. The mean degree of polymerization of CT (i.e. average size) was the most important structural parameter: large CT reduced larval feeding more than small CT. The flavan-3-ols of prodelphinidin (PD)-type tannins had a stronger negative influence on parasite activity than the stereochemistry, i.e. cis- vs trans-configurations, or the presence of a gallate group. In contrast, for C. oncophora high reductions in the motility of larvae and adult worms were strongly related with a higher percentage of PDs within the CT fractions while there was no effect of size. Overall, the size and the percentage of PDs within CT seemed to be the most important parameters that influence anti-parasitic activity.

  19. Unraveling flp-11/flp-32 dichotomy in nematodes.

    Science.gov (United States)

    Atkinson, Louise E; Miskelly, Iain R; Moffett, Christy L; McCoy, Ciaran J; Maule, Aaron G; Marks, Nikki J; Mousley, Angela

    2016-10-01

    FMRFamide-like peptide (FLP) signalling systems are core to nematode neuromuscular function. Novel drug discovery efforts associated with nematode FLP/FLP receptor biology are advanced through the accumulation of basic biological data that can reveal subtle complexities within the neuropeptidergic system. This study reports the characterisation of FMRFamide-like peptide encoding gene-11 (flp-11) and FMRFamide-like peptide encoding gene-32 (flp-32), two distinct flp genes which encode the analogous peptide, AMRN(A/S)LVRFamide, in multiple nematode species - the only known example of this phenomenon within the FLPergic system of nematodes. Using bioinformatics, in situ hybridisation, immunocytochemistry and behavioural assays we show that: (i) flp-11 and -32 are distinct flp genes expressed individually or in tandem across multiple nematode species, where they encode a highly similar peptide; (ii) flp-11 does not appear to be the most widely expressed flp in Caenorhabditis elegans; (iii) in species expressing both flp-11 and flp-32, flp-11 displays a conserved, restricted expression pattern across nematode clades and lifestyles; (iv) in species expressing both flp-11 and flp-32, flp-32 expression is more widespread and less conserved than flp-11; (v) in species expressing only flp-11, the flp-11 expression profile is more similar to the flp-32 profile observed in species expressing both; and (vi) FLP-11 peptides inhibit motor function in multiple nematode species. The biological significance and evolutionary origin of flp-11 and -32 peptide duplication remains unclear despite attempts to identify a common ancestor; this may become clearer as the availability of genomic data improves. This work provides insight into the complexity of the neuropeptidergic system in nematodes, and begins to examine how nematodes may compensate for structural neuronal simplicity. From a parasite control standpoint, this work underscores the importance of basic biological data, and has

  20. Effect of urea-molasses block supplementation on grazing weaner goats naturally infected with gastrointestinal nematodes

    Directory of Open Access Journals (Sweden)

    R.M. Waruiru

    2004-11-01

    Full Text Available The influence of feeding urea-molasses blocks (UMB on growth and gastrointestinal (GI nematode parasitism of weaner goats grazing the same pasture was investigated on a farm in Nyandarua District, Kenya. Thirty female Small East African goat kids at an average age of 5 months were initially treated with albendazole orally (5 mg kg-1 body mass and randomly assigned into one of two groups: group I were fed UMB prepared using a cold process and group II kids (controls received no block supplementation (NBS. The UMB were given in the evening when the animals returned from grazing and were consumed during the night at a rate of 95.0 g head-1 day-1. Supplementation was undertaken for 3 consecutive months from July to September 2001 and January to March 2002. Body mass of the kids and faecal egg counts were measured monthly and larval cultures were performed on positive faecal samples of kids of each group. Five goats from each group were randomly selected for slaughter and total counts and identification of worms at the end of June 2002. Significant differences (P < 0.05 were found in cumulative mass gains of kids in group I from September compared with those in group II. On termination of the study kids in group I had gained an average of (+ SD 20.4 ± 1.4 kg while those in group II had gained 11.8 + 1.1 kg. From January 2002, faecal egg counts of the kids in the UMB group differed significantly (P < 0.05 from those of the NBS group and at slaughter, the mean (+ SD worm counts for the UMB group was 482 + 299 while that of the NBS group was 1 302 + 410. In all the goats, Haemonchus contortus was the predominant nematode recovered. These results indicate that UMB had significant effects in the control of GI nematode parasitism and enhanced growth of the young goats.

  1. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense.

    Directory of Open Access Journals (Sweden)

    Changlong Chen

    Full Text Available Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.

  2. Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies.

    Science.gov (United States)

    Terrill, T H; Larsen, M; Samples, O; Husted, S; Miller, J E; Kaplan, R M; Gelaye, S

    2004-04-15

    Infection with gastrointestinal nematodes, particularly Haemonchus contortus, is a major constraint to goat production in the southeastern United States. Non-anthelmintic control alternatives are needed due to increasing resistance of these nematodes to available anthelmintics. Two studies were completed in Central Georgia in August 1999, and April-May 2000, using Spanish does naturally infected with Haemonchus contortus, Trichostongylus colubriformis, and Cooperia spp. to evaluate effectiveness of nematode-trapping fungi as a biological control agent. In the first experiment, five levels of Duddingtonia flagrans spores were mixed with a complete diet and fed once daily to the does (three per treatment) in metabolism crates. The treatment concentrations were (1) 5 x 10(5), (2) 2.5 x 10(5), (3) 10(5), and (4) 5 x 10(4) spores per kilogram body weight (BW), and (5) no spores. Fungal spores were fed for the first 7 days of the 14-day trial, and fecal samples were collected daily from individual animals for analysis of fecal egg count and establishment of fecal cultures. Efficacy of the fungus at reducing development of infective larvae (L3) in the fecal cultures was evaluated. The mean reduction in L3 from day 2 of the treatment period until the day after treatment stopped (days 2-8) was 93.6, 80.2, 84.1, and 60.8% for animals given the highest to lowest spore doses, respectively. Within 3-6 days after termination of fungal spore feedings, reduction in L3 development was no longer apparent in any of the treated animals. In a second experiment, effectiveness of 2.5 x 10(5) spores of D. flagrans per kilogram BW fed to does every day, every second day, and every third day was evaluated. Reduction in L3 development by daily feeding was less in the second experiment than in the first experiment. Daily fungal spore feeding provided more consistent larval reduction than intermittant feeding (every second or third day). When fed daily under controlled conditions, D. flagrans

  3. Plant nematodes in South Africa. 11. Checklist of plant nematodes of the protected areas of KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    Mariette Marais

    2013-03-01

    Full Text Available Nematodes are some of the most abundant soil organisms and are an essential part of soil ecology. These organisms are used as indicator organisms and can be linked to soil health. Biological collections contain vast amounts of data, with the National Collection of Nematodes housed at the Plant Protection Research Institute, Agricultural Research Council being no different. During the digitising of the collection a number of unpublished records of plant nematodes reported from protected areas in KwaZulu-Natal were found in the South African Plant-Parasitic Nematode Survey database. A total of 222 plant nematode species belonging to 39 genera were reported from the province, with only 94 of these species reported from the protected areas and 172 and 159 species reported from uncultivated (outside the protected areas and cultivated areas, respectively. Only nine species, Criconema silvum, Criconema talanum, Helicotylenchus marethae, Ogma dracomontanum, Ogma louisi, Ogma ueckermanni, Paralongidorus deborae, Trichodorus rinae and Xiphinemella marindae were described from protected areas, whilst O. dracomontanum, P. deborae and T. rinae were subsequently also reported from other provinces. Conservation implications: A higher degree of diversity of nematodes was observed in the unprotected areas of the province. The observation suggests that nematode fauna, and by implication also other invertebrates, are not adequately protected.

  4. Plant nematodes in South Africa. 11. Checklist of plant nematodes of the protected areas of KwaZulu-Natal

    Directory of Open Access Journals (Sweden)

    Mariette Marais

    2013-02-01

    Full Text Available Nematodes are some of the most abundant soil organisms and are an essential part of soil ecology. These organisms are used as indicator organisms and can be linked to soil health. Biological collections contain vast amounts of data, with the National Collection of Nematodes housed at the Plant Protection Research Institute, Agricultural Research Council being no different. During the digitising of the collection a number of unpublished records of plant nematodes reported from protected areas in KwaZulu-Natal were found in the South African Plant-Parasitic Nematode Survey database. A total of 222 plant nematode species belonging to 39 genera were reported from the province, with only 94 of these species reported from the protected areas and 172 and 159 species reported from uncultivated (outside the protected areas and cultivated areas, respectively. Only nine species, Criconema silvum, Criconema talanum, Helicotylenchus marethae, Ogma dracomontanum, Ogma louisi, Ogma ueckermanni, Paralongidorus deborae, Trichodorus rinae and Xiphinemella marindae were described from protected areas, whilst O. dracomontanum, P. deborae and T. rinae were subsequently also reported from other provinces. Conservation implications: A higher degree of diversity of nematodes was observed in the unprotected areas of the province. The observation suggests that nematode fauna, and by implication also other invertebrates, are not adequately protected.

  5. Cereal Cyst Nematode (Heterodera avenae) on Oats. II. Early Root Development and Nematode Tolerance

    OpenAIRE

    Volkmar, K. M.

    1989-01-01

    The effect of Heterodera avenae infestation on early seminal and lateral root growth was examined in four oat genotypes differing in tolerance to H. avenae. Recently emerged seminal roots were inoculated with a range of H. avenae larval densities, then transferred a hydroponic system to remove the effect of later nematode penetration on root development. Intolerance to H. avenae was assessed in terms of impairment of seminal root extension resulting in fewer primary lateral roots emerging fro...

  6. Feeding Your Baby

    Medline Plus

    Full Text Available ... care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your baby Family ... community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in ...

  7. Feeding Your Baby

    Medline Plus

    Full Text Available ... our online community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please ... been added to your dashboard . Time to eat! Feeding your baby helps her grow healthy and strong. ...

  8. Breastfeeding vs. Formula Feeding

    Science.gov (United States)

    ... for Educators Search English Español Breastfeeding vs. Formula Feeding KidsHealth / For Parents / Breastfeeding vs. Formula Feeding What's ... work with a lactation specialist. All About Formula Feeding Commercially prepared infant formulas are a nutritious alternative ...

  9. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  10. Animal Feeding Operations

    Science.gov (United States)

    ... type=”submit” value=”Submit” /> Healthy Water Home Animal Feeding Operations Recommend on Facebook Tweet Share Compartir ... of Concentrated Animal Feeding Operations (CAFOs) What are Animal Feeding Operations (AFOs)? According to the United States ...

  11. Impact of chemical structure of flavanol monomers and condensed tannins on in vitro anthelmintic activity against bovine nematodes

    DEFF Research Database (Denmark)

    Desrues, Olivier; Fryganas, Christos; Ropiak, Honorata M.

    2016-01-01

    Plants containing condensed tannins (CT) may have potential to control gastrointestinal nematodes (GIN) of cattle. The aim was to investigate the anthelmintic activities of four flavan-3-ols, two galloyl derivatives and 14 purified CT fractions, and to define which structural features of CT...... susceptible to all CT fractions than C. oncophora L1. The mean degree of polymerization of CT (i.e. average size) was the most important structural parameter: large CT reduced larval feeding more than small CT. The flavan-3-ols of prodelphinidin (PD)-type tannins had a stronger negative influence on parasite...

  12. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI.

    Science.gov (United States)

    Chen, Shiyan; Chronis, Demosthenis; Wang, Xiaohong

    2013-09-01

    The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development, (1) nematode secreted effectors are becoming recognized as suppressors of plant immunity. (2)(-) (4) Recently we reported that the effector ubiquitin carboxyl extension protein (GrUBCEP12) from G. rostochiensis is processed into free ubiquitin and a 12-amino acid GrCEP12 peptide in planta. Transgenic potato lines overexpressing the derived GrCEP12 peptide showed increased susceptibility to G. rostochiensis and to an unrelated bacterial pathogen Streptomyces scabies, suggesting that GrCEP12 has a role in suppressing host basal defense or possibly pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) during the parasitic interaction. (3) To determine if GrCEP12 functions as a PTI suppressor we evaluated whether GrCEP12 suppresses flg22-induced PTI responses in Nicotiana benthamiana. Interestingly, we found that transient expression of GrCEP12 in N. benthamiana leaves suppressed reactive oxygen species (ROS) production and the induction of two PTI marker genes triggered by the bacterial PAMP flg22, providing direct evidence that GrCEP12 indeed has an activity in PTI suppression.

  13. High genetic diversity and geographic subdivision of three lance nematode species (Hoplolaimus spp.) in the United States.

    Science.gov (United States)

    Holguin, Claudia M; Baeza, Juan A; Mueller, John D; Agudelo, Paula

    2015-07-01

    Lance nematodes (Hoplolaimus spp.) feed on the roots of a wide range of plants, some of which are agronomic crops. Morphometric values of amphimictic lance nematode species overlap considerably, and useful morphological characters for their discrimination require high magnification and significant diagnostic time. Given their morphological similarity, these Hoplolaimus species provide an interesting model to investigate hidden diversity in crop agroecosystems. In this scenario, H. galeatus may have been over-reported and the related species that are morphologically similar could be more widespread in the United States that has been recognized thus far. The main objectives of this study were to delimit Hoplolaimus galeatus and morphologically similar species using morphology, phylogeny, and a barcoding approach, and to estimate the genetic diversity and population structure of the species found. Molecular analyses were performed using sequences of the cytochrome c oxidase subunit 1 (Cox1) and the internal transcribed spacer (ITS1) on 23 populations. Four morphospecies were identified: H. galeatus, H. magnistylus, H. concaudajuvencus, and H. stephanus, along with a currently undescribed species. Pronounced genetic structure correlated with geographic origin was found for all species, except for H. galeatus. Hoplolaimus galeatus also exhibited low genetic diversity and the shortest genetic distances among populations. In contrast, H. stephanus, the species with the fewest reports from agricultural soils, was the most common and diverse species found. Results of this project may lead to better delimitation of lance nematode species in the United States by contributing to the understanding the diversity within this group.

  14. Development and reproductive potential of Tyrophagus putrescentiae (Acari: Acaridae) on plant-parasitic nematodes and artificial diets.

    Science.gov (United States)

    Abou El-Atta, Doaa Abd El-Maksoud; Osman, Mohamed Ali

    2016-04-01

    This study investigated development, reproduction and life table parameters of the astigmatid mold mite Tyrophagus putrescentiae (Schrank) (Acari: Acaridae) feeding on egg-masses or adult females of the nematode Meloidogyne incognita, egg-masses of the nematode Rotylenchulus reniformis, ras cheese or yeast at 25 ± 1 °C, 70 ± 10 % RH in the dark. Immature developmental times were shorter when the mite was fed females of M. incognita followed by yeast. Different prey/diet types had no significant effect on longevity and lifespan of both males and females. Daily oviposition rate (eggs/female/day) was highest for mites fed yeast (20.8 ± 1.8 eggs) and lowest for mites fed females of M. incognita (6.6 ± 0.5). Intrinsic rate of natural increase (r m) was highest for mites fed yeast compared to other prey/diet; no significant differences in r m were observed among mites fed on non-yeast diets. This result may suggest a role of T. putrescentiae as biocontrol agent of plant-parasitic nematodes and the yeast may be used for mite mass-production purposes.

  15. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy.

    Science.gov (United States)

    Espada, Margarida; Silva, Ana Cláudia; Eves van den Akker, Sebastian; Cock, Peter J A; Mota, Manuel; Jones, John T

    2016-02-01

    The migratory endoparasitic nematode Bursaphelenchus xylophilus, which is the causal agent of pine wilt disease, has phytophagous and mycetophagous phases during its life cycle. This highly unusual feature distinguishes it from other plant-parasitic nematodes and requires profound changes in biology between modes. During the phytophagous stage, the nematode migrates within pine trees, feeding on the contents of parenchymal cells. Like other plant pathogens, B. xylophilus secretes effectors from pharyngeal gland cells into the host during infection. We provide the first description of changes in the morphology of these gland cells between juvenile and adult life stages. Using a comparative transcriptomics approach and an effector identification pipeline, we identify numerous novel parasitism genes which may be important for the mediation of interactions of B. xylophilus with its host. In-depth characterization of all parasitism genes using in situ hybridization reveals two major categories of detoxification proteins, those specifically expressed in either the pharyngeal gland cells or the digestive system. These data suggest that B. xylophilus incorporates effectors in a multilayer detoxification strategy in order to protect itself from host defence responses during phytophagy. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  16. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground.

    Directory of Open Access Journals (Sweden)

    Camila Cramer Filgueiras

    Full Text Available Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes.

  17. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  18. The Role of Plant-Parasitic Nematodes and Soil-Borne Fungi in the Decline of Ammophila-Arenaria (L) Link

    NARCIS (Netherlands)

    De Rooij van der Goes, P.C.E.M.

    1995-01-01

    In coastal foredunes, Ammophila arenaria (L.) Link grows vigorously when it is buried regularly by windblown sand and degenerates at stabilized sites. Nematodes and soil-borne fungi were found to be involved in its decline. In order to establish their role in the disease complex, seedlings of A.

  19. Diseases in insects produced for food and feed

    DEFF Research Database (Denmark)

    Eilenberg, Jørgen; Vlak, J.M.; Nielsen-Leroux, C.

    2015-01-01

    Increased production of insects on a large scale for food and feed will likely lead to many novel challenges, including problems with diseases. We provide an overview of important groups of insect pathogens, which can cause disease in insects produced for food and feed. Main characteristics of each...... pathogen group (viruses, bacteria, fungi, protists and nematodes) are described and illustrated, with a selection of examples from the most commonly produced insect species for food and feed. Honeybee and silkworm are mostly produced for other reasons than as human food, yet we can still use them...... as examples to learn about emergence of new diseases in production insects. Results from a 2014 survey about insect diseases in current insect production systems are presented for the first time. Finally, we give some recommendations for the prevention and control of insect diseases. Key words: disease...

  20. Cell lineages of the embryo of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Deppe, U; Schierenberg, E; Cole, T; Krieg, C; Schmitt, D; Yoder, B; von Ehrenstein, G

    1978-01-01

    Embryogenesis of the free-living soil nematode Caenorhabditis elegans produces a juvenile having about 550 cells at hatching. We have determined the lineages of 182 cells by tracing the divisions of individual cells in living embryos. An invariant pattern of cleavage divisions of the egg generates a set of stem cells. These stem cells are the founders of six stem cell lineages. Each lineage has its own clock--i.e., an autonomous rhythm of synchronous cell divisions. The rhythms are maintained in spite of extensive cellular rearrangement. The rate and the orientation of the cell divisions of the cell lineages are essentially invariant among individuals. Thus, the destiny of cells seems to depend primarily on their lineage history. The anterior position of the site of origin of the stem cells in the egg relates to the rate of the cell cycle clock, suggesting intracellular preprogramming of the uncleaved egg. We used a technique that allows normal embryogenesis, from the fertilized egg to hatching, outside the parent under a cover glass. Embryogenesis was followed microscopically with Nomarski interference optics and high-resolution video recording.

  1. Laboratory study on individual and combined effects of cobalt- and zinc-spiked sediment on meiobenthic nematodes.

    Science.gov (United States)

    Beyrem, Hamouda; Boufahja, Fehmi; Hedfi, Amor; Essid, Naceur; Aïssa, Patricia; Mahmoudi, Ezzeddine

    2011-12-01

    Free-living nematodes are the most abundant taxa among the meiobenthos and the predominant prey for bottom-feeding fishes. They are able to accumulate toxicants from sediments which explain their use in this study as possible tools in nutritional quality assessment of fishes. Nematodes from sediments of Ghar El Melh lagoon (Tunisia) were subjected to cobalt and/or zinc enrichment in a microcosm experiment for 30 days. Three levels (low, medium, and high) of each treatment were used. Nematode abundance and diversity significantly decreased, and the taxonomic structure was altered. Results from multivariate analyses of the species abundance data revealed that all treatments were significantly different from the control. Both univariate and multivariate analyses of the data showed that the differential response occurred in all treatments, but the assemblages from microcosms contaminated with zinc alone were much more negatively affected compared with those exposed to cobalt alone. The presence of cobalt simultaneously with zinc seems to reduce its impact on nematode species composition. Such a result is suggestive of antagonistic interactions between these two metals. The responses of nematode species to the cobalt and zinc treatments were varied. Oncholaimellus mediterraneus, Oncholaimus campylocercoides, and Neochromadora trichophora were significantly affected with cobalt contamination but, they were not eliminated. Exposed to zinc, Hypodontolaimus colesi was eliminated and seemed to be an intolerant species versus this metal. Some of these species, "cobalt-sensitive" or "zinc-sensitive", were also affected by the metal combination even at low dose: O. mediterraneus, N. trichophora, and H. colesi. Differential sensitivity to cobalt and/or zinc may result in a subsequent competitive release of more tolerant species. A list of this kind of species was established to be used as a possible preventive tool versus contaminated fish. This was most evidently the case in

  2. Condensed tannins act against cattle nematodes

    DEFF Research Database (Denmark)

    Novobilský, Adam; Mueller-Harvey, Irene; Thamsborg, Stig Milan

    2011-01-01

    The use of natural plant anthelmintics was suggested as a possible alternative control of gastrointestinal nematodes (GIN) in ruminants. Direct anthelmintic effects of tannin-containing plants have already been shown in sheep and goat GIN. These anthelmintic properties are mainly associated...... with condensed tannins. In the present study, we evaluated possible in vitro effects of three tannin-containing plants against bovine GIN. Effects of Onobrychis viciifolia, Lotus pedunculatus and Lotus corniculatus condensed tannin (CT) extracts on Cooperia oncophora and Ostertagia ostertagi were determined...... (third stage larvae) was also affected by CT extracts from all three plants. In both in vitro assays, extracts with added polyvinylpolypyrrolidone, an inhibitor of tannins, generated almost the same values as the negative control; this confirms the role of CT in the anthelmintic effect of these plant...

  3. Prevalence of common gastro-intestinal nematode infections in ...

    African Journals Online (AJOL)

    ACSS

    (GIN) infection and identified the common GIN parasites in commercial goat production in. Central Uganda. .... Table 1. Prevalence of gastro-intestinal nematode parasites in goats in Central Uganda .... ILCA, Addis Ababa, Ethiopia. pp. 40-76.

  4. Integrated management of root-knot nematode (Meloidogyne ...

    African Journals Online (AJOL)

    Integrated management of root-knot nematode (Meloidogyne incognita) for tomato production and productivity. Bayuh Belay1* ... important food and cash crop of the farmers and is ...... some part of the research budget without any reservation.

  5. Potential Nematode Alarm Pheromone Induces Acute Avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Zhou, Ying; Loeza-Cabrera, Mario; Liu, Zheng; Aleman-Meza, Boanerges; Nguyen, Julie K; Jung, Sang-Kyu; Choi, Yuna; Shou, Qingyao; Butcher, Rebecca A; Zhong, Weiwei

    2017-07-01

    It is crucial for animal survival to detect dangers such as predators. A good indicator of dangers is injury of conspecifics. Here we show that fluids released from injured conspecifics invoke acute avoidance in both free-living and parasitic nematodes. Caenorhabditis elegans avoids extracts from closely related nematode species but not fruit fly larvae. The worm extracts have no impact on animal lifespan, suggesting that the worm extract may function as an alarm instead of inflicting physical harm. Avoidance of the worm extract requires the function of a cGMP signaling pathway that includes the cGMP-gated channel TAX-2/TAX-4 in the amphid sensory neurons ASI and ASK. Genetic evidence indicates that the avoidance behavior is modulated by the neurotransmitters GABA and serotonin, two common targets of anxiolytic drugs. Together, these data support a model that nematodes use a nematode-specific alarm pheromone to detect conspecific injury. Copyright © 2017 by the Genetics Society of America.

  6. Anisakid nematodes associated with aquatic orga- nisms and ...

    African Journals Online (AJOL)

    spamer

    and respond to long- and medium-term physical, chemical and biological .... that the formation of fibrotic capsules around nematode larvae might prevent further ... capabilities and function primarily in the encapsulation of large parasitic ...

  7. Systemic induced tolerance against root-knot nematodes in rice

    African Journals Online (AJOL)

    user

    Rice plantlets were randomly grown in laboratory, sprayed with hormones and riboflavin .... between riboflavin, SA, JA and ET pathways in rice-nematodes interaction, ..... oxidative damage caused by aging as well as biotic and abiotic stress.

  8. Nematode 18S rRNA gene is a reliable tool for environmental biosafety assessment of transgenic banana in confined field trials.

    Science.gov (United States)

    Nakacwa, R; Kiggundu, A; Talwana, H; Namaganda, J; Lilley, C; Tushemereirwe, W; Atkinson, H

    2013-10-01

    Information on relatedness in nematodes is commonly obtained by DNA sequencing of the ribosomal internal transcribed spacer region. However, the level of diversity at this locus is often insufficient for reliable species differentiation. Recent findings suggest that the sequences of a fragment of the small subunit nuclear ribosomal DNA (18S rRNA or SSU), identify genera of soil nematodes and can also distinguish between species in some cases. A database of soil nematode genera in a Ugandan soil was developed using 18S rRNA sequences of individual nematodes from a GM banana confined field trial site at the National Agricultural Research Laboratories, Kawanda in Uganda. The trial was planted to evaluate transgenic bananas for resistance to black Sigatoka disease. Search for relatedness of the sequences gained with entries in a public genomic database identified a range of 20 different genera and sometimes distinguished species. Molecular markers were designed from the sequence information to underpin nematode faunal analysis. This approach provides bio-indicators for disturbance of the soil environment and the condition of the soil food web. It is being developed to support environmental biosafety analysis by detecting any perturbance by transgenic banana or other GM crops on the soil environment.

  9. Challenges for mass production of nematodes in submerged culture.

    Science.gov (United States)

    de la Torre, Mayra

    2003-08-01

    Nematodes of Steinernema and Heterorhabditis genera are used as agents in insect biocontrol programs. They are associated with specific bacteria which are also involved in the mechanism of pathogenicity and which are consumed by nematodes as living food. S. feltiae has various developmental stages in its life cycle, including four juvenile stages, adults and the free living form. During mating, males coil themselves around the female, which is around 1 cm long. Successful commercialization of nematode-bacteria biocontrol products depends on the ability to produce sufficient quantities of these products at competitive prices for a full pest control program. This could be feasible if high cell density submerged cultures are designed and implemented; however, major problems related to nematodes mass production in a bioreactor remain unsolved due to the lack of knowledge about the physiological aspects of the nematode, bacteria and nematode-bacteria association, interaction between the three phases present in the bioreactor (liquid, gas, nematodes-bacteria), possibility of mating under hydrodynamic stress conditions, etc. We have found that the two most important engineering aspects to take into account the mass propagation of nematodes are oxygen transfer rate and hydrodynamics to allow mating and to avoid mechanical damage of juveniles in stage 2. This article focuses on several aspects related to the fermentation system such as kinetics of growth, shear stress, hydrodynamics fields in the bioreactor and oxygen demand. Also, results published by other groups, together with those of our own, will be discussed in relation to the main challenges found during the fermentation process.

  10. Biocontrol: Bacillus penetrans and Related Parasites of Nematodes

    OpenAIRE

    Sayre, R. M.

    1980-01-01

    Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, partic...

  11. Nematodes from terrestrial and freshwater habitats in the Arctic

    Science.gov (United States)

    2014-01-01

    Abstract We present an updated list of terrestrial and freshwater nematodes from all regions of the Arctic, for which records of properly identified nematode species are available: Svalbard, Jan Mayen, Iceland, Greenland, Nunavut, Northwest territories, Alaska, Lena River estuary, Taymyr and Severnaya Zemlya and Novaya Zemlya. The list includes 391 species belonging to 146 genera, 54 families and 10 orders of the phylum Nematoda. PMID:25197239

  12. Structure and function of nematode communities across the Indian western continental margin and its oxygen minimum zone

    Science.gov (United States)

    Singh, R.; Ingole, B. S.

    2016-01-01

    We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and low oxygen levels on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. The oxygen minimum zone extended from 102 to 1001 m. Nematodes (described and undescribed) were identified to species and classified according to biological and functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Three depth zones were identified: the shelf (depth range: 34-102 m; highest nematode mean density: 176.6 ± 37 ind 10 cm-2), the slope (525-1524 m; 124.3 ± 16 ind 10 cm-2), and the basin (2001-2546 m; 62.9 ± 2 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, Desmodora sp. 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Nematode communities in different zones differed in species composition. Chromadorita sp. 2 (2.78 %) and Sphaerolaimus gracilis (2.21 %) were dominant on the shelf, whereas Terschellingia longicaudata (4.73 %) and Desmodora sp. 1 (4.42 %) were dominant on the slope, but in the basin, Halalaimus sp. 1(1.11 %) and Acantholaimus elegans (1.11 %) were dominant. The information in a particular functional group was not a simple reflection of the information in species abundance. Ecological information captured by adult length, adult shape, and life-history strategy was less site-specific and thus differed notably from information contained in other taxonomic groups. The functional composition of nematodes was strongly linked to the organic-carbon and dissolved-oxygen concentration. Seven species were found exclusively in the oxygen minimum zone: Pselionema sp. 1, Choanolaimus sp. 2, Halichoanolaimus sp. 1, Cobbia dentata

  13. Preliminary analysis of the relationship between structure and anthelmintic activity of condensed tannins in cattle nematodes

    DEFF Research Database (Denmark)

    Desrues, Oliver; Enemark, Heidi L.; Mueller-Harvey, I.

    2013-01-01

    Some plant secondary metabolites as tannins have direct anthelminthic properties and may play a role in the control of nematodes in livestock. However, their great diversity in structural characteristics and different levels of content in plants are responsible for a highly variable response...... in anthelmintic activity, as measured in vitro. The aim of the present study was to assess the relationship between tannin structure and anthelmintic activity using an in vitro assay. We used a series of purified tannins (from 65% to 100% of purity) characterized for their degree of polymerization (m......DP), prodelphinidin/procyanidin (PC/PD) ratio and cis/trans ratio by thiolytic degradation. Tannins diluted in two concentrations in water, epigallocatechin gallate (EGCG), positive (ivermectin) and negative (water) controls were examined by the Larval Feeding Inhibition Assay (LFIA) with first stage larvae (L1...

  14. Targeted mutagenesis in a human-parasitic nematode

    Science.gov (United States)

    Gang, Spencer S.; Castelletto, Michelle L.

    2017-01-01

    Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites. PMID:29016680

  15. Relationship between production, nematodes and "redness" in strawberries

    Directory of Open Access Journals (Sweden)

    Paula Nogueira Curi

    2016-08-01

    Full Text Available ABSTRACT: In recent years "redness" has increasingly appeared in strawberry plants with leaves taking on a reddish color. No causal agent has been associated with plants. Since strawberries presented problems due to the incidence of nematodes, the purpose of this study was to look at the relationship between production, resistance to the Meloidogyne hapla nematode and the "redness" symptom in strawberry cultivars. Two experiments were performed, both with the 'Camino Real', 'Festival', 'Oso Grande', 'Albion' and 'Camarosa' cultivars. The first experiment was performed in the field, where the following were evaluated: strawberry production, fruit quality, macro and micronutrient contents in fruit and leaves, percentage of plant survival, incidence of nematodes, quantity of eggs in the roots and juveniles in the soil, and the incidence of Botrytis cinerea . In the second experiment, the strawberries were transplanted into pots and filled with pinus bark-based commercial substrate. Half the pots were inocculated with Meloidogyne hapla . Cultivars presented differences in fruit production and also in the incidence of "redness". Lowest performance in production was related to the high incidence of the nematode Meloidogyne hapla. 'Oso Grande' and 'Albion' presented nematode-resistant behavior. It was possible find a relationship between the incidence of the Meloidogyne hapla nematode, and the incidence of "redness" only 'Camino Real' cultivar.

  16. Communities of terrestrial nematodes after different approaches to heathland restoration

    Science.gov (United States)

    Radochova, Petra; Frouz, Jan

    2016-04-01

    Since the 20th century, the distribution of European heathlands rapidly decreased due to agricultural intensification, heavy use of artificial fertilizers or acidification (Aerts & Heil, 1993). Therefore, various attempts of heathland restoration are under way in these days. Analysis of nematode community composition can be one of the tools suitable for succession evaluation (Ferris et al., 2001). In 2011, 2013 and 2014, soil samples were collected from heathland restoration experiment (launched in 2011) where different restoration methods were applied in a 3 × 3 factorial experiment; existing heathlands were also sampled to identify the target community both in dry and wet heathland. A total of 60 samples of extracted nematodes were analysed for absolute abundance, trophic groups, and genera dominance. Various indices were calculated to describe the nematode community. We were able to prove faster development of wet heathlands towards the target community. However, because of large data variability, there was no significant difference between treatments. Development of wet and dry heathlands differed also in increased proportion of omniphagous nematodes in 2013 and predators in 2014 in dry heathlands. After three years of heathland restoration, nematode community has not yet reached parameters of the target community. References Aerts, R., Heil, G. W., 1993. Heathlands: patterns and processes in a changing environment, 1st ed, Geobotany: 20. Springer Netherlands, Dordrecht, p. 229. Ferris, H., Bongers, T., De Goede, R. G. M., 2001. A framework for soil food web diagnostics: Extension of the nematode faunal analysis oncept. Appl. Soil Ecol. 18, 13-29.

  17. Discovery of genomic intervals that underlie nematode responses to benzimidazoles.

    Science.gov (United States)

    Zamanian, Mostafa; Cook, Daniel E; Zdraljevic, Stefan; Brady, Shannon C; Lee, Daehan; Lee, Junho; Andersen, Erik C

    2018-03-01

    Parasitic nematodes impose a debilitating health and economic burden across much of the world. Nematode resistance to anthelmintic drugs threatens parasite control efforts in both human and veterinary medicine. Despite this threat, the genetic landscape of potential resistance mechanisms to these critical drugs remains largely unexplored. Here, we exploit natural variation in the model nematodes Caenorhabditis elegans and Caenorhabditis briggsae to discover quantitative trait loci (QTL) that control sensitivity to benzimidazoles widely used in human and animal medicine. High-throughput phenotyping of albendazole, fenbendazole, mebendazole, and thiabendazole responses in panels of recombinant lines led to the discovery of over 15 QTL in C. elegans and four QTL in C. briggsae associated with divergent responses to these anthelmintics. Many of these QTL are conserved across benzimidazole derivatives, but others show drug and dose specificity. We used near-isogenic lines to recapitulate and narrow the C. elegans albendazole QTL of largest effect and identified candidate variants correlated with the resistance phenotype. These QTL do not overlap with known benzimidazole target resistance genes from parasitic nematodes and present specific new leads for the discovery of novel mechanisms of nematode benzimidazole resistance. Analyses of orthologous genes reveal conservation of candidate benzimidazole resistance genes in medically important parasitic nematodes. These data provide a basis for extending these approaches to other anthelmintic drug classes and a pathway towards validating new markers for anthelmintic resistance that can be deployed to improve parasite disease control.

  18. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  19. RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi.

    Science.gov (United States)

    Pandit, Ramesh; Patel, Reena; Patel, Namrata; Bhatt, Vaibhav; Joshi, Chaitanya; Singh, Pawan Kumar; Kunjadia, Anju

    2017-04-01

    Nematode-trapping fungi are well known for their inherent potential to trap and kill nematodes using specialized trapping devices. However, the molecular mechanisms underlying the trapping and subsequent processes are still unclear. Therefore, in this study, we examined differential genes expression in two nematode-trapping fungi after baiting with nematode extracts. In Arthrobotrys conoides, 809 transcripts associated with diverse functions such as signal transduction, morphogenesis, stress response and peroxisomal proteins, proteases, chitinases and genes involved in the host-pathogen interaction showed differential expression with fold change (>±1.5 fold) in the presence of nematode extract with FDR (p-value nematode-trapping fungi for its host. The findings illustrate the molecular mechanism of fungal parasitism in A. conoides which may be helpful in developing a potential biocontrol agent against parasitic nematodes.

  20. Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård

    2004-01-01

    rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley......rhizosphere; nitrogen and phosphorus fertilisation; nematode assemblages; plant parasites; barley...

  1. Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida

    Directory of Open Access Journals (Sweden)

    Thomas W Kelley

    2010-12-01

    Full Text Available Abstract Background Nematodes represent the most abundant benthic metazoa in one of the largest habitats on earth, the deep sea. Characterizing major patterns of biodiversity within this dominant group is a critical step towards understanding evolutionary patterns across this vast ecosystem. The present study has aimed to place deep-sea nematode species into a phylogenetic framework, investigate relationships between shallow water and deep-sea taxa, and elucidate phylogeographic patterns amongst the deep-sea fauna. Results Molecular data (18 S and 28 S rRNA confirms a high diversity amongst deep-sea Enoplids. There is no evidence for endemic deep-sea lineages in Maximum Likelihood or Bayesian phylogenies, and Enoplids do not cluster according to depth or geographic location. Tree topologies suggest frequent interchanges between deep-sea and shallow water habitats, as well as a mixture of early radiations and more recently derived lineages amongst deep-sea taxa. This study also provides convincing evidence of cosmopolitan marine species, recovering a subset of Oncholaimid nematodes with identical gene sequences (18 S, 28 S and cox1 at trans-Atlantic sample sites. Conclusions The complex clade structures recovered within the Enoplida support a high global species richness for marine nematodes, with phylogeographic patterns suggesting the existence of closely related, globally distributed species complexes in the deep sea. True cosmopolitan species may additionally exist within this group, potentially driven by specific life history traits of Enoplids. Although this investigation aimed to intensively sample nematodes from the order Enoplida, specimens were only identified down to genus (at best and our sampling regime focused on an infinitesimal small fraction of the deep-sea floor. Future nematode studies should incorporate an extended sample set covering a wide depth range (shelf, bathyal, and abyssal sites, utilize additional genetic loci (e

  2. A Comparison of Soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis Cry1Ab toxin

    DEFF Research Database (Denmark)

    Griffiths, B. S.; Caul, S.; Thompson, J.

    2005-01-01

    Field trials were established at three European sites (Denmark, Eastern France, South-West France) of genetically modified maize (Zea mays L.) expressing the CryIAb Bacillus thuringiensis toxin (Bt), the near-isogenic non-Bt cultivar, another conventional maize cultivar and grass. Soil from Denmark......) and phospholipid fatty acid analysis (PLFA), and protozoa and nematodes in all samples. Individual differences within a site resulted from: greater nematode numbers under grass than maize on three occasions; different nematode populations under the conventional maize cultivars once; and two occasions when...... there was a reduced protozoan population under Bt maize compared to non-Bt maize. Microbial community structure within the sites only varied with grass compared to maize, with one occurrence of CLPP varying between maize cultivars (Bt versus a conventional cultivar). An overall comparison of Bt versus non-Bt maize...

  3. The expression of R genes in genetic and induced resistance to potato cyst nematode Globodera rostochiensis (Wollenweber, 1923) Behrens, 1975.

    Science.gov (United States)

    Lavrova, V V; Matveeva, E M; Zinovieva, S V

    2015-01-01

    The characteristics of expression of two genes, H1 and Gro1-4, which determine the resistance to the sedentary parasitic nematode Globodera rostochiensis (Wollenweber, 1923) Behrens, 1975, in the resistant (Krepysh) and susceptible (Nevskii) potato cultivars was studied under a short-term exposure to low temperatures. Such treatment of susceptible plants at the early stages of ontogeny led to the activation of expression of H1 and Gro1-4 genes in roots and the H1 gene in leaves. The transcriptional activity of R genes was detected not only in roots but also in leaves (i.e., in tissue remote from the site of direct injury by the nematode) in the case of both genetic and induced resistance, indicating the development of a systemic defense response of plants to infection.

  4. The entomopathogenic nematode Heterorhabditis megidis: host searching behaviour, infectivity and reproduction

    NARCIS (Netherlands)

    Boff, M.I.C.

    2001-01-01

    Entomopathogenic nematodes in the families Heterorhabditidae and Steinernematidae have considerable potential as biological control agents of soil-inhabiting insect pests. Attributes making these nematodes ideal biological control agents include their broad host range, high virulence,

  5. Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches

    Science.gov (United States)

    Communities of soil nematodes impact ecosystem functions, including plant growth, decomposition, and nutrient cycling, all of which are vital processes in agriculture. We used complementary morphological and DNA metabarcoding analyses to characterize soil nematode communities in three cropping syste...

  6. Plant and soil nematodes from Lokchao Yangoupokpi Wildlife Sanctuary, Manipur, India

    OpenAIRE

    N. Mohilal; M. Pramodini; L. Bina

    2009-01-01

    In the present study soil samples were collected from Lokchao Yangoupokpi Wildlife Sanctuary to investigate about what nematode species are associated with different plant hosts. This study shows rich nematode diversity in the sanctuary.

  7. Plant and soil nematodes from Lokchao Yangoupokpi Wildlife Sanctuary, Manipur, India

    Directory of Open Access Journals (Sweden)

    N. Mohilal

    2009-03-01

    Full Text Available In the present study soil samples were collected from Lokchao Yangoupokpi Wildlife Sanctuary to investigate about what nematode species are associated with different plant hosts. This study shows rich nematode diversity in the sanctuary.

  8. The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes.

    Science.gov (United States)

    Hiltpold, Ivan; Jaffuel, Geoffrey; Turlings, Ted C J

    2015-02-01

    To defend themselves against herbivores and pathogens, plants produce numerous secondary metabolites, either constitutively or de novo in response to attacks. An intriguing constitutive example is the exudate produced by certain root-cap cells that can induce a state of reversible quiescence in plant-parasitic nematodes, thereby providing protection against these antagonists. The effect of such root exudates on beneficial entomopathogenic nematodes (EPNs) remains unclear, but could potentially impair their use in pest management programmes. We therefore tested how the exudates secreted by green pea (Pisum sativum) root caps affect four commercial EPN species. The exudates induced reversible quiescence in all EPN species tested. Quiescence levels varied with the green pea cultivars tested. Notably, after storage in root exudate, EPN performance traits were maintained over time, whereas performances of EPNs stored in water rapidly declined. In sharp contrast to high concentrations, lower concentrations of the exudate resulted in a significant increase in EPN activity and infectiousness, but still reduced the activity of two plant-parasitic nematode species. Our study suggests a finely tuned dual bioactivity of the exudate from green pea root caps. Appropriately formulated, it can favour long-term storage of EPNs and boost their infectiousness, while it may also be used to protect plants from plant-parasitic nematodes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Survival and Movement of Insect Parasitic Nematodes in Poultry Manure and Their Infectivity Against Musca domestica

    OpenAIRE

    Georgis, Ramon; Mullens, Bradley A.; Meyer, Jeffery A.

    1987-01-01

    Survival, infectivity, and movement of three insect parasitic nematodes (Steinernema feltiae All strain, S. bibionis SN strain, and Heterorhabditis heliothidis NC strain) in poultry manure were tested under laboratory conditions. The majority (70-100%) of the nematodes died within 18 hours after exposure to the manure. Nematodes exposed to manure slurry for 6 hours killed at least 95% of the house fly larvae, Musca domestica, but nematodes exposed for 12 hours achieved less than 40% larval mo...

  10. Glutathione peroxidases of the potato cyst nematode Globodera Rostochiensis.

    Science.gov (United States)

    Jones, J T; Reavy, B; Smant, G; Prior, A E

    2004-01-07

    We report the cloning and characterisation of full-length DNAs complementary to RNA (cDNAs) encoding two glutathione peroxidases (GpXs) from a plant parasitic nematode, the potato cyst nematode (PCN) Globodera rostochiensis. One protein has a functional signal peptide that targets the protein for secretion from animal cells while the other is predicted to be intracellular. Both genes are expressed in all parasite stages tested. The mRNA encoding the intracellular GpX is present throughout the nematode second stage juvenile and is particularly abundant in metabolically active tissues including the genital primordia. The mRNA encoding the secreted GpX is restricted to the hypodermis, the outermost cellular layer of the nematode, a location from which it is likely to be secreted to the parasite surface. Biochemical studies confirmed the secreted protein as a functional GpX and showed that, like secreted GpXs of other parasitic nematodes, it does not metabolise hydrogen peroxide but has a preference for larger hydroperoxide substrates. The intracellular protein is likely to have a role in metabolism of active oxygen species derived from internal body metabolism while the secreted protein may protect the parasite from host defences. Other functional roles for this protein are discussed.

  11. Variation in the susceptibility of Drosophila to different entomopathogenic nematodes.

    Science.gov (United States)

    Peña, Jennifer M; Carrillo, Mayra A; Hallem, Elissa A

    2015-03-01

    Entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are lethal parasites of insects that are of interest as models for understanding parasite-host interactions and as biocontrol agents for insect pests. EPNs harbor a bacterial endosymbiont in their gut that assists in insect killing. EPNs are capable of infecting and killing a wide range of insects, yet how the nematodes and their bacterial endosymbionts interact with the insect immune system is poorly understood. Here, we develop a versatile model system for understanding the insect immune response to parasitic nematode infection that consists of seven species of EPNs as model parasites and five species of Drosophila fruit flies as model hosts. We show that the EPN Steinernema carpocapsae, which is widely used for insect control, is capable of infecting and killing D. melanogaster larvae. S. carpocapsae is associated with the bacterium Xenorhabdus nematophila, and we show that X. nematophila induces expression of a subset of antimicrobial peptide genes and suppresses the melanization response to the nematode. We further show that EPNs vary in their virulence toward D. melanogaster and that Drosophila species vary in their susceptibilities to EPN infection. Differences in virulence among different EPN-host combinations result from differences in both rates of infection and rates of postinfection survival. Our results establish a powerful model system for understanding mechanisms of host-parasite interactions and the insect immune response to parasitic nematode infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. EARLY ENTERAL FEEDING AND DELAYED ENTERAL FEEDING- A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Alli Muthiah

    2017-03-01

    Full Text Available BACKGROUND Nutrients form the fuel for the body, which comes in the form of carbohydrates, proteins and lipids. The body is intended to burn fuels in order to perform work. Starvation with malnutrition affects the postoperative patients and patients with acute pancreatitis. There is an increased risk of nosocomial infections and a delay in the wound healing may be noted. They are more prone for respiratory tract infections. Enteral Nutrition (EN delivers nutrition to the body through gastrointestinal tract. This also includes the oral feeding. This study will review the administration, rationale and assess the pros and cons associated with the early initiation of enteral feeding. The aim of this study is to evaluate if early commencement of enteral nutrition compared to traditional management (delayed enteral feeding is associated with fewer complications and improved outcome-  In patients undergoing elective/emergency gastrointestinal surgery.  In patients with acute pancreatitis. It is also used to determine whether a period of starvation (nil by mouth after gastrointestinal surgery or in the early days of acute pancreatitis is beneficial in terms of specific outcomes. MATERIALS AND METHODS A prospective cohort interventional study was conducted using 100 patients from July 2012 to November 2012. Patients satisfying the inclusion and exclusion criteria were included in the study. Patients admitted in my unit for GIT surgeries or acute pancreatitis constituted the test group, while patients admitted in other units for similar disease processes constituted the control group. RESULTS Our study concluded that early enteral feeding resulted in reduced incidence of surgical site infections. When the decreased length of stay, shorter convalescent period and the lesser post-interventional fatigue were taken into account, early enteral feeding has a definite cost benefit.CONCLUSION Early enteral feeding was beneficial associated with fewer

  13. PRELIMINARY SURVEY OF ENTOMOPATHOGENIC NEMATODES IN UPPER NORTHERN THAILAND.

    Science.gov (United States)

    Vitta, Apichat; Fukruksa, Chamaiporn; Yimthin, Thatcha; Deelue, Kitsakorn; Sarai, Chutima; Polseela, Raxsina; Thanwisai, Aunchalee

    2017-01-01

    Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are used as biocontrol agents for insect pests. Survey of indigenous EPNs provides not only the diversity aspects but also the contribution in pest management in local areas. The objective of this study was to survey EPNs in upper northern Thailand. Nine hundred seventy soil samples were obtained from 194 sites in upper northern region of Thailand; of these 60 (6.2%) had EPNs in 2 genera: Steinernema (32 isolates) and Heterorhabditis (28 isolates). Most EPNs were isolated from loam with a soil temperature of 24-38°C, a pH of 1.5-7.0 and a soil moisture content of 0.5-6.8%. Molecular identification based on sequencing of a partial region of an internal transcribed spacer was performed for Heterorhabditis and the 28S rDNA for Steinernema. A BLASTN search of known sequence EPNs revealed 24 isolates of S. websteri and one isolate of S. scarabaei were identified; closely related to S. websteri (accession no. JF503100) and S. scarabaei (accession no. AY172023). The Heterorhabditis species identified were: H. indica (11 isolates), H. gerrardi (2 isolates) and Heterorhabditis sp (8 isolates). Phylogenetic analysis revealed 11 isolates of Heterorhabditis were related to H. indica; 2 isolates were related to Heterorhabditis gerrardi and 8 isolates were closely related to Heterorhabditis sp SGmg3. The study results show the genetic diversity of EPNs and describe a new observation of S. scarabaei and H. gerrardi in Thailand. This finding is new and provides important information for further study on using native EPNs in biological control.

  14. Prevalence of Pasteuria SP. on Renfirom Nematode in a Georgia Cotton Field

    Science.gov (United States)

    Pasteuria species are bacterial parasites of nematodes and have been associated with suppression of root-knot, sting, and cyst nematode populations. Little is known about the Pasteuria sp. infecting the reniform nematode. While sampling a cotton field study near Cochran, GA, we found Pasteuria spo...

  15. 78 FR 27856 - Golden Nematode; Removal of Regulated Areas in Livingston and Steuben Counties, NY

    Science.gov (United States)

    2013-05-13

    .... APHIS-2012-0079] Golden Nematode; Removal of Regulated Areas in Livingston and Steuben Counties, NY... nematode regulations by removing areas in Livingston and Steuben Counties in New York from the list of... nematode, and we determined that regulation of these areas was no longer necessary. As a result of that...

  16. 7 CFR 301.85-9 - Movement of live golden nematodes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live golden nematodes. 301.85-9 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Golden Nematode Quarantine and Regulations § 301.85-9 Movement of live golden nematodes. Regulations requiring a permit for and otherwise...

  17. 78 FR 1713 - Golden Nematode; Removal of Regulated Areas in Livingston and Steuben Counties, NY

    Science.gov (United States)

    2013-01-09

    ...-0079] Golden Nematode; Removal of Regulated Areas in Livingston and Steuben Counties, NY AGENCY: Animal... are amending the golden nematode regulations by removing areas in Livingston and Steuben Counties in... areas in these two counties are free of golden nematode, and we have determined that regulation of these...

  18. A SNARE-like protein and biotin are implicated in soybean cyst nematode virulence

    Science.gov (United States)

    Some phytoparasitic nematodes have the ability to infect and reproduce on plants that are normally considered resistant to nematode infection. Such nematodes are referred to as virulent and the mechanisms they use to evade or suppress host plant defenses are not well understood. Here, we report the ...

  19. Feeding Your Baby

    Medline Plus

    Full Text Available ... for your baby Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & premature birth ... for your baby Feeding your baby Family health & safety Complications & Loss Pregnancy complications Preterm labor & premature birth ...

  20. Feeding Your Baby

    Medline Plus

    Full Text Available ... questions Email sign up Join our online community Home > Baby > Feeding your baby Feeding your baby E- ... We're working to radically improve the health care they receive. We're pioneering research to find ...

  1. Feeding Your Baby

    Medline Plus

    Full Text Available ... fitness Prenatal care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your ... fitness Prenatal care Is it safe? Labor & birth Postpartum care Baby Caring for your baby Feeding your ...

  2. Feeding Your Baby

    Medline Plus

    Full Text Available ... Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in all fields. Please enter a valid e-mail address. Your information: Your recipient's information: Your ...

  3. Feeding tube - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  4. Gastrostomy feeding tube - bolus

    Science.gov (United States)

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... KEY, 3 to 8 weeks after surgery. These feedings will help your child grow strong and healthy. ...

  5. Feeding Your Baby

    Medline Plus

    Full Text Available ... Frequently asked questions Email sign up Join our online community Home > Baby > Feeding your baby Feeding your baby E-mail to a friend Please fill in all fields. Please enter a ...

  6. Feeding Your Baby

    Medline Plus

    Full Text Available ... Frequently asked questions Email sign up Join our online community March for Babies Nacersano Share Your Story ... Frequently asked questions Email sign up Join our online community Home > Baby > Feeding your baby Feeding your ...

  7. How does supplementary feeding affect endoparasite infection in wild boar?

    DEFF Research Database (Denmark)

    Oja, Ragne; Velstrom, Kaisa; Moks, Epp

    2017-01-01

    was associated with both wild boar and feeding site density, whereas the presence of Eimeria sp. oocysts in faecal samples was only associated with wild boar density. Helminth eggs were found more often from the soil of active and abandoned feeding sites than from control areas. This could reflect parasitic...

  8. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    Science.gov (United States)

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  9. Induction of mutations for nematode resistance in tomato

    International Nuclear Information System (INIS)

    Alameddine, A.

    1976-01-01

    The objective of this work is to develop resistance to root-knot nematodes in tomato by induction, selection and utilization of the newly created resistant strains. Seeds of two varieties of tomato Lycopersicon esculentum L., namely Amcopack and Supermarmande, were subjected to various doses of gamma rays ranging from 10 Krads to 40 Krads in an effort to gain resistance to Meloidogyne incognita Chitwood, the prevalent species of nematodes in Lebanon. The variety Supermarmande seemed not to be affected by irradiation while Amcopack gained some resistance with a corresponding increase in the dose of radiation. The data suggest that in a variety like Amcopack, irradiation may stimulate resistance while in others like Supermarmande, susceptibility is not reduced with a corresponding increase of dosage. Those alterations in reaction within varieties may be due to genetic differences which allow some varieties to acquire resistance to nematodes when exposed to certain dosages, while others to suffer seriously due to sensitivity. (author)

  10. Small-molecule pheromones and hormones controlling nematode development.

    Science.gov (United States)

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  11. Nematode spatial and ecological patterns from tropical and temperate rainforests.

    Directory of Open Access Journals (Sweden)

    Dorota L Porazinska

    Full Text Available Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates, but not for microscopic organisms (e.g. nematodes. Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1 nematode communities were unique without even a single common species between the two rainforests, 2 nematode communities were unique among habitats in both rainforests, 3 total species richness was 300% more in the tropical than in the temperate rainforest, 4 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5 more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats and large (rainforests spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota.

  12. Nematode Spatial and Ecological Patterns from Tropical and Temperate Rainforests

    Science.gov (United States)

    Porazinska, Dorota L.; Giblin-Davis, Robin M.; Powers, Thomas O.; Thomas, W. Kelley

    2012-01-01

    Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. PMID:22984536

  13. [Screening endophytic bacteria against plant-parasitic nematodes].

    Science.gov (United States)

    Peng, Shuang; Yan, Shuzhen; Chen, Shuanglin

    2011-03-01

    Plant-parasite nematode is one of the most important pathogens in plant. Our objective is to screen endophytic bacteria against plant-parasitic nematodes from plant. Endophytic bacteria were isolated and screened by testing their metabolite against Bursaphelenchus xylophilus in vitro. Those strains inhibiting B. xylophilus were selected to culture in liquid medium and fermentation conditions were optimized by orthogonal test. The stability of the antinematode substances was evaluated by various. In addition, four strains were identified by 16SrDNA sequence analysis. In total 13 strains of endophytic bacteria secreting antinematode metabolite were isolated from 6 species of plant. The supernatant of the fermentation broth of these endophytic bacteria gave 100% mortality of nematodes after treated as the follows: 1 ml each was mixed with 0.2 ml of the suspension of nematodes (2000 nematodes/ml) then incubated at 250C for 24 h, some of which could led to leakage or dissolution of nematodes. Among them, four strains, BCM2, SZ5, CCM7 and DP1, showed stronger activity than others. The supernatants diluted three times also gave not less than 95% mortality after 24 h treatment, and those from DP1 and SZ5 even gave 100% mortality. The fermentation conditions of the four strains were optimized and the antinematode activity grew up four times after optimization. The antinematode substances of these strains were found stable when treated with protease or heating or stored at 4 degrees C after 100 days, while instable when treated with acid or alkali. DP1 and CCM7 were identified to be Bacillus subtilis, while SZ5 and BCM2 to be Bacillus cereus. Endophytic bacteria secreting antinematode metabolite were found in economic crops. The metabolite of some strains showed strong and stable antinematode activity. Our results indicate the real potential of biocontrol by endophytic bacteria.

  14. Viability and Virulence of Entomopathogenic Nematodes Exposed to Ultraviolet Radiation.

    Science.gov (United States)

    Shapiro-Ilan, David I; Hazir, Selcuk; Lete, Luis

    2015-09-01

    Entomopathogenic nematodes (EPNs) can be highly effective biocontrol agents, but their efficacy can be reduced due to exposure to environmental stress such as from ultraviolet (UV) radiation. Our objectives were to 1) compare UV tolerance among a broad array of EPN species, and 2) investigate the relationship between reduced nematode viability (after exposure to UV) and virulence. Nematodes exposed to a UV radiation (254 nm) for 10 or 20 min were assessed separately for viability (survival) and virulence to Galleria mellonella. We compared 9 different EPN species and 15 strains: Heterorhabditis bacteriophora (Baine, fl11, Oswego, and Vs strains), H. floridensis (332), H. georgiana (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All, Cxrd, DD136, and Sal strains), S. feltiae (SN), S. rarum (17C&E), and S. riobrave (355). In viability assessments, steinernematids, particularly strains of S. carpocapsae, generally exhibited superior UV tolerance compared with the heterorhabditids. However, some heterorhabditids tended to be more tolerant than others, e.g., H. megidis and H. bacteriophora (Baine) were most susceptible and H. bacteriophora (Vs) was the only heterorhabditid that did not exhibit a significant effect after 10 min of exposure. All heterorhabditids experienced reduced viability after 20 min exposure though several S. carpocapsae strains did not. In total, after 10 or 20 min exposure, the viability of seven nematode strains did not differ from their non-UV exposed controls. In virulence assays, steinernematids (particularly S. carpocapsae strains) also tended to exhibit higher UV tolerance. However, in contrast to the viability measurements, all nematodes experienced a reduction in virulence relative to their controls. Correlation analysis revealed that viability among nematode strains is not necessarily related to virulence. In conclusion, our results indicate that the impact of UV varies substantially among EPNs, and viability alone

  15. Modelling nematode movement using time-fractional dynamics.

    Science.gov (United States)

    Hapca, Simona; Crawford, John W; MacMillan, Keith; Wilson, Mike J; Young, Iain M

    2007-09-07

    We use a correlated random walk model in two dimensions to simulate the movement of the slug parasitic nematode Phasmarhabditis hermaphrodita in homogeneous environments. The model incorporates the observed statistical distributions of turning angle and speed derived from time-lapse studies of individual nematode trails. We identify strong temporal correlations between the turning angles and speed that preclude the case of a simple random walk in which successive steps are independent. These correlated random walks are appropriately modelled using an anomalous diffusion model, more precisely using a fractional sub-diffusion model for which the associated stochastic process is characterised by strong memory effects in the probability density function.

  16. Use of copper oxide wire particles to control gastrointestinal nematodes in goats.

    Science.gov (United States)

    Burke, J M; Terrill, T H; Kallu, R R; Miller, J E; Mosjidis, J

    2007-10-01

    The objectives of these experiments were to determine the optimal dose of copper oxide wire particles (COWP) necessary to reduce gastrointestinal nematode (GIN) infection in young and mature goats naturally infected with Haemonchus contortus or a mixed infection and to determine whether the effectiveness could be enhanced through feeding management. Two experiments were conducted during cooler months in Georgia, and 4 experiments were conducted during warmer spring or summer months in Arkansas. Meat goats received 0 up to 10 g of COWP under a variety of management conditions. In all experiments, blood and feces were collected every 3 or 7 d from 6 to 42 d to determine blood packed cell volume (PCV) and fecal egg counts (FEC) to estimate the degree of GIN infection. In mature goats grazing fall pasture, mean FEC of 0 g of COWP-treated goats increased, and those of 4 g of COWP-treated goats remained low on d 0, 7, and 14 (COWP x d, P 0.10), which were lower on d 7 through 21 (COWP x date, P copper toxicity, was effective in reducing FEC in young goats, and 5 g of COWP was effective in older goats. Copper oxide does not appear to be effective in controlling newly acquired L4 stage (preadult) larvae, which also feed on blood, leading to decreased PCV in newly infected goats.

  17. Survey of the marine benthic infauna collected from the United States radioactive waste disposal sites off the Farallon Islands, California. Final report

    International Nuclear Information System (INIS)

    Reish, D.J.

    1983-01-01

    Benthic biological samples were taken in 1977 from the vicinity of the Farallon Islands radioactive waste disposal sites for characterization of the infaunal macroinvertebrates and foraminifera. A total of 120 invertebrate species were collected, of which 75 species (63 percent) were polychaetes. Forty-three of these polychaete species have not previously been reported from depths greater than 1000m. A total of 1044 macroinvertebrate specimens were collected of which 54 percent were polychates. Only the nematods were present at all six benthic stations, but the community structure was dominated by the polychaetes Tauberia gracilis, Allia pulchra, Chaetozone setosa, and Cossura candida. Living and dead foraminifera were reported. The possible role of polychaetes in bioturbation and in the marine food chain is briefly discussed with respect to the various polychaete feeding mechanisms

  18. Assessments of iodoindoles and abamectin as inducers of methuosis in pinewood nematode, Bursaphelenchus xylophilus.

    Science.gov (United States)

    Rajasekharan, Satish Kumar; Lee, Jin-Hyung; Ravichandran, Vinothkannan; Lee, Jintae

    2017-07-28

    Bursaphelenchus xylophilus is a quarantined migratory endoparasite known to cause severe economic losses in pine forest ecosystems. The study presents the nematicidal effects of halogenated indoles on B. xylophilus and their action mechanisms. 5-Iodoindole and abamectin (positive control) at low concentration (10 µg/mL) presented similar and high nematicidal activities against B. xylophilus. 5-Iodoindole diminished fecundity, reproductive activities, embryonic and juvenile lethality and locomotor behaviors. Molecular interactions of ligands with invertebrate-specific glutamate gated chloride channel receptor reinforced the notion that 5-iodoindole, like abamectin, rigidly binds to the active sites of the receptor. 5-Iodoindole also induced diverse phenotypic deformities in nematodes including abnormal organ disruption/shrinkage and increased vacuolization. These findings suggest the prospective role of vacuoles in nematode death by methuosis. Importantly, 5-iodoindole was nontoxic to two plants, Brassica oleracea and Raphanus raphanistrum. Henceforth, the study warrants the application of iodoindoles in ecological environments to control the devastating pine destruction by B. xylophilus.

  19. Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats.

    Science.gov (United States)

    Ramasindrazana, Beza; Dellagi, Koussay; Lagadec, Erwan; Randrianarivelojosia, Milijaona; Goodman, Steven M; Tortosa, Pablo

    2016-01-01

    We investigated filarial infection in Malagasy bats to gain insights into the diversity of these parasites and explore the factors shaping their distribution. Samples were obtained from 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 species currently recognized on the island. Samples were screened for the presence of micro- and macro-parasites through both molecular and morphological approaches. Phylogenetic analyses showed that filarial diversity in Malagasy bats formed three main groups, the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); a second group infecting Pipistrellus cf. hesperidus (Vespertilionidae) embedded within the Litomosoides cluster, which is recognized herein for the first time from Madagascar; and a third group composed of lineages with no clear genetic relationship to both previously described filarial nematodes and found in M. griveaudi, Myotis goudoti, Neoromicia matroka (Vespertilionidae), Otomops madagascariensis (Molossidae), and Paratriaenops furculus (Hipposideridae). We further analyzed the infection rates and distribution pattern of Litomosa spp., which was the most diverse and prevalent filarial taxon in our sample. Filarial infection was disproportionally more common in males than females in Miniopterus spp., which might be explained by some aspect of roosting behavior of these cave-dwelling bats. We also found marked geographic structure in the three Litomosa clades, mainly linked to bioclimatic conditions rather than host-parasite associations. While this study demonstrates distinct patterns of filarial nematode infection in Malagasy bats and highlights potential drivers of associated geographic distributions, future work should focus on their alpha taxonomy and characterize arthropod vectors.

  20. Breast-Feeding Twins: Making Feedings Manageable

    Science.gov (United States)

    ... Department of Health and Human Services Office on Women's Health. http://www.womenshealth.gov/publications/our-publications/breastfeeding-guide. Accessed March 11, 2015. Shelov SP, et al. Feeding your ...

  1. Feed safety in the feed supply chain

    Directory of Open Access Journals (Sweden)

    Pinotti, L.

    2011-01-01

    Full Text Available A number of issues have weakened the public's confidence in the quality and wholesomeness of foods of animal origin. As a result farmers, nutritionists, industry and governments have been forced to pay serious attention to animal feedstuff production processes, thereby acknowledging that animal feed safety is an essential prerequisite for human food safety. Concerns about these issues have produced a number of important effects including the ban on the use of processed animal proteins, the ban on the addition of most antimicrobials to farm animals diets for growth‐promotion purposes, and the implementation of feed contaminant regulations in the EU. In this context it is essential to integrate knowledge on feed safety and feed supply. Consequently, purchase of new and more economic sources of energy and protein in animal diets, which is expected to conform to adequate quality, traceability, environmental sustainability and safety standards, is an emerging issue in livestock production system.

  2. The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny

    Science.gov (United States)

    2013-01-01

    Background Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages. Results We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement. Conclusions Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome

  3. A Simple Method to Measure Nematodes' Propulsive Thrust and the Nematode Ratchet.

    Science.gov (United States)

    Bau, Haim; Yuan, Jinzhou; Raizen, David

    2015-11-01

    Since the propulsive thrust of micro organisms provides a more sensitive indicator of the animal's health and response to drugs than motility, a simple, high throughput, direct measurement of the thrust is desired. Taking advantage of the nematode C. elegans being heavier than water, we devised a simple method to determine the propulsive thrust of the animals by monitoring their velocity when swimming along an inclined plane. We find that the swimming velocity is a linear function of the sin of the inclination angle. This method allows us to determine, among other things, the animas' propulsive thrust as a function of genotype, drugs, and age. Furthermore, taking advantage of the animals' inability to swim over a stiff incline, we constructed a sawteeth ratchet-like track that restricts the animals to swim in a predetermined direction. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  4. [Diversity of actinomycetes associated with root-knot nematode and their potential for nematode control].

    Science.gov (United States)

    Luo, Hong-li; Sun, Man-hong; Xie, Jian-ping; Liu, Zhi-heng; Huang, Ying

    2006-08-01

    Twenty actinomycetes were isolated from root-knot nematode eggs and females collected from 11 plant root samples infested by Meloidogyne spp.. The isolates were assigned to the genera Streptomyces, Nocardia and Pseudonocardia respectively, based on analysis of morphological characteristics, cell-wall DAPs and 16S rRNA gene sequences. 80% of them were streptomycetes. Biocontrol potential of the isolates against Meloidogyne hapla was evaluated in liquid culture in vitro. The average percentages of egg parasitism, egg hatching, and juvenile mortality were 54.1, 40.4 and 26.2, respectively. Three Streptomyces strains and one Nocardia strain with high pathogenicity in vitro were selected to determine their ability to reduce tomato root galls in greenhouse. The results demonstrated good biocontrol efficacy (31.4%-56.4%) of the strains.

  5. Differential Selection by Nematodes on an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil.

    Science.gov (United States)

    Kim, Tae Gwan; Knudsen, Guy R

    2018-03-15

    Trophic interactions of introduced biocontrol fungi with soil animals can bea key determinant in the fungal proliferation and activity.This study investigated trophic interaction of an introduced biocontrol fungus with soil nematodes. The biocontrol fungus Trichoderma harzianum ThzID1-M3 and the fungivorous nematode Aphelenchoides sp. (10 per gram of soil) were added to nonsterile soil, and microbial populations were monitored for 40 days. Similar results were obtained when the experiment was duplicated. ThzID1-M3 stimulated the population growth of indigenous nematodes ( p nematodes did not increase in number and the added Aphelenchoides sp. nematodes almost disappeared by day 10. With ThzID1-M3, population growth of nematodes was rapid between 5 and 10 days after treatment. ThzID1-M3 biomass peaked on day 5, dropped at day 10, and then almost disappeared at day 20, which was not influenced by the addition of nematodes.In contrast, a large quantity of ThzID1-M3 hyphae were present in a heat-treated soil in which nematodes were eliminated.Total fungal biomass in all treatments peaked on day 5 and subsequently decreased.Addition of nematodes increased the total fungal biomass ( p nematode population growth; however, hyphae of the introduced fungus when densely localized did.The results suggest that soil fungivorous nematodes are an important constraint onhyphal proliferation of fungal agents introduced into natural soils.

  6. High-throughput sequencing of nematode communities from total soil DNA extractions

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    nematodes without the need for enrichment was developed. Using this strategy on DNA templates from a set of 22 agricultural soils, we obtained 64.4% sequences of nematode origin in total, whereas the remaining sequences were almost entirely from other metazoans. The nematode sequences were derived from...... in previous sequence-based studies are not nematode specific but also amplify other groups of organisms such as fungi and plantae, and thus require a nematode enrichment step that may introduce biases. Results: In this study an amplification strategy which selectively amplifies a fragment of the SSU from...... a broad taxonomic range and most sequences were from nematode taxa that have previously been found to be abundant in soil such as Tylenchida, Rhabditida, Dorylaimida, Triplonchida and Araeolaimida. Conclusions: Our amplification and sequencing strategy for assessing nematode diversity was able to collect...

  7. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  8. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    Science.gov (United States)

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  9. The dynamics of nematode infections of farmed ruminants

    NARCIS (Netherlands)

    Roberts, M.G.; Heesterbeek, J.A.P.

    1995-01-01

    In this paper the dynamics and control of nematode parasites of farmed ruminants are discussed via a qualitative analysis of a differential equation model. To achieve this a quantity, 'the basic reproduction quotient' (Q0), whose definition coincides with previous definitions of R0 for

  10. Foraging behavior and virulence of some entomopathogenic nematodes

    Directory of Open Access Journals (Sweden)

    Manana A. Lortkipanidze

    2016-06-01

    Full Text Available At present the biological control as a pest control technology is becoming more desirable. Biological formulations on basis of entomopathogenic nematodes are one of the effective means for the protection of agricultural and forest plants from harmful insects. Nowadays, the use of entomopathogenic nematodes as biological control agents is a key component in IPM system. The foraging strategies of entomopathogenic nematodes (EPNs vary between species. This variation is consistent with use of different foraging strategies between ambush, cruise and intermediate to find their host insects. In order to ambush prey, some species of EPNs nictate, or raise their bodies of the soil surface so they are better poised to attach passing insects, other species adopt a cruising strategy and rarely nictate. Some species adopt an intermediate strategy between ambush and cruise. We compared in laboratory the foraging strategies of the entomopathogenic nematode species: Steinernema carpocapsae, Heterorhabditis bacteriophora and the recently described species Steinernema tbilisiensis and assessed their virulence against mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae. The tests showed that S. tbilisiensis adopts both foraging strategies.

  11. Pack hunting by a common soil amoeba on nematodes

    NARCIS (Netherlands)

    Geisen, Stefan; Rosengarten, J.; Koller, R.; Mulder, Christian; Urich, T.; Bonkowski, M.

    2015-01-01

    Soils host the most complex communities on Earth,
    including the most diverse and abundant eukaryotes,
    i.e. heterotrophic protists. Protists are generally con-
    sidered as bacterivores, but evidence for negative
    interactions with nematodes both from laboratory and
    field studies

  12. A critique of current methods in nematode taxonomy | Abebe ...

    African Journals Online (AJOL)

    In the past few decades, there have been efforts to integrate molecular methods and digital 3D image-capturing technology in nematode taxonomy, the former to enhance the accuracy of identification of such a taxonomically challenging group and the latter to communicate morphological data. While the employment of ...

  13. Nematode Infections Are Risk Factors for Staphylococcal Infection in Children

    Directory of Open Access Journals (Sweden)

    Sandra F Moreira-Silva

    2002-04-01

    Full Text Available Nematode infection may be a risk factor for pyogenic liver abscess in children and we hypothesized that the immunomodulation induced by those parasites would be a risk factor for any staphylococcal infection in children. The present study was designed to compare, within the same hospital, the frequency of intestinal nematodes and Toxocara infection in children with and without staphylococcal infections. From October 1997 to February 1998, 80 children with staphylococcal infection and 110 children with other diseases were submitted to fecal examination, serology for Toxocara sp., evaluation of plasma immunoglobulin levels, and eosinophil counts. Mean age, gender distribution, birthplace, and socioeconomic conditions did not differ significantly between the two groups. Frequency of intestinal nematodes and positive serology for Toxocara, were remarkably higher in children with staphylococcal infections than in the non-staphylococcal group. There was a significant correlation between intestinal nematodes or Toxocara infection and staphylococcal infection in children, reinforced by higher eosinophil counts and higher IgE levels in these children than in the control group. One possible explanation for this association would be the enhancement of bacterial infection by the immunomodulation induced by helminth infections, due to strong activation of the Th2 subset of lymphocytes by antigens from larvae and adult worms.

  14. Human Intraocular Filariasis Caused by Dirofilaria sp. Nematode, Brazil

    Science.gov (United States)

    Diniz, Daniel G.; Dantas-Torres, Filipe; Casiraghi, Maurizio; de Almeida, Izabela N.F.; de Almeida, Luciana N.F.; Nascimento dos Santos, Jeannie; Furtado, Adriano Penha; Sobrinho, Edmundo F. de Almeida; Bain, Odile

    2011-01-01

    A case of human intraocular dirofilariasis is reported from northern Brazil. The nematode was morphologically and phylogenetically related to Dirofilaria immitis but distinct from reference sequences, including those of D. immitis infesting dogs in the same area. A zoonotic Dirofilaria species infesting wild mammals in Brazil and its implications are discussed. PMID:21529396

  15. Biochemical and Molecular Characterization of Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    I.M. de O. Abrantes

    2004-08-01

    Full Text Available Nematologists need correct species identification to carry out research, teaching, extension and other activities. Therefore, nematode taxonomy must be pursued diligently at all levels. The identification of plant-parasitic nematodes is not always easy and that of some species is especially difficult. Most of the information that nematologists use when characterizing and identifying specimens is based on morphological and morphometrical characters. Although these characters are of primary importance, in the last three decades they have been supplemented by biochemical/ molecular characters. Biochemical approaches include the separation of proteins (general proteins and isozymes by one-dimensional gel electrophoresis, isoelectric focusing, two-dimensional gel electrophoresis, and sodium dodecyl sulphate-capillary gel electrophoresis. Serology has also been found effective in the identification and quantification of nematodes, monoclonal antibodies being a more useful immunological tool than polyclonal antibodies. Identification based on the direct examination of DNA is potentially a more powerful method to characterize inter- and intra-specific variability. The development of techniques such as the polymerase chain reaction, restriction fragment length polymorphism, randomly amplified polymorphic DNA, and amplified fragment length polymorphism has increased the accuracy and speed of nematode characterization/identification. Progress continues to be made and more and more nematologists are using molecular techniques for diagnostic purposes and to assess genetic variation.

  16. Evolutionary history of nematodes associated with sweat bees.

    Science.gov (United States)

    McFrederick, Quinn S; Taylor, Douglas R

    2013-03-01

    Organisms that live in close association with other organisms make up a large part of the world's diversity. One driver of this diversity is the evolution of host-species specificity, which can occur via reproductive isolation following a host-switch or, given the correct circumstances, via cospeciation. In this study, we explored the diversity and evolutionary history of Acrostichus nematodes that are associated with halictid bees in North America. First, we conducted surveys of bees in Virginia, and found six halictid species that host Acrostichus. To test the hypothesis of cospeciation, we constructed phylogenetic hypotheses of Acrostichus based on three genes. We found Acrostichus puri and Acrostichus halicti to be species complexes comprising cryptic, host-specific species. Although several nodes in the host and symbiont phylogenies were congruent and tests for cospeciation were significant, the host's biogeography, the apparent patchiness of the association across the host's phylogeny, and the amount of evolution in the nematode sequence suggested a mixture of cospeciation, host switching, and extinction events instead of strict cospeciation. Cospeciation can explain the relationships between Ac. puri and its augochlorine hosts, but colonization of Halictus hosts is more likely than cospeciation. The nematodes are vertically transmitted, but sexual transmission is also likely. Both of these transmission modes may explain host-species specificity and congruent bee and nematode phylogenies. Additionally, all halictid hosts come from eusocial or socially polymorphic lineages, suggesting that sociality may be a factor in the suitability of hosts for Acrostichus. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Genetic diversity of the potato cyst nematode in the Netherlands

    NARCIS (Netherlands)

    Folkertsma, R.T.

    1997-01-01


    The potato cyst nematodes Globodera rostochiensis (Woll.) Skarbilovich and G. pallida (Stone) originate from the Andes region in South America and have been introduced into Western Europe since 1850. Both species are

  18. Endogenous cellulases in stylet secretions of cyst nematodes

    NARCIS (Netherlands)

    Smant, G.

    1998-01-01

    This thesis describes the identification ofβ-1,4-endoglucanases (cellulases) in stylet secretions of the two cyst nematodes species, Globodera rostochiensis and Heterodera glycines . A novel method was developed to raise monoclonal antibodies that were

  19. Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes.

    Science.gov (United States)

    Shapiro-Ilan, David; Raymond, Ben

    2016-03-01

    Cooperative secretion of virulence factors by pathogens can lead to social conflict when cheating mutants exploit collective secretion, but do not contribute to it. If cheats outcompete cooperators within hosts, this can cause loss of virulence. Insect parasitic nematodes are important biocontrol tools that secrete a range of significant virulence factors. Critically, effective nematodes are hard to maintain without live passage, which can lead to virulence attenuation. Using experimental evolution, we tested whether social cheating might explain unstable virulence in the nematode Heterorhabditis floridensis by manipulating relatedness via multiplicity of infection (MOI), and the scale of competition. Passage at high MOI, which should reduce relatedness, led to loss of fitness: virulence and reproductive rate declined together and all eight independent lines suffered premature extinction. As theory predicts, relatedness treatments had more impact under stronger global competition. In contrast, low MOI passage led to more stable virulence and increased reproduction. Moreover, low MOI lineages showed a trade-off between virulence and reproduction, particularly for lines under stronger between-host competition. Overall, this study indicates that evolution of virulence theory is valuable for the culture of biocontrol agents: effective nematodes can be improved and maintained if passage methods mitigate possible social conflicts.

  20. Farmer evaluation of biocontrol methods against rootknot nematodes in tomatoes

    OpenAIRE

    McLeod, Anni; Ndungu, Beth; Karanja, Daniel; Karanja, Peter

    2002-01-01

    This report was presented at the UK Organic Research 2002 Conference. Root-knot nematodes in tomatoes cause financial loss to Kenyan smallholders. While soil fumigation appears to be losing effectiveness two bio-control agents (bcas), Pasteuria penetrans and Verticillium chlamydosporium, appear promising. Participatory budgeting is being used to compare the bcas with chemical and other biological controls on commercial and organic smallholdings.

  1. Mechanisms Involved in Nematode Control by Endophytic Fungi

    NARCIS (Netherlands)

    Schouten, Sander

    2016-01-01

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood

  2. Parasitic nematodes in the chimpanzee population on Rubondo Island, Tanzania

    Czech Academy of Sciences Publication Activity Database

    Petrželková, Klára Judita; Hasegawa, H.; Moscovice, L. R.; Kaur, T.; Issa, M. H.; Huffman, M. A.

    2006-01-01

    Roč. 27, č. 3 (2006), s. 767-777 ISSN 0164-0291 Institutional research plan: CEZ:AV0Z60930519 Keywords : chimpanzee * introduced population * nematode * new parasite record * Rubondo Island Subject RIV: EG - Zoology Impact factor: 1.331, year: 2006

  3. Top 10 plant-parasitic nematodes in molecular plant pathology

    NARCIS (Netherlands)

    Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; Perry, R.N.

    2013-01-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a ‘top 10’ list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region

  4. Nematodes inhabit soils of forest and clear-cut areas

    Science.gov (United States)

    Alex L. Shigo; George Yelenosky

    1960-01-01

    Nematodes are present in all forest soils, but their effects on forest trees are not known. The known destructive nature of these worms on other woody crops suggests that they may also be involved in causing some of the unexplainable losses in vigor and mortality of forest trees.

  5. Nematodes for the biological control of the woodwasp, Sirex noctilio

    Science.gov (United States)

    Robin A. Bedding

    2007-01-01

    The tylenchid nematode Beddingia (Deladenus) siricidicola (Bedding) is by far the most important control agent of Sirex noctilio F., a major pest of pine plantations. It sterilizes female sirex, is density dependent, can achieve nearly 100 percent parasitism and, as a result of its complicated biology can be readily manipulated for sirex control. Bedding and Iede (2005...

  6. Effect of entomopathogenic nematodes on Plectrodera scalator (Fabricius) (Coleoptera: Cerambycidae)

    Science.gov (United States)

    Declan J. Fallon; Leellen F. Solter; Leah S. Bauer; Deborah L. Miller; James R. Cate; Michael L. McManus

    2006-01-01

    Entomopathogenic nematodes were screened for efficacy against the cottonwood borer, Plectrodera scalator (Fabricius). Steinernema feltiae SN and S. carpocapsae All killed 58 and 50% of larvae, respectively, in Wlter paper bioassays but less than 10% in diet cup bioassays. S. glaseri NJ, S. riobrave TX, and H. indica MG-13 killed less than 10% of larvae in both assays....

  7. Mitochondrial genome diversity in dagger and needle nematodes (Nematoda: Longidoridae).

    Science.gov (United States)

    Palomares-Rius, J E; Cantalapiedra-Navarrete, C; Archidona-Yuste, A; Blok, V C; Castillo, P

    2017-02-02

    Dagger and needle nematodes included in the family Longidoridae (viz. Longidorus, Paralongidorus, and Xiphinema) are highly polyphagous plant-parasitic nematodes in wild and cultivated plants and some of them are plant-virus vectors (nepovirus). The mitochondrial (mt) genomes of the dagger and needle nematodes, Xiphinema rivesi, Xiphinema pachtaicum, Longidorus vineacola and Paralongidorus litoralis were sequenced in this study. The four circular mt genomes have an estimated size of 12.6, 12.5, 13.5 and 12.7 kb, respectively. Up to date, the mt genome of X. pachtaicum is the smallest genome found in Nematoda. The four mt genomes contain 12 protein-coding genes (viz. cox1-3, nad1-6, nad4L, atp6 and cob) and two ribosomal RNA genes (rrnL and rrnS), but the atp8 gene was not detected. These mt genomes showed a gene arrangement very different within the Longidoridae species sequenced, with the exception of very closely related species (X. americanum and X. rivesi). The sizes of non-coding regions in the Longidoridae nematodes were very small and were present in a few places in the mt genome. Phylogenetic analysis of all coding genes showed a closer relationship between Longidorus and Paralongidorus and different phylogenetic possibilities for the three Xiphinema species.

  8. Radiation Effects on Nematodes: Results from IML-1 Esperiments

    Science.gov (United States)

    Nelson, G. A.; Schubert, W. W.; Kazarians, G. A.; Righards, G. F.; Benton, E. V; Benton, E. R.; Henke, R.

    1993-01-01

    The nematode Caenorhabditis elegans was exposed to natural space radiation using the ESA Biorack facility aboard Spacelab on International Microgravity Laboratory 1, STS-42. For the major experimental objective dormant animals were suspended in buffer or on agar or immobilized next to CR-39 plactic nuclear track detectors to correlate fluence of HZE particles with genetic events.

  9. Anthelmintic effects of forage chicory against parasitic nematodes in cattle

    DEFF Research Database (Denmark)

    Pena-Espinoza, Miguel Angel; Williams, Andrew; Thamsborg, Stig Milan

    BACKGROUND: Chicory (Cichorium intybus) has potential as a natural anthelmintic in livestock, however evidence of efficacy against cattle nematodes is lacking. Here, we investigated anthelmintic effects of chicory in stabled calves. METHODS: Jersey male calves (2-4 months) were stratified by live...

  10. Response of Pinus ponderosa Seedlings to Stylet-Bearing Nematodes

    Science.gov (United States)

    Viglierchio, D. R.

    1979-01-01

    Of 12 stylet-bearing nematodes used for inoculations, Pratylenchus penetrans, P. brachyurus, P. vulnus, Ditylenchus destructor, Meloidogyne incognita, M. javanica, and M. hapla reproduced on Pinus ponderosa, while Xiphinema index, Aphelenchus avenae, Paratylenehus neoamblycephalus, Tylenchulus semipenetrans, and Macroposthonia xenoplax did not. P. vulnus, P. brachyurus, P. penetrans, A. avenae, D. destructor, T. semipenetrans, and P. neoamblycephalus significantly suppressed both the shoot and root wet weights of ponderosa pine seedlings obtained from stands in five different locations. X. index significantly suppressed root wet weights, M. xenoplax siguificantly suppressed shoot wet weight, and M. incognita, M. javanica, and M. hapla suppressed neither at the inoculation levels used. Injurious nematodes tended to suppress root growth more than shoot growth. Seedlings from two locations produced greater shoot growth wet weight than did seedlings from the other three locations. The more injurious nematodes tended to cause an increase in the water content of shoots. Frequency analyses of seedling population shoot-root ratios indicated that ponderosa pine seedlings could be selected for better shoot-root ratios as well as for resistance to several pathogenic nematodes. PMID:19300659

  11. Comparing different maize supplementation strategies to improve resilience and resistance against gastrointestinal nematode infections in browsing goats.

    Science.gov (United States)

    Gárate-Gallardo, Leslie; Torres-Acosta, Juan Felipe de Jesús; Aguilar-Caballero, Armando Jacinto; Sandoval-Castro, Carlos Alfredo; Cámara-Sarmiento, Ramón; Canul-Ku, Hilda Lorena

    2015-01-01

    The effect of maize grain supplementation on the resilience and resistance of browsing Criollo goat kids against gastrointestinal nematodes was evaluated. Five-month-old kids (n = 42), raised worm-free, were allocated to five groups: infected + not supplemented (I-NS; n = 10), infected + maize supplement at 108 g/d (I-S108; n = 8), maize supplement at 1% of body weight (BW) (I-S1%; n = 8), maize supplement at 1.5% BW (I-S1.5%; n = 8), or infected + supplemented (maize supplement 1.5% BW) + moxidectin (0.2 mg/kg BW subcutaneously every 28 d) (T-S1.5%; n = 8). Kids browsed daily (7 h) in a tropical forest for 112 days during the rainy season. Kids were weighed weekly to adjust supplementary feeding. Hematocrit (Ht), hemoglobin (Hb), and eggs per gram of feces were determined fortnightly. On day 112, five goat kids were slaughtered per group to determine worm burdens. Kids of the I-S1.5% group showed similar body-weight change, Ht and Hb, compared to kids without gastrointestinal nematodes (T-S1.5%), as well as lower eggs per gram of feces and Trichostrongylus colubriformis worm burden compared to the I-NS group (P > 0.05). Thus, among the supplement levels tested, increasing maize supplementation at 1.5% BW of kids was the best strategy to improve their resilience and resistance against natural gastrointestinal nematode infections under the conditions of forage from the tropical forest. © L. Gárate-Gallardo et al., published by EDP Sciences, 2015.

  12. Prevalence and risk factors associated with gastrointestinal nematode infection in goats raised in Baybay city, Leyte, Philippines

    Directory of Open Access Journals (Sweden)

    Ariel Paul M. Rupa

    2016-07-01

    Full Text Available Aim: Gastrointestinal parasitism is a serious constraint affecting goat production in the Philippines. This study aimed to determine the prevalence and associated risk factors of gastrointestinal nematode infection in goat-populated barangays of Baybay City, Leyte. Materials and Methods: A total of 81 households or farms were interviewed, and 450 goats were sampled for fecalysis. Fecal egg count along with egg morphological identification and coproculture for third stage larvae identification were conducted. Descriptive statistics and logistic regression analyses were carried out to determine the farm- and animal-level prevalence and risk factors. Results: Fecalysis revealed the presence of strongyle and Trichuris spp. with a farm-level prevalence of 100% and 4.94%, respectively; and animal-level prevalence of 96.22% and 4.44%, respectively. The identified strongyle genera per barangay were Haemonchus spp. (34.79%, Trichostrongylus spp. (33.29%, Oesophagostomum spp. (24.21%, Cooperia spp. (6.93%, and Chabertia spp. (0.79%. Goats older than 12 months were four times more likely to present high strongyle burden when compared to goats <6 months. With each month increase in goat’s age, the odds of acquiring strongyle infection also increased by 1.07 times. Animals kept in goat house with cemented flooring have lower odds of acquiring strongyle (odds ratio=0.12. Goats raised for leisure purposes and fed with carabao grass (Paspalum conjugatum were 8.12 and 5.52 times more likely to acquire Trichuris, respectively. Conclusion: Most of the backyard goat raisers in Baybay City, Leyte, do not practice sound helminth control measures as shown by the high prevalence of gastrointestinal nematodes. The most relevant risk factors for gastrointestinal nematode infection were the age of the goat, type of goat house’s flooring, purpose of raising goats, and feeding practices.

  13. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-06-01

    Full Text Available Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  14. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    Science.gov (United States)

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  15. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation

    Directory of Open Access Journals (Sweden)

    Hawdon John

    2010-05-01

    Full Text Available Abstract Background Hookworm infection is one of the most important neglected diseases in developing countries, with approximately 1 billion people infected worldwide. To better understand hookworm biology and nematode parasitism, the present study generated a near complete transcriptome of the canine hookworm Ancylostoma caninum to a very high coverage using high throughput technology, and compared it to those of the free-living nematode Caenorhabditis elegans and the parasite Brugia malayi. Results The generated transcripts from four developmental stages, infective L3, serum stimulated L3, adult male and adult female, covered 93% of the A. caninum transcriptome. The broad diversity among nematode transcriptomes was confirmed, and an impact of parasitic adaptation on transcriptome diversity was inferred. Intra-population analysis showed that A. caninum has higher coding sequence diversity than humans. Examining the developmental expression profiles of A. caninum revealed major transitions in gene expression from larval stages to adult. Adult males expressed the highest number of selectively expressed genes, but adult female expressed the highest number of selective parasitism-related genes. Genes related to parasitism adaptation and A. caninum specific genes exhibited more expression selectivity while those conserved in nematodes tend to be consistently expressed. Parasitism related genes were expressed more selectively in adult male and female worms. The comprehensive analysis of digital expression profiles along with transcriptome comparisons enabled identification of a set of parasitism genes encoding secretory proteins in animal parasitic nematode. Conclusions This study validated the usage of deep sequencing for gene expression profiling. Parasitic adaptation of the canine hookworm is related to its diversity and developmental dynamics. This comprehensive comparative genomic and expression study substantially improves our understanding of

  16. Practical application of insect-parasitic nematodes and sterile flies

    International Nuclear Information System (INIS)

    Galle, F.; Loosjes, M.

    1987-01-01

    The company 'de Groene Vlieg' started with commercial control of the onion fly by means of the sterile insect technique. At the moment 10 per cent of the Dutch spring sown onions are treated with this method. The mass-rearing, the estimations of populations and the repeated releases of sterilized flies make it a rather complicated method. It can be applied economically per field, but only in areas with a concentration of onion growing. For export we see no possibilities yet. In principle the sterile insect technique can be applied also to other flies (carrot rust fly, cabbage root fly), but a suitable artificial diet is still lacking. Since some years we also rear the insect parasitic nematodes Heterorhabditis sp. and Neoaplectana bibionis. The later is experimentally used with success against Agrotis segetum caterpillars in lettuce. Research will yield more applications of nematodes against different pests. We use Heterorhabditis sp. in practice against the black vine weevil (Otiorhynchus sulcatus), a serious pest in glass houses, tree nurseries and gardens. Good control is achieved with a dose of one half to one million nematodes per square meter in moist soil and with temperatures above 12 degrees C. The application is similar to that of a chemical insecticide. The pest is killed by symbiontic bacteria, released by the nematodes after penetrating into the body cavity of the larvae. The nematodes are delivered by mail. If cooled they can be kept alive for over four weeks in the package. We export already to Switzerland and plan to export also to Western Germany. At this moment a possible admittance is under investigation in the Netherlands for application of a nuclear polyhedrosis virus against Spodoptera exigua caterpillars

  17. Biogas feed analysis

    OpenAIRE

    Song, Yuan

    2008-01-01

    Biogas production is regarded as the best energy recovery process from wet organic solid wastes (WOSW). Feed composition, storage conditions and time will influence the compositions of feed to biogas processes. In this study, apple juice from Meierienes Juice factory was used as the model substrates to mimic the liquid phase that can be extracted from fruit or juice industry WOSW. A series of batch experiments were carried out with different initial feed concentrations (0, 1, 2, 5, 10 %) of a...

  18. Breastfeeding is best feeding.

    Science.gov (United States)

    Cutting, W

    1995-02-01

    The traditional practice of breast feeding is the best means to make sure infants grow up healthy. It costs nothing. Breast milk contains antibodies and other substances which defend against disease, especially those linked to poor food hygiene and inadequate water and sanitation. In developing countries, breast fed infants are at least 14 times less likely to die from diarrhea than those who are not breast fed. Urbanization and promotion of infant formula undermine breast feeding. Even though infants up to age 4-6 months should receive only breast milk to remain as healthy as possible, infants aged less than 4-6 months often receive other milks or gruels. Attendance of health workers at delivery and their contact with mother-infant pairs after delivery are ideal opportunities to encourage mothers to breast feed. In fact, if health workers provide mothers skilled support with breast feeding, mothers are more likely to breast feed well and for a longer time. Health workers need counseling skills and firm knowledge of techniques on breast feeding and of how to master common difficulties to help mothers with breast feeding. Listening skills and confidence building skills are also needed. Good family and work place support allows women in paid employment outside the home to continue breast feeding. Breast feeding is very important in emergency situations where access to water, sanitation, food, and health care is limited (e.g., refugee camps). In these situations, health workers should especially be aware of women's ability to breast feed and to support their breast feeding. HIV can be transmitted to nursing infants from HIV infected mothers. Yet one must balance this small risk against the possibility of contracting other serious infections (e.g., diarrhea) through alternative infant feeding, particularly if there is no access to potable water and sanitation.

  19. NUCLEOTIDES IN INFANT FEEDING

    Directory of Open Access Journals (Sweden)

    L.G. Mamonova

    2007-01-01

    Full Text Available The article reviews the application of nucleotides-metabolites, playing a key role in many biological processes, for the infant feeding. The researcher provides the date on the nucleotides in the women's milk according to the lactation stages. She also analyzes the foreign experience in feeding newborns with nucleotides-containing milk formulas. The article gives a comparison of nucleotides in the adapted formulas represented in the domestic market of the given products.Key words: children, feeding, nucleotides.

  20. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes

    NARCIS (Netherlands)

    Shah, Syed Jehangir; Anjam, Muhammad Shahzad; Mendy, Badou; Anwer, Muhammad Arslan; Habash, Samer S.; Lozano-Torres, Jose L.; Grundler, Florian M.W.; Siddique, Shahid

    2017-01-01

    When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in

  1. Infectious waste feed system

    Science.gov (United States)

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  2. The effect of temperature on the fatty acids and isozymes of a psychrotrophic and two mesophilic species of Xenorhabdus, a bacterial symbiont of entomopathogenic nematodes

    Energy Technology Data Exchange (ETDEWEB)

    He, H. [Wisconsin Univ., Dept. of Biological Sciences, Milwaukee, WI (United States); Gordon, R. [Prince Edward Island Univ., Dept. of Biology, Charlottetown, PE (Canada); Gow, J. A. [Memorial University of Newfoundland, St. John' s NF (Canada)

    2001-05-01

    Generation times relative to temperature were determined for four strains of Xenorhabdus bacteria that represented three geographically distinct species in order to study the capacity of these bacteria to adapt to changes in temperature, as shown by changes in fatty acid composition. Species of the genus Xenorhabdus are carried in the gut of non-feeding infective juvenile nematodes where they release antibacterial and antifungal compounds, to create a non-competitive environment for nematode and bacterial growth. One of the species investigated was psychotropic (i.e. thriving at low temperatures), the other two mesophilic (i.e. growing at moderate temperatures). Results showed that as temperatures declined, proportions of two of the major fatty acids increased significantly in all strains, while the proportion of the prevalent fatty acid (palmitic acid) decreased. Certain other fatty acids decreased with declining temperatures in all strains. The synthesis of isozymes in response to changing temperatures was also investigated. Results showed a broad capacity for physiological temperature adaptation among strains of different climatic origin. It is suggested that these results support the proposition that entomopathogenic bacteria associated with nematodes adjust to temperature changes physiologically by altering the synthesis of isozymes. 36 refs.,6 tabs.

  3. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection.

    Science.gov (United States)

    Yadav, Shruti; Frazer, Joanna; Banga, Ashima; Pruitt, Katherine; Harsh, Sneh; Jaenike, John; Eleftherianos, Ioannis

    2018-01-01

    Associations between endosymbiotic bacteria and their hosts represent a complex ecosystem within organisms ranging from humans to protozoa. Drosophila species are known to naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role against certain microbial infections. Here, we investigated whether the presence or absence of endosymbionts affects the immune response of Drosophila melanogaster larvae to infection by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively). We find that the presence of Wolbachia alone or together with Spiroplasma promotes the survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiroplasma-free larvae infected with axenic compared to symbiotic nematodes, and they are also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with axenic nematodes. We further show that S. carpocapsae axenic nematode infection induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infection leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosymbionts. Finally, infection with either type of nematode alters the metabolic status and the fat body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endosymbionts. Our results suggest an interaction between Wolbachia endosymbionts with the immune response of D. melanogaster against infection with the entomopathogenic nematodes S. carpocapsae. Results from this study indicate a complex interplay between insect hosts, endosymbiotic microbes and pathogenic organisms.

  4. Potato Cyst Nematode in East Java: Newly Infected Areas and Identification

    Directory of Open Access Journals (Sweden)

    Happy Cahya Nugrahana

    2017-12-01

    Full Text Available Potato Cyst Nematodes (PCN, Globodera rostochiensis has noted to be a devastated pest on potato in Indonesia. It is listed as the A2 pest by Plant Quarantine of Republik Indonesia, and it was also being a highly concerned plant parasitic nematode species worlwide. Therefore, both intensive and extensive surveys should be done to monitor the spread of PCN, especially in East Java as one of the centre of potato plantations in Indonesia. The aim of this study was to study the distribution of PCN in four potato plantations in East Java, i.e. Batu, Magetan, Probolinggo, and Pasuruan which were located between 1,205 to 2,063 m above the sea level. Extraction and isolation of cysts from soil samples was done using Baunacke method, and it was followed by identification of the nematodes using morphological and molecular approaches according to Baldwin and Mundo-Ocampo. The results showed that PCN was found on all sampling sites, i.e. Batu (Sumber Brantas, Jurang Kuali, Tunggangan, Junggo, Brakseng; Magetan (Dadi, Sarangan, Singolangu; Probolinggo (Tukul, Pandansari, Ledokombo, Sumberanom, Wonokerto, Ngadas, Pasuruan (Wonokerto, Tosari, Ledoksari, Ngadiwono. Magetan and Pasuruan were noted as new infested areas in East Java. Both morphological and molecular methods showed that the species found on all sites was Globodera rostochiensis.   Intisari Nematoda Sista Kentang (NSK, Globodera rostochiensis telah tercatat sebagai hama yang menghancurkan tanaman kentang di Indonesia. NSK terdaftar sebagai Organisme Pengganggu Tumbuhan Karantina golongan A2 oleh Badan Karantina Pertanian Republik Indonesia, dan juga merupakan spesies nematoda parasit tanaman yang sangat merugikan di seluruh dunia. Oleh karena itu, baik survei intensif maupun ekstensif harus dilakukan untuk memantau penyebaran NSK, terutama di Jawa Timur sebagai salah satu sentra tanaman kentang di Indonesia. Tujuan dari penelitian ini adalah untuk mempelajari distribusi NSK pada empat daerah sentra

  5. Gastroenteric tube feeding: Techniques, problems and solutions

    Science.gov (United States)

    Blumenstein, Irina; Shastri, Yogesh M; Stein, Jürgen

    2014-01-01

    Gastroenteric tube feeding plays a major role in the management of patients with poor voluntary intake, chronic neurological or mechanical dysphagia or gut dysfunction, and patients who are critically ill. However, despite the benefits and widespread use of enteral tube feeding, some patients experience complications. This review aims to discuss and compare current knowledge regarding the clinical application of enteral tube feeding, together with associated complications and special aspects. We conducted an extensive literature search on PubMed, Embase and Medline using index terms relating to enteral access, enteral feeding/nutrition, tube feeding, percutaneous endoscopic gastrostomy/jejunostomy, endoscopic nasoenteric tube, nasogastric tube, and refeeding syndrome. The literature showed common routes of enteral access to include nasoenteral tube, gastrostomy and jejunostomy, while complications fall into four major categories: mechanical, e.g., tube blockage or removal; gastrointestinal, e.g., diarrhea; infectious e.g., aspiration pneumonia, tube site infection; and metabolic, e.g., refeeding syndrome, hyperglycemia. Although the type and frequency of complications arising from tube feeding vary considerably according to the chosen access route, gastrointestinal complications are without doubt the most common. Complications associated with enteral tube feeding can be reduced by careful observance of guidelines, including those related to food composition, administration rate, portion size, food temperature and patient supervision. PMID:25024606

  6. The oxygen consumption rates of different life stages of the endoparasitic nematode

    Directory of Open Access Journals (Sweden)

    Willie van Aardt

    2010-01-01

    Full Text Available The oxygen consumption rates of different life stages of the endoparasitic nematode, Pratylenchus zeae (Nematoda: Tylenchida during non- and post-anhydrobiosisPratylenchus zeae, widely distributed in tropical and subtropical regions, is an endoparasite in roots of maize and other crop plants. The nematode is attracted to plant roots by CO2 and root exudates and feeds primarily on cells of the root cortex, making channels and openings where the eggs are deposited, with the result that secondary infection occurs due to bacteria and fungi. Nothing is known about the respiration physiology of this nematode and how it manages to survive during dry seasons. To measure the oxygen consumption rate (VO2 of individual P. zeae (less than half a millimeter long, a special measuring technique namely Cartesian diver micro-respirometry was applied. The Cartesian divers were machined from Perspex, and proved to be more accurate to measure VO2 compared with heavier glass divers used in similar experiments on free living nematodes. An accuracy of better than one nanoliter of oxygen consumed per hour was achieved with a single P. zeae inside the diver. Cartesian diver micro-respirometry measurements are based in principle on the manometric changes that occur in a fl otation tube in a manometer set-up when oxygen is consumed by P. zeae and CO2 from the animal is chemically absorbed. VO2 was measured for eggs (length: < 0.05 mm, larvae (length: 0.36 mm and adults (length: 0.47 mm before induction to anhydrobiosis. P. zeae from infected maize roots were extracted and exposed aseptically to in vitro maize root cultures in a grow cabinet at 50 % to 60% relative humidity at 28 ºC using eggs, larvae and adults. VO2 was also measured for post-anhydrobiotic eggs, larvae and adults by taking 50 individuals, eggs and larvae from the culture and placing them in Petri-dishes with 1% agar/water to dry out for 11 days at 28 ºC and 50% relative humidity. The VO2 was measured

  7. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides).

    Science.gov (United States)

    Thies, Judy A; Ariss, Jennifer J; Kousik, Chandrasekar S; Hassell, Richard L; Levi, Amnon

    2016-03-01

    Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN.

  8. How to Build an RSS 20 Feed

    CERN Document Server

    Woodman, Mark

    2006-01-01

    The little orange feed icons are everywhere on the web. From search engines to shopping sites to blogs, Really Simple Syndication (RSS 2.0) has become one of the hottest web technologies going. RSS 2.0 is a powerful - yet surprisingly easy - way to distributing timely content to a web-based audience. This Short Cut will give you the hands-on knowledge you need to build an RSS 2.0 feed. Along the way you'll learn not only the mechanics of building a feed, but industry-accepted best practices for creating feeds that perform well in various situations. Are you ready? Roll up your sleeves, c

  9. Species discovery and diversity in Lobocriconema (Criconematidae: Nematoda) and related plant-parasitic nematodes from North American ecoregions.

    Science.gov (United States)

    Powers, T O; Bernard, E C; Harris, T; Higgins, R; Olson, M; Olson, S; Lodema, M; Matczyszyn, J; Mullin, P; Sutton, L; Powers, K S

    2016-03-03

    There are many nematode species that, following formal description, are seldom mentioned again in the scientific literature. Lobocriconema thornei and L. incrassatum are two such species, described from North American forests, respectively 37 and 49 years ago. In the course of a 3-year nematode biodiversity survey of North American ecoregions, specimens resembling Lobocriconema species appeared in soil samples from both grassland and forested sites. Using a combination of molecular and morphological analyses, together with a set of species delimitation approaches, we have expanded the known range of these species, added to the species descriptions, and discovered a related group of species that form a monophyletic group with the two described species. In this study, 148 specimens potentially belonging to the genus Lobocriconema were isolated from soil, individually measured, digitally imaged, and DNA barcoded using a 721 bp region of cytochrome oxidase subunit 1 (COI). One-third of the specimens were also analyzed using amplified DNA from the 3' region of the small subunit ribosomal RNA gene (18SrDNA) and the adjacent first internal transcribed spacer (ITS1). Eighteen mitochondrial haplotype groups, falling into four major clades, were identified by well-supported nodes in Bayesian and maximum likelihood trees and recognized as distinct lineages by species delimitation metrics. Discriminant function analysis of a set of morphological characters indicated that the major clades in the dataset possessed a strong morphological signal that decreased in comparisons of haplotype groups within clades. Evidence of biogeographic and phylogeographic patterns was apparent in the dataset. COI haplotype diversity was high in the southern Appalachian Mountains and Gulf Coast states and lessened in northern temperate forests. Lobocriconema distribution suggests the existence of phylogeographic patterns associated with recolonization of formerly glaciated regions by eastern

  10. Epidemiological studies of parasitic gastrointestinal nematodes, cestodes and coccidia infections in cattle in the highveld and lowveld communal grazing areas of Zimbabwe

    Directory of Open Access Journals (Sweden)

    D.M. Pfukenyi

    2007-09-01

    Full Text Available Between January 1999 and December 2000 faecal samples from 16 264 cattle at 12 dipping sites in the highveld and nine in the lowveld communal grazing areas of Zimbabwe were examined for gastrointestinal (GI nematode and cestodes eggs, and coccidia oocysts. Strongyle larvae were identified following culture of pooled faecal samples collected at monthly intervals. The effects of region, age, sex and season on the prevalence of GI nematodes, cestodes and coccidia were determined. Faecal egg and oocyst counts showed an overall prevalence of GI nematodes of 43 %, coccidia 19.8 % and cestodes 4.8 %. A significantly higher prevalence of infection with GI nematodes, cestodes and coccidia was recorded in calves (P < 0.01 than in adults. Pregnant and lactating cows had significantly higher prevalences than bulls, oxen and non-lactating (dry cows (P < 0.01. The general trend of eggs per gram (epg of faeces and oocysts per gram (opg of faeces was associated with the rainfall pattern in the two regions, with high epg and opg being recorded during the wet months. The most prevalent genera of GI nematodes were Cooperia, Haemonchus and Trichostrongylus in that order. Strongyloides papillosus was found exclusively in calves. Haemonchus was significantly more prevalent during the wet season than the dry season (P < 0.01. In contrast, Trichostrongylus was present in significantly (P < 0.01 higher numbers during the dry months than the wet months, while Cooperia and Oesophagostomum revealed no significant differences between the wet and dry season. These findings are discussed with reference to their relevance for strategic control of GI parasites in cattle in communal grazing areas of Zimbabwe.

  11. Selection of Feed Intake or Feed Efficiency

    DEFF Research Database (Denmark)

    Veerkamp, Roel F; Pryce, Jennie E; Spurlock, Diane

    2013-01-01

    . In February 2013, the co-authors discussed how information on DMI should be incorporated in the breeding decisions. The aim of this paper is to present the overall discussion and main positions taken by the group on four topics related to feed efficiency: i) breeding goal definition; ii) biological variation...

  12. Feeding Your Baby

    Medline Plus

    Full Text Available ... baby formula , find out how to choose the best one for your baby and how to make bottle-feeding safe. And then get ready for solid foods ! In This Topic Breastfeeding help Breastfeeding is best Food allergies and baby Formula feeding How to ...

  13. Feeding Your Baby

    Medline Plus

    Full Text Available ... In This Topic Breastfeeding help Breastfeeding is best Food allergies and baby Formula feeding How to breastfeed Keeping breast milk safe and healthy Problems and discomforts when breastfeeding Starting your baby on solid foods Using a breast pump Baby Feeding your baby ...

  14. Feeding Your Baby

    Medline Plus

    Full Text Available ... In This Topic Breastfeeding help Breastfeeding is best Food allergies and baby Formula feeding How to breastfeed Keeping a breastfeeding log Keeping breast milk safe and healthy Problems and discomforts when breastfeeding Starting your baby on solid foods Using a breast pump Baby Feeding your baby ...

  15. Fast, automated measurement of nematode swimming (thrashing without morphometry

    Directory of Open Access Journals (Sweden)

    Sattelle David B

    2009-07-01

    Full Text Available Abstract Background The "thrashing assay", in which nematodes are placed in liquid and the frequency of lateral swimming ("thrashing" movements estimated, is a well-established method for measuring motility in the genetic model organism Caenorhabditis elegans as well as in parasitic nematodes. It is used as an index of the effects of drugs, chemicals or mutations on motility and has proved useful in identifying mutants affecting behaviour. However, the method is laborious, subject to experimenter error, and therefore does not permit high-throughput applications. Existing automation methods usually involve analysis of worm shape, but this is computationally demanding and error-prone. Here we present a novel, robust and rapid method of automatically counting the thrashing frequency of worms that avoids morphometry but nonetheless gives a direct measure of thrashing frequency. Our method uses principal components analysis to remove the background, followed by computation of a covariance matrix of the remaining image frames from which the interval between statistically-similar frames is estimated. Results We tested the performance of our covariance method in measuring thrashing rates of worms using mutations that affect motility and found that it accurately substituted for laborious, manual measurements over a wide range of thrashing rates. The algorithm used also enabled us to determine a dose-dependent inhibition of thrashing frequency by the anthelmintic drug, levamisole, illustrating the suitability of the system for assaying the effects of drugs and chemicals on motility. Furthermore, the algorithm successfully measured the actions of levamisole on a parasitic nematode, Haemonchus contortus, which undergoes complex contorted shapes whilst swimming, without alterations in the code or of any parameters, indicating that it is applicable to different nematode species, including parasitic nematodes. Our method is capable of analyzing a 30 s movie in

  16. Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance

    Directory of Open Access Journals (Sweden)

    Atul Kakrana

    2017-12-01

    Full Text Available The root-knot nematode (RKN, Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.

  17. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode

    KAUST Repository

    Cotton, James A; Lilley, Catherine J; Jones, Laura M; Kikuchi, Taisei; Reid, Adam J; Thorpe, Peter; Tsai, Isheng J; Beasley, Helen; Blok, Vivian; Cock, Peter J A; den Akker, Sebastian Eves-van; Holroyd, Nancy; Hunt, Martin; Mantelin, Sophie; Naghra, Hardeep; Pain, Arnab; Palomares-Rius, Juan E; Zarowiecki, Magdalena; Berriman, Matthew; Jones, John T; Urwin, Peter E

    2014-01-01

    -knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. Results: We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life

  18. Susceptibility of irradiated Galleria mellonella F1Larvae to Entomopathogenic Nematodes

    International Nuclear Information System (INIS)

    Salem, H.M.; Rizk, S.A.; Sayed, R.M.; Hussein, M.A; Hafez, S.E

    2008-01-01

    Combined effect of substerilizing doses of gamma radiation (40 and 100 Gy) and different concentrations of entomopathogenic nematodes (20, 40, 60, and 80 IJs) on the greater wax moth, Galleria mellonella was studied. The 4th larval instar resulted from irradiated male parent pupae mated with normal female were tested for susceptibility to Heterorhabditis bacteriophora BA1 and Steinernema carpocapsae BA2. The mortality rate of the larvae increased by increrasing radiation dose and nematode concentrations. The reproduction of both nematode strains decreased significantly with increasing the treatments (radiation dose and nematode concentrations). In addition, exposure to gamma radiation and entomopathogenic nematodes significantly decreased the total haemocyte count (THC) of the larvae with increasing radiation doses (40 and 100 Gy) and both nematode strains concentrations (20 and 40 IJs) and reached the minimal count at the combiend effect. Finally, larvae were more susceptible to Steinernema carpocapsa than Heterorhabditis bacteriophora. (author)

  19. Effect of the Entomogenous Nematode Nemplectana carpocapsae on the Tachinid Parasite Compsilura concinnata (Diptera: Tachinidae)

    Science.gov (United States)

    Kaya, Harry K.

    1984-01-01

    The entomogenous nematode Neoaplectana carpocapsae and its associated bacterium, Xenorhabdus nematophilus, could not infect the pupal stage of the tachinid Compsilura concinnata through the puparium. N. carpocapsae had an adverse effect on 1-, 2- and 3-day-old C. concinnata larvae within the armyworm host in petri dish tests. All 1-day-old larvae treated with nematodes died in their hosts, whereas 61% and 69% of 2- and 3-day-old larvae treated with nematodes, respectively, died. However, the survivors developed to adults. Nine to thirty-seven percent of adult tachinids which emerged from nematode-treated soil (50 nematodes/cm²) were infected with N. carpocapsae. The nematode adversely affects C. concinnata directly by the frank infection of the tachinid and indirectly by causing the premature death of the host which results in tachinid death. PMID:19295866

  20. Potato cyst nematodes Globodera rostochiensis and Globodera pallida, and their chemoecological interactions with the host plant

    OpenAIRE

    Čepulytė-Rakauskienė, Rasa

    2012-01-01

    Potato cyst nematodes Globodera rostochiensis and Globodera pallida are one of the most important solanaceous plant pests. Identification of potato cyst nematodes species is exposed to morphological similarities and overlapping morphometric measurements between species. Only modern molecular techniques allow more accurate identification of potato cyst nematode species. Hence, it is important to apply these techniques in order to reliably identify these species in Lithuania. Potato roo...