WorldWideScience

Sample records for neighboring katla volcano

  1. Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano.

    Science.gov (United States)

    Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar

    2015-05-20

    Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

  2. Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics

    Science.gov (United States)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin; Larsen, Guðrún

    2018-04-01

    Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are derived from a study of deposit stratigraphy with detailed granulometry and grain morphology analysis, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. We show that magma/water interaction is important in the ash generation process, but to a variable extent. By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/water-interaction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the later stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.

  3. Volcanoes

    Science.gov (United States)

    ... rock, steam, poisonous gases, and ash reach the Earth's surface when a volcano erupts. An eruption can also cause earthquakes, mudflows and flash floods, rock falls and landslides, acid rain, fires, and even tsunamis. Volcanic gas ...

  4. Geophysical Observations Supporting Research of Magmatic Processes at Icelandic Volcanoes

    Science.gov (United States)

    Vogfjörd, Kristín. S.; Hjaltadóttir, Sigurlaug; Roberts, Matthew J.

    2010-05-01

    Magmatic processes at volcanoes on the boundary between the European and North American plates in Iceland are observed with in-situ multidisciplinary geophysical networks owned by different national, European or American universities and research institutions, but through collaboration mostly operated by the Icelandic Meteorological Office. The terrestrial observations are augmented by space-based interferometric synthetic aperture radar (InSAR) images of the volcanoes and their surrounding surface. Together this infrastructure can monitor magma movements in several volcanoes from the base of the crust up to the surface. The national seismic network is sensitive enough to detect small scale seismicity deep in the crust under some of the voclanoes. High resolution mapping of this seismicity and its temporal progression has been used to delineate the track of the magma as it migrates upwards in the crust, either to form an intrusion at shallow levels or to reach the surface in an eruption. Broadband recording has also enabled capturing low frequency signals emanating from magmatic movements. In two volcanoes, Eyjafjallajökull and Katla, just east of the South Iceland Seismic Zone (SISZ), seismicity just above the crust-mantle boundary has revealed magma intruding into the crust from the mantle below. As the magma moves to shallower levels, the deformation of the Earth‘s surface is captured by geodetic systems, such as continuous GPS networks, (InSAR) images of the surface and -- even more sensitive to the deformation -- strain meters placed in boreholes around 200 m below the Earth‘s surface. Analysis of these signals can reveal the size and shape of the magma as well as the temporal evolution. At near-by Hekla volcano flanking the SISZ to the north, where only 50% of events are of M>1 compared to 86% of earthquakes in Eyjafjallajökull, the sensitivity of the seismic network is insufficient to detect the smallest seismicity and so the volcano appears less

  5. NeighborHood

    OpenAIRE

    Corominola Ocaña, Víctor

    2015-01-01

    NeighborHood és una aplicació basada en el núvol, adaptable a qualsevol dispositiu (mòbil, tablet, desktop). L'objectiu d'aquesta aplicació és poder permetre als usuaris introduir a les persones del seu entorn més immediat i que aquestes persones siguin visibles per a la resta d'usuaris. NeighborHood es una aplicación basada en la nube, adaptable a cualquier dispositivo (móvil, tablet, desktop). El objetivo de esta aplicación es poder permitir a los usuarios introducir a las personas de su...

  6. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  7. Neighbors United for Health

    Science.gov (United States)

    Westhoff, Wayne W.; Corvin, Jaime; Virella, Irmarie

    2009-01-01

    Modeled upon the ecclesiastic community group concept of Latin America to unite and strengthen the bond between the Church and neighborhoods, a community-based organization created Vecinos Unidos por la Salud (Neighbors United for Health) to bring health messages into urban Latino neighborhoods. The model is based on five tenants, and incorporates…

  8. Multi-proxy dating of Iceland's major pre-settlement Katla eruption to 822-823 CE

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Eggertsson, O.; Wacker, L.; Sigl, M.; Ljungqvist, F. C.; Di Cosmo, N.; Plunkett, G.; Krusic, P. J.; Newfield, T. P.; Esper, J.

    2017-01-01

    Roč. 45, č. 9 (2017), s. 783-786 ISSN 0091-7613 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Late-Antique * Ice core * Greenland * Volcano * Europe Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 4.635, year: 2016

  9. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  10. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  11. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  12. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  13. Neighboring and Urbanism: Commonality versus Friendship.

    Science.gov (United States)

    Silverman, Carol J.

    1986-01-01

    Examines a dimension of neighboring that need not assume friendship as the role model. When the model assumes only a sense of connectedness as defining neighboring, then the residential correlation, shown in many studies between urbanism and neighboring, disappears. Theories of neighboring, study variables, methods, and analysis are discussed.…

  14. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  15. Volcanoes: observations and impact

    Science.gov (United States)

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  16. Visions of Volcanoes

    Directory of Open Access Journals (Sweden)

    David M. Pyle

    2017-12-01

    Full Text Available The long nineteenth century marked an important transition in the understanding of the nature of combustion and fire, and of volcanoes and the interior of the earth. It was also a period when dramatic eruptions of Vesuvius lit up the night skies of Naples, providing ample opportunities for travellers, natural philosophers, and early geologists to get up close to the glowing lavas of an active volcano. This article explores written and visual representations of volcanoes and volcanic activity during the period, with the particular perspective of writers from the non-volcanic regions of northern Europe. I explore how the language of ‘fire’ was used in both first-hand and fictionalized accounts of peoples’ interactions with volcanoes and experiences of volcanic phenomena, and see how the routine or implicit linkage of ‘fire’ with ‘combustion’ as an explanation for the deep forces at play within and beneath volcanoes slowly changed as the formal scientific study of volcanoes developed. I show how Vesuvius was used as a ‘model’ volcano in science and literature and how, later, following devastating eruptions in Indonesia and the Caribbean, volcanoes took on a new dimension as contemporary agents of death and destruction.

  17. Nearest neighbors by neighborhood counting.

    Science.gov (United States)

    Wang, Hui

    2006-06-01

    Finding nearest neighbors is a general idea that underlies many artificial intelligence tasks, including machine learning, data mining, natural language understanding, and information retrieval. This idea is explicitly used in the k-nearest neighbors algorithm (kNN), a popular classification method. In this paper, this idea is adopted in the development of a general methodology, neighborhood counting, for devising similarity functions. We turn our focus from neighbors to neighborhoods, a region in the data space covering the data point in question. To measure the similarity between two data points, we consider all neighborhoods that cover both data points. We propose to use the number of such neighborhoods as a measure of similarity. Neighborhood can be defined for different types of data in different ways. Here, we consider one definition of neighborhood for multivariate data and derive a formula for such similarity, called neighborhood counting measure or NCM. NCM was tested experimentally in the framework of kNN. Experiments show that NCM is generally comparable to VDM and its variants, the state-of-the-art distance functions for multivariate data, and, at the same time, is consistently better for relatively large k values. Additionally, NCM consistently outperforms HEOM (a mixture of Euclidean and Hamming distances), the "standard" and most widely used distance function for multivariate data. NCM has a computational complexity in the same order as the standard Euclidean distance function and NCM is task independent and works for numerical and categorical data in a conceptually uniform way. The neighborhood counting methodology is proven sound for multivariate data experimentally. We hope it will work for other types of data.

  18. Geophysical investigations of magma plumbing systems at Cerro Negro volcano, Nicaragua

    OpenAIRE

    MacQueen, Patricia Grace

    2013-01-01

    Cerro Negro near Léon, Nicaragua is a very young (163 years), relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan (recurrence interval 6-7 years), presenting a significant hazard to nearby communities. Previous studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring Las Pilas-El Hoyo volcano. Analysis of Bouguer gravity data collected at Cerro Negro has revealed connected positive d...

  19. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  20. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  1. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  2. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  3. Identifying influential neighbors in animal flocking.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2017-11-01

    Full Text Available Schools of fish and flocks of birds can move together in synchrony and decide on new directions of movement in a seamless way. This is possible because group members constantly share directional information with their neighbors. Although detecting the directionality of other group members is known to be important to maintain cohesion, it is not clear how many neighbors each individual can simultaneously track and pay attention to, and what the spatial distribution of these influential neighbors is. Here, we address these questions on shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behavior. We adopt a data-driven analysis technique based on the study of short-term directional correlations to identify which neighbors have the strongest influence over the participation of an individual in a collective U-turn event. We find that fish mainly react to one or two neighbors at a time. Moreover, we find no correlation between the distance rank of a neighbor and its likelihood to be influential. We interpret our results in terms of fish allocating sequential and selective attention to their neighbors.

  4. Identifying influential neighbors in animal flocking.

    Science.gov (United States)

    Jiang, Li; Giuggioli, Luca; Perna, Andrea; Escobedo, Ramón; Lecheval, Valentin; Sire, Clément; Han, Zhangang; Theraulaz, Guy

    2017-11-01

    Schools of fish and flocks of birds can move together in synchrony and decide on new directions of movement in a seamless way. This is possible because group members constantly share directional information with their neighbors. Although detecting the directionality of other group members is known to be important to maintain cohesion, it is not clear how many neighbors each individual can simultaneously track and pay attention to, and what the spatial distribution of these influential neighbors is. Here, we address these questions on shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behavior. We adopt a data-driven analysis technique based on the study of short-term directional correlations to identify which neighbors have the strongest influence over the participation of an individual in a collective U-turn event. We find that fish mainly react to one or two neighbors at a time. Moreover, we find no correlation between the distance rank of a neighbor and its likelihood to be influential. We interpret our results in terms of fish allocating sequential and selective attention to their neighbors.

  5. Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea

    Science.gov (United States)

    Choi, Eun-kyeong; Kim, Sung-wook

    2017-04-01

    Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  6. Anatomy of a volcano

    NARCIS (Netherlands)

    Hooper, A.; Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “We

  7. Spying on volcanoes

    Science.gov (United States)

    Watson, Matthew

    2017-07-01

    Active volcanoes can be incredibly dangerous, especially to those who live nearby, but how do you get close enough to observe one in action? Matthew Watson explains how artificial drones are providing volcanologists with insights that could one day save human lives

  8. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  9. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  10. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrún; Gudmundsson, Magnús T.; Vogfjörd, Kristin; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Pagneux, Emmanuel; Barsotti, Sara; Karlsdóttir, Sigrún; Bergsveinsson, Sölvi; Oddsdóttir, Thorarna

    2017-04-01

    The Catalogue of Icelandic Volcanoes (CIV) is a newly developed open-access web resource (http://icelandicvolcanoes.is) intended to serve as an official source of information about volcanoes in Iceland for the public and decision makers. CIV contains text and graphic information on all 32 active volcanic systems in Iceland, as well as real-time data from monitoring systems in a format that enables non-specialists to understand the volcanic activity status. The CIV data portal contains scientific data on all eruptions since Eyjafjallajökull 2010 and is an unprecedented endeavour in making volcanological data open and easy to access. CIV forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the European Union funded effort FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. The supersite concept implies integration of space and ground based observations for improved monitoring and evaluation of volcanic hazards, and open data policy. This work is a collaboration of the Icelandic Meteorological Office, the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere.

  11. Recrafting the Neighbor-Joining Method

    DEFF Research Database (Denmark)

    Mailund; Brodal, Gerth Stølting; Fagerberg, Rolf

    2006-01-01

    Background: The neighbor-joining method by Saitou and Nei is a widely used method for constructing phylogenetic trees. The formulation of the method gives rise to a canonical Θ(n3) algorithm upon which all existing implementations are based. Methods: In this paper we present techniques for speeding...... up the canonical neighbor-joining method. Our algorithms construct the same phylogenetic trees as the canonical neighbor-joining method. The best-case running time of our algorithms are O(n2) but the worst-case remains O(n3). We empirically evaluate the performance of our algoritms on distance...... matrices obtained from the Pfam collection of alignments. Results: The experiments indicate that the running time of our algorithms evolve as Θ(n2) on the examined instance collection. We also compare the running time with that of the QuickTree tool, a widely used efficient implementation of the canonical...

  12. The clinic as a good corporate neighbor.

    Science.gov (United States)

    Sass, Hans-Martin

    2013-02-01

    Clinics today specialize in health repair services similar to car repair shops; procedures and prices are standardized, regulated, and inflexibly uniform. Clinics of the future have to become Health Care Centers in order to be more respected and more effective corporate neighbors in offering outreach services in health education and preventive health care. The traditional concept of care for health is much broader than repair management and includes the promotion of lay health competence and responsibility in healthy social and natural environments. The corporate profile and ethics of the clinic as a good and competitive local neighbor will have to focus on [a] better personalized care, [b] education and services in preventive care, [c] direct or web-based information and advice for general, seasonal, or age related health risks, and on developing and improving trustworthy character traits of the clinic as a corporate person and a good neighbor.

  13. Geology of El Chichon volcano, Chiapas, Mexico

    Science.gov (United States)

    Duffield, Wendell A.; Tilling, Robert I.; Canul, Rene

    1984-03-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chichón, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, México. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chichón is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chichón is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chichón consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chichón in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent pyroclastic

  14. Lectures on the nearest neighbor method

    CERN Document Server

    Biau, Gérard

    2015-01-01

    This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods. Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).   .

  15. New Sliding Puzzle with Neighbors Swap Motion

    OpenAIRE

    Prihardono, Ariyanto; Kawagoe, Kenichi

    2015-01-01

    The sliding puzzles (15-puzzle, 8-puzzle, 5-puzzle) are known to have 2 kind of puz-zle: solvable puzzle and unsolvable puzzle. In this thesis, we make a new puzzle with only 1 kind of it, solvable puzzle. This new puzzle is made by adopting sliding puzzle with several additional rules from M13 puzzle; the puzzle that is formed form The Mathieu group M13. This puzzle has a movement that called a neighbors swap motion, a rule of movement that enables every neighboring points to swap. This extr...

  16. Recrafting the neighbor-joining method

    Directory of Open Access Journals (Sweden)

    Pedersen Christian NS

    2006-01-01

    Full Text Available Abstract Background The neighbor-joining method by Saitou and Nei is a widely used method for constructing phylogenetic trees. The formulation of the method gives rise to a canonical Θ(n3 algorithm upon which all existing implementations are based. Results In this paper we present techniques for speeding up the canonical neighbor-joining method. Our algorithms construct the same phylogenetic trees as the canonical neighbor-joining method. The best-case running time of our algorithms are O(n2 but the worst-case remains O(n3. We empirically evaluate the performance of our algoritms on distance matrices obtained from the Pfam collection of alignments. The experiments indicate that the running time of our algorithms evolve as Θ(n2 on the examined instance collection. We also compare the running time with that of the QuickTree tool, a widely used efficient implementation of the canonical neighbor-joining method. Conclusion The experiments show that our algorithms also yield a significant speed-up, already for medium sized instances.

  17. Ruiz Volcano: Preliminary report

    Science.gov (United States)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  18. Eruptive viscosity and volcano morphology

    International Nuclear Information System (INIS)

    Posin, S.B.; Greeley, R.

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology

  19. Dimensionality reduction with unsupervised nearest neighbors

    CERN Document Server

    Kramer, Oliver

    2013-01-01

    This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustr...

  20. Alaska - Russian Far East connection in volcano research and monitoring

    Science.gov (United States)

    Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.

    2012-12-01

    The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program

  1. Soufriere Hills Volcano

    Science.gov (United States)

    2002-01-01

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA

  2. Neighbor Rupture Degree of Some Middle Graphs

    Directory of Open Access Journals (Sweden)

    Gökşen BACAK-TURAN

    2017-12-01

    Full Text Available Networks have an important place in our daily lives. Internet networks, electricity networks, water networks, transportation networks, social networks and biological networks are some of the networks we run into every aspects of our lives. A network consists of centers connected by links. A network is represented when centers and connections modelled by vertices and edges, respectively. In consequence of the failure of some centers or connection lines, measurement of the resistance of the network until the communication interrupted is called vulnerability of the network. In this study, neighbor rupture degree which is a parameter that explores the vulnerability values of the resulting graphs due to the failure of some centers of a communication network and its neighboring centers becoming nonfunctional were applied to some middle graphs and neighbor rupture degree of the $M(C_{n},$ $M(P_{n},$ $M(K_{1,n},$ $M(W_{n},$ $M(P_{n}\\times K_{2}$ and $M(C_{n}\\times K_{2}$ have been found.

  3. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  4. Volcanoes, Third Edition

    Science.gov (United States)

    Nye, Christopher J.

    It takes confidence to title a smallish book merely “Volcanoes” because of the impliction that the myriad facets of volcanism—chemistry, physics, geology, meteorology, hazard mitigation, and more—have been identified and addressed to some nontrivial level of detail. Robert and Barbara Decker have visited these different facets seamlessly in Volcanoes, Third Edition. The seamlessness comes from a broad overarching, interdisciplinary, professional understanding of volcanism combined with an exceptionally smooth translation of scientific jargon into plain language.The result is a book which will be informative to a very broad audience, from reasonably educated nongeologists (my mother loves it) to geology undergraduates through professional volcanologists. I bet that even the most senior professional volcanologists will learn at least a few things from this book and will find at least a few provocative discussions of subjects they know.

  5. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  6. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or mountain...

  7. Volcano warning systems: Chapter 67

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.

    2015-01-01

    Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.

  8. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  9. Radon emanometry in active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M. (CNRS, IN2P3, BP45/F63170 Aubiere (France)); Cejudo, J. (Instituto Nacional de Investigaciones Nucleares, Mexico City)

    1984-01-01

    Radon emission measurements from active volcanoes has, since 1981, been continuously measured at monitoring stations in Mexico and in Costa Rica. Counting of etched alpha tracks on cellulose nitrate LR-115 detectors give varying results at the several stations. Radon emanation at Chichon, where an explosive eruption occurred in 1982, fell down. Radon detection at the active volcano in Colima shows a pattern of very low emission. At the Costa Rica stations located at Poas, Arenal and Irazu, the radon emanation shows regularity.

  10. Vertical Motions of Oceanic Volcanoes

    Science.gov (United States)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  11. ACTION RECOGNITION USING SALIENT NEIGHBORING HISTOGRAMS

    DEFF Research Database (Denmark)

    Ren, Huamin; Moeslund, Thomas B.

    2013-01-01

    Combining spatio-temporal interest points with Bag-of-Words models achieves state-of-the-art performance in action recognition. However, existing methods based on “bag-ofwords” models either are too local to capture the variance in space/time or fail to solve the ambiguity problem in spatial...... and temporal dimensions. Instead, we propose a salient vocabulary construction algorithm to select visual words from a global point of view, and form compact descriptors to represent discriminative histograms in the neighborhoods. Those salient neighboring histograms are then trained to model different actions...

  12. A dumbed-down approach to unite Fermilab, its neighbors

    CERN Multimedia

    Constable, B

    2004-01-01

    "...Fermilab is reaching out to its suburban neighbors...With the nation on orange alert, Fermilab scientists no longer can sit on the front porch and invite neighbors in for coffee and quasars" (1 page).

  13. Chiliques volcano, Chile

    Science.gov (United States)

    2002-01-01

    A January 6, 2002 ASTER nighttime thermal infrared image of Chiliques volcano in Chile shows a hot spot in the summit crater and several others along the upper flanks of the edifice, indicating new volcanic activity. Examination of an earlier nighttime thermal infrared image from May 24,2000 showed no thermal anomaly. Chiliques volcano was previously thought to be dormant. Rising to an elevation of 5778 m, Chiliques is a simple stratovolcano with a 500-m-diameter circular summit crater. This mountain is one of the most important high altitude ceremonial centers of the Incas. It is rarely visited due to its difficult accessibility. Climbing to the summit along Inca trails, numerous ruins are encountered; at the summit there are a series of constructions used for rituals. There is a beautiful lagoon in the crater that is almost always frozen.The daytime image was acquired on November 19, 2000 and was created by displaying ASTER bands 1,2 and 3 in blue, green and red. The nighttime image was acquired January 6, 2002, and is a color-coded display of a single thermal infrared band. The hottest areas are white, and colder areas are darker shades of red. Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U

  14. Cryptosporidiosis in Saudi Arabia and neighboring countries

    International Nuclear Information System (INIS)

    Areeshi, Mohammed Y.; Hart, C.A.; Beeching, N.J.

    2007-01-01

    Cryptosporidium is a coccidian protozoan parasite of the intestinal tract that causes severe and sometimes fatal watery diarrhea in immunocompromised patients and self-limiting but prolonged diarrheal disease in immunocompetent individuals. It exists naturally in animals and can be zoonotic. Although cryptosporidiosis is a significant cause of diarrheal disease in both developing and developed countries, it is more prevalent in developing countries and in tropical environments. We examined the epidemiology and disease burden of Cryptosporidium in Saudi Arabia and neighboring countries by reviewing 23 published studies of Cryptosporidium and etiology of diarrhea in between 1986 and 2006. The prevalence of Cryptosporidium infection in human's ranged from 1% to 37% with a median of 4%, while in animals it was for different species of animals and geographic locations of the studies. Most cases of cryptosporidiosis occurred among children less than 7 years of age and particularly in the first two years of life. The seasonality of Cryptosporidium varied depending on the geographic locations of the studies but it generally most prevalent in the rainy season. The most commonly identified species was Cryptosporidium parvum while C.hominis was detected only in one study from Kuwait. The cumulative experience from Saudi Arabia and four neighboring countries (Kuwait, Oman, Jordan and Iraq) suggest that Cryptosporidium is an important cause of diarrhea in human and cattle. However, the findings of this review also demonstrate the limitations of the available data regarding Cryptosporidium species and strains in circulation in these countries. (author)

  15. Deep magma transport at Kilauea volcano, Hawaii

    Science.gov (United States)

    Wright, T.L.; Klein, F.W.

    2006-01-01

    .4 my for Kilauea and 0.8 my for Mauna Loa are consistent with this model. Younger ages would apply if Kilauea began its growth south of the locus of maximum melting, as is true for Loihi seamount. We conclude that Kilauea is fed from below the eastern end of the zone of deep long-period earthquakes. Magma transport is vertical below 30 km, then sub-horizontal, following the oceanic mantle boundary separating plagioclase- and spinel-peridotite, then near-vertical beneath Kilauea's summit. The migration of the melting region within the hotspot and Kilauea's sampling of different sources within the melting region can explain (1) the long-term geochemical separation of Kilauea from neighboring volcanoes Mauna Loa and Loihi, and (2) the short-term changes in trace-element and isotope signatures within Kilauea. ?? 2005 Elsevier B.V. All rigths reserved.

  16. Model of directed lines for square ice with second-neighbor and third-neighbor interactions

    Science.gov (United States)

    Kirov, Mikhail V.

    2018-02-01

    The investigation of the properties of nanoconfined systems is one of the most rapidly developing scientific fields. Recently it has been established that water monolayer between two graphene sheets forms square ice. Because of the energetic disadvantage, in the structure of the square ice there are no longitudinally arranged molecules. The result is that the structure is formed by unidirectional straight-lines of hydrogen bonds only. A simple but accurate discrete model of square ice with second-neighbor and third-neighbor interactions is proposed. According to this model, the ground state includes all configurations which do not contain three neighboring unidirectional chains of hydrogen bonds. Each triplet increases the energy by the same value. This new model differs from an analogous model with long-range interactions where in the ground state all neighboring chains are antiparallel. The new model is suitable for the corresponding system of point electric (and magnetic) dipoles on the square lattice. It allows separately estimating the different contributions to the total binding energy and helps to understand the properties of infinite monolayers and finite nanostructures. Calculations of the binding energy for square ice and for point dipole system are performed using the packages TINKER and LAMMPS.

  17. Global Volcano Mortality Risks and Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Volcano Mortality Risks and Distribution is a 2.5 minute grid representing global volcano mortality risks. The data set was constructed using historical...

  18. The surprising power of neighborly advice.

    Science.gov (United States)

    Gilbert, Daniel T; Killingsworth, Matthew A; Eyre, Rebecca N; Wilson, Timothy D

    2009-03-20

    Two experiments revealed that (i) people can more accurately predict their affective reactions to a future event when they know how a neighbor in their social network reacted to the event than when they know about the event itself and (ii) people do not believe this. Undergraduates made more accurate predictions about their affective reactions to a 5-minute speed date (n = 25) and to a peer evaluation (n = 88) when they knew only how another undergraduate had reacted to these events than when they had information about the events themselves. Both participants and independent judges mistakenly believed that predictions based on information about the event would be more accurate than predictions based on information about how another person had reacted to it.

  19. Observing Literacy Practices in Neighbor Institutions

    DEFF Research Database (Denmark)

    Reusch, Charlotte

    ’procedures on language and literacy. Based on this material, we developed an observation scheme and a guide for preschool teachers to follow, inspired by an action learning concept.During fall 2015, a pilot project is carried out. Preschool teachers from one institution visit a neighbor institution one by one during...... work hours, in order to observe and register how language and literacy events look like there. Afterwards, they share their registrations at a team meeting, and discuss and decide which procedures to test in their own institution. Thus, they form a professional learning network. In the pilot project......The Danish National Centre for Reading and a municipality in southern Denmark cooperate to develop a program to improve preschool children’s early literacy skills. The project aims to support preschool teachers’ ability to create a rich literacy environment for children age 3‒6. Recent research...

  20. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  1. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  2. Raman scattering mediated by neighboring molecules

    Science.gov (United States)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  3. Raman scattering mediated by neighboring molecules

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2016-05-07

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  4. Relative chronology of Martian volcanoes

    International Nuclear Information System (INIS)

    Landheim, R.; Barlow, N.G.

    1991-01-01

    Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history

  5. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  6. Multiphase modelling of mud volcanoes

    Science.gov (United States)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  7. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  8. Laboratory volcano geodesy

    Science.gov (United States)

    Færøvik Johannessen, Rikke; Galland, Olivier; Mair, Karen

    2014-05-01

    intrusion can be excavated and photographed from several angles to compute its 3D shape with the same photogrammetry method. Then, the surface deformation pattern can be directly compared with the shape of underlying intrusion. This quantitative dataset is essential to quantitatively test and validate classical volcano geodetic models.

  9. What Happened to Our Volcano?

    Science.gov (United States)

    Mangiante, Elaine Silva

    2006-01-01

    In this article, the author presents an investigative approach to "understanding Earth changes." The author states that students were familiar with earthquakes and volcanoes in other regions of the world but never considered how the land beneath their feet had experienced changes over time. Here, their geology unit helped them understand…

  10. Morphometry of terrestrial shield volcanoes

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  11. Iridium emissions from Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Finnegan, D.L.; Zoller, W.H.; Miller, T.M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes

  12. Iridium emissions from Hawaiian volcanoes

    Science.gov (United States)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  13. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification

    National Research Council Canada - National Science Library

    Han, Euihong; Karypis, George; Kumar, Vipin

    1999-01-01

    .... The authors present a nearest neighbor classification scheme for text categorization in which the importance of discriminating words is learned using mutual information and weight adjustment techniques...

  14. Common Nearest Neighbor Clustering—A Benchmark

    Directory of Open Access Journals (Sweden)

    Oliver Lemke

    2018-02-01

    Full Text Available Cluster analyses are often conducted with the goal to characterize an underlying probability density, for which the data-point density serves as an estimate for this probability density. We here test and benchmark the common nearest neighbor (CNN cluster algorithm. This algorithm assigns a spherical neighborhood R to each data point and estimates the data-point density between two data points as the number of data points N in the overlapping region of their neighborhoods (step 1. The main principle in the CNN cluster algorithm is cluster growing. This grows the clusters by sequentially adding data points and thereby effectively positions the border of the clusters along an iso-surface of the underlying probability density. This yields a strict partitioning with outliers, for which the cluster represents peaks in the underlying probability density—termed core sets (step 2. The removal of the outliers on the basis of a threshold criterion is optional (step 3. The benchmark datasets address a series of typical challenges, including datasets with a very high dimensional state space and datasets in which the cluster centroids are aligned along an underlying structure (Birch sets. The performance of the CNN algorithm is evaluated with respect to these challenges. The results indicate that the CNN cluster algorithm can be useful in a wide range of settings. Cluster algorithms are particularly important for the analysis of molecular dynamics (MD simulations. We demonstrate how the CNN cluster results can be used as a discretization of the molecular state space for the construction of a core-set model of the MD improving the accuracy compared to conventional full-partitioning models. The software for the CNN clustering is available on GitHub.

  15. ALIGNMENTS OF GROUP GALAXIES WITH NEIGHBORING GROUPS

    International Nuclear Information System (INIS)

    Wang Yougang; Chen Xuelei; Park, Changbom; Yang Xiaohu; Choi, Yun-Young

    2009-01-01

    Using a sample of galaxy groups found in the Sloan Digital Sky Survey Data Release 4, we measure the following four types of alignment signals: (1) the alignment between the distributions of the satellites of each group relative to the direction of the nearest neighbor group (NNG); (2) the alignment between the major axis direction of the central galaxy of the host group (HG) and the direction of the NNG; (3) the alignment between the major axes of the central galaxies of the HG and the NNG; and (4) the alignment between the major axes of the satellites of the HG and the direction of the NNG. We find strong signal of alignment between the satellite distribution and the orientation of central galaxy relative to the direction of the NNG, even when the NNG is located beyond 3r vir of the host group. The major axis of the central galaxy of the HG is aligned with the direction of the NNG. The alignment signals are more prominent for groups that are more massive and with early-type central galaxies. We also find that there is a preference for the two major axes of the central galaxies of the HG and NNG to be parallel for the system with both early central galaxies, however, not for the systems with both late-type central galaxies. For the orientation of satellite galaxies, we do not find any significant alignment signals relative to the direction of the NNG. From these four types of alignment measurements, we conclude that the large-scale environment traced by the nearby group affects primarily the shape of the host dark matter halo, and hence also affects the distribution of satellite galaxies and the orientation of central galaxies. In addition, the NNG directly affects the distribution of the satellite galaxies by inducing asymmetric alignment signals, and the NNG at very small separation may also contribute a second-order impact on the orientation of the central galaxy in the HG.

  16. Frog sound identification using extended k-nearest neighbor classifier

    Science.gov (United States)

    Mukahar, Nordiana; Affendi Rosdi, Bakhtiar; Athiar Ramli, Dzati; Jaafar, Haryati

    2017-09-01

    Frog sound identification based on the vocalization becomes important for biological research and environmental monitoring. As a result, different types of feature extractions and classifiers have been employed to evaluate the accuracy of frog sound identification. This paper presents a frog sound identification with Extended k-Nearest Neighbor (EKNN) classifier. The EKNN classifier integrates the nearest neighbors and mutual sharing of neighborhood concepts, with the aims of improving the classification performance. It makes a prediction based on who are the nearest neighbors of the testing sample and who consider the testing sample as their nearest neighbors. In order to evaluate the classification performance in frog sound identification, the EKNN classifier is compared with competing classifier, k -Nearest Neighbor (KNN), Fuzzy k -Nearest Neighbor (FKNN) k - General Nearest Neighbor (KGNN)and Mutual k -Nearest Neighbor (MKNN) on the recorded sounds of 15 frog species obtained in Malaysia forest. The recorded sounds have been segmented using Short Time Energy and Short Time Average Zero Crossing Rate (STE+STAZCR), sinusoidal modeling (SM), manual and the combination of Energy (E) and Zero Crossing Rate (ZCR) (E+ZCR) while the features are extracted by Mel Frequency Cepstrum Coefficient (MFCC). The experimental results have shown that the EKNCN classifier exhibits the best performance in terms of accuracy compared to the competing classifiers, KNN, FKNN, GKNN and MKNN for all cases.

  17. The Islands Approach to Nearest Neighbor Querying in Spatial Networks

    DEFF Research Database (Denmark)

    Huang, Xuegang; Jensen, Christian Søndergaard; Saltenis, Simonas

    2005-01-01

    , and versatile approach to k nearest neighbor computation that obviates the need for using several k nearest neighbor approaches for supporting a single service scenario. The experimental comparison with the existing techniques uses real-world road network data and considers both I/O and CPU performance...

  18. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  19. Performance modeling of neighbor discovery in proactive routing protocols

    Directory of Open Access Journals (Sweden)

    Andres Medina

    2011-07-01

    Full Text Available It is well known that neighbor discovery is a critical component of proactive routing protocols in wireless ad hoc networks. However there is no formal study on the performance of proposed neighbor discovery mechanisms. This paper provides a detailed model of key performance metrics of neighbor discovery algorithms, such as node degree and the distribution of the distance to symmetric neighbors. The model accounts for the dynamics of neighbor discovery as well as node density, mobility, radio and interference. The paper demonstrates a method for applying these models to the evaluation of global network metrics. In particular, it describes a model of network connectivity. Validation of the models shows that the degree estimate agrees, within 5% error, with simulations for the considered scenarios. The work presented in this paper serves as a basis for the performance evaluation of remaining performance metrics of routing protocols, vital for large scale deployment of ad hoc networks.

  20. Flank tectonics of Martian volcanoes

    International Nuclear Information System (INIS)

    Thomas, P.J.; Squyres, S.W.; Carr, M.H.

    1990-01-01

    On the flanks of Olympus Mons is a series of terraces, concentrically distributed around the caldera. Their morphology and location suggest that they could be thrust faults caused by compressional failure of the cone. In an attempt to understand the mechanism of faulting and the possible influences of the interior structure of Olympus Mons, the authors have constructed a numerical model for elastic stresses within a Martian volcano. In the absence of internal pressurization, the middle slopes of the cone are subjected to compressional stress, appropriate to the formation of thrust faults. These stresses for Olympus Mons are ∼250 MPa. If a vacant magma chamber is contained within the cone, the region of maximum compressional stress is extended toward the base of the cone. If the magma chamber is pressurized, extensional stresses occur at the summit and on the upper slopes of the cone. For a filled but unpressurized magma chamber, the observed positions of the faults agree well with the calculated region of high compressional stress. Three other volcanoes on Mars, Ascraeus Mons, Arsia Mons, and Pavonis Mons, possess similar terraces. Extending the analysis to other Martian volcanoes, they find that only these three and Olympus Mons have flank stresses that exceed the compressional failure strength of basalt, lending support to the view that the terraces on all four are thrust faults

  1. Our Galactic Neighbor Hosts Complex Organic Molecules

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected

  2. Dimensional testing for reverse k-nearest neighbor search

    DEFF Research Database (Denmark)

    Casanova, Guillaume; Englmeier, Elias; Houle, Michael E.

    2017-01-01

    Given a query object q, reverse k-nearest neighbor (RkNN) search aims to locate those objects of the database that have q among their k-nearest neighbors. In this paper, we propose an approximation method for solving RkNN queries, where the pruning operations and termination tests are guided...... by a characterization of the intrinsic dimensionality of the data. The method can accommodate any index structure supporting incremental (forward) nearest-neighbor search for the generation and verification of candidates, while avoiding impractically-high preprocessing costs. We also provide experimental evidence...

  3. Color and neighbor edge directional difference feature for image retrieval

    Institute of Scientific and Technical Information of China (English)

    Chaobing Huang; Shengsheng Yu; Jingli Zhou; Hongwei Lu

    2005-01-01

    @@ A novel image feature termed neighbor edge directional difference unit histogram is proposed, in which the neighbor edge directional difference unit is defined and computed for every pixel in the image, and is used to generate the neighbor edge directional difference unit histogram. This histogram and color histogram are used as feature indexes to retrieve color image. The feature is invariant to image scaling and translation and has more powerful descriptive for the natural color images. Experimental results show that the feature can achieve better retrieval performance than other color-spatial features.

  4. European collaboration for improved monitoring of Icelandic volcanoes: Status of the FUTUREVOLC project after the initial 18 months

    Science.gov (United States)

    Dumont, Stéphanie; Parks, Michelle; Sigmundsson, Freysteinn; Vogfjörð, Kristín; Einarsdóttir, Heiðveig Maria; Tumi Gudmundsson, Magnús; Kristinsson, Ingvar; Loughlin, Sue; Ilyinskaya, Evgenia; Hooper, Andrew; Kylling, Arve; Witham, Claire; Bean, Chris; Braiden, Aoife; Ripepe, Maurizio; Prata, Fred; Pétur Heiðarsson, Einar; Other Members Of The Futurevolc Team

    2014-05-01

    The FUTUREVOLC project funded by the European Union (FP7) is devoted to volcanic hazard assessment and establishing an integrated volcanological monitoring procedure through a European collaboration. To reach these objectives the project combines broad expertise from 26 partners from 10 countries, focusing on the four most active volcanoes of Iceland: Grímsvötn, Katla, Hekla and Bárdarbunga. The geological setting of Iceland, the high rate of eruptions and the various eruption styles make this country an optimal natural laboratory to study volcanic processes from crustal depths to the atmosphere. The project, which began on 1 October 2012, integrates advanced monitoring and analytical techniques in an innovative way, focusing on (i) detailed monitoring to improve our understanding of the seismic/magmatic unrest, in order to estimate the amount of magma available for an eruption and to provide early warnings (ii) the dynamics of magma in the conduit and a near real time estimation of the mass eruption rate and (iii) observing and modelling the plume dynamics. The project design considers effective collaboration between partners and aims for efficient cross-disciplinary workflows. A major step during the first 18 months of the project was the installation of additional equipment in the volcanic regions of Iceland to reinforce and complement the existing monitoring. The instruments include: seismometers, GPS stations, MultigGAS detectors, DOAS, infrasonic arrays, electric field sensors, radars, and optical particle sizers. Data streaming is designed to withstand extreme weather conditions. The FUTUREVOLC project has an open data policy for real and near-time data. Implementation of a data hub is currently under way, based on open access to data from the 2010 Eyjafjallajökull eruption. Access to volcano monitoring data through a common interface will allow timely information on magma movements facilitated through combined analysis. A key part of the project is to

  5. K-Ar ages of the Hiruzen volcano group and the Daisen volcano

    International Nuclear Information System (INIS)

    Tsukui, Masashi; Nishido, Hirotsugu; Nagao, Keisuke.

    1985-01-01

    Seventeen volcanic rocks of the Hiruzen volcano group and the Daisen volcano, in southwest Japan, were dated by the K-Ar method to clarify the age of volcanic activity in this region and the evolution of these composite volcanoes. The eruption ages of the Hiruzen volcano group were revealed to be about 0.9 Ma to 0.5 Ma, those of the Daisen volcano to be about 1 Ma to very recent. These results are consistent with geological and paleomagnetic data of previous workers. Effusion of lavas in the area was especially vigorous at 0.5+-0.1 Ma. It was generally considered that the Hiruzen volcano group had erupted during latest Pliocene to early Quaternary and it is older than the Daisen volcano, mainly from their topographic features. However, their overlapping eruption ages and petrographical similarities of the lavas of the Hiruzen volcano group and the Daisen volcano suggest that they may be included in the Daisen volcano in a broad sense. The aphyric andesite, whose eruption age had been correlated to Wakurayama andesite (6.34+-0.19 Ma) in Matsue city and thought to be the basement of the Daisen volcano, was dated to be 0.46+-0.04 Ma. It indicates that petrographically similar aphyric andesite erupted sporadically at different time and space in the San'in district. (author)

  6. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    Science.gov (United States)

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  7. Orographic Flow over an Active Volcano

    Science.gov (United States)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  8. Scalable Nearest Neighbor Algorithms for High Dimensional Data.

    Science.gov (United States)

    Muja, Marius; Lowe, David G

    2014-11-01

    For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.

  9. The role of orthography in the semantic activation of neighbors.

    Science.gov (United States)

    Hino, Yasushi; Lupker, Stephen J; Taylor, Tamsen E

    2012-09-01

    There is now considerable evidence that a letter string can activate semantic information appropriate to its orthographic neighbors (e.g., Forster & Hector's, 2002, TURPLE effect). This phenomenon is the focus of the present research. Using Japanese words, we examined whether semantic activation of neighbors is driven directly by orthographic similarity alone or whether there is also a role for phonological similarity. In Experiment 1, using a relatedness judgment task in which a Kanji word-Katakana word pair was presented on each trial, an inhibitory effect was observed when the initial Kanji word was related to an orthographic and phonological neighbor of the Katakana word target but not when the initial Kanji word was related to a phonological but not orthographic neighbor of the Katakana word target. This result suggests that phonology plays little, if any, role in the activation of neighbors' semantics when reading familiar words. In Experiment 2, the targets were transcribed into Hiragana, a script they are typically not written in, requiring readers to engage in phonological coding. In that experiment, inhibitory effects were observed in both conditions. This result indicates that phonologically mediated semantic activation of neighbors will emerge when phonological processing is necessary in order to understand a written word (e.g., when that word is transcribed into an unfamiliar script). PsycINFO Database Record (c) 2012 APA, all rights reserved.

  10. Haldane to Dimer Phase Transition in the Spin-1 Haldane System with Bond-Alternating Nearest-Neighbor and Uniform Next-Nearest-Neighbor Exchange Interactions

    OpenAIRE

    Takashi, Tonegawa; Makoto, Kaburagi; Takeshi, Nakao; Department of Physics, Faculty of Science, Kobe University; Faculty of Cross-Cultural Studies, Kobe University; Department of Physics, Faculty of Science, Kobe University

    1995-01-01

    The Haldane to dimer phase transition is studied in the spin-1 Haldane system with bond-alternating nearest-neighbor and uniform next-nearest-neighbor exchange interactions, where both interactions are antiferromagnetic and thus compete with each other. By using a method of exact diagonalization, the ground-state phase diagram on the ratio of the next-nearest-neighbor interaction constant to the nearest-neighbor one versus the bond-alternation parameter of the nearest-neighbor interactions is...

  11. The 2014 eruptions of Pavlof Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  12. Exploring Geology on the World-Wide Web--Volcanoes and Volcanism.

    Science.gov (United States)

    Schimmrich, Steven Henry; Gore, Pamela J. W.

    1996-01-01

    Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…

  13. Geophysical Exploration on the Structure of Volcanoes: Two Case Histories

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, A. S.

    1974-01-01

    Geophysical methods of exploration were used to determine the internal structure of Koolau Volcano in Hawaii and of Rabaul Volcano in New Guinea. By use of gravity and seismic data the central vent or plug of Koolau Volcano was outlined. Magnetic data seem to indicate that the central plug is still above the Curie Point. If so, the amount of heat energy available is tremendous. As for Rabaul Volcano, it is located in a region characterized by numerous block faulting. The volcano is only a part of a large block that has subsided. Possible geothermal areas exist near the volcano but better potential areas may exist away from the volcano.

  14. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  15. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  16. Volcanoes

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  17. Beyond formal groups: neighboring acts and watershed protection in Appalachia

    Directory of Open Access Journals (Sweden)

    Heather Lukacs

    2016-09-01

    Full Text Available This paper explores how watershed organizations in Appalachia have persisted in addressing water quality issues in areas with a history of coal mining. We identified two watershed groups that have taken responsibility for restoring local creeks that were previously highly degraded and sporadically managed. These watershed groups represent cases of self-organized commons governance in resource-rich, economically poor Appalachian communities. We describe the extent and characteristics of links between watershed group volunteers and watershed residents who are not group members. Through surveys, participant observation, and key-informant consultation, we found that neighbors – group members as well as non-group-members – supported the group's function through informal neighboring acts. Past research has shown that local commons governance institutions benefit from being nested in supportive external structures. We found that the persistence and success of community watershed organizations depends on the informal participation of local residents, affirming the necessity of looking beyond formal, organized groups to understand the resources, expertise, and information needed to address complex water pollution at the watershed level. Our findings augment the concept of nestedness in commons governance to include that of a formal organization acting as a neighbor that exchanges informal neighboring acts with local residents. In this way, we extend the concept of neighboring to include interactions between individuals and a group operating in the same geographic area.

  18. Common processes at unique volcanoes – a volcanological conundrum

    OpenAIRE

    Katharine eCashman; Juliet eBiggs

    2014-01-01

    An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behavior over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behavior (or “personali...

  19. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  20. Hydrothermal systems and volcano geochemistry

    Science.gov (United States)

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  1. Multiple k Nearest Neighbor Query Processing in Spatial Network Databases

    DEFF Research Database (Denmark)

    Xuegang, Huang; Jensen, Christian Søndergaard; Saltenis, Simonas

    2006-01-01

    This paper concerns the efficient processing of multiple k nearest neighbor queries in a road-network setting. The assumed setting covers a range of scenarios such as the one where a large population of mobile service users that are constrained to a road network issue nearest-neighbor queries...... for points of interest that are accessible via the road network. Given multiple k nearest neighbor queries, the paper proposes progressive techniques that selectively cache query results in main memory and subsequently reuse these for query processing. The paper initially proposes techniques for the case...... where an upper bound on k is known a priori and then extends the techniques to the case where this is not so. Based on empirical studies with real-world data, the paper offers insight into the circumstances under which the different proposed techniques can be used with advantage for multiple k nearest...

  2. Geophysical Investigations of Magma Plumbing Systems at Cerro Negro Volcano, Nicaragua

    Science.gov (United States)

    MacQueen, Patricia Grace

    Cerro Negro near Leon, Nicaragua is a very young (163 years), relatively small basaltic cinder cone volcano that has been unusually active during its short lifespan (recurrence interval 6--7 years), presenting a significant hazard to nearby communities. Previous studies have raised several questions as to the proper classification of Cerro Negro and its relation to neighboring Las Pilas-El Hoyo volcano. Analysis of Bouguer gravity data collected at Cerro Negro has revealed connected positive density anomalies beneath Cerro Negro and Las Pilas-El Hoyo. These findings suggest that eruptions at Cerro Negro may be tapping a large magma reservoir beneath Las Pilas-El Hoyo, implying that Cerro Negro should be considered the newest vent on the Las Pilas-El Hoyo volcanic complex. As such, it is possible that the intensity of volcanic hazards at Cerro Negro may eventually increase in the future to resemble those pertaining to a stratovolcano. Keywords: Cerro Negro; Las Pilas-El Hoyo; Bouguer gravity; magmatic plumbing systems; potential fields; volcano.

  3. Nearest unlike neighbor (NUN): an aid to decision confidence estimation

    Science.gov (United States)

    Dasarathy, Belur V.

    1995-09-01

    The concept of nearest unlike neighbor (NUN), proposed and explored previously in the design of nearest neighbor (NN) based decision systems, is further exploited in this study to develop a measure of confidence in the decisions made by NN-based decision systems. This measure of confidence, on the basis of comparison with a user-defined threshold, may be used to determine the acceptability of the decision provided by the NN-based decision system. The concepts, associated methodology, and some illustrative numerical examples using the now classical Iris data to bring out the ease of implementation and effectiveness of the proposed innovations are presented.

  4. Lahar hazards at Mombacho Volcano, Nicaragua

    Science.gov (United States)

    Vallance, J.W.; Schilling, S.P.; Devoli, G.

    2001-01-01

    Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001

  5. Analysis of volcano rocks by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Dekan, J.

    2012-01-01

    In this work we have analysed the basalt rock from Mount Ba tur volcano situated on the Island of Bali in Indonesia.We compared our results with composition of basalt rocks from some other places on the Earth. (authors)

  6. Moessbauer Spectroscopy study of Quimsachata Volcano materials

    International Nuclear Information System (INIS)

    Dominguez, A.G.B.

    1988-01-01

    It has been studied volcanic lava from Quimsachata Volcano in Pem. Moessbauer Spectroscopy, X-ray diffraction, electronic and optical microscopy allowed the identification of different mineralogical phases. (A.C.AS.) [pt

  7. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  8. Contrasting demographic histories of the neighboring bonobo and chimpanzee

    DEFF Research Database (Denmark)

    Hvilsom, Christina; Carlsen, Frands; Heller, Rasmus

    2014-01-01

    of the neighboring bonobo remained constant. The changes in population size are likely linked to changes in habitat area due to climate oscillations during the late Pleistocene. Furthermore, the timing of population expansion for the rainforest-adapted chimpanzee is concurrent with the expansion of the savanna...

  9. Local randomization in neighbor selection improves PRM roadmap quality

    KAUST Repository

    McMahon, Troy

    2012-10-01

    Probabilistic Roadmap Methods (PRMs) are one of the most used classes of motion planning methods. These sampling-based methods generate robot configurations (nodes) and then connect them to form a graph (roadmap) containing representative feasible pathways. A key step in PRM roadmap construction involves identifying a set of candidate neighbors for each node. Traditionally, these candidates are chosen to be the k-closest nodes based on a given distance metric. In this paper, we propose a new neighbor selection policy called LocalRand(k,K\\'), that first computes the K\\' closest nodes to a specified node and then selects k of those nodes at random. Intuitively, LocalRand attempts to benefit from random sampling while maintaining the higher levels of local planner success inherent to selecting more local neighbors. We provide a methodology for selecting the parameters k and K\\'. We perform an experimental comparison which shows that for both rigid and articulated robots, LocalRand results in roadmaps that are better connected than the traditional k-closest policy or a purely random neighbor selection policy. The cost required to achieve these results is shown to be comparable to k-closest. © 2012 IEEE.

  10. Local randomization in neighbor selection improves PRM roadmap quality

    KAUST Repository

    McMahon, Troy; Jacobs, Sam; Boyd, Bryan; Tapia, Lydia; Amato, Nancy M.

    2012-01-01

    Probabilistic Roadmap Methods (PRMs) are one of the most used classes of motion planning methods. These sampling-based methods generate robot configurations (nodes) and then connect them to form a graph (roadmap) containing representative feasible pathways. A key step in PRM roadmap construction involves identifying a set of candidate neighbors for each node. Traditionally, these candidates are chosen to be the k-closest nodes based on a given distance metric. In this paper, we propose a new neighbor selection policy called LocalRand(k,K'), that first computes the K' closest nodes to a specified node and then selects k of those nodes at random. Intuitively, LocalRand attempts to benefit from random sampling while maintaining the higher levels of local planner success inherent to selecting more local neighbors. We provide a methodology for selecting the parameters k and K'. We perform an experimental comparison which shows that for both rigid and articulated robots, LocalRand results in roadmaps that are better connected than the traditional k-closest policy or a purely random neighbor selection policy. The cost required to achieve these results is shown to be comparable to k-closest. © 2012 IEEE.

  11. Clustered K nearest neighbor algorithm for daily inflow forecasting

    NARCIS (Netherlands)

    Akbari, M.; Van Overloop, P.J.A.T.M.; Afshar, A.

    2010-01-01

    Instance based learning (IBL) algorithms are a common choice among data driven algorithms for inflow forecasting. They are based on the similarity principle and prediction is made by the finite number of similar neighbors. In this sense, the similarity of a query instance is estimated according to

  12. Near Neighbor Distribution in Sets of Fractal Nature

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel

    2013-01-01

    Roč. 5, č. 1 (2013), s. 159-166 ISSN 2150-7988 R&D Projects: GA MŠk(CZ) LG12020 Institutional support: RVO:67985807 Keywords : nearest neighbor * fractal set * multifractal * Erlang distribution Subject RIV: BB - Applied Statistics, Operational Research http://www.mirlabs.org/ijcisim/regular_papers_2013/Paper91.pdf

  13. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  14. Secure Nearest Neighbor Query on Crowd-Sensing Data

    Directory of Open Access Journals (Sweden)

    Ke Cheng

    2016-09-01

    Full Text Available Nearest neighbor queries are fundamental in location-based services, and secure nearest neighbor queries mainly focus on how to securely and quickly retrieve the nearest neighbor in the outsourced cloud server. However, the previous big data system structure has changed because of the crowd-sensing data. On the one hand, sensing data terminals as the data owner are numerous and mistrustful, while, on the other hand, in most cases, the terminals find it difficult to finish many safety operation due to computation and storage capability constraints. In light of they Multi Owners and Multi Users (MOMU situation in the crowd-sensing data cloud environment, this paper presents a secure nearest neighbor query scheme based on the proxy server architecture, which is constructed by protocols of secure two-party computation and secure Voronoi diagram algorithm. It not only preserves the data confidentiality and query privacy but also effectively resists the collusion between the cloud server and the data owners or users. Finally, extensive theoretical and experimental evaluations are presented to show that our proposed scheme achieves a superior balance between the security and query performance compared to other schemes.

  15. Thermodynamic systematics of oxides of americium, curium, and neighboring elements

    International Nuclear Information System (INIS)

    Morss, L.R.

    1984-01-01

    Recently-obtained calorimetric data on the sesquioxides and dioxides of americium and curium are summarized. These data are combined with other properties of the actinide elements to elucidate the stability relationships among these oxides and to predict the behavior of neighboring actinide oxides. 45 references, 4 figures, 5 tables

  16. Incidence and Prevalence of Tuberculosis in Iran and Neighboring Countries

    Directory of Open Access Journals (Sweden)

    Arezoo Tavakoli

    2017-07-01

    Full Text Available Background Tuberculosis is one of the major public health concerns in many countries, however the available and effective treatment is known. Tuberculosis typically determined with socio-economic problems such as war, malnutrition and HIV prevalence. In Iran, many progresses are carried to control tuberculosis but, different factors such as immigration from neighboring countries are affective to tuberculosis infection. Objectives In this paper, the incidence and prevalence of tuberculosis is evaluated in different regions of Iran and neighboring countries. Methods The data are collected from different and valid sources such as Scopus, Pubmed and also many reports from world health organization (WHO and center of disease control and prevention (CDC for a period of 25 years (1990 - 2015 evaluated for Iran and neighboring countries. Results This study as a descriptive- analytical research is conducted cross- sectional among Iran and neighboring countries since 1990. The information is obtained from exact and valid informative data from web of sciences. The east and west border countries of Iran which are faced with war and immigration in Afghanistan, Pakistan and Iraq are source of tuberculosis infection that effect on tuberculosis prevalence in Iran. The data were analyzed by SPSS 22 and Excel 2013. Conclusions The incidence of tuberculosis in Iran has been decreased because of many controlling actions such as BCG vaccination, electronic reporting system for tuberculosis and free access to tuberculosis medication. Some of Iran neighboring countries such as Tajikistan and Pakistan have the highest incidence of tuberculosis which known as a challenge for tuberculosis control in Iran while Saudi Arabia and Turkey have the lowest incidence.

  17. Local biotic adaptation of trees and shrubs to plant neighbors

    Science.gov (United States)

    Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.

    2017-01-01

    Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and

  18. Effects of Volcanoes on the Natural Environment

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2005-01-01

    The primary focus of this project has been on the development of techniques to study the thermal and gas output of volcanoes, and to explore our options for the collection of vegetation and soil data to enable us to assess the impact of this volcanic activity on the environment. We originally selected several volcanoes that have persistent gas emissions and/or magma production. The investigation took an integrated look at the environmental effects of a volcano. Through their persistent activity, basaltic volcanoes such as Kilauea (Hawaii) and Masaya (Nicaragua) contribute significant amounts of sulfur dioxide and other gases to the lower atmosphere. Although primarily local rather than regional in its impact, the continuous nature of these eruptions means that they can have a major impact on the troposphere for years to decades. Since mid-1986, Kilauea has emitted about 2,000 tonnes of sulfur dioxide per day, while between 1995 and 2000 Masaya has emotted about 1,000 to 1,500 tonnes per day (Duffel1 et al., 2001; Delmelle et al., 2002; Sutton and Elias, 2002). These emissions have a significant effect on the local environment. The volcanic smog ("vog" ) that is produced affects the health of local residents, impacts the local ecology via acid rain deposition and the generation of acidic soils, and is a concern to local air traffic due to reduced visibility. Much of the work that was conducted under this NASA project was focused on the development of field validation techniques of volcano degassing and thermal output that could then be correlated with satellite observations. In this way, we strove to develop methods by which not only our study volcanoes, but also volcanoes in general worldwide (Wright and Flynn, 2004; Wright et al., 2004). Thus volcanoes could be routinely monitored for their effects on the environment. The selected volcanoes were: Kilauea (Hawaii; 19.425 N, 155.292 W); Masaya (Nicaragua; 11.984 N, 86.161 W); and Pods (Costa Rica; 10.2OoN, 84.233 W).

  19. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  20. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  1. Social dilemma alleviated by sharing the gains with immediate neighbors

    Science.gov (United States)

    Wu, Zhi-Xi; Yang, Han-Xin

    2014-01-01

    We study the evolution of cooperation in the evolutionary spatial prisoner's dilemma game (PDG) and snowdrift game (SG), within which a fraction α of the payoffs of each player gained from direct game interactions is shared equally by the immediate neighbors. The magnitude of the parameter α therefore characterizes the degree of the relatedness among the neighboring players. By means of extensive Monte Carlo simulations as well as an extended mean-field approximation method, we trace the frequency of cooperation in the stationary state. We find that plugging into relatedness can significantly promote the evolution of cooperation in the context of both studied games. Unexpectedly, cooperation can be more readily established in the spatial PDG than that in the spatial SG, given that the degree of relatedness and the cost-to-benefit ratio of mutual cooperation are properly formulated. The relevance of our model with the stakeholder theory is also briefly discussed.

  2. Grain price spikes and beggar-thy-neighbor policy responses

    DEFF Research Database (Denmark)

    Boysen, Ole; Jensen, Hans Grinsted

    on the agenda of various international policy fora, including the annual meetings of G20 countries in recent years. For that reason, recent studies have attempted to quantify the extent to which such policy actions contributed to the rise in food prices. A study by Jensen & Anderson (2014) uses the global AGE...... model GTAP and the corresponding database to quantify the global policy actions contributions to the raise in food prices by modeling the changes in distortions to agricultural incentives in the period 2006 to 2008. We link the results from this global model into a national AGE model, highlighting how...... global "Beggar-thy-Neighbor Policy Responses" impacted on poor households in Uganda. More specifically we examine the following research questions: What were the Ugandan economy-wide and poverty impacts of the price spikes? What was the impact of other countries "Beggar-thy-Neighbor Policy Responses...

  3. Nearest Neighbor Networks: clustering expression data based on gene neighborhoods

    Directory of Open Access Journals (Sweden)

    Olszewski Kellen L

    2007-07-01

    Full Text Available Abstract Background The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of genes with similar behavior. A number of classical techniques are commonly used to perform this task, particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently. While these approaches are useful, they are not without drawbacks; these methods can find clusters in purely random data, and even clusters enriched for biological functions can be skewed towards a small number of processes (e.g. ribosomes. Results We developed Nearest Neighbor Networks (NNN, a graph-based algorithm to generate clusters of genes with similar expression profiles. This method produces clusters based on overlapping cliques within an interaction network generated from mutual nearest neighborhoods. This focus on nearest neighbors rather than on absolute distance measures allows us to capture clusters with high connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN with those generated by eight other clustering methods. NNN was particularly successful at generating functionally coherent clusters with high precision, and these clusters generally represented a much broader selection of biological processes than those recovered by other methods. Conclusion The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its success in the

  4. Crimean-Congo hemorrhagic fever in Iran and neighboring countries

    DEFF Research Database (Denmark)

    Chinikar, S; Ghiasi, Seyed Mojtaba; Hewson, R

    2010-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic viral disease that is asymptomatic in infected livestock, but a serious threat to humans. Human infections begin with nonspecific febrile symptoms, but progress to a serious hemorrhagic syndrome with a case fatality rate of 2-50%. Although the ...... in Iran and neighboring countries and provide evidence of over 5000 confirmed cases of CCHF in a single period/season....

  5. Fast Most Similar Neighbor (MSN) classifiers for Mixed Data

    OpenAIRE

    Hernández Rodríguez, Selene

    2010-01-01

    The k nearest neighbor (k-NN) classifier has been extensively used in Pattern Recognition because of its simplicity and its good performance. However, in large datasets applications, the exhaustive k-NN classifier becomes impractical. Therefore, many fast k-NN classifiers have been developed; most of them rely on metric properties (usually the triangle inequality) to reduce the number of prototype comparisons. Hence, the existing fast k-NN classifiers are applicable only when the comparison f...

  6. ENTROPY CHARACTERISTICS IN MODELS FOR COORDINATION OF NEIGHBORING ROAD SECTIONS

    Directory of Open Access Journals (Sweden)

    N. I. Kulbashnaya

    2016-01-01

    Full Text Available The paper considers an application of entropy characteristics as criteria to coordinate traffic conditions at neighboring road sections. It has been proved that the entropy characteristics are widely used in the methods that take into account information influence of the environment on drivers and in the mechanisms that create such traffic conditions which ensure preservation of the optimal level of driver’s emotional tension during the drive. Solution of such problem is considered in the aspect of coordination of traffic conditions at neighboring road sections that, in its turn, is directed on exclusion of any driver’s transitional processes. Methodology for coordination of traffic conditions at neighboring road sections is based on the E. V. Gavrilov’s concept on coordination of some parameters of road sections which can be expressed in the entropy characteristics. The paper proposes to execute selection of coordination criteria according to accident rates because while moving along neighboring road sections traffic conditions change drastically that can result in creation of an accident situation. Relative organization of a driver’s perception field and driver’s interaction with the traffic environment has been selected as entropy characteristics. Therefore, the given characteristics are made conditional to the road accidents rate. The investigation results have revealed a strong correlation between the relative organization of the driver’s perception field and the relative organization of the driver’s interaction with the traffic environment and the accident rate. Results of the executed experiment have proved an influence of the accident rate on the investigated entropy characteristics.

  7. Do alcohol compliance checks decrease underage sales at neighboring establishments?

    Science.gov (United States)

    Erickson, Darin J; Smolenski, Derek J; Toomey, Traci L; Carlin, Bradley P; Wagenaar, Alexander C

    2013-11-01

    Underage alcohol compliance checks conducted by law enforcement agencies can reduce the likelihood of illegal alcohol sales at checked alcohol establishments, and theory suggests that an alcohol establishment that is checked may warn nearby establishments that compliance checks are being conducted in the area. In this study, we examined whether the effects of compliance checks diffuse to neighboring establishments. We used data from the Complying with the Minimum Drinking Age trial, which included more than 2,000 compliance checks conducted at more than 900 alcohol establishments. The primary outcome was the sale of alcohol to a pseudo-underage buyer without the need for age identification. A multilevel logistic regression was used to model the effect of a compliance check at each establishment as well as the effect of compliance checks at neighboring establishments within 500 m (stratified into four equal-radius concentric rings), after buyer, license, establishment, and community-level variables were controlled for. We observed a decrease in the likelihood of establishments selling alcohol to underage youth after they had been checked by law enforcement, but these effects quickly decayed over time. Establishments that had a close neighbor (within 125 m) checked in the past 90 days were also less likely to sell alcohol to young-appearing buyers. The spatial effect of compliance checks on other establishments decayed rapidly with increasing distance. Results confirm the hypothesis that the effects of police compliance checks do spill over to neighboring establishments. These findings have implications for the development of an optimal schedule of police compliance checks.

  8. Single cell transcriptomics of neighboring hyphae of Aspergillus niger

    Science.gov (United States)

    2011-01-01

    Single cell profiling was performed to assess differences in RNA accumulation in neighboring hyphae of the fungus Aspergillus niger. A protocol was developed to isolate and amplify RNA from single hyphae or parts thereof. Microarray analysis resulted in a present call for 4 to 7% of the A. niger genes, of which 12% showed heterogeneous RNA levels. These genes belonged to a wide range of gene categories. PMID:21816052

  9. Volcano Trial Case on GEP: Systematically processing EO data

    OpenAIRE

    Baumann, Andreas Bruno Graziano

    2017-01-01

    Volcanoes can be found all over the world; on land and below water surface. Even nowadays not all volcanoes are known. About 600 erupted in geologically recent times and about 50-70 volcanoes are currently active. Volcanoes can cause earthquakes; throw out blasts and tephras; release (toxic) gases; lava can flow relatively slow down the slopes; mass movements like debris avalanches, and landslides can cause tsunamis; and fast and hot pyroclastic surge, flows, and lahars can travel fast down ...

  10. [Galaxy/quasar classification based on nearest neighbor method].

    Science.gov (United States)

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  11. Evidence for cultural differences between neighboring chimpanzee communities.

    Science.gov (United States)

    Luncz, Lydia V; Mundry, Roger; Boesch, Christophe

    2012-05-22

    The majority of evidence for cultural behavior in animals has come from comparisons between populations separated by large geographical distances that often inhabit different environments. The difficulty of excluding ecological and genetic variation as potential explanations for observed behaviors has led some researchers to challenge the idea of animal culture. Chimpanzees (Pan troglodytes verus) in the Taï National Park, Côte d'Ivoire, crack Coula edulis nuts using stone and wooden hammers and tree root anvils. In this study, we compare for the first time hammer selection for nut cracking across three neighboring chimpanzee communities that live in the same forest habitat, which reduces the likelihood of ecological variation. Furthermore, the study communities experience frequent dispersal of females at maturity, which eliminates significant genetic variation. We compared key ecological factors, such as hammer availability and nut hardness, between the three neighboring communities and found striking differences in group-specific hammer selection among communities despite similar ecological conditions. Differences were found in the selection of hammer material and hammer size in response to changes in nut resistance over time. Our findings highlight the subtleties of cultural differences in wild chimpanzees and illustrate how cultural knowledge is able to shape behavior, creating differences among neighboring social groups. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Volcano Geodesy: Recent developments and future challenges

    Science.gov (United States)

    Fernandez, Jose F.; Pepe, Antonio; Poland, Michael; Sigmundsson, Freysteinn

    2017-01-01

    Ascent of magma through Earth's crust is normally associated with, among other effects, ground deformation and gravity changes. Geodesy is thus a valuable tool for monitoring and hazards assessment during volcanic unrest, and it provides valuable data for exploring the geometry and volume of magma plumbing systems. Recent decades have seen an explosion in the quality and quantity of volcano geodetic data. New datasets (some made possible by regional and global scientific initiatives), as well as new analysis methods and modeling practices, have resulted in important changes to our understanding of the geodetic characteristics of active volcanism and magmatic processes, from the scale of individual eruptive vents to global compilations of volcano deformation. Here, we describe some of the recent developments in volcano geodesy, both in terms of data and interpretive tools, and discuss the role of international initiatives in meeting future challenges for the field.

  13. Soil radon response around an active volcano

    International Nuclear Information System (INIS)

    Segovia, N.; Valdes, C.; Pena, P.; Mena, M.; Tamez, E.

    2001-01-01

    Soil radon behavior related to the volcanic eruptive period 1997-1999 of Popocatepetl volcano has been studied as a function of the volcanic activity. Since the volcano is located 60 km from Mexico City, the risk associated with an explosive eruptive phase is high and an intense surveillance program has been implemented. Previous studies in this particular volcano showed soil radon pulses preceding the initial phase of the eruption. The radon survey was performed with LR-115 track detectors at a shallow depth and the effect of the soil moisture during the rainy season has been observed on the detectors response. In the present state of the volcanic activity the soil radon behavior has shown more stability than in previous eruptive stages

  14. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  15. Interdisciplinary studies of eruption at Chaiten Volcano, Chile

    Science.gov (United States)

    John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara. Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli

    2010-01-01

    There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...

  16. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  17. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  18. Volcanoes muon imaging using Cherenkov telescopes

    International Nuclear Information System (INIS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M.C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  19. Volcanoes muon imaging using Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, O. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Del Santo, M., E-mail: melania@ifc.inaf.it [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Mineo, T.; Cusumano, G.; Maccarone, M.C. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Pareschi, G. [INAF Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy)

    2016-01-21

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  20. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  1. The origin of the Hawaiian Volcano Observatory

    International Nuclear Information System (INIS)

    Dvorak, John

    2011-01-01

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  2. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  3. Volcanology and volcano sedimentology of Sahand region

    International Nuclear Information System (INIS)

    Moine Vaziri, H.; Amine Sobhani, E.

    1977-01-01

    There was no volcano in Precambrian and Mesozoic eras in Iran, but in most place of Iran during the next eras volcanic rocks with green series and Dacites were seen. By the recent survey in Sahand mountain in NW of Iran volcanography, determination of rocks and the age of layers were estimated. The deposits of Precambrian as sediment rocks are also seen in the same area. All of volcanic periods in this place were studied; their extrusive rocks, their petrography and the result of their analytical chemistry were discussed. Finally volcano sedimentology of Sahand mountain were described

  4. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  5. Recent Inflation of Kilauea Volcano

    Science.gov (United States)

    Miklius, A.; Poland, M.; Desmarais, E.; Sutton, A.; Orr, T.; Okubo, P.

    2006-12-01

    Over the last three years, geodetic monitoring networks and satellite radar interferometry have recorded substantial inflation of Kilauea's magma system, while the Pu`u `O`o eruption on the east rift zone has continued unabated. Combined with the approximate doubling of carbon dioxide emission rates at the summit during this period, these observations indicate that the magma supply rate to the volcano has increased. Since late 2003, the summit area has risen over 20 cm, and a 2.5 km-long GPS baseline across the summit area has extended almost half a meter. The center of inflation has been variable, with maximum uplift shifting from an area near the center of the caldera to the southeastern part of the caldera in 2004-2005. In 2006, the locus of inflation shifted again, to the location of the long-term magma reservoir in the southern part of the caldera - the same area that had subsided more than 1.5 meters during the last 23 years of the ongoing eruption. In addition, the southwest rift zone reversed its long-term trend of subsidence and began uplifting in early 2006. The east rift zone has shown slightly accelerated rates of extension, but with a year-long hiatus following the January 2005 south flank aseismic slip event. Inflation rates have varied greatly. Accelerated rates of extension and uplift in early 2005 and 2006 were also associated with increased seismicity. Seismicity occurred not only at inflation centers, but was also triggered on the normal faulting area northwest of the caldera and the strike-slip faulting area in the upper east rift zone. In early 2006, at about the time that we started recording uplift on the southwest rift zone, the rate of earthquakes extending from the summit into the southwest rift zone at least quadrupled. The most recent previous episode of inflation at Kilauea, in 2002, may have resulted from reduced lava- transport capacity, as it was associated with decreased outflow at the eruption site. In contrast, eruption volumes

  6. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  7. Quality and efficiency in high dimensional Nearest neighbor search

    KAUST Repository

    Tao, Yufei; Yi, Ke; Sheng, Cheng; Kalnis, Panos

    2009-01-01

    Nearest neighbor (NN) search in high dimensional space is an important problem in many applications. Ideally, a practical solution (i) should be implementable in a relational database, and (ii) its query cost should grow sub-linearly with the dataset size, regardless of the data and query distributions. Despite the bulk of NN literature, no solution fulfills both requirements, except locality sensitive hashing (LSH). The existing LSH implementations are either rigorous or adhoc. Rigorous-LSH ensures good quality of query results, but requires expensive space and query cost. Although adhoc-LSH is more efficient, it abandons quality control, i.e., the neighbor it outputs can be arbitrarily bad. As a result, currently no method is able to ensure both quality and efficiency simultaneously in practice. Motivated by this, we propose a new access method called the locality sensitive B-tree (LSB-tree) that enables fast highdimensional NN search with excellent quality. The combination of several LSB-trees leads to a structure called the LSB-forest that ensures the same result quality as rigorous-LSH, but reduces its space and query cost dramatically. The LSB-forest also outperforms adhoc-LSH, even though the latter has no quality guarantee. Besides its appealing theoretical properties, the LSB-tree itself also serves as an effective index that consumes linear space, and supports efficient updates. Our extensive experiments confirm that the LSB-tree is faster than (i) the state of the art of exact NN search by two orders of magnitude, and (ii) the best (linear-space) method of approximate retrieval by an order of magnitude, and at the same time, returns neighbors with much better quality. © 2009 ACM.

  8. Carbonate assimilation at Merapi volcano, Java Indonesia

    DEFF Research Database (Denmark)

    Chadwick, J.P; Troll, V.R; Ginibre,, C.

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40^95...

  9. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  10. Biological Studies on a Live Volcano.

    Science.gov (United States)

    Zipko, Stephen J.

    1992-01-01

    Describes scientific research on an Earthwatch expedition to study Arenal, one of the world's most active volcanoes, in north central Costa Rica. The purpose of the two-week project was to monitor and understand the past and ongoing development of a small, geologically young, highly active stratovolcano in a tropical, high-rainfall environment.…

  11. Of volcanoes, saints, trash, and frogs

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    , at the same time as political elections and economic hardship. During one year of ethnographic fieldwork volcanoes, saints, trash and frogs were among the nonhuman entities referred to in conversations and engaged with when responding to the changes that trouble the world and everyday life of Arequipans...

  12. Geophysical monitoring of the Purace volcano, Colombia

    Directory of Open Access Journals (Sweden)

    M. Arcila

    1996-06-01

    Full Text Available Located in the extreme northwestern part of the Los Coconucos volcanic chain in the Central Cordillera, the Purace is one of Colombia's most active volcanoes. Recent geological studies indicate an eruptive history of mainly explosive behavior which was marked most recently by a minor ash eruption in 1977. Techniques used to forecast the renewal of activity of volcanoes after a long period of quiescence include the monitoring of seismicity and ground deformation near the volcano. As a first approach toward the monitoring of the Purace volcano, Southwest Seismological Observatory (OSSO, located in the city of Cali, set up one seismic station in 1986. Beginning in June 1991, the seismic signals have also been transmitted to the Colombian Geological Survey (INGEOMINAS at the Volcanological and Seismological Observatory (OVS-UOP, located in the city of Popayan. Two more seismic stations were installed early in 1994 forming a minimum seismic network and a geodetic monitoring program for ground deformation studies was established and conducted by INGEOMINAS.

  13. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  14. Mountain tourism development in Serbia and neighboring countries

    Directory of Open Access Journals (Sweden)

    Krunić Nikola

    2010-01-01

    Full Text Available Mountain areas with their surroundings are important parts of tourism regions with potentials for all-season tourism development and complementary activities. Development possibilities are based on size of high mountain territory, nature protection regimes, infrastructural equipment, provided conditions for leisure and recreation as well as involvement of local population in processes of development and protection. This paper analyses the key aspects of tourism development, winter tourism in high-mountain areas of Serbia and some neighboring countries (Slovakia, Romania, Bulgaria, and Greece. Common determinants of cohesion between nature protection and mountain tourism development, national development policies, applied models and concepts and importance of trans-border cooperation are indicated.

  15. Neighboring Structure Visualization on a Grid-based Layout.

    Science.gov (United States)

    Marcou, G; Horvath, D; Varnek, A

    2017-10-01

    Here, we describe an algorithm to visualize chemical structures on a grid-based layout in such a way that similar structures are neighboring. It is based on structure reordering with the help of the Hilbert Schmidt Independence Criterion, representing an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator. The method can be applied to any layout of bi- or three-dimensional shape. The approach is demonstrated on a set of dopamine D5 ligands visualized on squared, disk and spherical layouts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The nearest neighbor and the bayes error rates.

    Science.gov (United States)

    Loizou, G; Maybank, S J

    1987-02-01

    The (k, l) nearest neighbor method of pattern classification is compared to the Bayes method. If the two acceptance rates are equal then the asymptotic error rates satisfy the inequalities Ek,l + 1 ¿ E*(¿) ¿ Ek,l dE*(¿), where d is a function of k, l, and the number of pattern classes, and ¿ is the reject threshold for the Bayes method. An explicit expression for d is given which is optimal in the sense that for some probability distributions Ek,l and dE* (¿) are equal.

  17. False Color Image of Volcano Sapas Mons

    Science.gov (United States)

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day

  18. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  19. Mauna Kea volcano's ongoing 18-year swarm

    Science.gov (United States)

    Wech, A.; Thelen, W. A.

    2017-12-01

    Mauna Kea is a large postshield-stage volcano that forms the highest peak on Hawaii Island. The 4,205-meter high volcano erupted most recently between 6,000 and 4,500 years ago and exhibits relatively low rates of seismicity, which are mostly tectonic in origin resulting from lithospheric flexure under the weight of the volcano. Here we identify deep repeating earthquakes occurring beneath the summit of Mauna Kea. These earthquakes, which are not part of the Hawaiian Volcano Observatory's regional network catalog, were initially detected through a systematic search for coherent seismicity using envelope cross-correlation, and subsequent analysis revealed the presence of a long-term, ongoing swarm. The events have energy concentrated at 2-7 Hz, and can be seen in filtered waveforms dating back to the earliest continuous data from a single station archived at IRIS from November 1999. We use a single-station (3 component) match-filter analysis to create a catalog of the repeating earthquakes for the past 18 years. Using two templates created through phase-weighted stacking of thousands of sta/lta-triggers, we find hundreds of thousands of M1.3-1.6 earthquakes repeating every 7-12 minutes throughout this entire time period, with many smaller events occurring in between. The earthquakes occur at 28-31 km depth directly beneath the summit within a conspicuous gap in seismicity surrounding the flanks of the volcano. Magnitudes and periodicity are remarkably stable long-term, but do exhibit slight variability and occasionally display higher variability on shorter time scales. Network geometry precludes obtaining a reliable focal mechanism, but we interpret the frequency content and hypocenters to infer a volcanic source distinct from the regional tectonic seismicity responding to the load of the island. In this model, the earthquakes may result from the slow, persistent degassing of a relic magma chamber at depth.

  20. Geochemical studies on island arc volcanoes

    International Nuclear Information System (INIS)

    Notsu, Kenji

    1998-01-01

    This paper summarizes advances in three topics of geochemical studies on island arc volcanoes, which I and my colleagues have been investigating. First one is strontium isotope studies of arc volcanic rocks mainly from Japanese island arcs. We have shown that the precise spatial distribution of the 87 Sr/ 86 Sr ratio reflects natures of the subduction structure and slab-mantle interaction. Based on the 87 Sr/ 86 Sr ratio of volcanic rocks in the northern Kanto district, where two plates subduct concurrently with different directions, the existence of an aseismic portion of the Philippine Sea plate ahead of the seismic one was suggested. Second one is geochemical monitoring of active arc volcanoes. 3 He/ 4 He ratio of volcanic volatiles was shown to be a good indicator to monitor the behavior of magma: ascent and drain-back of magma result in increase and decrease in the ratio, respectively. In the case of 1986 eruptions of Izu-Oshima volcano, the ratio began to increase two months after big eruptions, reaching the maximum and decreased. Such delayed response is explained in terms of travelling time of magmatic helium from the vent area to the observation site along the underground steam flow. Third one is remote observation of volcanic gas chemistry of arc volcanoes, using an infrared absorption spectroscopy. During Unzen eruptions starting in 1990, absorption features of SO 2 and HCl of volcanic gas were detected from the observation station at 1.3 km distance. This was the first ground-based remote detection of HCl in volcanic gas. In the recent work at Aso volcano, we could identify 5 species (CO, COS, CO 2 , SO 2 and HCl) simultaneously in the volcanic plume spectra. (author)

  1. Tephra-Producing Eruptions of Holocene Age at Akutan Volcano, Alaska; Frequency, Magnitude, and Hazards

    Science.gov (United States)

    Waythomas, C. F.; Wallace, K. L.; Schwaiger, H.

    2012-12-01

    Akutan Volcano in the eastern Aleutian Islands of Alaska is one of the most historically active volcanoes in the Aleutian arc (43 eruptions in about the past 250 years). Explosive eruptions pose major hazards to aircraft flying north Pacific air routes and to local infrastructure on Akutan and neighboring Unalaska Island. Air travel, infrastructure, and population in the region have steadily increased during the past several decades, and thus it is important to better understand the frequency, magnitude, and characteristics of tephra-producing eruptions. The most recent eruption was a VEI 2 event on March 8-May 21, 1992 that resulted in minor ash emissions and trace amounts of proximal fallout. Nearly continuous low-level emission of ash and steam is typical of historical eruptions, and most of the historical events have been similar in magnitude to the 1992 event. The most recent major eruption occurred about 1600 yr. B.P. and likely produced the ca. 2-km diameter summit caldera and inundated valleys that head on the volcano with pyroclastic-flow and lahar deposits that are tens of meters thick. The 1600 yr. B.P. eruption covered most of Akutan Island with up to 2.5 m of coarse scoriaceous tephra fall, including deposits 0.5-1 m thick near the City of Akutan. Tephra-fall deposits associated with this eruption exhibit a continuous sequence of black, fine to coarse scoriaceous lapilli overlain by a lithic-rich facies and finally a muddy aggregate-rich facies indicating water involvement during the latter stages of the eruption. Other tephra deposits of Holocene age on Akutan Island include more than a dozen discrete fine to coarse ash beds and 3-6 beds of scoriaceous, coarse lapilli tephra indicating that there have been several additional major eruptions (>VEI 3) of Akutan Volcano during the Holocene. Radiocarbon dates on these events are pending. In addition to tephra falls from Akutan, other fine ash deposits are found on the island that originated from other

  2. Diagnostic tools for nearest neighbors techniques when used with satellite imagery

    Science.gov (United States)

    Ronald E. McRoberts

    2009-01-01

    Nearest neighbors techniques are non-parametric approaches to multivariate prediction that are useful for predicting both continuous and categorical forest attribute variables. Although some assumptions underlying nearest neighbor techniques are common to other prediction techniques such as regression, other assumptions are unique to nearest neighbor techniques....

  3. Using K-Nearest Neighbor in Optical Character Recognition

    Directory of Open Access Journals (Sweden)

    Veronica Ong

    2016-03-01

    Full Text Available The growth in computer vision technology has aided society with various kinds of tasks. One of these tasks is the ability of recognizing text contained in an image, or usually referred to as Optical Character Recognition (OCR. There are many kinds of algorithms that can be implemented into an OCR. The K-Nearest Neighbor is one such algorithm. This research aims to find out the process behind the OCR mechanism by using K-Nearest Neighbor algorithm; one of the most influential machine learning algorithms. It also aims to find out how precise the algorithm is in an OCR program. To do that, a simple OCR program to classify alphabets of capital letters is made to produce and compare real results. The result of this research yielded a maximum of 76.9% accuracy with 200 training samples per alphabet. A set of reasons are also given as to why the program is able to reach said level of accuracy.

  4. Kinetic Models for Topological Nearest-Neighbor Interactions

    Science.gov (United States)

    Blanchet, Adrien; Degond, Pierre

    2017-12-01

    We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.

  5. Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio

    Science.gov (United States)

    Nababan, A. A.; Sitompul, O. S.; Tulus

    2018-04-01

    K- Nearest Neighbor (KNN) is a good classifier, but from several studies, the result performance accuracy of KNN still lower than other methods. One of the causes of the low accuracy produced, because each attribute has the same effect on the classification process, while some less relevant characteristics lead to miss-classification of the class assignment for new data. In this research, we proposed Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio as a parameter to see the correlation between each attribute in the data and the Gain Ratio also will be used as the basis for weighting each attribute of the dataset. The accuracy of results is compared to the accuracy acquired from the original KNN method using 10-fold Cross-Validation with several datasets from the UCI Machine Learning repository and KEEL-Dataset Repository, such as abalone, glass identification, haberman, hayes-roth and water quality status. Based on the result of the test, the proposed method was able to increase the classification accuracy of KNN, where the highest difference of accuracy obtained hayes-roth dataset is worth 12.73%, and the lowest difference of accuracy obtained in the abalone dataset of 0.07%. The average result of the accuracy of all dataset increases the accuracy by 5.33%.

  6. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  7. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  8. Continuous monitoring of volcanoes with borehole strainmeters

    Science.gov (United States)

    Linde, Alan T.; Sacks, Selwyn

    Monitoring of volcanoes using various physical techniques has the potential to provide important information about the shape, size and location of the underlying magma bodies. Volcanoes erupt when the pressure in a magma chamber some kilometers below the surface overcomes the strength of the intervening rock, resulting in detectable deformations of the surrounding crust. Seismic activity may accompany and precede eruptions and, from the patterns of earthquake locations, inferences may be made about the location of magma and its movement. Ground deformation near volcanoes provides more direct evidence on these, but continuous monitoring of such deformation is necessary for all the important aspects of an eruption to be recorded. Sacks-Evertson borehole strainmeters have recorded strain changes associated with eruptions of Hekla, Iceland and Izu-Oshima, Japan. Those data have made possible well-constrained models of the geometry of the magma reservoirs and of the changes in their geometry during the eruption. The Hekla eruption produced clear changes in strain at the nearest instrument (15 km from the volcano) starting about 30 minutes before the surface breakout. The borehole instrument on Oshima showed an unequivocal increase in the amplitude of the solid earth tides beginning some years before the eruption. Deformational changes, detected by a borehole strainmeter and a very long baseline tiltmeter, and corresponding to the remote triggered seismicity at Long Valley, California in the several days immediately following the Landers earthquake are indicative of pressure changes in the magma body under Long Valley, raising the question of whether such transients are of more general importance in the eruption process. We extrapolate the experience with borehole strainmeters to estimate what could be learned from an installation of a small network of such instruments on Mauna Loa. Since the process of conduit formation from the magma sources in Mauna Loa and other

  9. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  10. Enhanced Approximate Nearest Neighbor via Local Area Focused Search.

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Antonio [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blazier, Nicholas Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine learning, data mining, and image processing applications. There is a large family of space- partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but are limited by an exponential increase in similarity comparisons required to optimize recall. Additionally, they only support a small set of similarity metrics. We present Local Area Fo- cused Search (LAFS), a method that enhances the way queries are performed using an existing ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity comparisons) queries and focuses on a local neighborhood which is refined as candidates are identified. We show that our technique improves performance on several well known datasets and is easily extended to general similarity metrics using kernel projection techniques.

  11. Nearest Neighbor Estimates of Entropy for Multivariate Circular Distributions

    Directory of Open Access Journals (Sweden)

    Neeraj Misra

    2010-05-01

    Full Text Available In molecular sciences, the estimation of entropies of molecules is important for the understanding of many chemical and biological processes. Motivated by these applications, we consider the problem of estimating the entropies of circular random vectors and introduce non-parametric estimators based on circular distances between n sample points and their k th nearest neighbors (NN, where k (≤ n – 1 is a fixed positive integer. The proposed NN estimators are based on two different circular distances, and are proven to be asymptotically unbiased and consistent. The performance of one of the circular-distance estimators is investigated and compared with that of the already established Euclidean-distance NN estimator using Monte Carlo samples from an analytic distribution of six circular variables of an exactly known entropy and a large sample of seven internal-rotation angles in the molecule of tartaric acid, obtained by a realistic molecular-dynamics simulation.

  12. Introduction to machine learning: k-nearest neighbors.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-06-01

    Machine learning techniques have been widely used in many scientific fields, but its use in medical literature is limited partly because of technical difficulties. k-nearest neighbors (kNN) is a simple method of machine learning. The article introduces some basic ideas underlying the kNN algorithm, and then focuses on how to perform kNN modeling with R. The dataset should be prepared before running the knn() function in R. After prediction of outcome with kNN algorithm, the diagnostic performance of the model should be checked. Average accuracy is the mostly widely used statistic to reflect the kNN algorithm. Factors such as k value, distance calculation and choice of appropriate predictors all have significant impact on the model performance.

  13. Measurement of near neighbor separations of surface atoms

    International Nuclear Information System (INIS)

    Cohen, P.I.

    Two techniques are being developed to measure the nearest neighbor distances of atoms at the surfaces of solids. Both measures extended fine structure in the excitation probability of core level electrons which are excited by an incident electron beam. This is an important problem because the structures of most surface systems are as yet unknown, even though the location of surface atoms is the basis for any quantitative understanding of the chemistry and physics of surfaces and interfaces. These methods would allow any laboratory to make in situ determinations of surface structure in conjunction with most other laboratory probes of surfaces. Each of these two techniques has different advantages; further, the combination of the two will increase confidence in the results by reducing systematic error in the data analysis

  14. Radionuclide content of an exhumed canyon vessel and neighboring soil

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1976-11-01

    The long-term hazard potential associated with burial of process equipment from radiochemical separations plants is being evaluated. As part of this evaluation, a feed adjustment tank was exhumed eighteen years after burial. The tank had been in service in the fuel reprocessing plant for twenty-nine months before it was retired. Assay of the exhumed tank indicated that 7 mg (0.4 mCi) of 239 Pu and 1 mCi of 137 Cs remained on its surfaces; 1.1 mg (0.07 mCi) 239 Pu, 0.4 mCi 137 Cs, and 3.5 mCi 90 Sr were found in neighboring soil. The vessel and surrounding soil have met the present guidelines (less than or equal to 10 nCi/g) of the U. S. Energy Research and Development Administration (ERDA) for nonretrievable waste

  15. Reduction of Conflicts in Mining Development Using "Good Neighbor Agreements"

    Science.gov (United States)

    Masaitis, A.

    2013-05-01

    New environmental and social challenges for the mining industry in both developed and developing countries show the obvious need to implement "responsible" mining practices that include improved community involvement. Good Neighbor Agreements (GNA's) are a relatively new mechanism for improving communication and trust between a mining company and the community. The focus of a GNA will be to provide a written and enforceable agreement, negotiated between the concerned public and the respective mining company to respond to concerns from the public, and also provide a mechanism for conflict resolution, when there is mutual benefit to maintain a working relationship. Development of GNA's, a recently evolving process that promotes environmentally sound relationships between mines and the surrounding communities. Modify and apply the resulting GNA formulas to the developing countries and countries with transitional economies. This is particularly important for countries that have poorly functioning regulatory systems that cannot guarantee a healthy and safe environment for the communities. The fundamental questions addressed by this research. 1. This is a three-year research project started in August 2012 at the University of Nevada, Reno (UNR) to develop a Good Neighbor Agreements standards as well as to investigate the details of mine development. 2. Identify spheres of possible cooperation between mining companies, government organizations, and the Non-Governmental Organizations (NGO's). Use this cooperation to develop international standards for the GNA, to promote exchange of environmental information, and exchange of successful environmental, health, and safety practices between mining operations from different countries. Discussion: The Good Neighbor Agreement currently evolving will address the following: 1. Provide an economically viable mechanism for developing a partnership between mining operations and the local communities that will increase mining industry

  16. Building good relationships with neighbors of Japan's oldest plant, Tsuruga

    International Nuclear Information System (INIS)

    Hata, Emi

    1992-01-01

    Since its establishment in 1957 as a pioneer company of nuclear power development in Japan, the Japan Atomic Power Company (JAPC) has gained a great deal of experience with construction and operation of four nuclear power plants - one gas-cooled reactor, two boiling water reactors (BWRs), and one pressurized water reactor (PWR) - at two sites, Tsuruga and Tokai. To gain the understanding and cooperation of the local community, the Tsuruga station must keep running. Each employee is encouraged to make every possible effort not only to ensure the safe and reliable operation of the two units, but also to ensure conscientious coexistence and coprosperity within the local community. The Tsuruga office in the city and the Public Relations (PR) Pavilion (visitor's center) at the site work together as an open window of communication with the local community. Under these basic philosophies, various good neighbor activities are developed and carried out

  17. Implementation of Nearest Neighbor using HSV to Identify Skin Disease

    Science.gov (United States)

    Gerhana, Y. A.; Zulfikar, W. B.; Ramdani, A. H.; Ramdhani, M. A.

    2018-01-01

    Today, Android is one of the most widely used operating system in the world. Most of android device has a camera that could capture an image, this feature could be optimized to identify skin disease. The disease is one of health problem caused by bacterium, fungi, and virus. The symptoms of skin disease usually visible. In this work, the symptoms that captured as image contains HSV in every pixel of the image. HSV can extracted and then calculate to earn euclidean value. The value compared using nearest neighbor algorithm to discover closer value between image testing and image training to get highest value that decide class label or type of skin disease. The testing result show that 166 of 200 or about 80% is accurate. There are some reasons that influence the result of classification model like number of image training and quality of android device’s camera.

  18. Neighboring Optimal Aircraft Guidance in a General Wind Environment

    Science.gov (United States)

    Jardin, Matthew R. (Inventor)

    2003-01-01

    Method and system for determining an optimal route for an aircraft moving between first and second waypoints in a general wind environment. A selected first wind environment is analyzed for which a nominal solution can be determined. A second wind environment is then incorporated; and a neighboring optimal control (NOC) analysis is performed to estimate an optimal route for the second wind environment. In particular examples with flight distances of 2500 and 6000 nautical miles in the presence of constant or piecewise linearly varying winds, the difference in flight time between a nominal solution and an optimal solution is 3.4 to 5 percent. Constant or variable winds and aircraft speeds can be used. Updated second wind environment information can be provided and used to obtain an updated optimal route.

  19. Morphological type correlation between nearest neighbor pairs of galaxies

    Science.gov (United States)

    Yamagata, Tomohiko

    1990-01-01

    Although the morphological type of galaxies is one of the most fundamental properties of galaxies, its origin and evolutionary processes, if any, are not yet fully understood. It has been established that the galaxy morphology strongly depends on the environment in which the galaxy resides (e.g., Dressler 1980). Galaxy pairs correspond to the smallest scales of galaxy clustering and may provide important clues to how the environment influences the formation and evolution of galaxies. Several investigators pointed out that there is a tendency for pair galaxies to have similar morphological types (Karachentsev and Karachentseva 1974, Page 1975, Noerdlinger 1979). Here, researchers analyze morphological type correlation for 18,364 nearest neighbor pairs of galaxies identified in the magnetic tape version of the Center for Astrophysics Redshift Catalogue.

  20. Designing lattice structures with maximal nearest-neighbor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Munoz, J C; Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, 78216 San Luis Potosi (Mexico); Garcia, M E [Theoretische Physik, FB 18, Universitaet Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str.40, 34132 Kassel (Germany)

    2009-08-07

    In this paper, we study the numerical optimization of nearest-neighbor concurrence of bipartite one- and two-dimensional lattices, as well as non-bipartite two-dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non-optimized systems. In the case of one-dimensional chains, the concurrence increases dramatically when the system begins to dimerize, i.e., it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions. Moreover, the optimization of concurrence in two-dimensional bipartite and non-bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations.

  1. Credit scoring analysis using weighted k nearest neighbor

    Science.gov (United States)

    Mukid, M. A.; Widiharih, T.; Rusgiyono, A.; Prahutama, A.

    2018-05-01

    Credit scoring is a quatitative method to evaluate the credit risk of loan applications. Both statistical methods and artificial intelligence are often used by credit analysts to help them decide whether the applicants are worthy of credit. These methods aim to predict future behavior in terms of credit risk based on past experience of customers with similar characteristics. This paper reviews the weighted k nearest neighbor (WKNN) method for credit assessment by considering the use of some kernels. We use credit data from a private bank in Indonesia. The result shows that the Gaussian kernel and rectangular kernel have a better performance based on the value of percentage corrected classified whose value is 82.4% respectively.

  2. Radiative energy loss of neighboring subjets arXiv

    CERN Document Server

    Mehtar-Tani, Yacine

    We compute the in-medium energy loss probability distribution of two neighboring subjets at leading order, in the large-$N_c$ approximation. Our result exhibits a gradual onset of color decoherence of the system and accounts for two expected limiting cases. When the angular separation is smaller than the characteristic angle for medium-induced radiation, the two-pronged substructure lose energy coherently as a single color charge, namely that of the parent parton. At large angular separation the two subjets lose energy independently. Our result is a first step towards quantifying effects of energy loss as a result of the fluctuation of the multi-parton jet substructure and therefore goes beyond the standard approach to jet quenching based on single parton energy loss. We briefly discuss applications to jet observables in heavy-ion collisions.

  3. Nearest neighbor imputation using spatial-temporal correlations in wireless sensor networks.

    Science.gov (United States)

    Li, YuanYuan; Parker, Lynne E

    2014-01-01

    Missing data is common in Wireless Sensor Networks (WSNs), especially with multi-hop communications. There are many reasons for this phenomenon, such as unstable wireless communications, synchronization issues, and unreliable sensors. Unfortunately, missing data creates a number of problems for WSNs. First, since most sensor nodes in the network are battery-powered, it is too expensive to have the nodes retransmit missing data across the network. Data re-transmission may also cause time delays when detecting abnormal changes in an environment. Furthermore, localized reasoning techniques on sensor nodes (such as machine learning algorithms to classify states of the environment) are generally not robust enough to handle missing data. Since sensor data collected by a WSN is generally correlated in time and space, we illustrate how replacing missing sensor values with spatially and temporally correlated sensor values can significantly improve the network's performance. However, our studies show that it is important to determine which nodes are spatially and temporally correlated with each other. Simple techniques based on Euclidean distance are not sufficient for complex environmental deployments. Thus, we have developed a novel Nearest Neighbor (NN) imputation method that estimates missing data in WSNs by learning spatial and temporal correlations between sensor nodes. To improve the search time, we utilize a k d-tree data structure, which is a non-parametric, data-driven binary search tree. Instead of using traditional mean and variance of each dimension for k d-tree construction, and Euclidean distance for k d-tree search, we use weighted variances and weighted Euclidean distances based on measured percentages of missing data. We have evaluated this approach through experiments on sensor data from a volcano dataset collected by a network of Crossbow motes, as well as experiments using sensor data from a highway traffic monitoring application. Our experimental

  4. An interactive cooperation model for neighboring virtual power plants

    International Nuclear Information System (INIS)

    Shabanzadeh, Morteza; Sheikh-El-Eslami, Mohammad-Kazem; Haghifam, Mahmoud-Reza

    2017-01-01

    Highlights: •The trading strategies of a VPP in cooperation with its neighboring VPPs are addressed. •A portfolio of inter-regional contracts is considered to model this cooperation scheme. •A novel mathematical formulation for possible inadvertent transactions is provided. •A two-stage stochastic programming approach is applied to characterize the uncertainty. •Two efficient risk measures, SSD and CVaR, are implemented in the VPP decision-making problem. -- Abstract: Future distribution systems will accommodate an increasing share of distributed energy resources (DERs). Facing with this new reality, virtual power plants (VPPs) play a key role to aggregate DERs with the aim of facilitating their involvement in wholesale electricity markets. In this paper, the trading strategies of a VPP in cooperation with its neighboring VPPs are addressed. Toward this aim, a portfolio of inter-regional contracts is considered to model this cooperation and maximize the energy trade opportunities of the VPP within a medium-term horizon. To hedge against profit variability caused by market price uncertainties, two efficient risk management approaches are also implemented in the VPP decision-making problem based on the concepts of conditional value at risk (CVaR) and second-order stochastic dominance constraints (SSD). The resulting models are formulated as mixed-integer linear programming (MILP) problems that can be solved using off-the-shelf software packages. The efficiency of the proposed risk-hedging models is analyzed through a detailed case study, and thereby relevant conclusions are drawn.

  5. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  6. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  7. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  8. Electrical structure of Newberry Volcano, Oregon

    Science.gov (United States)

    Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J.

    1988-01-01

    From the interpretation of magnetotelluric, transient electromagnetic, and Schlumberger resistivity soundings, the electrical structure of Newberry Volcano in central Oregon is found to consist of four units. From the surface downward, the geoelectrical units are 1) very resistive, young, unaltered volcanic rock, (2) a conductive layer of older volcanic material composed of altered tuffs, 3) a thick resistive layer thought to be in part intrusive rocks, and 4) a lower-crustal conductor. This model is similar to the regional geoelectrical structure found throughout the Cascade Range. Inside the caldera, the conductive second layer corresponds to the steep temperature gradient and alteration minerals observed in the USGS Newberry 2 test-hole. Drill hole information on the south and north flanks of the volcano (test holes GEO N-1 and GEO N-3, respectively) indicates that outside the caldera the conductor is due to alteration minerals (primarily smectite) and not high-temperature pore fluids. On the flanks of Newberry the conductor is generally deeper than inside the caldera, and it deepens with distance from the summit. A notable exception to this pattern is seen just west of the caldera rim, where the conductive zone is shallower than at other flank locations. The volcano sits atop a rise in the resistive layer, interpreted to be due to intrusive rocks. -from Authors

  9. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  10. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  11. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    Science.gov (United States)

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  12. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  13. Volcano-Monitoring Instrumentation in the United States, 2008

    Science.gov (United States)

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  14. Data assimilation strategies for volcano geodesy

    Science.gov (United States)

    Zhan, Yan; Gregg, Patricia M.

    2017-09-01

    Ground deformation observed using near-real time geodetic methods, such as InSAR and GPS, can provide critical information about the evolution of a magma chamber prior to volcanic eruption. Rapid advancement in numerical modeling capabilities has resulted in a number of finite element models targeted at better understanding the connection between surface uplift associated with magma chamber pressurization and the potential for volcanic eruption. Robust model-data fusion techniques are necessary to take full advantage of the numerical models and the volcano monitoring observations currently available. In this study, we develop a 3D data assimilation framework using the Ensemble Kalman Filter (EnKF) approach in order to combine geodetic observations of surface deformation with geodynamic models to investigate volcanic unrest. The EnKF sequential assimilation method utilizes disparate data sets as they become available to update geodynamic models of magma reservoir evolution. While the EnKF has been widely applied in hydrologic and climate modeling, the adaptation for volcano monitoring is in its initial stages. As such, our investigation focuses on conducting a series of sensitivity tests to optimize the EnKF for volcano applications and on developing specific strategies for assimilation of geodetic data. Our numerical experiments illustrate that the EnKF is able to adapt well to the spatial limitations posed by GPS data and the temporal limitations of InSAR, and that specific strategies can be adopted to enhance EnKF performance to improve model forecasts. Specifically, our numerical experiments indicate that: (1) incorporating additional iterations of the EnKF analysis step is more efficient than increasing the number of ensemble members; (2) the accuracy of the EnKF results are not affected by initial parameter assumptions; (3) GPS observations near the center of uplift improve the quality of model forecasts; (4) occasionally shifting continuous GPS stations to

  15. Unwanted Behaviors and Nuisance Behaviors Among Neighbors in a Belgian Community Sample.

    Science.gov (United States)

    Michaux, Emilie; Groenen, Anne; Uzieblo, Katarzyna

    2015-06-30

    Unwanted behaviors between (ex-)intimates have been extensively studied, while those behaviors within other contexts such as neighbors have received much less scientific consideration. Research indicates that residents are likely to encounter problem behaviors from their neighbors. Besides the lack of clarity in the conceptualization of problem behaviors among neighbors, little is known on which types of behaviors characterize neighbor problems. In this study, the occurrence of two types of problem behaviors encountered by neighbors was explored within a Belgian community sample: unwanted behaviors such as threats and neighbor nuisance issues such as noise nuisance. By clearly distinguishing those two types of behaviors, this study aimed at contributing to the conceptualization of neighbor problems. Next, the coping strategies used to deal with the neighbor problems were investigated. Our results indicated that unwanted behaviors were more frequently encountered by residents compared with nuisance problems. Four out of 10 respondents reported both unwanted pursuit behavior and nuisance problems. It was especially unlikely to encounter nuisance problems in isolation of unwanted pursuit behaviors. While different coping styles (avoiding the neighbor, confronting the neighbor, and enlisting help from others) were equally used by the stalked participants, none of them was perceived as being more effective in reducing the stalking behaviors. Strikingly, despite being aware of specialized help services such as community mediation services, only a very small subgroup enlisted this kind of professional help. © The Author(s) 2015.

  16. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  17. Unsynchronized influenza epidemics in two neighboring subtropical cities

    Directory of Open Access Journals (Sweden)

    Xiujuan Tang

    2018-04-01

    Full Text Available Objective: The aim of this study was to examine the synchrony of influenza epidemics between Hong Kong and Shenzhen, two neighboring subtropical cities in South China. Methods: Laboratory-confirmed influenza data for the period January 2006 to December 2016 were obtained from the Shenzhen Center for Disease Control and Prevention and the Department of Health in Hong Kong. The population data were retrieved from the 2011 population censuses. The weekly rates of laboratory-confirmed influenza cases were compared between Shenzhen and Hong Kong. Results: Unsynchronized influenza epidemics between Hong Kong and Shenzhen were frequently observed during the study period. Influenza A/H1N1 caused a more severe pandemic in Hong Kong in 2009, but the subsequent seasonal epidemics showed similar magnitudes in both cities. Two influenza A/H3N2 dominant epidemic waves were seen in Hong Kong in 2015, but these epidemics were very minor in Shenzhen. More influenza B epidemics occurred in Shenzhen than in Hong Kong. Conclusions: Influenza epidemics appeared to be unsynchronized between Hong Kong and Shenzhen most of the time. Given the close geographical locations of these two cities, this could be due to the strikingly different age structures of their populations. Keywords: Influenza epidemics, Synchrony, Shenzhen, Hong Kong

  18. Forecasting of steel consumption with use of nearest neighbors method

    Directory of Open Access Journals (Sweden)

    Rogalewicz Michał

    2017-01-01

    Full Text Available In the process of building a steel construction, its design is usually commissioned to the design office. Then a quotation is made and the finished offer is delivered to the customer. Its final shape is influenced by steel consumption to a great extent. Correct determination of the potential consumption of this material most often determines the profitability of the project. Because of a long waiting time for a final project from the design office, it is worthwhile to pre-analyze the project’s profitability and feasibility using historical data on already realized orders. The paper presents an innovative approach to decision-making support in one of the Polish construction companies. The authors have defined and prioritized the most important factors that differentiate the executed orders and have the greatest impact on steel consumption. These are, among others: height and width of steel structure, number of aisles, type of roof, etc. Then they applied and adapted the method of k-nearest neighbors to the specificity of the discussed problem. The goal was to search a set of historical orders and find the most similar to the analyzed one. On this basis, consumption of steel can be estimated. The method was programmed within the EXPLOR application.

  19. Identification of influential users by neighbors in online social networks

    Science.gov (United States)

    Sheikhahmadi, Amir; Nematbakhsh, Mohammad Ali; Zareie, Ahmad

    2017-11-01

    Identification and ranking of influential users in social networks for the sake of news spreading and advertising has recently become an attractive field of research. Given the large number of users in social networks and also the various relations that exist among them, providing an effective method to identify influential users has been gradually considered as an essential factor. In most of the already-provided methods, those users who are located in an appropriate structural position of the network are regarded as influential users. These methods do not usually pay attention to the interactions among users, and also consider those relations as being binary in nature. This paper, therefore, proposes a new method to identify influential users in a social network by considering those interactions that exist among the users. Since users tend to act within the frame of communities, the network is initially divided into different communities. Then the amount of interaction among users is used as a parameter to set the weight of relations existing within the network. Afterward, by determining the neighbors' role for each user, a two-level method is proposed for both detecting users' influence and also ranking them. Simulation and experimental results on twitter data shows that those users who are selected by the proposed method, comparing to other existing ones, are distributed in a more appropriate distance. Moreover, the proposed method outperforms the other ones in terms of both the influential speed and capacity of the users it selects.

  20. k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks

    Directory of Open Access Journals (Sweden)

    Z. Martinasek

    2016-06-01

    Full Text Available Power analysis presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications and contact smart cards. In recent years, the cryptographic community has explored new approaches in power analysis based on machine learning models such as Support Vector Machine (SVM, RF (Random Forest and Multi-Layer Perceptron (MLP. In this paper, we made an extensive comparison of machine learning algorithms in the power analysis. For this purpose, we implemented a verification program that always chooses the optimal settings of individual machine learning models in order to obtain the best classification accuracy. In our research, we used three datasets, the first containing the power traces of an unprotected AES (Advanced Encryption Standard implementation. The second and third datasets are created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4. The obtained results revealed some interesting facts, namely, an elementary k-NN (k-Nearest Neighbors algorithm, which has not been commonly used in power analysis yet, shows great application potential in practice.

  1. River Flow Prediction Using the Nearest Neighbor Probabilistic Ensemble Method

    Directory of Open Access Journals (Sweden)

    H. Sanikhani

    2016-02-01

    Full Text Available Introduction: In the recent years, researchers interested on probabilistic forecasting of hydrologic variables such river flow.A probabilistic approach aims at quantifying the prediction reliability through a probability distribution function or a prediction interval for the unknown future value. The evaluation of the uncertainty associated to the forecast is seen as a fundamental information, not only to correctly assess the prediction, but also to compare forecasts from different methods and to evaluate actions and decisions conditionally on the expected values. Several probabilistic approaches have been proposed in the literature, including (1 methods that use resampling techniques to assess parameter and model uncertainty, such as the Metropolis algorithm or the Generalized Likelihood Uncertainty Estimation (GLUE methodology for an application to runoff prediction, (2 methods based on processing the forecast errors of past data to produce the probability distributions of future values and (3 methods that evaluate how the uncertainty propagates from the rainfall forecast to the river discharge prediction, as the Bayesian forecasting system. Materials and Methods: In this study, two different probabilistic methods are used for river flow prediction.Then the uncertainty related to the forecast is quantified. One approach is based on linear predictors and in the other, nearest neighbor was used. The nonlinear probabilistic ensemble can be used for nonlinear time series analysis using locally linear predictors, while NNPE utilize a method adapted for one step ahead nearest neighbor methods. In this regard, daily river discharge (twelve years of Dizaj and Mashin Stations on Baranduz-Chay basin in west Azerbijan and Zard-River basin in Khouzestan provinces were used, respectively. The first six years of data was applied for fitting the model. The next three years was used to calibration and the remained three yeas utilized for testing the models

  2. Nearest neighbor 3D segmentation with context features

    Science.gov (United States)

    Hristova, Evelin; Schulz, Heinrich; Brosch, Tom; Heinrich, Mattias P.; Nickisch, Hannes

    2018-03-01

    Automated and fast multi-label segmentation of medical images is challenging and clinically important. This paper builds upon a supervised machine learning framework that uses training data sets with dense organ annotations and vantage point trees to classify voxels in unseen images based on similarity of binary feature vectors extracted from the data. Without explicit model knowledge, the algorithm is applicable to different modalities and organs, and achieves high accuracy. The method is successfully tested on 70 abdominal CT and 42 pelvic MR images. With respect to ground truth, an average Dice overlap score of 0.76 for the CT segmentation of liver, spleen and kidneys is achieved. The mean score for the MR delineation of bladder, bones, prostate and rectum is 0.65. Additionally, we benchmark several variations of the main components of the method and reduce the computation time by up to 47% without significant loss of accuracy. The segmentation results are - for a nearest neighbor method - surprisingly accurate, robust as well as data and time efficient.

  3. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    Science.gov (United States)

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  4. Volcano art at Hawai`i Volcanoes National Park—A science perspective

    Science.gov (United States)

    Gaddis, Ben; Kauahikaua, James P.

    2018-03-26

    Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.

  5. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    Science.gov (United States)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  6. Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador

    Science.gov (United States)

    Neuberg, Jürgen W.; Collinson, Amy S. D.; Mothes, Patricia A.; Ruiz, Mario C.; Aguaiza, Santiago

    2018-01-01

    Cyclic seismicity and ground deformation patterns are observed on many volcanoes worldwide where seismic swarms and the tilt of the volcanic flanks provide sensitive tools to assess the state of volcanic activity. Ground deformation at active volcanoes is often interpreted as pressure changes in a magmatic reservoir, and tilt is simply translated accordingly into inflation and deflation of such a reservoir. Tilt data recorded by an instrument in the summit area of Tungurahua volcano in Ecuador, however, show an intriguing and unexpected behaviour on several occasions: prior to a Vulcanian explosion when a pressurisation of the system would be expected, the tilt signal declines significantly, hence indicating depressurisation. At the same time, seismicity increases drastically. Envisaging that such a pattern could carry the potential to forecast Vulcanian explosions on Tungurahua, we use numerical modelling and reproduce the observed tilt patterns in both space and time. We demonstrate that the tilt signal can be more easily explained as caused by shear stress due to viscous flow resistance, rather than by pressurisation of the magmatic plumbing system. In general, our numerical models prove that if magma shear viscosity and ascent rate are high enough, the resulting shear stress is sufficient to generate a tilt signal as observed on Tungurahua. Furthermore, we address the interdependence of tilt and seismicity through shear stress partitioning and suggest that a joint interpretation of tilt and seismicity can shed new light on the eruption potential of silicic volcanoes.

  7. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Science.gov (United States)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  8. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  9. Mineralogical and geochemical study of mud volcanoes in north ...

    African Journals Online (AJOL)

    The gulf of Cadiz is one of the most interesting areas to study mud volcanoes and structures related to cold fluid seeps since their discovery in 1999. In this study, we present results from gravity cores collected from Ginsburg and Meknes mud volcanoes and from circular structure located in the gulf of Cadiz (North Atlantic ...

  10. Fuego Volcano eruption (Guatemala, 1974): evidence of a tertiary fragmentation?

    International Nuclear Information System (INIS)

    Brenes-Andre, Jose

    2014-01-01

    Values for mode and dispersion calculated from SFT were analyzed using the SFT (Sequential Fragmentation/Transport) model to Fuego Volcano eruption (Guatemala, 1974). Analysis results have showed that the ideas initially proposed for Irazu, can be applied to Fuego Volcano. Experimental evidence was found corroborating the existence of tertiary fragmentations. (author) [es

  11. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  12. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Science.gov (United States)

    Schipper, Stacia; Mattox, Stephen

    2010-01-01

    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  13. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  14. Copahue volcano and its regional magmatic setting

    Science.gov (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  15. Isotopic evolution of Mauna Loa volcano

    International Nuclear Information System (INIS)

    Kurz, M.D.; Kammer, D.P.

    1991-01-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3 He/ 4 He (≅ 16-20 times atmospheric), higher 206 Pb/ 204 Pb (≅ 18.2), and lower 87 Sr/ 86 Sr(≅ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 x atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3 He/ 4 He ratios similar to the other young Kau basalt (≅ 8.5 x atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. (orig./WL)

  16. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  17. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-01-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  18. The deep structure of Axial Volcano

    Science.gov (United States)

    West, Michael Edwin

    The subsurface structure of Axial Volcano, near the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain in the northeast Pacific, is imaged from an active source seismic experiment. At a depth of 2.25 to 3.5 km beneath Axial lies an 8 km x 12 km region of very low seismic velocities that can only be explained by the presence of magma. In the center of this magma storage chamber at 2--3.5 km below sea floor, the crust is at least 10--20% melt. At depths of 4--5 km there is evidence of additional low concentrations of magma (a few percent) over a larger area. In total, 5--11 km3 of magma are stored in the mid-crust beneath Axial. This is more melt than has been positively identified under any basaltic volcano on Earth. It is also far more than the 0.1--0.2 km3 emplaced during the 1998 eruption. The implied residence time in the magma reservoir of a few hundred to a few thousand years agrees with geochemical trends which suggest prolonged storage and mixing of magmas. The large volume of melt bolsters previous observations that Axial provides much of the material to create crust along its 50 km rift zones. A high velocity ring-shaped feature sits above the magma chamber just outside the caldera walls. This feature is believed to be the result of repeated dike injections from the magma body to the surface during the construction of the volcanic edifice. A rapid change in crustal thickness from 8 to 11 km within 15 km of the caldera implies focused delivery of melt from the mantle. The high flux of magma suggests that melting occurs deeper in the mantle than along the nearby ridge. Melt supply to the volcano is not connected to any plumbing system associated with the adjacent segments of the Juan de Fuca Ridge. This suggests that, despite Axial's proximity to the ridge, the Cobb hot spot currently drives the supply of melt to the volcano.

  19. Cataloging tremor at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Thelen, W. A.; Wech, A.

    2013-12-01

    Tremor is a ubiquitous seismic feature on Kilauea volcano, which emanates from at least three distinct sources. At depth, intermittent tremor and earthquakes thought to be associated with the underlying plumbing system of Kilauea (Aki and Koyanagi, 1981) occurs approximately 40 km below and 40 km SW of the summit. At the summit of the volcano, nearly continuous tremor is recorded close to a persistently degassing lava lake, which has been present since 2008. Much of this tremor is correlated with spattering at the lake surface, but tremor also occurs in the absence of spattering, and was observed at the summit of the volcano prior to the appearance of the lava lake, predominately in association with inflation/deflation events. The third known source of tremor is in the area of Pu`u `O`o, a vent that has been active since 1983. The exact source location and depth is poorly constrained for each of these sources. Consistently tracking the occurrence and location of tremor in these areas through time will improve our understanding of the plumbing geometry beneath Kilauea volcano and help identify precursory patterns in tremor leading to changes in eruptive activity. The continuous and emergent nature of tremor precludes the use of traditional earthquake techniques for automatic detection and location of seismicity. We implement the method of Wech and Creager (2008) to both detect and localize tremor seismicity in the three regions described above. The technique uses an envelope cross-correlation method in 5-minute windows that maximizes tremor signal coherency among seismic stations. The catalog is currently being built in near-realtime, with plans to extend the analysis to the past as time and continuous data availability permits. This automated detection and localization method has relatively poor depth constraints due to the construction of the envelope function. Nevertheless, the epicenters distinguish activity among the different source regions and serve as

  20. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly

  1. Mud Volcanoes as Exploration Targets on Mars

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  2. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  3. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Directory of Open Access Journals (Sweden)

    Riad Hosein

    2014-10-01

    Full Text Available Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i Digity; (ii Piparo and (iii Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  4. Measurements of radon and chemical elements: Popocatepetl volcano

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Lopez, B.; Reyes, A.V.; Armienta, M.A.; Valdes, C.; Mena, M.; Seidel, J.L.; Monnin, M.

    2002-01-01

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  5. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M.

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region. PMID:25370529

  6. Tsunamis generated by eruptions from mount st. Augustine volcano, alaska.

    Science.gov (United States)

    Kienle, J; Kowalik, Z; Murty, T S

    1987-06-12

    During an eruption of the Alaskan volcano Mount St. Augustine in the spring of 1986, there was concern about the possibility that a tsunami might be generated by the collapse of a portion of the volcano into the shallow water of Cook Inlet. A similar edifice collapse of the volcano and ensuing sea wave occurred during an eruption in 1883. Other sea waves resulting in great loss of life and property have been generated by the eruption of coastal volcanos around the world. Although Mount St. Augustine remained intact during this eruptive cycle, a possible recurrence of the 1883 events spurred a numerical simulation of the 1883 sea wave. This simulation, which yielded a forecast of potential wave heights and travel times, was based on a method that could be applied generally to other coastal volcanos.

  7. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-10-13

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  8. Establishment, test and evaluation of a prototype volcano surveillance system

    Science.gov (United States)

    Ward, P. L.; Eaton, J. P.; Endo, E.; Harlow, D.; Marquez, D.; Allen, R.

    1973-01-01

    A volcano-surveillance system utilizing 23 multilevel earthquake counters and 6 biaxial borehole tiltmeters is being installed and tested on 15 volcanoes in 4 States and 4 foreign countries. The purpose of this system is to give early warning when apparently dormant volcanoes are becoming active. The data are relayed through the ERTS-Data Collection System to Menlo Park for analysis. Installation was completed in 1972 on the volcanoes St. Augustine and Iliamna in Alaska, Kilauea in Hawaii, Baker, Rainier and St. Helens in Washington, Lassen in California, and at a site near Reykjavik, Iceland. Installation continues and should be completed in April 1973 on the volcanoes Santiaguito, Fuego, Agua and Pacaya in Guatemala, Izalco in El Salvador and San Cristobal, Telica and Cerro Negro in Nicaragua.

  9. Phagocytic response of astrocytes to damaged neighboring cells.

    Directory of Open Access Journals (Sweden)

    Nicole M Wakida

    Full Text Available This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane. In addition to the presence (or lack of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue.

  10. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  11. Volcano-ice interactions on Mars

    International Nuclear Information System (INIS)

    Allen, C.C.

    1979-01-01

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar compostion. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick

  12. Detect thy neighbor: Identity recognition at the root level in plants

    NARCIS (Netherlands)

    Chen, B.J.W.; During, H.J.; Anten, N.P.R.

    2012-01-01

    Some plant species increase root allocation at the expense of reproduction in the presence of non-self and non-kin neighbors, indicating the capacity of neighbor-identityrecognition at the rootlevel. Yet in spite of the potential consequences of rootidentityrecognition for the relationship between

  13. Working with Family, Friend, and Neighbor Caregivers: Lessons from Four Diverse Communities

    Science.gov (United States)

    Powell, Douglas R.

    2011-01-01

    This article is excerpted from "Who's Watching the Babies? Improving the Quality of Family, Friend, and Neighbor Care" by Douglas R. Powell ("ZERO TO THREE," 2008). The article explores questions about program development and implementation strategies for supporting Family, Friend, and Neighbor (FFN) caregivers: How do programs and their host…

  14. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    Science.gov (United States)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  15. Characteristics of Broadband Seismic Noise in Taiwan and Neighboring Islands

    Science.gov (United States)

    Chen, Ching-Wei; Rau, Ruey-Juin

    2017-04-01

    We used seismic waveform data from 115 broad-band stations of BATS (Institute of Earth Science, Academia Sinica) and Central Weather Bureau Seismic Network from 2012 to 2016 for noise-level mapping in Taiwan and neighboring islands. We computed Power Spectral Density (PSD) for each station and analyzed long-term variance of microseism energy and polarizations of noise for severe weather events. The island of Taiwan is surrounded by ocean and the Central Range which has the highest peak Jade Mountain at 3,952 meters height occupies more than 66% of the island and departs it into the east and west coasts. The geographic settings then result in the high population density in the western plain and northern Taiwan. The dominant noise source in the microseism band (periods from 4-20 seconds) is the coupling between the near-coast ocean and sea floor which produces the high noise of averaging -130 dB along the west coastal area. In the eastern volcanic-arc coastal areas, the noise level is about 7% smaller than the west coast due to its deeper offshore water depth. As for the shorter periods (0.1-0.25 seconds) band, the so-called culture noise, an anthropic activity variance with the highest -103 dB can be identified in the metropolitan areas, such as the Taipei city and the noise level in the Central Range area is averaging -138 dB. Moreover, the noise also shows a daily and temporal evolution mainly related to the traffic effect. Furthermore, we determined the noise level for the entire island of Taiwan during 26-28 September, 2016, when the typhoon Megi hit the island and retrieved the enhancement of secondary microseism energy for each stations. Typhoon Megi landed in eastern and central Taiwan and reached the maximum wind speed of 45m/s in the surrounded eyewall. The Central Range, as a barrier, decreased the wind speed in southern Taiwan making an enhancement less than 10 dB, while in northern Taiwan where the direction the typhoon headed to, can reach more than 35

  16. Accelerating distributed average consensus by exploring the information of second-order neighbors

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Deming [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Xu Shengyuan, E-mail: syxu02@yahoo.com.c [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Zhao Huanyu [School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu (China); Chu Yuming [Department of Mathematics, Huzhou Teacher' s College, Huzhou 313000, Zhejiang (China)

    2010-05-17

    The problem of accelerating distributed average consensus by using the information of second-order neighbors in both the discrete- and continuous-time cases is addressed in this Letter. In both two cases, when the information of second-order neighbors is used in each iteration, the network will converge with a speed faster than the algorithm only using the information of first-order neighbors. Moreover, the problem of using partial information of second-order neighbors is considered, and the edges are not chosen randomly from second-order neighbors. In the continuous-time case, the edges are chosen by solving a convex optimization problem which is formed by using the convex relaxation method. In the discrete-time case, for small network the edges are chosen optimally via the brute force method. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed algorithm.

  17. Volcano hazards in the San Salvador region, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local

  18. Chemical compositions of lavas from Myoko volcano group

    International Nuclear Information System (INIS)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi; Hayatsu, Kenji.

    1995-01-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  19. Chemical compositions of lavas from Myoko volcano group

    Energy Technology Data Exchange (ETDEWEB)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi [Tohoku Univ., Sendai (Japan). Faculty of Science; Hayatsu, Kenji

    1995-08-01

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  20. SAR interferometry applications on active volcanoes. State of the art and perspectives for volcano monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, G.; Coltelli, M. [Istituto Nazionale di Geofisica e Vulcanologia, Catania (Italy)

    2001-02-01

    In this paper the application of the Synthetic Aperture Radar Interferometry (INSAR) on volcanology is analysed. Since it is not a real novelty among the different applications of INSAR in Earth Observation activities, at the beginning of this paper it is analysed the state of the art of the researches in this field. During the discussion, the point of view of volcanologists is favoured because it is considered that the first applications were often badly aimed. Consequently, the initial INSAR performances in volcanology were overrated with respect to the real capabilities of this technique. This fact lead to discover some unexpected limitations in INSAR usage in volcano monitoring, but, at the same time, spurred on scientists to overcome these drawbacks. The results achieved recently allow to better apply SAR to volcanology; in the paper a possible operative work-plan aimed at introducing INSAR in the volcano monitoring system is presented.

  1. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  2. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    Science.gov (United States)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  3. 3D electrical conductivity tomography of volcanoes

    Science.gov (United States)

    Soueid Ahmed, A.; Revil, A.; Byrdina, S.; Coperey, A.; Gailler, L.; Grobbe, N.; Viveiros, F.; Silva, C.; Jougnot, D.; Ghorbani, A.; Hogg, C.; Kiyan, D.; Rath, V.; Heap, M. J.; Grandis, H.; Humaida, H.

    2018-05-01

    Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in

  4. Muon imaging of volcanoes with Cherenkov telescopes

    Science.gov (United States)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  5. Large-N in Volcano Settings: Volcanosri

    Science.gov (United States)

    Lees, J. M.; Song, W.; Xing, G.; Vick, S.; Phillips, D.

    2014-12-01

    We seek a paradigm shift in the approach we take on volcano monitoring where the compromise from high fidelity to large numbers of sensors is used to increase coverage and resolution. Accessibility, danger and the risk of equipment loss requires that we develop systems that are independent and inexpensive. Furthermore, rather than simply record data on hard disk for later analysis we desire a system that will work autonomously, capitalizing on wireless technology and in field network analysis. To this end we are currently producing a low cost seismic array which will incorporate, at the very basic level, seismological tools for first cut analysis of a volcano in crises mode. At the advanced end we expect to perform tomographic inversions in the network in near real time. Geophone (4 Hz) sensors connected to a low cost recording system will be installed on an active volcano where triggering earthquake location and velocity analysis will take place independent of human interaction. Stations are designed to be inexpensive and possibly disposable. In one of the first implementations the seismic nodes consist of an Arduino Due processor board with an attached Seismic Shield. The Arduino Due processor board contains an Atmel SAM3X8E ARM Cortex-M3 CPU. This 32 bit 84 MHz processor can filter and perform coarse seismic event detection on a 1600 sample signal in fewer than 200 milliseconds. The Seismic Shield contains a GPS module, 900 MHz high power mesh network radio, SD card, seismic amplifier, and 24 bit ADC. External sensors can be attached to either this 24-bit ADC or to the internal multichannel 12 bit ADC contained on the Arduino Due processor board. This allows the node to support attachment of multiple sensors. By utilizing a high-speed 32 bit processor complex signal processing tasks can be performed simultaneously on multiple sensors. Using a 10 W solar panel, second system being developed can run autonomously and collect data on 3 channels at 100Hz for 6 months

  6. Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan

    Science.gov (United States)

    Lin, Cheng-Horng

    2017-07-01

    Periodical seismicity during eruptions has been observed at several volcanoes, such as Mount St. Helens and Soufrière Hills. Movement of magma is often considered one of the most important factors in its generation. Without any magma movement, drumbeat-like (or heartbeat-like) periodical seismicity was detected twice beneath one of the strongest fumarole sites (Dayoukeng) among the Tatun volcano group in northern Taiwan in 2015. Both incidences of drumbeat-like seismicity were respectively started after felt earthquakes in Taiwan, and then persisted for 1-2 d afterward with repetition intervals of ∼18 min between any two adjacent events. The phenomena suggest both drumbeat-like (heartbeat-like) seismicity sequences were likely triggered by dynamic waves generated by the two felt earthquakes. Thus, rather than any involvement of magma, a simplified pumping system within a degassing conduit is proposed to explain the generation of drumbeat-like seismicity. The collapsed rocks within the conduit act as a piston, which was repeatedly lifted up by ascending gas from a deeper reservoir and dropped down when the ascending gas was escaping later. These phenomena show that the degassing process is still very strong in the Tatun volcano group in Taiwan, even though it has been dormant for about several thousand years.

  7. Space Radar Image of Kilauea Volcano, Hawaii

    Science.gov (United States)

    1994-01-01

    This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data -- that is data acquired on different passes of the space shuttle which are then overlayed to obtain elevation information -- acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 kilometers by 80 kilometers (25 miles by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in the direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrains on Earth. Several regions show motions over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's 'plumbing' system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging

  8. Element fluxes from Copahue Volcano, Argentina

    Science.gov (United States)

    Varekamp, J. C.

    2003-12-01

    Copahue volcano in Argentina has an active volcano-magmatic hydrothermal system that emits fluids with pH=0.3 that feed a river system. River flux measurements and analytical data provide element flux data from 1997 to 2003, which includes the eruptive period of July to December 2000. The fluids have up to 6.5 percent sulfate, 1 percent Cl and ppm levels of B, As, Cu, Zn and Pb. The hydrothermal system acts as a perfect scrubber for magmatic gases during the periods of passive degassing, although the dissolved magmatic gases are modified through water rock interaction and mineral precipitation. The magmatic SO2 disproportionates into sulfate and liquid elemental sulfur at about 300 C; the sulfate is discharged with the fluids, whereas the liquid sulfur is temporarily retained in the reservoir but ejected during phreatic and hydrothermal eruptions. The intrusion and chemical attack of new magma in the hydrothermal reservoir in early 2000 was indicated by strongly increased Mg concentrations and Mg fluxes, and higher Mg/Cl and Mg/K values. The hydrothermal discharge has acidified a large glacial lake (0.5 km3) to pH=2 and the lake effluents acidify the exiting river. Even more than 100 km downstream, the effects of acid pulses from the lake are evident from red coated boulders and fish die-offs. The river-bound sulfate fluxes from the system range from 70 to 200 kilotonnes/year. The equivalent SO2 output of the whole volcanic system ranges from 150 to 500 tonnes/day, which includes the fraction of native sulfur that formed inside the mountain but does not include the release of SO2 into the atmosphere during the eruptions. Trace element fluxes of the river will be scaled up and compared with global element fluxes from meteoric river waters (subterranean volcanic weathering versus watershed weathering).

  9. Geomechanical rock properties of a basaltic volcano

    Directory of Open Access Journals (Sweden)

    Lauren N Schaefer

    2015-06-01

    Full Text Available In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability and mechanical (strength properties of basaltic rocks at Pacaya Volcano (Guatemala through a variety of laboratory experiments, including: room temperature, high temperature (935 °C, and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  10. Ash and Steam, Soufriere Hills Volcano, Monserrat

    Science.gov (United States)

    2002-01-01

    International Space Station crew members are regularly alerted to dynamic events on the Earth's surface. On request from scientists on the ground, the ISS crew observed and recorded activity from the summit of Soufriere Hills on March 20, 2002. These two images provide a context view of the island (bottom) and a detailed view of the summit plume (top). When the images were taken, the eastern side of the summit region experienced continued lava growth, and reports posted on the Smithsonian Institution's Weekly Volcanic Activity Report indicate that 'large (50-70 m high), fast-growing, spines developed on the dome's summit. These spines periodically collapsed, producing pyroclastic flows down the volcano's east flank that sometimes reached the Tar River fan. Small ash clouds produced from these events reached roughly 1 km above the volcano and drifted westward over Plymouth and Richmond Hill. Ash predominately fell into the sea. Sulfur dioxide emission rates remained high. Theodolite measurements of the dome taken on March 20 yielded a dome height of 1,039 m.' Other photographs by astronauts of Montserrat have been posted on the Earth Observatory: digital photograph number ISS002-E-9309, taken on July 9, 2001; and a recolored and reprojected version of the same image. Digital photograph numbers ISS004-E-8972 and 8973 were taken 20 March, 2002 from Space Station Alpha and were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  11. Antarctic volcanoes: A remote but significant hazard

    Science.gov (United States)

    Geyer, Adelina; Martí, Alex; Folch, Arnau; Giralt, Santiago

    2017-04-01

    Ash emitted during explosive volcanic eruptions can be dispersed over massive areas of the globe, posing a threat to both human health and infrastructures, such as the air traffic. Some of the last eruptions occurred during this decade (e.g. 14/04/2010 - Eyjafjallajökull, Iceland; 24/05/2011-Grímsvötn, Iceland; 05/06/2011-Puyehue-Cordón Caulle, Chile) have strongly affected the air traffic in different areas of the world, leading to economic losses of billions of euros. From the tens of volcanoes located in Antarctica, at least nine are known to be active and five of them have reported volcanic activity in historical times. However, until now, no attention has been paid to the possible social, economical and environmental consequences of an eruption that would occur on high southern latitudes, perhaps because it is considered that its impacts would be minor or local, and mainly restricted to the practically inhabited Antarctic continent. We show here, as a case study and using climate models, how volcanic ash emitted during a regular eruption of one of the most active volcanoes in Antarctica, Deception Island (South Shetland Islands), could reach the African continent as well as Australia and South America. The volcanic cloud could strongly affect the air traffic not only in the region and at high southern latitudes, but also the flights connecting Africa, South America and Oceania. Results obtained are crucial to understand the patterns of volcanic ash distribution at high southern latitudes with obvious implications for tephrostratigraphical and chronological studies that provide valuable isochrones with which to synchronize palaeoclimate records. This research was partially funded by the MINECO grants VOLCLIMA (CGL2015-72629-EXP)and POSVOLDEC(CTM2016-79617-P)(AEI/FEDER, UE), the Ramón y Cajal research program (RYC-2012-11024) and the NEMOH European project (REA grant 34 agreement n° 289976).

  12. Nearest Neighbor Search in the Metric Space of a Complex Network for Community Detection

    Directory of Open Access Journals (Sweden)

    Suman Saha

    2016-03-01

    Full Text Available The objective of this article is to bridge the gap between two important research directions: (1 nearest neighbor search, which is a fundamental computational tool for large data analysis; and (2 complex network analysis, which deals with large real graphs but is generally studied via graph theoretic analysis or spectral analysis. In this article, we have studied the nearest neighbor search problem in a complex network by the development of a suitable notion of nearness. The computation of efficient nearest neighbor search among the nodes of a complex network using the metric tree and locality sensitive hashing (LSH are also studied and experimented. For evaluation of the proposed nearest neighbor search in a complex network, we applied it to a network community detection problem. Experiments are performed to verify the usefulness of nearness measures for the complex networks, the role of metric tree and LSH to compute fast and approximate node nearness and the the efficiency of community detection using nearest neighbor search. We observed that nearest neighbor between network nodes is a very efficient tool to explore better the community structure of the real networks. Several efficient approximation schemes are very useful for large networks, which hardly made any degradation of results, whereas they save lot of computational times, and nearest neighbor based community detection approach is very competitive in terms of efficiency and time.

  13. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    Science.gov (United States)

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  14. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The characteristics of magma supply, storage, and transport are among the most critical parameters governing volcanic activity, yet they remain largely unconstrained because all three processes are hidden beneath the surface. Hawaiian volcanoes, particularly Kīlauea and Mauna Loa, offer excellent prospects for studying subsurface magmatic processes, owing to their accessibility and frequent eruptive and intrusive activity. In addition, the Hawaiian Volcano Observatory, founded in 1912, maintains long records of geological, geophysical, and geochemical data. As a result, Hawaiian volcanoes have served as both a model for basaltic volcanism in general and a starting point for many studies of volcanic processes.

  15. Reduction in predator defense in the presence of neighbors in a colonial fish.

    Directory of Open Access Journals (Sweden)

    Franziska C Schädelin

    Full Text Available Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or

  16. The Application of Determining Students’ Graduation Status of STMIK Palangkaraya Using K-Nearest Neighbors Method

    Science.gov (United States)

    Rusdiana, Lili; Marfuah

    2017-12-01

    K-Nearest Neighbors method is one of methods used for classification which calculate a value to find out the closest in distance. It is used to group a set of data such as students’ graduation status that are got from the amount of course credits taken by them, the grade point average (AVG), and the mini-thesis grade. The study is conducted to know the results of using K-Nearest Neighbors method on the application of determining students’ graduation status, so it can be analyzed from the method used, the data, and the application constructed. The aim of this study is to find out the application results by using K-Nearest Neighbors concept to determine students’ graduation status using the data of STMIK Palangkaraya students. The development of the software used Extreme Programming, since it was appropriate and precise for this study which was to quickly finish the project. The application was created using Microsoft Office Excel 2007 for the training data and Matlab 7 to implement the application. The result of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5%. It could determine the predicate graduation of 94 data used from the initial data before the processing as many as 136 data which the maximal training data was 50data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study. The results of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5% could determine the predicate graduation which is the maximal training data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study.

  17. Effects of second neighbor interactions on skyrmion lattices in chiral magnets

    International Nuclear Information System (INIS)

    Oliveira, E A S; Silva, R L; Silva, R C; Pereira, A R

    2017-01-01

    In this paper we investigate the influences of the second neighbor interactions on a skyrmion lattice in two-dimensional chiral magnets. Such a system contains the exchange and the Dzyaloshinskii–Moriya for the spin interactions and therefore, we analyse three situations: firstly, the second neighbor interaction is present only in the exchange coupling; secondly, it is present only in the Dzyaloshinskii–Moriya coupling. Finally, the second neighbor interactions are present in both exchange and Dzyaloshinskii–Moriya couplings. We show that such effects cause important modifications to the helical and skyrmion phases when an external magnetic field is applied. (paper)

  18. Improving Recommendations in Tag-based Systems with Spectral Clustering of Tag Neighbors

    DEFF Research Database (Denmark)

    Pan, Rong; Xu, Guandong; Dolog, Peter

    2012-01-01

    Tag as a useful metadata reflects the collaborative and conceptual features of documents in social collaborative annotation systems. In this paper, we propose a collaborative approach for expanding tag neighbors and investigate the spectral clustering algorithm to filter out noisy tag neighbors...... in order to get appropriate recommendation for users. The preliminary experiments have been conducted on MovieLens dataset to compare our proposed approach with the traditional collaborative filtering recommendation approach and naive tag neighbors expansion approach in terms of precision, and the result...... demonstrates that our approach could considerably improve the performance of recommendations....

  19. One hundred years of volcano monitoring in Hawaii

    Science.gov (United States)

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  20. The Active Lava Flows of Kilauea Volcano, Hawaii

    Indian Academy of Sciences (India)

    'lahar' is from Indonesia, a country with some of the most active and destructive volcanoes .... tourist-dependent businesses such as airlines, rental car compa- nies, and hotels. ... excellent viewing conditions and photo opportunities. The heat.

  1. Vegetation damage and recovery after Chiginagak Volcano Crater drainage event

    Data.gov (United States)

    Department of the Interior — From August 20 — 23, 2006, I revisited Chiginigak volcano to document vegetation recovery after the crater drainage event that severely damaged vegetation in May of...

  2. Penguin Bank: A Loa-Trend Hawaiian Volcano

    Science.gov (United States)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes

  3. Volcano-hydrothermal energy research at white Island, New Zealand

    International Nuclear Information System (INIS)

    Allis, R.G.

    1994-01-01

    This paper presents the White Island (New Zealand) volcano-hydrothermal research project by the N.Z. DSIR and the Geological Survey of Japan, which is investigating the coupling between magmatic and geothermal systems. The first phase of this investigation is a geophysical survey of the crater floor of the andesite volcano, White Island during 1991/1992, to be followed by drilling from the crater floor into the hydrothermal system. (TEC). 4 figs., 8 refs

  4. Geochemical signatures of tephras from Quaternary Antarctic Peninsula volcanoes

    OpenAIRE

    Kraus,Stefan; Kurbatov,Andrei; Yates,Martin

    2013-01-01

    In the northern Antarctic Peninsula area, at least 12 Late Plelstocene-Holocene volcanic centers could be potential sources of tephra layers in the region. We present unique geochemical fingerprints for ten of these volcanoes using major, trace, rare earth element, and isotope data from 95 samples of tephra and other eruption products. The volcanoes have predominantly basaltic and basaltic andesitic compositions. The Nb/Y ratio proves useful to distinguish between volcanic centers located on ...

  5. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    Science.gov (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  6. Recent Seismicity in the Ceboruco Volcano, Western Mexico

    Science.gov (United States)

    Nunez, D.; Chávez-Méndez, M. I.; Nuñez-Cornu, F. J.; Sandoval, J. M.; Rodriguez-Ayala, N. A.; Trejo-Gomez, E.

    2017-12-01

    The Ceboruco volcano is the largest (2280 m.a.s.l) of several volcanoes along the Tepic-Zacoalco rift zone in Nayarit state (Mexico). During the last 1000 years, this volcano had effusive-explosive episodes with eight eruptions providing an average of one eruption each 125 years. Since the last eruption occurred in 1870, 147 years ago, a new eruption likelihood is really high and dangerous due to nearby population centers, important roads and lifelines that traverse the volcano's slopes. This hazards indicates the importance of monitoring the seismicity associated with the Ceboruco volcano whose ongoing activity is evidenced by fumaroles and earthquakes. During 2003 and 2008, this region was registered by just one Lennartz Marslite seismograph featuring a Lennartz Le3D sensor (1 Hz) [Rodríguez Uribe et al. (2013)] where they observed that seismicity rates and stresses appear to be increasing indicating higher levels of activity within the volcano. Until July 2017, a semi-permanent network with three Taurus (Nanometrics) and one Q330 Quanterra (Kinemetrics) digitizers with Lennartz 3Dlite sensors of 1 Hz natural frequency was registering in the area. In this study, we present the most recent seismicity obtained by the semi-permanent network and a temporary network of 21 Obsidians 4X and 8X (Kinemetrics) covering an area of 16 km x 16 km with one station every 2.5-3 km recording from November 2016 to July 2017.

  7. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  8. The diversity of mud volcanoes in the landscape of Azerbaijan

    Science.gov (United States)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  9. Does a pear growl? Interference from semantic properties of orthographic neighbors.

    Science.gov (United States)

    Pecher, Diane; de Rooij, Jimmy; Zeelenberg, René

    2009-07-01

    In this study, we investigated whether semantic properties of a word's orthographic neighbors are activated during visual word recognition. In two experiments, words were presented with a property that was not true for the word itself. We manipulated whether the property was true for an orthographic neighbor of the word. Our results showed that rejection of the property was slower and less accurate when the property was true for a neighbor than when the property was not true for a neighbor. These findings indicate that semantic information is activated before orthographic processing is finished. The present results are problematic for the links model (Forster, 2006; Forster & Hector, 2002) that was recently proposed in order to bring form-first models of visual word recognition into line with previously reported findings (Forster & Hector, 2002; Pecher, Zeelenberg, & Wagenmakers, 2005; Rodd, 2004).

  10. Nearest neighbors EPR superhyperfine interaction in divalent iridium complexes in alkali halide host lattice

    International Nuclear Information System (INIS)

    Pinhal, N.M.; Vugman, N.V.

    1983-01-01

    Further splitting of chlorine superhyperfine lines on the EPR spectrum of the [Ir (CN) 4 Cl 2 ] 4 - molecular species in NaCl latice indicates a super-superhyperfine interaction with the nearest neighbors sodium atoms. (Author) [pt

  11. The influence of neighbors' family size preference on progression to high parity births in rural Nepal.

    Science.gov (United States)

    Jennings, Elyse A; Barber, Jennifer S

    2013-03-01

    Large families can have a negative impact on the health and well-being of women, children, and their communities. Seventy-three percent of the individuals in our rural Nepalese sample report that two children is their ideal number, yet about half of the married women continue childbearing after their second child. Using longitudinal data from the Chitwan Valley Family Study, we explore the influence of women's and neighbors' family size preferences on women's progression to high parity births, comparing this influence across two cohorts. We find that neighbors' family size preferences influence women's fertility, that older cohorts of women are more influenced by their neighbors' preferences than are younger cohorts of women, and that the influence of neighbors' preferences is independent of women's own preferences. © 2013 The Population Council, Inc.

  12. On Competitiveness of Nearest-Neighbor-Based Music Classification: A Methodological Critique

    DEFF Research Database (Denmark)

    Pálmason, Haukur; Jónsson, Björn Thór; Amsaleg, Laurent

    2017-01-01

    The traditional role of nearest-neighbor classification in music classification research is that of a straw man opponent for the learning approach of the hour. Recent work in high-dimensional indexing has shown that approximate nearest-neighbor algorithms are extremely scalable, yielding results...... of reasonable quality from billions of high-dimensional features. With such efficient large-scale classifiers, the traditional music classification methodology of aggregating and compressing the audio features is incorrect; instead the approximate nearest-neighbor classifier should be given an extensive data...... collection to work with. We present a case study, using a well-known MIR classification benchmark with well-known music features, which shows that a simple nearest-neighbor classifier performs very competitively when given ample data. In this position paper, we therefore argue that nearest...

  13. Efficient and accurate nearest neighbor and closest pair search in high-dimensional space

    KAUST Repository

    Tao, Yufei; Yi, Ke; Sheng, Cheng; Kalnis, Panos

    2010-01-01

    Nearest Neighbor (NN) search in high-dimensional space is an important problem in many applications. From the database perspective, a good solution needs to have two properties: (i) it can be easily incorporated in a relational database, and (ii

  14. Mixed random walks with a trap in scale-free networks including nearest-neighbor and next-nearest-neighbor jumps

    Science.gov (United States)

    Zhang, Zhongzhi; Dong, Yuze; Sheng, Yibin

    2015-10-01

    Random walks including non-nearest-neighbor jumps appear in many real situations such as the diffusion of adatoms and have found numerous applications including PageRank search algorithm; however, related theoretical results are much less for this dynamical process. In this paper, we present a study of mixed random walks in a family of fractal scale-free networks, where both nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in the network family, which is a particular case of random walks with a perfect trap fixed at the central high-degree node. We derive analytical expressions for the average trapping time (ATT), a quantitative indicator measuring the efficiency of the trapping process, by using two different methods, the results of which are consistent with each other. Furthermore, we analytically determine all the eigenvalues and their multiplicities for the fundamental matrix characterizing the dynamical process. Our results show that although next-nearest-neighbor jumps have no effect on the leading scaling of the trapping efficiency, they can strongly affect the prefactor of ATT, providing insight into better understanding of random-walk process in complex systems.

  15. Symmetric Link Key Management for Secure Neighbor Discovery in a Decentralized Wireless Sensor Network

    Science.gov (United States)

    2017-09-01

    KEY MANAGEMENT FOR SECURE NEIGHBOR DISCOVERY IN A DECENTRALIZED WIRELESS SENSOR NETWORK by Kelvin T. Chew September 2017 Thesis Advisor...and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT...DATE September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE SYMMETRIC LINK KEY MANAGEMENT FOR SECURE NEIGHBOR

  16. SibRank: Signed bipartite network analysis for neighbor-based collaborative ranking

    Science.gov (United States)

    Shams, Bita; Haratizadeh, Saman

    2016-09-01

    Collaborative ranking is an emerging field of recommender systems that utilizes users' preference data rather than rating values. Unfortunately, neighbor-based collaborative ranking has gained little attention despite its more flexibility and justifiability. This paper proposes a novel framework, called SibRank that seeks to improve the state of the art neighbor-based collaborative ranking methods. SibRank represents users' preferences as a signed bipartite network, and finds similar users, through a novel personalized ranking algorithm in signed networks.

  17. The impact of vacant, tax-delinquent, and foreclosed property on sales prices of neighboring homes

    OpenAIRE

    Stephan Whitaker; Thomas J. Fitzpatrick

    2012-01-01

    In this empirical analysis, we estimate the impact of vacancy, neglect associated with property-tax delinquency, and foreclosures on the value of neighboring homes using parcel-level observations. Numerous studies have estimated the impact of foreclosures on neighboring properties, and these papers theorize that the foreclosure impact works partially through creating vacant and neglected homes. To our knowledge, this is only the second attempt to estimate the impact of vacancy itself and the ...

  18. The Patient-Centered Medical Home Neighbor: A Critical Concept for a Redesigned Healthcare Delivery System

    Science.gov (United States)

    2011-01-25

    Sharing Knowledge: Achieving Breakthrough Performance 2010 Military Health System Conference The Patient -Centered Medical Home Neighbor: A Critical...DATE 25 JAN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Patient -Centered Medical Home Neighbor: A...Conference What is the Patient -Centered Medical Home?  …a vision of health care as it should be  …a framework for organizing systems of care at both the

  19. Felsic maar-diatreme volcanoes: a review

    Science.gov (United States)

    Ross, Pierre-Simon; Carrasco Núñez, Gerardo; Hayman, Patrick

    2017-02-01

    Felsic maar-diatreme volcanoes host major ore deposits but have been largely ignored in the volcanology literature, especially for the diatreme portion of the system. Here, we use two Mexican tuff rings as analogs for the maar ejecta ring, new observations from one diatreme, and the economic geology literature on four other mineralized felsic maar-diatremes to produce an integrated picture of this type of volcano. The ejecta rings are up to 50 m+ thick and extend laterally up to ˜1.5 km from the crater edge. In two Mexican examples, the lower part of the ejecta ring is dominated by pyroclastic surge deposits with abundant lithic clasts (up to 80% at Hoya de Estrada). These deposits display low-angle cross-bedding, dune bedforms, undulating beds, channels, bomb sags, and accretionary lapilli and are interpreted as phreatomagmatic. Rhyolitic juvenile clasts at Tepexitl have only 0-25% vesicles in this portion of the ring. The upper parts of the ejecta ring sequences in the Mexican examples have a different character: lithic clasts can be less abundant, the grain size is typically coarser, and the juvenile clasts can be different in character (with some more vesicular fragments). Fragmentation was probably shallower at this stage. The post-eruptive maar crater infill is known at Wau and consists of reworked pyroclastic deposits as well as lacustrine and other sediments. Underneath are bedded upper diatreme deposits, interpreted as pyroclastic surge and fall deposits. The upper diatreme and post-eruptive crater deposits have dips larger than 30° at Wau, with approximately centroclinal attitudes. At still lower structural levels, the diatreme pyroclastic infill is largely unbedded; Montana Tunnels and Kelian are good examples of this. At Cerro de Pasco, the pyroclastic infill seems bedded despite about 500 m of post-eruptive erosion relative to the pre-eruptive surface. The contact between the country rocks and the diatreme is sometimes characterized by country rock

  20. Co-Expression of Neighboring Genes in the Zebrafish (Danio rerio Genome

    Directory of Open Access Journals (Sweden)

    Daryi Wang

    2009-08-01

    Full Text Available Neighboring genes in the eukaryotic genome have a tendency to express concurrently, and the proximity of two adjacent genes is often considered a possible explanation for their co-expression behavior. However, the actual contribution of the physical distance between two genes to their co-expression behavior has yet to be defined. To further investigate this issue, we studied the co-expression of neighboring genes in zebrafish, which has a compact genome and has experienced a whole genome duplication event. Our analysis shows that the proportion of highly co-expressed neighboring pairs (Pearson’s correlation coefficient R>0.7 is low (0.24% ~ 0.67%; however, it is still significantly higher than that of random pairs. In particular, the statistical result implies that the co-expression tendency of neighboring pairs is negatively correlated with their physical distance. Our findings therefore suggest that physical distance may play an important role in the co-expression of neighboring genes. Possible mechanisms related to the neighboring genes’ co-expression are also discussed.

  1. Finger vein identification using fuzzy-based k-nearest centroid neighbor classifier

    Science.gov (United States)

    Rosdi, Bakhtiar Affendi; Jaafar, Haryati; Ramli, Dzati Athiar

    2015-02-01

    In this paper, a new approach for personal identification using finger vein image is presented. Finger vein is an emerging type of biometrics that attracts attention of researchers in biometrics area. As compared to other biometric traits such as face, fingerprint and iris, finger vein is more secured and hard to counterfeit since the features are inside the human body. So far, most of the researchers focus on how to extract robust features from the captured vein images. Not much research was conducted on the classification of the extracted features. In this paper, a new classifier called fuzzy-based k-nearest centroid neighbor (FkNCN) is applied to classify the finger vein image. The proposed FkNCN employs a surrounding rule to obtain the k-nearest centroid neighbors based on the spatial distributions of the training images and their distance to the test image. Then, the fuzzy membership function is utilized to assign the test image to the class which is frequently represented by the k-nearest centroid neighbors. Experimental evaluation using our own database which was collected from 492 fingers shows that the proposed FkNCN has better performance than the k-nearest neighbor, k-nearest-centroid neighbor and fuzzy-based-k-nearest neighbor classifiers. This shows that the proposed classifier is able to identify the finger vein image effectively.

  2. Plant neighbor identity influences plant biochemistry and physiology related to defense.

    Science.gov (United States)

    Broz, Amanda K; Broeckling, Corey D; De-la-Peña, Clelia; Lewis, Matthew R; Greene, Erick; Callaway, Ragan M; Sumner, Lloyd W; Vivanco, Jorge M

    2010-06-17

    Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  3. Plant neighbor identity influences plant biochemistry and physiology related to defense

    Directory of Open Access Journals (Sweden)

    Callaway Ragan M

    2010-06-01

    Full Text Available Abstract Background Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. Results In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa or heterospecific (Festuca idahoensis plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Conclusions Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  4. Pollinator-mediated interactions in experimental arrays vary with neighbor identity.

    Science.gov (United States)

    Ha, Melissa K; Ivey, Christopher T

    2017-02-01

    Local ecological conditions influence the impact of species interactions on evolution and community structure. We investigated whether pollinator-mediated interactions between coflowering plants vary with plant density, coflowering neighbor identity, and flowering season. We conducted a field experiment in which flowering time and floral neighborhood were manipulated in a factorial design. Early- and late-flowering Clarkia unguiculata plants were placed into arrays with C. biloba neighbors, noncongeneric neighbors, additional conspecific plants, or no additional plants as a density control. We compared whole-plant pollen limitation of seed set, pollinator behavior, and pollen deposition among treatments. Interactions mediated by shared pollinators depended on the identity of the neighbor and possibly changed through time, although flowering-season comparisons were compromised by low early-season plant survival. Interactions with conspecific neighbors were likely competitive late in the season. Interactions with C. biloba appeared to involve facilitation or neutral interactions. Interactions with noncongeners were more consistently competitive. The community composition of pollinators varied among treatment combinations. Pollinator-mediated interactions involved competition and likely facilitation, depending on coflowering neighbor. Experimental manipulation helped to reveal context-dependent variation in indirect biotic interactions. © 2017 Botanical Society of America.

  5. The Powell Volcano Remote Sensing Working Group Overview

    Science.gov (United States)

    Reath, K.; Pritchard, M. E.; Poland, M. P.; Wessels, R. L.; Biggs, J.; Carn, S. A.; Griswold, J. P.; Ogburn, S. E.; Wright, R.; Lundgren, P.; Andrews, B. J.; Wauthier, C.; Lopez, T.; Vaughan, R. G.; Rumpf, M. E.; Webley, P. W.; Loughlin, S.; Meyer, F. J.; Pavolonis, M. J.

    2017-12-01

    Hazards from volcanic eruptions pose risks to the lives and livelihood of local populations, with potential global impacts to businesses, agriculture, and air travel. The 2015 Global Assessment of Risk report notes that 800 million people are estimated to live within 100 km of 1400 subaerial volcanoes identified as having eruption potential. However, only 55% of these volcanoes have any type of ground-based monitoring. The only methods currently available to monitor these unmonitored volcanoes are space-based systems that provide a global view. However, with the explosion of data techniques and sensors currently available, taking full advantage of these resources can be challenging. The USGS Powell Center Volcano Remote Sensing Working Group is working with many partners to optimize satellite resources for global detection of volcanic unrest and assessment of potential eruption hazards. In this presentation we will describe our efforts to: 1) work with space agencies to target acquisitions from the international constellation of satellites to collect the right types of data at volcanoes with forecasting potential; 2) collaborate with the scientific community to develop databases of remotely acquired observations of volcanic thermal, degassing, and deformation signals to facilitate change detection and assess how these changes are (or are not) related to eruption; and 3) improve usage of satellite observations by end users at volcano observatories that report to their respective governments. Currently, the group has developed time series plots for 48 Latin American volcanoes that incorporate variations in thermal, degassing, and deformation readings over time. These are compared against eruption timing and ground-based data provided by the Smithsonian Institute Global Volcanism Program. Distinct patterns in unrest and eruption are observed at different volcanoes, illustrating the difficulty in developing generalizations, but highlighting the power of remote sensing

  6. Communication Between Volcanoes: a Possible Path

    Science.gov (United States)

    Linde, A. T.; Sacks, I. S.

    2002-12-01

    The Japan Meteorological Agency installed and operates a network of Sacks-Evertson type borehole strainmeters in south-east Honshu. One of these instruments is on Izu-Oshima, a volcanic island at the northern end of the Izu-Bonin arc. That strainmeter recorded large strain changes associated with the 1986 eruption of Miharayama on the island and, over the period from 1980 to the 1986 eruption, the amplitude of the solid earth tides changed by almost a factor of two. Miyake-jima, about 75 km south of Izu-Oshima, erupted in October 1983. No deformation monitoring was available on Miyake but several changes occurred in the strain record at Izu-Oshima. There was a clear decrease in amplitude of the long-term strain rate. Short period (~hour) events recorded by the strainmeter became much more frequent about 6 months before the Miyake eruption and ceased following the eruption. At the time of the Miyake eruption, the rate of increase of the tidal amplitude also decreased. While all of these changes were observed on a single instrument, they are very different types of change. From a number of independent checks, we can be sure that the strainmeter did not experience any change in performance at that time. Thus it recorded a change in deformation behavior in three very different frequency bands: over very long term, at tidal periods (~day) and at very short periods (~hour). It appears that the distant eruption in 1983 had an effect on the magmatic system under Izu-Oshima. It is likely that these changes were enhanced to the observed level because Izu-Oshima was itself close to eruption failure. More recent tomographic and seismic attenuation work in the Tohoku (northern Honshu) area has shown the existence of a low velocity, high attenuation horizontally elongated structure under the volcanic front. This zone, likely to contain partial melt, is horizontally continuous along the front. If such a structure exists in the similar tectonic setting for these volcanoes, it

  7. Volatile Element Fluxes at Copahue Volcano, Argentina

    Science.gov (United States)

    Varekamp, J. C.

    2002-05-01

    Copahue volcano has a crater lake and acid hot springs that discharge into the Rio Agrio river system. These fluids are very concentrated (up to 6 % sulfate), rich in rock-forming elements (up to 2000 ppm Mg) and small spheres of native sulfur float in the crater lake. The stable isotope composition of the waters (delta 18O =-2.1 to + 3.6 per mille; delta D = -49 to -26 per mille) indicates that the hot spring waters are at their most concentrated about 70% volcanic brine and 30 % glacial meltwater. The crater lake waters have similar mixing proportions but added isotope effects from intense evaporation. Further dilution of the waters in the Rio Agrio gives values closer to local meteoric waters (delta 18O = -11 per mille; delta D = -77 per mille), whereas evaporation in closed ponds led to very heavy water (up to delta 18O = +12 per mille). The delta 34S value of dissolved sulfate is +14.2 per mille, whereas the native sulfur has values of -8.2 to -10.5 per mille. The heavy sulfate probably formed when SO2 disproportionated into bisulfate and native sulfur at about 300 C. We measured the sulfate fluxes in the Rio Agrio, which ranged from 20-40 kilotons S/year. The whole system was releasing sulfur at an equivalent rate of about 250-650 tons SO2/day. From the river flux sulfur values and the stochiometry of the disproportionation reaction we calculated the rate of liquid sulfur storage inside the volcano (6000 m3/year). During the eruptions of 1995/2000, large amounts of that stored liquid sulfur were ejected as pyroclastic sulfur. The calculated rate of rock dissolution (from rock- forming element fluxes in the Rio Agrio) suggests that the void space generated by rock dissolution is largely filled by native sulfur and silica. The S/Cl ratio in the hydrothermal fluids is about 2, whereas glass inclusions have S/Cl = 0.2, indicating the strong preferential degassing of sulfur.

  8. Magma Dynamics in Dome-Building Volcanoes

    Science.gov (United States)

    Kendrick, J. E.; Lavallée, Y.; Hornby, A. J.; Schaefer, L. N.; Oommen, T.; Di Toro, G.; Hirose, T.

    2014-12-01

    The frequent and, as yet, unpredictable transition from effusive to explosive volcanic behaviour is common to active composite volcanoes, yet our understanding of the processes which control this evolution is poor. The rheology of magma, dictated by its composition, porosity and crystal content, is integral to eruption behaviour and during ascent magma behaves in an increasingly rock-like manner. This behaviour, on short timescales in the upper conduit, provides exceptionally dynamic conditions that favour strain localisation and failure. Seismicity released by this process can be mimicked by damage accumulation that releases acoustic signals on the laboratory scale, showing that the failure of magma is intrinsically strain-rate dependent. This character aids the development of shear zones in the conduit, which commonly fracture seismogenically, producing fault surfaces that control the last hundreds of meters of ascent by frictional slip. High-velocity rotary shear (HVR) experiments demonstrate that at ambient temperatures, gouge behaves according to Byerlee's rule at low slip velocities. At rock-rock interfaces, mechanical work induces comminution of asperities and heating which, if sufficient, may induce melting and formation of pseudotachylyte. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The bulk composition, mineralogy and glass content of the magma all influence frictional behaviour, which supersedes buoyancy as the controlling factor in magma ascent. In the conduit of dome-building volcanoes, the fracture and slip processes are further complicated: slip-rate along the conduit margin fluctuates. The shear-thinning frictional melt yields a tendency for extremely unstable slip thanks to its pivotal position with regard to the glass transition. This thermo-kinetic transition bestows the viscoelastic melt with the ability to either flow or

  9. Volcano surveillance by ACR silver fox

    Science.gov (United States)

    Patterson, M.C.L.; Mulligair, A.; Douglas, J.; Robinson, J.; Pallister, J.S.

    2005-01-01

    Recent growth in the business of unmanned air vehicles (UAVs) both in the US and abroad has improved their overall capability, resulting in a reduction in cost, greater reliability and adoption into areas where they had previously not been considered. Uses in coastal and border patrol, forestry and agriculture have recently been evaluated in an effort to expand the observed area and reduce surveillance and reconnaissance costs for information gathering. The scientific community has both contributed and benefited greatly in this development. A larger suite of light-weight miniaturized sensors now exists for a range of applications which in turn has led to an increase in the gathering of information from these autonomous vehicles. In October 2004 the first eruption of Mount St Helens since 1986 caused tremendous interest amoUg people worldwide. Volcanologists at the U.S. Geological Survey rapidly ramped up the level of monitoring using a variety of ground-based sensors deployed in the crater and on the flanks of the volcano using manned helicopters. In order to develop additional unmanned sensing methods that can be used in potentially hazardous and low visibility conditions, a UAV experiment was conducted during the ongoing eruption early in November. The Silver Fox UAV was flown over and inside the crater to perform routine observation and data gathering, thereby demonstrating a technology that could reduce physical risk to scientists and other field operatives. It was demonstrated that UAVs can be flown autonomously at an active volcano and can deliver real time data to a remote location. Although still relatively limited in extent, these initial flights provided information on volcanic activity and thermal conditions within the crater and at the new (2004) lava dome. The flights demonstrated that readily available visual and infrared video sensors mounted in a small and relatively low-cost aerial platform can provide useful data on volcanic phenomena. This was

  10. Advances in volcano monitoring and risk reduction in Latin America

    Science.gov (United States)

    McCausland, W. A.; White, R. A.; Lockhart, A. B.; Marso, J. N.; Assitance Program, V. D.; Volcano Observatories, L. A.

    2014-12-01

    We describe results of cooperative work that advanced volcanic monitoring and risk reduction. The USGS-USAID Volcano Disaster Assistance Program (VDAP) was initiated in 1986 after disastrous lahars during the 1985 eruption of Nevado del Ruiz dramatizedthe need to advance international capabilities in volcanic monitoring, eruption forecasting and hazard communication. For the past 28 years, VDAP has worked with our partners to improve observatories, strengthen monitoring networks, and train observatory personnel. We highlight a few of the many accomplishments by Latin American volcano observatories. Advances in monitoring, assessment and communication, and lessons learned from the lahars of the 1985 Nevado del Ruiz eruption and the 1994 Paez earthquake enabled the Servicio Geológico Colombiano to issue timely, life-saving warnings for 3 large syn-eruptive lahars at Nevado del Huila in 2007 and 2008. In Chile, the 2008 eruption of Chaitén prompted SERNAGEOMIN to complete a national volcanic vulnerability assessment that led to a major increase in volcano monitoring. Throughout Latin America improved seismic networks now telemeter data to observatories where the decades-long background rates and types of seismicity have been characterized at over 50 volcanoes. Standardization of the Earthworm data acquisition system has enabled data sharing across international boundaries, of paramount importance during both regional tectonic earthquakes and during volcanic crises when vulnerabilities cross international borders. Sharing of seismic forecasting methods led to the formation of the international organization of Latin American Volcano Seismologists (LAVAS). LAVAS courses and other VDAP training sessions have led to international sharing of methods to forecast eruptions through recognition of precursors and to reduce vulnerabilities from all volcano hazards (flows, falls, surges, gas) through hazard assessment, mapping and modeling. Satellite remote sensing data

  11. Volcano-tectonic interactions at Sabancaya and other Peruvian volcanoes revealed by InSAR and seismicity

    Science.gov (United States)

    Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.

    2013-12-01

    An InSAR survey of all 13 Holocene volcanoes in the Andean Central Volcanic Zone of Peru reveals previously undocumented surface deformation that is occasionally accompanied by seismic activity. Our survey utilizes SAR data spanning from 1992 to the present from the ERS-1, ERS-2, and Envisat satellites, as well as selected data from the TerraSAR-X satellite. We find that the recent unrest at Sabancaya volcano (heightened seismicity since 22 February 2013 and increased fumarolic output) has been accompanied by surface deformation. We also find two distinct deformation episodes near Sabancaya that are likely associated with an earthquake swarm in February 2013 and a M6 normal fault earthquake that occurred on 17 July 2013. Preliminary modeling suggests that faulting from the observed seismic moment can account for nearly all of the observed deformation and thus we have not yet found clear evidence for recent magma intrusion. We also document an earlier episode of deformation that occurred between December 2002 and September 2003 which may be associated with a M5.3 earthquake that occurred on 13 December 2002 on the Solarpampa fault, a large EW-striking normal fault located about 25 km northwest of Sabancaya volcano. All of the deformation episodes between 2002 and 2013 are spatially distinct from the inflation seen near Sabancaya from 1992 to 1997. In addition to the activity at Sabancaya, we also observe deformation near Coropuna volcano, in the Andagua Valley, and in the region between Ticsani and Tutupaca volcanoes. InSAR images reveal surface deformation that is possibly related to an earthquake swarm near Coropuna and Sabancaya volcanoes in December 2001. We also find persistent deformation in the scoria cone and lava field along the Andagua Valley, located 40 km east of Corpuna. An earthquake swarm near Ticsani volcano in 2005 produced surface deformation centered northwest of the volcano and was accompanied by a north-south elongated subsidence signal to the

  12. SUBMARINE VOLCANO CHARACTERISTICS IN SABANG WATERS

    Directory of Open Access Journals (Sweden)

    Hananto Kurnio

    2017-07-01

    Full Text Available The aim of the study is to understand the characteristics of a volcano occurred in marine environment, as Weh Island where Sabang City located is still demonstrated its volcanic cone morphology either through satellite imagery or bathymetric map. Methods used were marine geology, marine geophysics and oceanography. Results show that surface volcanism (sea depth less than 50 m take place as fumaroles, solfataras, hot ground, hot spring, hot mud pool and alteration in the vicinities of seafloor and coastal area vents. Seismic records also showed acoustic turbidity in the sea water column due to gas bubblings produced by seafloor fumaroles. Geochemical analyses show that seafloor samples in the vicinities of active and non-active fumarole vent are abundances with rare earth elements (REE. These were interpreted that the fumarole bring along REE through its gases and deposited on the surrounding seafloor surface. Co-existence between active fault of Sumatra and current volcanism produce hydrothermal mineralization in fault zone as observed in Serui and Pria Laot-middle of Weh Island which both are controlled by normal faults and graben.

  13. Energy budget of the volcano Stromboli, Italy

    Science.gov (United States)

    Mcgetchin, T. R.; Chouet, B. A.

    1979-01-01

    The results of the analyses of movies of eruptions at Stromboli, Italy, and other available data are used to discuss the question of its energy partitioning among various energy transport mechanisms. Energy is transported to the surface from active volcanoes in at least eight modes, viz. conduction (and convection) of the heat through the surface, radiative heat transfer from the vent, acoustical radiation in blast and jet noise, seismic radiation, thermal energy of ejected particles, kinetic energy of ejected particles, thermal energy of ejected gas, and kinetic energy of ejected gas. Estimated values of energy flux from Stromboli by these eight mechanisms are tabulated. The energy budget of Stromboli in its normal mode of activity appears to be dominated by heat conduction (and convection) through the ground surface. Heat carried by eruption gases is the most important of the other energy transfer modes. Radiated heat from the open vent and heat carried by ejected lava particles also contribute to the total flux, while seismic energy accounts for about 0.5% of the total. All other modes are trivial by comparison.

  14. Geomorphological classification of post-caldera volcanoes in the Buyan-Bratan caldera, North Bali, Indonesia

    Science.gov (United States)

    Okuno, Mitsuru; Harijoko, Agung; Wayan Warmada, I.; Watanabe, Koichiro; Nakamura, Toshio; Taguchi, Sachihiro; Kobayashi, Tetsuo

    2017-12-01

    A landform of the post-caldera volcanoes (Lesung, Tapak, Sengayang, Pohen, and Adeng) in the Buyan-Bratan caldera on the island of Bali, Indonesia can be classified by topographic interpretation. The Tapak volcano has three craters, aligned from north to south. Lava effused from the central crater has flowed downward to the northwest, separating the Tamblingan and Buyan Lakes. This lava also covers the tip of the lava flow from the Lesung volcano. Therefore, it is a product of the latest post-caldera volcano eruption. The Lesung volcano also has two craters, with a gully developing on the pyroclastic cone from the northern slope to the western slope. Lava from the south crater has flowed down the western flank, beyond the caldera rim. Lava distributed on the eastern side from the south also surrounds the Sengayang volcano. The Adeng volcano is surrounded by debris avalanche deposits from the Pohen volcano. Based on these topographic relationships, Sengayang volcano appears to be the oldest of the post-caldera volcanoes, followed by the Adeng, Pohen, Lesung, and Tapak volcanoes. Coarse-grained scoria falls around this area are intercalated with two foreign tephras: the Samalas tephra (1257 A.D.) from Lombok Island and the Penelokan tephra (ca. 5.5 kBP) from the Batur caldera. The source of these scoria falls is estimated to be either the Tapak or Lesung volcano, implying that at least two volcanoes have erupted during the Holocene period.

  15. Volcano related atmospheric toxicants in Hilo and Hawaii Volcanoes National Park: implications for human health.

    Science.gov (United States)

    Michaud, Jon-Pierre; Krupitsky, Dmitry; Grove, John S; Anderson, Bruce S

    2005-08-01

    Volcanic fog (vog) from Kilauea volcano on the island of Hawaii includes a variety of chemical species including sulfur compounds and traces of metals such as mercury. The metal species seen tended to be in the nanograms per cubic meter range, whereas oxides of sulfur: SO2 and SO3 and sulfate aerosols, were in the range of micrograms per cubic meter and rarely even as high as a few milligrams per cubic meter of air (nominally ppb to ppm). These sulfur species are being investigated for associations with both acute and chronic changes in human health status. The sulfate aerosols tend to be less than 1 microm in diameter and tend to dominate the mass of this submicron size mode. The sulfur chemistry is dynamic, changing composition from predominantly sulfur dioxide and trioxide gasses near the volcano, to predominantly sulfate aerosols on the west side of the island. Time, concentration and composition characteristics of submicron aerosols and sulfur dioxide are described with respect to the related on-going health studies and public health management concerns. Exposures to sulfur dioxide and particulate matter equal to or less than 1 microm in size were almost always below the national ambient air quality standards (NAAQS). These standards do not however consider the acidic nature and submicron size of the aerosol, nor the possibility of the aerosol and the sulfur dioxide interacting in their toxicity. Time series plots, histograms and descriptive statistics of hourly averages give the reader a sense of some of the exposures observed.

  16. Tephra compositions from Late Quaternary volcanoes around the Antarctic Peninsula

    Science.gov (United States)

    Kraus, S.

    2009-12-01

    Crustal extension and rifting processes opened the Bransfield Strait between the South Shetland Islands and the Antarctic Peninsula during the last 4 Ma. Similar processes on the Peninsula's eastern side are responsible for volcanism along Larsen Rift. There are at least 11 volcanic centers with known or suspected Late Pleistocene / Holocene explosive activity (Fig. 1). Fieldwork was carried out on the islands Deception, Penguin, Bridgeman and Paulet, moreover at Melville Peak (King George Is.) and Rezen Peak (Livingston Is.). Of special importance is the second ever reported visit and sampling at Sail Rock, and the work on never before visited outcrops on the northern slopes and at the summit of Cape Purvis volcano (Fig. 1). The new bulk tephra ICP-MS geochemical data provide a reliable framework to distinguish the individual volcanic centers from each other. According to their Mg-number, Melville Peak and Penguin Island represent the most primitive magma source. Nb/Y ratios higher than 0.67 in combination with elevated Th/Yb and Ta/Yb ratios and strongly enriched LREE seem to be diagnostic to distinguish the volcanoes located along the Larsen Rift from those associated with Bransfield Rift. Sr/Y ratios discriminate between the individual Larsen Rift volcanoes, Paulet Island showing considerably higher values than Cape Purvis volcano. Along Bransfield Rift, Bridgeman Island and Melville Peak have notably lower Nb/Y and much higher Th/Nb than Deception Island, Penguin Island and Sail Rock. The latter displays almost double the Th/Yb ratio as compared to Deception Island, and also much higher LREE enrichment but extraordinarily low Ba/Th, discriminating it from Penguin Island. Such extremely low Ba/Th ratios are also typical for Melville Peak, but for none of the other volcanoes. Penguin Island has almost double the Ba/Th and Sr/Y ratios higher than any other investigated volcano. Whereas the volcanoes located in the northern part of Bransfield Strait have Zr

  17. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    Science.gov (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  18. Handling Neighbor Discovery and Rendezvous Consistency with Weighted Quorum-Based Approach.

    Science.gov (United States)

    Own, Chung-Ming; Meng, Zhaopeng; Liu, Kehan

    2015-09-03

    Neighbor discovery and the power of sensors play an important role in the formation of Wireless Sensor Networks (WSNs) and mobile networks. Many asynchronous protocols based on wake-up time scheduling have been proposed to enable neighbor discovery among neighboring nodes for the energy saving, especially in the difficulty of clock synchronization. However, existing researches are divided two parts with the neighbor-discovery methods, one is the quorum-based protocols and the other is co-primality based protocols. Their distinction is on the arrangements of time slots, the former uses the quorums in the matrix, the latter adopts the numerical analysis. In our study, we propose the weighted heuristic quorum system (WQS), which is based on the quorum algorithm to eliminate redundant paths of active slots. We demonstrate the specification of our system: fewer active slots are required, the referring rate is balanced, and remaining power is considered particularly when a device maintains rendezvous with discovered neighbors. The evaluation results showed that our proposed method can effectively reschedule the active slots and save the computing time of the network system.

  19. Handling Neighbor Discovery and Rendezvous Consistency with Weighted Quorum-Based Approach

    Directory of Open Access Journals (Sweden)

    Chung-Ming Own

    2015-09-01

    Full Text Available Neighbor discovery and the power of sensors play an important role in the formation of Wireless Sensor Networks (WSNs and mobile networks. Many asynchronous protocols based on wake-up time scheduling have been proposed to enable neighbor discovery among neighboring nodes for the energy saving, especially in the difficulty of clock synchronization. However, existing researches are divided two parts with the neighbor-discovery methods, one is the quorum-based protocols and the other is co-primality based protocols. Their distinction is on the arrangements of time slots, the former uses the quorums in the matrix, the latter adopts the numerical analysis. In our study, we propose the weighted heuristic quorum system (WQS, which is based on the quorum algorithm to eliminate redundant paths of active slots. We demonstrate the specification of our system: fewer active slots are required, the referring rate is balanced, and remaining power is considered particularly when a device maintains rendezvous with discovered neighbors. The evaluation results showed that our proposed method can effectively reschedule the active slots and save the computing time of the network system.

  20. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    Science.gov (United States)

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  1. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2014-01-01

    Full Text Available This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs in logarithmic received signal strength (RSS varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.

  2. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Science.gov (United States)

    Tian, Zengshan; Xu, Kunjie; Yu, Xiang

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349

  3. Improving Fraudster Detection in Online Auctions by Using Neighbor-Driven Attributes

    Directory of Open Access Journals (Sweden)

    Jun-Lin Lin

    2015-12-01

    Full Text Available Online auction websites use a simple reputation system to help their users to evaluate the trustworthiness of sellers and buyers. However, to improve their reputation in the reputation system, fraudulent users can easily deceive the reputation system by creating fake transactions. This inflated-reputation fraud poses a major problem for online auction websites because it can lead legitimate users into scams. Numerous approaches have been proposed in the literature to address this problem, most of which involve using social network analysis (SNA to derive critical features (e.g., k-core, center weight, and neighbor diversity for distinguishing fraudsters from legitimate users. This paper discusses the limitations of these SNA features and proposes a class of SNA features referred to as neighbor-driven attributes (NDAs. The NDAs of users are calculated from the features of their neighbors. Because fraudsters require collusive neighbors to provide them with positive ratings in the reputation system, using NDAs can be helpful for detecting fraudsters. Although the idea of NDAs is not entirely new, experimental results on a real-world dataset showed that using NDAs improves classification accuracy compared with state-of-the-art methods that use the k-core, center weight, and neighbor diversity.

  4. Velocity correlations and spatial dependencies between neighbors in a unidirectional flow of pedestrians

    Science.gov (United States)

    Porzycki, Jakub; WÄ s, Jarosław; Hedayatifar, Leila; Hassanibesheli, Forough; Kułakowski, Krzysztof

    2017-08-01

    The aim of the paper is an analysis of self-organization patterns observed in the unidirectional flow of pedestrians. On the basis of experimental data from Zhang et al. [J. Zhang et al., J. Stat. Mech. (2011) P06004, 10.1088/1742-5468/2011/06/P06004], we analyze the mutual positions and velocity correlations between pedestrians when walking along a corridor. The angular and spatial dependencies of the mutual positions reveal a spatial structure that remains stable during the crowd motion. This structure differs depending on the value of n , for the consecutive n th -nearest-neighbor position set. The preferred position for the first-nearest neighbor is on the side of the pedestrian, while for further neighbors, this preference shifts to the axis of movement. The velocity correlations vary with the angle formed by the pair of neighboring pedestrians and the direction of motion and with the time delay between pedestrians' movements. The delay dependence of the correlations shows characteristic oscillations, produced by the velocity oscillations when striding; however, a filtering of the main frequency of individual striding out reduces the oscillations only partially. We conclude that pedestrians select their path directions so as to evade the necessity of continuously adjusting their speed to their neighbors'. They try to keep a given distance, but follow the person in front of them, as well as accepting and observing pedestrians on their sides. Additionally, we show an empirical example that illustrates the shape of a pedestrian's personal space during movement.

  5. Tremor Source Location at Okmok Volcano

    Science.gov (United States)

    Reyes, C. G.; McNutt, S. R.

    2007-12-01

    Initial results using an amplitude-based tremor location program have located several active tremor episodes under Cone A, a vent within Okmok volcano's 10 km caldera. Okmok is an andesite volcano occupying the north-eastern half of Umnak Island, in the Aleutian islands. Okmok is defined by a ~2000 y.b.p. caldera that contains multiple cinder cones. Cone A, the youngest of these, extruded lava in 1997 covering the caldera floor. Since April 2003, continuous seismic data have been recorded from eight vertical short-period stations (L4-C's) installed at distances from Cone A ranging from 2 km to 31 km. In 2004 four additional 3- component broadband stations were added, co-located with continuous GPS stations. InSAR and GPS measurements of post-eruption deformation show that Okmok experienced several periods of rapid inflation (Mann and Freymueller, 2002), from the center of the 10 km diameter caldera. While there are few locatable VT earthquakes, there has been nearly continuous low-level tremor with stronger amplitude bursts occurring at variable rates and durations. The character of occurrence remained relatively constant over the course of days to weeks until the signal ceased in mid 2005. Within any day, tremor behavior remains fairly consistent, with bursts closely resembling each other, suggesting a single main process or source location. The tremor is composed of irregular waves with a broad range of frequencies, though most energy resides between ~2 Hz and 6 Hz. Attempts to locate the tremor using traditional arrival time methods fail because the signal is emergent, with envelopes too ragged to correlate on time scales that hold much hope for a location. Instead, focus was shifted to the amplitude ratios at various stations. Candidates for the tremor source include the center of inflation and Cone A, 3 km to the south-west. For all dates on record, data were band pass filtered between 1 and 5 Hz, then evaluated in 20.48 second windows (N=2048, sampling rate

  6. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  7. Design of smart sensing components for volcano monitoring

    Science.gov (United States)

    Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.

    2009-01-01

    In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.

  8. Postshield stage transitional volcanism on Mahukona Volcano, Hawaii

    Science.gov (United States)

    Clague, D.A.; Calvert, A.T.

    2009-01-01

    Age spectra from 40Ar/39Ar incremental heating experiments yield ages of 298??25 ka and 310??31 ka for transitional composition lavas from two cones on submarine Mahukona Volcano, Hawaii. These ages are younger than the inferred end of the tholeiitic shield stage and indicate that the volcano had entered the postshield alkalic stage before going extinct. Previously reported elevated helium isotopic ratios of lavas from one of these cones were incorrectly interpreted to indicate eruption during a preshield alkalic stage. Consequently, high helium isotopic ratios are a poor indicator of eruptive stage, as they occur in preshield, shield, and postshield stage lavas. Loihi Seamount and Kilauea are the only known Hawaiian volcanoes where the volume of preshield alkalic stage lavas can be estimated. ?? Springer-Verlag 2008.

  9. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  10. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  11. Earth Girl Volcano: An Interactive Game for Disaster Preparedness

    Science.gov (United States)

    Kerlow, Isaac

    2017-04-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards. Earth Girl is a friendly character that kids can easily connect with and she helps players understand how to best minimize volcanic risk. Our previous award-winning game, Earth Girl Tsunami, has seen success on social media, and is available as a free app for both Android and iOS tables and large phones in seven languages: Indonesian, Thai, Tamil, Japanese, Chinese, Spanish, French and English. This is the first public viewing of the Earth Girl Volcano new game prototype.

  12. Multiple Active Volcanoes in the Northeast Lau Basin

    Science.gov (United States)

    Baker, E. T.; Resing, J. A.; Lupton, J. E.; Walker, S. L.; Embley, R. W.; Rubin, K. H.; Buck, N.; de Ronde, C. E.; Arculus, R. J.

    2010-12-01

    The northeast Lau Basin occupies a complex geological area between the Tafua arc front, the E-W trending Tonga Trench, and the Northeast Lau Spreading Center. These boundaries create multiple zones of extension and thus provide abundant opportunities for magma to invade the crust. The 25-km-long chain of “Mata” volcanoes lies near the center of this area, separated from both the arc front and the spreading ridge. In 2008 we discovered hydrothermal venting on the largest and most southerly of these volcanoes, W and E Mata. In 2010 we visited the 7 smaller volcanoes that form a 15-km-long arcuate sweep to the north from W and E Mata (the “North Matas”). We also revisited W and E Mata. Over each volcano we conducted CTD tows to map plumes and collect water samples. Based on the CTD results, camera tows searched for seafloor sources on three volcanoes. The N Mata volcanoes, extending from Mata Taha (1) in the south to Mata Fitu (7) in the north, lie within a prominent gap in the shallow bathymetry along the southern border of the Tonga trench. Northward from E Mata the Mata volcanoes degrade from large symmetrical cones to smaller and blocky volcanic edifices. Summit depths range from 1165 m (W Mata) to 2670 m (Mata Nima (5)). The most active volcano in the chain is the erupting W Mata, with an intense plume that extended 250 m above the summit. Hydrothermal temperature anomalies (Δθ, corrected for hydrographic masking effects) reached ˜1.7°C, with light-scattering values as high as 2-5 ΔNTU. The 2010 surveys now show that 6 of the 7 N Mata volcanoes are also hydrothermally active. Along the N Matas, Δθ and ΔNTU signals ranged from robust to weak, but distinct oxidation-reduction potential (aka Eh) anomalies confirmed active venting in each case. The most concentrated plumes were found near Mata Ua (2) and Mata Fitu (7), with Δθ and ΔNTU maxima of 0.1-0.17°C and 0.3, respectively. Despite the variability in plume strength, however, ΔNTU/Δθ ratios

  13. Determining the stress field in active volcanoes using focal mechanisms

    Directory of Open Access Journals (Sweden)

    Bruno Massa

    2016-11-01

    Full Text Available Stress inversion of seismological datasets became an essential tool to retrieve the stress field of active tectonics and volcanic areas. In particular, in volcanic areas, it is able to put constrains on volcano-tectonics and in general in a better understanding of the volcano dynamics. During the last decades, a wide range of stress inversion techniques has been proposed, some of them specifically conceived to manage seismological datasets. A modern technique of stress inversion, the BRTM, has been applied to seismological datasets available at three different regions of active volcanism: Mt. Somma-Vesuvius (197 Fault Plane Solutions, FPSs, Campi Flegrei (217 FPSs and Long Valley Caldera (38,000 FPSs. The key role of stress inversion techniques in the analysis of the volcano dynamics has been critically discussed. A particular emphasis was devoted to performances of the BRTM applied to volcanic areas.

  14. Inside the volcano: The how and why of Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    LaFemina, Peter; Hudak, Michael; Feineman, Maureen; Geirsson, Halldor; Normandeau, Jim; Furman, Tanya

    2015-04-01

    The Thrihnukagigur volcano, located in the Brennisteinsfjöll fissure swarm on the Reykjanes Peninsula, Iceland, offers a unique exposure of the upper magmatic plumbing system of a monogenetic volcano. The volcano formed during a dike-fed strombolian eruption ~3500 BP with flow-back leaving an evacuated conduit, elongated parallel to the regional maximum horizontal stress. At least two vents were formed above the dike, as well as several small hornitos south-southwest of the main vent. In addition to the evacuated conduit, a cave exists 120 m below the vent. The cave exposes stacked lava flows and a buried cinder cone. The unconsolidated tephra of the cone is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to the vent that produced lava and tephra during the ~3500 BP fissure eruption. We present geochemical, petrologic and geologic observations, including a high-resolution three-dimensional scan of the system that indicate the dike intersected, eroded and assimilated unconsolidated tephra from the buried cinder cone, thus excavating a region along the dike, allowing for future slumping and cave formation. Two petrographically distinct populations of plagioclase phenocrysts are present in the system: a population of smaller (maximum length 1 mm) acicular phenocrysts and a population of larger (maximum length 10 mm) tabular phenocrysts that is commonly broken and displays disequilibrium sieve textures. The acicular plagioclase crystals are present in the dike and lavas while the tabular crystals are in these units and the buried tephra. An intrusion that appears not to have interacted with the tephra has only acicular plagioclase. This suggests that a magma crystallizing a single acicular population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the tabular population of phenocrysts from the cone. Petrographic thin-sections of lavas sampled near the vent show undigested fragments of tephra from

  15. 2004 Deformation of Okmok Volcano,Alaska, USA

    Science.gov (United States)

    Fournier, T. J.; Freymueller, J. T.

    2004-12-01

    Okmok Volcano is a basaltic shield volcano with a 10km diameter caldera located on Umnak Island in the Aleutian Arc, Alaska. Okmok has had frequent effusive eruptions, the latest in 1997. In 2002 the Alaska Volcano Observatory installed a seismic network and three continuous GPS stations. Two stations are located in the caldera and one is located at the base of the volcano at Fort Glenn. Because of instrumentation problems the GPS network was not fully operational until August 2003. A fourth GPS site, located on the south flank of the volcano, came online in September 2004. The three continuous GPS instruments captured a rapid inflation event at Okmok Volcano spanning 6 months from March to August 2004. The instruments give a wonderful time-series of the episode but poor spatial coverage. Modeling the deformation is accomplished by supplementing the continuous data with campaign surveys conducted in the summers of 2002, 2003 and 2004. Displacements between the 2002 and 2003 campaigns show a large inflation event between those time periods. The continuous and campaign data suggest that deformation at Okmok is characterized by short-lived rapid inflation interspersed with periods of moderate inflation. Velocities during the 2004 event reached a maximum of 31cm/yr in the vertical direction and 15cm/yr eastward at the station OKCD, compared with the pre-inflation velocities of 4cm/yr in the vertical and 2.5cm/yr southeastward. Using a Mogi point source model both prior to and during the inflation gives a source location in the center of the caldera and a depth of about 3km. The source strength rate is three times larger during the inflation event than the period preceding it. Based on the full time series of campaign and continuous GPS data, it appears that the variation in inflation rate results from changes in the magma supply rate and not from changes in the depth of the source.

  16. Measuring Gases Using Drones at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Stix, J.; Alan, A., Jr.; Corrales, E.; D'Arcy, F.; de Moor, M. J.; Diaz, J. A.

    2016-12-01

    We are currently developing a series of drones and associated instrumentation to study Turrialba volcano in Costa Rica. This volcano has shown increasing activity during the last 20 years, and the volcano is currently in a state of heightened unrest as exemplified by recent explosive activity in May-August 2016. The eruptive activity has made the summit area inaccessible to normal gas monitoring activities, prompting development of new techniques to measure gas compositions. We have been using two drones, a DJI Spreading Wings S1000 octocopter and a Turbo Ace Matrix-i quadcopter, to airlift a series of instruments to measure volcanic gases in the plume of the volcano. These instruments comprise optical and electrochemical sensors to measure CO2, SO2, and H2S concentrations which are considered the most significant species to help forecast explosive eruptions and determine the relative proportions of magmatic and hydrothermal components in the volcanic gas. Additionally, cameras and sensors to measure air temperature, relative humidity, atmospheric pressure, and GPS location are included in the package to provide meteorological and geo-referenced information to complement the concentration data and provide a better picture of the volcano from a remote location. The integrated payloads weigh 1-2 kg, which can typically be flown by the drones in 10-20 minutes at altitudes of 2000-4000 meters. Preliminary tests at Turrialba in May 2016 have been very encouraging, and we are in the process of refining both the drones and the instrumentation packages for future flights. Our broader goals are to map gases in detail with the drones in order to make flux measurements of each species, and to apply this approach at other volcanoes.

  17. Investigation of the Dashigil mud volcano (Azerbaijan) using beryllium-10

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J., E-mail: kjkim@kigam.re.kr [Korea Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Baskaran, M.; Jweda, J. [Department of Geology, Wayne State University, Detroit, MI 48202 (United States); Feyzullayev, A.A.; Aliyev, C. [Geology Institute of the Azerbaijan National Academy of Sciences (ANAS), Baku, AZ 1143 (Azerbaijan); Matsuzaki, H. [MALT, University of Tokyo, Tokyo (Japan); Jull, A.J.T. [NSF Arizona AMS Lab, University of Arizona, AZ 85721 (United States)

    2013-01-15

    We collected and analyzed five sediments from three mud volcano (MV) vents and six suspended and bottom sediment samples from the adjoining river near the Dashgil mud volcano in Azerbaijan for {sup 10}Be. These three MV are found among the 190 onshore and >150 offshore MV in this region which correspond to the western flank of the South Caspian depression. These MVs overlie the faulted and petroleum-bearing anticlines. The {sup 10}Be concentrations and {sup 10}Be/{sup 9}Be ratios are comparable to the values reported for mud volcanoes in Trinidad Island. It appears that the stable Be concentrations in Azerbaijan rivers are not perturbed by anthropogenic effects and are comparable to the much older sediments (mud volcano samples). The {sup 10}Be and {sup 9}Be concentrations in our river sediments are compared to the global data set and show that the {sup 10}Be values found for Kura River are among the lowest of any river for which data exist. We attribute this low {sup 10}Be concentration to the nature of surface minerals which are affected by the residual hydrocarbon compounds that occur commonly in the study area in particular and Azerbaijan at large. The concentrations of {sup 40}K and U-Th-series radionuclides ({sup 234}Th, {sup 210}Pb, {sup 226}Ra, and {sup 228}Ra) indicate overall homogeneity of the mud volcano samples from the three different sites. Based on the {sup 10}Be concentrations of the mud volcano samples, the age of the mud sediments could be at least as old as 4 myr.

  18. A generic model for the shallow velocity structure of volcanoes

    Science.gov (United States)

    Lesage, Philippe; Heap, Michael J.; Kushnir, Alexandra

    2018-05-01

    The knowledge of the structure of volcanoes and of the physical properties of volcanic rocks is of paramount importance to the understanding of volcanic processes and the interpretation of monitoring observations. However, the determination of these structures by geophysical methods suffers limitations including a lack of resolution and poor precision. Laboratory experiments provide complementary information on the physical properties of volcanic materials and their behavior as a function of several parameters including pressure and temperature. Nevertheless combined studies and comparisons of field-based geophysical and laboratory-based physical approaches remain scant in the literature. Here, we present a meta-analysis which compares 44 seismic velocity models of the shallow structure of eleven volcanoes, laboratory velocity measurements on about one hundred rock samples from five volcanoes, and seismic well-logs from deep boreholes at two volcanoes. The comparison of these measurements confirms the strong variability of P- and S-wave velocities, which reflects the diversity of volcanic materials. The values obtained from laboratory experiments are systematically larger than those provided by seismic models. This discrepancy mainly results from scaling problems due to the difference between the sampled volumes. The averages of the seismic models are characterized by very low velocities at the surface and a strong velocity increase at shallow depth. By adjusting analytical functions to these averages, we define a generic model that can describe the variations in P- and S-wave velocities in the first 500 m of andesitic and basaltic volcanoes. This model can be used for volcanoes where no structural information is available. The model can also account for site time correction in hypocenter determination as well as for site and path effects that are commonly observed in volcanic structures.

  19. What Will the Neighbors Think? Building Large-Scale Science Projects Around the World

    International Nuclear Information System (INIS)

    Jones, Craig; Mrotzek, Christian; Toge, Nobu; Sarno, Doug

    2007-01-01

    Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.

  20. A Novel Preferential Diffusion Recommendation Algorithm Based on User’s Nearest Neighbors

    Directory of Open Access Journals (Sweden)

    Fuguo Zhang

    2017-01-01

    Full Text Available Recommender system is a very efficient way to deal with the problem of information overload for online users. In recent years, network based recommendation algorithms have demonstrated much better performance than the standard collaborative filtering methods. However, most of network based algorithms do not give a high enough weight to the influence of the target user’s nearest neighbors in the resource diffusion process, while a user or an object with high degree will obtain larger influence in the standard mass diffusion algorithm. In this paper, we propose a novel preferential diffusion recommendation algorithm considering the significance of the target user’s nearest neighbors and evaluate it in the three real-world data sets: MovieLens 100k, MovieLens 1M, and Epinions. Experiments results demonstrate that the novel preferential diffusion recommendation algorithm based on user’s nearest neighbors can significantly improve the recommendation accuracy and diversity.

  1. Electronic transport of molecular nanowires by considering of electron hopping energy between the second neighbors

    Directory of Open Access Journals (Sweden)

    H Rabani

    2015-07-01

    Full Text Available In this paper, we study the electronic conductance of molecular nanowires by considering the electron hopping between the first and second neighbors with the help Green’s function method at the tight-binding approach. We investigate three types of structures including linear uniform and periodic chains as well as poly(p-phenylene molecule which are embedded between two semi-infinite metallic leads. The results show that in the second neighbor approximation, the resonance, anti-resonance and Fano phenomena occur in the conductance spectra of these structures. Moreover, a new gap is observed at edge of the lead energy band wich its width depends on the value of the electron hopping energy between the second neighbors. In the systems including intrinsic gap, this hopping energy shifts the gap in the energy spectra.

  2. A multilevel-skin neighbor list algorithm for molecular dynamics simulation

    Science.gov (United States)

    Zhang, Chenglong; Zhao, Mingcan; Hou, Chaofeng; Ge, Wei

    2018-01-01

    Searching of the interaction pairs and organization of the interaction processes are important steps in molecular dynamics (MD) algorithms and are critical to the overall efficiency of the simulation. Neighbor lists are widely used for these steps, where thicker skin can reduce the frequency of list updating but is discounted by more computation in distance check for the particle pairs. In this paper, we propose a new neighbor-list-based algorithm with a precisely designed multilevel skin which can reduce unnecessary computation on inter-particle distances. The performance advantages over traditional methods are then analyzed against the main simulation parameters on Intel CPUs and MICs (many integrated cores), and are clearly demonstrated. The algorithm can be generalized for various discrete simulations using neighbor lists.

  3. Learn good from bad: Effects of good and bad neighbors in spatial prisoners' dilemma games

    Science.gov (United States)

    Lu, Peng

    2015-10-01

    Cooperation is vital for the human society and this study focuses on how to promote cooperation. In our stratification model, there exist three classes: two minorities are elites who are prone to cooperate and scoundrels who are born to defect; one majority is the class of common people. Agents of these three classes interact with each other on a square lattice. Commons' cooperation and its factors are investigated. Contradicting our common sense, it indicates that elites play a negative role while scoundrels play a positive one in promoting commons' cooperation. Besides, effects of good and bad neighbors vary with temptation. When the temptation is smaller the positive effect is able to overcome the negative effect, but the later prevails when the temptation is larger. It concludes that common people are more prone to cooperate in harsh environment with bad neighbors, and a better environment with good neighbors merely leads to laziness and free riding of commons.

  4. Neighbor-dependent Ramachandran probability distributions of amino acids developed from a hierarchical Dirichlet process model.

    Directory of Open Access Journals (Sweden)

    Daniel Ting

    2010-04-01

    Full Text Available Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1 input data size and criteria for structure inclusion (resolution, R-factor, etc.; 2 filtering of suspect conformations and outliers using B-factors or other features; 3 secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included; 4 the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5 whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp.

  5. The 2000 AD eruption of Copahue Volcano, Southern Andes

    OpenAIRE

    Naranjo, José Antonio; Polanco, Edmundo

    2004-01-01

    Although all historic eruptions of the Copahue volcano (37°45'S-71°10.2'W, 3,001 m a.s.l.) have been of low magnitude, the largest (VEI=2) and longest eruptive cycle occurred from July to October 2000. Phreatic phases characterized the main events as a former acid crater lake was blown up. Low altitude columns were deviated by low altitude winds in variable directions, but slightly predominant to the NNE. The presence of the El Agrio caldera depression to the east of Copahue volcano may have ...

  6. The recent seismicity of Teide volcano, Tenerife (Canary Islands, Spain)

    Science.gov (United States)

    D'Auria, L.; Albert, G. W.; Calvert, M. M.; Gray, A.; Vidic, C.; Barrancos, J.; Padilla, G.; García-Hernández, R.; Perez, N. M.

    2017-12-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk of the island.On 02/10/2016 a remarkable swarm of long-period events was recorded and was interpreted as the effect of a transient massive fluid discharge episode occurring within the deep hydrothermal system of Teide volcano. Actually, since Oct. 2016, the hydrothermal system of the volcano underwent a progressive pressurization, testified by the marked variation of different geochemical parameters. The most striking observation is the increase in the diffuse CO2 emission from the summit crater of Teide volcano which started increasing from a background value of about 20 tons/day and reaching a peak of 175 tons/day in Feb. 2017.The pressurization process has been accompanied by an increase in the volcano-tectonic seismicity of. Teide volcano, recorded by the Red Sísmica Canaria, managed by Instituto Volcanológico de Canarias (INVOLCAN). The network began its full operativity in Nov. 2016 and currently consists of 15 broadband seismic stations. Since Nov. 2016 the network detected more than 100 small magnitude earthquakes, located beneath Teide volcano at depths usually ranging between 5 and 15 km. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest ever recorded since decades. Most of the events show typical features of the microseismicity of hydrothermal systems: high spatial and temporal clustering and similar waveforms of individual events which often are overlapped.We present the spatial and temporal distribution of the seismicity of Teide volcano since Nov. 2016, comparing it also with the past seismicity of the volcano. Furthermore we analyze the statistical properties of the numerous swarms recorded until now with the aid of a template

  7. Magma paths at Piton de la Fournaise Volcano

    OpenAIRE

    Michon , Laurent; Ferrazzini , Valérie; Di Muro , Andrea

    2016-01-01

    International audience; Several patterns of magma paths have been proposed since the 1980s for Piton de la Fournaise volcano. Given the significant differences, which are presented here, we propose a reappraisal of the magma intrusion paths using a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the scoria cones. At the edifice scale, the magma propagates along two N120 trending rift zones. They are wide, linear, spotted by small to large scoria cones and r...

  8. Monitoring Volcanoes by Use of Air-Dropped Sensor Packages

    Science.gov (United States)

    Kedar, Sharon; Rivellini, Tommaso; Webb, Frank; Blaes, Brent; Bracho, Caroline; Lockhart, Andrew; McGee, Ken

    2003-01-01

    Sensor packages that would be dropped from airplanes have been proposed for pre-eruption monitoring of physical conditions on the flanks of awakening volcanoes. The purpose of such monitoring is to gather data that could contribute to understanding and prediction of the evolution of volcanic systems. Each sensor package, denoted a volcano monitoring system (VMS), would include a housing with a parachute attached at its upper end and a crushable foam impact absorber at its lower end (see figure). The housing would contain survivable low-power instrumentation that would include a Global Positioning System (GPS) receiver, an inclinometer, a seismometer, a barometer, a thermometer, and CO2 and SO2 analyzers. The housing would also contain battery power, control, data-logging, and telecommunication subsystems. The proposal for the development of the VMS calls for the use of commercially available sensor, power, and telecommunication equipment, so that efforts could be focused on integrating all of the equipment into a system that could survive impact and operate thereafter for 30 days, transmitting data on the pre-eruptive state of a target volcano to a monitoring center. In a typical scenario, VMSs would be dropped at strategically chosen locations on the flanks of a volcano once the volcano had been identified as posing a hazard from any of a variety of observations that could include eyewitness reports, scientific observations from positions on the ground, synthetic-aperture-radar scans from aircraft, and/or remote sensing from aboard spacecraft. Once dropped, the VMSs would be operated as a network of in situ sensors that would transmit data to a local monitoring center. This network would provide observations as part of an integrated volcano-hazard assessment strategy that would involve both remote sensing and timely observations from the in situ sensors. A similar strategy that involves the use of portable sensors (but not dropping of sensors from aircraft) is

  9. Pyroclastic sulphur eruption at Poas Volcano, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Thorpe, R.S.; Brown, G.C.; Glasscock, J.

    1980-01-01

    The recent Voyager missions to Jupiter have highlighted the role of sulphur in volcanic processes on io. Although fumarolic sulphur and SO/sub 2/ gas are almost universal in terrestrial active volcanoes, and rare instances of sulphur lava flows have been reported, sulphur in a pyroclastic form has only been described from Poas Volcano, Costa Rica. Here we amplify the original descriptions by Bennett and Raccichini and describe a recent eruption of pyroclastic sulphur scoria and ejected blocks that are characterised by miniature sulphur stalactites and stalagmites.

  10. Cyclic Activity of Mud Volcanoes: Evidences from Trinidad (SE Caribbean)

    Science.gov (United States)

    Deville, E.

    2007-12-01

    Fluid and solid transfer in mud volcanoes show different phases of activity, including catastrophic events followed by periods of relative quiescence characterized by moderate activity. This can be notably shown by historical data onshore Trinidad. Several authors have evoked a possible link between the frequencies of eruption of some mud volcanoes and seismic activity, but in Trinidad there is no direct correlation between mud eruptions and seisms. It appears that each eruptive mud volcano has its own period of catastrophic activity, and this period is highly variable from one volcano to another. The frequency of activity of mud volcanoes seems essentially controlled by local pressure regime within the sedimentary pile. At the most, a seism can, in some cases, activate an eruption close to its term. The dynamics of expulsion of the mud volcanoes during the quiescence phases has been studied notably from temperature measurements within the mud conduits. The mud temperature is concurrently controlled by, either, the gas flux (endothermic gas depressurizing induces a cooling effect), or by the mud flux (mud is a vector for convective heat transfer). Complex temperature distribution was observed in large conduits and pools. Indeed, especially in the bigger pools, the temperature distribution characterizes convective cells with an upward displacement of mud above the deep outlet, and ring-shaped rolls associated with the burial of the mud on the flanks of the pools. In simple, tube-like shaped, narrow conduits, the temperature is more regular, but we observed different types of profiles, with either downward increasing or decreasing temperatures. If the upward flow of mud would be regular, we should expect increasing temperatures and progressively decreasing gradient with depth within the conduits. However, the variable measured profiles from one place to another, as well as time-variable measured temperatures within the conduits and especially, at the base of the

  11. Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar

    2016-04-01

    Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been

  12. Optimizing Neighbor Discovery for Ad hoc Networks based on the Bluetooth PAN Profile

    DEFF Research Database (Denmark)

    Kuijpers, Gerben; Nielsen, Thomas Toftegaard; Prasad, Ramjee

    2002-01-01

    IP layer neighbor discovery mechanisms rely highly on broadcast/multicast capabilities of the underlying link layer. The Bluetooth personal area network (PAN) profile has no native link layer broadcast/multicast capabilities and can only emulate this by repeatedly unicast link layer frames....... This paper introduces a neighbor discovery mechanism that utilizes the resources in the Bluetooth PAN profile more efficient. The performance of the new mechanism is investigated using a IPv6 network simulator and compared with emulated broadcasting. It is shown that the signaling overhead can...

  13. Long-term effect of September 11 on the political behavior of victims' families and neighbors.

    Science.gov (United States)

    Hersh, Eitan D

    2013-12-24

    This article investigates the long-term effect of September 11, 2001 on the political behaviors of victims' families and neighbors. Relative to comparable individuals, family members and residential neighbors of victims have become--and have stayed--significantly more active in politics in the last 12 years, and they have become more Republican on account of the terrorist attacks. The method used to demonstrate these findings leverages the random nature of the terrorist attack to estimate a causal effect and exploits new techniques to link multiple, individual-level, governmental databases to measure behavioral change without relying on surveys or aggregate analysis.

  14. Long-term effect of September 11 on the political behavior of victims’ families and neighbors

    Science.gov (United States)

    Hersh, Eitan D.

    2013-01-01

    This article investigates the long-term effect of September 11, 2001 on the political behaviors of victims’ families and neighbors. Relative to comparable individuals, family members and residential neighbors of victims have become—and have stayed—significantly more active in politics in the last 12 years, and they have become more Republican on account of the terrorist attacks. The method used to demonstrate these findings leverages the random nature of the terrorist attack to estimate a causal effect and exploits new techniques to link multiple, individual-level, governmental databases to measure behavioral change without relying on surveys or aggregate analysis. PMID:24324145

  15. Effect of Floquet engineering on the p-wave superconductor with second-neighbor couplings

    Science.gov (United States)

    Li, X. P.; Li, C. F.; Wang, L. C.; Zhou, L.

    2018-06-01

    The influence of the Floquet engineering on a particular one-dimensional p-wave superconductor, Kitaev model, with second-neighbor couplings is investigated in this paper. The effective Hamiltonians in the rotated reference frames have been obtained, and the convergent regions of the approximated Hamiltonian as well as the topological phase diagrams have been analyzed and discussed. We show that by modulating the external driving field amplitude, frequency as well as the second-neighbor hopping amplitude, the rich phase diagrams and transitions between different topological phases can be obtained.

  16. Multi-parametric investigation of the volcano-hydrothermal system at Tatun Volcano Group, Northern Taiwan

    Science.gov (United States)

    Rontogianni, S.; Konstantinou, K. I.; Lin, C.-H.

    2012-07-01

    The Tatun Volcano Group (TVG) is located in northern Taiwan near the capital Taipei. In this study we selected and analyzed almost four years (2004-2007) of its seismic activity. The seismic network established around TVG initially consisted of eight three-component seismic stations with this number increasing to twelve by 2007. Local seismicity mainly involved high frequency (HF) earthquakes occurring as isolated events or as part of spasmodic bursts. Mixed and low frequency (LF) events were observed during the same period but more rarely. During the analysis we estimated duration magnitudes for the HF earthquakes and used a probabilistic non-linear method to accurately locate all these events. The complex frequencies of LF events were also analyzed with the Sompi method indicating fluid compositions consistent with a misty or dusty gas. We juxtaposed these results with geochemical/temperature anomalies extracted from fumarole gas and rainfall levels covering a similar period. This comparison is interpreted in the context of a model proposed earlier for the volcano-hydrothermal system of TVG where fluids and magmatic gases ascend from a magma body that lies at around 7-8 km depth. Most HF earthquakes occur as a response to stresses induced by fluid circulation within a dense network of cracks pervading the upper crust at TVG. The largest (ML ~ 3.1) HF event that occurred on 24 April 2006 at a depth of 5-6 km had source characteristics compatible with that of a tensile crack. It was followed by an enrichment in magmatic components of the fumarole gases as well as a fumarole temperature increase, and provides evidence for ascending fluids from a magma body into the shallow hydrothermal system. This detailed analysis and previous physical volcanology observations at TVG suggest that the region is volcanically active and that measures to mitigate potential hazards have to be considered by the local authorities.

  17. Multi-parametric investigation of the volcano-hydrothermal system at Tatun Volcano Group, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    S. Rontogianni

    2012-07-01

    Full Text Available The Tatun Volcano Group (TVG is located in northern Taiwan near the capital Taipei. In this study we selected and analyzed almost four years (2004–2007 of its seismic activity. The seismic network established around TVG initially consisted of eight three-component seismic stations with this number increasing to twelve by 2007. Local seismicity mainly involved high frequency (HF earthquakes occurring as isolated events or as part of spasmodic bursts. Mixed and low frequency (LF events were observed during the same period but more rarely. During the analysis we estimated duration magnitudes for the HF earthquakes and used a probabilistic non-linear method to accurately locate all these events. The complex frequencies of LF events were also analyzed with the Sompi method indicating fluid compositions consistent with a misty or dusty gas. We juxtaposed these results with geochemical/temperature anomalies extracted from fumarole gas and rainfall levels covering a similar period. This comparison is interpreted in the context of a model proposed earlier for the volcano-hydrothermal system of TVG where fluids and magmatic gases ascend from a magma body that lies at around 7–8 km depth. Most HF earthquakes occur as a response to stresses induced by fluid circulation within a dense network of cracks pervading the upper crust at TVG. The largest (ML ~ 3.1 HF event that occurred on 24 April 2006 at a depth of 5–6 km had source characteristics compatible with that of a tensile crack. It was followed by an enrichment in magmatic components of the fumarole gases as well as a fumarole temperature increase, and provides evidence for ascending fluids from a magma body into the shallow hydrothermal system. This detailed analysis and previous physical volcanology observations at TVG suggest that the region is volcanically active and that measures to mitigate potential hazards have to be considered by the local authorities.

  18. ACTIVITY AND Vp/Vs RATIO OF VOLCANO-TECTONIC SEISMIC SWARM ZONES AT NEVADO DEL RUIZ VOLCANO, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Londoño B. John Makario

    2010-06-01

    Full Text Available An analysis of the seismic activity for volcano-tectonic earthquake (VT swarms zones at Nevado del Ruiz Volcano (NRV was carried out for the interval 1985- 2002, which is the most seismic active period at NRV until now (2010. The swarm-like seismicity of NRV was frequently concentrated in very well defined clusters around the volcano. The seismic swarm zone located at the active crater was the most active during the entire time. The seismic swarm zone located to the west of the volcano suggested some relationship with the volcanic crises. It was active before and after the two eruptions occurred in November 1985 and September 1989. It is believed that this seismic activity may be used as a monitoring tool of volcanic activity. For each seismic swarm zone the Vp/Vs ratio was also calculated by grouping of earthquakes and stations. It was found that each seismic swarm zone had a distinct Vp/Vs ratio with respect to the others, except for the crater and west swarm zones, which had the same value. The average Vp/Vs ratios for the seismic swarm zones located at the active crater and to the west of the volcano are about 6-7% lower than that for the north swarm zone, and about 3% lower than that for the south swarm zone. We suggest that the reduction of the Vp/Vs ratio is due to degassing phenomena inside the central and western earthquake swarm zones, or due to the presence of microcracks inside the volcano. This supposition is in agreement with other studies of geophysics, geochemistry and drilling surveys carried out at NRV.

  19. Subsidence of Surtsey volcano, 1967-1991

    Science.gov (United States)

    Moore, J.G.; Jakobsson, S.; Holmjarn, J.

    1992-01-01

    The Surtsey marine volcano was built on the southern insular shelf of Iceland, along the seaward extension of the east volcanic zone, during episodic explosive and effusive activity from 1963 to 1967. A 1600-m-long, east-west line of 42 bench marks was established across the island shortly after volcanic activity stopped. From 1967 to 1991 a series of leveling surveys measured the relative elevation of the original bench marks, as well as additional bench marks installed in 1979, 1982 and 1985. Concurrent measurements were made of water levels in a pit dug on the north coast, in a drill hole, and along the coastline exposed to the open ocean. These surveys indicate that the dominant vertical movement of Surtsey is a general subsidence of about 1.1??0.3 m during the 24-year period of observations. The rate of subsidence decreased from 15-20 cm/year for 1967-1968 to 1-2 cm/year in 1991. Greatest subsidence is centered about the eastern vent area. Through 1970, subsidence was locally greatest where the lava plain is thinnest, adjacent to the flanks of the eastern tephra cone. From 1982 onward, the region closest to the hydrothermal zone, which is best developed in the vicinity of the eastern vent, began showing less subsidence relative to the rest of the surveyed bench marks. The general subsidence of the island probably results from compaction of the volcanic material comprising Surtsey, compaction of the sea-floor sediments underlying the island, and possibly downwarping of the lithosphere due to the laod of Surtsey. The more localized early downwarping near the eastern tephra cone is apparently due to greater compaction of tephra relative to lava. The later diminished local subsidence near the hydrothermal zone is probably due to a minor volume increase caused by hydrous alteration of glassy tephra. However, this volume increase is concentrated at depth beneath the bottom of the 176-m-deep cased drillhole. ?? 1992 Springer-Verlag.

  20. The Influence of Neighbor Effect and Urbanization Toward Organ Donation in Thailand.

    Science.gov (United States)

    Wongboonsin, Kua; Jindahra, Pavitra; Teerakapibal, Surat

    2018-03-01

    Toward population wellness, an extreme scarcity of organ supply is proven to be an enormous hindrance. Preferences toward organ donation are vital to raise the organ donation rate. Notably, the area people live in can address the social influence on individual preference toward organ donation. This article studies the impact of the neighbor effect on organ donation decisions, addressing the social influence of urbanization on preferences. How neighborhood-specific variables, population density, and socioeconomic status drive the neighbor effect is investigated. The pursuit of organ donor traits is to be answered. The study uses organ donation interview survey data and neighborhood-specific data from Thailand to estimate a series of logistic regression models. Individuals residing in urban areas exhibit a greater likelihood to sign the donor card than those in rural areas. The neighborhood socioeconomic status is the key driver. An individual is more willing to be an organ donor when having neighbors with higher socioeconomic statuses. Results also reveal positive influences of males and education on the organ donation rate. This article documents the "neighbor effect" on the organ donation decision via living area type, offering an alternative exposition in raising the organ donation rate. In shifting the society norm toward organ donation consent, policy-makers should acknowledge the benefit of urbanization on organ donation decision derived from resourceful urban areas. Moreover, raising education levels does improve not only citizens' well-being but also their tendency to exhibit an altruistic act toward others.

  1. Applying an efficient K-nearest neighbor search to forest attribute imputation

    Science.gov (United States)

    Andrew O. Finley; Ronald E. McRoberts; Alan R. Ek

    2006-01-01

    This paper explores the utility of an efficient nearest neighbor (NN) search algorithm for applications in multi-source kNN forest attribute imputation. The search algorithm reduces the number of distance calculations between a given target vector and each reference vector, thereby, decreasing the time needed to discover the NN subset. Results of five trials show gains...

  2. Neighbor discovery in multi-hop wireless networks: evaluation and dimensioning with interferences considerations

    Directory of Open Access Journals (Sweden)

    Elyes Ben Hamida

    2008-04-01

    Full Text Available In this paper, we study the impact of collisions and interferences on a neighbor discovery process in the context of multi-hop wireless networks. We consider three models in which interferences and collisions are handled in very different ways. From an ideal channel where simultaneous transmissions do not interfere, we derive an alternate channel where simultaneous transmissions are considered two-by-two under the form of collisions, to finally reach a more realistic channel where simultaneous transmissions are handled under the form of shot-noise interferences. In these models, we analytically compute the link probability success between two neighbors as well as the expected number of nodes that correctly receive a Hello packet. Using this analysis, we show that if the neighbor discovery process is asymptotically equivalent in the three models, it offers very different behaviors locally in time. In particular, the scalability of the process is not the same depending on the way interferences are handled. Finally, we apply our results to the dimensioning of a Hello protocol parameters. We propose a method to adapt the protocol parameters to meet application constraints on the neighbor discovery process and to minimize the protocol energy consumption.

  3. Loving All Your Neighbors: Why Community Colleges Need the Academic Study of Religion

    Science.gov (United States)

    Maley, Melissa

    2013-01-01

    This chapter explains how the study of world religions prepares the community college student to become a better citizen, worker, and neighbor. The effective middle between the pitfalls of religious relativism and religious dominance in a world religions classroom is central to this discussion of teaching critical thinking, empathy, and…

  4. Stuttering Attitudes among Turkish Family Generations and Neighbors from Representative Samples

    Science.gov (United States)

    Ozdemir, R. Sertan; St. Louis, Kenneth O.; Topbas, Seyhun

    2011-01-01

    Purpose: Attitudes toward stuttering, measured by the "Public Opinion Survey of Human Attributes-Stuttering" ("POSHA-S"), are compared among (a) two different representative samples; (b) family generations (children, parents, and either grandparents or uncles and aunts) and neighbors; (c) children, parents, grandparents/adult…

  5. Estimating forest attribute parameters for small areas using nearest neighbors techniques

    Science.gov (United States)

    Ronald E. McRoberts

    2012-01-01

    Nearest neighbors techniques have become extremely popular, particularly for use with forest inventory data. With these techniques, a population unit prediction is calculated as a linear combination of observations for a selected number of population units in a sample that are most similar, or nearest, in a space of ancillary variables to the population unit requiring...

  6. Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods

    Science.gov (United States)

    Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett

    2009-01-01

    Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....

  7. The indirect effects of cheatgrass invasion: Grasshopper herbivory on native grasses determined by neighboring cheatgrass abundance

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Carol K. Augsperger

    2008-01-01

    Invasion biology has focused on the direct effects of plant invasion and has generally overlooked indirect interactions. Here we link theories of invasion biology and herbivory to explore an indirect effect of one invading species on associational herbivory (the effect of neighboring plants on herbivory) of native species. We studied a Great Basin shadscale (...

  8. Mapping change of older forest with nearest-neighbor imputation and Landsat time-series

    Science.gov (United States)

    Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Warren B. Cohen; Robert E. Kennedy; Zhiqiang. Yang

    2012-01-01

    The Northwest Forest Plan (NWFP), which aims to conserve late-successional and old-growth forests (older forests) and associated species, established new policies on federal lands in the Pacific Northwest USA. As part of monitoring for the NWFP, we tested nearest-neighbor imputation for mapping change in older forest, defined by threshold values for forest attributes...

  9. Numerical Simulation of the Diffusion Processes in Nanoelectrode Arrays Using an Axial Neighbor Symmetry Approximation.

    Science.gov (United States)

    Peinetti, Ana Sol; Gilardoni, Rodrigo S; Mizrahi, Martín; Requejo, Felix G; González, Graciela A; Battaglini, Fernando

    2016-06-07

    Nanoelectrode arrays have introduced a complete new battery of devices with fascinating electrocatalytic, sensitivity, and selectivity properties. To understand and predict the electrochemical response of these arrays, a theoretical framework is needed. Cyclic voltammetry is a well-fitted experimental technique to understand the undergoing diffusion and kinetics processes. Previous works describing microelectrode arrays have exploited the interelectrode distance to simulate its behavior as the summation of individual electrodes. This approach becomes limited when the size of the electrodes decreases to the nanometer scale due to their strong radial effect with the consequent overlapping of the diffusional fields. In this work, we present a computational model able to simulate the electrochemical behavior of arrays working either as the summation of individual electrodes or being affected by the overlapping of the diffusional fields without previous considerations. Our computational model relays in dividing a regular electrode array in cells. In each of them, there is a central electrode surrounded by neighbor electrodes; these neighbor electrodes are transformed in a ring maintaining the same active electrode area than the summation of the closest neighbor electrodes. Using this axial neighbor symmetry approximation, the problem acquires a cylindrical symmetry, being applicable to any diffusion pattern. The model is validated against micro- and nanoelectrode arrays showing its ability to predict their behavior and therefore to be used as a designing tool.

  10. Impact of Training Bolivian Farmers on Integrated Pest Management and Diffusion of Knowledge to Neighboring Farmers

    DEFF Research Database (Denmark)

    Jørs, Erik; Konradsen, Flemming; Huici, Omar

    2016-01-01

    of importance to justify training costs and to promote a healthy and sustainable agriculture. Training on IPM of farmers took place from 2002 to 2004 in their villages in La Paz County, Bolivia, while dissemination of knowledge from trained farmer to neighboring farmer took place until 2009. To evaluate...

  11. Moderate-resolution data and gradient nearest neighbor imputation for regional-national risk assessment

    Science.gov (United States)

    Kenneth B. Jr. Pierce; C. Kenneth Brewer; Janet L. Ohmann

    2010-01-01

    This study was designed to test the feasibility of combining a method designed to populate pixels with inventory plot data at the 30-m scale with a new national predictor data set. The new national predictor data set was developed by the USDA Forest Service Remote Sensing Applications Center (hereafter RSAC) at the 250-m scale. Gradient Nearest Neighbor (GNN)...

  12. Integration and analysis of neighbor discovery and link quality estimation in wireless sensor networks.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  13. 77 FR 50504 - Good Neighbor Environmental Board Notification of Public Advisory Committee Teleconference

    Science.gov (United States)

    2012-08-21

    ... recommendations to the President and Congress on environmental and infrastructure issues along the U.S. border with Mexico. Purpose of Meeting: The purpose of this teleconference is to discuss the Good Neighbor Environmental Board's Fifteenth Report. The report will focus on water infrastructure issues in the U.S.-Mexico...

  14. 77 FR 13599 - Good Neighbor Environmental Board; Notification of Public Advisory Committee Teleconference

    Science.gov (United States)

    2012-03-07

    ... recommendations to the President and Congress on environmental and infrastructure issues along the U.S. border with Mexico. Purpose of Meeting: The purpose of this teleconference is to discuss the Good Neighbor Environmental Board's Fifteenth Report. The report will focus on water infrastructure issues in the U.S.-Mexico...

  15. Probability distributions for first neighbor distances between resonances that belong to two different families

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1994-01-01

    For a mixture of two families of resonances, we found the probability distribution for the distance, as first neighbors, between resonances that belong to different families. Integration of this distribution gives the probability of accidental overlapping of resonances of one isotope by resonances of the other, provided that the resonances of each isotope belong to a single family. (author)

  16. Neighbor Discovery Algorithm in Wireless Local Area Networks Using Multi-beam Directional Antennas

    Science.gov (United States)

    Wang, Jin; Peng, Wei; Liu, Song

    2017-10-01

    Neighbor discovery is an important step for Wireless Local Area Networks (WLAN) and the use of multi-beam directional antennas can greatly improve the network performance. However, most neighbor discovery algorithms in WLAN, based on multi-beam directional antennas, can only work effectively in synchronous system but not in asynchro-nous system. And collisions at AP remain a bottleneck for neighbor discovery. In this paper, we propose two asynchrono-us neighbor discovery algorithms: asynchronous hierarchical scanning (AHS) and asynchronous directional scanning (ADS) algorithm. Both of them are based on three-way handshaking mechanism. AHS and ADS reduce collisions at AP to have a good performance in a hierarchical way and directional way respectively. In the end, the performance of the AHS and ADS are tested on OMNeT++. Moreover, it is analyzed that different application scenarios and the factors how to affect the performance of these algorithms. The simulation results show that AHS is suitable for the densely populated scenes around AP while ADS is suitable for that most of the neighborhood nodes are far from AP.

  17. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Marjan Radi

    2014-01-01

    Full Text Available Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  18. Dose distribution in the thyroid and neighboring regions in therapy with 131I

    International Nuclear Information System (INIS)

    Monteiro, Rommel Barbosa; Bonifacio, Daniel Alexandre Baptista; Sa, Lidia Vasconcellos de

    2013-01-01

    In this work, simulations were performed with two types of computer simulators: the MIRD phantom and voxel phantom MASH, both of type adult male and in the standing position, coupled to the computational tool GATE (Geant4 Application for Tomographic Emission), to obtain the dose deposited in thyroid and neighboring regions

  19. Modeling the effect of neighboring grains on twin growth in HCP polycrystals

    Science.gov (United States)

    Kumar, M. Arul; Beyerlein, I. J.; Lebensohn, R. A.; Tomé, C. N.

    2017-09-01

    In this paper, we study the dependence of neighboring grain orientation on the local stress state around a deformation twin in a hexagonal close packed (HCP) crystal and its effects on the resistance against twin thickening. We use a recently developed, full-field elasto-visco-plastic formulation based on fast Fourier transforms that account for the twinning shear transformation imposed by the twin lamella. The study is applied to Mg, Zr and Ti, since these HCP metals tend to deform by activation of different types of slip modes. The analysis shows that the local stress along the twin boundary are strongly controlled by the relative orientation of the easiest deformation modes in the neighboring grain with respect to the twin lamella in the parent grain. A geometric expression that captures this parent-neighbor relationship is proposed and incorporated into a larger scale, mean-field visco-plastic self-consistent model to simulate the role of neighboring grain orientation on twin thickening. We demonstrate that the approach improves the prediction of twin area fraction distribution when compared with experimental observations.

  20. Recursive nearest neighbor search in a sparse and multiscale domain for comparing audio signals

    DEFF Research Database (Denmark)

    Sturm, Bob L.; Daudet, Laurent

    2011-01-01

    We investigate recursive nearest neighbor search in a sparse domain at the scale of audio signals. Essentially, to approximate the cosine distance between the signals we make pairwise comparisons between the elements of localized sparse models built from large and redundant multiscale dictionaries...

  1. Collective Behaviors of Mobile Robots Beyond the Nearest Neighbor Rules With Switching Topology.

    Science.gov (United States)

    Ning, Boda; Han, Qing-Long; Zuo, Zongyu; Jin, Jiong; Zheng, Jinchuan

    2018-05-01

    This paper is concerned with the collective behaviors of robots beyond the nearest neighbor rules, i.e., dispersion and flocking, when robots interact with others by applying an acute angle test (AAT)-based interaction rule. Different from a conventional nearest neighbor rule or its variations, the AAT-based interaction rule allows interactions with some far-neighbors and excludes unnecessary nearest neighbors. The resulting dispersion and flocking hold the advantages of scalability, connectivity, robustness, and effective area coverage. For the dispersion, a spring-like controller is proposed to achieve collision-free coordination. With switching topology, a new fixed-time consensus-based energy function is developed to guarantee the system stability. An upper bound of settling time for energy consensus is obtained, and a uniform time interval is accordingly set so that energy distribution is conducted in a fair manner. For the flocking, based on a class of generalized potential functions taking nonsmooth switching into account, a new controller is proposed to ensure that the same velocity for all robots is eventually reached. A co-optimizing problem is further investigated to accomplish additional tasks, such as enhancing communication performance, while maintaining the collective behaviors of mobile robots. Simulation results are presented to show the effectiveness of the theoretical results.

  2. Who's Watching the Babies? Improving the Quality of Family, Friend, and Neighbor Child Care

    Science.gov (United States)

    Powell, Douglas R.

    2008-01-01

    One of the important influences on a child's development is the quality of his or her early care and education experiences. It is estimated that more than 1 million children in the U.S. are cared for while their parents are at work by nonlicensed caregivers who are family, friends, or neighbors - and these caregivers can be difficult to reach…

  3. Transfer-Efficient Face Routing Using the Planar Graphs of Neighbors in High Density WSNs

    Directory of Open Access Journals (Sweden)

    Eun-Seok Cho

    2017-10-01

    Full Text Available Face routing has been adopted in wireless sensor networks (WSNs where topological changes occur frequently or maintaining full network information is difficult. For message forwarding in networks, a planar graph is used to prevent looping, and because long edges are removed by planarization and the resulting planar graph is composed of short edges, and messages are forwarded along multiple nodes connected by them even though they can be forwarded directly. To solve this, face routing using information on all nodes within 2-hop range was adopted to forward messages directly to the farthest node within radio range. However, as the density of the nodes increases, network performance plunges because message transfer nodes receive and process increased node information. To deal with this problem, we propose a new face routing using the planar graphs of neighboring nodes to improve transfer efficiency. It forwards a message directly to the farthest neighbor and reduces loads and processing time by distributing network graph construction and planarization to the neighbors. It also decreases the amount of location information to be transmitted by sending information on the planar graph nodes rather than on all neighboring nodes. Simulation results show that it significantly improves transfer efficiency.

  4. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  5. Deep structure and origin of active volcanoes in China

    Directory of Open Access Journals (Sweden)

    Dapeng Zhao

    2010-10-01

    Full Text Available We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi are caused by hot upwelling in the big mantle wedge (BMW above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate. The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab–plume interactions.

  6. The first days of the new submarine volcano near Krakatoa

    NARCIS (Netherlands)

    Umbgrove, J.H.F.

    1926-01-01

    The geological history of the Krakatoa volcano, especially the eruption of 1883, is amply described in the great work “Krakatau” by R. D. M. Verheer (1885), the Report of the Krakatoa Committee (Royal Soc. London 1888) and in the publications of B. G. Escher (Handel. 1e Nederl. Indisch Natuurwet

  7. Stem Cells: A Dormant Volcano Within Our Body?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. Stem Cells: A Dormant Volcano Within Our Body? Devaveena Dey Annapoorni Rangarajan. General Article Volume 12 Issue 3 March 2007 pp 27-34. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    Science.gov (United States)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  9. Puffers and Chuggers: Statistical Curiosities in Volcano World

    Science.gov (United States)

    Lees, J. M.

    2002-12-01

    Several on-going, low level volcanic explosions exhibit background phenomena commonly known as puffing, or in some cases chugging. Recently these events have been scrutinized because of the initiation of infrasonic monitoring, whereas earlier the events may have gone undetected. The activity associated with a puffer at a volcanic vent is generally small in magnitude and is often not observed audibly. The low frequency signals are readily observed on sensitive acoustic instrumentation and they provide a new dimension for our understanding of volcanic processes at volcanoes like Stromboli and Etna that have constant puffing signals. At other volcanoes, like Karymsky volcano in Kamchatka and Sangay Volcano in Ecuador, chugging signals associated with Strombolian style eruptions also provides new insights into the physics of the conduit systems. Here we present a statistical method of event detection, and event cluster association. When multiple vents work in unison it may be difficult to separate out chugging and puffing signals between spatially separated vents. The cluster analysis automatically differentiates between the vents based on waveform characteristics in the acoustic and seismic wavefields. Data examples from May, 2001, at Stromboli and Etna, show extensive periods of puffing (1-5 second frequency) superimposed on a background of vigorous, small-scale explosive activity. At Karymsky and Sangay non-linear, dynamic models explain the fluid flow through vents which gives rise to chugging. Furthermore, the frequency of chugging events appears to be associated with the intensity of lava flows and eruption rate.

  10. Magmagenesis at Soufriere volcano St Vincent, Lesser Antilles Arc

    Science.gov (United States)

    Heath, E.; Macdonald, R.; Belkin, H.; Hawkesworth, C.; Sigurdsson, Haraldur

    1998-01-01

    Soufriere volcano of St Vincent (3 wt %, whereas various projections onto phase diagrams are more consistent with relatively anhydrous magmas. Primary magmas at Soufriere were generated by around 15% melting of mid-ocean ridge basalt type mantle sources which had been modified by addition of fluids released from the slab containing contributions from subducted sediments and mafic crust.

  11. Topography and Volcanology of the Huangtsuishan Volcano Subgroup, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Ming Lai

    2010-01-01

    Full Text Available Combining the shaded relief topography model and the slope map from the Digital Terrain Model (DTM images, toporaphical map, field occurrences and petrography, the volcanic sequences of the Huangtsuishan Volcano Subgroup (HVS can be constructed. Two types of volcanic centers can be identified in this area. One is the Tachienhou volcanic dome, which may be located in the center of an older caldera. The other is the Huangtsui composite volcano, which is composed of interbedding lava flows and pyroclastic deposits with a volcanic crater named the Huangtsui pond at the summit. Eight lava plateaus radiated from Mts. Huangtsui and Tachienhou to the north and the east can be distinguished based on the DTM images. The volcanic deposits are comprised of four lithofacies, the lava flows, pyroclastic breccias, tuffs and lahars on the base of field occurrences. At least thirteen layers of lava flow, named the H1 to H13 can be recognized in the HVS and can be reconstructed and categorized into four stages. An old and large volcano erupted lava flows to form the products of stages one and two, then collapsed to form a caldera with a dome for the third stage. The latest stage of lava flow was poured out from the Huangtsui volcano, which formed a crater at the summit.

  12. Comparative features of volcanoes on Solar system bodies

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    The bark of many cosmic bodies is in motion because of the displacement of tectonic plates on magma. Pouring molten magma through cracks in the cortex is called a volcanic eruption. There are two main types of volcanoes: basaltic, appearing where a new material of tectonic plates is formed, and andesitic, which located in the places of destruction of these plates.The third type of volcanoes is cryovolcanoes, or ice volcanoes. This type of volcano ejects matter in the form of ice volcanic melts or steam from water, ammonia, methane. After the eruption, the cryomagma at a low temperature condenses to a solid phase. Cryovolcanoes can be formed on such objects as Pluto, Ceres, Titan, Enceladus, Europe, Triton, etc. Potential sources of energy for melting ice in the production of cryovolcanoes are tidal friction and/or radioactive decay. Semi-transparent deposits of frozen materials that can create a subsurface greenhouse effect, with the possibility of accumulating the required heat with subsequent explosive eruption, are another way to start the cryovolcano action. This type of eruption is observed on Mars and Triton. The first and second types of eruptions (basaltic and andesitic) are characteristic of terrestrial planets (Mercury, Venus, Mars) and for some satellites of the planets of the Solar system.

  13. Stratigraphy of neoproterozoic sedimentary and volcano sedimentary successions of Uruguay

    International Nuclear Information System (INIS)

    Pecoits, E.; Aubet, N.; Oyhantcabal, P.; Sanchez Bettucci, L.

    2004-01-01

    Based on the new data the different characteristics of the Neoproterozoic (volcano) sedimentary succesions of Uruguay are described and discussed. Their stratigraphic tectonics and palaeoclimatic implications are analyzed.The results of the present investigations also allow to define the Maldonado Group which would beintegrated by the Playa Hermosa and Las Ventanas formations.

  14. An Overview of Geodetic Volcano Research in the Canary Islands

    Science.gov (United States)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  15. Volcano ecology: flourishing on the flanks of Mount St. Helens

    Science.gov (United States)

    Rhonda Mazza; Charlie Crisafulli

    2016-01-01

    Mount St. Helens’ explosive eruption on May 18, 1980, was a pivotal moment in the field of disturbance ecology. The subsequent sustained, integrated research effort has shaped the development of volcano ecology, an emerging field of focused research. Excessive heat, burial, and impact force are some of the disturbance mechanisms following an eruption. They are also...

  16. Airborne VLF survey of Izu-Oshima volcano

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Yutaka; Yukutake, Takeshi

    1988-05-17

    Resistivity distribution in underground indicates anomaly in some cases due to volcanic activity, airborne VLF survey of Izu-Oshima volcano in whole area was carried out by measurement of the anomalous vertical magnetic field. The flight direction was determined with reference to both of the transmitter direction of the VLF waves and the running direction of the geologic formation. The flight altitude and the flight lines spacing were 100 m and 200 m respectively. Typical profiles of four lines of measurement were investigated. The resistivity anomalies were indicated corresponding to the position of known geologic fissure line, the lip of the caldera, the line of the craters and side volcanos. Several anomalous trends were detected by the contour drawing of the Fraser filter output. The detected results were as follow: new volcanos with the resistivity anomaly, the resistivity anomalies spread to the north-northwest from Goshinka jaya, the anomalies due to flowed lava, the anomalies by encroached water from the caldera wall, the effects from side volcanoes and so on. The resistivity anomalies by airborne VLF survey correspond to the known volcanic activities, and they are useful for elucidation of the underground volcanism. (6 figs, 4 refs)

  17. SSMILes: Investigating Various Volcanic Eruptions and Volcano Heights.

    Science.gov (United States)

    Wagner-Pine, Linda; Keith, Donna Graham

    1994-01-01

    Presents an integrated math/science activity that shows students the differences among the three types of volcanoes using observation, classification, graphing, sorting, problem solving, measurement, averages, pattern relationships, calculators, computers, and research skills. Includes reproducible student worksheet. Lists 13 teacher resources.…

  18. Understanding the Potential for Volcanoes at Yucca Mountain

    International Nuclear Information System (INIS)

    NA

    2002-01-01

    By studying the rocks and geologic features of an area, experts can assess whether it is vulnerable to future volcanic eruptions. Scientists have performed extensive studies at and near Yucca Mountain to determine whether future volcanoes could possibly affect the proposed repository for nuclear waste

  19. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    Science.gov (United States)

    Thelen, Weston A.

    2014-01-01

    The seismic network operated by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) is the main source of authoritative data for reporting earthquakes in the State of Hawaii, including those that occur on the State’s six active volcanoes (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, Haleakalā, Lō‘ihi). Of these volcanoes, Kīlauea and Mauna Loa are considered “very high threat” in a report on the rationale for a National Volcanic Early Warning System (NVEWS) (Ewert and others, 2005). This seismic instrumentation plan assesses the current state of HVO’s seismic network with respect to the State’s active volcanoes and calculates the number of stations that are needed to upgrade the current network to provide a seismic early warning capability for forecasting volcanic activity. Further, the report provides proposed priorities for upgrading the seismic network and a cost assessment for both the installation costs and maintenance costs of the improved network that are required to fully realize the potential of the early warning system.

  20. The distribution of the number of node neighbors in random hypergraphs

    International Nuclear Information System (INIS)

    López, Eduardo

    2013-01-01

    Hypergraphs, the generalization of graphs in which edges become conglomerates of r nodes called hyperedges of rank r ⩾ 2, are excellent models to study systems with interactions that are beyond the pairwise level. For hypergraphs, the node degree ℓ (number of hyperedges connected to a node) and the number of neighbors k of a node differ from each other in contrast to the case of graphs, where counting the number of edges is equivalent to counting the number of neighbors. In this paper, I calculate the distribution of the number of node neighbors in random hypergraphs in which hyperedges of uniform rank r have a homogeneous (equal for all hyperedges) probability p to appear. This distribution is equivalent to the degree distribution of ensembles of graphs created as projections of hypergraph or bipartite network ensembles, where the projection connects any two nodes in the projected graph when they are also connected in the hypergraph or bipartite network. The calculation is non-trivial due to the possibility that neighbor nodes belong simultaneously to multiple hyperedges (node overlaps). From the exact results, the traditional asymptotic approximation to the distribution in the sparse regime (small p) where overlaps are ignored is rederived and improved; the approximation exhibits Poisson-like behavior accompanied by strong fluctuations modulated by power-law decays in the system size N with decay exponents equal to the minimum number of overlapping nodes possible for a given number of neighbors. It is shown that the dense limit cannot be explained if overlaps are ignored, and the correct asymptotic distribution is provided. The neighbor distribution requires the calculation of a new combinatorial coefficient Q r−1 (k, ℓ), which counts the number of distinct labeled hypergraphs of k nodes, ℓ hyperedges of rank r − 1, and where every node is connected to at least one hyperedge. Some identities of Q r−1 (k, ℓ) are derived and applied to the

  1. Impact of Training Bolivian Farmers on Integrated Pest Management and Diffusion of Knowledge to Neighboring Farmers.

    Science.gov (United States)

    Jørs, Erik; Konradsen, Flemming; Huici, Omar; Morant, Rafael C; Volk, Julie; Lander, Flemming

    2016-01-01

    Teaching farmers integrated pest management (IPM) in farmer field schools (FFS) has led to reduced pesticide use and safer handling. This article evaluates the long-term impact of training farmers on IPM and the diffusion of knowledge from trained farmers to neighboring farmers, a subject of importance to justify training costs and to promote a healthy and sustainable agriculture. Training on IPM of farmers took place from 2002 to 2004 in their villages in La Paz County, Bolivia, whereas dissemination of knowledge from trained farmer to neighboring farmer took place until 2009. To evaluate the impact of the intervention, self-reported knowledge and practice on pesticide handling and IPM among trained farmers (n = 23) and their neighboring farmers (n = 47) were analyzed in a follow-up study and compared in a cross-sectional analysis with a control group of farmers (n = 138) introduced in 2009. Variables were analyzed using χ2 test and analysis of variance (ANOVA). Trained farmers improved and performed significantly better in all tested variables than their neighboring farmers, although the latter also improved their performance from 2002 to 2009. Including a control group showed an increasing trend in all variables, with the control farmers having the poorest performance and trained farmers the best. The same was seen in an aggregated variable where trained farmers had a mean score of 16.55 (95% confidence interval [CI]: 15.45-17.65), neighboring farmers a mean score of 11.97 (95% CI: 10.56-13.38), and control farmers a mean score of 9.18 (95% CI: 8.55-9.80). Controlling for age and living altitude did not change these results. Trained farmers and their neighboring farmers improved and maintained knowledge and practice on IPM and pesticide handling. Diffusion of knowledge from trained farmers might explain the better performance of the neighboring farmers compared with the control farmers. Dissemination of knowledge can contribute to justify the cost and convince

  2. Seismic Activity at Vailulu'u, Samoa's Youngest Volcano

    Science.gov (United States)

    Konter, J.; Staudigel, H.; Hart, S.

    2002-12-01

    Submarine volcanic systems, as a product of the Earth's mantle, play an essential role in the Earth's heat budget and in the interaction between the solid Earth and the hydrosphere and biosphere. Their eruptive and intrusive activity exerts an important control on these hydrothermal systems. In March 2000, we deployed an array of five ocean bottom hydrophones (OBH) on the summit region (625-995 m water depth) of Vailulu'u Volcano (14°12.9'S;169°03.5'W); this volcano represents the active end of the Samoan hotspot chain and is one of only a few well-studied intra-plate submarine volcanoes. We monitored seismic activity for up to 12 months at low sample rate (25 Hz), and for shorter times at a higher sample rate (125 Hz). We have begun to catalogue and locate a variety of acoustic events from this network. Ambient ocean noise was filtered out by a 4th-order Butterworth bandpass filter (2.3 - 10 Hz). We distinguish small local earthquakes from teleseismic activity, mostly identified by T- (acoustic) waves, by comparison with a nearby GSN station (AFI). Most of the detected events are T-phases from teleseismic earthquakes, characterized by their emergent coda and high frequency content (up to 30 Hz); the latter distinguishes them from low frequency emergent signals associated with the volcano (e.g. tremor). A second type of event is characterized by impulsive arrivals, with coda lasting a few seconds. The differences in arrival times between stations on the volcano are too small for these events to be T-waves; they are very likely to be local events, since the GSN station in Western Samoa (AFI) shows no arrivals close in time to these events. Preliminary locations show that these small events occur approximately once per day and are located within the volcano (the 95% confidence ellipse is similar to the size of the volcano, due to the small size of the OBH network). Several events are located relatively close to each other (within a km radius) just NW of the crater.

  3. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    Science.gov (United States)

    Fischer, T.

    2001-05-01

    Subduction zones are locations of extensive element transfer from the Earth's mantle to the atmosphere and hydrosphere. This element transfer is significant because it can, in some fashion, instigate melt production in the mantle wedge. Aqueous fluids are thought to be the major agent of element transfer during the subduction zone process. Volatile discharges from passively degassing subduction zone volcanoes should in principle, provide some information on the ultimate source of magmatic volatiles in terms of the mantle, the crust and the subducting slab. The overall flux of volatiles from degassing volcanoes should be balanced by the amount of volatiles released from the mantle wedge, the slab and the crust. Kudryavy Volcano, Kurile Islands, has been passively degassing at 900C fumarole temperatures for at least 40 years. Extensive gas sampling at this basaltic andesite cone and application of CO2/3He, N2/3He systematics in combination with C and N- isotopes indicates that 80% of the CO2 and approximately 60% of the N 2 are contributed from a sedimentary source. The mantle wedge contribution for both volatiles is, with 12% and 17% less significant. Direct volatile flux measurements from the volcano using the COSPEC technique in combination with direct gas sampling allows for the calculation of the 3He flux from the volcano. Since 3He is mainly released from the astenospheric mantle, the amount of mantle supplying the 3He flux can be determined if initial He concentrations of the mantle melts are known. The non-mantle flux of CO2 and N2 can be calculated in similar fashion. The amount of non-mantle CO2 and N2 discharging from Kudryavy is balanced by the amount of CO2 and N2 subducted below Kudryavy assuming a zone of melting constrained by the average spacing of the volcanoes along the Kurile arc. The volatile budget for Kudryavy is balanced because the volatile flux from the volcano is relatively small (75 t/day (416 Mmol/a) SO2, 360 Mmol/a of non-mantle CO2 and

  4. Satellite monitoring of remote volcanoes improves study efforts in Alaska

    Science.gov (United States)

    Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K.

    Satellite monitoring of remote volcanoes is greatly benefitting the Alaska Volcano Observatory (AVO), and last year's eruption of the Okmok Volcano in the Aleutian Islands is a good case in point. The facility was able to issue and refine warnings of the eruption and related activity quickly, something that could not have been done using conventional seismic surveillance techniques, since seismometers have not been installed at these locations.AVO monitors about 100 active volcanoes in the North Pacific (NOPAC) region, but only a handful are observed by costly and logistically complex conventional means. The region is remote and vast, about 5000 × 2500 km, extending from Alaska west to the Kamchatka Peninsula in Russia (Figure 1). Warnings are transmitted to local communities and airlines that might be endangered by eruptions. More than 70,000 passenger and cargo flights fly over the region annually, and airborne volcanic ash is a threat to them. Many remote eruptions have been detected shortly after the initial magmatic activity using satellite data, and eruption clouds have been tracked across air traffic routes. Within minutes after eruptions are detected, information is relayed to government agencies, private companies, and the general public using telephone, fax, and e-mail. Monitoring of volcanoes using satellite image data involves direct reception, real-time monitoring, and data analysis. Two satellite data receiving stations, located at the Geophysical Institute, University of Alaska Fairbanks (UAF), are capable of receiving data from the advanced very high resolution radiometer (AVHRR) on National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from synthetic aperture radar (SAR) equipped satellites.

  5. Volcano geodesy: Challenges and opportunities for the 21st century

    Science.gov (United States)

    Dzurisin, D.

    2000-01-01

    Intrusions of magma beneath volcanoes deform the surrounding rock and, if the intrusion is large enough, the overlying ground surface. Numerical models generally agree that, for most eruptions, subsurface volume changes are sufficient to produce measurable deformation at the surface. Studying this deformation can help to determine the location, volume, and shape of a subsurface magma body and thus to anticipate the onset and course of an eruption. This approach has been successfully applied at many restless volcanoes, especially basaltic shields and silicic calderas, using various geodetic techniques and sensors. However, its success at many intermediate-composition strato-volcanoes has been limited by generally long repose intervals, steep terrain, and structural influences that complicate the history and shape of surface deformation. These factors have made it difficult to adequately characterize deformation in space and time at many of the world's dangerous volcanoes. Recent technological advances promise to make this task easier by enabling the acquisition of geodetic data of high spatial and temporal resolution from Earth-orbiting satellites. Synthetic aperture radar interferometry (InSAR) can image ground deformation over large areas at metre-scale resolution over time-scales of a month to a few years. Global Positioning System (GPS) stations can provide continuous information on three-dimensional ground displacements at a network of key sites -information that is especially important during volcanic crises. By using InSAR to determine the shape of the displacement field and GPS to monitor temporal changes at key sites, scientists have a much better chance to capture geodetic signals that have so far been elusive at many volcanoes. This approach has the potential to provide longer-term warnings of impending volcanic activity than is possible with other monitoring techniques.

  6. Geologic Mapping of the Olympus Mons Volcano, Mars

    Science.gov (United States)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  7. A Versatile Time-Lapse Camera System Developed by the Hawaiian Volcano Observatory for Use at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Orr, Tim R.; Hoblitt, Richard P.

    2008-01-01

    Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.

  8. Hyperacid volcano-hydrothermal fluids from Copahue volcano, Argentina: Analogs for "subduction zone fluids"?

    Science.gov (United States)

    Varekamp, J. C.

    2007-12-01

    Hyperacid concentrated Chlorine-Sulfate brines occur in many young arc volcanoes, with pH values Copahue volcanic system (Argentina) suggest reservoir temperatures of 175-300 oC, whereas the surface fluids do not exceed local boiling temperatures. These fluids are generated at much lower P-T conditions than fluids associated with a dehydrating subducted sediment complex below arc volcanoes, but their fundamental chemical compositions may have similarities. Incompatible trace element, major element concentrations and Pb isotope compositions of the fluids were used to determine the most likely rock protoliths for these fluids. Mean rock- normalized trace element diagrams then indicate which elements are quantitatively extracted from the rocks and which are left behind or precipitated in secondary phases. Most LILE show flat rock-normalized patterns, indicating close to congruent dissolution, whereas Ta-Nb-Ti show strong depletions in the rock-normalized diagrams. These HFSE are either left behind in the altered rock protolith or were precipitated along the way up. The behavior of U and Th is almost identical, suggesting that in these low pH fluids with abundant ligands Th is just as easily transported as U, which is not the case in more dilute, neutral fluids. Most analyzed fluids have steeper LREE patterns than the rocks and have negative Eu anomalies similar to the rocks. Fluids that interacted with newly intruded magma e.g., during the 2000 eruption, have much less pronounced Eu anomalies, which was most likely caused by the preferential dissolution of plagioclase when newly intruded magma interacted with the acid fluids. The fluids show a strong positive correlation between Y and Cd (similar to MORB basalts, Yi et al., JGR, 2000), suggesting that Cd is mainly a rock-derived element that may not show chalcophilic behavior. The fluids are strongly enriched (relative to rock) in As, Zn and Pb, suggesting that these elements were carried with the volcanic gas phase

  9. The neighbor enclosed area tracking algorithm and its application to cyclone merger in the midlatitudes

    Science.gov (United States)

    Inatsu, Masaru; Amada, Shotarou; Satake, Yuya

    2010-05-01

    The neighbor enclosed area tracking (NEAT) algorithm is proposed as an alternative method to conventional point-to-point cyclone tracking approaches. Most automated Lagrangian tracking algorithms contain three procedures: cyclone identification, cyclone tracking, and quantification of cyclone intensity and activity. The cyclone identification was simply based on a comparison of neighboring grid points; cyclone tracking mainly employed a near-neighbor point search to neighbor-time cyclone-center datasets; and cyclone intensity and activity are mainly quantified as cyclone track density, and other accompanying products such as genesis and lysis densities, mean lifetime, average moving vector, and mean growth rate can also be obtained in the final procedure. But a crucial problem in the above technique is its requirement of some complicated connecting conditions for near-neighbor tracking. To overcome the problem, NEAT completes cyclone identification and cyclone tracking in a single process of equivalent labeling for spatiotemporally connected domains, i.e., if two spatially enclosed areas in a neighboring time frame overlap, they should be connected. NEAT enables us to count the genesis and tracks of individual cyclones as the conventional tracking. Moreover, NEAT has the ability to produce fruitful information on cyclone mergers and separations, cyclone shape, and material transport by individual eddies (the latter two features will be reported elsewhere). There are many possible applications of NEAT to meteorology and oceanography, but now we focus on the situation, well-known by Japanese synopticians, that two cyclones pass respectively over the north and south of Japan and then they frequently merge and are rapidly deepened in the western Pacific. For the case, the southern cyclones tend to be stimulated just above the sea surface temperature front to the north of oceanic western boundary currents, while the northern cyclones, moving eastward along the polar

  10. Volcano-hydrothermal system and activity of Sirung volcano (Pantar Island, Indonesia)

    Science.gov (United States)

    Caudron, Corentin; Bernard, Alain; Murphy, Sam; Inguaggiato, Salvatore; Gunawan, Hendra

    2018-05-01

    Sirung is a frequently active volcano located in the remote parts of Western Timor (Indonesia). Sirung has a crater with several hydrothermal features including a crater lake. We present a timeseries of satellite images of the lake and chemical and isotope data from the hyperacid hydrothermal system. The fluids sampled in the crater present the typical features of hyperacidic systems with high TDS, low pH and δ34SHSO4-δ34SS0 among the highest for such lakes. The cations concentrations are predominantly controlled by the precipitation of alunite, jarosite, silica phases, native sulfur and pyrite which dominate the shallow portions of the hydrothermal system. These minerals may control shallow sealing processes thought to trigger phreatic eruptions elsewhere. Sparse Mg/Cl and SO4/Cl ratios and lake parameters derived from satellite images suggest gradual increase in heat and gas flux, most likely SO2-rich, prior to the 2012 phreatic eruption. An acidic river was sampled 8 km far from the crater and is genetically linked with the fluids rising toward the active crater. This river would therefore be a relevant target for future remote monitoring purposes. Finally, several wells and springs largely exceeded the World Health Organization toxicity limits in total arsenic and fluoride.

  11. 75 FR 62412 - Notice of Proposed Information Collection: Comment Request; HUD-Owned Real Estate-Good Neighbor...

    Science.gov (United States)

    2010-10-08

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5380-N-36] Notice of Proposed Information Collection: Comment Request; HUD- Owned Real Estate-Good Neighbor Next Door Program AGENCY: Office... information: Title of Proposal: HUD-Owned Real Estate-Good Neighbor Next Door Program. OMB Control Number, if...

  12. A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes

    Science.gov (United States)

    Ronald E. McRoberts

    2009-01-01

    Nearest neighbors techniques have been shown to be useful for predicting multiple forest attributes from forest inventory and Landsat satellite image data. However, in regions lacking good digital land cover information, nearest neighbors selected to predict continuous variables such as tree volume must be selected without regard to relevant categorical variables such...

  13. Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano

    Science.gov (United States)

    Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.

    2017-12-01

    This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to

  14. Geochemical and Geophysical Signatures of Poas Volcano, Costa Rica

    Science.gov (United States)

    Martinez, M.; van Bergen, M.; Fernandez, E.; Takano, B.; Barboza, V.; Saenz, W.

    2007-05-01

    Among many research fields in volcanology, prediction of eruptions is the most important from the hazard- mitigation point of view. Most geophysicists have sought for the best physical parameters for this objective: various kinds of wave signals and geodesic data are two of such parameters. Being able to be remotely monitored gives them advantage over many other practical methods for volcano monitoring. On the other hand, increasing volcanic activity is always accompanied by mass transfer. The most swiftly-moving materials are volcanic gases which are the target geochemists have intensively studied although monitoring gases is rather tedious and limited for active volcanoes hosting crater lakes. A Japanese group lead by Bokuichiro Takano has recently developed an indirect method for monitoring gas injection into volcanic crater lakes. Polythionates are formed when SO2 and H2S are injected into the lake from subaqueous fumaroles. Such polythionates consist of chains of 4 to 6 sulphur atoms, the terminal ones of which are bonded with three oxygen atoms. The general formula for these anions is SxO62- (x= 4 to 6). Important to note is that SO2 input into the lake also depends upon the plumbing system of the volcanoes: conduits, cracks and hydrothermal reservoirs beneath the lake that usually differ from volcano to volcano. Despite such site-specific characters some general statements can be made on the behaviour of these chemical species. For example, at low volcanic activity S6O62- predominates while S4O62- and S5O62- become predominant with increasing SO2 that increases with volcanic activity. At higher SO2 input and high temperature polythionates disappear in the lake through interaction with aqueous SO2 (sulfitolysis). Thus, the ratios of the three polythionates or their absence serve as an indicator for various stages of volcanic activity. Monitoring polythionates is an independent method that can be compared with results from geophysical methods. However, it

  15. Multi-strategy based quantum cost reduction of linear nearest-neighbor quantum circuit

    Science.gov (United States)

    Tan, Ying-ying; Cheng, Xue-yun; Guan, Zhi-jin; Liu, Yang; Ma, Haiying

    2018-03-01

    With the development of reversible and quantum computing, study of reversible and quantum circuits has also developed rapidly. Due to physical constraints, most quantum circuits require quantum gates to interact on adjacent quantum bits. However, many existing quantum circuits nearest-neighbor have large quantum cost. Therefore, how to effectively reduce quantum cost is becoming a popular research topic. In this paper, we proposed multiple optimization strategies to reduce the quantum cost of the circuit, that is, we reduce quantum cost from MCT gates decomposition, nearest neighbor and circuit simplification, respectively. The experimental results show that the proposed strategies can effectively reduce the quantum cost, and the maximum optimization rate is 30.61% compared to the corresponding results.

  16. A dynamic evolutionary clustering perspective: Community detection in signed networks by reconstructing neighbor sets

    Science.gov (United States)

    Chen, Jianrui; Wang, Hua; Wang, Lina; Liu, Weiwei

    2016-04-01

    Community detection in social networks has been intensively studied in recent years. In this paper, a novel similarity measurement is defined according to social balance theory for signed networks. Inter-community positive links are found and deleted due to their low similarity. The positive neighbor sets are reconstructed by this method. Then, differential equations are proposed to imitate the constantly changing states of nodes. Each node will update its state based on the difference between its state and average state of its positive neighbors. Nodes in the same community will evolve together with time and nodes in the different communities will evolve far away. Communities are detected ultimately when states of nodes are stable. Experiments on real world and synthetic networks are implemented to verify detection performance. The thorough comparisons demonstrate the presented method is more efficient than two acknowledged better algorithms.

  17. Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer

    Science.gov (United States)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-02-01

    Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.

  18. Knowledgeable Neighbors: a mobile clinic model for disease prevention and screening in underserved communities.

    Science.gov (United States)

    Hill, Caterina; Zurakowski, David; Bennet, Jennifer; Walker-White, Rainelle; Osman, Jamie L; Quarles, Aaron; Oriol, Nancy

    2012-03-01

    The Family Van mobile health clinic uses a "Knowledgeable Neighbor" model to deliver cost-effective screening and prevention activities in underserved neighborhoods in Boston, MA. We have described the Knowledgeable Neighbor model and used operational data collected from 2006 to 2009 to evaluate the service. The Family Van successfully reached mainly minority low-income men and women. Of the clients screened, 60% had previously undetected elevated blood pressure, 14% had previously undetected elevated blood glucose, and 38% had previously undetected elevated total cholesterol. This represents an important model for reaching underserved communities to deliver proven cost-effective prevention activities, both to help control health care costs and to reduce health disparities.

  19. ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms

    DEFF Research Database (Denmark)

    Aumüller, Martin; Bernhardsson, Erik; Faithfull, Alexander

    2017-01-01

    This paper describes ANN-Benchmarks, a tool for evaluating the performance of in-memory approximate nearest neighbor algorithms. It provides a standard interface for measuring the performance and quality achieved by nearest neighbor algorithms on different standard data sets. It supports several...... visualise these as images, Open image in new window plots, and websites with interactive plots. ANN-Benchmarks aims to provide a constantly updated overview of the current state of the art of k-NN algorithms. In the short term, this overview allows users to choose the correct k-NN algorithm and parameters...... for their similarity search task; in the longer term, algorithm designers will be able to use this overview to test and refine automatic parameter tuning. The paper gives an overview of the system, evaluates the results of the benchmark, and points out directions for future work. Interestingly, very different...

  20. Use of the neighboring orbital model for analysis of electronic coupling in Class III intervalence compounds

    International Nuclear Information System (INIS)

    Nelsen, Stephen F.; Weaver, Michael N.; Luo Yun; Lockard, Jenny V.; Zink, Jeffrey I.

    2006-01-01

    Symmetrical charge-delocalized intervalence radical ions should not be described by the traditional two-state model that has been so successful for their localized counterparts. If they lack direct overlap between their charge-bearing units (M), their diabatic orbitals have an equal energy pair of symmetrized M-centered combination orbitals that are symmetric (S) or antisymmetric (A) with respect to a symmetry element at the center of the molecule. The M combination orbitals will mix separately with bridge orbitals of the same symmetry. We call the simplest useful model for this situation the neighboring orbital model, which uses the S and A bridge orbitals of high overlap that lie closest in energy to the M orbital pair, resulting in two two-state models that have a common energy for one pair. This model is developed quantitatively, and examples having 1, 3, 5, and 7 electrons in the neighboring orbitals are illustrated

  1. Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance

    Science.gov (United States)

    Ruan, Yue; Xue, Xiling; Liu, Heng; Tan, Jianing; Li, Xi

    2017-11-01

    K-nearest neighbors (KNN) algorithm is a common algorithm used for classification, and also a sub-routine in various complicated machine learning tasks. In this paper, we presented a quantum algorithm (QKNN) for implementing this algorithm based on the metric of Hamming distance. We put forward a quantum circuit for computing Hamming distance between testing sample and each feature vector in the training set. Taking advantage of this method, we realized a good analog for classical KNN algorithm by setting a distance threshold value t to select k - n e a r e s t neighbors. As a result, QKNN achieves O( n 3) performance which is only relevant to the dimension of feature vectors and high classification accuracy, outperforms Llyod's algorithm (Lloyd et al. 2013) and Wiebe's algorithm (Wiebe et al. 2014).

  2. Chaotic Synchronization in Nearest-Neighbor Coupled Networks of 3D CNNs

    OpenAIRE

    Serrano-Guerrero, H.; Cruz-Hernández, C.; López-Gutiérrez, R.M.; Cardoza-Avendaño, L.; Chávez-Pérez, R.A.

    2013-01-01

    In this paper, a synchronization of Cellular Neural Networks (CNNs) in nearest-neighbor coupled arrays, is numerically studied. Synchronization of multiple chaotic CNNs is achieved by appealing to complex systems theory. In particular, we consider dynamical networks composed by 3D CNNs, as interconnected nodes, where the interactions in the networks are defined by coupling the first state of each node. Four cases of interest are considered: i) synchronization without chaotic master, ii) maste...

  3. FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

    OpenAIRE

    Lu Si; Jie Yu; Shasha Li; Jun Ma; Lei Luo; Qingbo Wu; Yongqi Ma; Zhengji Liu

    2017-01-01

    Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rul...

  4. Keeping up With The Neighbors: Nonproliferation and Implementation of UNSCR 1540

    Science.gov (United States)

    2016-02-15

    be respectful of the rule of law and a competitive participatory democracy , yet fail to implement UNSCR 1540, just like its neighbors. Discussion...risk-taking between 1816 and 1992. They found a strong association between conservative governmental decision-making and not only democracies , but...specifically those democracies with highly competitive political systems.46 In addition, Bruce Bueno de Mesquita, et.al. found a significant

  5. An Improvement To The k-Nearest Neighbor Classifier For ECG Database

    Science.gov (United States)

    Jaafar, Haryati; Hidayah Ramli, Nur; Nasir, Aimi Salihah Abdul

    2018-03-01

    The k nearest neighbor (kNN) is a non-parametric classifier and has been widely used for pattern classification. However, in practice, the performance of kNN often tends to fail due to the lack of information on how the samples are distributed among them. Moreover, kNN is no longer optimal when the training samples are limited. Another problem observed in kNN is regarding the weighting issues in assigning the class label before classification. Thus, to solve these limitations, a new classifier called Mahalanobis fuzzy k-nearest centroid neighbor (MFkNCN) is proposed in this study. Here, a Mahalanobis distance is applied to avoid the imbalance of samples distribition. Then, a surrounding rule is employed to obtain the nearest centroid neighbor based on the distributions of training samples and its distance to the query point. Consequently, the fuzzy membership function is employed to assign the query point to the class label which is frequently represented by the nearest centroid neighbor Experimental studies from electrocardiogram (ECG) signal is applied in this study. The classification performances are evaluated in two experimental steps i.e. different values of k and different sizes of feature dimensions. Subsequently, a comparative study of kNN, kNCN, FkNN and MFkCNN classifier is conducted to evaluate the performances of the proposed classifier. The results show that the performance of MFkNCN consistently exceeds the kNN, kNCN and FkNN with the best classification rates of 96.5%.

  6. Investment Incentives and Effective Tax Rates in the Philippines; A Comparison With Neighboring Countries

    OpenAIRE

    Alexander D Klemm; Dennis P Botman; Reza Baqir

    2008-01-01

    We compare the general tax provisions and investment incentives in the Philippines to six other east-Asian economies-Malaysia, Indonesia, Lao, Vietnam, Cambodia, and Thailand. We calculate effective tax rates and find that general effective tax rates are relatively high in the Philippines, while investment incentives are comparable to those in neighboring countries. Tax holidays are most attractive for very profitable firms, creating redundancy, and for investment in short-lived assets. We al...

  7. The Tragedy of Your Upstairs Neighbors: Is the Airbnb Negative Externality Internalized?

    OpenAIRE

    Horton, John J.

    2015-01-01

    A commonly expressed concern about the rise of the peer-to-peer rental market Airbnb is that hosts---those renting out their properties---impose costs on their unwitting neighbors. I consider the question of whether apartment building owners will, in a competitive rental market, set a building-specific Airbnb hosting policy that is socially efficient. I find that if tenants can sort across apartments based on the owners policy then the equilibrium fraction of buildings allowing Airbnb listing...

  8. Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment

    OpenAIRE

    Park, Kyung Soo; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho

    2013-01-01

    A stem cell interacts with the neighboring cells in its environment. To maintain a living organism’s metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell’s functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which s...

  9. A Hybrid Instance Selection Using Nearest-Neighbor for Cross-Project Defect Prediction

    Institute of Scientific and Technical Information of China (English)

    Duksan Ryu; Jong-In Jang; Jongmoon Baik; Member; ACM; IEEE

    2015-01-01

    Software defect prediction (SDP) is an active research field in software engineering to identify defect-prone modules. Thanks to SDP, limited testing resources can be effectively allocated to defect-prone modules. Although SDP requires suffcient local data within a company, there are cases where local data are not available, e.g., pilot projects. Companies without local data can employ cross-project defect prediction (CPDP) using external data to build classifiers. The major challenge of CPDP is different distributions between training and test data. To tackle this, instances of source data similar to target data are selected to build classifiers. Software datasets have a class imbalance problem meaning the ratio of defective class to clean class is far low. It usually lowers the performance of classifiers. We propose a Hybrid Instance Selection Using Nearest-Neighbor (HISNN) method that performs a hybrid classification selectively learning local knowledge (via k-nearest neighbor) and global knowledge (via na¨ıve Bayes). Instances having strong local knowledge are identified via nearest-neighbors with the same class label. Previous studies showed low PD (probability of detection) or high PF (probability of false alarm) which is impractical to use. The experimental results show that HISNN produces high overall performance as well as high PD and low PF.

  10. Who's your neighbor? Acoustic cues to individual identity in red squirrel Tamiasciurus hudsonicus rattle calls

    Directory of Open Access Journals (Sweden)

    Shannon M. DIGWEED, Drew RENDALL, Teana IMBEAU

    2012-10-01

    Full Text Available North American red squirrels Tamiasciurus hudsonicus often produce a loud territorial rattle call when conspecifics enter or invade a territory. Previous playback experiments suggest that the territorial rattle call may indicate an invader's identity as squirrels responded more intensely to calls played from strangers than to calls played from neighbors. This dear-enemy effect is well known in a variety of bird and mammal species and functions to reduce aggressive interactions between known neighbors. However, although previous experiments on red squirrels suggest some form of individual differentiation and thus recognition, detailed acoustic analysis of potential acoustic cues in rattle calls have not been conducted. If calls function to aid in conspecific identification in order to mitigate aggressive territorial interactions, we would expect that individual recognition cues would be acoustically represented. Our work provides a detailed analysis of acoustic cues to identity within rattle calls. A total of 225 calls across 32 individual squirrels from Sheep River Provincial Park, Kananaskis, AB, Canada, were analyzed with discriminant function analysis for potential acoustic cues to individual identity. Initial analysis of all individuals revealed a reliable acoustic differentiation across individuals. A more detailed analysis of clusters of neighboring squirrels was performed and results again indicated a statistically significant likelihood that calls were assigned correctly to specific squirrels (55%-75% correctly assigned; in other words squirrels have distinct voices that should allow for individual identification and discrimination by conspecifics [Current Zoology 58 (5: 758–764, 2012].

  11. Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting

    Science.gov (United States)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    2017-07-01

    In this paper, we propose a new two-stage methodology that combines the ensemble empirical mode decomposition (EEMD) with multidimensional k-nearest neighbor model (MKNN) in order to forecast the closing price and high price of the stocks simultaneously. The modified algorithm of k-nearest neighbors (KNN) has an increasingly wide application in the prediction of all fields. Empirical mode decomposition (EMD) decomposes a nonlinear and non-stationary signal into a series of intrinsic mode functions (IMFs), however, it cannot reveal characteristic information of the signal with much accuracy as a result of mode mixing. So ensemble empirical mode decomposition (EEMD), an improved method of EMD, is presented to resolve the weaknesses of EMD by adding white noise to the original data. With EEMD, the components with true physical meaning can be extracted from the time series. Utilizing the advantage of EEMD and MKNN, the new proposed ensemble empirical mode decomposition combined with multidimensional k-nearest neighbor model (EEMD-MKNN) has high predictive precision for short-term forecasting. Moreover, we extend this methodology to the case of two-dimensions to forecast the closing price and high price of the four stocks (NAS, S&P500, DJI and STI stock indices) at the same time. The results indicate that the proposed EEMD-MKNN model has a higher forecast precision than EMD-KNN, KNN method and ARIMA.

  12. Resampling nucleotide sequences with closest-neighbor trimming and its comparison to other methods.

    Directory of Open Access Journals (Sweden)

    Kouki Yonezawa

    Full Text Available A large number of nucleotide sequences of various pathogens are available in public databases. The growth of the datasets has resulted in an enormous increase in computational costs. Moreover, due to differences in surveillance activities, the number of sequences found in databases varies from one country to another and from year to year. Therefore, it is important to study resampling methods to reduce the sampling bias. A novel algorithm-called the closest-neighbor trimming method-that resamples a given number of sequences from a large nucleotide sequence dataset was proposed. The performance of the proposed algorithm was compared with other algorithms by using the nucleotide sequences of human H3N2 influenza viruses. We compared the closest-neighbor trimming method with the naive hierarchical clustering algorithm and [Formula: see text]-medoids clustering algorithm. Genetic information accumulated in public databases contains sampling bias. The closest-neighbor trimming method can thin out densely sampled sequences from a given dataset. Since nucleotide sequences are among the most widely used materials for life sciences, we anticipate that our algorithm to various datasets will result in reducing sampling bias.

  13. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    Science.gov (United States)

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  14. Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm

    Directory of Open Access Journals (Sweden)

    E. Parvinnia

    2014-01-01

    Full Text Available Electroencephalogram (EEG signals are often used to diagnose diseases such as seizure, alzheimer, and schizophrenia. One main problem with the recorded EEG samples is that they are not equally reliable due to the artifacts at the time of recording. EEG signal classification algorithms should have a mechanism to handle this issue. It seems that using adaptive classifiers can be useful for the biological signals such as EEG. In this paper, a general adaptive method named weighted distance nearest neighbor (WDNN is applied for EEG signal classification to tackle this problem. This classification algorithm assigns a weight to each training sample to control its influence in classifying test samples. The weights of training samples are used to find the nearest neighbor of an input query pattern. To assess the performance of this scheme, EEG signals of thirteen schizophrenic patients and eighteen normal subjects are analyzed for the classification of these two groups. Several features including, fractal dimension, band power and autoregressive (AR model are extracted from EEG signals. The classification results are evaluated using Leave one (subject out cross validation for reliable estimation. The results indicate that combination of WDNN and selected features can significantly outperform the basic nearest-neighbor and the other methods proposed in the past for the classification of these two groups. Therefore, this method can be a complementary tool for specialists to distinguish schizophrenia disorder.

  15. Local and neighboring patch conditions alter sex-specific movement in banana weevils.

    Science.gov (United States)

    Carval, Dominique; Perrin, Benjamin; Duyck, Pierre-François; Tixier, Philippe

    2015-12-01

    Understanding the mechanisms underlying the movements and spread of a species over time and space is a major concern of ecology. Here, we assessed the effects of an individual's sex and the density and sex ratio of conspecifics in the local and neighboring environment on the movement probability of the banana weevil, Cosmopolites sordidus. In a "two patches" experiment, we used radiofrequency identification tags to study the C. sordidus movement response to patch conditions. We showed that local and neighboring densities of conspecifics affect the movement rates of individuals but that the density-dependent effect can be either positive or negative depending on the relative densities of conspecifics in local and neighboring patches. We demonstrated that sex ratio also influences the movement of C. sordidus, that is, the weevil exhibits nonfixed sex-biased movement strategies. Sex-biased movement may be the consequence of intrasexual competition for resources (i.e., oviposition sites) in females and for mates in males. We also detected a high individual variability in the propensity to move. Finally, we discuss the role of demographic stochasticity, sex-biased movement, and individual heterogeneity in movement on the colonization process.

  16. A Novel AMR-WB Speech Steganography Based on Diameter-Neighbor Codebook Partition

    Directory of Open Access Journals (Sweden)

    Junhui He

    2018-01-01

    Full Text Available Steganography is a means of covert communication without revealing the occurrence and the real purpose of communication. The adaptive multirate wideband (AMR-WB is a widely adapted format in mobile handsets and is also the recommended speech codec for VoLTE. In this paper, a novel AMR-WB speech steganography is proposed based on diameter-neighbor codebook partition algorithm. Different embedding capacity may be achieved by adjusting the iterative parameters during codebook division. The experimental results prove that the presented AMR-WB steganography may provide higher and flexible embedding capacity without inducing perceptible distortion compared with the state-of-the-art methods. With 48 iterations of cluster merging, twice the embedding capacity of complementary-neighbor-vertices-based embedding method may be obtained with a decrease of only around 2% in speech quality and much the same undetectability. Moreover, both the quality of stego speech and the security regarding statistical steganalysis are better than the recent speech steganography based on neighbor-index-division codebook partition.

  17. Cultural macroevolution on neighbor graphs : vertical and horizontal transmission among Western North American Indian societies.

    Science.gov (United States)

    Towner, Mary C; Grote, Mark N; Venti, Jay; Borgerhoff Mulder, Monique

    2012-09-01

    What are the driving forces of cultural macroevolution, the evolution of cultural traits that characterize societies or populations? This question has engaged anthropologists for more than a century, with little consensus regarding the answer. We develop and fit autologistic models, built upon both spatial and linguistic neighbor graphs, for 44 cultural traits of 172 societies in the Western North American Indian (WNAI) database. For each trait, we compare models including or excluding one or both neighbor graphs, and for the majority of traits we find strong evidence in favor of a model which uses both spatial and linguistic neighbors to predict a trait's distribution. Our results run counter to the assertion that cultural trait distributions can be explained largely by the transmission of traits from parent to daughter populations and are thus best analyzed with phylogenies. In contrast, we show that vertical and horizontal transmission pathways can be incorporated in a single model, that both transmission modes may indeed operate on the same trait, and that for most traits in the WNAI database, accounting for only one mode of transmission would result in a loss of information.

  18. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A new approach to very short term wind speed prediction using k-nearest neighbor classification

    International Nuclear Information System (INIS)

    Yesilbudak, Mehmet; Sagiroglu, Seref; Colak, Ilhami

    2013-01-01

    Highlights: ► Wind speed parameter was predicted in an n-tupled inputs using k-NN classification. ► The effects of input parameters, nearest neighbors and distance metrics were analyzed. ► Many useful and reasonable inferences were uncovered using the developed model. - Abstract: Wind energy is an inexhaustible energy source and wind power production has been growing rapidly in recent years. However, wind power has a non-schedulable nature due to wind speed variations. Hence, wind speed prediction is an indispensable requirement for power system operators. This paper predicts wind speed parameter in an n-tupled inputs using k-nearest neighbor (k-NN) classification and analyzes the effects of input parameters, nearest neighbors and distance metrics on wind speed prediction. The k-NN classification model was developed using the object oriented programming techniques and includes Manhattan and Minkowski distance metrics except from Euclidean distance metric on the contrary of literature. The k-NN classification model which uses wind direction, air temperature, atmospheric pressure and relative humidity parameters in a 4-tupled space achieved the best wind speed prediction for k = 5 in the Manhattan distance metric. Differently, the k-NN classification model which uses wind direction, air temperature and atmospheric pressure parameters in a 3-tupled inputs gave the worst wind speed prediction for k = 1 in the Minkowski distance metric

  20. Historical tephra-stratigraphy of the Cosiguina Volcano (Western Nicaragua)

    International Nuclear Information System (INIS)

    Hradecky, Petr; Rapprich, Vladislav

    2008-01-01

    New detailed geological field studies and 14 C dating of the Cosiguina Volcano (westernmost Nicaragua) have allowed to reconstruct a geological map of the volcano and to establish a recent stratigraphy, including three historical eruptions. Five major sequences are represented. I: pyroclastic flows around 1500 AD, II: pyroclastic flows, scoria and pumice flows and surges, III: pyroclastic deposits related to a littoral crater, IV: pyroclastic flows related to 1709 AD eruption, and finally, V: pyroclastic deposits corresponding to the cataclysmic 1835 AD phreatic, phreatomagmatic and subplinian eruption, which seems to be relatively small-scale in comparison with the preceding historical eruptions. The pulsating geochemical character of the pyroclastic rocks in the last five centuries has been documented. The beginning of every eruption is marked by increasing contents of silica and Zr. Based on that, regardless of present-day volcanic repose, the entire Cosiguina Peninsula should be considered as a very hazardous volcanic area. (author)

  1. The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview

    Science.gov (United States)

    Puglisi, Giuseppe

    2014-05-01

    The EC FP7 MEDiterranean SUpersite Volcanoes (MED-SUV) EC-FP7 Project, which started on June 2013, aims to improve the capacity of the scientific institutions, end users and SME forming the project consortium to assess the volcanic hazards at Italian Supersites, i.e. Mt. Etna and Campi Flegrei/Vesuvius. The Project activities will focus on the optimisation and integration of ground and space monitoring systems, the breakthrough in understanding of volcanic processes, and on the increase of the effectiveness of the coordination between the scientific and end-user communities in the hazard management. The overall goal of the project is to apply the rationale of the Supersites GEO initiative to Mt. Etna and Campi Flegrei/Vesuvius, considered as cluster of Supersites. For the purpose MED-SUV will integrate long-term observations of ground-based multidisciplinary data available for these volcanoes, i.e. geophysical, geochemical, and volcanological datasets, with Earth Observation (EO) data. Merging of different parameters over a long period will provide better understanding of the volcanic processes. In particular, given the variety of styles and intensities of the volcanic activity observed at these volcanoes, and which make them sort of archetypes for 'closed conduit ' and 'open conduit' volcanic systems, the combination of different data will allow discrimination between peculiar volcano behaviours associated with pre-, syn- and post-eruptive phases. Indeed, recognition of specific volcano patterns will allow broadening of the spectrum of knowledge of geo-hazards, as well as better parameterisation and modelling of the eruptive phenomena and of the processes occurring in the volcano supply system; thus improving the capability of carrying out volcano surveillance activities. Important impacts on the European industrial sector, arising from a partnership integrating the scientific community and SMEs to implement together new observation/monitoring sensors/systems, are

  2. Looking inside volcanoes with the Imaging Atmospheric Cherenkov Telescopes

    Science.gov (United States)

    Del Santo, M.; Catalano, O.; Cusumano, G.; La Parola, V.; La Rosa, G.; Maccarone, M. C.; Mineo, T.; Sottile, G.; Carbone, D.; Zuccarello, L.; Pareschi, G.; Vercellone, S.

    2017-12-01

    Cherenkov light is emitted when charged particles travel through a dielectric medium with velocity higher than the speed of light in the medium. The ground-based Imaging Atmospheric Cherenkov Telescopes (IACT), dedicated to the very-high energy γ-ray Astrophysics, are based on the detection of the Cherenkov light produced by relativistic charged particles in a shower induced by TeV photons interacting with the Earth atmosphere. Usually, an IACT consists of a large segmented mirror which reflects the Cherenkov light onto an array of sensors, placed at the focal plane, equipped by fast electronics. Cherenkov light from muons is imaged by an IACT as a ring, when muon hits the mirror, or as an arc when the impact point is outside the mirror. The Cherenkov ring pattern contains information necessary to assess both direction and energy of the incident muon. Taking advantage of the muon detection capability of IACTs, we present a new application of the Cherenkov technique that can be used to perform the muon radiography of volcanoes. The quantitative understanding of the inner structure of a volcano is a key-point to monitor the stages of the volcano activity, to forecast the next eruptive style and, eventually, to mitigate volcanic hazards. Muon radiography shares the same principle as X-ray radiography: muons are attenuated by higher density regions inside the target so that, by measuring the differential attenuation of the muon flux along different directions, it is possible to determine the density distribution of the interior of a volcano. To date, muon imaging of volcanic structures has been mainly achieved with detectors made up of scintillator planes. The advantage of using Cherenkov telescopes is that they are negligibly affected by background noise and allow a consistently improved spatial resolution when compared to the majority of the current detectors.

  3. Multiresolution pattern recognition of small volcanos in Magellan data

    Science.gov (United States)

    Smyth, P.; Anderson, C. H.; Aubele, J. C.; Crumpler, L. S.

    1992-01-01

    The Magellan data is a treasure-trove for scientific analysis of venusian geology, providing far more detail than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations. However, at this point, planetary scientists are being overwhelmed by the sheer quantities of data collected--data analysis technology has not kept pace with our ability to collect and store it. In particular, 'small-shield' volcanos (less than 20 km in diameter) are the most abundant visible geologic feature on the planet. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanos visible in the Magellan data. Identifying and studying these volcanos is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is very time-consuming. Hence, we have undertaken the development of techniques to partially automate this task. The goal is not the unrealistic one of total automation, but rather the development of a useful tool to aid the project scientists. The primary constraints for this particular problem are as follows: (1) the method must be reasonably robust; and (2) the method must be reasonably fast. Unlike most geological features, the small volcanos of Venus can be ascribed to a basic process that produces features with a short list of readily defined characteristics differing significantly from other surface features on Venus. For pattern recognition purposes the relevant criteria include the following: (1) a circular planimetric outline; (2) known diameter frequency distribution from preliminary studies; (3) a limited number of basic morphological shapes; and (4) the common occurrence of a single, circular summit pit at the center of the edifice.

  4. Forecasting deflation, intrusion and eruption at inflating volcanoes

    Science.gov (United States)

    Blake, Stephen; Cortés, Joaquín A.

    2018-01-01

    A principal goal of volcanology is to successfully forecast the start of volcanic eruptions. This paper introduces a general forecasting method, which relies on a stream of monitoring data and a statistical description of a given threshold criterion for an eruption to start. Specifically we investigate the timing of intrusive and eruptive events at inflating volcanoes. The gradual inflation of the ground surface is a well-known phenomenon at many volcanoes and is attributable to pressurised magma accumulating within a shallow chamber. Inflation usually culminates in a rapid deflation event caused by magma escaping from the chamber to produce a shallow intrusion and, in some cases, a volcanic eruption. We show that the ground elevation during 15 inflation periods at Krafla volcano, Iceland, increased with time towards a limiting value by following a decaying exponential with characteristic timescale τ. The available data for Krafla, Kilauea and Mauna Loa volcanoes show that the duration of inflation (t*) is approximately equal to τ. The distribution of t* / τ values follows a log-logistic distribution in which the central 60% of the data lie between 0.99 deflation event starting during a specified time interval to be estimated. The time window in which there is a specified probability of deflation starting can also be forecast, and forecasts can be updated after each new deformation measurement. The method provides stronger forecasts than one based on the distribution of repose times alone and is transferable to other types of monitoring data and/or other patterns of pre-eruptive unrest.

  5. Hawaiian Volcano Observatory seismic data, January to March 2009

    Science.gov (United States)

    Nakata, Jennifer S.; Okubo, Paul G.

    2010-01-01

    This U.S. Geological Survey (USGS), Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during January–March 2009. The seismic summary offers earthquake hypocenters without interpretation as a source of preliminary data and is complete in that most data for events of M≥1.5 are included. All latitude and longitude references in this report are stated in Old Hawaiian Datum.

  6. Geochemistry of mud volcano fluids in the Taiwan accretionary prism

    International Nuclear Information System (INIS)

    You Chenfeng; Gieskes, Joris M.; Lee, Typhoon; Yui Tzenfu; Chen Hsinwen

    2004-01-01

    Taiwan is located at the collision boundary between the Philippine Sea Plate and the Asian Continental Plate and is one of the most active orogenic belts in the world. Fluids sampled from 9 sub-aerial mud volcanoes distributed along two major geological structures in southwestern Taiwan, the Chishan fault and the Gutingkeng anticline, were analyzed to evaluate possible sources of water and the degree of fluid-sediment interaction at depth in an accretionary prism. Overall, the Taiwanese mud volcano fluids are characterized by high Cl contents, up to 347 mM, suggesting a marine origin from actively de-watering sedimentary pore waters along major structures on land. The fluids obtained from the Gutingkeng anticline, as well as from the Coastal Plain area, show high Cl, Na, K, Ca, Mg and NH 4 , but low SO 4 and B concentrations. In contrast, the Chishan fault fluids are much less saline (1/4 seawater value), but show much heavier O isotope compositions (δ 18 O=5.1-6.5 %o). A simplified scenario of mixing between sedimentary pore fluids and waters affected by clay dehydration released at depth can explain several crucial observations including heavy O isotopes, radiogenic Sr contents ( 87 Sr/ 86 Sr=0.71136-0.71283), and relatively low salinities in the Chishan fluids. Gases isolated from the mud volcanoes are predominantly CH 4 and CO 2 , where the CH 4 -C isotopic compositions show a thermogenic component of δ 13 C=-38 %o. These results demonstrate that active mud volcano de-watering in Taiwan is a direct product of intense sediment accretion and plate collision in the region

  7. Database for volcanic processes and geology of Augustine Volcano, Alaska

    Science.gov (United States)

    McIntire, Jacqueline; Ramsey, David W.; Thoms, Evan; Waitt, Richard B.; Beget, James E.

    2012-01-01

    Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. This geologic map at 1:25,000 scale depicts these deposits, these processes.

  8. HYPOCENTER DISTRIBUTION OF LOW FREQUENCY EVENT AT PAPANDAYAN VOLCANO

    Directory of Open Access Journals (Sweden)

    Muhammad Mifta Hasan

    2016-10-01

    Full Text Available Papandayan volcano is a stratovolcano with irregular cone-shaped has eight craters around the peak. The most active crater in Papandayan is a Mas crater. Distribution of relocated event calculated using Geiger Adaptive Damping Algorithm (GAD shows that the epicenter of the event centered below Mas crater with maximum rms 0.114. While depth of the hypocenter range between 0-2 km and 5-6 km due to activity of steam and gas.

  9. Ring and Volcano Structures Formed by a Metal Dipyrromethene Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seung Bae; Hahn, Jae Ryang [Chonbuk National Univ., Jeonju (Korea, Republic of); Miao, Qing; Shin, Jiyoung; Dolphin, David [Univ. of British Columbia, Columbia (Canada)

    2014-06-15

    Dichloromethane liquid droplets containing a cobalt dipyrromethene trimer deposited on a graphite surface were found to form coffee ring, toroid ring, or volcano dot structures due to the redistribution of the solute during solvent evaporation. The shapes and size distributions of the ring structures depended on the drying temperature. The shape differences were attributed to the fact that the solvent evaporation rate controlled the self-assembly process that yielded the coffee stain and pinhole structures.

  10. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    OpenAIRE

    Maria Marsella; Carla Nardinocchi; Cristina Proietti; Leonardo Daga; Mauro Coltelli

    2014-01-01

    In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows) and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly cha...

  11. Mutnovsky and Gorely Volcanoes, Kamchatka as Planetary Analogue Sites

    Science.gov (United States)

    Evdokimova, N.; Izbekov, P. E.; Krupskaya, V.; Muratov, A.

    2016-12-01

    Recent advances in Mars studies suggest that volcanic rocks, which dominated Martian surface in the past, have been exposed to alteration processes in a water-bearing environment during Noachian, before 3.7 Gy. Active volcanoes on Earth are natural laboratories, where volcanic processes and their associated products can be studied directly. This is particularly important for studying of alteration of juvenile volcanic products in aqueous environment because of the transient nature of some of the alteration products, as well as the environment itself. Terrestrial analogues help us to better understand processes on Mars; they are particularly useful as a test sites for preparation to future Mars missions. In this presentation we describe planetary analogue sites at Mutnovsky and Gorely Volcanoes in Kamchatka, which might be helpful for comparative studies and preparation to future Mars missions. Mutnovsky and Gorely Volcanoes are located 75 km south of Petropavlovsk-Kamchatsky, in the southern part of the Kamchatka Peninsula, Russia. The modern volcanic landscape in the area was shaped in Holocene (recent 10,000 years) through intermittent eruption of magmas ranging in composition from basalts to dacites and rhyodacites, with basaltic andesite lavas dominating in the modern relief. Two localities could be of a particular interest: (1) Mutnovsky NW thermal field featuring processes of active hydrothermal alteration of lavas of basaltic andesite and (2) dry lake at the bottom of Gorely caldera featuring products of mechanical disintegration of basaltic andesite lavas by eolian processes with short seasonal sedimentation in aqueous environment.

  12. Pb-210 and Po-210 from active volcanoes in Japan

    International Nuclear Information System (INIS)

    Komura, K.; Uchida, K.; Yamamoto, M.; Ueno, K.

    1991-01-01

    The concentration of Pb-210 and Po-210 in the surface air of volcanic areas is of considerable interest from the viewpoints of geochemistry, geophysics and also health physics, because these nuclides are the useful tracers for the estimation of the residence time or life time of aerosols, and give the significant radiation dose due to inhalation and ingestion through food stuffs. Since the establishment of Low Level Radioactivity Laboratory, Kanazawa University, in 1976, the measurement of environmental radioactivity has been one of the main subjects, and the measurement of Pb-210 and Po-210 in the surface air of Kagoshima was begun in 1987 to estimate the contribution from Volcano Sakurajima. In this study, the measurement of Pb-210 and Po-210 in air borne particles collected with air samplers, volcanic ash and lava of volcano Sakurajima of which the age of eruption is known. Moreover, the Po-210 in the volcanic gas and sulfur sublimate in the samples collected in four active volcanoes in Hokkaido was measured. The experiment and the results are reported. (K.I.)

  13. Design of Deformation Monitoring System for Volcano Mitigation

    International Nuclear Information System (INIS)

    Islamy, M R F; Salam, R A; Khairurrijal; Munir, M M; Irsyam, M

    2016-01-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment. (paper)

  14. Design of Deformation Monitoring System for Volcano Mitigation

    Science.gov (United States)

    Islamy, M. R. F.; Salam, R. A.; Munir, M. M.; Irsyam, M.; Khairurrijal

    2016-08-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment.

  15. Vulnerability mapping in kelud volcano based on village information

    Science.gov (United States)

    Hisbaron, D. R.; Wijayanti, H.; Iffani, M.; Winastuti, R.; Yudinugroho, M.

    2018-04-01

    Kelud Volcano is a basaltic andesitic stratovolcano, situated at 27 km to the east of Kediri, Indonesia. Historically, Kelud Volcano has erupted with return period of 9-75 years, had caused nearly 160,000 people living in Tulungagung, Blitar and Kediri District to be in high-risk areas. This study aims to map vulnerability towards lava flows in Kediri and Malang using detailed scale. There are four major variables, namely demography, asset, hazard, and land use variables. PGIS (Participatory Geographic Information System) is employed to collect data, while ancillary data is derived from statistics information, interpretation of high resolution satellite imagery and Unmanned Aerial Vehicles (UAVs). Data were obtained from field checks and some from high resolution satellite imagery and UAVs. The output of this research is village-based vulnerability information that becomes a valuable input for local stakeholders to improve local preparedness in areas prone to improved disaster resilience. The results indicated that the highest vulnerability to lava flood disaster in Kelud Volcano is owned by Kandangan Hamlet, Pandean Hamlet and Kacangan Hamlet, because these two hamlets are in the dominant high vulnerability position of 3 out of 4 scenarios (economic, social and equal).

  16. Climbing in the high volcanoes of central Mexico

    Science.gov (United States)

    Secor, R. J.

    1984-01-01

    A chain of volcanoes extends across central Mexico along the 19th parallel, a line just south of Mexico City. The westernmost of these peaks is Nevado de Colima at 4,636 feet above sea level. A subsidiary summit of Nevado de Colima is Volcan de Colima, locally called Fuego (fire) it still emits sulphurous fumes and an occasional plume of smoke since its disastrous eruption in 1941. Parictuin, now dormant, was born in the fall of 1943 when a cornfield suddenly erupted. Within 18 months, the cone grew more than 1,700 feet. Nevado de Toluca is a 15,433-foot volcanic peak south of the city of Toluca. Just southeast of Mexico City are two high volcanoes that are permanently covered by snow: Iztaccihuatl (17,342 fet) and Popocatepetl (17,887 feet) Further east is the third highest mountain in North America: 18,700-foot Citlateptl, or El Pico de Orizaba. North of these high peaks are two volcanoes, 14, 436-foot La Malinche and Cofre de Perote at 14,048 feet. This range of mountains is known variously as the Cordillera de Anahuac, the Sierra Volcanica Transversal, or the Cordillera Neovolcanica. 

  17. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    Science.gov (United States)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  18. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano

    Science.gov (United States)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.

    2016-12-01

    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  19. InSAR observations of active volcanoes in Latin America

    Science.gov (United States)

    Morales Rivera, A. M.; Chaussard, E.; Amelung, F.

    2012-12-01

    Over the last decade satellite-based interferometric synthetic aperture radar (InSAR) has developed into a well-known technique to gauge the status of active volcanoes. The InSAR technique can detect the ascent of magma to shallow levels of the volcanic plumbing system because new arriving magma pressurizes the system. This is likely associated with the inflation of the volcanic edifice and the surroundings. Although the potential of InSAR to detect magma migration is well known, the principal limitation was that only for few volcanoes frequent observations were acquired. The ALOS-1 satellite of the Japanese Aerospace Exploration Agency (JAXA) acquired a global L-band data set of 15-20 acquisitions during 2006-2011. Here we use ALOS InSAR and Small Baseline (SB) time-series methods for a ground deformation survey of Latin America with emphasis on the northern Andes. We present time-dependent ground deformation data for the volcanoes in Colombia, Ecuador and Peru and interpret the observations in terms of the dynamics of the volcanic systems.

  20. Pb-210 and Po-210 from active volcanoes in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komura, K; Uchida, K; Yamamoto, M; Ueno, K [Kanazawa Univ. (Japan)

    1991-01-01

    The concentration of Pb-210 and Po-210 in the surface air of volcanic areas is of considerable interest from the viewpoints of geochemistry, geophysics and also health physics, because these nuclides are the useful tracers for the estimation of the residence time or life time of aerosols, and give the significant radiation dose due to inhalation and ingestion through food stuffs. Since the establishment of Low Level Radioactivity Laboratory, Kanazawa University, in 1976, the measurement of environmental radioactivity has been one of the main subjects, and the measurement of Pb-210 and Po-210 in the surface air of Kagoshima was begun in 1987 to estimate the contribution from Volcano Sakurajima. In this study, the measurement of Pb-210 and Po-210 in air borne particles collected with air samplers, volcanic ash and lava of volcano Sakurajima of which the age of eruption is known. Moreover, the Po-210 in the volcanic gas and sulfur sublimate in the samples collected in four active volcanoes in Hokkaido was measured. The experiment and the results are reported. (K.I.).

  1. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  2. Large submarine sand-rubble flow on Kilauea volcano, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Fornari, D J [Columbia Univ., Palisades, NY; Moore, J G; Calk, L

    1979-05-01

    Papa'u seamount on the south submarine slope of Kilauea volcano is a large landslide about 19 km long, 6 km wide, and up to 1 km thick with a volume of about 39 km/sup 3/. Dredge hauls, remote camera photographs, and submersible observations indicate that it is composed primarily of unconsolidated angular glassy basalt sand with scattered basalt blocks up to 1 m in size; no lava flows were seen. Sulfur contents of basalt glass from several places on the sand-rubble flow and nearby areas are low (< 240 ppm), indicating that the clastic basaltic material was all erupted on land. The Papa'u sandrubble flow was emplaced during a single flow event fed from a large near-shore bank of clastic basaltic material which in turn was formed as lava flows from the summit area of Kilauea volcano disintegrated when they entered the sea. The current eruptive output of the volcano suggests that the material in the submarine sand-rubble flow represents about 6000 years of accumulation, and that the flow event occurred several thousand years ago.

  3. A repeatable seismic source for tomography at volcanoes

    Directory of Open Access Journals (Sweden)

    A. Ratdomopurbo

    1999-06-01

    Full Text Available One major problem associated with the interpretation of seismic signals on active volcanoes is the lack of knowledge about the internal structure of the volcano. Assuming a 1D or a homogeneous instead of a 3D velocity structure leads to an erroneous localization of seismic events. In order to derive a high resolution 3D velocity model ofMt. Merapi (Java a seismic tomography experiment using active sources is planned as a part of the MERAPI (Mechanism Evaluation, Risk Assessment and Prediction Improvement project. During a pre-site survey in August 1996 we tested a seismic source consisting of a 2.5 l airgun shot in water basins that were constructed in different flanks of the volcano. This special source, which in our case can be fired every two minutes, produces a repeatable, identical source signal. Using this source the number of receiver locations is not limited by the number of seismometers. The seismometers can be moved to various receiver locations while the source reproduces the same source signal. Additionally, at each receiver location we are able to record the identical source signal several times so that the disadvantage of the lower energy compared to an explosion source can be reduced by skipping disturbed signals and stacking several recordings.

  4. Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption

    Science.gov (United States)

    Larson, Kristine M.; Poland, Michael; Miklius, Asta

    2010-01-01

    The global positioning system (GPS) is one of the most common techniques, and the current state of the art, used to monitor volcano deformation. In addition to slow (several centimeters per year) displacement rates, GPS can be used to study eruptions and intrusions that result in much larger (tens of centimeters over hours-days) displacements. It is challenging to resolve precise positions using GPS at subdaily time intervals because of error sources such as multipath and atmospheric refraction. In this paper, the impact of errors due to multipath and atmospheric refraction at subdaily periods is examined using data from the GPS network on Kīlauea Volcano, Hawai'i. Methods for filtering position estimates to enhance precision are both simulated and tested on data collected during the June 2007 intrusion and eruption. Comparisons with tiltmeter records show that GPS instruments can precisely recover the timing of the activity.

  5. Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement

    Science.gov (United States)

    Dvorak, J.J.

    1992-01-01

    Most, if not all, volcanic eruptions are preceded by surface movements near the volcano. These ground movements are the response of the shallow crust to the accumulation of the magma or the buildup of magma pressure within a subterranean reservoir beneath the volcano. As the magma reservoir expands, the summit and the flanks of the volcano rise and spread apart. Measurements made at many volcanoes show that slow ground movement may precede an eruption by as many as several years. Sudden increases in the rate of ground movement often precede an eruption by a few hours or days.

  6. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  7. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress

    Directory of Open Access Journals (Sweden)

    Christoph eSchmid

    2013-08-01

    Full Text Available Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues.A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella.Neighbor perception was indicated by Arabidopsis roots predominantly growing away from the neighbor (segregation, while solitary plants placed more roots towards the middle of the pot. Total biomass remained unaffected. Database comparisons in transcriptome analysis revealed considerable similarity between Arabidopsis root reactions to neighbors and reactions to pathogens. Detailed analyses of the functional category ‘biotic stress’ using MapMan tools found the sub-category ‘pathogenesis-related proteins’ highly significantly induced. A comparison to a study on intraspecific competition brought forward a core of genes consistently involved in reactions to neighbor roots.We conclude that beyond resource depletion roots perceive neighboring roots or their associated microorganisms by a relatively uniform mechanism that involves the strong induction of pathogenesis-related proteins. In an ecological context the findings reveal that belowground neighbor detection may occur independently of resource depletion, allowing for a time advantage for the root to prepare for potential interactions.

  8. Geophysical research on structure of partly eroded maar volcanoes: Miocene Hnojnice and Oligocene Rychnov volcanoes (northern Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Skácelová, Z.; Rapprich, V.; Valenta, Jan; Hartvich, Filip; Šrámek, J.; Radoň, M.; Gaždová, Renata; Nováková, Lucie; Kolínský, Petr; Pécskay, Z.

    2010-01-01

    Roč. 55, č. 4 (2010), s. 299-310 ISSN 1802-6222 R&D Projects: GA AV ČR IAA300460602 Institutional research plan: CEZ:AV0Z30460519 Keywords : maar–diatreme volcano * ground magnetometry * ground gravity measurements Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.026, year: 2010 www.jgeosci.org/content/jgeosci.072_2010_4_skacelova.pdf

  9. Body Wave and Ambient Noise Tomography of Makushin Volcano, Alaska

    Science.gov (United States)

    Lanza, F.; Thurber, C. H.; Syracuse, E. M.; Ghosh, A.; LI, B.; Power, J. A.

    2017-12-01

    Located in the eastern portion of the Alaska-Aleutian subduction zone, Makushin Volcano is among the most active volcanoes in the United States and has been classified as high threat based on eruptive history and proximity to the City of Unalaska and international air routes. In 2015, five individual seismic stations and three mini seismic arrays of 15 stations each were deployed on Unalaska island to supplement the Alaska Volcano Observatory (AVO) permanent seismic network. This temporary array was operational for one year. Taking advantage of the increased azimuthal coverage and the array's increased earthquake detection capability, we developed body-wave Vp and Vp/Vs seismic images of the velocity structure beneath the volcano. Body-wave tomography results show a complex structure with the upper 5 km of the crust dominated by both positive and negative Vp anomalies. The shallow high-Vp features possibly delineate remnant magma pathways or conduits. Low-Vp regions are found east of the caldera at approximately 6-9 km depth. This is in agreement with previous tomographic work and geodetic models, obtained using InSAR data, which had identified this region as a possible long-term source of magma. We also observe a high Vp/Vs feature extending between 7 and 12 km depth below the caldera, possibly indicating partial melting, although the resolution is diminished at these depths. The distributed stations allow us to further complement body-wave tomography with ambient noise imaging and to obtain higher quality of Vs images. Our data processing includes single station data preparation and station-pair cross-correlation steps (Bensen et al., 2007), and the use of the phase weighted stacking method (Schimmel and Gallart, 2007) to improve the signal-to-noise ratio of the cross-correlations. We will show surface-wave dispersion curves, group velocity maps, and ultimately a 3D Vs image. By performing both body wave and ambient noise tomography, we provide a high

  10. Geologic Mapping, Volcanic Stages and Magmatic Processes in Hawaiian Volcanoes

    Science.gov (United States)

    Sinton, J. M.

    2005-12-01

    The concept of volcanic stages arose from geologic mapping of Hawaiian volcanoes. Subaerial Hawaiian lava successions can be divided generally into three constructional phases: an early (shield) stage dominated by thin-bedded basaltic lava flows commonly associated with a caldera; a later (postshield) stage with much thicker bedded, generally lighter colored lava flows commonly containing clinopyroxene; calderas are absent in this later stage. Following periods of quiescence of a half million years or more, some Hawaiian volcanoes have experienced renewed (rejuvenated) volcanism. Geological and petrographic relations irrespective of chemical composition led to the identification of mappable units on Niihau, Kauai, Oahu, Molokai, Maui and Hawaii, which form the basis for this 3-fold division of volcanic activity. Chemical data have complicated the picture. There is a growing tendency to assign volcanic stage based on lava chemistry, principally alkalicity, into tholeiitic shield, alkalic postshield, and silica undersaturated rejuvenation, despite the evidence for interbedded tholeiitic and alkalic basalts in many shield formations, and the presence of mildly tholeiitic lavas in some postshield and rejuvenation formations. A consistent characteristic of lava compositions from most postshield formations is evidence for post-melting evolution at moderately high pressures (3-7 kb). Thus, the mapped shield to postshield transitions primarily reflect the disappearance of shallow magma chambers (and associated calderas) in Hawaiian volcanoes, not the earlier (~100 ka earlier in Waianae Volcano) decline in partial melting that leads to the formation of alkalic parental magmas. Petrological signatures of high-pressure evolution are high-temperature crystallization of clinopyroxene and delayed crystallization of plagioclase, commonly to <3 % MgO. Petrologic modeling using pMELTS and MELTS algorithms allows for quantification of the melting and fractionation conditions giving

  11. Update of the volcanic risk map of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order

  12. Mechanism of the 1996-97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska

    Science.gov (United States)

    Roman, D.C.; Power, J.A.

    2011-01-01

    A significant number of volcano-tectonic(VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption.These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust.Real-time assessment of the likelihood that a VTswarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996-June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations,we aim to test the hypothesis that the 1996-97 swarm represented a shallow intrusion, or "failed" eruption.Observations of the 1996-97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption. ?? 2011 Springer-Verlag.

  13. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    Science.gov (United States)

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-02

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  14. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica

    Directory of Open Access Journals (Sweden)

    Luis Miguel Peci

    2014-01-01

    Full Text Available This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARMTM processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (DebianTM as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS described has been deployed on the active Deception Island (Antarctica volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  15. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-05-23

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  16. Automatic readout for nuclear emulsions in muon radiography of volcanoes

    Science.gov (United States)

    Aleksandrov, A.; Bozza, C.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Kose, U.; Lauria, A.; Medinaceli, E.; Miyamoto, S.; Montesi, C.; Pupilli, F.; Rescigno, R.; Russo, A.; Sirignano, C.; Stellacci, S. M.; Strolin, P.; Tioukov, V.

    2012-04-01

    Nuclear emulsions are an effective choice in many scenarios of volcano radiography by cosmic-ray muons. They are cheap and emulsion-based detectors require no on-site power supply. Nuclear emulsion films provide sub-micrometric tracking precision and intrinsic angular accuracy better than 1 mrad. Imaging the inner structure of a volcano requires that the cosmic-ray absorption map be measured on wide angular range. High-absorption directions can be probed by allowing for large statistics, which implies a large overall flux, i.e. wide surface for the detector. A total area of the order of a few m2 is nowadays typical, thanks to the automatic readout tools originally developed for high-energy physics experiments such as CHORUS, PEANUT, OPERA. The European Scanning System is now being used to read out nuclear emulsion films exposed to cosmic rays on the side of volcanoes. The structure of the system is described in detail with respect to both hardware and software. Its present scanning speed of 20 cm2/h/side/microscope is suitable to fulfil the needs of the current exposures of nuclear emulsion films for muon radiograph, but it is worth to notice that applications in volcano imaging are among the driving forces pushing to increase the performances of the system. Preliminary results for the Unzen volcano of a joint effort by research groups in Italy and Japan show that the current system is already able to provide signal/background ratio in the range 100÷10000:1, depending on the quality cuts set in the off-line data analysis. The size of the smallest detectable structures in that experimental setup is constrained by the available statistics in the region of highest absorption to about 50 mrad, or 22 m under the top of the mountain. Another exposure is currently taking data at the Stromboli volcano. Readout of the exposed films is expected to begin in March 2012, and preliminary results will be available soon after. An effort by several universities and INFN has

  17. Earlier history of the ≥70-Ma-old Canary hotspot based on the temporal and geochemical evolution of the Selvagen Archipelago and neighboring seamounts in the eastern North Atlantic

    Science.gov (United States)

    Geldmacher, Jörg; Hoernle, Kaj; van den Bogaard, Paul; Zankl, Goor; Garbe-Schönberg, Dieter

    2001-11-01

    Major element, trace element and Sr-Nd-Pb isotope data, combined with 40Ar/39Ar age determinations, of volcanic rocks from the Selvagen Islands and neighboring seamounts in the eastern North Atlantic reveal the earlier history of the ≥70 Ma old Canary hotspot. A basanitic to phonolitic late shield stage intrusive complex (29 Ma) is exposed on Selvagem Pequena. The evolution of Selvagem Grande can be divided into three magmatic phases: a tephritic to phonolitic late shield stage intrusive complex (24-26 Ma) and two rejuvenated or post-erosional stages (8-12 and 3.4 Ma) consisting of alkali basalt, basanite and rare phonolite. During the early to mid-Miocene volcanic hiatus (12-24 Ma), the top of the volcano was beneath sea level as evidenced by marine carbonate sediments (13-24 Ma, dated through correlation of 87Sr/86Sr with the seawater Sr isotope curve). The geochemistry of the shield stage lavas indicates that they derive from plume sources, whereas the post-erosional lavas are derived from metasomatized lithospheric sources. Five sampled seamounts to the east and northeast of the islands range in composition from alkali basalt and basanite to phonolite. Samples from Dacia, Conception Bank and Lars were dated at 9, 17 and 68 Ma, respectively. Geochemical data suggest that the dredged samples come from the post-erosional stage of volcanism, and therefore, the dates represent minimum ages for the seamount volcanoes. The elevation of erosional platforms formed at wave base decrease from Selvagen Grande (∼100 m above sea level) to Lars seamount (∼900 m below sea level), suggesting a southwest to northwest age progression and that all of these seamounts are older than the Selvagen Islands. Trace element and Sr-Nd-Pb isotopic composition of the Selvagen Islands and neighboring seamounts are consistent with their origin from the Canary plume. Interaction of the weak Canary mantle plume with a slow moving plate appears to be responsible for generating a 450-km

  18. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  19. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  20. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    Science.gov (United States)

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux

  1. Adaptive behavior of neighboring neurons during adaptation-induced plasticity of orientation tuning in V1

    Directory of Open Access Journals (Sweden)

    Shumikhina Svetlana

    2009-12-01

    Full Text Available Abstract Background Sensory neurons display transient changes of their response properties following prolonged exposure to an appropriate stimulus (adaptation. In adult cat primary visual cortex, orientation-selective neurons shift their preferred orientation after being adapted to a non-preferred orientation. The direction of those shifts, towards (attractive or away (repulsive from the adapter depends mostly on adaptation duration. How the adaptive behavior of a neuron is related to that of its neighbors remains unclear. Results Here we show that in most cases (75%, cells shift their preferred orientation in the same direction as their neighbors. We also found that cells shifting preferred orientation differently from their neighbors (25% display three interesting properties: (i larger variance of absolute shift amplitude, (ii wider tuning bandwidth and (iii larger range of preferred orientations among the cluster of cells. Several response properties of V1 neurons depend on their location within the cortical orientation map. Our results suggest that recording sites with both attractive and repulsive shifts following adaptation may be located in close proximity to iso-orientation domain boundaries or pinwheel centers. Indeed, those regions have a more diverse orientation distribution of local inputs that could account for the three properties above. On the other hand, sites with all cells shifting their preferred orientation in the same direction could be located within iso-orientation domains. Conclusions Our results suggest that the direction and amplitude of orientation preference shifts in V1 depend on location within the orientation map. This anisotropy of adaptation-induced plasticity, comparable to that of the visual cortex itself, could have important implications for our understanding of visual adaptation at the psychophysical level.

  2. A γ dose distribution evaluation technique using the k-d tree for nearest neighbor searching

    International Nuclear Information System (INIS)

    Yuan Jiankui; Chen Weimin

    2010-01-01

    Purpose: The authors propose an algorithm based on the k-d tree for nearest neighbor searching to improve the γ calculation time for 2D and 3D dose distributions. Methods: The γ calculation method has been widely used for comparisons of dose distributions in clinical treatment plans and quality assurances. By specifying the acceptable dose and distance-to-agreement criteria, the method provides quantitative measurement of the agreement between the reference and evaluation dose distributions. The γ value indicates the acceptability. In regions where γ≤1, the predefined criterion is satisfied and thus the agreement is acceptable; otherwise, the agreement fails. Although the concept of the method is not complicated and a quick naieve implementation is straightforward, an efficient and robust implementation is not trivial. Recent algorithms based on exhaustive searching within a maximum radius, the geometric Euclidean distance, and the table lookup method have been proposed to improve the computational time for multidimensional dose distributions. Motivated by the fact that the least searching time for finding a nearest neighbor can be an O(log N) operation with a k-d tree, where N is the total number of the dose points, the authors propose an algorithm based on the k-d tree for the γ evaluation in this work. Results: In the experiment, the authors found that the average k-d tree construction time per reference point is O(log N), while the nearest neighbor searching time per evaluation point is proportional to O(N 1/k ), where k is between 2 and 3 for two-dimensional and three-dimensional dose distributions, respectively. Conclusions: Comparing with other algorithms such as exhaustive search and sorted list O(N), the k-d tree algorithm for γ evaluation is much more efficient.

  3. Tricriticality in the q-neighbor Ising model on a partially duplex clique.

    Science.gov (United States)

    Chmiel, Anna; Sienkiewicz, Julian; Sznajd-Weron, Katarzyna

    2017-12-01

    We analyze a modified kinetic Ising model, a so-called q-neighbor Ising model, with Metropolis dynamics [Phys. Rev. E 92, 052105 (2015)PLEEE81539-375510.1103/PhysRevE.92.052105] on a duplex clique and a partially duplex clique. In the q-neighbor Ising model each spin interacts only with q spins randomly chosen from its whole neighborhood. In the case of a duplex clique the change of a spin is allowed only if both levels simultaneously induce this change. Due to the mean-field-like nature of the model we are able to derive the analytic form of transition probabilities and solve the corresponding master equation. The existence of the second level changes dramatically the character of the phase transition. In the case of the monoplex clique, the q-neighbor Ising model exhibits a continuous phase transition for q=3, discontinuous phase transition for q≥4, and for q=1 and q=2 the phase transition is not observed. On the other hand, in the case of the duplex clique continuous phase transitions are observed for all values of q, even for q=1 and q=2. Subsequently we introduce a partially duplex clique, parametrized by r∈[0,1], which allows us to tune the network from monoplex (r=0) to duplex (r=1). Such a generalized topology, in which a fraction r of all nodes appear on both levels, allows us to obtain the critical value of r=r^{*}(q) at which a tricriticality (switch from continuous to discontinuous phase transition) appears.

  4. Geoheritage value of the UNESCO site at Leon Viejo and Momotombo volcano, Nicaragua

    Science.gov (United States)

    van Wyk de Vries, Benjamin; Navarro, Martha; Espinoza, Eveling; Delgado, Hugo

    2017-04-01

    The Momotombo volcano has a special place in the history of Nicaragua. It is perfectly visible from the Capital, Managua, and from the major city of Leon. The old capital "Leon Viejo", founded in 1524 was abandoned in 1610, after a series of earthquakes and some major eruptions from Momotombo. The site was subsequently covered by Momotombo ash. A major geothermal power plant stands at the base of the volcano. Momotombo had been dormant for a hundred years, but had maintained high fumarole temperatures (900°C), indicating magma had been close to the surface for decades. In recent years, seismic activity has increased around the volcano. In December 2015, after a short ash eruption phase the volcano erupted lava, then a string of Vulcanian explosions. The volcano is now in a phase of small Vulcanian explosions and degassing. The Leon Viejo World Heritage site is at risk to mainly ash fall from the volcano, but the abandonment of the old city was primarily due to earthquakes. Additional risks come from high rainfall during hurricanes. There is an obvious link between the cultural site (inscribed under UNESCO cultural criteria) and the geological environment. First, the reactivation of Momotombo volcano makes it more important to revise the hazard of the site. At the same time, Leon Viejo can provide a portal for outreach related to the volcano and for geological risk in general. To maximise this, we provide a geosite inventory of the main features of Momotombo, and it's environs, that can be used as the first base for such studies. The volcano was visited by many adventure tourists before the 2015/2016 eruption, but is out of bounds at present. Alternative routes, around the volcano could be made, to adapt to the new situation and to show to visitors more of the geodiversity of this fascinating volcano-tectonic and cultural area.

  5. Long-term changes in explosive and effusive behaviour at andesitic arc volcanoes: Chronostratigraphy of the Centre Hills Volcano, Montserrat

    Science.gov (United States)

    Coussens, Maya; Cassidy, Michael; Watt, Sebastian F. L.; Jutzeler, Martin; Talling, Peter J.; Barfod, Dan; Gernon, Thomas M.; Taylor, Rex; Hatter, Stuart J.; Palmer, Martin R.; Montserrat Volcano Observatory

    2017-03-01

    Volcanism on Montserrat (Lesser Antilles arc) has migrated southwards since the formation of the Silver Hills 2.5 Ma, and has formed three successively active volcanic centres. The Centre Hills volcano was the focus of volcanism from 1-0.4 Ma, before activity commenced at the currently active Soufrière Hills volcano. The history of activity at these two volcanoes provides an opportunity to investigate the pattern of volcano behaviour on an andesitic arc island over the lifetime of individual volcanoes. Here, we describe the pyroclastic stratigraphy of subaerial exposures around central Montserrat; identifying 11 thick (> 1 m) pumiceous units derived from sustained explosive eruptions of Centre Hills from 0.8-0.4 Ma. Over 10 other, less well- exposed pumiceous units have also been identified. The pumice-rich units are interbedded with andesite lava breccias derived from effusive, dome-forming eruptions of Centre Hills. The stratigraphy indicates that large (up to magnitude 5) explosive eruptions occurred throughout the history of Centre Hills, alongside effusive activity. This behaviour at Centre Hills contrasts with Soufrière Hills, where deposits from sustained explosive eruptions are much less common and restricted to early stages of activity at the volcano, from 175-130 ka. Subsequent eruptions at Soufriere Hills have been dominated by andesitic effusive eruptions. The bulk composition, petrography and mineral chemistry of volcanic rocks from Centre Hills and Soufrière Hills are similar throughout the history of both volcanoes, except for occasional, transient departures to different magma compositions, which mark shifts in vent location or dominant eruption style. For example, the final recorded eruption of Centre Hills, before the initiation of activity at Soufrière Hills, was more silicic than any other identified eruption on Montserrat; and the basaltic South Soufrière Hills episode marked the transition to the current stage of predominantly effusive

  6. A method of neighbor classes based SVM classification for optical printed Chinese character recognition.

    Science.gov (United States)

    Zhang, Jie; Wu, Xiaohong; Yu, Yanmei; Luo, Daisheng

    2013-01-01

    In optical printed Chinese character recognition (OPCCR), many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM) might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM) to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR.

  7. Penerapan Metode K-nearest Neighbor pada Penentuan Grade Dealer Sepeda Motor

    OpenAIRE

    Leidiyana, Henny

    2017-01-01

    The mutually beneficial cooperation is a very important thing for a leasing and dealer. Incentives for marketing is given in order to get consumers as much as possible. But sometimes the surveyor objectivity is lost due to the conspiracy on the field of marketing and surveyors. To overcome this, leasing a variety of ways one of them is doing ranking against the dealer. In this study the application of the k-Nearest Neighbor method and Euclidean distance measurement to determine the grade deal...

  8. Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor

    OpenAIRE

    Samir Brahim Belhaouari

    2009-01-01

    By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less ...

  9. Tuberculosis control in Bolivia, Chile, Colombia and Peru: why does incidence vary so much between neighbors?

    Science.gov (United States)

    Sobero, R A; Peabody, J W

    2006-11-01

    In 2003, Peru and Bolivia reported the highest annual tuberculosis (TB) incidence rates in the Americas. Neighboring Colombia and Chile had lower annual incidence rates despite their proximity. To determine what factors contribute to differences in TB incidence rates among Chile, Colombia, Bolivia and Peru. Multiple sources of literature dating between 1990 and 2005 were used and World Health Organization TB control guidelines were consulted for policy level comparisons. Comprehensive implementation of the DOTS strategy is the main factor explaining the differences in TB incidence rates, even after considering socio-economic factors. Cross-national comparisons suggest ways to improve regional DOTS implementation.

  10. Neighbor-directed histidine N(τ) alkylation. A route to imidazolium-containing phosphopeptide macrocycles

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Wen-Jian [National Cancer Inst., Frederick, MD (United States); Park, Jung-Eun [National Cancer Inst., Bethesda, MD (United States); Grant, Robert [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lai, Christopher C. [National Cancer Inst., Frederick, MD (United States); Kelley, James A. [National Cancer Inst., Frederick, MD (United States); Yaffe, Michael B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lee, Kyung S. [National Cancer Inst., Bethesda, MD (United States); Burke, Terrence R. [National Cancer Inst., Frederick, MD (United States)

    2015-07-07

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  11. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  12. Seismic clusters analysis in Northeastern Italy by the nearest-neighbor approach

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2018-01-01

    The main features of earthquake clusters in Northeastern Italy are explored, with the aim to get new insights on local scale patterns of seismicity in the area. The study is based on a systematic analysis of robustly and uniformly detected seismic clusters, which are identified by a statistical method, based on nearest-neighbor distances of events in the space-time-energy domain. The method permits us to highlight and investigate the internal structure of earthquake sequences, and to differentiate the spatial properties of seismicity according to the different topological features of the clusters structure. To analyze seismicity of Northeastern Italy, we use information from local OGS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. A preliminary reappraisal of the earthquake bulletins is carried out and the area of sufficient completeness is outlined. Various techniques are considered to estimate the scaling parameters that characterize earthquakes occurrence in the region, namely the b-value and the fractal dimension of epicenters distribution, required for the application of the nearest-neighbor technique. Specifically, average robust estimates of the parameters of the Unified Scaling Law for Earthquakes, USLE, are assessed for the whole outlined region and are used to compute the nearest-neighbor distances. Clusters identification by the nearest-neighbor method turn out quite reliable and robust with respect to the minimum magnitude cutoff of the input catalog; the identified clusters are well consistent with those obtained from manual aftershocks identification of selected sequences. We demonstrate that the earthquake clusters have distinct preferred geographic locations, and we identify two areas that differ substantially in the examined clustering properties. Specifically, burst-like sequences are associated with the north-western part and swarm-like sequences with the south-eastern part of the study

  13. A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services

    Science.gov (United States)

    Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun

    2018-04-01

    We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.

  14. Chaotic synchronization of nearest-neighbor diffusive coupling Hindmarsh-Rose neural networks in noisy environments

    International Nuclear Information System (INIS)

    Fang Xiaoling; Yu Hongjie; Jiang Zonglai

    2009-01-01

    The chaotic synchronization of Hindmarsh-Rose neural networks linked by a nonlinear coupling function is discussed. The HR neural networks with nearest-neighbor diffusive coupling form are treated as numerical examples. By the construction of a special nonlinear-coupled term, the chaotic system is coupled symmetrically. For three and four neurons network, a certain region of coupling strength corresponding to full synchronization is given, and the effect of network structure and noise position are analyzed. For five and more neurons network, the full synchronization is very difficult to realize. All the results have been proved by the calculation of the maximum conditional Lyapunov exponent.

  15. The Impactof the Kurdish Question on Turkey's Relations with its Middle Eastern neighbors

    OpenAIRE

    Asil, Muhammet Ali

    2013-01-01

    Tezin basılısı İstanbul Şehir Üniversitesi Kütüphanesi'ndedir. This dissertation analyzes the “Kurdish Question” from an International Relations perspective. Focusing on the impact of the Kurdish question on Turkey’s relations in the last decade with its Middle Eastern neighbors, i.e. Iran, Syria, and Iraq, and with the European Union; this study shows how Turkey-Middle East and Turkey-EU relations are shaped differently. In the search for reasons for this difference, Realist and Liberal I...

  16. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1993-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21 % for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (orig.)

  17. Detection, Source Location, and Analysis of Volcano Infrasound

    Science.gov (United States)

    McKee, Kathleen F.

    The study of volcano infrasound focuses on low frequency sound from volcanoes, how volcanic processes produce it, and the path it travels from the source to our receivers. In this dissertation we focus on detecting, locating, and analyzing infrasound from a number of different volcanoes using a variety of analysis techniques. These works will help inform future volcano monitoring using infrasound with respect to infrasonic source location, signal characterization, volatile flux estimation, and back-azimuth to source determination. Source location is an important component of the study of volcano infrasound and in its application to volcano monitoring. Semblance is a forward grid search technique and common source location method in infrasound studies as well as seismology. We evaluated the effectiveness of semblance in the presence of significant topographic features for explosions of Sakurajima Volcano, Japan, while taking into account temperature and wind variations. We show that topographic obstacles at Sakurajima cause a semblance source location offset of 360-420 m to the northeast of the actual source location. In addition, we found despite the consistent offset in source location semblance can still be a useful tool for determining periods of volcanic activity. Infrasonic signal characterization follows signal detection and source location in volcano monitoring in that it informs us of the type of volcanic activity detected. In large volcanic eruptions the lowermost portion of the eruption column is momentum-driven and termed the volcanic jet or gas-thrust zone. This turbulent fluid-flow perturbs the atmosphere and produces a sound similar to that of jet and rocket engines, known as jet noise. We deployed an array of infrasound sensors near an accessible, less hazardous, fumarolic jet at Aso Volcano, Japan as an analogue to large, violent volcanic eruption jets. We recorded volcanic jet noise at 57.6° from vertical, a recording angle not normally feasible

  18. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues....... The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we...... in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve...

  19. Diagnosis of Diabetes Diseases Using an Artificial Immune Recognition System2 (AIRS2) with Fuzzy K-nearest Neighbor

    OpenAIRE

    CHIKH, Mohamed Amine; SAIDI, Meryem; SETTOUTI, Nesma

    2012-01-01

    The use of expert systems and artificial intelligence techniques in disease diagnosis has been increasing gradually. Artificial Immune Recognition System (AIRS) is one of the methods used in medical classification problems. AIRS2 is a more efficient version of the AIRS algorithm. In this paper, we used a modified AIRS2 called MAIRS2 where we replace the K- nearest neighbors algorithm with the fuzzy K-nearest neighbors to improve the diagnostic accuracy of diabetes diseases. The diabetes disea...

  20. Models of Hawaiian volcano growth and plume structure: Implications of results from the Hawaii Scientific Drilling Project

    OpenAIRE

    DePaolo, D. J.; Stolper, E. M.

    1996-01-01

    The shapes of typical Hawaiian volcanoes are simply parameterized, and a relationship is derived for the dependence of lava accumulation rates on volcano volume and volumetric growth rate. The dependence of lava accumulation rate on time is derived by estimating the eruption rate of a volcano as it traverses the Hawaiian plume, with the eruption rate determined from a specified radial dependence of magma generation in the plume and assuming that a volcano captures melt from a circular area ce...

  1. Constructing a reference tephrochronology for Augustine Volcano, Alaska

    Science.gov (United States)

    Wallace, Kristi; Coombs, Michelle L.

    2013-01-01

    Augustine Volcano is the most historically active volcano in Alaska's populous Cook Inlet region. Past on-island work on pre-historic tephra deposits mainly focused on using tephra layers as markers to help distinguish among prevalent debris-avalanche deposits on the island (Waitt and Beget, 2009, USGS Prof Paper 1762), or as source material for petrogenetic studies. No comprehensive reference study of tephra fall from Augustine Volcano previously existed. Numerous workers have identified Holocene-age tephra layers in the region surrounding Augustine Island, but without well-characterized reference deposits, correlation back to the source volcano is difficult. The purpose of this detailed tephra study is to provide a record of eruption frequency and magnitude, as well as to elucidate physical and chemical characteristics for use as reference standards for comparison with regionally distributed Augustine tephra layers. Whole rock major- and trace-element geochemistry, deposit componentry, and field context are used to correlate tephra units on the island where deposits are coarse grained. Major-element glass geochemistry was collected for use in correlating to unknown regional tephra. Due to the small size of the volcanic island (9 by 11 km in diameter) and frequent eruptive activity, on-island exposures of tephra deposits older than a couple thousand years are sparse, and the lettered Tephras B, M, C, H, I, and G of Waitt and Beget (2009) range in age from 370-2200 yrs B.P. There are, however, a few exposures on the south side of the volcano, within about 2 km of the vent, where stratigraphic sections that extend back to the late Pleistocene glaciation include coarse pumice-fall deposits. We have linked the letter-named tephras from the coast to these higher exposures on the south side using physical and chemical characteristics of the deposits. In addition, these exposures preserve at least 5 older major post-glacial eruptions of Augustine. These ultra

  2. Increased Melting of Glaciers during Cotopaxi volcano awakening in 2015

    Science.gov (United States)

    Ramon, Patricio; Vallejo, Silvia; Almeida, Marco; Gomez, Juan Pablo; Caceres, Bolivar

    2016-04-01

    Cotopaxi (5897 m), located about 50 km south of Quito (Ecuador), is one of the most active volcanoes in the Andes and its historical eruptions have caused a great impact on the population by the generation of lahars along its three main drainages (N, S, E). Starting on April 2015 the seismic monitoring networks and the SO2 gas detection network in May 2015 showed a significant increase from their background values, in June a geodetic instrument located in the NE flank started to record inflation; all this indicated the beginning of a new period of unrest. On August 14, five small phreatic explosions occurred, accompanied by large gas and ash emissions, ash falls were reported to the W of the volcano and to the S of Quito capital city. Three new episodes of ash and gas emissions occurred afterwards and towards the end of November 2015, the different monitoring parameters indicated a progressive reduction in the activity of the volcano. Since August 18 almost weekly overflights were made in order to conduct thermal (FLIR camera), visual and SO2 gas monitoring. Towards the end of August thermal measurements showed for the first time the presence of new thermal anomalies (13.5 to 16.3 °C) located in the crevices of the N glaciers, at the same time fumarolic gases were observed coming out from those fractures. On a flight made on September 3, the presence of water coming out from the basal fronts of the northern glaciers was clearly observed and the formation of narrow streams of water running downslope, while it was evident the appearance of countless new crevices in the majority of glacier ends, but also new cracks and rockslides on the upper flanks. All this led to the conclusion that an abnormal process was producing the melting of the glaciers around the volcano. Starting on September it was possible to observe the presence of small secondary lahars descending several streams and we estimated that many of them are due to increased glacier melting. Later

  3. Catalogue of satellite photography of the active volcanoes of the world

    Science.gov (United States)

    Heiken, G.

    1976-01-01

    A catalogue is presented of active volcanoes as viewed from Earth-orbiting satellites. The listing was prepared of photographs, which have been screened for quality, selected from the earth resources technology satellite (ERTS) and Skylab, Apollo and Gemini spacecraft. There is photography of nearly every active volcano in the world; the photographs are particularly useful for regional studies of volcanic fields.

  4. Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes

    Science.gov (United States)

    Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.

  5. Soufriere volcano, st. Vincent: observations of its 1979 eruption from the ground, aircraft, and satellites.

    Science.gov (United States)

    Fiske, R S; Sigurdsson, H

    1982-06-04

    Rapid response by earth, atmospheric, and space scientists made possible diverse observations during the explosive phase of the 1979 eruption of Soufriere Volcano. The 11 reports that follow indicate that, with the availability of appropriate personnel, equipment, and logistical support, a significant body of geophysical data can be gathered on short notice at erupting volcanoes in remote parts of the world.

  6. Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador)

    NARCIS (Netherlands)

    Robin, Claude; Samaniego, Pablo; Le Pennec, Jean-Luc; Mothes, Patricia; van der Plicht, Johannes

    2008-01-01

    Since the eruption which affected Quito in AD 1660, Guagua Pichincha has been considered a hazardous volcano. Based on field studies and twenty C-14 dates, this paper discusses the eruptive activity of this volcano, especially that of the last 2000 years. Three major Plinian eruptions with

  7. Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper-Platinum(111) Alloy

    DEFF Research Database (Denmark)

    Jensen, Kim Degn; Tymoczko, Jakub; Rossmeisl, Jan

    2018-01-01

    catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1 m KOH, the alloy catalyst at the peak of the volcano exhibits...

  8. Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper-Platinum(111) Alloy

    DEFF Research Database (Denmark)

    Jensen, Kim Degn; Tymoczko, Jakub; Rossmeisl, Jan

    2018-01-01

    catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1(M) KOH, the alloy catalyst at the peak of the volcano exhibits...

  9. On the carcinogenic polycyclic aromatic hydrocarbon benzo(a)pyrene in volcano exhausts.

    Science.gov (United States)

    Ilnitsky, A P; Belitsky, G A; Shabad, L M

    1976-05-01

    The content of benzo(a)pyrene in the juvenile ashes of the volcano Tyatya (Kunashir Island, Kuriles) and in the soil, vegetation and volcanic mud collected near volcanos in Kamchatka was studied. It was concluded that volcanic activity does not play a large role in forming the background level of this carcinogen in the human environment.

  10. Rifts of deeply eroded Hawaiian basaltic shields: a structural analog for large Martian volcanoes

    International Nuclear Information System (INIS)

    Knight, M.D.; Walker, G.P.L.; Mouginis-Mark, P.J.; Rowland, S.K.

    1988-01-01

    Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars

  11. Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean

    NARCIS (Netherlands)

    Charlou, J.-L.; Donval, J.-P.; Zitter, T.; Roy, N.; Jean Baptiste, P.; Foucher, J.P.; Woodside, J.M.; Medinaut, Party

    2003-01-01

    As a part of the Dutch-French MEDINAUT diving expedition in 1998, cold seeps and mud volcanoes were studied and sampled in two distinctive tectonic settings in the eastern Mediterranean Sea. The first setting was the Olimpi Mud Volcano field (OMV area), including Napoli, Milano, Maidstone and Moscow

  12. The added value of time-variable microgravimetry to the understanding of how volcanoes work

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael; Greco, Filippo; Diament, Michel

    2017-01-01

    During the past few decades, time-variable volcano gravimetry has shown great potential for imaging subsurface processes at active volcanoes (including some processes that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide information regarding processes such as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, time-variable volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravimetry at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of time-variable gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of time-variable volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of time-variable volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.

  13. Glaciers of Avacha group of volcanoes in Neoholocene

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2016-01-01

    Full Text Available The study of moraines at the Avacha volcano group revealed that glaciers changes at all volcanoes within the group happened almost synchronously. Glacial deposits could be grouped into three generations, corresponding to three periods of glacier fluctuations in Neoholocene. The largest glaciation within the group occurred ~2000 years ago. Fragments of moraine, corresponding to that period were found only in the moraine complex of the Ditmar Glacier which was 15% larger then today at that time. The most of moraines at the Avacha volcano group were formed during the Little Ice Age, which in the studied region continued up to the first decades of XX centuries. The maximal advance of glaciers probably happened in XVII century. The moraine corresponding to that period was found at the Kozelsky Glacier valley. At present time the total area of glaciers which moraines were described and dated approaches 21.46  km2. The area of reconstructed moraines corresponding to the Little Ice Age is estimated to be 2.79 km2, therefore at that period the total glaciation area reaches 24,25 км2 exceeding the present area by 13%. It could be claimed that in general during the time past the Little Ice Age the glaciation nature and glacier types did not change sufficiently. The rate of glacier degradation at various parts of the group is different and depends mainly on exposition. At the valleys of four glaciers we found moraines formed in the middle of XX century. They may appear in 1941–1952 when the unfavorable weather conditions leaded to stable negative anomalies in accumulation have happened.

  14. Some Recent USF Studies at Volcanoes in Central America

    Science.gov (United States)

    McNutt, S. R.

    2014-12-01

    Scientists at the University of South Florida (USF) have been working in Central America for several decades. Efforts have focused on Physical Volcanology in Nicaragua, GPS in Costa Rica, and assessment of Geothermal projects in El Salvador, amongst others. Two years ago a Seismology Lab was established at USF. Personnel now include three Professors, a Post-Doc, and 4 graduate students. Seismic and GPS networks were installed at Telica Volcano, Nicaragua, in 2010 by Roman, LaFemina and colleagues. Data are recorded on site and recovered several times per year at this persistently restless volcano, which has rates of 5 to 1400 low frequency seismic events per day (Rodgers et al., submitted). Proposals have been submitted to install instruments on other Nicaraguan volcanoes, including seismometers, GPS, infrasound, and lightning sensors. This suite of instruments has proven to be very effective to study a range of volcanic processes. The proposals have not been successful to date (some are pending), and alternative funding sources are being explored. One interesting scientific issue is the presence of strong seasonal effects, specifically a pronounced rainy season and dry season and possible interaction between shallow volcanic processes and surface waters. We are also pursuing a variety of studies that are complementary to the instrumental efforts. One such study is examining volcanic earthquake swarms, with the focus to date on identifying diagnostics. One clear pattern is that peak rates often occur early in swarms, whereas the largest M event occurs late. Additional evidence suggests that the seismic source size grows systematically, especially for events with similar waveforms (families). Recognition of such patterns, linked to processes, may help to improve monitoring and better take advantage of instrumental data to reduce vulnerability from eruptions.

  15. Geodetic Volcano Monitoring Research in Canary Islands: Recent Results

    Science.gov (United States)

    Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.

    2009-05-01

    The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under

  16. A Markov chain Monte Carlo Expectation Maximization Algorithm for Statistical Analysis of DNA Sequence Evolution with Neighbor-Dependent Substitution Rates

    DEFF Research Database (Denmark)

    Hobolth, Asger

    2008-01-01

    The evolution of DNA sequences can be described by discrete state continuous time Markov processes on a phylogenetic tree. We consider neighbor-dependent evolutionary models where the instantaneous rate of substitution at a site depends on the states of the neighboring sites. Neighbor...

  17. Aftershock identification problem via the nearest-neighbor analysis for marked point processes

    Science.gov (United States)

    Gabrielov, A.; Zaliapin, I.; Wong, H.; Keilis-Borok, V.

    2007-12-01

    The centennial observations on the world seismicity have revealed a wide variety of clustering phenomena that unfold in the space-time-energy domain and provide most reliable information about the earthquake dynamics. However, there is neither a unifying theory nor a convenient statistical apparatus that would naturally account for the different types of seismic clustering. In this talk we present a theoretical framework for nearest-neighbor analysis of marked processes and obtain new results on hierarchical approach to studying seismic clustering introduced by Baiesi and Paczuski (2004). Recall that under this approach one defines an asymmetric distance D in space-time-energy domain such that the nearest-neighbor spanning graph with respect to D becomes a time- oriented tree. We demonstrate how this approach can be used to detect earthquake clustering. We apply our analysis to the observed seismicity of California and synthetic catalogs from ETAS model and show that the earthquake clustering part is statistically different from the homogeneous part. This finding may serve as a basis for an objective aftershock identification procedure.

  18. A Distributed Approach to Continuous Monitoring of Constrained k-Nearest Neighbor Queries in Road Networks

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Cho

    2012-01-01

    Full Text Available Given two positive parameters k and r, a constrained k-nearest neighbor (CkNN query returns the k closest objects within a network distance r of the query location in road networks. In terms of the scalability of monitoring these CkNN queries, existing solutions based on central processing at a server suffer from a sudden and sharp rise in server load as well as messaging cost as the number of queries increases. In this paper, we propose a distributed and scalable scheme called DAEMON for the continuous monitoring of CkNN queries in road networks. Our query processing is distributed among clients (query objects and server. Specifically, the server evaluates CkNN queries issued at intersections of road segments, retrieves the objects on the road segments between neighboring intersections, and sends responses to the query objects. Finally, each client makes its own query result using this server response. As a result, our distributed scheme achieves close-to-optimal communication costs and scales well to large numbers of monitoring queries. Exhaustive experimental results demonstrate that our scheme substantially outperforms its competitor in terms of query processing time and messaging cost.

  19. Gastronomy Tourism in Several Neighbor Countries of Indonesia: a Brief Review

    Directory of Open Access Journals (Sweden)

    Kurniasih Sukenti

    2014-04-01

    Full Text Available Gastronomy tourism, also called culinary tourism or food tourism, is a kind of tourism that provide attractions based on the culinary aspect owned by a country, region, or area. It is not only offers food and beverages as the main objects in its attractions, but also everything related to food activities ranging from food ingredients, preparation, processing, serving, as well as the cultural and local values. A well-managed culinary tourism will be a supportive program in developing and enhancing the tourism sector in a country. The objective of this paper is to describe the profile of gastronomy tourism in several neighbor countries of Indonesia, i.e. Hongkong, Singapore, Thailand, and Malaysia. This brief review is also discussed the potential of Indonesia gastronomy in supporting government’s tourism program. Basically, Indonesia has more enormous potential asset in managing its cultural heritages in term of culinary than its neighbor countries. A well-managed gastronomy tourism plays not only an important role in enhancing the economic sector, but also contribute in preserving the natural and cultural resources. Keywords: gastronomy tourism, culinary tourism, food tourism.

  20. Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunhong; Xiao, Shaoqing; Gu, Xiaofeng [Jiangnan University, Wuxi (China)

    2014-11-15

    The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy.