WorldWideScience

Sample records for negatively regulates salicylic

  1. EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nishimura Marc

    2007-07-01

    Full Text Available Abstract Background The hypersensitive necrosis response (HR of resistant plants to avirulent pathogens is a form of programmed cell death in which the plant sacrifices a few cells under attack, restricting pathogen growth into adjacent healthy tissues. In spite of the importance of this defense response, relatively little is known about the plant components that execute the cell death program or about its regulation in response to pathogen attack. Results We isolated the edr2-6 mutant, an allele of the previously described edr2 mutants. We found that edr2-6 exhibited an exaggerated chlorosis and necrosis response to attack by three pathogens, two powdery mildew and one downy mildew species, but not in response to abiotic stresses or attack by the bacterial leaf speck pathogen. The chlorosis and necrosis did not spread beyond inoculated sites suggesting that EDR2 limits the initiation of cell death rather than its spread. The pathogen-induced chlorosis and necrosis of edr2-6 was correlated with a stimulation of the salicylic acid defense pathway and was suppressed in mutants deficient in salicylic acid signaling. EDR2 encodes a novel protein with a pleckstrin homology and a StAR transfer (START domain as well as a plant-specific domain of unknown function, DUF1336. The pleckstrin homology domain binds to phosphatidylinositol-4-phosphate in vitro and an EDR2:HA:GFP protein localizes to endoplasmic reticulum, plasma membrane and endosomes. Conclusion EDR2 acts as a negative regulator of cell death, specifically the cell death elicited by pathogen attack and mediated by the salicylic acid defense pathway. Phosphatidylinositol-4-phosphate may have a role in limiting cell death via its effect on EDR2. This role in cell death may be indirect, by helping to target EDR2 to the appropriate membrane, or it may play a more direct role.

  2. Safety assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12-15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate.

    Science.gov (United States)

    2003-01-01

    Methyl Salicylate produced bone lesions as a function of the level of exposure in 2-year rat studies; liver damage was seen in dogs exposed to 0.15 g/kg/day in one study; kidney and liver weight increases in another study at the same exposure; but no liver or kidney abnormalities in a study at 0.167 g/kg/day. Applications of Isodecyl, Tridecyl, and Butyloctyl Salicylate were not irritating to rabbit skin, whereas undiluted Ethylhexyl Salicylate produced minimal to mild irritation. Methyl Salicylate at a 1% concentration with a 70% ethanol vehicle were irritating, whereas a 6% concentration in polyethylene glycol produced little or no irritation. Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were not ocular irritants. Although Salicylic Acid at a concentration of 20% in acetone was positive in the local lymph node assay, a concentration of 20% in acetone/olive oil was not. Methyl Salicylate was negative at concentrations up to 25% in this assay, independent of vehicle. Maximization tests of Methyl Salicylate, Ethylhexyl Salicylate, and Butyloctyl Salicylate produced no sensitization in guinea pigs. Neither Salicylic Acid nor Tridecyl Salicylate were photosensitizers. Salicylic Acid, produced when aspirin is rapidly hydrolyzed after absorption from the gut, was reported to be the causative agent in aspirin teratogenesis in animals. Dermal exposures to Methyl Salicylate, oral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate, and parenteral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate are all associated with reproductive and developmental toxicity as a function of blood levels reached as a result of exposure. An exposure assessment of a representative cosmetic product used on a daily basis estimated that the exposure from the cosmetic product would be only 20% of the level seen with ingestion of a "baby" aspirin (81 mg) on a daily basis. Studies of the

  3. Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis1

    Science.gov (United States)

    Traw, M. Brian; Bergelson, Joy

    2003-01-01

    Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds. PMID:14551332

  4. CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis.

    Science.gov (United States)

    Sardar, Atish; Nandi, Ashis Kumar; Chattopadhyay, Debasis

    2017-06-15

    Cytosolic calcium ion (Ca2+) is an essential mediator of the plant innate immune response. Here, we report that a calcium-regulated protein kinase Calcineurin B-like protein (CBL)-interacting protein kinase 6 (CIPK6) functions as a negative regulator of immunity against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Arabidopsis lines with compromised expression of CIPK6 exhibited enhanced disease resistance to the bacterial pathogen and to P. syringae harboring certain but not all avirulent effectors, while restoration of CIPK6 expression resulted in abolition of resistance. Plants overexpressing CIPK6 were more susceptible to P. syringae. Enhanced resistance in the absence of CIPK6 was accompanied by increased accumulation of salicylic acid and elevated expression of defense marker genes. Salicylic acid accumulation was essential for improved immunity in the absence of CIPK6. CIPK6 negatively regulated the oxidative burst associated with perception of pathogen-associated microbial patterns (PAMPs) and bacterial effectors. Accelerated and enhanced activation of the mitogen-activated protein kinase cascade in response to bacterial and fungal elicitors was observed in the absence of CIPK6. The results of this study suggested that CIPK6 negatively regulates effector-triggered and PAMP-triggered immunity in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences

    KAUST Repository

    Frei dit Frey, Nicolas; Garcia, Ana; Bigeard, Jean; Zaag, Rim; Bueso, Eduardo; Garmier, Marie; Pateyron, Sté phanie; de Tauzia-Moreau, Marie-Ludivine; Brunaud, Vé ronique; Balzergue, Sandrine; Colcombet, Jean; Aubourg, Sé bastien; Martin-Magniette, Marie-Laure; Hirt, Heribert

    2014-01-01

    -induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76

  6. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground.

    Directory of Open Access Journals (Sweden)

    Camila Cramer Filgueiras

    Full Text Available Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes.

  7. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  8. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection.

    Science.gov (United States)

    Rodriguez, Maria Cecilia; Conti, Gabriela; Zavallo, Diego; Manacorda, Carlos Augusto; Asurmendi, Sebastian

    2014-08-03

    Plant viral infections disturb defense regulatory networks during tissue invasion. Emerging evidence demonstrates that a significant proportion of these alterations are mediated by hormone imbalances. Although the DELLA proteins have been reported to be central players in hormone cross-talk, their role in the modulation of hormone signaling during virus infections remains unknown. This work revealed that TMV-Cg coat protein (CgCP) suppresses the salicylic acid (SA) signaling pathway without altering defense hormone SA or jasmonic acid (JA) levels in Arabidopsis thaliana. Furthermore, it was observed that the expression of CgCP reduces plant growth and delays the timing of floral transition. Quantitative RT-qPCR analysis of DELLA target genes showed that CgCP alters relative expression of several target genes, indicating that the DELLA proteins mediate transcriptional changes produced by CgCP expression. Analyses by fluorescence confocal microscopy showed that CgCP stabilizes DELLA proteins accumulation in the presence of gibberellic acid (GA) and that the DELLA proteins are also stabilized during TMV-Cg virus infections. Moreover, DELLA proteins negatively modulated defense transcript profiles during TMV-Cg infection. As a result, TMV-Cg accumulation was significantly reduced in the quadruple-DELLA mutant Arabidopsis plants compared to wild type plants. Taken together, these results demonstrate that CgCP negatively regulates the salicylic acid-mediated defense pathway by stabilizing the DELLA proteins during Arabidopsis thaliana viral infection, suggesting that CgCP alters the stability of DELLAs as a mechanism of negative modulation of antiviral defense responses.

  9. Characterisation of SalRAB a salicylic acid inducible positively regulated efflux system of Rhizobium leguminosarum bv viciae 3841.

    Directory of Open Access Journals (Sweden)

    Adrian J Tett

    Full Text Available Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants.

  10. Allergic contact dermatitis from ethylhexyl salicylate and other salicylates

    DEFF Research Database (Denmark)

    Mortz, Charlotte G; Thormann, Henrik; Goossens, An

    2010-01-01

    Allergic contact dermatitis (ACD) from salicylates present in topical products is uncommon. Most publications about ACD from salicylates are case reports describing only a few patients. Cross-reactivity between salicylates is not commonly reported. This article describes allergic contact dermatitis...... from ethylhexyl salicylate used as an ultraviolet filter and fragrance compound and reviews the published literature on contact allergy to salicylates....

  11. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects.

    Science.gov (United States)

    Swain, Swadhin; Roy, Shweta; Shah, Jyoti; Van Wees, Saskia; Pieterse, Corné M; Nandi, Ashis K

    2011-12-01

    Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  12. SALICYLATE INCREASES THE GAIN OF THE CENTRAL AUDITORY SYSTEM

    Science.gov (United States)

    Sun, W.; Lu, J.; Stolzberg, D.; Gray, L.; Deng, A.; Lobarinas, E.; Salvi, R. J.

    2009-01-01

    High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory cortex (AC) of conscious rats, but not the inferior colliculus (IC). When rats were anesthetized with isoflurane, which increases GABA-mediated inhibition, the salicylate-induced AC amplitude enhancement was abolished, whereas ketamine, which blocks N-methyl-d-aspartate receptors, further increased the salicylate-induced AC amplitude enhancement. Direct application of salicylate to the cochlea, however, reduced the response amplitude of the cochlea, IC and AC, suggesting the AC amplitude enhancement induced by systemic injection of salicylate does not originate from the cochlea. To identify a behavioral correlate of the salicylate-induced AC enhancement, the acoustic startle response was measured before and after salicylate treatment. Salicylate significantly increased the amplitude of the startle response. Collectively, these results suggest that high doses of salicylate increase the gain of the central auditory system, presumably by down-regulating GABA-mediated inhibition, leading to an exaggerated acoustic startle response. The enhanced startle response may be the behavioral correlate of hyperacusis that often accompanies tinnitus and hearing loss. Published by Elsevier Ltd on behalf of IBRO. PMID:19154777

  13. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone

    Science.gov (United States)

    Nowak, D. M.

    1983-06-01

    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  14. Salicylic acid regulates basal resistance to Fusarium head blight in wheat.

    Science.gov (United States)

    Makandar, Ragiba; Nalam, Vamsi J; Lee, Hyeonju; Trick, Harold N; Dong, Yanhong; Shah, Jyoti

    2012-03-01

    Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.

  15. The analysis of methyl salicylate and salicylic acid from Chinese herbal medicine ingestion.

    Science.gov (United States)

    Parker, Dawn; Martinez, Christina; Stanley, Christina; Simmons, Jerry; McIntyre, Iain M

    2004-04-01

    This paper presents a multi-drug fatality in which methyl salicylate was ingested. It is presented to inform the toxicological community that a particularly expeditious method of detection for methyl salicylate exists. Previously published methods for the analysis of methyl salicylate include a gas chromatographic-mass spectrometric method and an alkaline/acidic extraction followed by high-performance liquid chromatographic (HPLC) analysis. This article describes a method for analyzing methyl salicylate using HPLC, in which a simple, rapid extraction procedure is used. Using a previously published HPLC method, methyl salicylate and salicylic acid were easily identified in biological specimens. Methyl salicylate and salicylic acid were detected using an extraction solution of acetonitrile coupled with internal standard and then analyzed by HPLC-diode-array detection. Because of its concentrated liquid form, methyl salicylate ingestion can cause rapid onset salicylate toxicity. As the potentially fatal methyl salicylate forms are readily available and easily found on drugstore shelves, the need to rapidly detect and quantitate salicylic acid concentrations that are due to methyl salicylate ingestion may arise. In the case presented, the peripheral blood concentration of salicylic acid from methyl salicylate ingestion was 320 mg/L, and the concentration in gastric contents was 820 mg. It alone was not the cause of death, however. The discovery of the ability to detect and quantitate methyl salicylate was due to its suspected ingestion.

  16. Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles.

    Science.gov (United States)

    Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2013-11-07

    Electrochemical sensing of methyl salicylate, a key plant volatile has been achieved using a gold nanoparticle (AuNP) modified screen printed carbon electrode (SPCE). The electrochemical response of planar gold electrodes, SPCE and AuNP-SPCE in alkaline electrolyte in the presence and absence of methyl salicylate were studied to understand the amperometric response of various electrochemical reactions. The reaction mechanism includes hydrolysis of methyl salicylate and the oxidation of negative species. The electrochemical responses were recorded using cyclic voltammetry and differential pulse voltammetry techniques, where the results showed characteristic signals for methyl salicylate oxidation. Among the examined electrodes, AuNP-SPCE possessed three fold better sensitivity than planar gold and 35 times better sensitivity than SPCE (at 0.5 V). The methyl salicylate sensing by AuNP-SPCE possessed 95% of its methyl salicylate response. The electroanalytical results of soybean extract showed that AuNP-SPCE can be employed for the determination of methyl salicylate in real samples.

  17. Regulation of water, salinity, and cold stress responses by salicylic acid

    Directory of Open Access Journals (Sweden)

    Kenji eMiura

    2014-01-01

    Full Text Available Salicylic acid (SA is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation. Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this chapter, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  18. Plasma salicylate from methyl salicylate cream compared to oil of wintergreen.

    Science.gov (United States)

    Wolowich, William R; Hadley, Carmen M; Kelley, Michael T; Walson, Philip D; Casavant, Marcel J

    2003-01-01

    Poison Control Centers follow the acetylsalicylic acid (ASA) treatment guideline to manage unintentional ingestions of topical methyl salicylate liniments. For example, one teaspoon of 30% methyl salicylate cream such as Ben Gay provides an "ASA equivalent dose" of 180 mg/kg for a 10 kg child. The ASA treatment guideline advises emesis with syrup of Ipecac and 24 h home followup for this dose. Both the ASA conversion factor to yield the ASA equivalent dose and the treatment guideline assume 100% bioavailability of the salicylate. The nature of this topical dosage product led the investigators to expect less than complete absorption of methyl salicylate. To compare plasma concentrations of salicylate from ingested methyl salicylate cream with plasma concentrations of salicylate from ingested oil of wintergreen. Four adult volunteers consented to an open label, four-way crossover design, with randomization to the following treatments: 1 mL Oil of Wintergreen, U.S.P., 6.7 g of Ben Gay 15% and 20 g of Ben Gay 15% and also to hold 5 g of Ben Gay 15% cream in the buccal cavity for 1 minute and then expectorate. Plasma was collected for salicylate determination, and the results analyzed with a noncompartmental pharmacokinetic model. No plasma salicylate was detected after buccal treatment phase. Relative bioavailability for the low-dose treatment was 0.5 compared to oil of wintergreen. Plasma salicylate concentrations from methyl salicylate cream are not equal to those achieved after ingestion of oil of wintergreen. Dosage formulation must be considered when predicting toxicity.

  19. Chitosan oligosaccharide and salicylic acid up-regulate gene expression differently in relation to the biosynthesis of artemisinin in Artemisia annua L

    DEFF Research Database (Denmark)

    Yin, Heng; Kjær, Anders; Fretté, Xavier

    2012-01-01

    oligosaccharide (COS) and salicylic acid (SA) on both artemisinin production and gene expression related to the biosynthetic pathway of artemisinin. COS up-regulated the transcriptional levels of the genes ADS and TTG1 2.5 fold and 1.8 fold after 48 h individually, whereas SA only up-regulated ADS 2.0 fold after...

  20. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4

    DEFF Research Database (Denmark)

    Brodersen, P; Petersen, M; Nielsen, Henrik Bjørn

    2006-01-01

    Arabidopsis MPK4 has been implicated in plant defense regulation because mpk4 knockout plants exhibit constitutive activation of salicylic acid (SA)-dependent defenses, but fail to induce jasmonic acid (JA) defense marker genes in response to JA. We show here that mpk4 mutants are also defective...

  1. Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.

    Science.gov (United States)

    Xiao, Xiang; Cheng, Xi; Yin, Kangquan; Li, Huali; Qiu, Jin-Long

    2017-08-01

    Pytohormone abscisic acid (ABA) plays important roles in defense responses. Nonetheless, how ABA regulates plant resistance to biotrophic fungi remains largely unknown. Arabidopsis ABA-deficient mutants, aba2-1 and aba3-1, displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum. Moreover, exogenously administered ABA increased the susceptibility of Arabidopsis to G. cichoracearum. Arabidopsis ABA perception components mutants, abi1-1 and abi2-1, also displayed similar phenotypes to ABA-deficient mutants in resistance to G. cichoracearum. However, the resistance to G. cichoracearum is not changed in downstream ABA signaling transduction mutants, abi3-1, abi4-1, and abi5-1. Microscopic examination revealed that hyphal growth and conidiophore production of G. cichoracearum were compromised in the ABA deficient mutants, even though pre-penetration and penetration growth of the fungus were not affected. In addition, salicylic acid (SA) and MPK3 are found to be involved in ABA-regulated resistance to G. cichoracearum. Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G. cichoracearum, probably through antagonizing the function of SA.

  2. Over-expression of SlJA2 decreased heat tolerance of transgenic tobacco plants via salicylic acid pathway.

    Science.gov (United States)

    Liu, Zhong-Ming; Yue, Meng-Meng; Yang, Dong-Yue; Zhu, Shao-Bo; Ma, Na-Na; Meng, Qing-Wei

    2017-04-01

    Over-expression of SlJA2 decreased the accumulation of SA, which resulted in significant physiological and gene expression changes in transgenic tobacco plants, leading to the decreased heat tolerance of transgenic tobacco. NAC family, the largest transcription factors in plants, responses to different environmental stimuli. Here, we isolated a typical NAC transcription factor (SlJA2) from tomato and got transgenic tobacco with SlJA2 over-expression. Expression of SlJA2 was induced by heat stress (42 °C), chilling stress (4 °C), drought stress, osmotic stress, abscisic acid, and salicylic acid. Over-expression of SlJA2 decreased the accumulation of salicylic acid by regulating expression of salicylic acid degradation gene under heat stress. Compared to WT plants, stomatal apertures and water loss increased in transgenic plants, and the damage of photosynthetic apparatus and chlorophyll breakdown were more serious in transgenic plants under heat stress. Meanwhile, more H 2 O 2 and O 2 ·- were accumulated transgenic plants and proline synthesis was restricted, which resulted in more serious oxidative damage compared to WT. qRT-PCR analysis showed that over-expression of SlJA2 could down-regulate genes involved in reactive oxygen species scavenging, proline biosynthesis, and response to heat stress. All the above results indicated that SlJA2 may be a negative regulator responded to plant's heat tolerance. Thus, this study provides new insight into roles of NAC family member in plant response to abiotic stress.

  3. GDSL LIPASE1 Modulates Plant Immunity through Feedback Regulation of Ethylene Signaling1[W

    Science.gov (United States)

    Kim, Hye Gi; Kwon, Sun Jae; Jang, Young Jin; Nam, Myung Hee; Chung, Joo Hee; Na, Yun-Cheol; Guo, Hongwei; Park, Ohkmae K.

    2013-01-01

    Ethylene is a key signal in the regulation of plant defense responses. It is required for the expression and function of GDSL LIPASE1 (GLIP1) in Arabidopsis (Arabidopsis thaliana), which plays an important role in plant immunity. Here, we explore molecular mechanisms underlying the relationship between GLIP1 and ethylene signaling by an epistatic analysis of ethylene response mutants and GLIP1-overexpressing (35S:GLIP1) plants. We show that GLIP1 expression is regulated by ethylene signaling components and, further, that GLIP1 expression or application of petiole exudates from 35S:GLIP1 plants affects ethylene signaling both positively and negatively, leading to ETHYLENE RESPONSE FACTOR1 activation and ETHYLENE INSENSITIVE3 (EIN3) down-regulation, respectively. Additionally, 35S:GLIP1 plants or their exudates increase the expression of the salicylic acid biosynthesis gene SALICYLIC ACID INDUCTION-DEFICIENT2, known to be inhibited by EIN3 and EIN3-LIKE1. These results suggest that GLIP1 regulates plant immunity through positive and negative feedback regulation of ethylene signaling, and this is mediated by its activity to accumulate a systemic signal(s) in the phloem. We propose a model explaining how GLIP1 regulates the fine-tuning of ethylene signaling and ethylene-salicylic acid cross talk. PMID:24170202

  4. Naturally occurring methyl salicylate glycosides.

    Science.gov (United States)

    Mao, Ping; Liu, Zizhen; Xie, Meng; Jiang, Rui; Liu, Weirui; Wang, Xiaohong; Meng, Shen; She, Gaimei

    2014-01-01

    As an important part of non steroids anti-inflammation drug (NSAIDs), salicylate has developed from natural substance salicylic acid to natrium salicylicum, to aspirin. Now, methyl salicylate glycoside, a new derivative of salicylic acid, is modified with a -COOH group integrated one methyl radical into formic ether, and a -OH linked with a monosaccharide, a disaccharide or a trisaccharide unit by glycosidic linkage. It has the similar pharmacological activities, anti-inflammatory, analgesic, antipyretic and antithrombotic as the previous salicylates' without resulting in serious side effects, particularly the gastrointestinal toxicity. Owing to the superiority of those significant bioactivities, methyl salicylate glycosides have became a hot research area in NSAIDs for several years. This paper compiles all 9 naturally occurring methyl salicylate glycosides, their distribution of the resource and pharmacological mechanism, which could contribute to the new drug discovery.

  5. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum.

    Science.gov (United States)

    Snoeren, Tjeerd A L; Mumm, Roland; Poelman, Erik H; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-05-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA.

  6. Synthesis of isotopically labelled salicylates

    International Nuclear Information System (INIS)

    Hawkins, D.R.; Pryor, R.W.

    1981-01-01

    [ 13 C-carboxyl]Salicylic acid has been prepared by carbonation of 2-benzyloxybromobenzene followed by reductive debenzylation. Deuterium and tritium labelled salicylic acid and 2 H 2 / 13 C-salicylic acid were prepared by reduction of the 3,5-dibromo derivatives using Raney Ni-Al. Deuterium labelled salicylic acid containing up to four deuterium atoms was prepared by catalytic exchange with Raney Ni-Al in 5% NaOD/D 2 O. (author)

  7. Salicylic Acid Topical

    Science.gov (United States)

    ... the package label for more information.Apply a small amount of the salicylic acid product to one or two small areas you want to treat for 3 days ... know that children and teenagers who have chicken pox or the flu should not use topical salicylic ...

  8. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats.

    Science.gov (United States)

    Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun

    2016-12-01

    Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.

  9. Up-regulation of Ca2+/CaMKII/CREB signaling in salicylate-induced tinnitus in rats.

    Science.gov (United States)

    Zhao, Jiuhan; Wang, Biao; Wang, Xiaohong; Shang, Xiuli

    2018-02-09

    The purpose of the study was to investigate the changes of Ca 2+ /calmodulin-dependent protein kinases II (CaMKII)/cAMP response element-binding protein (CREB) signaling pathway in a rat tinnitus model. Eighteen Wistar rats were randomly divided into three groups: normal control (NC), normal saline (NS), and tinnitus model (TM) groups. Tinnitus model was induced by intraperitoneal injection of salicylate. The concentration of intracellular calcium level in auditory cortex cells was determined using Fura-2 acetoxymethyl ester (Fura-2 AM) method with fluorospectrophotometer. Expressions of calmodulin (CaM), N-methyl-D-aspartate receptor 2B subunit (NR2B), calcium-calmodulin kinase II (CaMKII), and cAMP response element-binding protein (CREB) were detected with Western blot. Tinnitus model was successfully established by the intraperitoneal administration of salicylate in rats. Compared with rats in NC and NS groups, salicylate administration significantly elevated CaM, NR2B, phospho-CaMKII and phospho-CREB expression in auditory cortex from tinnitus model group (p salicylate administration causes tinnitus symptoms and elevates Ca 2+ /CaMKII/CREB signaling pathway in auditory cortex cells. Our study likely provides a new understanding of the development of tinnitus.

  10. Role of NPR1 dependent and NPR1 independent genes in response to Salicylic acid

    Directory of Open Access Journals (Sweden)

    Neha Agarwal

    2017-10-01

    Full Text Available NPR1 (Nonexpressor of pathogenesis-related gene is a transcription coactivator and central regulator of systemic acquired resistance (SAR pathway. It controls wide range of pathogenesis related genes involved in various defense responses, acts by sensing SAR signal molecule, Salicylic acid (SA. Mutation in NPR1 results in increased susceptibility to pathogen infection and less expression of pathogenesis related genes. The present study aimed to identify the role of NPR1 in gene expression after the Salicylic acid induction. For this RNA-seq was performed in Arabidopsis thaliana Col-0 and npr1-1 in response to Salicylic acid. RNA-seq analysis revealed a total of 3811 differentially expressed gene in which 2109 genes are up-regulated and 1702 genes are down-regulated. We have divided these genes in 6 categories SA induced (SI, SA repressed (SR, NPR1 dependent SI (ND-SI, NPR1 dependent SR (ND-SR, NPR1 independent SI (NI-SI, NPR1 independent SR (NI-SR. Further, Gene ontology and MapMan pathway analysis of differentially expressed genes suggested variety of biological processes and metabolic pathways that are enriched during SAR defense pathway. These results contribute to shed light on importance of both NPR1-dependent (ND and NPR1-independent (NI gene acting downstream to Salicylic acid induction in SAR pathway. The present study aimed to identify the role of NPR1 in gene expression after the Salicylic acid induction.

  11. Sugar signaling regulation by Arabidopsis SIZ1-driven sumoylation is independent of salicylic acid

    DEFF Research Database (Denmark)

    Castro, Pedro Humberto Araújo R F; Verde, Nuno; Tavares, Rui Manuel

    2018-01-01

    inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here......, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas...

  12. Salicylic acid-independent plant defence pathways

    OpenAIRE

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicy...

  13. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    Directory of Open Access Journals (Sweden)

    Zhi-hong Huang

    2015-01-01

    Full Text Available Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA and graphitized carbon blacks (GCB, the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  14. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS.

    Science.gov (United States)

    Huang, Zhi-Hong; Wang, Zhi-Li; Shi, Bao-Lin; Wei, Dong; Chen, Jian-Xin; Wang, Su-Li; Gao, Bao-Jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate were determined by GC-MS. The results showed that the level of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate increased remarkably in U. pumila once infected by T. akinire Sasaki, but the maximums of these four compounds occurred at different times. Salicylic acid level reached the highest at the early stage, and jasmonic acid level went to the maximum in the middle stage; by contrast, change of content of methyl salicylate and methyl jasmonate was the quite opposite.

  15. Pigmentation, anesthesia, behavioral factors, and salicylate uptake.

    Science.gov (United States)

    Jastreboff, P J; Issing, W; Brennan, J F; Sasaki, C T

    1988-02-01

    In four experiments, 54 pigmented rats were used to examine the time course of sodium salicylate uptake in serum, cerebrospinal fluid, and perilymph. Subjects were tested under sodium pentobarbital anesthesia or while conscious. Compared with previously reported data from albino rats, pigmented subjects generally showed increased salicylate uptake. Moreover, the data suggested two different, time-dependent clearance mechanisms in conscious animals not observed in anesthetized rats. Daily injections of salicylate did not produce an accumulation of salicylate in serum. Systematically higher levels of salicylate were observed in perilymph compared with cerebrospinal fluid. Behavioral procedures, including water deprivation and conditioned suppression of ongoing drinking levels, had no effect on salicylate levels.

  16. Functional Characterization of Salicylic Acid Carboxyl Methyltransferase from Camellia sinensis, Providing the Aroma Compound of Methyl Salicylate during the Withering Process of White Tea.

    Science.gov (United States)

    Deng, Wei-Wei; Wang, Rongxiu; Yang, Tianyuan; Jiang, Li'na; Zhang, Zheng-Zhu

    2017-12-20

    Methyl salicylate (MeSA) is one of the volatile organic compounds (VOCs) that releases floral scent and plays an important role in the sweet flowery aroma of tea. During the withering process for white tea producing, MeSA was generated by salicylic acid carboxyl methyltransferase (SAMT) with salicylic acid (SA), and the specific floral scent was formed. In this study, we first cloned a CsSAMT from tea leaves (GenBank accession no. MG459470) and used Escherichia coli and Saccharomyces cerevisiae to express the recombinant CsSAMT. The enzyme activity in prokaryotic and eukaryotic expression systems was identified, and the protein purification, substrate specificity, pH, and temperature optima were investigated. It was shown that CsSAMT located in the chloroplast, and the gene expression profiles were quite different in tea organs. The obtained results might give a new understanding for tea aroma formation, optimization, and regulation and have great significance for improving the specific quality of white tea.

  17. Salicylate toxicity model of tinnitus

    Directory of Open Access Journals (Sweden)

    Daniel eStolzberg

    2012-04-01

    Full Text Available Salicylate, the active component of the common drug aspirin, has mild analgesic, antipyretic, and anti-inflammatory effects at moderate doses. At higher doses, however, salicylate temporarily induces moderate hearing loss and the perception of a high-pitch ringing in humans and animals. This phantom perception of sound known as tinnitus is qualitatively similar to the persistent subjective tinnitus induced by high-level noise exposure, ototoxic drugs or aging which affects ~14% of the general population. For over a quarter century, auditory scientists have used the salicylate toxicity model to investigate candidate biochemical and neurophysiological mechanisms underlying phantom sound perception. In this review, we summarize some of the intriguing biochemical and physiological effects associated with salicylate-induced tinnitus, some of which occur in the periphery and others in the central nervous system. The relevance and general utility of the salicylate toxicity model in understanding phantom sound perception in general are discussed.

  18. 21 CFR 556.590 - Salicylic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salicylic acid. 556.590 Section 556.590 Food and... Residues of New Animal Drugs § 556.590 Salicylic acid. A tolerance of zero is established for residues of salicylic acid in milk from dairy animals. ...

  19. Endogenous salicylic acid shows different correlation with baicalin and baicalein in the medicinal plant Scutellaria baicalensis Georgi subjected to stress and exogenous salicylic acid.

    Directory of Open Access Journals (Sweden)

    Hu Su

    Full Text Available Salicylic acid (SA is synthesized via the phenylalanine lyase (PAL and isochorismate synthase (ICS pathways and can influence the stress response in plants by regulating certain secondary metabolites. However, the association between SA and particular secondary metabolites in the Chinese medicinal plant Scutellaria baicalensis Georgi is unclear. To elucidate the association between SA and the secondary metabolites baicalin and baicalein, which constitute the primary effective components of S. baicalensis, we subjected seedlings to drought and salt stress and exogenous SA treatment in a laboratory setting and tested the expression of PAL and ICS, as well as the content of free SA (FSA, total SA (TSA, baicalin, and baicalein. We also assessed the correlation of FSA and TSA with PAL and ICS, and with baicalin and baicalein accumulation, respectively. The results indicated that both FSA and TSA were positively correlated with PAL, ICS, and baicalin, but negatively correlated with baicalein. The findings of this study improve our understanding of the manner in which SA regulates secondary metabolites in S. baicalensis.

  20. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng

    2015-02-27

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.

  1. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum

    NARCIS (Netherlands)

    Snoeren, T.A.L.; Mumm, R.; Poelman, E.H.; Yang, Y.; Pichersky, E.; Dicke, M.

    2010-01-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced

  2. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis

    NARCIS (Netherlands)

    Ton, J.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2002-01-01

    Salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are each involved in the regulation of basal resistance against different pathogens. These three signals play important roles in induced resistance as well. SA is a key regulator of pathogen-induced systemic acquired resistance (SAR),

  3. How salicylic acid takes transcriptional control over jasmonic acid signaling

    NARCIS (Netherlands)

    Caarls, Lotte|info:eu-repo/dai/nl/371746213; Pieterse, Corné M J|info:eu-repo/dai/nl/113115113; van Wees, Saskia C M|info:eu-repo/dai/nl/185445373

    2015-01-01

    Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between

  4. Some physiological and biochemical responses to copper of detached cucumber (cucumis sativus l.) cotyledons pre-floated in salicylic acid

    International Nuclear Information System (INIS)

    Gulengul, S.C.; Yildiz, T.; Deveci, D.

    2017-01-01

    Salicylic acid (SA) is a growth regulator that promotes growth of plants under stress and non-stress conditions. In the present investigation we studied the role of salicylic acid in copper induced physiological and biochemical changes and the possible induction of oxidative stress in detached cucumber cotyledons. Detached cotyledons of young cucumber seedlings were floated in 150 ppm SA. Then, the responses of these cotyledons to different concentrations (0, 10, 20 ve 50 mM) of copper (CuCl2. H2O) were investigated. In detached cucumber cotyledons exposed to increasing Cu concentrations, the fresh weight accumulation and the photosynthetic pigment content were decreased. Furthermore, the levels of some important parameters regarding oxidative stress in the cotyledons, namely lipid peroxidation (MDA), glutathione (GSH) and proline were increased. In the detached cucumber cotyledons pre-floation process with SA alleviated the negative effect of Cu ( 20 mM and 50 mM Cu) on growth parameters. (author)

  5. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    International Nuclear Information System (INIS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-01-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×10 9 , (1.07±0.07)×10 10 , (7.48±0.17)×10 9 , (7.31±0.29)×10 9 , (5.47±0.25)×10 9 , (6.94±0.10)×10 9 (M −1 s −1 ), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×10 9 , (8.98±0.27)×10 9 , (5.39±0.21)×10 9 , (4.33±0.17)×10 9 , (4.72±0.15)×10 9 , (1.42±0.02)×10 9 (M −1 s −1 ), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated. - Highlights: • Free radical chemistry of salicylic and 4 methyl salicylic acids is investigated. • The transient absorptions spectra for model compounds are measured. • Absolute bimolecular reaction rate constants for hydroxyl radical are determined. • Solvated electron reaction rate constants are calculated. • The use of salicylic acids as models for pharmaceuticals is explored

  6. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences

    KAUST Repository

    Frei dit Frey, Nicolas

    2014-06-30

    Background Mitogen-activated protein kinases (MAPKs) are key regulators of immune responses in animals and plants. In Arabidopsis, perception of microbe-associated molecular patterns (MAMPs) activates the MAPKs MPK3, MPK4 and MPK6. Increasing information depicts the molecular events activated by MAMPs in plants, but the specific and cooperative contributions of the MAPKs in these signalling events are largely unclear. Results In this work, we analyse the behaviour of MPK3, MPK4 and MPK6 mutants in early and late immune responses triggered by the MAMP flg22 from bacterial flagellin. A genome-wide transcriptome analysis reveals that 36% of the flg22-upregulated genes and 68% of the flg22-downregulated genes are affected in at least one MAPK mutant. So far MPK4 was considered as a negative regulator of immunity, whereas MPK3 and MPK6 were believed to play partially redundant positive functions in defence. Our work reveals that MPK4 is required for the regulation of approximately 50% of flg22-induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76% of flg22-downregulated genes require two or three MAPKs for their regulation. The flg22-induced MAPK activities are differentially regulated in MPK3 and MPK6 mutants, both in amplitude and duration, revealing a highly interdependent network. Conclusions These data reveal a new set of distinct functions for MPK3, MPK4 and MPK6 and indicate that the plant immune signalling network is choreographed through the interplay of these three interwoven MAPK pathways.

  7. Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area.

    Science.gov (United States)

    Wu, Hao; Xu, Feng-Lei; Yin, Yong; Da, Peng; You, Xiao-Dong; Xu, Hui-Min; Tang, Yan

    2015-08-01

    Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation.

  8. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    Science.gov (United States)

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses.

    Science.gov (United States)

    Quentin, Michaël; Baurès, Isabelle; Hoefle, Caroline; Caillaud, Marie-Cécile; Allasia, Valérie; Panabières, Franck; Abad, Pierre; Hückelhoven, Ralph; Keller, Harald; Favery, Bruno

    2016-03-01

    The oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule-associated protein AtMAP65-3 plays a critical role in organizing cytoskeleton microtubule arrays during mitosis and cytokinesis. This renders the protein essential for the development of giant cells, which are the feeding sites induced by root knot nematodes. Here, we show that AtMAP65-3 expression is also induced in leaves upon infection by the downy mildew oomycete and the powdery mildew fungus. Loss of AtMAP65-3 function in the map65-3 mutant dramatically reduced infection by both pathogens, predominantly at the stages of leaf penetration. Whole-transcriptome analysis showed an over-represented, constitutive activation of genes involved in salicylic acid (SA) biosynthesis, signaling, and defense execution in map65-3, whereas jasmonic acid (JA)-mediated signaling was down-regulated. Preventing SA synthesis and accumulation in map65-3 rescued plant susceptibility to pathogens, but not the developmental phenotype caused by cytoskeleton defaults. AtMAP65-3 thus has a dual role. It positively regulates cytokinesis, thus plant growth and development, and negatively interferes with plant defense against filamentous biotrophs. Our data suggest that downy mildew and powdery mildew stimulate AtMAP65-3 expression to down-regulate SA signaling for infection. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  11. Salicylic acid as a peeling agent: a comprehensive review.

    Science.gov (United States)

    Arif, Tasleem

    2015-01-01

    Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I-III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included.

  12. Cultural differences in hedonic emotion regulation after a negative event.

    Science.gov (United States)

    Miyamoto, Yuri; Ma, Xiaoming; Petermann, Amelia G

    2014-08-01

    Beliefs about emotions can influence how people regulate their emotions. The present research examined whether Eastern dialectical beliefs about negative emotions lead to cultural differences in how people regulate their emotions after experiencing a negative event. We hypothesized that, because of dialectical beliefs about negative emotions prevalent in Eastern culture, Easterners are less motivated than Westerners to engage in hedonic emotion regulation-up-regulation of positive emotions and down-regulation of negative emotions. By assessing online reactions to a recent negative event, Study 1 found that European Americans are more motivated to engage in hedonic emotion regulation. Furthermore, consistent with the reported motivation to regulate emotion hedonically, European Americans show a steeper decline in negative emotions 1 day later than do Asians. By examining retrospective memory of reactions to a past negative event, Study 2 further showed that cultural differences in hedonic emotion regulation are mediated by cultural differences in dialectical beliefs about motivational and cognitive utility of negative emotions, but not by personal deservingness or self-efficacy beliefs. These findings demonstrate the role of cultural beliefs in shaping emotion regulation and emotional experiences.

  13. Salicylic acid as a peeling agent: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Arif T

    2015-08-01

    Full Text Available Tasleem Arif Postgraduate Department of Dermatology, STD and Leprosy, Government Medical College, Srinagar, Jammu and Kashmir, India Abstract: Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I–III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included. Keywords: acne vulgaris, desmolytic agent, melasma, photodamage, salicylic acid 

  14. Methyl Salicylate Level Increase in Flax after Fusarium oxysporum Infection Is Associated with Phenylpropanoid Pathway Activation.

    Science.gov (United States)

    Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2016-01-01

    Flax ( Linum usitatissimum ) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in regulating plants' response to stress conditions. Upon treatment of flax plants with the fungus we found that methyl salicylate content increased (4.8-fold of the control) and the expression profiles of the analyzed genes suggest that it is produced most likely from cinnamic acid, through the β-oxidative route. At the same time activation of some genes involved in lignin and flavonoid biosynthesis was observed. We suggest that increased methyl salicylate biosynthesis during flax response to F. oxysporum infection may be associated with phenylpropanoid pathway activation.

  15. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    International Nuclear Information System (INIS)

    Kishore, Kamal; Mukherjee, T.

    2006-01-01

    Reactions of H, OH, e aq - and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of e aq - with these compounds were of the order of 10 9 dm 3 mol -1 s -1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>10 10 dm 3 mol -1 s -1 ) while O - radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N 3 radicals and SO 4 - radicals could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO 4 - radicals indicating that while one-electron reduction potential for semi-oxidized SA may be o1 for N 3 ? radical), it is more than 1.33V vs. NHE for semi-oxidized SSA species

  16. MicroRNA396a-5p and -3p induce tomato disease susceptibility by suppressing target genes and upregulating salicylic acid.

    Science.gov (United States)

    Chen, Lei; Meng, Jun; Zhai, Junmiao; Xu, Pinsan; Luan, Yushi

    2017-12-01

    Plants have evolved a variety of mechanisms to perceive and resist the assault of pathogens. The biotrophs, necrotrophs and hemibiotrophs are types of plant pathogens that activate diverse salicylic acid (SA) and jasmonic acid (JA) signaling pathways. In this study we showed that the expressions of miR396a-5p and -3p in Solanum lycopersicum (S. lycopersicum) were both down-regulated after infection by hemibiotroph Phytophthora infestans (P. infestans) and necrotroph Botrytis cinerea (B. cinerea) infection. Overexpression of miR396a-5p and -3p in transgenic tomato enhanced the susceptibility of S. lycopersicum to P. infestans and B. cinerea infection and the tendency to produce reactive oxygen species (ROS) under pathogen-related biotic stress. Additionally, miR396a regulated growth-regulating factor1 (GRF1), salicylic acid carboxyl methyltransferase (SAMT), glycosyl hydrolases (GH) and nucleotide-binding site-leucine-rich repeat (NBS-LRR) and down-regulated their levels. This ultimately led to inhibition of the expression of pathogenesis-related 1 (PR1), TGA transcription factors1 and 2 (TGA1 and TGA2) and JA-dependent proteinase inhibitors I and II (PI I and II), but enhanced the endogenous SA content and nonexpressor of pathogenesis-related genes 1 (NPR1) expression. Taken together, our results showed that negative regulation of target genes and their downstream genes expressions by miR396a-5p and -3p are critical for tomato abiotic stresses via affecting SA or JA signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced nacl tolerance by regulation of nacl and lenhx1 gene expression and improved photosynthetic performance in tomato seedlings

    International Nuclear Information System (INIS)

    Ghazanfar, B.; Chihui, C.; Liu, H.; Ahmad, I.; Khan, A.R.

    2016-01-01

    Salinity stress hampers plant growth and cause significant yield losses thus induction of salinity stress tolerance in crop plants is one of major goals of agriculture research. Arbuscular mycorhizae fungi Glomus etunicatum and acetyl salicylic acid were tested for induction of NaCl stress tolerance in tomato seedlings, cultivar No. 4. The seedlings were inoculated with Glomus etunicatum and exogenously sprayed with acetyl salicylic acid (0.30 mM) followed by salinity stress (150 mM). It was observed that both Glomus etunicatum and acetyl salicylic acid (singly or in combination) were significantly effective to minimize the injurious effects of salinity by improving root morphological parameters (length, diameter, surface area, volume and number of tips, nodes, bifurcations and connections), photosynthetic parameters (net photosynthesis Pn, stomatal conductance Gs) and chlorophyll contents compared to sole salinity treatment. The bio-inoculant Glomus etunicatum and chemical ameliorator acetyl salicylic acid also notably improved vegetative (fresh and dry weights) and reproductive growth (percent seedlings with flower buds and opened flowers, number of flower buds and opened flowers per seedling) of the plants as compared to the sole salinity treatment. The studied salt responsive genes (LeNHX1 and NaCl) were also regulated to different extents in seedling roots and leaves which was consistent with enhanced salinity stress tolerance. From these observations it is suggested that the individual or synergetic use of the AMF (Glomus etunicatum) and acetyl salicylic acid can be useful for tomato cultivation in the marginally salinity effected soils and warrants further investigations. (author)

  18. [Effects of exogenous salicylic acid on seed germination and physiological characteristics of Coronilla varia under drought stress.

    Science.gov (United States)

    Ma, Le Yuan; Chen, Nian Lai; Han, Guo Jun; Li, Liang

    2017-10-01

    This research investigated the effects of different concentrations (0, 0.5, 1.0, 2.0 mmol·L -1 ) of salicylic acid on the seed germination and physiological characteristics of legume forage Coronilla varia (cultivar 'Lvbaoshi') under PEG-6000 (concentration 8% and 12%) simulated drought stress. The results showed that under drought stress, 0.5-1.0 mmol·L -1 salicylic acid significantly increased germination percentage, germination vigour, germination index, vitality index and bud length of C. varia. Under the stress of 12% PEG, the dry mass of C. varia seedlings processed by 1.0 mmol·L -1 salicylic acid was significantly higher than that under drought stress. 0.5-1.0 mmol·L -1 salicylic acid processing significantly increased proline, soluble protein content, the activities of catalase, peroxidase and superoxide dismutase of C. varia seedlings under drought stress, but cell electrolyte permeability, H2O2 content and O2 - · production rate of seedlings were significantly decreased. 1.0 mmol·L -1 salicylic acid produced the best results. When the concentration of salicylic acid was beyond 2.0 mmol·L -1 , no mitigation effect was observed on the seed germination and growth of seedlings under drought stress. It was concluded that salicylic acid at appropriate concentrations could effectively improve osmotic regulation, antioxidation and mitigate the damage of drought stress so as to promote the growth of C. varia seedlings.

  19. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice

    Directory of Open Access Journals (Sweden)

    Minoru Namikawa

    2017-12-01

    Full Text Available The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP and -resistant (SAMR mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5 in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we

  20. Polarography of uranium(VI)-salicylic acid system

    International Nuclear Information System (INIS)

    Salah, El-Maraghy B.

    1980-01-01

    Uranium(VI)-salicylic acid system has been studied polarographically in perchloric acid medium. Varying concentrations of HClO 4 and salicylic acid have been used. The nature of the polarographic waves is irreversible. (author)

  1. Polarography of uranium(VI)-salicylic acid system

    Energy Technology Data Exchange (ETDEWEB)

    Salah, E M.B. [Ain Shams Univ., Cairo (Egypt). Faculty of Education

    1980-08-01

    Uranium(VI)-salicylic acid system has been studied polarographically in perchloric acid medium. Varying concentrations of HClO/sub 4/ and salicylic acid have been used. The nature of the polarographic waves is irreversible.

  2. Salicylate Hepatitis

    African Journals Online (AJOL)

    1974-04-09

    Apr 9, 1974 ... F. SPEKTOR, M.B. CH.B. Department of Pathology, Groote Schuur Hospital and Uni-' versity of Cape ... salicylate 10 g daily, the SGOT rose to I050 Transac units while the ... Four days later a liver biopsy was performed with.

  3. Salicylate-spectrophotometric determination of inorganic monochloramine

    International Nuclear Information System (INIS)

    Tao Hui; Chen Zhonglin; Li Xing; Yang Yanling; Li Guibai

    2008-01-01

    On the basis of classical Berthelot reaction, a simple salicylate-spectrophotometric method was developed for quantitative determination of inorganic monochloramine in water samples. With the catalysis of disodium pentacyanonitrosylferrate(III), inorganic monochloramine reacts with salicylate in equimolar to produce indophenol compound which has an intense absorption at 703 nm. Parameters that influence method performance, such as pH, dosage of salicylate and nitroprussiate and reaction time, were modified to enhance the method performance. By using this method, inorganic monochloramine can be distinguished from organic chloramines and other inorganic chlorine species, such as free chlorine, dichloramine, and trichloramine. The molar absorptivities of the final products formed by these compounds are below ±3% of inorganic monochloramine, because of the α-N in them have only one exchangeable hydrogen atom, and cannot react with salicylate to produce the indophenol compound. The upper concentrations of typical ions that do not interfere with the inorganic monochloramine determination are also tested to be much higher than that mostly encountered in actual water treatment. Case study demonstrates that the results obtained from this method are lower than DPD-titrimetric method because the organic chloramines formed by chlorination of organic nitrogenous compounds give no response in the newly established method. And the result measured by salicylate-spectrophotometric method is coincident with theoretical calculation

  4. THE EFFECT OF SALICYLATES ON THE PRECIPITATION OF ANTIGEN WITH ANTIBODY.

    Science.gov (United States)

    Coburn, A F; Kapp, E M

    1943-02-01

    1. Sodium salicylate modifies the precipitation of normal rabbit serum protein by sodium tungstate, and partially inhibits the precipitation of horse serum euglobulin by rabbit antiserum. Sodium salicylate added to a system containing crystalline egg albumin and its antibody partly prevents the formation of precipitate, the degree of inhibition being related to the concentration of salicylate. 2. Precipitation in the equivalence zone is more readily prevented by salicylate than precipitation in the region of antibody excess, the immune system becoming progressively less sensitive to the action of salicylate as the excess of antibody becomes larger. 3. Formed precipitates were partly dissolved following resuspension in the presence of salicylate. 4. The salicylate effect on immune precipitation is reversible, and appears to be due to inactivation of antibody. 5. Salicylate was more effective in preventing specific precipitation than other anions of a lyotropic series tested.

  5. Salicylic Acid Regulation of Respiration in Higher Plants: Alternative Oxidase Expression.

    Science.gov (United States)

    Rhoads, DM; McIntosh, L

    1992-01-01

    Alternative respiratory pathway capacity increases during the development of the thermogenic appendix of a voodoo lily inflorescence. The levels of the alternative oxidase proteins increased dramatically between D-4 (4 days prior to the day of anthesis) and D-3 and continued to increase until the day of anthesis (D-day). The level of salicylic acid (SA) in the appendix is very low early on D-1, but increases to a high level in the evening of D-1. Thermogenesis occurs after a few hours of light on D-day. Therefore, the initial accumulation of the alternative oxidase proteins precedes the increase in SA by 3 days, indicating that other regulators may be involved. A 1.6-kb transcript encoding the alternative oxidase precursor protein accumulated to a high level in the appendix tissue by D-1. Application of SA to immature appendix tissue caused an increase in alternative pathway capacity and a dramatic accumulation of the alternative oxidase proteins and the 1.6-kb transcript. Time course experiments showed that the increase in capacity, protein levels, and transcript level corresponded precisely. The response to SA was blocked by cycloheximide or actinomycin D, indicating that de novo transcription and translation are required. However, nuclear, in vitro transcription assays indicated that the accumulation of the 1.6-kb transcript did not result from a simple increase in the rate of transcription of aox1. PMID:12297672

  6. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Yuanzhong Jiang

    Full Text Available The plant hormones jasmonic acid (JA and salicylic acid (SA play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89 was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  7. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Science.gov (United States)

    Jiang, Yuanzhong; Guo, Li; Liu, Rui; Jiao, Bo; Zhao, Xin; Ling, Zhengyi; Luo, Keming

    2016-01-01

    The plant hormones jasmonic acid (JA) and salicylic acid (SA) play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR) analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  8. Effect of Salicylic Acid on the Growth and Physiological Characteristics of Maize under Stress Conditions

    International Nuclear Information System (INIS)

    Manzoor, K.; Ilyas, N.; Batool, N.; Arshad, M.; Ahmad, B.

    2015-01-01

    Salicylic acid (SA) is a naturally occurring signaling molecule and growth regulator that enhances plant growth particularly in stress conditions. The present study was planned to evaluate the effects of different levels of SA on maize growth under drought and salt stress conditions. An experiment was conducted to test the morphological, physiological and biochemical changes in two cultivar of maize D-1184 and TG-8250. Varying levels of salicylic acid, i.e. 5mM, 10mM and 15mM were applied through foliar method. Exogenous applications of salicylic acid were done after 20 days of germination of the maize plants. Salicylic acid significantly affects root and shoot dry matter under drought and salt stress. Foliar application of SA significantly increased proline concentration (11 percentage and 12 percentage), amino acid accumulation (25 percentage and 18 percentage), relative water (17 percentage and 14 percentage) and Chlorophyll content. Overall, it can be concluded that SA at lower concentration is effective to minimize the effect of stress conditions. Maize cultivar TG-8250 showed better tolerance under drought and salt stress condition as compared to D-1184 cultivar. (author)

  9. Differential uptake of salicylate in serum, cerebrospinal fluid, and perilymph.

    Science.gov (United States)

    Jastreboff, P J; Hansen, R; Sasaki, P G; Sasaki, C T

    1986-10-01

    After intraperitoneal administration of salicylate in anesthetized rats and guinea pigs, we found that salicylate levels in perilymph (PL) are closely related to both drug levels in cerebrospinal fluid (CSF) and in serum, with higher levels systematically observed in PL than in CSF. Further analysis suggests that salicylate is not passively transported into PL across CSF but, rather, is transported from blood directly to PL. The time course of salicylate uptake in rats reveals maximum levels at 1 1/2 hours (serum) and two to four hours (CSF and PL). On the other hand, salicylate uptake into serum and CSF of guinea pigs exhibits a longer time course, with maximum levels reached at four hours (serum) and five hours (CSF). These data, not previously available, are basic to our understanding of salicylate-related auditory effects.

  10. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid

    Directory of Open Access Journals (Sweden)

    Bronze-Uhle ES

    2016-12-01

    Full Text Available ES Bronze-Uhle,1 BC Costa,1 VF Ximenes,2 PN Lisboa-Filho1 1Department of Physics, São Paulo State University (Unesp, School of Sciences, Bauru, São Paulo, Brazil; 2Department of Chemistry, São Paulo State University (Unesp, School of Sciences, Bauru, São Paulo, Brazil Abstract: Bovine serum albumin (BSA is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer, there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9 to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of

  11. Salicylic acid derivatives: synthesis, features and usage as therapeutic tools.

    Science.gov (United States)

    Ekinci, Deniz; Sentürk, Murat; Küfrevioğlu, Ömer İrfan

    2011-12-01

    In the field of medicinal chemistry, there is a growing interest in the use of small molecules. Although acetyl salicylic acid is well known for medical applications, little is known about other salicylic acid derivatives, and there is serious lack of data and information on the effects and biological evaluation that connect them. This review covers the synthesis and drug potencies of salicylic acid derivatives. After a brief overview of the information on salicylic acid and its features, a detailed review of salicylic acids as drugs and prodrugs, usage as cyclooxygenase inhibitors, properties in plants, synthesis and recent patents, is developed. Salicylic acid research is still an important area and innovations continue to arise, which offer hope for new therapeutics in related fields. It is anticipated that this review will guide the direction of long-term drug/nutraceutical safety trials and stimulate ideas for future research.

  12. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  13. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    Science.gov (United States)

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material.

  14. Are one or two dangerous? Methyl salicylate exposure in toddlers.

    Science.gov (United States)

    Davis, Jonathan E

    2007-01-01

    Serious toxicity can result from exposure to small amounts of methyl salicylate. Methyl salicylate is widely available as a component in many over-the-counter brands of creams, ointments, lotions, liniments and medicated oils intended for topical application to relieve musculoskeletal aches and pains. Among the most potent forms of methyl salicylate is oil of wintergreen (98% methyl salicylate). Other products with varying concentrations of methyl salicylate are ubiquitous throughout many parts of the world, including a number of products marketed as Asian herbal remedies. The toxic potential of all of these formulations is often underestimated by health care providers and the general public. A comprehensive review of the existing medical literature on methyl salicylate poisoning was performed, and data compiled over the past two decades by the American Association of Poison Control Centers (AAPCC) was examined. Methyl salicylate continues to be a relatively common source of pediatric exposures. Persistent reports of life-threatening and fatal toxicity were found. In children less than 6 years of age, a teaspoon (5 mL) or less of oil of wintergreen has been implicated in several well-documented deaths. More needs to be done to educate both health care providers and the general public regarding the dangers of these widely available formulations.

  15. Synthesis of 3H-3-azido-salicyl-N-(n-decyl) amide

    International Nuclear Information System (INIS)

    Lu Bin; Xu Jianxing; Chen Shizhi

    2000-01-01

    A novel method for the synthesis of molecular probe of ubiquinone-binding protein is described. With 3-nitrosalicylic acid and decylamine as initial compounds and under the existence of DCC, the 3-nitro-salicyl-N-(n-decyl)amide is synthesized at room temperature. Then, 3-nitro-salicyl-N-(n-decyl)amide is reduced by hydrogen with 5 % Pd/C as catalyst to form 3-amino-salicyl-N-(n-decyl)amide which is exchanged with tritium to be 3 H-3-amino-salicyl-N-(n-decyl)amide. At the temperature below 5 degree C, 3 H-3-amino-salicyl-N-(n-decyl)amide reacts with NaNO 2 and HCl, and the 3-diazo-salicyl-N-(n-decyl)amide is formed in an ice salt bath. As soon as the reaction is completed, NaN 3 is added to the mixture and stirred for 3 h at the temperature between 0 - 5 degree C and in the dark, the molecular probe of studying ubiquinone-binding protein, i. e., 3 H-3-azido-salicyl-N-(n-decyl)amide is produced

  16. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Appels, Freek V W; van Wees, Saskia C M

    2017-08-03

    We recently found that the beneficial fungus Trichoderma harzianum T-78 primes tomato plants for salicylic acid (SA)- and jasmonic acid (JA)-regulated defenses, resulting in enhanced resistance against the root knot nematode Meloidogyne incognita. By using SA- and JA-impaired mutant lines and exogenous hormonal application, here we investigated whether the SA- and JA-pathways also have a role in T-78 root colonization of Arabidopsis thaliana. Endophytic colonization by T-78 was faster in the SA-impaired mutant sid2 than in the wild type. Moreover, elicitation of SA-dependent defenses by SA application reduced T-78 colonization, indicating that the SA-pathway affects T-78 endophytism. In contrast, elicitation of the JA-pathway, which antagonized SA-dependent defenses, resulted in enhanced endophytic colonization by T-78. These findings are in line with our previous observation that SA-dependent defenses are repressed by T-78, which likely aids colonization by the endophytic fungus.

  17. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway.

    Science.gov (United States)

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-05-18

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.

  18. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.

    Science.gov (United States)

    Zhang, Shengchun; Li, Cui; Wang, Rui; Chen, Yaxue; Shu, Si; Huang, Ruihua; Zhang, Daowei; Li, Jian; Xiao, Shi; Yao, Nan; Yang, Chengwei

    2017-04-01

    Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis ( Arabidopsis thaliana ) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACID INDUCTION DEFICIENT2 ( SID2 ), NON-RACE-SPECIFIC DISEASE RESISTANCE1 ( NDR1 ), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 ( NPR1 ), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2 , NDR1 , or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40 , WRKY46 , WRKY51 , WRKY60 , WRKY63 , and WRKY75 ; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling.

    Science.gov (United States)

    Shim, Jae Sung; Jung, Choonkyun; Lee, Sangjoon; Min, Kyunghun; Lee, Yin-Won; Choi, Yeonhee; Lee, Jong Seob; Song, Jong Tae; Kim, Ju-Kon; Choi, Yang Do

    2013-02-01

    The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. β-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  20. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    OpenAIRE

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  1. How salicylic acid takes transcriptional control over jasmonic acid signaling

    Directory of Open Access Journals (Sweden)

    Lotte eCaarls

    2015-03-01

    Full Text Available Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA and jasmonic acid (JA are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.

  2. Salicylic acid as a peeling agent: a comprehensive review

    OpenAIRE

    Arif, Tasleem

    2015-01-01

    Tasleem Arif Postgraduate Department of Dermatology, STD and Leprosy, Government Medical College, Srinagar, Jammu and Kashmir, India Abstract: Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of s...

  3. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  4. Role of salicylic acid in resistance to cadmium stress in plants.

    Science.gov (United States)

    Liu, Zhouping; Ding, Yanfei; Wang, Feijuan; Ye, Yaoyao; Zhu, Cheng

    2016-04-01

    We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity. Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.

  5. Salicylate removal by charcoal heamoperfusion in experimental intoxication in dogs

    International Nuclear Information System (INIS)

    Brookings, C.H.; Ramsey, J.D.

    1975-01-01

    The removal of salicylate by extracorporeal circulation of blood through a column of encapsulated charcoal (haemoperfusion) has been studied experimentally in intoxicated dogs (greyhounds). The average time taken to reduce the whole blood salicylate level to one-half of the initial equilibrium level in 30 kg dogs was 2 hrs. A half-life of 3 hrs is predicted for salicylate removal by haemoperfusion in a 70 kg man and this rate of removal is shown to be comparable to that reported for haemodialysis. No unacceptable adverse physiological, biochemical, or haematological effects were found to result from haemoperfusion. The possible use of this technique in the management of severe salicylate poisoning in man is discussed. Haemoperfusion is foreseen as providing a method of rapid removal of salicylate in circumstances where forced diuresis is contra-indicated or inadequate and haemodialysis is not readily available. (orig.) [de

  6. Effect of Salicylic Acid and Ethephon on Seed Germination and Seedling Growth of Wheat under Salt Stress

    Directory of Open Access Journals (Sweden)

    Soheyla Shakeri

    2016-10-01

    Full Text Available Water or soil salinities are the most important factors that reduce the seed germination of plants. Ethephon can break seed dormancy in a variety of plants, such as cereals and speeds up germination. In some plants pretreatment of seeds with salicylic acid has increased the germination percentage. To study effect of salicylic acid and ethephon on seed germination of wheat (Seivand cultivar under salinity condition a factorial experiment in a completely randomized design with three replications was conducted at the Plant Research Laboratory of Neyshabur Branch of Islamic Azad University in 2011. Four salinity levels (0, 50, 100, 150 mM, three salicylic acid levels (0, 0.5, 1 mM and four ethephon levels (0, 0.5, 1, 2 mM were used. The results showed that at salinity condition seed germination rate and percentage, shoot and root length, their dry weight and α-amylase activity decreased and proline content increased. Pretreatment of seeds by salicylic acid increased seed germination percentage, some growth parameters, α-amylase activity and proline content under salinity condition. Moreover, pretreatment of seeds by ethephon decreased some growth parameters and increased proline content but its effect on germination and α-amylase activity were not significant. It seems that Salicylic acid as a plant growth regulator under salinity condition and ethephon convertion to ethylene, activated plant tolerance mechanisms to salinity condition and decrease damaging effect of salinity on seed germination and seedling growth of wheat.

  7. Effects of salicylate on the inflammatory genes expression and synaptic ultrastructure in the cochlear nucleus of rats.

    Science.gov (United States)

    Hu, Shou-Sen; Mei, Ling; Chen, Jian-Yong; Huang, Zhi-Wu; Wu, Hao

    2014-04-01

    Aspirin (salicylate), as a common drug that is frequently used for long-term treatment in a clinical setting, has the potential to cause reversible tinnitus. However, few reports have examined the inflammatory cytokines expression and alteration of synaptic ultrastructure in the cochlear nucleus (CN) in a rat model of tinnitus. The tinnitus-like behavior of rats were detected by the gap prepulse inhibition of acoustic startle (GPIAS) paradigm. We investigated the expression levels of the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), N-methyl D-aspartate receptor subunit 2A (NR2A) mRNA and protein in the CN and compared synapses ultrastructure in the CN of tinnitus rats with normal ones. GPIAS showed that rats with long-term administration of salicylate were experiencing tinnitus, and the mRNA and protein expression levels of TNF-α and NR2A were up-regulated in chronic treatment groups, and they returned to baseline 14 days after cessation of treatment. Furthermore, compared to normal rats, repetitive salicylate-treated rats showed a greater number of presynaptic vesicles, thicker and longer postsynaptic densities, increased synaptic interface curvature. These data revealed that chronic salicylate administration markedly, but reversibly, induces tinnitus possibly via augmentation of the expression of TNF-α and NR2A and cause changes in synaptic ultrastructure in the CN. Long-term administration of salicylate causes neural plasticity changes at the CN level.

  8. Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors

    Directory of Open Access Journals (Sweden)

    Aixin Li

    2017-09-01

    Full Text Available C-repeat binding factors (CBF are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3, were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq. Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA and Salicylic acid (SA, as well as the signal sensing of Brassinolide (BR and SA, were down-regulated, while genes associated with Gibberellin (GA deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis. The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes.

  9. NSAIDs, Mitochondria and Calcium Signaling: Special Focus on Aspirin/Salicylates

    Directory of Open Access Journals (Sweden)

    Yoshihiro Suzuki

    2010-05-01

    Full Text Available Aspirin (acetylsalicylic acid is a well-known nonsteroidal anti-inflammatory drug (NSAID that has long been used as an anti-pyretic and analgesic drug. Recently, much attention has been paid to the chemopreventive and apoptosis-inducing effects of NSAIDs in cancer cells. These effects have been thought to be primarily attributed to the inhibition of cyclooxygenase activity and prostaglandin synthesis. However, recent studies have demonstrated unequivocally that certain NSAIDs, including aspirin and its metabolite salicylic acid, exert their anti-inflammatory and chemopreventive effects independently of cyclooxygenase activity and prostaglandin synthesis inhibition. It is becoming increasingly evident that two potential common targets of NSAIDs are mitochondria and the Ca2+ signaling pathway. In this review, we provide an overview of the current knowledge regarding the roles of mitochondria and Ca2+ in the apoptosis-inducing effects as well as some side effects of aspirin, salicylates and other NSAIDs, and introducing the emerging role of L-type Ca2+ channels, a new Ca2+ entry pathway in non-excitable cells that is up-regulated in human cancer cells.

  10. Salicylate toxicity from ingestion of traditional massage oil

    Science.gov (United States)

    Muniandy, Rajesh Kumar; Sinnathamby, Vellan

    2012-01-01

    A 16-month-old child developed a brief generalised tonic–clonic fitting episode and vomiting at home, after accidental ingestion of traditional massage oil. As the patient presented with clinical features of salicylate toxicity, appropriate management was instituted. He was admitted to the intensive care unit for multiorgan support. The child was discharged well 1 week after the incident. Methyl-salicylate is a common component of massage oils which are used for topical treatment of joint and muscular pains. However, these massage oils may be toxic when taken orally. Early recognition of the salicylate toxicity is very important in producing a good patient outcome. PMID:22922924

  11. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    Science.gov (United States)

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. Copyright © 2016. Published by Elsevier B.V.

  12. Studying the properties of the new class of organic scintillators-salicylic acid derivatives

    International Nuclear Information System (INIS)

    Mandzhukov, I.G.; Mandzhukova, B.V.; Bonchev, Ts.V.; Lazarova, G.I.

    1981-01-01

    Li, Na, K, Mg, Ca, Sr, Ba, La, Cd, Al, Sn, NH 4 salicylates are synthesized. Their relative scintillation efficiency during irradiation with α-particles of 5.156 MeV energy (sup(239)Pu) is determined. Scintillation efficiency of salicylates has been evaluated by comparing amplitude of scintillation pulse from salicylate with pulse amplitude from anthracene and other classical scintillators. Amplitude analysis has been conducted by standard methods. The analysis of the results obtained shows that sodium salicylate has the highest relative scintillation efficiency comparable with naphthalene efficiency. Salicylates of alkali Li and K metals as well as Ca and Cd salicylates have high relative scintillation efficiency. It is concluded that the investigated salicylates can be used for detection of (n, α), (n, p) and other reactions accompanying neutron capture not only during their reactions but by measuring activity induced in the scintillator [ru

  13. Reye's syndrome: salicylate and mitochondrial monoamine oxidase function

    International Nuclear Information System (INIS)

    Faraj, B.A.; Caplan, D.; Lolies, P.

    1986-01-01

    It has been suggested that aspirin is somehow linked with the onset of Reye's syndrome (RS). A general feature of Reye's syndrome is severe impairment of mitochondrial monoamine oxidase (MAO) function. The main objective of this investigation was to study the effect of salicylate on platelet mitochondrial MAO activity in three groups: group A (healthy children, n = 21) and group C (healthy adults, n = 10). Platelet MAO was measured by radio-enzymatic technique with 14 C-tyramine as a substrate. The results showed that salicyclate (10 mM) had a 20 to 60 percent inhibitory effect on platelet MAO function in only 1, 3 and 2 of the subjects in group A, B and C. Furthermore, there was an association between low enzyme activity and salicylate MAO inhibitory effect in these subjects. These preliminary findings suggest that salicylate may induce deterioration in mitochondrial function in susceptible individuals and that the assessment of salicylate MAO inhibitory effect may identify those who may be at risk to develop aspirin poisoning and Reye's syndrome

  14. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    International Nuclear Information System (INIS)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-01-01

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 μM SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: ► Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions ► Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia ► Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia ► Salicylic acid does not influence any of the investigated parameters under hypoxia

  15. Simultaneous Determination of Salicylic Acid, Jasmonic Acid, Methyl Salicylate, and Methyl Jasmonate from Ulmus pumila Leaves by GC-MS

    OpenAIRE

    Huang, Zhi-hong; Wang, Zhi-li; Shi, Bao-lin; Wei, Dong; Chen, Jian-xin; Wang, Su-li; Gao, Bao-jia

    2015-01-01

    Salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate are important phytohormones and defensive signaling compounds, so it is of great importance to determine their levels rapidly and accurately. The study uses Ulmus pumila leaves infected by Tetraneura akinire Sasaki at different stages as materials; after extraction with 80% methanol and ethyl acetate and purification with primary secondary amine (PSA) and graphitized carbon blacks (GCB), the contents of signal compounds sa...

  16. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice.

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-04-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.

  17. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    International Nuclear Information System (INIS)

    Celik, Z. Ceylan; Can, B.Z.; Kocakerim, M. Muhtar

    2008-01-01

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  18. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Z. Ceylan [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)], E-mail: zcelik@atauni.edu.tr; Can, B.Z. [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, Atatuerk University, Faculty of Engineering, 25240 Erzurum (Turkey)

    2008-03-21

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid.

  19. Synthesis and antifungal activity of new salicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Wodnicka Alicja

    2017-03-01

    Full Text Available A simple one-step procedure for synthesis of 1-methoxy-1-oxoalkan-2-yl salicylates and 1-methoxy-1-oxoalkan-2-yl 2-[(1-methoxy-1-oxoalkan-2-yloxy]benzoates by reaction of salicylic acid with several methyl 2-bromoalkanoates was developed. The reactions were carried out in N,N-dimethylformamide (DMF in the presence of anhydrous potassium carbonate. Conditions for regioselective synthesis of target compounds were established. The developed procedure could be easily applied in the industrial production process. The new salicylic acid derivatives were obtained with satisfactory yields and were characterized by MS and 1H NMR spectra. The fungicidal activity of the prepared compounds was tested in vitro against seven species of plant pathogenic fungi. The best results were observed for 1-methoxy-1-oxoalkan-2-yl salicylates which showed moderate or good activity against Botrytis cinerea and Rhizoctonia solani.

  20. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    Science.gov (United States)

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates

    DEFF Research Database (Denmark)

    Cheng, Hong; Liang, Ran; Han, Rui-Min

    2014-01-01

    by the anion of salicylic acid with 2.2 × 10 L mol s, but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced......The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k = 3.2 × 10 L mol s in 9:1 v/v chloroform-methanol at 23 °C, less efficiently...... rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations....

  2. Interaction of salicylate and noise results in mortality of rats.

    Science.gov (United States)

    Brennan, J F; Jastreboff, P J

    1989-08-15

    Survival as a function of salicylate dose and the intensity of environmental noise was investigated in 150 adult female pigmented rats. Rats were assigned to groups (n = 6/group) defined by combinations of salicylate levels from 0-(saline) to 300 mg/kg, injected subcutaneously, and noise levels from ambient noise to 98 dB SPL, presented daily for 10-h periods for up to 17 days. Mortality occurred in groups exposed to the higher combinations of salicylate and noise.

  3. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME-LC-UV/DAD.

    Science.gov (United States)

    Aresta, Antonella; Zambonin, Carlo

    2016-03-20

    Salicylic and benzoic acid are phenolic acids occurring in plant cells, thus they can be present in fruit and vegetables at various levels. They possess anti-inflammatory and antimicrobial properties, however they may induce symptoms and health problems in a small percentage of the population. Therefore, a low phenolic acid diet may be of clinical benefit to such individuals. In order to achieve this goal, the concentration of these substances in different food and beverages should be assessed. The present work describes for the first time a new method, based on solid phase microextraction (polydimethylsiloxane-divinylbenzene fiber) coupled to liquid chromatography with UV diode array detection, for the simultaneous determination of salicylic acid, 3-methyl salicylic acid, 4-methyl salicylic acid, acetylsalicylic acid and benzoic acid in selected fruit, vegetables and beverages. All the aspects influencing fiber adsorption (time, temperature, pH, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analytes have been investigated. An isocratic separation was performed using an acetonitrile-phosphate buffer (pH 2.8; 2 mM) mixture (70:30, v/v) as the mobile phase. The estimated LOD and LOQ values (μg/mL) were in the range 0.002-0.028 and 0.007-0.095. The within-day and day-to-day precision values (RSD%) were between 4.7-6.1 and 6.6-9.4, respectively. The method has been successfully applied to the analysis of fava beans, blueberries, kiwi, tangerines, lemons, oranges and fruit juice (lemon and blueberry) samples. The major advantage of the method is that it only requires simple homogenization and/or centrifugation and dilution steps prior to SPME and injection in the LC system. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Syntheses and pyrolytic studies of salicylate derivatives of ...

    African Journals Online (AJOL)

    New salicylate derivatives of heteronucleic-μ-oxoisopropoxide [SnO2AlB(OPri)4] have been synthesized by the thermal condensation of μ-oxoisopropoxide and methyl/ethyl/phenyl/phenyl ethyl salicylates in different molar ratios (1:1-1:2) yielding the compounds of the type [SnO2AlB(OPri)4-n(RSAL)n] (where n is 1-2 and ...

  5. Complexes of salicylic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Tel' zhenskaya, P N; Shvarts, E M [AN Latvijskoj SSR, Riga. Inst. Neorganicheskoj Khimii

    1977-01-01

    A generalization and systematization have been made of literature data on complexing of various elements, including beryllium, cadmium, boron, indium, rare-earth elements, actinides, and transition elements with salicylic acid and it derivatives (amino-, nitro- and halosalicylic acids). The effect of the position and nature of the substitute, in the case of salicylic acid derivatives, on the complexing process is discussed. Certain physicochemical properties of the complexes under consideration are described along with data indicative of their stability.

  6. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    Science.gov (United States)

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  7. Moessbauer study of iron(III) salicylates

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, K; Sharma, N D; Gupta, D C [Kurukshetra Univ. (India). Dept. of Physics; Puri, D M [Kurukshetra Univ. (India). Dept. of Chemistry

    1979-07-01

    Moessbauer infrared and magnetic studies of different basic salicylates of iron(III) are reported. Comparison of observed isomer shift and quadrupole splitting with the earlier work allows to assign the trinuclear chain structure to the complexes wherein the central iron atom in the chain is considered to be octahedrally coordinated in case of salicylate and 4-aminosalicylate derivatives, and pentacoordinated for the thiosalicylate with the terminal iron atom in tetrahedral symmetry. The Moessbauer parameters and ..mu..sub(eff)-value indicate the high spin state of the central iron atom and low spin state for the terminal ones.

  8. Extraction of scandium salicylate by tetraethyldiamidoheptyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Kamenev, V F; Fadeeva, V I; Zyk, N V [Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Analiticheskoj Khimii

    1976-11-01

    Scandium salicylate is extracted with chloroform in a narrow pH range 3-4 and at the maximum concentration of salicylic acid (H/sub 2/A) in an organic phase, the distribution coefficient reaches 0.1. In the presence of tetraethyldiamideheptylphosphate (DAHP) the zone of maximum extraction grows and the distribution coefficient increases. The ratio of the components in the complex extracted is Sc:H/sub 2/A:DAHPh=1:3:2. The extraction constant is Ksub(ex)=(2.00+-0.02).

  9. The temporal deployment of emotion regulation strategies during negative emotional episodes.

    Science.gov (United States)

    Kalokerinos, Elise K; Résibois, Maxime; Verduyn, Philippe; Kuppens, Peter

    2017-04-01

    Time is given a central place in theoretical models of emotion regulation (Gross, 1998, 2015), but key questions regarding the role of time remain unanswered. We investigated 2 such unanswered questions. First, we explored when different emotion regulation strategies were used within the course of an emotional episode in daily life. Second, we investigated the association between the temporal deployment of strategies and negative emotional experience. We conducted a daily diary study in which participants (N = 74) drew an intensity profile depicting the temporal unfolding of their negative emotional experience across daily events (N = 480), and mapped their usage of emotion regulation strategies onto this intensity profile. Strategies varied in their temporal deployment, with suppression and rumination occurring more at the beginning of the episode, and reappraisal and distraction occurring more toward the end of the episode. Strategies also varied in their association with negative emotion: rumination was positively associated with negative emotion, and reappraisal and distraction were negatively associated with negative emotion. Finally, both rumination and reappraisal interacted with time to predict negative emotional experience. Rumination was more strongly positively associated with negative emotions at the end of the episode than the beginning, but reappraisal was more strongly negatively associated with negative emotion at the beginning of the episode than the end. These findings highlight the importance of accounting for timing in the study of emotion regulation, as well as the necessity of studying these temporal processes in daily life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate.

    Science.gov (United States)

    Tieman, Denise; Zeigler, Michelle; Schmelz, Eric; Taylor, Mark G; Rushing, Sarah; Jones, Jeffrey B; Klee, Harry J

    2010-04-01

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-methyltransferases. In order to elaborate the mechanism of MeSA synthesis in tomato, we screened a set of O-methyltransferases for activity against multiple substrates. An enzyme that specifically catalyzes methylation of SA, SlSAMT, as well as enzymes that act upon jasmonic acid and indole-3-acetic acid were identified. Analyses of transgenic over- and under-producing lines validated the function of SlSAMT in vivo. The SlSAMT gene was mapped to a position near the bottom of chromosome 9. Analysis of MeSA emissions from an introgression population derived from a cross with Solanum pennellii revealed a quantitative trait locus (QTL) linked to higher fruit methyl salicylate emissions. The higher MeSA emissions associate with significantly higher SpSAMT expression, consistent with SAMT gene expression being rate limiting for ripening-associated MeSA emissions. Transgenic plants that constitutively over-produce MeSA exhibited only slightly delayed symptom development following infection with the disease-causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). Unexpectedly, pathogen-challenged leaves accumulated significantly higher levels of SA as well as glycosylated forms of SA and MeSA, indicating a disruption in control of the SA-related metabolite pool. Taken together, the results indicate that SlSAMT is critical for methyl salicylate synthesis and methyl salicylate, in turn, likely has an important role in controlling SA synthesis.

  11. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    Science.gov (United States)

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  12. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes.

    Directory of Open Access Journals (Sweden)

    Juen-Haur Hwang

    Full Text Available Effects of C-phycocyanin (C-PC, the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and cyclooxygenase type 2 (COX-2 genes in the cochlea and inferior colliculus (IC of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes.

  13. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  14. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst

    International Nuclear Information System (INIS)

    Nageswara Rao, A.; Sivasankar, B.; Sadasivam, V.

    2009-01-01

    The photocatalytic degradation of salicylic acid was studied by a batch process using ZnO as the catalyst on irradiation with UV light. The effect of process parameters such as pH, catalyst loading and initial concentration of salicylic acid on the extent of degradation was investigated. The degradation of salicylic acid was found to be effective in the neutral pH range. The optimum catalyst loading was observed at 2.0 g/L. The process followed first order kinetics and the apparent rate constant decreased with increase in the initial concentration of salicylic acid. The mechanism for the degradation of salicylic acid could be explained on the basis of Langmuir-Hinshelwood mechanism. The complete mineralization of salicylic acid was observed in the presence of ZnO photocatalyst. The ZnO was found to be quite stable and undergoes photocorrosion only to a negligible extent.

  15. Salicylate-induced abnormal activity in the inferior colliculus of rats.

    Science.gov (United States)

    Chen, G D; Jastreboff, P J

    1995-02-01

    The evaluation of the spontaneous activity of 471 units from the external nucleus of the IC revealed that salicylate induces an increase of the spontaneous activity and the emergence of a bursting type of activity longer than 4 spikes. For sharply tuned units, the affected cells were from the frequency range of 10-16 kHz, which corresponds to the behaviorally measured pitch of salicylate-induced tinnitus in rats. An exogenous calcium supplement, provided under the conditions shown to attenuate the behavioral manifestation of salicylate-induced tinnitus, abolished the modification of the spontaneous activity induced by salicylate. Finally, profound changes of activity were observed for cells not responding to contralateral sound. We propose that the observed long bursts of discharges represent tinnitus-related neuronal activity. The results are consistent with the hypothesis that GABA-mediated disinhibition is involved in the processing of tinnitus-related neuronal activity.

  16. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  17. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    Science.gov (United States)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  18. Alleviation of mortality induced by salicylate and stress.

    Science.gov (United States)

    Jastreboff, P J; Brennan, J F

    1994-05-15

    Protection from the deleterious effects of the interaction of environmental stress and salicylate by calcium supplement was investigated in 96 pigmented rats. Within a 2 x 2 x 4 factorial design, rats were assigned to groups defined by: A) ad lib access to 1) plain tap water, or 2) 50 mM calcium chloride solution; B) exposure to stressors consisting of daily 10 h periods of 1) 98 dB SPL noise, or 2) confinement precluding movements; C) daily injections of 233, 350, or 410 mg/kg of sodium salicylate or the saline vehicle. For subjects maintained on tap water, weight loss and mortality increased with salicylate levels, with all subjects dying in the group drinking water and injected with 410 mg/kg. Calcium protected all of the subjects in the noise stress group but not in the confined group.

  19. Spectrophotometric determination of tungsten with salicylic acid

    International Nuclear Information System (INIS)

    Goncalves, Z.C.

    1976-10-01

    The method comprises the complexation of tungsten with salicylic acid in concentrated sulphuric acid yielding a reddish color. The maximum absorbance of the complex lies within 410-420 nm, 420 nm being the chosen wavelenght. The final concentration of salicylic acid is 0,080 g/ml. The sensitivity is 0,13 μg W(%T) -1 ml -1 . Titanium, vanadium, rhenium, niobium and molybdenum interferes and must be separated, titanium being the strongest interferent. The separation procedures, advantages of the process, stoichiometric relations and equilibrium constant are discussed. (Author) [pt

  20. Salicylate Toxicity from Genital Exposure to a Methylsalicylate-Containing Rubefacient

    Science.gov (United States)

    Thompson, Trevonne M.; Toerne, Theodore; Erickson, Timothy B.

    2016-01-01

    Methylsalicylate-containing rubefacients have been reported to cause salicylate poisoning after ingestion, topical application to abnormal skin, and inappropriate topical application to normal skin. Many over-the-counter products contain methylsalicylate. Topical salicylates rarely produce systemic toxicity when used appropriately; however, methylsaliclyate can be absorbed through intact skin. Scrotal skin can have up to 40-fold greater absorption compared to other dermal regions. We report a unique case of salicylate poisoning resulting from the use of a methylsalicylate-containing rubefacient to facilitate masturbation in a male teenager. Saliclyate toxicity has not previously been reported from the genital exposure to methylsaliclyate. PMID:26973745

  1. 40 CFR 180.1189 - Methyl salicylate; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Methyl salicylate; exemption from the... Exemptions From Tolerances § 180.1189 Methyl salicylate; exemption from the requirement of a tolerance. The biochemical pesticide methyl salicylate is exempt from the requirement of a tolerance for residues in or on...

  2. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes

    NARCIS (Netherlands)

    Caarls, Lotte; van der Does, Adriana; Hickman, Richard; Jansen, Wouter; van Verk, Marcel; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-01-01

    Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the

  3. Attenuation of salicylate-induced tinnitus by Ginkgo biloba extract in rats.

    Science.gov (United States)

    Jastreboff, P J; Zhou, S; Jastreboff, M M; Kwapisz, U; Gryczynska, U

    1997-01-01

    The effects of an extract from Ginkgo biloba, EGb 761, on tinnitus were tested using an animal model of tinnitus. Daily oral administration of EGb 761 in doses from 10 to 100 mg/ kg/day began 2 weeks before behavioral procedures and continued until the end of the experiment. Tinnitus was induced by daily administration of 321 mg/kg sodium salicylate s.c. (corresponding to 275 mg/kg/day of salicylate acid) in fourteen groups of pigmented rats, 6 animals/group. The results from salicylate- and EGb-761-treated animals were compared to control groups receiving either salicylate, saline, or EGb 761 only in doses of 100 mg/kg. Administration of EGb 761 resulted in a statistically significant decrease of the behavioral manifestation of tinnitus for doses of 25, 50 and 100 mg/kg/ day.

  4. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    International Nuclear Information System (INIS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV–vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved. - Highlights: • In OH induced reactions of salicylates first products are hydroxylated derivatives. • With prolonged irradiation dihydroxy derivatives also form. • In aerated solutions the one-electron oxidant OH induces 3–4 oxidations. • Toxicity first increases and then decreases with dose mainly due to H 2 O 2 formation. • The toxicity in tap water is smaller than in pure water

  5. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    Science.gov (United States)

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.

  6. Determination of acetylsalicylic acid and salicylic acid in foods, using HPLC with fluorescence detection.

    NARCIS (Netherlands)

    Venema, D.P.; Hollman, P.C.H.; Janssen, P.L.T.M.K.; Katan, M.B.

    1996-01-01

    We developed a specific and sensitive HPLC method with fluorescence detection for the determination of free acetylsalicylic acid, free salicylic acid, and free salicylic acid plus salicylic acid after alkaline hydrolysis (free-plus-bound) in foods. Acetylsalicylic acid was detected after postcolumn

  7. The effect of the NMDA channel blocker memantine on salicylate-induced tinnitus in rats.

    Science.gov (United States)

    Ralli, M; Troiani, D; Podda, M V; Paciello, F; Eramo, S L M; de Corso, E; Salvi, R; Paludetti, G; Fetoni, A R

    2014-06-01

    Short-term tinnitus develops shortly after the administration of a high dose of salicylate. Since salicylate selectively potentiates N-methyl- D-aspartate (NMDA) currents in spiral ganglion neurons, it may play a vital role in tinnitus by amplifying NMDA-mediated neurotransmission. The aim of this study was to determine whether systemic treatment with a NMDA channel blocker, memantine, could prevent salicylate-induced tinnitus in animals. Additional experiments were performed to evaluate the effect of memantine on the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to test for changes in hearing function. Thirty-six rats were divided into 3 groups and treated daily for four consecutive days. One group (n = 12) was injected with salicylate (300 mg/kg/d, IP), the second (n = 12) was treated with memantine (5 mg/kg/d, IP) and the third group (n = 12) was injected with salicylate and memantine. All rats were tested for tinnitus and hearing loss at 2, 24, 48 and 72 h after the first drug administration and 24 h post treatment; tinnituslike behaviour was assessed with gap prepulse inhibition of acoustic startle (GPIAS), and hearing function was measured with DPOAE, ABR and noise burst prepulse inhibition of acoustic startle (NBPIAS). Rats in the salicylate group showed impaired GPIAS indicative of transient tinnitus-like behaviour near 16 kHz that recovered 24 h after the last salicylate treatment. Memantine did not cause a significant change in GPIAS. Combined injection of salicylate and memantine significantly attenuated GPIAS tinnitus-like behaviour at 48 hours after the first injection. None of the treatments induced permanent threshold shifts in the ABR and DPOAE, which recovered completely within one day post treatment. Animals treated with salicylate plus memantine showed results comparable to animals treated with salicylate alone, confirming that there is no effect of memantine on DPOAE which reflects OHC function. The

  8. Salicylic acid-induced germination, biochemical and developmental alterations in rye (Secale cereale L.)

    OpenAIRE

    Yanik, Fatma; Aytürk, Özlem; Çetinbaş-Genç, Aslihan; Vardar, Filiz

    2018-01-01

    Salicylic acid (SA) is one of the endogenous plant growth regulators that modulate various metabolic and physiological events. To evaluate the exogenous SA-induced germination, biochemical and developmental alterations, different concentrations (10, 100, 500 and 1000 μM) of SA were applied to rye (Secale cereale L.) seeds in hydroponic culture conditions for 15 days. The observations revealed that seed germination and root elongation were stimulated in 10 μM SA treatment, however they were in...

  9. The power of extraverts: testing positive and negative mood regulation

    Directory of Open Access Journals (Sweden)

    Gonzalo Hervas

    Full Text Available Extraversion is a personality trait which has been systematically related to positive affect and well-being. One of the mechanisms that may account for these positive outcomes is the ability to regulate the responses to positive, as well as negative, moods. Prior research has found that extraverts' higher positive mood maintenance could explain their higher levels of positive affect. However, research exploring differences between extraverts and introverts in negative mood regulation has yielded mixed results. The aim of the current study was explore the role of different facets of mood regulation displayed by extraverts, ambiverts, and introverts. After been exposed to a sad vs. happy mood induction, participants underwent a mood regulation task. Extraverts and ambiverts exhibited higher positive mood regulation than introverts, but similar mood repair. Thus, this research highlights the importance of positive mood regulation in the psychological functioning of extraverts, and opens new conceptualizations for developing interventions for introverts to improve their positive mood regulation and, hence, overall positive affect and well-being.

  10. Generalization of conditioned suppression during salicylate-induced phantom auditory perception in rats.

    Science.gov (United States)

    Brennan, J F; Jastreboff, P J

    1991-01-01

    Tonal frequency generalization was examined in a total of 114 pigmented male rats, 60 of which were tested under the influence of salicylate-induced phantom auditory perception, introduced before or after lick suppression training. Thirty control subjects received saline injections, and the remaining 24 subjects served as noninjected controls of tonal background effects on generalization. Rats were continuously exposed to background noise alone or with a superimposed tone. Offset of background noise alone (Experiment I), or combined with onset or continuation of the tone (Experiments II and III) served as the conditioned stimulus (CS). In Experiment I, tone presentations were introduced only after suppression training. Depending on the time of salicylate introduction, a strong and differential influence on generalization gradients was observed, which is consistent with subjects' detection of salicylate-induced, high-pitched sound. Moreover, when either 12- or 3 kHz tones were introduced before or after Pavlovian training to mimic salicylate effects in 24 rats, the distortions in generalization gradients resembled trends obtained from respective salicylate injected groups. Experiments II and III were aimed at evaluating the masking effect of salicylate-induced phantom auditory perception on external sounds, with a 5- or a 10-kHz tone imposed continuously on the noise or presented only during the CS. Tests of tonal generalization to frequencies ranging from 4- to 11- kHz showed that in this experimental context salicylate-induced perception did not interfere with the dominant influence of external tones, a result that further strengthens the conclusion of Experiment I.

  11. Influencing of resorption and side-effects of salicylic acid by complexing with β-cyclodextrin

    International Nuclear Information System (INIS)

    Szejtli, J.; Gerloczy, A.; Sebestyen, G.; Fonagy, A.

    1981-01-01

    After oral administration of 14 C-labelled salicylic acid and its β-cyclodextrin complex to rats, the radioactivity level of the blood reached its maximum during the first 2 h. The blood level obtained with the complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid takes place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves showed that the free salicylic acid was completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increased the pK values of all hydroxybenzoic acids. Direct observations revealed that complex formation decreased the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex. (author)

  12. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Petersen, M.; Brodersen, P.; Naested, H.

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  13. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

    Directory of Open Access Journals (Sweden)

    Andrew J Love

    Full Text Available Cauliflower mosaic virus (CaMV encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA- and jasmonic acid (JA-dependent signaling and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst. Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants

  14. Transparent plastic scintillators for neutron detection based on lithium salicylate

    International Nuclear Information System (INIS)

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-01-01

    Transparent plastic scintillators with pulse shape discrimination containing "6Li salicylate have been synthesized by bulk polymerization with a maximum "6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported herein. Plastics containing "6Li salicylate exhibit higher light yields and permit a higher loading of "6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Reduction in light yield and pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts. - Highlights: • Plastic scintillator with 0.4% "6Li loading is reported using lithium salicylate. • Influence of lithium salts on the scintillation mechanism is explored. • New lithium-loaded scintillator provides improved light yield and reduced cost.

  15. Solubility of salicylic acid in pure alcohols at different temperatures

    International Nuclear Information System (INIS)

    Lim, Junhyuk; Jang, Sunghyun; Cho, Hye Kyoung; Shin, Moon Sam; Kim, Hwayong

    2013-01-01

    Highlights: ► Solubility data of salicylic acid in pure alkanols were measured. ► The experimental data were correlated with NRTL, UNIQUAC and Wilson models. ► The data are fit well with all three models for the six pure alcohols studied. ► Adjustable interaction parameters were suggested. - Abstract: This work focused on the experimental measurements and the numerical calculations of the solubility of salicylic acid in various alcohols. The solubility of salicylic acid in pure alcohols was determined using a (solid + liquid) equilibrium measurement apparatus at temperatures ranging from (278.15 to 318.15) K. Also, the melting temperature and fusion enthalpy of salicylic acid were determined by a differential scanning calorimeter (TA instrument Q100). The experimental results were correlated with the equation for solubility of a solid in a liquid with the nonrandom two liquid (NRTL), universal quasi-chemical (UNIQUAC) and Wilson models for liquid phase activity coefficients to validate the quality of the data taken. Adjustable interaction parameters were also provided. The experimental data fit appropriately with all three models for the pure alcohols studied.

  16. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

    Science.gov (United States)

    Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2016-05-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Microautoradiography of 14C-salicylic acid in the skin of guinea-pig

    International Nuclear Information System (INIS)

    Washitake, Mitsunori; Ozawa, Yasuo; Anmo, Toshio; Tanaka, Ichiro

    1974-01-01

    The concentration of salicylic acid in guinea-pig skin was examined by microautoradiography. The retention of salicylic acid in the stratum corneum was observed. It was considered that the rate of transfer of the drug into the stratum corneum was small and that the stratum corneum became the barrier for permeability of the skin. The distribution of salicylic acid in other parts of the skin was uniform and no retention of the drug in any special parts was observed. The plasma level showed less percutaneous absorption of the drug when it was applied as liquid paraffin solution than when it was applied as an aqueous solution. The amount of salicylic acid absorbed from damaged skin was extremely large and, in this case, disappearance of the drug from the skin was fast. (author)

  18. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    Science.gov (United States)

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-05-31

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs.

  19. The atmospheric chemistry of methyl salicylate - reactions with atomic chlorine and with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Canosa-Mas, C.E.; Duffy, J.M.; Thompson, K.C.; Wayne, R.P. [Physical and Theoretical Chemical Lab., Oxford (United Kingdom); King, M.D. [King' s College, London (United Kingdom). Dept. of Chemistry

    2002-05-01

    Methyl salicylate is one of a number of semiochemicals, signal molecules, emitted by herbivore-infested plants. These signal molecules attract predators of the herbivore, and the chemicals thus act indirectly as part of the defence mechanism of the plant. Previous studies have shown that ozone damage to plants can also elicit the emission of signal molecules. The fate of these signal molecules in the atmosphere is not known. Preliminary studies have been undertaken to examine the atmospheric chemistry of methyl salicylate for the first time. Rate coefficients for the reaction of methyl salicylate with atomic chlorine and with ozone have been determined; the values are (2.8()+-(0.3)x10{sup -12} and )approx4x10{sup -21} cm{sup 3} molecule{sup -1} s{sup -1}. These results suggest that neither reaction with atomic chlorine nor reaction with ozone will provide important loss routes for methyl salicylate in the atmosphere. The possible importance of photolysis of methyl salicylate in the atmosphere is considered. (Author)

  20. Pharmacokinetics of methyl salicylate-2-O-β-D-lactoside, a novel salicylic acid analog isolated from Gaultheria yunnanensis, in dogs.

    Science.gov (United States)

    Zhang, Dan; Ma, Xiaowei; Xin, Wenyu; Huang, Chao; Zhang, Weiku; Zhang, Tiantai; Du, Guanhua

    2013-12-01

    Methyl salicylate-2-O-β-D-lactoside (MSL), a natural salicylate derivative of Gaultheria yunnanensis (Franch.) Rehder (G. yunnanensis), has been shown to provide a beneficial anti-inflammatory effect in animal models. Studies on the pharmacokinetics and bioavailability of MSL can provide both a substantial foundation for understanding its mechanism and empirical evidence to support its use in clinical practice. A simple and sensitive high-performance liquid chromatography (HPLC) method, coupled with ultraviolet analyte detection, was developed for determining the concentration of MSL and its metabolite in beagle plasma. Chromatographic separation was achieved on a Agilent Zorbax SB-C18 column (5 μM,4.6 × 250 mm). The mobile phase consisted of aqueous solution containing 0.1% phosphoric acid and acetonitrile (82:90, v/v), at a flow rate of 1 mL/min. Validation of the assay demonstrated that the developed HPLC method was sensitive, accurate and selective for the determination of MSL and its metabolite in dog plasma. After orally administering three doses of MSL, it could no longer be detected in dog plasma and its metabolite, salicylic acid, was detected. Salicylic acid showed a single peak in the plasma concentration-time curves and linear pharmacokinetics following the three oral doses (r(2) > 0.99). In contrast, only MSL was detected in plasma following intravenous administration. These results will aid in understanding the pharmacological significance of MSL. The developed method was successfully used for evaluation of the oral and intravenous pharmacokinetic profile of MSL in dogs. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Methyl salicylate 2-O-β-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes.

    Science.gov (United States)

    Lan, Xi; Liu, Rui; Sun, Lan; Zhang, Tiantai; Du, Guanhua

    2011-08-11

    Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD). Activation of microglia and astrocytes is a characteristic of brain inflammation. Epidemiological studies have shown that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) delays the onset of AD and suppresses its progression. Methyl salicylate-2-O-β-D-lactoside (DL0309) is a new molecule chemically related to salicylic acid. The present study aimed to evaluate the anti-inflammatory effects of DL0309. Our studies show that DL0309 significantly inhibits lipopolysaccharide (LPS)-induced release of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the expression of the inflammation-related proteins iNOS, COX-1, and COX-2 by microglia and astrocytes. At a concentration of 10 μM, DL0309 prominently inhibited LPS-induced activation of NF-κB in glial cells by blocking phosphorylation of IKK and p65, and by blocking IκB degradation. We demonstrate here for the first time that DL0309 exerts anti-inflammatory effects in glial cells by suppressing different pro-inflammatory cytokines and iNOS/NO. Furthermore, it also regulates the NF-κB signaling pathway by blocking IKK and p65 activation and IκB degradation. DL0309 also acts as a non-selective COX inhibitor in glial cells. These studies suggest that DL0309 may be effective in the treatment of neuroinflammatory disorders, including AD.

  2. Methyl salicylate 2-O-β-D-lactoside, a novel salicylic acid analogue, acts as an anti-inflammatory agent on microglia and astrocytes

    Directory of Open Access Journals (Sweden)

    Du Guanhua

    2011-08-01

    Full Text Available Abstract Background Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD. Activation of microglia and astrocytes is a characteristic of brain inflammation. Epidemiological studies have shown that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs delays the onset of AD and suppresses its progression. Methyl salicylate-2-O-β-D-lactoside (DL0309 is a new molecule chemically related to salicylic acid. The present study aimed to evaluate the anti-inflammatory effects of DL0309. Findings Our studies show that DL0309 significantly inhibits lipopolysaccharide (LPS-induced release of the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the expression of the inflammation-related proteins iNOS, COX-1, and COX-2 by microglia and astrocytes. At a concentration of 10 μM, DL0309 prominently inhibited LPS-induced activation of NF-κB in glial cells by blocking phosphorylation of IKK and p65, and by blocking IκB degradation. Conclusions We demonstrate here for the first time that DL0309 exerts anti-inflammatory effects in glial cells by suppressing different pro-inflammatory cytokines and iNOS/NO. Furthermore, it also regulates the NF-κB signaling pathway by blocking IKK and p65 activation and IκB degradation. DL0309 also acts as a non-selective COX inhibitor in glial cells. These studies suggest that DL0309 may be effective in the treatment of neuroinflammatory disorders, including AD.

  3. The Effect of Halopriming and Salicylic Acid on the Germination of Fenugreek (Trigonella foenum-graecum under Different Cadmium Concentrations

    Directory of Open Access Journals (Sweden)

    Arezoo ESPANANY

    2015-09-01

    Full Text Available The hereby study was based on a factorial experiment conducted in a completely randomized design with four replications, at Agriculture College, Shahrekord University, Iran, in 2014. The role of salicylic acid (SA, potassium nitrate (KNO3 and potassium chloride (KCl was evaluated on seed germination of fenugreek (Trigonella foenum-graecum L. under different cadmium concentrations. Treatments included four levels of seed priming (no priming, potassium chloride, potassium nitrate, salicylic acid and four levels of cadmium concentration (0, 10, 20, 30 mg/L. Cadmium chloride caused a significant inhibition in germination percentage, root elongation, shoot elongation and seedling dry weight. The shoot length was more sensitive to cadmium concentrations than the root length. Primed seeds with SA (100 mg/L proved protection against Cd stress and increased the germination percentage, root elongation, shoot elongation and dry weight of seedlings compared to the control treatment. Seeds treated with SA alleviated the Cd negative effect on germination parameters. In conclusion, using seed priming with salicylic acid can be recommended as a good technique for fenugreek crop on fields exposed to high cadmium toxicity.

  4. Difficulties in emotion regulation mediate negative and positive affects and craving in alcoholic patients.

    Science.gov (United States)

    Khosravani, Vahid; Sharifi Bastan, Farangis; Ghorbani, Fatemeh; Kamali, Zoleikha

    2017-08-01

    The aim of this study was to assess the mediating effects of difficulties in emotion regulation (DER) on the relations of negative and positive affects to craving in alcoholic patients. 205 treatment-seeking alcoholic outpatients were included. DER, positive and negative affects as well as craving were evaluated by the Difficulties in Emotion Regulation Scale (DERS), the Positive/Negative Affect Scales, and the Obsessive Compulsive Drinking Scale (OCDS) respectively. Clinical factors including depression and severity of alcohol dependence were investigated by the Alcohol Use Disorders Identification Test (AUDIT) and the Beck Depression Inventory-II (BDI-II) respectively. Results revealed that both increased negative affect and decreased positive affect indirectly influenced craving through limited access to emotion regulation strategies. It was concluded that limited access to emotion regulation strategies may be important in predicting craving for alcoholics who experience both increased negative affect and decreased positive affect. This suggests that treatment and prevention efforts focused on increasing positive affect, decreasing negative affect and teaching effective regulation strategies may be critical in reducing craving in alcoholic patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Fernandez, Ivan; Lok, Gerrit B; Pozo, María J; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Transport of salicylate in proximal tubule (S2 segment) isolated from rabbit kidney

    International Nuclear Information System (INIS)

    Schild, L.; Roch-Ramel, F.

    1988-01-01

    The secretory and the reabsorptive transport of salicylate was studied in the isolated and perfused rabbit proximal tubule (S 2 segment). Salicylate secretion (J sal b→l ) fulfilled the criteria for a carrier-mediated transport system: J sal b→l was saturable, was reversibly inhibited by probenecid, and occurred against a concentration gradient. The K m and V max for this secretory transport were 80 μM and 3,200 fmol·min -1 ·mm -1 , respectively. At luminal pH of 7.4 and 6.6, salicylate reabsorption (J sal l→b ) was low. J sal l→b was stimulated by increasing the bath Pco 2 or by removing basolateral HCO 3 - ; J sal l→b was inhibited by ethoxyzolamide and by SITS in the bath. The results indicate that salicylate reabsorption depends on H + secretion, consistent with reabsorption by simple nonionic diffusion. When salicylate was present in the lumen only, J sal l→b increased after inhibition of the secretory transport by adding ouabain or probenecid in the bath or by lowering the bath temperature. These results are compatible with luminal recycling of salicylate, and suggest the presence of a mediated secretory transporter located at the luminal membrane

  7. Effect of salicylic acid on the growth photosynthesis and carbohydrate metabolism in salt stressed maize plants

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2003-01-01

    Aqueous solutions of salicylic acid as a spray to Na CI-treated corn (Zea mays L,) significantly increased the growth of shoots and roots as measured after seven days of treatment. Spraying of salicylic acid caused significant increases in the activity of both ribulose 1,5 bisphosphate carboxylase (rubisco) enzyme and photosynthetic pigments. Moreover, salicylic acid treatment induced high values of soluble carbohydrate fractions in salt stressed plants as compared with salicylic acid treated samples. These data suggest that salicylic acid might improve the growth pattern of NaCl-treated maize plants via increasing the rate of photosynthesis and carbohydrate metabolism

  8. RESPONSE OF SPECKLED SPUR-FLOWER TO SALINITY STRESS AND SALICYLIC ACID TREATMENT

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2015-11-01

    Full Text Available One of the limitations to using ornamental plants in green areas is too high salinity and alkalization of the soil. The adverse effect of salinity on plant growth and development may be effectively reduced by application of salicylic acid. Plectranthus ciliatus is an attractive bed plant with ornamental leaves, recommended for growing in containers, hanging baskets, or sunny borders. The aim of this study was to investigate the response of P. ciliatus to salicylic acid and calcium chloride. The plants were grown in pots in a glasshouse and were sprayed with solution of 0.5 mM salicylic acid and watered with 200 mM calcium chloride. The application of salicylic acid resulted in an increased weight of the aboveground parts, higher stomatal conductance and leaf greenness index and enhanced leaf content of nitrogen, potassium, iron and zinc. Salinity-exposed plants were characterized by reduced weight, stomatal conductance and leaf greenness index. Salt stress caused also a drop in leaf content of nitrogen, potassium and iron, and an increase in calcium, sodium, chlorine, copper and manganese concentration. Salicylic acid seemed to relieve salinity-mediated plant stress.

  9. Salicylate-induced changes in auditory thresholds of adolescent and adult rats.

    Science.gov (United States)

    Brennan, J F; Brown, C A; Jastreboff, P J

    1996-01-01

    Shifts in auditory intensity thresholds after salicylate administration were examined in postweanling and adult pigmented rats at frequencies ranging from 1 to 35 kHz. A total of 132 subjects from both age levels were tested under two-way active avoidance or one-way active avoidance paradigms. Estimated thresholds were inferred from behavioral responses to presentations of descending and ascending series of intensities for each test frequency value. Reliable threshold estimates were found under both avoidance conditioning methods, and compared to controls, subjects at both age levels showed threshold shifts at selective higher frequency values after salicylate injection, and the extent of shifts was related to salicylate dose level.

  10. Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid.

    Science.gov (United States)

    Peña, M A; Escalera, B; Reíllo, A; Sánchez, A B; Bustamante, P

    2009-03-01

    The solubility of phenacetin, salicylic acid, and probenecid in ethanol-water and ethanol-ethyl acetate mixtures at several temperatures (15-40 degrees C) was measured. The solubility profiles are related to medium polarity changes. The apparent thermodynamic magnitudes and enthalpy-entropy relationships are related to the cosolvent action. Salicylic acid and probenecid show a single peak against the solubility parameter delta(1) of both solvent mixtures, at 40% (delta(1) = 21.70 MPa(1/2)) and 30% (delta(1) = 20.91 MPa(1/2)) ethanol in ethyl acetate, respectively. Phenacetin displays two peaks at 60% ethanol in ethyl acetate (23.30 MPa(1/2)) and 90% ethanol in water (delta(1) = 28.64 MPa(1/2)). The apparent enthalpies of solution display a maximum at 30% (phenacetin and salicylic acid) and 40% (probenecid) ethanol in water, respectively. Two different mechanisms, entropy at low ethanol ratios, and enthalpy at high ethanol ratios control the solubility enhancement in the aqueous mixture. In the nonaqueous mixture (ethanol-ethyl acetate) enthalpy is the driving force throughout the whole solvent composition for salicylic acid and phenacetin. For probenecid, the dominant mechanism shifts from entropy to enthalpy as the ethanol in ethyl acetate concentration increases. The enthalpy-entropy compensation plots corroborate the different mechanisms involved in the solubility enhancement by cosolvents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  11. The Italian contributions to the history of salicylates

    Directory of Open Access Journals (Sweden)

    Giampiero Pasero

    2011-09-01

    Full Text Available It is well-known that the modern history of salicylates began in 1899 when the compound acetylsalicylic acid was registered and introduced commercially as “aspirin” by the Bayer Company of Germany. As a matter of fact, however, remedies made from willow bark had been used to treat fever and rheumatic complaints at least since 1763, when Edward Stone described their efficacy against malarian fever. A number of Italian scientists made significant contributions during the long period of research leading up to the synthesis of acetylsalicylic acid and its widespread use in rheumatic diseases. In this paper we will review the contributions of some of these researchers, beginning with Bartolomeo Rigatelli, who in 1824 used a willow bark extract as a therapeutic agent, denominating it “salino amarissimo antifebbrile” (very bitter antipyretic salt. In the same year, Francesco Fontana described this natural compound, giving it the name “salicina” (salicin. Two other Italian chemists added considerably to current knowledge of the salicylates: Raffaele Piria in 1838, while working as a research fellow in Paris, extracted the chemical compound salicylic acid, and Cesare Bertagnini in 1855 published a detailed description of the classic adverse event associated with salicylate overdoses – tinnitus – which he studied by deliberately ingesting excessive doses himself. Bertagnini and above all Piria also played conspicuous roles in the history of Italy during the period of the Italian Risorgimento, participating as volunteers in the crucial battle of Curtatone and Montanara during the first Italian War of Independence.

  12. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of ...

    African Journals Online (AJOL)

    Most researchers showed that inoculation of plants with mycorrhizal fungi and using salicylic acid increase tolerance of plants due to salinity. In this study, the effect of mycorrhizal fungi, including Glomus mosseae, Glomus intraradices, and salicylic acid (0.2 mM) on tolerance of green basil (Ocimum basilicum L.) to salinity ...

  13. Stability testing of extemporaneous preparation of methyl salicylate ointment

    Directory of Open Access Journals (Sweden)

    H A Makeen

    2018-01-01

    Results: The shelf life (t90% of extemporaneously prepared methyl salicylate ointment was found to be 131 days at room temperature (25°C ± 5°C and 176 days in the refrigerator (2°C–8°C. Conclusion: The methyl salicylate present in extemporaneous ointment preparation is fairly stable at cool temperatures but shows faster degradation at higher temperature conditions. Therefore, it is recommended that an expiry date of 4 months can be safely mentioned when stored in cool.

  14. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana.

    Science.gov (United States)

    Duan, Yanjiao; Jiang, Yuanzhong; Ye, Shenglong; Karim, Abdul; Ling, Zhengyi; He, Yunqiu; Yang, Siqi; Luo, Keming

    2015-05-01

    A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.

  15. Integrating data on the Arabidopsis NPR1/NPR3/NPR4 salicylic acid receptors; a differentiating argument.

    Science.gov (United States)

    Kuai, Xiahezi; MacLeod, Brandon J; Després, Charles

    2015-01-01

    Salicylic acid (SA) is a mandatory plant metabolite in the deployment of systemic acquired resistance (SAR), a broad-spectrum systemic immune response induced by local inoculation with avirulent pathogens. The NPR1 transcription co-activator is the central node positively regulating SAR. SA was the last of the major hormones to be without a known receptor. Recently, NPR1 was shown to be the direct link between SA and gene activation. This discovery seems to be controversial. NPR1 being an SA-receptor is reminiscent of the mammalian steroid receptors, which are transcription factors whose binding to DNA is dependent on the interaction with a ligand. Unlike steroid receptors, NPR1 does not bind directly to DNA, but is recruited to promoters by the TGA family of transcription factors to form an enhanceosome. In Arabidopsis, NPR1 is part of a multigene family in which two other members, NPR3 and NPR4, have also been shown to interact with SA. NPR3/NPR4 are negative regulators of immunity and act as substrate adaptors for the recruitment of NPR1 to an E3-ubiquitin ligase, leading to its subsequent degradation by the proteasome. In this perspective, we will stress-test in a friendly way the current NPR1/NPR3/NPR4 model.

  16. Effect of Salicylic acid on some Growth and Biochemical Parameters of Wheat and Maize Plants under Salt Stress in Vitro

    Directory of Open Access Journals (Sweden)

    Z. Dashagha

    2014-04-01

    Full Text Available In this study, the difference between the resistance of wheat plants (c3 and maize (c4 the salinity was investigated. Research on environmental stresses (Hakimi, 2008 show thatstresses are considered as Limiting factors in crop production.and some phenolic compounds such as salicylic acid are used to improve or alleviate the negative effects of stress. In this study, plants were grown in plastic pots and the plants treated with salicylic acid, after two weeks and seven days later salinity was exerted.The effect of salinity treatmenton both plants, for some morphological and biochemical characteristics were studied. In biochemical tests, lipid peroxidation under salinity and salicylic acid treatments has increased for weat which represents the effect of salinity on the plant and the activetion of the defense mechanism, Howweverthese factors have reduced formaize. Moreover, the increase in total chlorophyll and flavonoids in wheatchlorophyll in wheat and maize shows the role of these pigments in quenching hydrogen peroxide and other active Oxygen types. This increases has not been concideralle in maize. The effect of treatment on the weight of … and root of both plants differed under the investigated concentration.

  17. Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.

    Science.gov (United States)

    Yeh, S Y

    1997-11-01

    The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.

  18. Superficial chemical peeling with salicylic acid in facial dermatoses

    International Nuclear Information System (INIS)

    Bari, A.U.; Iqbal, Z.; Rahman, S.B.

    2007-01-01

    To determine the effectiveness of salicylic acid chemical peeling in common dermatological conditions affecting face in people with predominant Fitzpatrick skin type IV and V. A total of 167 patients of either gender, aged between 13 to 60 years, having some facial dermatoses (melasma, acne vulgaris, postinflammatory hyperpigmentations, freckles, fine lines and wrinkles, post-inflammatory scars, actinic keratoses, and plane facial warts) were included. A series of eight weekly hospital based peeling sessions was conducted in all patients under standardized conditions with 30% salicylic acid. Clinical improvement in different disorders was evaluated by change in MASI score, decrease in the size of affected area and % reduction in lesions count. McNemar test was applied for data analysis. Majority of the patients showed moderate to excellent response. There was 35% to 63% improvement (p< 0.05) in all dermatoses. Significant side effects, as feared in Asian skins were not observed. Chemical peeling with salicylic acid is an effective and safe treatment modality in many superficial facial dermatoses. (author)

  19. Synthesis and characterization of a glycerol salicylate resin for bioactive root canal sealers.

    Science.gov (United States)

    Portella, F F; Santos, P D; Lima, G B; Leitune, V C B; Petzhold, C L; Collares, F M; Samuel, S M W

    2014-04-01

    To develop and characterize a salicylate resin with potential use in bioactive endodontic sealers. Methyl salicylate, glycerol and titanium isopropoxide were added in a closed system for the transesterification reaction. The resin obtained was characterized by proton nuclear magnetic resonance spectroscopy (1H NMR) and size exclusion chromatography (SEC). To verify the applicability of the resin to the development of endodontic sealers, experimental cements were prepared by mixing glycerol salicylate resin, calcium hydroxide and methyl salicylate in the ratios of 2 : 1 : 1, 1 : 2 : 1, 1 : 1 : 2, 1 : 1 : 1, 4 : 1 : 1, 1 : 4 : 1 and 1 : 1 : 4. Setting times were measured according to ISO 6876. Features of the hardening reaction were described by micro-RAMAN spectroscopy. The transesterification reaction had a 72% efficiency. The (1) H NMR analysis revealed the presence of the expected functional groups (hydroxyls and aromatic rings), and the SEC confirmed the molar mass of the resin produced. The setting times of experimental sealers ranged from 70 min (ratio 1 : 1 : 1) to 490 min (ratio 1 : 1 : 4). The conversion of the salicylic groups (1 613 cm(-1) ) to salicylate salt (1 543 cm(-1) ) and the reduction in calcium hydroxide peaks (1084 and 682 cm(-1) ) were confirmed by micro-RAMAN spectroscopy, which showed the calcium chelation by the resin. The new glycerol salicylate resin was successfully synthesized and revealed a potential application in the development of endodontic sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Effect of Salicylic Acid and Chelated Magnesium Sulfate on Fruit Quality Improvement (Physical Characteristics in Pear (cv. Louise Bonne

    Directory of Open Access Journals (Sweden)

    mahjabin adel

    2017-02-01

    salicylic acid with concentration of 0.1 and chelated magnesium sulfate with concentration of 0.5gram in a liter, and the compound treatment of salicylic acid with concentration of 0.5and chelated magnesium sulfate with concentration of 0.7 gram in a liter, respectively and the least amount in each of the three cases was related to the treatment of salicylic acid with concentration of 0.5 gram in a liter, too. The most and the least amount oflength: diameter ratio were allocated to the treatment of salicylic acid with concentration of 0.5 gram in a liter and the compound treatment of salicylic acid with concentration of 0.1 and chelated magnesium sulfate with concentration of 0.5gram in a liter, respectively. The increase of crop quality by salicylic acid in plants under tension conforms to the other study results. Salicylic acid has an important role in regulating various physiological processes such as growth, plant development, ion absorption and photosynthesis. Therefore, the application of salicylic acid as a plant growth regulator besides the mineral compound of chelated magnesium sulfate is effective on physical indexes of fruit quality in Pear. Conclusions: The results indicated that the fruits treated with salicylicacid with concentration of 0.5 gram in a liter had more proportion of length to diameter and less specific gravityrelated to others and the aforesaid treatment can be paid attention as proposed nutrition to produce lighter and more extended pear fruits, depending on the purpose.Furthermore, the compound treatment of salicylic acid with concentration of 0.5 and chelated magnesium sulfate with concentration of 0.7 gram in a litercan be paid attention as proposed nutrition to produce heavier pear fruits, too and that is because of its allocation of the most amount of fruit specific gravity.

  1. Children's Negative Emotionality Combined with Poor Self-Regulation Affects Allostatic Load in Adolescence

    Science.gov (United States)

    Dich, Nadya; Doan, Stacey; Evans, Gary

    2015-01-01

    The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…

  2. Effects of salicylic acid on post-ischaemic ventricular function and purine efflux in isolated mouse hearts.

    Science.gov (United States)

    Farthing, Don; Gehr, Lynne; Karnes, H Thomas; Sica, Domenic; Gehr, Todd; Larus, Terri; Farthing, Christine; Xi, Lei

    2007-01-01

    Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5-2.5 mM), anti-inflammatory (0.5-5.0 mM) or antiplatelet (0.18-0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0-10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575+/-3319 vs. 1437+/-348 ng ml(-1) min(-1), mean+/-SEM, n=6 per group, psalicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo model.

  3. Mathematical modeling of complexing in the scandium-salicylic acid-isoamyl alcohol system

    International Nuclear Information System (INIS)

    Evseev, A.M.; Smirnova, N.S.; Fadeeva, V.I.; Tikhomirova, T.I.; Kir'yanov, Yu.A.

    1984-01-01

    Mathematical modeling of an equilibrium multicomponent physicochemical system for extraction of Sc salicylate complexes by isoamyl alcohol was conducted. To calculate the equilibrium concentrations of Sc complexes different with respect to the content and composition, the system of nonlinear algebraic mass balance equations was solved. Experimental data on the extraction of Sc salicylates by isoamyl alcohol versus the pH of the solution at a constant Sc concentration and different concentration of salicylate-ions were used for construction of the mathematical model. The stability constants of ScHSal 2+ , Sc(HSal) 3 , ScOH(HSal) 2 , ScoH(HSal) 2 complexes were calculated

  4. Salicylic acid-independent plant defence pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are

  5. Microautoradiography of /sup 14/C-salicylic acid in the skin of guinea-pig

    Energy Technology Data Exchange (ETDEWEB)

    Washitake, M; Ozawa, Y; Anmo, T; Tanaka, I [Taisho Pharmaceutical Co. Ltd., Tokyo (Japan). Research Lab.

    1974-07-01

    The concentration of salicylic acid in guinea-pig skin was examined by microautoradiography. The retention of salicylic acid in the stratum corneum was observed. It was considered that the rate of transfer of the drug into the stratum corneum was small and that the stratum corneum became the barrier for permeability of the skin. The distribution of salicylic acid in other parts of the skin was uniform and no retention of the drug in any special parts was observed. The plasma level showed less percutaneous absorption of the drug when it was applied as liquid paraffin solution than when it was applied as an aqueous solution. The amount of salicylic acid absorbed from damaged skin was extremely large and, in this case, disappearance of the drug from the skin was fast.

  6. The risk of severe salicylate poisoning following the ingestion of topical medicaments or aspirin.

    OpenAIRE

    Chan, T. Y.

    1996-01-01

    Apart from isolated reports of severe salicylate poisoning after ingesting an unusually large amount of a medicinal oil, there are no published data on the threat arising from attempted suicide with topical medicaments containing methyl salicylate or wintergreen oil compared with aspirin tablets. In this retrospective study, the admission plasma salicylate concentrations and clinical presentations were compared in 80 subjects who had taken aspirin tablets (n = 42) or topical medicaments (n = ...

  7. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala A.; Mariappan, Kiruthiga; Bigeard, Jean; Manickam, Prabhu; Blilou, Ikram; Guo, Xiujie; Al-Babili, Salim; Pflieger, Delphine; Hirt, Heribert; Rayapuram, Naganand

    2018-01-01

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  8. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala Abdulaziz Hussien

    2018-05-31

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  9. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens

    Directory of Open Access Journals (Sweden)

    Roberto eSolano

    2013-04-01

    Full Text Available An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant’s hormone signaling network to promote disease.

  10. DMPD: The negative regulation of Toll-like receptor and associated pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17621314 The negative regulation of Toll-like receptor and associated pathways. Lan...) Show The negative regulation of Toll-like receptor and associated pathways. PubmedID 17621314 Title The ne...gative regulation of Toll-like receptor and associated pathways. Authors Lang T,

  11. Fate of [14C] warfarin in guinea-pigs: effect of a concomitant single dose of salicylate

    International Nuclear Information System (INIS)

    Wong, L.T.; Solomonraj, G.; Thomas, B.H.

    1978-01-01

    When a single dose of sodium salicylate (177.8 mg kg -1 , by mouth) was given with [ 14 C] warfarin (1 mg kg -1 , i.p.) to guinea-pigs, the salicylate depressed the blood concentrations of 14 C for 6 h. At 1 h, salicylate increased the distribution of 14 C in the liver and brain, but at 1 and 6 h it was decreased in the blood and kidney. A significant portion of the 14 C was excreted into the bile, but was subject to enterohepatic circulation and then excreted by the kidney. There was an enhancement of the biliary elimination of 14 C in the first 5 h after salicylate and a decrease in 14 C concentration in blood; the proportion of warfarin to its metabolites excreted in the urine and bile was unchanged. Salicylate displaced serum protein bound [ 14 C] warfarin in vitro. Salicylate increases the initial biliary elimination of warfarin by displacing some of that bound to plasma protein. This facilitated uptake of warfarin by the liver where it was metabolized. This effect of salicylate did not modify the hypoprothrombinaemia produced by warfarin. (author)

  12. Synthesis, crystal growth and characterization of bioactive material: 2-amino-1H-benzo[d]imidazol-3-ium salicylate single crystal-a proton transfer molecular complex

    Science.gov (United States)

    Fathima, K. Saiadali; Anitha, K.

    2017-05-01

    The 1:1 molecular adducts 2-aminobenzimidazolium salicylate (ABIS) single crystal was synthesized and grown from 2-aminobenzimidazole (ABI) as a donor and salicylic acid (SA) as an acceptor. The cell parameter was determined using single crystal X-Ray diffraction method and the complex ABIS belongs to monoclinic system. The spectroscopic studies showed that ABIS crystal was an ion pair complex. The FTIR and Raman spectra showed that the presence of O-H, C=N, C=O vibration which confirms the proton transfer from SA to ABI. The UV-Vis spectrum exhibited a visible band at 359nm for ABIS due to the salicylate anion of the molecule. Further the antimicrobial activity of ABIS complex against Staphylococcus aureus, klebsiella pneumonia, Pseudomonas eruginos and E.coli pathogens was investigated. So the complex molecule inhibits both Gram positive and Gram negative bacterial. It is found that benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of ABIS crystal.

  13. Dermal morphological changes following salicylic acid peeling and microdermabrasion.

    Science.gov (United States)

    Abdel-Motaleb, Amira A; Abu-Dief, Eman E; Hussein, Mahmoud Ra

    2017-12-01

    Microdermabrasion and chemical peeling are popular, inexpensive, and safe methods for treatment of some skin disorders and to rejuvenate skin. To study the alterations of the dermal connective tissue following salicylic acid peeling and microdermabrasion. Twenty patients were participated in our study. All participants underwent facial salicylic acid 30% peel or microdermabrasion (10 cases in each group) weekly for 6 weeks. Punch biopsies were obtained from the clinically normal skin of the right postauricular region 1 week before treatment (control group). Other punch skin biopsies were obtained 1 week after the end of the treatments from the left postauricular area. This region was treated in a similar way to the adjacent lesional skin (treated group). We used routine histological techniques (H&E stain), special stains (Masson trichrome and orcein stains), and image analyzer to study the alterations of the dermal connective tissues. Our study demonstrates variations in the morphological changes between the control and the treated groups, and between chemical peels and microdermabrasion. Both salicylic acid 30% and microdermabrasion were associated with thickened epidermal layer, shallow dermal papillae, dense collagen, and elastic fibers. There was a significant increase among those treated sites vs control regarding epidermal thickness and collagen thickness. Also, there was a highly statistically significant increase among those treated with salicylic acid vs microdermabrasion regarding the epidermal, collagen, and elastin thickness. Both methods stimulate the repair process. The mechanisms underlying these variations are open for further investigations. © 2017 Wiley Periodicals, Inc.

  14. Thiamin and Salicylic Acid as Biological Alternatives for Controlling Broad Bean Rot Disease

    International Nuclear Information System (INIS)

    AlHakimi, A.M.A; Alghalibi, Saeed M.S

    2007-01-01

    The interactive effects of fungi (Fusarium solani and Rhizoctonia solani) infection and thiamin or salicylic acid on growth rate, membrane stability, K+ efflux, UV-absorbing metabolites, photosynthetic pigments, cell wall components and lipid fractions of broad bean plants (30-day-old) were studied. Fungal infection induced a reduction in growth rate, membrane stability and content of photosynthetic pigments. Application of thiamin or salicylic acid increased growth rate, membrane stability and content of photosynthetic pigments. The K+ efflux and the leakage of UV-absorbing metabolites were stimulated with fungal infection. However, thiamin and salicylic acid treatment partially retarded the stimulatory effect on leakage of K+ and UV-absorbing metabolites of fungal infected plants. Fungal infection produced a reduction in the content of pectin and cellulose, total lipid, glycolipids and sterols fraction of shoots and roots and phospholipids of roots. On the other hand, the contents of hemicellulose and lignin of shoots and roots and phospholipids of shoots were stimulated by fungal infection. Soaking seeds in thiamin or salicylic acid counteracts partially or completely the adverse effect of fungal infection on pectin and cellulose composition, total lipid, glycolipids and sterols of either shoots or roots. On the other side, thiamin or salicylic acid treatments retarded the phospholipids accumulation in shoots of infected plants, and in roots the phospholipids accumulation was partially or completely alleviated. The content of hemicellulose and lignin of shoots and roots were antagonistically lowered by the application of thiamin or salicylic acid. (author)

  15. Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig.

    Science.gov (United States)

    Jastreboff, P J; Sasaki, C T

    1986-11-01

    Changes in spontaneous neuronal activity of the inferior colliculus in albino guinea pigs before and after administration of sodium salicylate were analyzed. Animals were anesthetized with pentobarbital, and two microelectrodes separated by a few hundred microns were driven through the inferior colliculus. After collecting a sufficiently large sample of cells, sodium salicylate (450 mg/kg) was injected i.p. and recordings again made 2 h after the injection. Comparison of spontaneous activity recorded before and after salicylate administration revealed highly statistically significant differences (p less than 0.001). After salicylate, the mean rate of the cell population increased from 29 to 83 Hz and the median from 26 to 74 Hz. Control experiments in which sodium salicylate was replaced by saline injection revealed no statistically significant differences in cell discharges. Recordings made during the same experiments from lobulus V of the cerebellar vermis revealed no changes in response to salicylate. The observed changes in single-unit activity due to salicylate administration may represent the first systematic evidence of a tinnituslike phenomenon in animals.

  16. Synthesis of 125 I - Salicyl Hydroxamic Acid for Urinary Bladder Imaging

    International Nuclear Information System (INIS)

    Ibrahim, I.T.; Abou EL Zahab, M.; Hamed, M.

    2015-01-01

    Salicylhydroxamic acid is a salicylate derivative. Radiolabeling of Salicyl hydroxamic acid ( SHA ) with iodine-125 may have considerable interest for imaging of urinary bladder. This study is aimed to optimize the radiolabeling yield of Salicyl hydroxamic with radio iodine (125-123) using chloramine - T (CAT) as an oxidizing agent with respect to factors that affect the reaction conditions such as SHA amount, CAT amount, reaction time and ph of the reaction mixture. In - vitro stability of the radiolabeled complex was checked and it was found to be stable for up to 24 h. 125 I-SHA was injected via intravenous administration routes into normal male Sprague – Dawley rats. Bio - distribution studies have revealed that 125 I-SHA was excreted in urine with extent that it could give a clear image for urinary bladder especially if the bladder it tightly closed. The amount of 125 I - Salicyl hydroxamic excreted was increased in case of giving potassium bicarbonate to rat before injection of 125 I-SHA. The result of biodistribution study of 125 I - SHA in experimental animal suggest ed the possibility of using 123 I-SHA to image the urinary bladder

  17. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.

    Science.gov (United States)

    Le Mercier, Isabelle; Lines, J Louise; Noelle, Randolph J

    2015-01-01

    In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  18. Dietary non-nutrients and haemostasis in humans : effects of salicylates, flavonoids and ginger

    NARCIS (Netherlands)

    Janssen, P.L.T.M.K.

    1997-01-01

    In this thesis we studied the content of acetylsalicylate and total salicylates in foods, and we studied the effects of the dietary non-nutrients salicylates and flavonoids and of certain foods on haemostatic parameters in humans.

    Acetylsalicylic acid -aspirin- irreversibly inhibits

  19. The effect of radiation on some salicylates. 1. Steady state studies

    International Nuclear Information System (INIS)

    Paz, L.R. de la.

    1975-01-01

    This work was undertaken to obtain more quantitative information on the extent and nature of the degradation of some salicylates by ionizing radiation, especially gamma rays, and to gather data that could assist in the evaluation of the use of radiation for sterilization of this group of compounds which are extensively used as antipyretics, analgesics and anti-rheumatics. Salicylamide is not only a common medicinal, but also a model for the study of the effect of radiation on biological systems. A 3200 Ci Co-60 facility was used. Three salicylates were subjected to solid phase irradiation, namely: salicylamide, phenylsalicylate, and acetyl salicylic acid (aspirin). These compounds were purified by repeated recrystallization from water, methanol and benzene, respectively, until a constant melting point was obtained. Irradiation in the solid phase was made in doses from 2.5 to 240 Krad. Irradiation in the liquid phase (solution) was carried out in doses, ranging from 2000 to as high as 270,000 rad depending on the reactivity of the solution. The degradation products were separated by thin layer chromatography using Kieselgel F254 and SIF with fluorescence scintillator (Riedel-de Haen). The products were visualized with a Camag UV Universal lamp. Irradiation of the three salicylates showed very little decomposition even at doses very much higher than those required for radiation sterilization. Salicylamide appears to be the most stable giving an initial G(-salicylamide)-0.50. For both phenylsalicylate and acetylsalicylic acid only the G values at 150 Mrad were obtained as the amounts degraded at lower doses were too low for the sensitivity of the diffused reflectance method used. A G(-phenylsalicylate)-2 and G(-acetylsalicylate)-1.2 were obtained by this method. Salicylic acid is formed when aspirin is irradiated. It is concluded that this acid is one of the degradation products. Barring any toxic property of the minute substances formed, solid phase sterilization is

  20. Magical mystery tour: Salicylic acid signalling

    Czech Academy of Sciences Publication Activity Database

    Janda, Martin; Ruelland, E.

    2015-01-01

    Roč. 114, Special Issue (2015), s. 117-128 ISSN 0098-8472 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Salicylic acid (SA) * NPR1 * SA overaccumulating mutants Subject RIV: ED - Physiology Impact factor: 3.712, year: 2015

  1. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  2. Modification of zirconium diphosphate with salicylic acid and its effect on the uranium (Vi) sorption

    International Nuclear Information System (INIS)

    Almazan T, M. G.; Garcia G, N.; Simoni, E.

    2014-10-01

    The surface of zirconium diphosphate (ZrP 2 O 7 ) was modified with salicylic acid and its effect was evaluated on the uranium (Vi) sorption. The modified surface of the material was analyzed with different analytical techniques among which are included the atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. This analysis allowed showing that the salicylic acid is being held on the surface of the zirconium diphosphate. The reactivity of modified zirconium diphosphate compared with uranium (Vi) was investigated using the classical method of batch sorption. The analysis of sorption isotherms shows that the salicylic acid has an important effect in the uranium (Vi) sorption. According to the study conducted, the interaction among the uranium (Vi) and the surface of zirconium diphosphate modified with the salicylic acid most likely leads to the complexes formation of binary (U(Vi)/ZrP 2 O 7 ) and ternary (U(Vi)/salicylate/ZrP 2 O 7 ) surface. (Author)

  3. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    Science.gov (United States)

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  4. Fate of (/sup 14/C) warfarin in guinea-pigs: effect of a concomitant single dose of salicylate

    Energy Technology Data Exchange (ETDEWEB)

    Wong, L T; Solomonraj, G; Thomas, B H [Department of National Health and Welfare, Ottawa, Ontario (Canada). Health Protection Branch

    1978-04-01

    When a single dose of sodium salicylate (177.8 mg kg/sup -1/, by mouth) was given with (/sup 14/C) warfarin (1 mg kg/sup -1/, i.p.) to guinea-pigs, the salicylate depressed the blood concentrations of /sup 14/C for 6 h. At 1 h, salicylate increased the distribution of /sup 14/C in the liver and brain, but at 1 and 6 h it was decreased in the blood and kidney. A significant portion of the /sup 14/C was excreted into the bile, but was subject to enterohepatic circulation and then excreted by the kidney. There was an enhancement of the biliary elimination of /sup 14/C in the first 5 h after salicylate and a decrease in /sup 14/C concentration in blood; the proportion of warfarin to its metabolites excreted in the urine and bile was unchanged. Salicylate displaced serum protein bound (/sup 14/C) warfarin in vitro. Salicylate increases the initial biliary elimination of warfarin by displacing some of that bound to plasma protein. This facilitated uptake of warfarin by the liver where it was metabolized. This effect of salicylate did not modify the hypoprothrombinaemia produced by warfarin.

  5. Scandium and zirconium ion complexing with salicylic acid

    International Nuclear Information System (INIS)

    Fadeeva, V.I.; Kochetkova, S.K.

    1979-01-01

    A study has been made of the extraction of complexes containing scandium and zirconium compounds and salicylic acid by using benzene, nitrobenzene, chloroform and isoamyl alcohol. It is shown that in the metal concentration range 10 -5 -10 -3 mole/l scandium forms mononuclear complexes composed of Sc(HSal) 3 (pH 2 (pH>4), zirconium - polynuclear complexes Zrsub(x)(OH)sub(y)(HSal)sub(n), where the x:n ratio varies from 0.5 to 1.5. Stability constants have been calculated for the salicylate scandium complexes in aqueous solution, equal to β 1 =(3+-1)x10 2 ; β 2 =(5.0+-0.6)x10 4 ; β 3 =(5.3+-0.3)x10 6

  6. Preconcentration and determination of uranium on to polyurethane foam functionalized with salicylate

    International Nuclear Information System (INIS)

    Sousa, Alvaro S.F. de; Ferreira, Elizabeth de M.M.; Cassella, Ricardo J.

    2009-01-01

    Salicylate was covalently linking with a commercial polyurethane foam (PUF) through -N=N-group generating a stable chelating sorbent (PUFS). The synthesized sorbent was characterized by Infrared Spectrometry (IR) measurement. Good stability towards various solvents was noticed. The pH influence and equilibration shaking time adsorption onto foam functionalized was studied as factors influencing the extraction process of the uranium ion solution. Extraction of uranium was accomplished in 10 minutes. Uranium at ppb level was absorbed as the salicylate complex on powered PUFS at pH about 8.0. Uranium could be achieved in 85 % from a 500 mL uranium solution (0.1 μgmL -1 ) which shows the suitability of salicylate foam for preconcentration analysis. (author)

  7. Tracing of salicylic acid additive during precipitation of zirconium

    International Nuclear Information System (INIS)

    Bharati Misra, U.; Gopala Krishna, K.; Narasimha Murty, B.; Yadav, R.B.

    2011-01-01

    This paper presents the results of experimental study carried out to know whether the salicylic acid used as an additive during the precipitation of zirconium using ammonium hydroxide solution goes into the filtrate, remains in the hydrated zirconia or gets distributed between the both under the ambient conditions of precipitation. Keeping its simplicity and amenability to adopt on a routine basis, spectrophotometric method has been chosen for the purpose among the many methods available and the problems associated in determining salicylic acid in the presence of zirconium and the medial measures to circumvent the same have been brought out in detail. (author)

  8. Effect of certain variables on the tumor and tissue distribution of tracers. Salicylates and vasoactive drugs

    International Nuclear Information System (INIS)

    Halpern, S.E.; Hagan, P.; Stern, P.; Gordon, R.; Dabbs, J.

    1981-01-01

    Attempts were made to increase the viable tumor concentration of 54Mn and 67Ga in a rat hepatoma model by administering rat angiotensin, tolazoline, and salicylates. Salicylates increased the tumor concentrations of 54Mn and improved 65Mn viable tumor/background ratios. 67Ga was not affected by the salicylates. The salicylate effect appeared to be mediated by intracellular mechanisms rather than alterations in plasma protein binding. Rat angiotensin slightly increased the concentrations of 67Ga in the tumors but not enough to suggest that it would be useful clinically. Tolazoline did not increase tumor uptake of the tracers

  9. Jasmonic Acid Is a Key Regulator of Spider Mite-Induced Volatile Terpenoid and Methyl Salicylate Emission in Tomato1[w

    Science.gov (United States)

    Ament, Kai; Kant, Merijn R.; Sabelis, Maurice W.; Haring, Michel A.; Schuurink, Robert C.

    2004-01-01

    The tomato (Lycopersicon esculentum) mutant def-1, which is deficient in induced jasmonic acid (JA) accumulation upon wounding or herbivory, was used to study the role of JA in the direct and indirect defense responses to phytophagous mites (Tetranychus urticae). In contrast to earlier reports, spider mites laid as many eggs and caused as much damage on def-1 as on wild-type plants, even though def-1 lacked induction of proteinase inhibitor activity. However, the hatching-rate of eggs on def-1 was significantly higher, suggesting that JA-dependent direct defenses enhanced egg mortality or increased the time needed for embryonic development. As to gene expression, def-1 had lower levels of JA-related transcripts but higher levels of salicylic acid (SA) related transcripts after 1 d of spider mite infestation. Furthermore, the indirect defense response was absent in def-1, since the five typical spider mite-induced tomato-volatiles (methyl salicylate [MeSA], 4,8,12-trimethyltrideca-1,3,7,11-tetraene [TMTT], linalool, trans-nerolidol, and trans-β-ocimene) were not induced and the predatory mite Phytoseiulus persimilis did not discriminate between infested and uninfested def-1 tomatoes as it did with wild-type tomatoes. Similarly, the expression of the MeSA biosynthetic gene salicylic acid methyltransferase (SAMT) was induced by spider mites in wild type but not in def-1. Exogenous application of JA to def-1 induced the accumulation of SAMT and putative geranylgeranyl diphosphate synthase transcripts and restored MeSA- and TMTT-emission upon herbivory. JA is therefore necessary to induce the enzymatic conversion of SA into MeSA. We conclude that JA is essential for establishing the spider mite-induced indirect defense response in tomato. PMID:15310835

  10. Effect of Salicylic Acid on Yield, Component Yield and Essential Oil of Black Cumin (Nigella sativa L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    E. Rezaei Chiyaneh

    2014-12-01

    Full Text Available Since the production of medicinal plants can be influenced by environmental factors such as water limitation. In other hand salicylic acid as a plant regulator can enhance drought resistance in plants. In order to investigate the effect of different irrigation intervals on yield, yield components and essential oil of black cumin (Nigella sativa L., a field experiment was conducted a farm located in West Azerbaijan province- city Nagadeh, West- Azerbaijan, during growing season of 2011- 2012. The experiment was arranged as split plot based on a randomized complete block design with three replications. Irrigation intervals (6, 12 and 18 days and three levels of salicylic acid concentration (0, 0.5 and 1 mM considered as in main plots and sub-plots, respectively. Results showed that irrigation had significant effects on all characteristics such as Plant height, number of follicule per plant, number of seed per follicule, biological yield, grain yield, essential oil content and essential oil yield with the exception of 1000- seed weight. With increasing irrigation intervals from 6 to 18 days, plant height, number of follicule per plant, number of seed per follicule, biological yield, grain yield, essential oil percentage and essential oil yield were decreased up to 49, 52, 40, 35, 43, 20 and 55 %, respectively. In contrast, yield components and yield were enhanced up to treatments 0.5 mM of salicylic acid. Grain yield and essential oil yield with application of 0.5 mM salicylic acid increased up to 13 and 11 % compared to control, respectively. It seems that due to the limited sources of water in the region irrigation after 12 days and 0.5 mM salicylic acid concentration are suitable for black cumin grain production.

  11. Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators.

    Directory of Open Access Journals (Sweden)

    Isabelle eLe Mercier

    2015-08-01

    Full Text Available In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  12. Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation.

    Science.gov (United States)

    Rai, Krishna Kumar; Rai, Nagendra; Rai, Shashi Pandey

    2018-07-01

    Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Regulation of positive and negative emotion: Effects of sociocultural context

    Directory of Open Access Journals (Sweden)

    Sara A. Snyder

    2013-07-01

    Full Text Available Previous research has demonstrated that the use of emotion regulation strategies can vary by sociocultural context. In a previous study, we reported changes in the use of two different emotion regulation strategies at an annual alternative cultural event, Burning Man (McRae, Heller, John, & Gross, 2011. In this sociocultural context, as compared to home, participants reported less use of expressive suppression (a strategy generally associated with maladaptive outcomes, and greater use of cognitive reappraisal (a strategy associated with adaptive outcomes. What remained unclear was whether these changes in self-reported emotion regulation strategy use were characterized by changes in the regulation of positive emotion, negative emotion, or both. We addressed this issue in the current study by asking Burning Man participants separate questions about positive and negative emotion. Using multiple datasets, we not only replicated our previous findings, but also found that the decreased use of suppression is primarily driven by reports of decreased suppression of positive emotion at Burning Man. By contrast, the reported increased use of reappraisal is not characterized by differential reappraisal of positive and negative emotion at Burning Man. Moreover, we observed novel individual differences in the magnitude of these effects. The contextual changes in self-reported suppression that we report are strongest for men and younger participants. For those who had previously attended Burning Man, we observed lower levels of self-reported suppression in both sociocultural contexts: Burning Man and home. These findings have implications for understanding the ways in which certain sociocultural contexts may decrease suppression, and possibly minimize its associated maladaptive effects.

  14. Salicylate removal by charcoal heamoperfusion in experimental intoxication in dogs. An assessment of efficacyd and safety

    Energy Technology Data Exchange (ETDEWEB)

    Brookings, C H [Saint George' s Hospital Medical School, London (UK). Dept. of Medicine; Ramsey, J D [Saint George' s Hospital Medical School, London (UK). Toxicology Lab.

    1975-11-01

    The removal of salicylate by extracorporeal circulation of blood through a column of encapsulated charcoal (haemoperfusion) has been studied experimentally in intoxicated dogs (greyhounds). The average time taken to reduce the whole blood salicylate level to one-half of the initial equilibrium level in 30 kg dogs was 2 hrs. A half-life of 3 hrs is predicted for salicylate removal by haemoperfusion in a 70 kg man and this rate of removal is shown to be comparable to that reported for haemodialysis. No unacceptable adverse physiological, biochemical, or haematological effects were found to result from haemoperfusion. The possible use of this technique in the management of severe salicylate poisoning in man is discussed. Haemoperfusion is foreseen as providing a method of rapid removal of salicylate in circumstances where forced diuresis is contra-indicated or inadequate and haemodialysis is not readily available.

  15. N-wasp is essential for the negative regulation of B cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Chaohong Liu

    2013-11-01

    Full Text Available Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP, which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.

  16. Jasmonic acid and salicylic acid activate a common defense system in rice.

    Science.gov (United States)

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-06-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.

  17. Heat shock and salicylic acid on postharvest preservation of organic strawberries

    Directory of Open Access Journals (Sweden)

    Sidiane Coltro

    2014-06-01

    Full Text Available Heat shock and salicylic acid have been studied on shelf-life extension of fruits. The benefits of these techniques have been related to their effect on inducing physiological defense responses against the oxidative stress and pathogen development. The objective of this study was to evaluate the effect of heat shock and salicylic acid on the postharvest preservation and contents of total phenolics, anthocyanins, ascorbic acid, fresh weight loss and microbiological quality of organic strawberries cv. Dover. Strawberries produced organically and stored at 5 ºC were subjected to heat shock (45 ºC ± 3 ºC for 3 h, application of salicylic acid (soaking in 2.0 mmol L-1 solution, heat shock in combination with salicylic acid and control. After treatment, the fruits were packed and stored in a climatic chamber at 5 ºC ± 2 ºC. At 1, 7 and 14 days, the experimental units were removed from refrigeration and kept at room temperature of approximately 20 ºC for two days. There was no effect of treatments on fresh weight loss, incidence of pathogens or chemical variations in strawberry fruits during the storage period. In natural conditions, organically grown strawberries remained in good condition for sale up to seven days of storage in all treatments.

  18. High doses of salicylate causes prepulse facilitation of onset-gap induced acoustic startle response.

    Science.gov (United States)

    Sun, Wei; Doolittle, Lauren; Flowers, Elizabeth; Zhang, Chao; Wang, Qiuju

    2014-01-01

    Prepulse inhibition of acoustic startle reflex (PPI), a well-established method for evaluating sensorimotor gating function, has been used to detect tinnitus in animal models. Reduced gap induced PPI (gap-PPI) was considered as a sign of tinnitus. The silent gap used in the test contains both onset and offset signals. Tinnitus may affect these cues differently. In this experiment, we studied the effects of a high dose of salicylate (250 mg/kg, i.p.), an inducer of reversible tinnitus and sensorineural hearing loss, on gap-PPI induced by three different gaps: an onset-gap with 0.1 ms onset and 25 ms offset time, an offset-gap with 25 ms onset and 0.1 ms offset time, and an onset-offset-gap with 0.1 ms onset and offset time. We found that the onset-gaps induced smaller inhibitions than the offset-gaps before salicylate treatment. The offset-gap induced PPI was significantly reduced 1-3h after salicylate treatment. However, the onset-gap caused a facilitation of startle response. These results suggest that salicylate induced reduction of gap-PPI was not only caused by the decrease of offset-gap induced PPI, but also by the facilitation induced by the onset-gap. Since the onset-gap induced PPI is caused by neural offset response, our results suggest that salicylate may cause a facilitation of neural response to an offset acoustical signal. Treatment of vigabatrin (60 mg/kg/day, 14 days), which elevates the GABA level in the brain, blocked the offset-gap induced PPI and onset-gap induced facilitation caused by salicylate. These results suggest that enhancing GABAergic activities can alleviate salicylate induced tinnitus. Published by Elsevier B.V.

  19. Treatment of post-electroconvulsive therapy headache with topical methyl salicylate.

    Science.gov (United States)

    Logan, Christopher J; Stewart, Jonathan T

    2012-06-01

    Headache after administration of electroconvulsive therapy (ECT) is common, affecting approximately half of patients treated. Post-ECT headache is typically treated with acetaminophen or nonsteroidal anti-inflammatory drugs but occasionally requires agents such as sumatriptan, opioids, or β-blockers. We report on a patient whose severe post-ECT headaches responded completely to methyl salicylate ointment, applied to the area of his temporalis and masseter muscles. Topical methyl salicylate is generally well tolerated and may be a viable option for some patients with post-ECT headache.

  20. Expression of immediate-early genes in the dorsal cochlear nucleus in salicylate-induced tinnitus.

    Science.gov (United States)

    Hu, Shou-Sen; Mei, Ling; Chen, Jian-Yong; Huang, Zhi-Wu; Wu, Hao

    2016-02-01

    Spontaneous neuronal activity in dorsal cochlear nucleus (DCN) may be involved in the physiological processes underlying salicylate-induced tinnitus. As a neuronal activity marker, immediate-early gene (IEG) expression, especially activity-dependent cytoskeletal protein (Arc/Arg3.1) and the early growth response gene-1 (Egr-1), appears to be highly correlated with sensory-evoked neuronal activity. However, their relationships with tinnitus induced by salicylate have rarely been reported in the DCN. In this study, we assessed the effect of acute and chronic salicylate treatment on the expression of N-methyl D-aspartate receptor subunit 2B (NR2B), Arg3.1, and Egr-1. We also observed ultrastructural alterations in the DCN synapses in an animal model of tinnitus. Levels of mRNA and protein expression of NR2B and Arg3.1 were increased in rats that were chronically administered salicylate (200 mg/kg, twice daily for 3, 7, or 14 days). These levels returned to baseline 14 days after cessation of treatment. However, no significant changes were observed in Egr-1 gene expression in any groups. Furthermore, rats subjected to long-term salicylate administration showed more presynaptic vesicles, thicker and longer postsynaptic densities, and increased synaptic interface curvature. Alterations of Arg3.1 and NR2B may be responsible for the changes in the synaptic ultrastructure. These changes confirm that salicylate can cause neural plasticity changes at the DCN level.

  1. Partial reversal by beta-D-xyloside of salicylate-induced inhibition of glycosaminoglycan synthesis in articular cartilage

    International Nuclear Information System (INIS)

    Palmoski, M.J.; Brandt, K.D.

    1982-01-01

    While net 35 S-glycosaminoglycan synthesis in normal canine articular cartilage was suppressed by 10(-3)M sodium salicylate to about 70% of the control value, addition of xyloside (10(-6)M-10(-3)M) to the salicylate-treated cultures led to a concentration-dependent increase in glycosaminoglycan synthesis, which rose to 120-237% of controls. Similar results were obtained when 3 H-glucosamine was used to measure glycosaminoglycan synthesis, confirming that salicylate suppresses and xyloside stimulates net glycosaminoglycan synthesis, and not merely sulfation. Salicylate (10-3)M) did not affect the activity of xylosyl or galactosyl transferase prepared from canine knee cartilage, and net protein synthesis was unaltered by either salicylate or xyloside. The proportion of newly synthesized proteoglycans existing as aggregates when cartilage was cultured with xyloside was similar to that in controls, although the average hydrodynamic size of disaggregated proteoglycans and of sulfated glycosaminoglycans was diminished

  2. Integrating Data on the Arabidopsis NPR1/NPR3/NPR4 Salicylic Acid Receptors; a Differentiating Argument

    Directory of Open Access Journals (Sweden)

    Xiahezi eKuai

    2015-04-01

    Full Text Available Salicylic acid (SA is a mandatory plant metabolite in the deployment of systemic acquired resistance (SAR, a broad-spectrum systemic immune response induced by local inoculation with avirulent pathogens. The NPR1 transcription co-activator is the central node positively regulating SAR. SA was the last of the major hormones to be without a known receptor. Recently, NPR1 was shown to be the direct link between SA and gene activation. This discovery seems to be controversial. NPR1 being an SA-receptor is reminiscent of the mammalian steroid receptors, which are transcription factors whose binding to DNA is dependent on the interaction with a ligand. Unlike steroid receptors, NPR1 does not bind directly to DNA, but is recruited to promoters by the TGA family of transcription factors to form an enhanceosome. In Arabidopsis, NPR1 is part of a multigene family in which two other members, NPR3 and NPR4, have also been shown to interact with SA. NPR3/NPR4 are negative regulators of immunity and act as substrate adaptors for the recruitment of NPR1 to an E3-ubiquitin ligase, leading to its subsequent degradation by the proteasome. In this perspective, we will stress-test in a friendly way the current NPR1/NPR3/NPR4 model.

  3. dRYBP contributes to the negative regulation of the Drosophila Imd pathway.

    Directory of Open Access Journals (Sweden)

    Ricardo Aparicio

    Full Text Available The Drosophila humoral innate immune response fights infection by producing antimicrobial peptides (AMPs through the microbe-specific activation of the Toll or the Imd signaling pathway. Upon systemic infection, the production of AMPs is both positively and negatively regulated to reach a balanced immune response required for survival. Here, we report the function of the dRYBP (drosophila Ring and YY1 Binding Protein protein, which contains a ubiquitin-binding domain, in the Imd pathway. We have found that dRYBP contributes to the negative regulation of AMP production: upon systemic infection with Gram-negative bacteria, Diptericin expression is up-regulated in the absence of dRYBP and down-regulated in the presence of high levels of dRYBP. Epistatic analyses using gain and loss of function alleles of imd, Relish, or skpA and dRYBP suggest that dRYBP functions upstream or together with SKPA, a member of the SCF-E3-ubiquitin ligase complex, to repress the Imd signaling cascade. We propose that the role of dRYBP in the regulation of the Imd signaling pathway is to function as a ubiquitin adaptor protein together with SKPA to promote SCF-dependent proteasomal degradation of Relish. Beyond the identification of dRYBP as a novel component of Imd pathway regulation, our results also suggest that the evolutionarily conserved RYBP protein may be involved in the human innate immune response.

  4. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

    2015-01-01

    in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional

  5. Neuropeptide receptors NPR-1 and NPR-2 regulate Caenorhabditis elegans avoidance response to the plant stress hormone methyl salicylate.

    Science.gov (United States)

    Luo, Jintao; Xu, Zhaofa; Tan, Zhiping; Zhang, Zhuohua; Ma, Long

    2015-02-01

    Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of two closely related neuropeptide receptors NPR-1 and NPR-2. Molecular analyses suggest that NPR-1 expressed in the RMG inter/motor neurons is required for MeSa avoidance. An NPR-1 ligand FLP-18 is also required. Using a rescuing npr-2 promoter to drive a GFP transgene, we identified that NPR-2 is expressed in multiple sensory and interneurons. Genetic rescue experiments suggest that NPR-2 expressed in the AIZ interneurons is required for MeSa avoidance. We also provide evidence that the AWB sensory neurons might act upstream of RMGs and AIZs to detect MeSa. Our results suggest that NPR-2 has an important role in regulating animal behavior and that NPR-1 and NPR-2 act on distinct interneurons to affect C. elegans avoidance response to MeSa. Copyright © 2015 by the Genetics Society of America.

  6. Effects of Salicylic acid and Humic acid on Vegetative Indices of Periwinkle (Catharanthus roseusL.

    Directory of Open Access Journals (Sweden)

    E. Chamani

    2016-07-01

    Full Text Available Introduction: Vinca flower (Catharanthus roseus L. is one of the most important medicinal plants of Apocynaceae (31, 27. Tropical plant native to a height of 30 to 35 centimeters (9 and a perennial shrub which is grown in cold areas for one year (27.One of the plants in the world today as a medicinal plant used the periwinkle plant. Among the 130 indole – terpenoids alkaloids which have been identified in the plant periwinkle vinca alkaloids vincristine and vinblastin are the most important component is used to treat a variety of cancers. Including therapies that are used for a variety of cancer, chemotherapy to help Vinca alkaloids collection (including vincristine and…. Vinblastin as effective member of this category, due to the low percentage of venom and effects at very low doses, is widely used today. These materials are generally formed as inhibitors of mitotic spindle in dividing cells have been identified. Vinblastin with these structural changes in connection kinotokor - microtubules and centrosomes in a dividing cell, the mitotic spindle stop (45.Salicylic acid belongs to a group of phenolic compounds found in plants, and today is widely regarded as a hormone-like substance. These classes of compounds act as growth regulators. Humic substances are natural organic compounds that contain 50 to 90% of organic matter, peat, charcoal, rotten food and non-living organic materials are aquatic and terrestrial ecosystems (2. Materials and Methods: In this experiment, vinca F2 seeds in the mixed 4: 1 perlite and peat moss to the planting trays were sown. The seedlings at the 6-leaf stage were transfered to the main pot (pot height 30 and 25 cm diameter The pots bed soil mix consisting of 2 parts soil to one part sand and one part peat moss (v / v were used and after the establishment of seedlings in pots every two weeks with. Salicylic acid and humic acid concentrations 0 (control, 10, 100, 500 and 1000 mg were treated as a foliar spray

  7. On the role of salicylic acid in plant responses to environmental stresses

    DEFF Research Database (Denmark)

    Hernández, José A.; Diaz-Vivancos, Pedro; Barba Espin, Gregorio

    2017-01-01

    (NPR1), which is one of the few known redox-regulated proteins in plants. Different synthetic chemicals are able to mimic the ability of SA to activate resistance to various stresses, both biotic and abiotic, in plants with agronomic interest. Among these chemicals, 2,6-dichloroisonicotinic acid (INA......Salicylic acid (SA) is a plant hormone more commonly known by its role in human medicine than in the field of plant physiology. However, in the last two decades, SA has been described as an important signalling molecule in plants regulating growth, development and response to a wide number...... of biotic and abiotic stresses. Indeed, actually, it is well known that SA is a key signalling molecule involved in systemic acquired resistance (SAR), and recent works reported a role for SA in the response to salt or drought stresses. The precise mode of the stress hormone SA action is unclear, although...

  8. The Physical Characterization of Liposome Salicylic Acid Using Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Elman Panjaitan

    2008-01-01

    The physical characterization of liposome, formulated from salicylic acid using thin film hydration methods with cholesterol and soybean lecithin, has been done. The formula was characterized by optical microscopes and Transmission Electron Microscope (TEM). The observation result shows that the salicylic acid can be formulated to liposomes. Soybean lecithin combined with cholesterol (600 mg : 20 mg) was the best formula and the liposome was spherical vesicle like with dimension about 70 nm unit 800 nm. (author)

  9. Effect of certain variables on the tumor and tissue distribution of tracers. III. Salicylates and vasoactive drugs

    International Nuclear Information System (INIS)

    Halpern, S.E.; Hagan, P.; Stern, P.; Gordon, R.; Dabbs, J.

    1981-01-01

    Attempts were made to increase the viable tumor concentration of 54 Mn and 67 Ga in a rat hepatoma model by administering rat angiotensin, tolazoline, and salicylates. Salicylates increased the tumor concentrations of 54 Mn and improved 65 Mn viable tumor/background ratios. 67 Ga was not affected by the salicylates. The salicylate effect appeared to be mediated by intracellular mechanisms rather than alterations in plasma protein binding. Rat angiotensin slightly increased the concentrations of 67 Ga in the tumors but not enough to suggest that it would be useful clinically. Tolazoline did not increase tumor uptake of the tracers

  10. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-01-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy. PMID:22353574

  11. Attenuation of acute plasma cortisol response in calves following intravenous sodium salicylate administration prior to castration.

    Science.gov (United States)

    Coetzee, J F; Gehring, R; Bettenhausen, A C; Lubbers, B V; Toerber, S E; Thomson, D U; Kukanich, B; Apley, M D

    2007-08-01

    Pain associated with castration in cattle is an animal welfare concern in beef production. This study examined the effect of oral aspirin and intravenous (i.v.) sodium salicylate on acute plasma cortisol response following surgical castration. Twenty bulls, randomly assigned to the following groups, (i) uncastrated, untreated controls, (ii) castrated, untreated controls, (iii) 50 mg/kg sodium salicylate i.v. precastration and (iv) 50 mg/kg aspirin (acetylsalicylic acid) per os precastration, were blood sampled at 3, 10, 20, 30, 40, 50 min and 1, 1.5, 2, 4, 6, 8, 10 and 12 h postcastration. Samples were analyzed by competitive chemiluminescent immunoassay and fluorescence polarization immunoassay for cortisol and salicylate, respectively. Data were analyzed using noncompartmental analysis, a simple cosine model, anova and t-tests. Intravenous salicylate V(d(ss)) was 0.18 L/kg, Cl(B) was 3.36 mL/min/kg and t(1/2 lambda) was 0.63 h. Plasma salicylate concentrations above 25 microg/mL coincided with significant attenuation in peak cortisol concentrations (P = 0.029). Peak salicylate concentrations following oral aspirin administration was castrated groups was significantly higher than uncastrated controls (P = 0.018). These findings have implications for designing drug regimens to provide analgesia during routine animal husbandry procedures.

  12. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation.

    Directory of Open Access Journals (Sweden)

    Tatsuya Kosaka

    Full Text Available RAGE, receptor for advanced glycation endoproducts (AGE, has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.

  13. Acetyl salicylic acid and 24-epibrassinolide attenuate decline in photosynthesis, chlorophyll contents and membrane thermo- stability in tomato (lycopersicon esculentum mill.) under heat stress

    International Nuclear Information System (INIS)

    Khan, A.R.; Hui, C.Z.; Ghazanfar, B.

    2015-01-01

    The effect of exogenous application of varying levels of 24-epibrassinolide (0.75, 1.5 and 3 micro M) and acetyl salicylic acid (0.25, 0.75 and 1.25 micro M) for induction of heat tolerance in terms of their effect on photosynthesis, chlorophyll content, membrane integrity and survival in four weeks old tomato (cultivar: Mei Jie Lo) seedlings under high temperature stress (46 degree C/4 h daily) for 21 days was investigated. The daily heat stress treatment had deleterious effects on seedlings but chemical treatments significantly reduced the magnitude of losses to different extents. 24-epibrassinolide (3 micro M) was over all the best treatment to improve survival (86.11%), photosynthesis (39.4%) and chlorophyll contents (26.12%) accompanied with initiation of flower buds and improved vegetative growth. Whereas acetyl salicylic acid (1.25 mM) best improved photosynthetic activity (40.6%) as compared to the untreated heat stressed control seedlings. Moreover, 3 micro M 24-epibrassinolide and 0.75 micro M acetyl salicylic acid reduced cell membrane injury to 8.3 and 6.9% respectively as compared with 22.4% in heat stressed control seedlings. However lower doses of acetyl salicylic acid (0.25 and 0.75 micro M) had slight (5.6 and 12.8%) inhibition effect on the photosynthesis than the heat stressed controls. Overall both acetyl salicylic acid and 24-epibrassinolide up regulated basal heat tolerance in tomato seedlings and studied concentrations demonstrated signature affect upon different parameters. Thus both chemical agents can be potential candidates for further investigations for exogenous application aiming at extension of tomato growth season in summer. (author)

  14. The Synthesis of Methyl Salicylate: Amine Diazotization.

    Science.gov (United States)

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  15. Optimization and validation of liquid chromatography and headspace-gas chromatography based methods for the quantitative determination of capsaicinoids, salicylic acid, glycol monosalicylate, methyl salicylate, ethyl salicylate, camphor and l-menthol in a topical formulation.

    Science.gov (United States)

    Pauwels, Jochen; D'Autry, Ward; Van den Bossche, Larissa; Dewever, Cédric; Forier, Michel; Vandenwaeyenberg, Stephanie; Wolfs, Kris; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2012-02-23

    Capsaicinoids, salicylic acid, methyl and ethyl salicylate, glycol monosalicylate, camphor and l-menthol are widely used in topical formulations to relieve local pain. For each separate compound or simple mixtures, quantitative analysis methods are reported. However, for a mixture containing all above mentioned active compounds, no assay methods were found. Due to the differing physicochemical characteristics, two methods were developed and optimized simultaneously. The non-volatile capsaicinoids, salicylic acid and glycol monosalicylate were analyzed with liquid chromatography following liquid-liquid extraction, whereas the volatile compounds were analyzed with static headspace-gas chromatography. For the latter method, liquid paraffin was selected as compatible dilution solvent. The optimized methods were validated in terms of specificity, linearity, accuracy and precision in a range of 80% to 120% of the expected concentrations. For both methods, peaks were well separated without interference of other compounds. Linear relationships were demonstrated with R² values higher than 0.996 for all compounds. Accuracy was assessed by performing replicate recovery experiments with spiked blank samples. Mean recovery values were all between 98% and 102%. Precision was checked at three levels: system repeatability, method precision and intermediate precision. Both methods were found to be acceptably precise at all three levels. Finally, the method was successfully applied to the analysis of some real samples (cutaneous sticks). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Spectrophotometric study into complexing of vanadium(3) with salicylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Dolgorev, A V; Serikov, Yu A; Zolotavin, V L

    1977-03-01

    Complexing of vanadium (3) with 5 amino-salicylic acid and amide of salicylhydroxamic acid has been studied. It has been shown that in acidic medium V/sup 3 +/ forms yellow complexes of the composition 1:1 with instability constants 2.2x10/sup -19/, 7.8x10/sup -11/, and 2.2x10/sup -12/, respectively. Complexes of V/sup 3 +/ with derivatives of salicylic acid can be used for determining V(3) content in the presence of V(4).

  17. Effect of salicylic acid and aloe vera gel on postharvest quality of table grapes ( Vitis Vinifera

    Directory of Open Access Journals (Sweden)

    H. Peyro

    2017-06-01

    Full Text Available To investigate the effects of salicylic acid dipping and Aloe vera gel coating on shelf life and post harvest quality of table grapes (Vitis vinifera of the cultivar Shahroudi, a factorial experiment was conducted on the basis of randomized complete blocks design with three factors and three replicates in agricultural faculty of Islamic Azad University in 2014. The treatments were dipping in Salicylic acid (three levels of 0, 1 and 2 mmmol-1 for 15 minutes and coating with Aloe vera gel (four levels of 0, 10%, 15% and 20% w/v and measurement of traits in 1st day, 30th day and 60th day after treatment of berries. The results showed that the interaction effect of salicylic acid and Aloe vera gel application was significant on all of traits except for pH value in a way that the best and the minimum weight loss (0.09g was obtained by application of 2 mmol-1 Salicylic acid and 20% Aloe vera gel in 1st day after treatment. The greatest amount of total soluble solids (428.43 g.100g-1 fruit juice was found in 2 mmol-1 Salicylic acid and 15% Aloe vera gel in 60th day. The highest Catalase enzyme activity (0.0013 Ua.mg-1Pro was attained in 2 mmol-1 Salicylic acid and 15% Aloe vera gel in 30th day. These results demonstrated that treatment of grape berries by salicylic acid and Aloe vera gel had positive effect on shelf life of table grapes and their postharvest quality

  18. Scandium and zirconium ion complexing with salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Fadeeva, V I; Kochetkova, S K [Moskovskij Gosudarstvennyj Univ. (USSR)

    1979-08-01

    A study has been made of the extraction of complexes containing scandium and zirconium compounds and salicylic acid by using benzene, nitrobenzene, chloroform and isoamyl alcohol. It is shown that in the metal concentration range 10/sup -5/-10/sup -3/ mole/l scandium forms mononuclear complexes composed of Sc(HSal)/sub 3/ (pH<=4) and Sc(OH)(HSal)/sub 2/ (pH>4), zirconium - polynuclear complexes Zrsub(x)(OH)sub(y)(HSal)sub(n), where the x:n ratio varies from 0.5 to 1.5. Stability constants have been calculated for the salicylate scandium complexes in aqueous solution, equal to ..beta../sub 1/=(3+-1)x10/sup 2/; ..beta../sub 2/=(5.0+-0.6)x10/sup 4/; ..beta../sub 3/=(5.3+-0.3)x10/sup 6/.

  19. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making

    Directory of Open Access Journals (Sweden)

    Anne M. Farrell

    2018-02-01

    Full Text Available Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI study, we evaluated how fixed wage (FW incentives and performance-based (PB financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.

  20. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making.

    Science.gov (United States)

    Farrell, Anne M; Goh, Joshua O S; White, Brian J

    2018-01-01

    Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI) study, we evaluated how fixed wage (FW) incentives and performance-based (PB) financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.

  1. Ion-pair high performance liquid chromatographic retention behavior of salicylic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.W.; Chung, Y.S. [Chungbuk National University, Cheongju (Korea); Oh, S.K. [Handok Pharmaceuticals Co. Ltd., Chungbuk (Korea)

    1999-06-01

    The ion-pair high performance liquid chromatographic elution behavior of salicylic acid and its derivatives was studied with measuring capacity factor, k', changing the concentration of ion-pairing reagent (tetrabutylammonium chloride, TBACl) in mobile phase. As a result, it was found that k' of the samples increase at pH 7.2 as the TBACl concentration increase. The derivatives of salicylic acid were separated each other at an optimum mobile phase condition which was found from the observation of the retention behavior. The optimum mobile phase condition was methanol solution(MeOH:H{sub 2}O 30:70) containing 20 mM TBACl for the determination of salicylic acid and methanol solution (MeOH:H{sub 2}O 20:80) containing 40 mM TBACl for p-aminosalicylic acid at pH 7.2. The method has been applied for the analysis of the contents of salicylic acid derivatives in an aspirin tablet and a tuberculosis curing agent. 8 refs., 4 figs., 2 tabs.

  2. Metacognitive emotion regulation: children's awareness that changing thoughts and goals can alleviate negative emotions.

    Science.gov (United States)

    Davis, Elizabeth L; Levine, Linda J; Lench, Heather C; Quas, Jodi A

    2010-08-01

    Metacognitive emotion regulation strategies involve deliberately changing thoughts or goals to alleviate negative emotions. Adults commonly engage in this type of emotion regulation, but little is known about the developmental roots of this ability. Two studies were designed to assess whether 5- and 6-year-old children can generate such strategies and, if so, the types of metacognitive strategies they use. In Study 1, children described how story protagonists could alleviate negative emotions. In Study 2, children recalled times that they personally had felt sad, angry, and scared and described how they had regulated their emotions. In contrast to research suggesting that young children cannot use metacognitive regulation strategies, the majority of children in both studies described such strategies. Children were surprisingly sophisticated in their suggestions for how to cope with negative emotions and tailored their regulatory responses to specific emotional situations. Copyright 2010 APA

  3. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal.

    Science.gov (United States)

    Kaurilind, Eve; Brosché, Mikael

    2017-01-01

    Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.

  4. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.

    Science.gov (United States)

    Takaya, Akiko; Tabuchi, Fumiaki; Tsuchiya, Hiroko; Isogai, Emiko; Yamamoto, Tomoko

    2008-06-01

    Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.

  5. Ferrocene Compounds. XXVI. C- and O-Ferrocenylalkylation of Methyl Salicylate

    OpenAIRE

    Kovač, Veronika; Rapić, Vladimir; Alagić, Jasmina; Barišić, Lidija

    1999-01-01

    Reaction of equimolar amounts of methyl salicylate, sodium and N,N,N-trimethylferrocylammonium iodide (1a) in ethanol gave 55% of ethyl 1-ferrocenylethyl ether (4). By refluxing a solution of 9 mmol sodium and 3 mmol of FcCHRNMe3I (1a, R = H; 1b, R = Me; 1c, R = Ph) in a large excess of methyl salicylate for 2-3 hours, the corresponding methyl 5-ferrocylsalicylates (5) (10-23%) and methyl-3-ferrocylsalicylates (6) (12-20%) were obtained. During conversion of salt 1b, besides of 5b and 6b, 20%...

  6. Processing and regulation of negative emotions in anorexia nervosa: An fMRI study

    Directory of Open Access Journals (Sweden)

    Maria Seidel

    Full Text Available Theoretical models and recent advances in the treatment of anorexia nervosa (AN have increasingly focused on the role of alterations in the processing and regulation of emotions. To date, however, our understanding of these changes is still limited and reports of emotional dysregulation in AN have been based largely on self-report data, and there is a relative lack of objective experimental evidence or neurobiological data.The current functional magnetic resonance imaging (fMRI study investigated the hemodynamic correlates of passive viewing and voluntary downregulation of negative emotions by means of the reappraisal strategy detachment in AN patients. Detachment is regarded as adaptive regulation strategy associated with a reduction in emotion-related amygdala activity and increased recruitment of prefrontal brain regions associated with cognitive control processes. Emotion regulation efficacy was assessed via behavioral arousal ratings and fMRI activation elicited by an established experimental paradigm including negative images. Participants were instructed to either simply view emotional pictures or detach themselves from feelings triggered by the stimuli.The sample consisted of 36 predominantly adolescent female AN patients and a pairwise age-matched healthy control group. Behavioral and neuroimaging data analyses indicated a reduction of arousal and amygdala activity during the regulation condition for both patients and controls. However, compared with controls, individuals with AN showed increased activation in the amygdala as well as in the right dorsolateral prefrontal cortex (dlPFC during the passive viewing of aversive compared with neutral pictures.These results extend previous findings indicative of altered processing of salient emotional stimuli in AN, but do not point to a general deficit in the voluntary regulation of negative emotions. Increased dlPFC activation in AN during passive viewing of negative stimuli is in line with

  7. Negative regulation of neuronal cell differentiation by INHAT subunit SET/TAF-Iβ.

    Science.gov (United States)

    Kim, Dong-Wook; Kim, Kee-Beom; Kim, Ji-Young; Lee, Kyu-Sun; Seo, Sang-Beom

    2010-09-24

    Epigenetic modification plays an important role in transcriptional regulation. As a subunit of the INHAT (inhibitor of histone acetyltransferases) complex, SET/TAF-Iβ evidences transcriptional repression activity. In this study, we demonstrate that SET/TAF-Iβ is abundantly expressed in neuronal tissues of Drosophila embryos. It is expressed at high levels prior to and in early stages of neuronal development, and gradually reduced as differentiation proceeds. SET/TAF-Iβ binds to the promoters of a subset of neuronal development markers and negatively regulates the transcription of these genes. The results of this study show that the knockdown of SET/TAF-Iβ by si-RNA induces neuronal cell differentiation, thus implicating SET/TAF-Iβ as a negative regulator of neuronal development. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Hypercapnea and Acidemia despite Hyperventilation following Endotracheal Intubation in a Case of Unknown Severe Salicylate Poisoning

    Directory of Open Access Journals (Sweden)

    Shannon M. Fernando

    2017-01-01

    Full Text Available Salicylates are common substances for deliberate self-harm. Acute salicylate toxicity is classically associated with an initial respiratory alkalosis, followed by an anion gap metabolic acidosis. The respiratory alkalosis is achieved through hyperventilation, driven by direct stimulation on the respiratory centers in the medulla and considered as a compensatory mechanism to avoid acidemia. However, in later stages of severe salicylate toxicity, patients become increasingly obtunded, with subsequent loss of airway reflexes, and therefore intubation may be necessary. Mechanical ventilation has been recommended against in acute salicylate poisoning, as it is believed to take away the compensatory hyperpnea and tachypnea. Despite the intuitive physiological basis for this recommendation, there is a paucity of evidence to support it. We describe a case of a 59-year-old male presenting with decreased level of consciousness and no known history of ingestion. He was intubated and experienced profound hypercarbia and acidemia despite mechanical ventilation with high minute ventilation and tidal volumes. This case illustrates the deleterious effects of intubation in severe salicylate toxicity.

  9. Parental reactions to children's negative emotions: relationships with emotion regulation in children with an anxiety disorder.

    Science.gov (United States)

    Hurrell, Katherine E; Hudson, Jennifer L; Schniering, Carolyn A

    2015-01-01

    Research has demonstrated that parental reactions to children's emotions play a significant role in the development of children's emotion regulation (ER) and adjustment. This study compared parent reactions to children's negative emotions between families of anxious and non-anxious children (aged 7-12) and examined associations between parent reactions and children's ER. Results indicated that children diagnosed with an anxiety disorder had significantly greater difficulty regulating a range of negative emotions and were regarded as more emotionally negative and labile by their parents. Results also suggested that mothers of anxious children espoused less supportive parental emotional styles when responding to their children's negative emotions. Supportive and non-supportive parenting reactions to children's negative emotions related to children's emotion regulation skills, with father's non-supportive parenting showing a unique relationship to children's negativity/lability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. REDUCTION OF HERBICIDE AND WATER STRESS IN SPRING BARLEY BY REGULATORS OF POLYAMINE BIOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    Pavol Trebichalský

    2014-02-01

    Full Text Available The experiment was carried out under artificial light of fluorescent lamps starting with 60 % full water capacity which was afterwards decreased on 40 % and finally the plants of barley were not watered. 30 plants of this cereal after plant emergence were thinned on 22 pieces. Experiment was treated by triazine herbicide, as well as its mixtures of regulators of polyamine synthesis: γ-aminobutyric acid, 1.3-propylenediamine dihydrochloride and salicyl acid. Solo application of triazine herbicide during water stress had negative balance on formation of root and above ground biomass. Addition of regulators of polyamine synthesis had positive effects on mentioned parameters, but not in comparison to control variant. These stress factors were eliminated most significantly only the application of GABA (100 g.ha-1 in mixture with herbicide.

  11. Effect of Salicylic Acid on Prevention of Chilling Injury of Cherry Tomato (Lycopersicun esculentum cv. Messina(

    Directory of Open Access Journals (Sweden)

    hanifeh seyed hajizadeh

    2018-02-01

    Full Text Available Introduction: Fruits and vegetables play a major role in providing vitamins and minerals that are essential in the metabolism. In addition to providing vitamins and minerals compounds, they are called secondary metabolites. Tomatoes are one of the most vegetables in diets of people around the world. Low temperature stress associated with the production of reactive oxygen species causing damage can occur before or after harvest, farm, transportation, storage and marketing. Today, a greater emphasis is placed on post-harvest storage of agricultural products to increase productivity and make better use of labor resources, worker, energy and money, rather than an increase in production. One of the most promising treatments is the use of salicylic acid for prevention of the frost damage of post-harvest fruits and vegetables with different mechanisms such as increased enzymatic and non-enzymatic antioxidant system activity. Salicylic acid is known as a signal molecule in the induction defense mechanisms in plants. SA is a well-known phenol that can prevent ACO activity that is the direct precursor of ethylene and decreases Reactive Oxygen Species (ROS with increasing enzyme antioxidant activity. Salicylic acid is a natural phenolic compound known as a plant hormone having positive effect on storage life and quality of fruits. This study aimed to investigate the effects of pre- and post-harvest application of salicylic acid on antioxidant properties and quality of tomato and its effect was evaluated on prevention of chilling injury of cherry tomatoes during cold storage. Material and Methods: This research was conducted in a greenhouse of Horticulture Department of University of Maragheh. Treatments were included before harvest at fruit set stage with the control (distilled water and 0.75 mM salicylic acid spraying and after harvest, red ripened fruits were used for treatments control and immersion in 0.75 mM salicylic acid. Then all the treated fruits

  12. The fluorescence behaviour of methyl and phenyl salicylate

    Science.gov (United States)

    Ford, D.; Thistlethwaite, P. J.; Woolfe, G. J.

    1980-01-01

    Fluorcsccnce lifetimes tor the 450 nm emission of methyl and phenyl salicylate in various solvents have been measured. Qucnching studics on the 340 nm fluorescence of these molecules point to the existence of three distinct ground state conformers.

  13. Salicylate prevents virus-induced type 1 diabetes in the BBDR rat.

    Directory of Open Access Journals (Sweden)

    Chaoxing Yang

    Full Text Available Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID, to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.

  14. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid).

    Science.gov (United States)

    Rhoads, D. M.; McIntosh, L.

    1993-11-01

    In suspension cultures of NT1 tobacco (Nicotiana tabacum L. cv Bright Yellow) cells the cytochrome pathway capacity increased between d 3 and d 4 following subculturing and reached the highest level observed on d 7. The capacity decreased significantly by d 10 and was at the same level on d 14. Both alternative pathway capacity and the amount of the 35-kD alternative oxidase protein increased significantly between d 5 and d 6, reached the highest point observed on d 7, remained constant until d 10, and decreased by d 14. The highest capacities of the alternative and cytochrome pathways and the highest amount of the 35-kD protein were attained on the day that cell cultures reached a stationary phase of growth. Addition of salicylic acid to cell cultures on d 4 caused a significant increase in alternative pathway capacity and a dramatic accumulation of the 35-kD protein by 12 h. The alternative pathway capacity and the protein level reached the highest level observed by 16 h after salicylic acid addition, and the cytochrome pathway capacity was at about the same level at each time point. The accumulation of the 35-kD alternative oxidase protein was significantly decreased by addition of actinomycin D 1 h before salicylic acid and was blocked by addition of cycloheximide. These results indicate that de novo transcription and translation were necessary for salicylic acid to cause the maximum accumulation of the 35-kD protein.

  15. Two Theobroma cacao genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment.

    Science.gov (United States)

    Fister, Andrew S; O'Neil, Shawn T; Shi, Zi; Zhang, Yufan; Tyler, Brett M; Guiltinan, Mark J; Maximova, Siela N

    2015-10-01

    Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    Science.gov (United States)

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    Science.gov (United States)

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [University of Tennessee, Knoxville (UTK); Guan, Ju [University of Tennessee, Knoxville (UTK); Ferrer, Jean-Luc [Universite Joseph Fourier, France; Engle, Nancy L [ORNL; Chern, Mawsheng [University of California, Davis; Ronald, Pamela [University of California, Davis; Tschaplinski, Timothy J [ORNL; Chen, Feng [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.

  19. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice.

    Science.gov (United States)

    Zhao, Nan; Guan, Ju; Ferrer, Jean-Luc; Engle, Nancy; Chern, Mawsheng; Ronald, Pamela; Tschaplinski, Timothy J; Chen, Feng

    2010-04-01

    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  20. Facial expression primes and implicit regulation of negative emotion.

    Science.gov (United States)

    Yoon, HeungSik; Kim, Shin Ah; Kim, Sang Hee

    2015-06-17

    An individual's responses to emotional information are influenced not only by the emotional quality of the information, but also by the context in which the information is presented. We hypothesized that facial expressions of happiness and anger would serve as primes to modulate subjective and neural responses to subsequently presented negative information. To test this hypothesis, we conducted a functional MRI study in which the brains of healthy adults were scanned while they performed an emotion-rating task. During the task, participants viewed a series of negative and neutral photos, one at a time; each photo was presented after a picture showing a face expressing a happy, angry, or neutral emotion. Brain imaging results showed that compared with neutral primes, happy facial primes increased activation during negative emotion in the dorsal anterior cingulated cortex and the right ventrolateral prefrontal cortex, which are typically implicated in conflict detection and implicit emotion control, respectively. Conversely, relative to neutral primes, angry primes activated the right middle temporal gyrus and the left supramarginal gyrus during the experience of negative emotion. Activity in the amygdala in response to negative emotion was marginally reduced after exposure to happy primes compared with angry primes. Relative to neutral primes, angry facial primes increased the subjectively experienced intensity of negative emotion. The current study results suggest that prior exposure to facial expressions of emotions modulates the subsequent experience of negative emotion by implicitly activating the emotion-regulation system.

  1. Attachment's Links With Adolescents' Social Emotions: The Roles of Negative Emotionality and Emotion Regulation.

    Science.gov (United States)

    Murphy, Tia Panfile; Laible, Deborah J; Augustine, Mairin; Robeson, Lindsay

    2015-01-01

    Recent research has attempted to explain the mechanisms through which parental attachment affects social and emotional outcomes (e.g., Burnette, Taylor, Worthington, & Forsyth, 2007 ; Panfile & Laible, 2012 ). The authors' goal was to examine negative emotionality and emotion regulation as mediators of the associations that attachment has with empathy, forgiveness, guilt, and jealousy. One hundred forty-eight adolescents reported their parental attachment security, general levels of negative emotionality and abilities to regulate emotional responses, and tendencies to feel empathy, forgiveness, guilt, and jealousy. Results revealed that attachment security was associated with higher levels of empathy, forgiveness, and guilt, but lower levels of jealousy. In addition, emotion regulation mediated the links attachment shared with both empathy and guilt, such that higher levels of attachment security were linked with greater levels of emotion regulation, which led to greater levels of empathy and guilt. Alternatively, negative emotionality mediated the links attachment shared with both forgiveness and jealousy, such that higher levels of attachment security were associated with lower levels of negative emotionality, which in turn was linked to lower levels of forgiveness and higher levels of jealousy. This study provides a general picture of how attachment security may play a role in shaping an individual's levels of social emotions.

  2. Gas scavenging of insoluble vapors: Condensation of methyl salicylate vapor onto evaporating drops of water

    Science.gov (United States)

    Seaver, Mark; Peele, J. R.; Rubel, Glenn O.

    We have observed the evaporation of acoustically levitated water drops at 0 and 32% relative humidity in a moving gas stream which is nearly saturated with methyl salicylate vapor. The initial evaporation rate is characteristic of a pure water drop and gradually slows until the evaporation rate becomes that of pure methyl salicylate. The quantity of condensed methyl salicylate exceeds its Henry's law solubility in water by factors of more than 30-50. This apparent violation of Henry's law agrees with the concentration enhancements in the liquid phase found by glotfelty et al. (1987, Nature235, 602-605) during their field measurements of organophorus pesticides in fog water. Under our conditions, visual evidence demonstrates the presence of two liquid phases, thus invalidating the use of Henry's law. A continuum evaporation-condensation model for an immiscible two-component system which accounts for evaporative self-cooling of the drop correctly predicts the amount of methyl salicylate condensed onto the water drops.

  3. Negative regulation of EGFR/MAPK pathway by Pumilio in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sung Yun Kim

    Full Text Available In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum, an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE-like sequences in their 3'UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila.

  4. Tinnitus-provoking salicylate treatment triggers social impairments in mice.

    Science.gov (United States)

    Guitton, Matthieu J

    2009-09-01

    Tinnitus (perception of sound in silence) strongly affects the quality of life of sufferers. Tinnitus sufferers and their relatives frequently complain about major social impairments. However, it is not known whether this impairment directly results from the occurrence of tinnitus or is the indirect expression of a preexisting psychological vulnerability. Using the well-characterized animal model of salicylate-induced tinnitus, we investigate in mice whether the occurrence of tinnitus can trigger social impairments. Experiments were performed on 32 male Balb/C mice. Tinnitus was induced in mice using salicylate treatment. Social behavior was assessed in experimental and control animals using social interaction paradigm. Interaction time, number of social events, and number of nonsocial events were assessed in all animals. We demonstrate for the first time that treatment known to induce tinnitus triggers complex social impairments in mice. While salicylate-treated animals present a massive decrease in their overall social interactions compared to control untreated animals, they also display a paradoxal increase in the number of conspecific followings. Tinnitus can thus trigger a complex set of modifications of behavior, which will not only find their expression at the individual level, but also at the social level. Our results suggest that tinnitus can directly be a cause of psychosocial impairment in human and have strong implications for the clinical management of tinnitus sufferers.

  5. Mathematical modelling of zirconium salicylate solvent extraction process

    International Nuclear Information System (INIS)

    Smirnova, N.S.; Evseev, A.M.; Fadeeva, V.I.; Kochetkova, S.K.

    1979-01-01

    Mathematical modelling of equilibrium multicomponent physicochemical system at the extraction of zirconium salicylates by chloroform is carried out from HCl aqueous solutions at pH 0.5-4.7. Adequate models, comprising different molecular forms, corresponding to equilibrium phase composition are built

  6. Mathematical modelling of zirconium salicylate solvent extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, N S; Evseev, A M; Fadeeva, V I; Kochetkova, S K [Moskovskij Gosudarstvennyj Univ. (USSR)

    1979-11-01

    Mathematical modelling of equilibrium multicomponent physicochemical system at the extraction of zirconium salicylates by chloroform is carried out from HCl aqueous solutions at pH 0.5-4.7. Adequate models, comprising different molecular forms, corresponding to equilibrium phase composition are built.

  7. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  8. Energetics and Vibrational Analysis of Methyl Salicylate Isomers

    Science.gov (United States)

    Massaro, Richard D.; Dai, Yafei; Blaisten-Barojas, Estela

    2009-08-01

    Energetics and vibrational analysis study of six isomers of methyl salicylate in their singlet ground state and first excited triple state is put forward in this work at the density functional theory level and large basis sets. The ketoB isomer is the lowest energy isomer, followed by its rotamer ketoA. For both ketoB and ketoA their enolized tautomers are found to be stable as well as their open forms that lack the internal hydrogen bond. The calculated vibrational spectra are in excellent agreement with IR experiments of methyl salicylate in the vapor phase. It is demonstrated that solvent effects have a weak influence on the stability of these isomers. The ionization reaction from ketoB to ketoA shows a high barrier of 0.67 eV ensuring that thermal and chemical equilibria yield systems containing mostly the ketoB isomer at normal conditions.

  9. A Lexical Framework for Semantic Annotation of Positive and Negative Regulation Relations in Biomedical Pathways

    DEFF Research Database (Denmark)

    Zambach, Sine; Lassen, Tine

    presented here, we analyze 6 frequently used verbs denoting the regulation relations regulates, positively regulates and negatively regulates through corpus analysis, and propose a formal representation of the acquired knowledge as domain speci¯c semantic frames. The acquired knowledge patterns can thus...

  10. Automatic control of negative emotions: evidence that structured practice increases the efficiency of emotion regulation.

    Science.gov (United States)

    Christou-Champi, Spyros; Farrow, Tom F D; Webb, Thomas L

    2015-01-01

    Emotion regulation (ER) is vital to everyday functioning. However, the effortful nature of many forms of ER may lead to regulation being inefficient and potentially ineffective. The present research examined whether structured practice could increase the efficiency of ER. During three training sessions, comprising a total of 150 training trials, participants were presented with negatively valenced images and asked either to "attend" (control condition) or "reappraise" (ER condition). A further group of participants did not participate in training but only completed follow-up measures. Practice increased the efficiency of ER as indexed by decreased time required to regulate emotions and increased heart rate variability (HRV). Furthermore, participants in the ER condition spontaneously regulated their negative emotions two weeks later and reported being more habitual in their use of ER. These findings indicate that structured practice can facilitate the automatic control of negative emotions and that these effects persist beyond training.

  11. Liquid-liquid extraction of uranium (VI) using Cyanex 272 in kerosene from sodium salicylate medium

    International Nuclear Information System (INIS)

    Kamble, Pravin N.; Mohite, Baburao S.; Suryavanshi, Vishal J.; Salunkhe, Suresh T.

    2015-01-01

    Liquid-liquid extraction of uranium (VI) from sodium salicylate media using Cyanex 272 in kerosene has been carried out. Uranium (VI) was quantitatively extracted from 1x10 -4 M sodium salicylate with 5x10 -4 M Cyanex 272 in kerosene. It was stripped quantitatively from the organic phase with 4M HCl and determined spectrophotometrically with arsenazo(III) at 600 nm. The effects of concentrations of sodium salicylate, metal ions and strippants have been studied. Separation of uranium (VI) from other elements was achieved from binary as well as from multicomponent mixtures. The method is simple, rapid and selective with good reproducibility (approximately ±2%). (author)

  12. Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder.

    Science.gov (United States)

    Zhang, Dan; Liu, Rui; Sun, Lan; Huang, Chao; Wang, Chao; Zhang, Dong-Ming; Zhang, Tian-Tai; Du, Guan-Hua

    2011-05-09

    Gaultheria yunnanensis (Franch.) Rehder is a kind of traditional Chinese herbal medicine used for the treatments of rheumatoid arthritis, swelling and pain. Two methyl salicylate glycosides, namely methyl benzoate-2-O-β-D-xylopyranosyl(1-6)-O-β-D-gluco-pyranoside (J12122) and methyl benzoate-2-O-β-D-xylopyranosyl(1-2)[O-β-D-xylopyranosyl(1-6)]-O-β-D-glucopyranoside (J12123), are natural salicylic derivatives isolated from Gaultheria yunnanensis. In this study, we investigated the anti-inflammatory activity of J12122 and J12123 on LPS-induced RAW264.7 macrophage cells by measuring the production of pro-inflammatory cytokines, accumulation of nitric oxide (NO), and level of reactive oxygen species (ROS). The results showed that both methyl salicylate glycosides dose-dependently inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, respectively. Consistent with these observations, J12122 and J12123 significantly suppressed the accumulation of NO, with an inhibitory rate of 56.20% and 51.72% at 3.0 μg/mL concentration, respectively. Furthermore, the two methyl salicylate glycosides reduced the level of ROS induced by LPS. These results showed that the isolated compounds possess anti-inflammatory properties through inhibition the production pro-inflammatory cytokines, NO, and ROS.

  13. Impact of salicylic acid on antioxidants, biomass and osmotic ...

    African Journals Online (AJOL)

    USER

    2013-08-14

    Aug 14, 2013 ... Key words: Antioxidants, growth, salicylic acid, water stress. INTRODUCTION ... All abiotic stresses such as water deficit and salt stress cause increased ..... Shakirova F (2001). The role of hormonal changes in protective.

  14. Pharmacokinetics of salicylate in rabbits with acute kidney failure

    International Nuclear Information System (INIS)

    Laznicek, M.; Melicharova, L.; Kvetina, J.; Laznickova, A.

    1989-01-01

    Changes in the pharmacokinetics and metabolism of sodium salicylate were studied in rabbits with acute renal failure induced by intravenous administration of uranyl nitrate hexahydrate in a dose of 0.2 mg kg -1 . 14 C-labelled salicylic acid, 99m Tc-complex and 125 I-hippuran were used to study the metabolism. The 99m Tc and 125 I activities were measured with a Tesla gamma counter or beta-gamma spectrometer NE 8312. The 14 C activity was measured using beta spectrometer Rack beta 1219. The 99m Tc activity was determined immediately after the experiment, the 14 C activity was determined after 4 days. The drug concentration was determined by comparing the activities of the sample and the standard activities. (J.J.). 6 figs., 1 tab., 18 refs

  15. Methyl salicylate production in tomato affects biotic interactions

    NARCIS (Netherlands)

    Ament, K.; Krasikov, V.; Allmann, S.; Rep, M.; Takken, F.L.W.; Schuurink, R.C.

    2010-01-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene

  16. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress.

    Science.gov (United States)

    Tang, Yanping; Sun, Xin; Wen, Tao; Liu, Mingjie; Yang, Mingyan; Chen, Xuefei

    2017-03-01

    The aim of this study is to investigate whether exogenous application of salicylic acid (SA) could modulate the photosynthetic capacity of soybean seedlings in water stress tolerance, and to clarify the potential functions of terminal oxidase (plastid terminal oxidase (PTOX) and alternative oxidase (AOX)) in SA' s regulation on photosynthesis. The effects of SA and water stress on gas exchange, pigment contents, chlorophyll fluorescence, enzymes (guaiacol peroxidase (POD; EC 1.11.1.7), superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and NADP-malate dehydrogenase (NADP-MDH; EC1.1.1.82)) activity and transcript levels of PTOX, AOX1, AOX2a, AOX2b were examined in a hydroponic cultivation system. Results indicate that water stress significantly decreased the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), pigment contents (Chla + b, Chla/b, Car), maximum quantum yield of PSⅡphotochemistry (Fv/Fm), efficiency of excitation capture of open PSⅡcenter (Fv'/Fm'), quantum efficiency of PSⅡphotochemistry (ΦPSⅡ), photochemical quenching (qP), and increased malondialdehyde (MDA) content and the activity of all the enzymes. SA pretreatment led to significant decreases in Ci and MDA content, and increases in Pn, Gs, E, pigment contents, Fv/Fm, Fv'/Fm', ΦPSⅡ, qP, and the activity of all the enzymes. SA treatment and water stress alone significantly up-regulated the expression of PTOX, AOX1 and AOX2b. SA pretreatment further increased the transcript levels of PTOX and AOX2b of soybean seedling under water stress. These results indicate that SA application alleviates the water stress-induced decrease in photosynthesis may mainly through maintaining a lower reactive oxygen species (ROS) level, a greater PSⅡefficiency, and an enhanced alternative respiration and chlororespiration. PTOX and AOX may play important roles in SA-mediated resistance to water stress. Copyright © 2016

  17. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  18. THE EFFECT OF A NEW SALICYLATE SYNTHESIS PRODUCT ON BLOOD GSH VALUES IN RATS

    Directory of Open Access Journals (Sweden)

    CORINA GRĂVILĂ

    2007-05-01

    Full Text Available GSH (γ-glutamylcysteinylglycine is a sulfhydril (-SH antioxidant, antitoxin and enzyme cofactor which is an important component of the cellular detoxification of reactive oxygen species (ROS. Being water soluble it is found mainly in the cytosol and other aqueous phases of the living system and thus constitute one of the most important intracellular antioxidants (10,7,9. GSH plays a role in removing various toxic chemicals and drugs from the body. As a result glutathione levels in the body are reduced by exposure to heavy metals and the chemicals used in chemotherapy (6. Sulfanilamide was the first sulfonamide discovered in this class of antimicrobial agents and its structure is considered to contain the minimum pharmacophore. They prevent or limit bacterial multiplication. Salicylic acid (2-hydroxybenzoic acid, is the basic substance of the salicylates which are non-steroidal anti-inflammatory drugs (NSAIDs. Salicylic acid and methyl salicylate (ester (methyl 2-hydroxybenzoate are the main therapeutically used substances of this group. This study was carried out to investigate the effect of a new synthesis product in comparison with the effect of sulfanilamide on GSH values in intraperitonally injected Wistar rats.

  19. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  20. Characterization of rhizobacteria associated to maize crop in IAA, siderophores and salicylic acid metabolite production

    Directory of Open Access Journals (Sweden)

    Annia Hernández

    2004-01-01

    Full Text Available It has been demonstrated that rhizobacteria are able to produce metabolites having agricultural interest, including salicylic acid, the siderophores and phytohormones. Indol acetic acid (IAA is the most well-known and studied auxin, playing a governing role in culture growth. The object of this work was to characterise rhizobacteria associated with the maize crop in terms of producing IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia and Pseudomonas fluorescens strains previously isolated from maize Francisco variety rhizosphere were used. Colorimetric and chromatographic techniques for detecting these metabolites were studied; multi-variable analysis of hierarchic conglomerate and complete ligament were used for selecting the best strains for producing metabolites of interest. These results demonstrated that all rhizobacteria strains studied produced IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia MBf21, MBp1, MBp2, MBf22, MBp3, MBf20, MBf 15 and Pseudomonas fluorescens MPp4strains have presented the greatest production of these metabolites, showing that these strains could be used in promoting vegetal growth in economically important cultures. Key words: Pseudomonas fluorescens, Burkholderia cepacia, IAA, siderophore, salicylic acid.

  1. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions

    Science.gov (United States)

    Mun, Bong-Gyu; Khan, Abdul Latif; Waqas, Muhammad; Kim, Hyun-Ho; Shahzad, Raheem; Imran, Muhammad

    2018-01-01

    This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants. PMID:29558477

  2. Protection by free oxygen radical scavenging enzymes against salicylate-induced embryonic malformations in vitro.

    Science.gov (United States)

    Karabulut, A K; Ulger, H; Pratten, M K

    2000-08-01

    Salicylates are among the oldest and most widely used drugs and are known to lead to foetal death, growth retardation and congenital abnormalities in experimental animals. In this study, the effects of acetyl salicylic acid (ASA), salicylic acid (SAL) and sodium salicylate (NaSAL) on early organogenesis and the interaction of these molecules with free radicals has been investigated. Postimplantation rat embryos were cultured in vitro from day 9.5 of gestation for 48 hr. ASA, SAL and NaSAL were added to whole rat serum at concentrations between 0.1 and 0.6 mg/ml. Also, the lowest effective concentration of ASA for all parameters (0.3 mg/ml) and the same concentration of NaSAL and SAL was added to the culture media in the presence of superoxide dismutase (SOD) (30 U/ml) or glutathione (0.5 micromol/ml). The growth and development of embryos was compared and each embryo was evaluated for the presence of any malformations. When compared to growth of control embryos, the salicylates decreased all growth and developmental parameters in a concentration-responsive manner. There was also a concentration-related increase in overall dysmorphology, including the incidence of haematoma in the yolk sac and neural system, open neural tube, abnormal tail torsion and the absence of fore limb bud. When SOD was added in the presence of ASA, growth and developmental parameters were improved and there was a significant decrease in the incidence of malformations. Addition of SOD also decreased the incidence of malformations in the presence of SAL, but did not effect the growth and developmental parameters of SAL and NaSAL. There was no significant difference between the embryos grown in the presence of these three molecules on the addition of glutathione. The effects of salicylates might involve free oxygen radicals by the non-enzymatic production of the highly teratogenic metabolites 2,3- and 2,5-dihydroxybenzoic acid. An enhanced production of these metabolites in embryonic tissues

  3. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  4. [Determination of aspirin and free salicylic acid in lysinipirine injection by high performance liquid chromatography].

    Science.gov (United States)

    Dong, Yu; Zhao, Yuan-zheng; Zhang, Yi-na

    2002-05-01

    The contents of aspirin and free salicylic acid in lysinipirine injection were determined by high performance liquid chromatography (HPLC). A Hypersil BDS C18 column was used with the mobile phase of methanol-water-acetic acid (35:65:3, volume ratio) and the detection wavelength of 280 nm. The average recoveries of aspirin and salicylic acid added were 99.27% (RSD = 0.8%) and 99.61%(RSD = 1.3%), respectively. The calibration curves had good linearity in the range of 0.028 g/L -0.141 mg/L and 0.77 mg/L -3.85 mg/L, and the correlation coefficients were 0.9999 and 0.9998 for aspirin and salicylic acid respectively.

  5. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer

    Science.gov (United States)

    Dachineni, Rakesh; Kumar, D. Ramesh; Callegari, Eduardo; Kesharwani, Siddharth S.; Sankaranarayanan, Ranjini; Seefeldt, Teresa; Tummala, Hemachand; Bhat, G. Jayarama

    2017-01-01

    Aspirin's potential as a drug continues to be evaluated for the prevention of colorectal cancer (CRC). Although multiple targets for aspirin and its metabolite, salicylic acid, have been identified, no unifying mechanism has been proposed to clearly explain its chemopreventive effects. Our goal here was to investigate the ability of salicylic acid metabolites, known to be generated through cytochrome P450 (CYP450) enzymes, and its derivatives as cyclin dependent kinase (CDK) inhibitors to gain new insights into aspirin's chemopreventive actions. Using in vitro kinase assays, for the first time, we demonstrate that salicylic acid metabolites, 2,3-dihydroxy-benzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), as well as derivatives 2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), inhibited CDK1 enzyme activity. 2,3-DHBA and 2,6-DHBA did not inhibit CDK2 and 4; however, both inhibited CDK-6 activity. Interestingly, another derivative, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) was highly effective in inhibiting CDK1, 2, 4 and 6 activity. Molecular docking studies showed that these compounds potentially interact with CDK1. Immunoblotting experiments showed that aspirin acetylated CDK1, and pre-incubation with salicylic acid and its derivatives prevented aspirin-mediated CDK1 acetylation, which supported the data obtained from molecular docking studies. We suggest that intracellularly generated salicylic acid metabolites through CYP450 enzymes within the colonic epithelial cells, or the salicylic acid metabolites generated by gut microflora may significantly contribute to the preferential chemopreventive effect of aspirin against CRC through inhibition of CDKs. This novel hypothesis and mechanism of action in aspirin's chemopreventive effects opens a new area for future research. In addition, structural modification to salicylic acid derivatives may prove useful in the development of novel CDK inhibitors in cancer prevention and

  6. Mothers' responses to children's negative emotions and child emotion regulation: the moderating role of vagal suppression.

    Science.gov (United States)

    Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart

    2012-07-01

    The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization. Copyright © 2011 Wiley Periodicals, Inc.

  7. Instrumental motives in negative emotion regulation in daily life: Frequency, consistency, and predictors.

    Science.gov (United States)

    Kalokerinos, Elise K; Tamir, Maya; Kuppens, Peter

    2017-06-01

    People regulate their emotions not only for hedonic reasons but also for instrumental reasons, to attain the potential benefits of emotions beyond pleasure and pain. However, such instrumental motives have rarely been examined outside the laboratory as they naturally unfold in daily life. To assess whether and how instrumental motives operate outside the laboratory, it is necessary to examine them in response to real and personally relevant stimuli in ecologically valid contexts. In this research, we assessed the frequency, consistency, and predictors of instrumental motives in negative emotion regulation in daily life. Participants (N = 114) recalled the most negative event of their day each evening for 7 days and reported their instrumental motives and negative emotion goals in that event. Participants endorsed performance motives in approximately 1 in 3 events and social, eudaimonic, and epistemic motives in approximately 1 in 10 events. Instrumental motives had substantially higher within- than between-person variance, indicating that they were context-dependent. Indeed, although we found few associations between instrumental motives and personality traits, relationships between instrumental motives and contextual variables were more extensive. Performance, social, and epistemic motives were each predicted by a unique pattern of contextual appraisals. Our data demonstrate that instrumental motives play a role in daily negative emotion regulation as people encounter situations that pose unique regulatory demands. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Crystallization and X-ray diffraction analysis of salicylate synthase, a chorismate-utilizing enyme involved in siderophore biosynthesis

    International Nuclear Information System (INIS)

    Parsons, James F.; Shi, Katherine; Calabrese, Kelly; Ladner, Jane E.

    2006-01-01

    Salicylate synthase, which catalyzes the first step in the synthesis of the siderophore yersiniabactin, has been crystallized. Diffraction data have been collected to 2.5 Å. Bacteria have evolved elaborate schemes that help them thrive in environments where free iron is severely limited. Siderophores such as yersiniabactin are small iron-scavenging molecules that are deployed by bacteria during iron starvation. Several studies have linked siderophore production and virulence. Yersiniabactin, produced by several Enterobacteriaceae, is derived from the key metabolic intermediate chorismic acid via its conversion to salicylate by salicylate synthase. Crystals of salicylate synthase from the uropathogen Escherichia coli CFT073 have been grown by vapour diffusion using polyethylene glycol as the precipitant. The monoclinic (P2 1 ) crystals diffract to 2.5 Å. The unit-cell parameters are a = 57.27, b = 164.07, c = 59.04 Å, β = 108.8°. The solvent content of the crystals is 54% and there are two molecules of the 434-amino-acid protein in the asymmetric unit. It is anticipated that the structure will reveal key details about the reaction mechanism and the evolution of salicylate synthase

  9. Crystallization and X-ray diffraction analysis of salicylate synthase, a chorismate-utilizing enyme involved in siderophore biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, James F., E-mail: parsonsj@umbi.umd.edu; Shi, Katherine; Calabrese, Kelly [Center for Advanced Research in Biotechnology, The University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850 (United States); Ladner, Jane E. [Center for Advanced Research in Biotechnology, The University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850 (United States); National Institute of Standards and Technology (United States)

    2006-03-01

    Salicylate synthase, which catalyzes the first step in the synthesis of the siderophore yersiniabactin, has been crystallized. Diffraction data have been collected to 2.5 Å. Bacteria have evolved elaborate schemes that help them thrive in environments where free iron is severely limited. Siderophores such as yersiniabactin are small iron-scavenging molecules that are deployed by bacteria during iron starvation. Several studies have linked siderophore production and virulence. Yersiniabactin, produced by several Enterobacteriaceae, is derived from the key metabolic intermediate chorismic acid via its conversion to salicylate by salicylate synthase. Crystals of salicylate synthase from the uropathogen Escherichia coli CFT073 have been grown by vapour diffusion using polyethylene glycol as the precipitant. The monoclinic (P2{sub 1}) crystals diffract to 2.5 Å. The unit-cell parameters are a = 57.27, b = 164.07, c = 59.04 Å, β = 108.8°. The solvent content of the crystals is 54% and there are two molecules of the 434-amino-acid protein in the asymmetric unit. It is anticipated that the structure will reveal key details about the reaction mechanism and the evolution of salicylate synthase.

  10. Efficacy of salicylic acid in the treatment of digital dermatitis in dairy cattle

    DEFF Research Database (Denmark)

    Schultz, N.; Capion, N.

    2013-01-01

    Digital dermatitis (DD) is one of the most important causes of lameness in dairy cattle worldwide. The objective of this study was to evaluate the efficacy of salicylic acid in the treatment of the disease. A total of 201 DD lesions from 173 cows from four commercial dairy herds were evaluated...... at day 0 during routine hoof trimming and were allocated into two groups, namely, a control group given chlortetracycline spray, and a treatment group given 10 g of salicylic acid powder applied topically within a bandage. Pain, lesion size and clinical appearance (scored MO to M4) were evaluated on days...... the control group were 2.2 times more likely (P = 0.09) to have a pain score equal to 2 by day 14. The proportion of lesions getting smaller by days 14 and 34 was 2.5 times higher (P salicylic acid should be considered as an alternative...

  11. Some physiological and biochemical responses to nickel in salicylic acid applied chickpea (Cicer arietinum L.) seedlings.

    Science.gov (United States)

    Canakci, Songül; Dursun, Bahar

    2011-09-01

    The present study examined the effects of salicylic acid pre-application on the responses of seven-day-old chickpea (Cicer arietinum L.) seedlings to nickel. For this purpose, the plants were treated with 1 mM salicylic acid solution for 6 and 10 hours and then treated with 0.75, 1.5 and 3 mM nickel solutions for 48 hours hydroponically. Following the treatment, changes in seedling length, seedling fresh weight and leaf dry weight (after 10 hours), as well as MDA, proline, protein and pigment contents (after 6 and 10 hours) were examined. Salicylic acid pre-application was found to significantly alleviate the typical harmful effects caused by nickel and 3 mM nickel concentration in particular, on the parameters associated with toxic stress. However, pre-application of salicylic acid for 6 and 10 hours without nickel treatment did not produce any stimulatory or inhibitory effect on the seedlings as compared to the controls.

  12. Syntheses and pyrolytic studies of salicylate derivatives of heterotrinucleic [AlIII-SnII-BIII]-μ-oxoisopropoxide

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2013-09-01

    Full Text Available New salicylate derivatives of heteronucleic-μ-oxoisopropoxide [SnO2AlB(OPri4] have been synthesized by the thermal condensation of μ-oxoisopropoxide and methyl/ethyl/phenyl/phenyl ethyl salicylates in different molar ratios (1:1-1:2 yielding the compounds of the type [SnO2AlB(OPri4-n(RSALn] (where n is 1-2 and RSAL = salicylate anion, respectively. The complexes have been characterized by elemental, spectral (IR, 1H, 13C, 27Al, 119Sn and 11B NMR, thermal and molecular weight measurement. The complexes are hydrolysed by hydrothermally assisted sol-gel technique and gave hydrolyzed product. Thermal studies of these products are made which favor the formation of multicomponent oxides. The studies reveal that salicylate derivatives are polymeric in nature and low susceptible to hydrolysis as compared to parent compound and may prove excellent precursors for the mixed metal oxides. DOI: http://dx.doi.org/10.4314/bcse.v27i3.6

  13. Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Cha, W.; Cho, H.R.; Jung, E.C.; Park, K.K.; Kim, W.H.; Song, K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of). Nuclear Chemistry Research Div.

    2012-07-01

    This study investigates multiple equilibria related to the formation of the U(VI)-salicylate complex in a pH range of 3.0-5.5 using UV-Vis absorption and fluorescence measurement techniques. The absorbance changes at the characteristic charge-transfer bands of the complex were monitored, and the results indicated the presence of multiple equilibria and the formation of both 1:1 and 1:2 (U(VI):salicylate) complexes possessing bi-dentate chelate structures. The determined step-wise formation constants (log K{sub 1:1} and log K{sub 1:2}) are as follows: 12.5 {+-} 0.1 and 11.4 {+-} 0.2 for salicylate, 11.2 {+-} 0.1 and 10.1 {+-} 0.2 for 5-sulfosalicylate, and 12.4 {+-} 0.1 and 11.4 {+-} 0.1 for 2,6-dihydroxybenzoate, respectively. The molar absorptivities of the complexes are also provided. Furthermore, time-resolved laser-induced luminescence spectra of U(VI) species demonstrate the presence of both a dynamic and static quenching process upon the addition of a salicylate ligand. Particularly for the luminescent hydroxouranyl species, a strong static quenching effect is observed. The results suggest that both the UO{sub 2}(HSal){sup +} and the U(VI)-Sal chelate complexes serve as ground-state complexes that induce static quenching. The Stern-Volmer parameters were derived based on the measured luminescent intensity and lifetime data. The static quenching constants (log K{sub S}) obtained are 3.3 {+-} 0.1, 4.9 {+-} 0.1, and 4.4 {+-} 0.1 for UO{sub 2}{sup 2+}, (UO{sub 2}){sub 2}(OH){sub 2}{sup 2+} and (UO{sub 2}){sub 3}(OH){sub 5}{sup +}, respectively. (orig.)

  14. Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria

    International Nuclear Information System (INIS)

    Cha, W.; Cho, H.R.; Jung, E.C.; Park, K.K.; Kim, W.H.; Song, K.

    2012-01-01

    This study investigates multiple equilibria related to the formation of the U(VI)-salicylate complex in a pH range of 3.0-5.5 using UV-Vis absorption and fluorescence measurement techniques. The absorbance changes at the characteristic charge-transfer bands of the complex were monitored, and the results indicated the presence of multiple equilibria and the formation of both 1:1 and 1:2 (U(VI):salicylate) complexes possessing bi-dentate chelate structures. The determined step-wise formation constants (log K 1:1 and log K 1:2 ) are as follows: 12.5 ± 0.1 and 11.4 ± 0.2 for salicylate, 11.2 ± 0.1 and 10.1 ± 0.2 for 5-sulfosalicylate, and 12.4 ± 0.1 and 11.4 ± 0.1 for 2,6-dihydroxybenzoate, respectively. The molar absorptivities of the complexes are also provided. Furthermore, time-resolved laser-induced luminescence spectra of U(VI) species demonstrate the presence of both a dynamic and static quenching process upon the addition of a salicylate ligand. Particularly for the luminescent hydroxouranyl species, a strong static quenching effect is observed. The results suggest that both the UO 2 (HSal) + and the U(VI)-Sal chelate complexes serve as ground-state complexes that induce static quenching. The Stern-Volmer parameters were derived based on the measured luminescent intensity and lifetime data. The static quenching constants (log K S ) obtained are 3.3 ± 0.1, 4.9 ± 0.1, and 4.4 ± 0.1 for UO 2 2+ , (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + , respectively. (orig.)

  15. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    Science.gov (United States)

    Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Anti-Inflammatory Activity of Methyl Salicylate Glycosides Isolated from Gaultheria yunnanensis (Franch. Rehder

    Directory of Open Access Journals (Sweden)

    Guan-Hua Du

    2011-05-01

    Full Text Available Gaultheria yunnanensis (Franch. Rehder is a kind of traditional Chinese herbal medicine used for the treatments of rheumatoid arthritis, swelling and pain. Two methyl salicylate glycosides, namely methyl benzoate-2-O-b-D-xylopyranosyl(1-6-O-b-D-gluco-pyranoside (J12122 and methyl benzoate-2-O-β-D-xylopyranosyl(1-2[O-β-D-xylopyranosyl(1-6]-O-β-D-glucopyranoside (J12123, are natural salicylic derivatives isolated from Gaultheria yunnanensis. In this study, we investigated the anti-inflammatory activity of J12122 and J12123 on LPS-induced RAW264.7 macrophage cells by measuring the production of pro-inflammatory cytokines, accumulation of nitric oxide (NO, and level of reactive oxygen species (ROS. The results showed that both methyl salicylate glycosides dose-dependently inhibited the production of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and IL-6, respectively. Consistent with these observations, J12122 and J12123 significantly suppressed the accumulation of NO, with an inhibitory rate of 56.20% and 51.72% at 3.0 μg/mL concentration, respectively. Furthermore, the two methyl salicylate glycosides reduced the level of ROS induced by LPS. These results showed that the isolated compounds possess anti-inflammatory properties through inhibition the production pro-inflammatory cytokines, NO, and ROS.

  17. Improving the Keeping Quality and Vase Life of Cut Alstroemeria Flowers by Pre and Post-harvest Salicylic Acid Treatments

    Directory of Open Access Journals (Sweden)

    Elnaz SOLEIMANY-FARD

    2013-08-01

    Full Text Available Keeping quality and length of vase life are important factors for evaluation of cut flowers quality, for both domestic and export markets. Studding the effect of pre- and post-harvest salicylic acid applications on keeping quality and vase life of cut alstroemeria flowers during vase period is the approach taken. Aqueous solutions of salicylic acid at 0.0 (with distilled water, 1, 2 and 3 mM were sprayed to run-off (approximately 500 mL per plant, about two weeks before flowers harvest. The cut flowers were harvested in the early morning and both of cut flowers treated (sprayed and untreated were kept in vase solutions containing salicylic acid at 0.0 (with distilled water, 1, 2 and 3 mM. Sucrose at 4% was added to all treatments as a base solution. The changes in relative fresh weight, water uptake, water loss, water balance, total chlorophyll content and vase life were estimated during vase period. The results showed that the relative fresh weight, water uptake, water balance, total chlorophyll content and vase life decreased significantly while the water loss increased significantly during experiment for all treatments. A significant difference between salicylic acid and control treatments in all measured parameters is observed. During vase period, the salicylic acid treatments maintained significantly a more favourable relative fresh weight, water uptake, water balance, total chlorophyll content and supressed significantly water loss, as compared to control treatment. Also, the results showed that the using salicylic acid increased significantly the vase life cut alstroemeria flowers, over control. The highest values of measured parameters were found when plants were treated by pre + post-harvest application of salicylic acid at 3 mM. The result revealed that the quality attributes and vase life of cut alstroemeria flowers were improved by the use of salicylic acid treatment.

  18. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Albarran, G.; Schuler, R.H.

    2003-01-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, · OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because · OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  19. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance.

    Science.gov (United States)

    Park, Sang-Wook; Kaimoyo, Evans; Kumar, Dhirendra; Mosher, Stephen; Klessig, Daniel F

    2007-10-05

    In plants, the mobile signal for systemic acquired resistance (SAR), an organism-wide state of enhanced defense to subsequent infections, has been elusive. By stimulating immune responses in mosaic tobacco plants created by grafting different genetic backgrounds, we showed that the methyl salicylate (MeSA) esterase activity of salicylic acid-binding protein 2 (SABP2), which converts MeSA into salicylic acid (SA), is required for SAR signal perception in systemic tissue, the tissue that does not receive the primary (initial) infection. Moreover, in plants expressing mutant SABP2 with unregulated MeSA esterase activity in SAR signal-generating, primary infected leaves, SAR was compromised and the associated increase in MeSA levels was suppressed in primary infected leaves, their phloem exudates, and systemic leaves. SAR was also blocked when SA methyl transferase (which converts SA to MeSA) was silenced in primary infected leaves, and MeSA treatment of lower leaves induced SAR in upper untreated leaves. Therefore, we conclude that MeSA is a SAR signal in tobacco.

  20. Influence of salicylic acid on growth and some biochemical ...

    African Journals Online (AJOL)

    Yomi

    2012-01-10

    Jan 10, 2012 ... Our results show that in plants not sprayed with salicylic acid but treated with NaCl, shoot length, wet weight of shoot and root, ... Photosynthesis and cell growth can be affected by ..... Protection of plasma membrane of onion.

  1. Effects of salicylic acid on morphological and physiological ...

    African Journals Online (AJOL)

    To evaluate the effect of different levels of salicylic acid (SA) on yield and some morphological and physiological characteristics of sweet corn hybrids under water stress, this study was conducted in 2015 using split plots in the base of randomized complete block design with three replications. Treatments were included ...

  2. Comparison of physiological responses of linseed (Linum usitatissimum L. to drought and salt stress and salicylic acid foliar application

    Directory of Open Access Journals (Sweden)

    Mohsen Movahhedi Dehnavi

    2017-11-01

    Full Text Available In order to compare the physiological responses of linseed (Linum usitatissimum L. in drought and salinity stress conditions and salicylic acid foliar application, a greenhouse experiment was conducted based on completly randomized design with three replications in Yasouj university in 2015. Treatments including different levels of salinity and drought with similar osmotic potentials (-2, -4, -7 and -9 bar in 8 levels and a control treatment were applied in Hoagland solution. Second factor was salicylic acid foliar application in 2 levels (0 and 0.5 mM. Salinity and drought applied using sodium chloride and polyethylene glycol 6000, respectively. The results showed that leaf protein content, catalase activity, total chlorophyll and carotenoid significantly decreased compared to control by increasing salinity and drought levels, however salicylic acid could prevent this trend.  Proline soluble sugars and malodealdehide content significantly increased compared to control by increasing salinity and drought. However salicylic acid could not prevent this trend. Shoot and root dry weights significantly decreased in salinity and drought stress treatments, compared to control and salicylic acid could prevent this decrease. Generally regarded to the most of the measured traits, impact of drought was more than salinity and salicylic acid could compensate the stress impacts on linseed.

  3. Pre-sowing application of ascorbic acid and salicylic acid to seed of pumpkin and seedling response to salt

    International Nuclear Information System (INIS)

    Rafique, N.; Raza, S.H.; Qasim, M.; Iqbal, N.

    2011-01-01

    The effects of seed soaking with salicylic acid or ascorbic acid on pumpkin seedlings growth under saline (10 dS m/sup -1/) conditions were investigated. Seedlings fresh weight, protein contents, protease and nitrate reductase activities were significantly affected by 15 and 30 mg L/sup -1/ salicylic acid and 30 mg L/sup -1/ ascorbic acid priming treatments, under both normal and saline conditions. Priming reduced the severity of the salt stress, the amelioration was better due to 30 mg L/sup -1/ ascorbic acid or 30 mg L/sup -1/ salicylic acid treatments as these treatments showed best results on seedling growth, fresh and dry matter production under non-saline and saline environments. Application of seed priming with ascorbic acid and salicylic acid in pumpkin ameliorate the adverse effects of salt stress. (author)

  4. When less is more: Effects of the availability of strategic options on regulating negative emotions.

    Science.gov (United States)

    Bigman, Yochanan E; Sheppes, Gal; Tamir, Maya

    2017-09-01

    Research in several domains suggests that having strategic options is not always beneficial. In this paper, we tested whether having strategic options (vs. not) is helpful or harmful for regulating negative emotions. In 5 studies (N = 151) participants were presented with 1 or more strategic options prior to watching aversive images and using the selected strategic option. Across studies, we found that people reported less intense negative emotions when the strategy they used to regulate their emotions was presented as a single option, rather than as 1 of several options. This was regardless of whether people could choose between the options (Studies 3-5) or not (Studies 1, 2, and 4), and specific to negative (but not neutral) images (Study 5). A sixth study addressed an explanation based on demand characteristics, showing that participants expected to feel more positive when having more than 1 option. The findings indicate that having strategic options for regulating negative emotions can sometimes be costly. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Liquid-liquid extraction of uranium(VI) using Cyanex 272 in toluene from sodium salicylate medium

    International Nuclear Information System (INIS)

    Madane, Namdev S.; Nikam, Gurunath H.; Jadhav, Deepali V.; Mohite, Baburao S.

    2011-01-01

    Liquid-liquid extraction of U(VI) from sodium salicylate media using Cyanex 272 in toluene has been carried out. Uranium(VI) was quantitatively extracted from 1 x 10 -3 M sodium salicylate with 5 x 10 -4 M Cyanex 272 in toluene. It was stripped quantitatively from the organic phase with 1M HCl and determined spectrophotometrically with arsenazo(III) at 660 nm. The effect of concentrations of sodium salicylate, extractant, diluents, metal ion and strippants have been studied. Separation of uranium(VI) from other elements was achieved from binary as well as from multicomponent mixtures. The method was extended to determination of uranium(VI) in geological samples. The method is simple, rapid and selective with good reproducibility (approximately ± 2%). (author)

  6. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... Key words: Cyclin G2, gastric cancer, negative regulator, mutation screen. INTRODUCTION ... cerebellum, thymus, spleen, prostate, kidney and the immune ..... and B cell antigen receptor-mediated cell cycle arrest. J. Biol.

  7. Exogenous salicylate application affects the lead and copper accumulation characteristics of Lemna gibba L.

    Energy Technology Data Exchange (ETDEWEB)

    Duman, Fatih; Aksoy, Ahmet; Ozturk, Fatma; Ceylan, Ahmet [Erciyes Univ., Kayseri (Turkey). Dept. of Biology

    2010-11-15

    Previous studies have shown that salicylates can change the ion permeability of root cells. Therefore the possible effects of exogenous salicylate application on lead (Pb) and copper (Cu) accumulation and its protective role against DNA damage due to metal exposure in Lemna gibba were studied. L. gibba was exposed to 5, 10, and 25 {mu}M Pb and Cu for six days in the presence and absence of sodium salicylate (SA) (0.1, 0.5, and 1 mM). At all concentrations tested, SA application decreased Pb accumulation. On the other hand, application of 0.5 mM SA increased Cu accumulation. SA did not reduce DNA damage resulting from Pb and Cu toxicity. In summary, SA may be useful for reducing Pb accumulation, and application of SA at 0.5 mM may be useful for the phytoextraction of Cu. (orig.)

  8. Influence of Salicylic Acid on the Antimicrobial Potential of Stevia ...

    African Journals Online (AJOL)

    extracts determined by gas chromatography-mass spectrophotometry (GC-MS). ... Conclusion: Stevia leaf extract has antimicrobial effect against soybean .... Table 1: Effect of salicylic acid on the oil composition of various Stevia leaf extracts.

  9. Effect of foliar application of salicylic acid, hydrogen peroxide

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  10. Modeling the role of negative cooperativity in metabolic regulation and homeostasis.

    Directory of Open Access Journals (Sweden)

    Eliot C Bush

    Full Text Available A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.

  11. Green Synthesis of Ultraviolet Absorber 2-Ethylhexyl Salicylate: Experimental Design and Artificial Neural Network Modeling

    Directory of Open Access Journals (Sweden)

    Shang-Ming Huang

    2017-11-01

    Full Text Available 2-Ethylhexyl salicylate, an ultraviolet filter, is widely used to protect skin against sunlight-induced harmful effects in the cosmetic industry. In this study, the green synthesis of 2-ethylhexyl salicylate using immobilized lipase through a solvent-free and reduced pressure evaporation system was investigated. A Box–Behnken design was employed to develop an artificial neural network (ANN model. The parameters for an optimal architecture of an ANN were set out: a quick propagation algorithm, a hyperbolic tangent transfer function, 10,000 iterations, and six nodes within the hidden layer. The best-fitting performance of the ANN was determined by the coefficient of determination and the root-mean-square error between the correlation of predicted and experimental data, indicating that the ANN displayed excellent data-fitting properties. Finally, the experimental conditions of synthesis were well established with the optimal parameters to obtain a high conversion of 2-ethylhexyl salicylate. In conclusion, this study efficiently replaces the traditional solvents with a green process for the synthesis of 2-ethylhexyl salicylate to avoid environmental contamination, and this process is well-modeled by a methodological ANN for optimization, which might be a benefit for industrial production.

  12. Rotational Spectrum of the Methyl Salicylate-Water Complex: the Missing Conformer and the Tunneling Motions

    Science.gov (United States)

    Ghosh, Supriya; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Methyl salicylate is a naturally occurring organic ester produced by wintergreen and other plants. It is also found in many over-the-counter remedies, such as muscle ache creams. The rotational spectrum of the methyl salicylate monomer was reported previously, where the most stable, dominant conformer was identified. The methyl salicylate-water complex was first studied using fluorescence-detected infrared spectroscopy; only one monohydrate conformer was found in that work. In the present study, we employed both broadband chirped and cavity based Fourier transform microwave spectroscopy to examine the competition between intra- and intermolecular hydrogen-bonding interactions and possible large amplitude motions associated with the methyl group and the water subunit. In contrast to the previous infrared study, two monohydrate conformers were identified, with carbonyl O or hydroxyl O as the hydrogen bond acceptors. Detailed analyses of the observed hyperfine structures will be presented, as well as our efforts to extend the study to larger methyl salicylate hydration clusters. S. Melandri, B. M. Giuliano, A. Maris, L. B. Favero, P. Ottaviani, B. Velino, W. Caminati, J. Phys. Chem. A. 2007, 111, 9076. A. Mitsuzuka, A. Fujii, T. Ebata, N. Mikami, J. Phys. Chem. A 1998, 102, 9779.

  13. A Comparison of Autonomous Regulation and Negative Self-Evaluative Emotions as Predictors of Smoking Behavior Change among College Students

    Science.gov (United States)

    Lee, Hyoung S.; Catley, Delwyn; Harris, Kari Jo

    2011-01-01

    This study compared autonomous self-regulation and negative self-evaluative emotions as predictors of smoking behavior change in college student smokers (N=303) in a smoking cessation intervention study. Although the two constructs were moderately correlated, latent growth curve modeling revealed that only autonomous regulation, but not negative self-evaluative emotions, was negatively related to the number of days smoked. Results suggest that the two variables tap different aspects of motivation to change smoking behaviors, and that autonomous regulation predicts smoking behavior change better than negative self-evaluative emotions. PMID:21911436

  14. A comparison of autonomous regulation and negative self-evaluative emotions as predictors of smoking behavior change among college students.

    Science.gov (United States)

    Lee, Hyoung S; Catley, Delwyn; Harris, Kari Jo

    2012-05-01

    This study compared autonomous self-regulation and negative self-evaluative emotions as predictors of smoking behavior change in college student smokers (N = 303) in a smoking cessation intervention study. Although the two constructs were moderately correlated, latent growth curve modeling revealed that only autonomous regulation, but not negative self-evaluative emotions, was negatively related to the number of days smoked. Results suggest that the two variables tap different aspects of motivation to change smoking behaviors, and that autonomous regulation predicts smoking behavior change better than negative self-evaluative emotions.

  15. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  16. Elevated carbon dioxide increases salicylic acid in Glycine max.

    Science.gov (United States)

    Casteel, Clare L; Segal, Lauren M; Niziolek, Olivia K; Berenbaum, May R; DeLucia, Evan H

    2012-12-01

    Concentrations of carbon dioxide (CO(2)) are increasing in the atmosphere, affecting soybean (Glycine max L.) phytohormone signaling and herbivore resistance. Whether the impact of elevated CO(2) on phytohormones and induced defenses is a generalized response within this species is an open question. We examined jasmonic acid (JA) and salicylic acid (SA) under ambient and elevated CO(2) concentrations with and without Japanese beetle (Popillia japonica Newman) damage and artificial damage across six soybean cultivars (HS93-4118, Pana, IA 3010, Loda, LN97-15076, and Dwight). Elevated CO(2) reduced constitutive levels of JA and related transcripts in some but not all soybean cultivars. In contrast to the variation in JA, constitutive levels of salicylic were increased universally among soybean cultivars grown under elevated CO(2). Variation in hormonal signaling may underpin observed variation in the response of insect herbivores and pathogens to plants grown under elevated CO(2).

  17. "Phase diagrams of Lecithin-based microemulsions containing Sodium Salicylate "

    Directory of Open Access Journals (Sweden)

    "Aboofazeli R

    2000-08-01

    Full Text Available Partial phase diagrams were constructed at 25°C to investigate the phase behaviour of systems composed of soybean lecithin, water, sodium salicylate, alcohol and isopropyl myristate. The lecithins used were the commercially available soy bean lecithins, namely E200 and E170 (phosphatidyl choline purities greater than 95% and 68-72% respectively. The cosurfactants employed were n-propanol, 2-propanol and n-butanol and these were used at lecithin/alcohol weight ratios (Km of 1:1 and 1.5:1. At a given Km, the aqueous phase consisted of a 2% w/w sodium salicylate solution. Phase diagrams showed the area of existence of a stable isotropic region along the surfactant/oil axis (i.e., reverse microemulsion area. The extension of the microemulsion domain was influenced by the purity of surfactant, the lecithin/alcohol weight ratios and the kind of the alcohol.

  18. A Facile Method for Detection of Substituted Salicylic Acids Using Pyrenesulfonamide-Terminated Self-Assembled Monolayers on Silicon Oxide Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Han, Gyeongyeop; Choi, Jaehyuck; Lee, Jungkyu; Kumar, Ashwani; Lee, Ju-Young; Kim, Hong-Seok [Kyungpook Nation al University, Daegu (Korea, Republic of)

    2016-05-15

    We have developed a method for sensing substituted salicylic acids on silicon oxide surfaces. The receptor molecule was successfully immobilized onto the surface by self-assembly, and, as a demonstration, micropatterns of substituted salicylic acids were generated by soft lithography techniques. We believe that this approach used herein will not only widen the understanding of the specific interactions between salicylic acids and pyrenesulfonamide derivatives, but also be applicable to practical devices such as chemo/bio analytical sensors. We have successfully demonstrated the molecular recognition between salicylic acids and pyrene derivatives in solution by fluorescence measurement. Briefly, selective recognition was achieved using intermolecular interactions, including π-π interactions and multi-hydrogen bonds, and intramolecular hydrogen bonding between the phenolic O-H group and the adjacent C=O group.

  19. A Facile Method for Detection of Substituted Salicylic Acids Using Pyrenesulfonamide-Terminated Self-Assembled Monolayers on Silicon Oxide Surfaces

    International Nuclear Information System (INIS)

    Han, Gyeongyeop; Choi, Jaehyuck; Lee, Jungkyu; Kumar, Ashwani; Lee, Ju-Young; Kim, Hong-Seok

    2016-01-01

    We have developed a method for sensing substituted salicylic acids on silicon oxide surfaces. The receptor molecule was successfully immobilized onto the surface by self-assembly, and, as a demonstration, micropatterns of substituted salicylic acids were generated by soft lithography techniques. We believe that this approach used herein will not only widen the understanding of the specific interactions between salicylic acids and pyrenesulfonamide derivatives, but also be applicable to practical devices such as chemo/bio analytical sensors. We have successfully demonstrated the molecular recognition between salicylic acids and pyrene derivatives in solution by fluorescence measurement. Briefly, selective recognition was achieved using intermolecular interactions, including π-π interactions and multi-hydrogen bonds, and intramolecular hydrogen bonding between the phenolic O-H group and the adjacent C=O group

  20. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Shi

    Full Text Available Two genes encoding putative glutathione S-transferase proteins were isolated from pear (Pyrus pyrifolia and designated PpGST1 and PpGST2. The deduced PpGST1 and PpGST2 proteins contain conserved Glutathione S-transferase N-terminal domain (GST_N and Glutathione S-transferase, C-terminal domain (GST_C. Using PCR amplification technique, the genomic clones corresponding to PpGST1 and PpGST2 were isolated and shown to contain two introns and a singal intron respectively with typical GT/AG boundaries defining the splice junctions. Phylogenetic analysis clearly demonstrated that PpGST1 belonged to Phi class of GST superfamilies and had high homology with apple MdGST, while PpGST2 was classified into the Tau class of GST superfamilies. The expression of PpGST1 and PpGST2 genes was developmentally regulated in fruit. Further study demonstrated that PpGST1 and PpGST2 expression was remarkably induced by glucose, salicylic acid (SA and indole-3-aceticacid (IAA treatments in pear fruit, and in diseased fruit. These data suggested that PpGST1 and PpGST2 might be involved in response to sugar, SA, and IAA signaling during fruit development of pear.

  1. Effects of salicylic acid on Aspergillus flavus infection and aflatoxin B₁ accumulation in pistachio (Pistacia vera L.) fruit.

    Science.gov (United States)

    Panahirad, Sima; Zaare-Nahandi, Fariborz; Mohammadi, Nilufar; Alizadeh-Salteh, Saeedeh; Safaie, Naser

    2014-07-01

    One of the most important saprophytic infections in fresh pistachio fruits after harvesting is Aspergillus flavus colonization, which significantly reduces fruit quality. Salicylic acid plays a crucial role in plant tissues and has a suppression effect on some fungi. The inhibitory effect of salicylic acid on the growth of A. flavus was assessed in vitro and in vivo. For this purpose, seven concentrations (0, 1, 3, 5, 7, 9 and 11 mmol L(-1)) of salicylic acid were used in both experiments. Also, aflatoxin B1 contents of the samples were analysed using immunoaffinity chromatography. The results obtained from in vitro experiments showed that salicylic acid significantly reduced Aspergillus growth at all concentrations, and at 9 mmol L(-1) growth was completely suppressed. In vivo evaluation showed relatively high levels of inhibition, though the intact treated fruits as compared with the injured treated fruits demonstrated higher inhibitory effects. Regarding the inhibitory effects of salicylic acid on the control of A. flavus contamination, its application on pistachio fruits after harvesting could be a promising approach to control the fungus infection and reduce aflatoxin production in treated fruits. © 2013 Society of Chemical Industry.

  2. Spectrophotometric study of lanthanoid complexes with antipyrine and salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tishchenko, M A; Gerasimenko, G I; Poluehktov, N S [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1981-01-01

    The extraction-spectrophotometric method has been used to study lanthanoid ion complexing (Pr, Nd, Ho and Er) with antipyrine (Ant) and salicylic acid (Sal). The component relationship in different-ligand compounds Ln:Ant:Sal=2:3:6 and solvate number equal to 5 are determined; molar extinction coefficients of binary and different-ligand compounds are calculated. Oscillator strengths of absorption bands corresponding to supersensitive transitions of neodymium, holmium, erbium and some most intensive praseodymium bands are calculated. The study of IR spectra of investigated compounds allows to conclude on formation of coordination bonds of the central atom with the antipyrine molecule through the oxygen of the carbonyl group as well as on carboxyl group hydrogen substitution for metal and formation of coordination bond with OH group in salicylic acid molecules.

  3. Spectrophotometric study of lanthanoid complexes with antipyrine and salicylic acid

    International Nuclear Information System (INIS)

    Tishchenko, M.A.; Gerasimenko, G.I.; Poluehktov, N.S.

    1981-01-01

    The extraction-spectrophotometric method has been used to study lanthanoid ion complexing (Pr, Nd, Ho and Er) with antipyrine (Ant) and salicylic acid (Sal). The component relationship in different-ligand compounds Ln:Aut:Sal=2:3:6 and solvate number equal to 5 are determined; molar extinction coefficients of binary and different-ligand compounds are calculated. Oscillator strengths of absorption bands corresponding to supersensitive transitions of neodymium, holmium, erbium and some most intensive praseodymium bands are calculated. The study of IR spectra of investigated compounds allows to conclude on formation of coordination bonds of the central atom with the antipyrine molecule through the oxygen of the carbonyl group as well as on carboxyl group hydrogen substitution for metal and formation of coordination bond with OH group in salicylic acid molecules [ru

  4. New insight into photo-bromination processes in saline surface waters: The case of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tamtam, Fatima; Chiron, Serge, E-mail: serge.chiron@msem.univ-montp2.fr

    2012-10-01

    It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20{alpha}-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br{center_dot}, Br{sub 2}{center_dot}{sup -}) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways. -- Highlights: Black-Right-Pointing-Pointer Brominated derivatives of salicylic acid were detected in a brackish lagoon. Black-Right-Pointing-Pointer A photochemical pathway was hypothesized to account for bromination of salicylic acid. Black

  5. New insight into photo-bromination processes in saline surface waters: The case of salicylic acid

    International Nuclear Information System (INIS)

    Tamtam, Fatima; Chiron, Serge

    2012-01-01

    It was shown, through a combination of field and laboratory observations, that salicylic acid can undergo photo-bromination reactions in sunlit saline surface waters. Laboratory-scale experiments revealed that the photochemical yields of 5-bromosalicylic acid and 3,5-dibromosalicylic acid from salicylic acid were always low (in the 4% range at most). However, this might be of concern since these compounds are potential inhibitors of the 20α-hydroxysteroid dehydrogenase enzyme, with potential implications in endocrine disruption processes. At least two mechanisms were involved simultaneously to account for the photo-generation of brominated substances. The first one might involve the formation of reactive brominated radical species (Br·, Br 2 · − ) through hydroxyl radical mediated oxidation of bromide ions. These ions reacted more selectively than hydroxyl radicals with electron-rich organic pollutants such as salicylic acid. The second one might involve the formation of hypobromous acid, through a two electron oxidation of bromine ions by peroxynitrite. This reaction was catalyzed by nitrite, since these ions play a crucial role in the formation of nitric oxide upon photolysis. This nitric oxide further reacts with superoxide radical anions to yield peroxynitrite and by ammonium through the formation of N-bromoamines, probably due to the ability of N-bromoamines to promote the aromatic bromination of phenolic compounds. Field measurements revealed the presence of salicylic acid together with 5-bromosalicylic and 3,5-dibromosalicylic acid in a brackish coastal lagoon, thus confirming the environmental significance of the proposed photochemically induced bromination pathways. -- Highlights: ► Brominated derivatives of salicylic acid were detected in a brackish lagoon. ► A photochemical pathway was hypothesized to account for bromination of salicylic acid. ► Radical bromine species are partly responsible for the bromination process. ► Hypobromous acid

  6. Maternal depression and anxiety, social synchrony, and infant regulation of negative and positive emotions.

    Science.gov (United States)

    Granat, Adi; Gadassi, Reuma; Gilboa-Schechtman, Eva; Feldman, Ruth

    2017-02-01

    Maternal postpartum depression (PPD) exerts long-term negative effects on infants; yet the mechanisms by which PPD disrupts emotional development are not fully clear. Utilizing an extreme-case design, 971 women reported symptoms of depression and anxiety following childbirth and 215 high and low on depressive symptomatology reported again at 6 months. Of these, mothers diagnosed with major depressive disorder (n = 22), anxiety disorders (n = 19), and controls (n = 59) were visited at 9 months. Mother-infant interaction was microcoded for maternal and infant's social behavior and synchrony. Infant negative and positive emotional expression and self-regulation were tested in 4 emotion-eliciting paradigms: anger with mother, anger with stranger, joy with mother, and joy with stranger. Infants of depressed mothers displayed less social gaze and more gaze aversion. Gaze and touch synchrony were lowest for depressed mothers, highest for anxious mothers, and midlevel among controls. Infants of control and anxious mothers expressed less negative affect with mother compared with stranger; however, maternal presence failed to buffer negative affect in the depressed group. Maternal depression chronicity predicted increased self-regulatory behavior during joy episodes, and touch synchrony moderated the effects of PPD on infant self-regulation. Findings describe subtle microlevel processes by which maternal depression across the postpartum year disrupts the development of infant emotion regulation and suggest that diminished social synchrony, low differentiation of attachment and nonattachment contexts, and increased self-regulation during positive moments may chart pathways for the cross-generational transfer of emotional maladjustment from depressed mothers to their infants. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Effects of salicylic acid on monoterpene production and antioxidant ...

    African Journals Online (AJOL)

    Salicylic acid (SA) plays important roles in plant defense responses. However, little is available about its effects on monoterpene responses. Therefore, monoterpene contents and antioxidant systems were measured three days after foliar application of SA with different concentrations in Houttuynia cordata. SA at low ...

  8. Oxidative degradation of salicylic acid by sprayed WO{sub 3} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohite, S.V.; Rajpure, K.Y., E-mail: rajpure@yahoo.com

    2015-10-15

    Highlights: • The photoactivity of sprayed WO{sub 3} thin film. • Photoelectrocatalytic degradation of salicylic acid. • Reaction kinetics and mineralization of pollutants by COD. - Abstract: The WO{sub 3} thin films were deposited using spray pyrolysis technique. The prepared WO{sub 3} thin films were characterized using photoelectrochemical (PEC), X-ray diffraction, atomic force microscopy (AFM), and UV–vis absorbance spectroscopy techniques. PEC measurements of WO{sub 3} films deposited at different deposition temperatures were carried out to study photoresponse. The maximum photocurrent (I{sub ph} = 261 μA/cm{sup 2}) was observed for the film deposited at the 225 °C. The monoclinic crystal structure of WO{sub 3} has been confirmed from X-ray diffraction studies. AFM studies were used to calculate particle size and average roughness of the films. Optical absorbance was studied to estimate the bandgap energy of WO{sub 3} thin film which was about 2.65 eV. The photoelectrocatalytic activity of WO{sub 3} film was studied by degradation of salicylic acid with reducing concentrations as function of reaction time. The WO{sub 3} photocatalyst degraded salicylic acid to about 67.14% with significant reduction in chemical oxygen demand (COD) value.

  9. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  10. Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques.

    Science.gov (United States)

    Pastor, Victoria; Vicent, Cristian; Cerezo, Miguel; Mauch-Mani, Brigitte; Dean, John; Flors, Victor

    2012-04-01

    An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat

    OpenAIRE

    Jin, Xia; Sun, Tao; Wang, Xiatian; Su, Peipei; Ma, Jingfei; He, Guangyuan; Yang, Guangxiao

    2016-01-01

    CBL-interacting protein kinases are involved in plant responses to abiotic stresses, including salt stress. However, the negative regulating mechanism of this gene family in response to salinity is less reported. In this study, we evaluated the role of TaCIPK25 in regulating salt response in wheat. Under conditions of high salinity, TaCIPK25 expression was markedly down-regulated in roots. Overexpression of TaCIPK25 resulted in hypersensitivity to Na+ and superfluous accumulation of Na+ in tr...

  12. Age Differences in the Influence of Induced Negative Emotion on Decision-Making: The Role of Emotion Regulation.

    Science.gov (United States)

    You, Xuqun; Ju, Chengting; Wang, Mo; Zhang, Baoshan; Liu, Pei

    2017-11-19

    In this study, we hypothesized that there is an age difference in the influence of negative emotion on decision-making and that this age difference is related to emotion regulation strategies. We carried out two studies. In the first, the older and younger adults completed the ultimatum game (UG) while in either an induced negative emotional or a neutral context. In the second, both the older and younger adults completed the UG while in an induced negative emotion while using either emotion reappraisal or expressive suppression to regulate their emotions during the task. The first study showed that, unlike younger adults, the older adults made similar choices in the neutral and negative induction groups. In addition, the older adults predominantly used a reappraisal strategy in both the negative and neutral emotional states, whereas the younger adults predominantly used a suppression strategy in the negative emotional state. In the second study, after the emotion regulation strategies were experimentally manipulated so that both age groups used the same strategy, we found no age difference in decision-making. Our findings indicated that the influence of negative emotion on decision-making differs between older and younger adults and that this age difference was associated with their different emotion regulation processes. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes.

    Science.gov (United States)

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways.

  14. Complexation of neptunium(V) by salicylate, phthalate and citrate ligands in a pH 7.5 phosphate buffered system

    International Nuclear Information System (INIS)

    Rees, T.F.; Daniel, S.R.

    1984-01-01

    Conditional stability constants, enthalpies and entropies of complexation at pH 7.5 and ionic strength 0.1 have been determined for neptunium(V) complexes of phosphate, salicylate, phthalate and citrate. Results are given and discussed. At pH 7.5 salicylate does not form a complex with neptunium(V) due to the low charge density of the NpO 2 + ion and incomplete ionization of the salicylate ion. In all cases, only 1:1 complexes were identified. (U.K.)

  15. Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populus.

    Science.gov (United States)

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O; Nyamdari, Batbayar; Wilson, Mark C; Frost, Christopher J; Chen, Han-Yi; Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui

    2013-07-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained.

  16. Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts.

    Science.gov (United States)

    Deng, W G; Ruan, K H; Du, M; Saunders, M A; Wu, K K

    2001-11-01

    Salicylic acid (SA), an endogenous signaling molecule of plants, possesses anti-inflammatory and anti-neoplastic actions in human. Its derivative, aspirin, is the most commonly used anti-inflammatory and analgesic drug. Aspirin and sodium salicylate (salicylates) have been reported to have multiple pharmacological actions. However, it is unclear whether they bind to a cellular protein. Here, we report for the first time the purification from human fibroblasts of a approximately 78 kDa salicylate binding protein with sequence identity to immunoglobulin heavy chain binding protein (BiP). The Kd values of SA binding to crude extract and to recombinant BiP were 45.2 and 54.6 microM, respectively. BiP is a chaperone protein containing a polypeptide binding site recognizing specific heptapeptide sequence and an ATP binding site. A heptapeptide with the specific sequence displaced SA binding in a concentration-dependent manner whereas a control heptapeptide did not. Salicylates inhibited ATPase activity stimulated by this specific heptapeptide but did not block ATP binding or induce BiP expression. These results indicate that salicylates bind specifically to the polypeptide binding site of BiP in human cells that may interfere with folding and transport of proteins important in inflammation.

  17. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Science.gov (United States)

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  18. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Brenden Chen

    Full Text Available Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167 or mTORC1 inhibitor (rapamycin induced AKT phosphorylation (pAKT and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2 and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  19. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo, E-mail: pompeo.volpe@unipd.it

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  20. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    International Nuclear Information System (INIS)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-01-01

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α 1 -adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy

  1. Passive permeability of salicylic acid in renal proximal S2 and S3 tubules

    International Nuclear Information System (INIS)

    Chatton, J.Y.; Roch-Ramel, F.

    1991-01-01

    The role of nonionic diffusion in the transport of salicylic acid across rabbit proximal S2 and S3 segments was investigated using the in vitro isolated perfused tubule technique. The [ 14 C] salicylic acid apparent reabsorptive permeability (P'I-b, 10(-5) cm/s) was measured at 19 degrees C with luminal solutions kept at different pH and bath maintained at pH 7.4. In S2 tubules, P'I-b was 25.0 +/- 3.5 when luminal pH was 6.0; P'I-b decreased to 8.1 +/- 1.4 and to 4.4 +/- 1.2 at a luminal pH of 6.5 and 7.0, respectively. In S3 tubules, P'I-b was 17.6 +/- 2.4, 5.3 +/- 1.1 and 3.4 +/- 1.1 at a luminal pH of 6.0, 6.5 and 7.0, respectively. There was a close correlation between P'I-b and the calculated proportion of nonionized salicylic acid present at each pH, indicating that only the nonionized molecule could diffuse in our conditions. We calculated the apparent permeability of nonionic salicylic acid and found 0.248 +/- 0.032 cm/s for S2 and 0.176 +/- 0.022 cm/s for S3 tubules. These calculated permeabilities were independent of pH

  2. Stability constants of mixed ligand complexes of lanthanide(III) and yttrium(III) with complexone and substituted salicylic acids

    International Nuclear Information System (INIS)

    Kolhe, Vishnu; Dwivedi, K.

    1996-01-01

    Salicylic acid and substituted salicylic acids are potential antimicrobial agents. Binary complexes of salicylic acid and its substituted derivatives with lanthanide(III) and yttrium(III) metal ions have been reported. There are reports on the ternary metal complexing equilibria with some lanthanide(III) and yttrium(III) metal ions involving aminopolycarboxylic acid as one ligand and salicylic acid (SA) and other related compounds as the second ligands. Ethylene glycol bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA) is an important member of aminopolycarboxylic acid and finds many applications in medicine and biology. Recently, few ternary complexes have been reported using EGTA as ligand. In view of biological importance of simple and mixed ligand complexes EGTA, SA and DNSA (3,5-dinitrosalicylic acid), a systematic study has been undertaken for the determination of stability constant and the results are reported. (author). 6 refs., 1 fig., 2 tabs

  3. Effect of intravenous sodium salicylate administration prior to castration on plasma cortisol and electroencephalography parameters in calves.

    Science.gov (United States)

    Bergamasco, L; Coetzee, J F; Gehring, R; Murray, L; Song, T; Mosher, R A

    2011-12-01

    Nociception is an unavoidable consequence of many routine management procedures such as castration in cattle. This study investigated electroencephalography (EEG) parameters and cortisol levels in calves receiving intravenous sodium salicylate in response to a castration model. Twelve Holstein calves were randomly assigned to the following groups: (i) castrated, untreated controls, (ii) 50 mg/kg sodium salicylate IV precastration, were blood sampled at 0, 5, 10, 20, 30, 45, 60, 90, 120, 150, 180, 240, 360, and 480 min postcastration. The EEG recording included baseline, castration, immediate recovery (0-5 min after castration), middle recovery (5-10 min after castration), and late recovery (10-20 min after castration). Samples were analyzed by competitive chemiluminescent immunoassay and fluorescence polarization immunoassay for cortisol and salicylate, respectively. EEG visual inspection and spectral analysis were performed. Statistical analyses included anova repeated measures and correlations between response variable. No treatment effect was noted between the two groups for cortisol and EEG measurements, namely an attenuation of acute cortisol response and EEG desynchronization in sodium salicylate group. Time effects were noted for EEG measurements, cortisol and salicylates levels. Significant correlations between cortisol and EEG parameters were noted. These findings have implications for designing effective analgesic regimens, and they suggest that EEG can be useful to monitor pain attributable to castration. © 2011 Blackwell Publishing Ltd.

  4. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots.

    Science.gov (United States)

    Plett, Jonathan M; Khachane, Amit; Ouassou, Malika; Sundberg, Björn; Kohler, Annegret; Martin, Francis

    2014-04-01

    The plant hormones ethylene, jasmonic acid and salicylic acid have interconnecting roles during the response of plant tissues to mutualistic and pathogenic symbionts. We used morphological studies of transgenic- or hormone-treated Populus roots as well as whole-genome oligoarrays to examine how these hormones affect root colonization by the mutualistic ectomycorrhizal fungus Laccaria bicolor S238N. We found that genes regulated by ethylene, jasmonic acid and salicylic acid were regulated in the late stages of the interaction between L. bicolor and poplar. Both ethylene and jasmonic acid treatments were found to impede fungal colonization of roots, and this effect was correlated to an increase in the expression of certain transcription factors (e.g. ETHYLENE RESPONSE FACTOR1) and a decrease in the expression of genes associated with microbial perception and cell wall modification. Further, we found that ethylene and jasmonic acid showed extensive transcriptional cross-talk, cross-talk that was opposed by salicylic acid signaling. We conclude that ethylene and jasmonic acid pathways are induced late in the colonization of root tissues in order to limit fungal growth within roots. This induction is probably an adaptive response by the plant such that its growth and vigor are not compromised by the fungus. © 2013 The Authors New Phytologist © 2013 New Phytologist Trust.

  5. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    Science.gov (United States)

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it.

  6. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    International Nuclear Information System (INIS)

    Guo Wenlu; Liu Xiaolin; Huo Pengwei; Gao Xun; Wu Di; Lu Ziyang; Yan Yongsheng

    2012-01-01

    Anatase TiO 2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO 2 consisted of well-defined spheres with size of 3-5 μm. The photocatalytic activity of spherical TiO 2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO 2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h).

  7. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers.

    Science.gov (United States)

    Liu, Fei; Xiao, Zhina; Yang, Li; Chen, Qian; Shao, Lu; Liu, Juanxu; Yu, Yixun

    2017-09-01

    In petunia, the production of volatile benzenoids/phenylpropanoids determines floral aroma, highly regulated by development, rhythm and ethylene. Previous studies identified several R2R3-type MYB trans-factors as positive regulators of scent biosynthesis in petunia flowers. Ethylene response factors (ERFs) have been shown to take part in the signal transduction of hormones, and regulation of metabolism and development processes in various plant species. Using virus-induced gene silencing technology, a negative regulator of volatile benzenoid biosynthesis, PhERF6, was identified by a screen for regulators of the expression of genes related to scent production. PhERF6 expression was temporally and spatially connected with scent production and was upregulated by exogenous ethylene. Up-/downregulation of the mRNA level of PhERF6 affected the expression of ODO1 and several floral scent-related genes. PhERF6 silencing led to a significant increase in the concentrations of volatiles emitted by flowers. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicated that PhERF6 interacted with the N-terminus of EOBI, which includes two DNA binding domains. Our results show that PhERF6 negatively regulates volatile production in petunia flowers by competing for the binding of the c-myb domains of the EOBI protein with the promoters of genes related to floral scent. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Comparative studies about the influence of salicylic and acetylsalicilic acid on content of assimilatory pigments in the primary leaves of wheat (Triticum aestivum plantlets

    Directory of Open Access Journals (Sweden)

    Cornelia PURCAREA

    2007-05-01

    Full Text Available Salicylic acid (SA and some of its derivates are phenolic compounds recently recognized as plant growth regulators involved in many physiological processes including photosynthesis. One of the important derivates of Salicylic Acid is the Acetylsalicylic Acid. In the present investigation we studied the influence of exogenous Acetylsalicylic and Salicylic acid with different concentrations on the assimilatory pigments contents of the primary leaves of wheat seedlings in comparison with the same parameters of the control lots which were treated with water. The wheat seedlings were soaked for 6 hours in 0.01mM; 0.1mM; 0.5mM and 1 mM SA or ASA solutions and in water for the control lot, germinated for 7 days on filter paper moistened with water. After that, we planted the plantlets in sand and sprayed their coleoptiles and primary leaves, each day for an additional 7 days, with water. In the 14th days of germination we determined the content of assimilatory pigments extracted with N,N-dimethylformamide (DMF. The results showed that exogenous 0.01 mM, 0.1mM, 0.5 mM or 1.0 mM SA solution treatments cause more significant increases in the assimilatory pigments contents in leaves of wheat plantlets than treatments with ASA solutions of the same concentrations do.

  9. [Regulation of Positive and Negative Emotions as Mediator between Maternal Emotion Socialization and Child Problem Behavior].

    Science.gov (United States)

    Fäsche, Anika; Gunzenhauser, Catherine; Friedlmeier, Wolfgang; von Suchodoletz, Antje

    2015-01-01

    The present study investigated five to six year old children's ability to regulate negative and positive emotions in relation to psychosocial problem behavior (N=53). It was explored, whether mothers' supportive and nonsupportive strategies of emotion socialization influence children's problem behavior by shaping their emotion regulation ability. Mothers reported on children's emotion regulation and internalizing and externalizing problem behavior via questionnaire, and were interviewed about their preferences for socialization strategies in response to children's expression of negative affect. Results showed that children with more adaptive expression of adequate positive emotions had less internalizing behavior problems. When children showed more control of inadequate negative emotions, children were less internalizing as well as externalizing in their behavior. Furthermore, results indicated indirect relations of mothers' socialization strategies with children's problem behavior. Control of inadequate negative emotions mediated the link between non-supportive strategies on externalizing problem behavior. Results suggest that emotion regulatory processes should be part of interventions to reduce the development of problematic behavior in young children. Parents should be trained in dealing with children's emotions in a constructive way.

  10. Some biochemical reactions of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment

    Directory of Open Access Journals (Sweden)

    Urszula Małolepsza

    2013-12-01

    Full Text Available The reactions of strawberry plants to infection with B. cinerea and treatment with salicylic acid has been studied. Infection of leaves with B. cinerea resulted in early increases in active oxygen species generation, superoxide dismutase and peroxidase activities and phenolic compounds content. Some increases of the above reactions were noticed in plants treated with salicylic acid but not in the plants treated with SA and then later infected with B. cinerea.

  11. The effect of arousal on regulation of negative emotions using cognitive reappraisal: An ERP study.

    Science.gov (United States)

    Langeslag, Sandra J E; Surti, Kruti

    2017-08-01

    Because the effectiveness of the emotion regulation strategy cognitive reappraisal may vary with emotion intensity, we investigated how stimulus arousal affects reappraisal success. Participants up- and down-regulated emotional responses using cognitive reappraisal to low and high arousing unpleasant pictures while the electroencephalogram (EEG) was recorded. Up-regulation resulted in more negative self-reported valence, while down-regulation resulted in less negative self-reported valence regardless of stimulus arousal, suggesting that subjective reappraisal success does not vary with emotional intensity. Participants felt that down-regulation of emotional responses to low arousing unpleasant pictures was easiest, which is in line with previous findings that participants showed a greater preference for reappraisal in low than high arousing situations. The late positive potential (LPP) amplitude was enhanced by down-regulation of high arousing unpleasant pictures. Even though this effect was unexpected and is opposite to the typical effect of down-regulation on the LPP, it is in line with several previous studies. Potential explanations for LPP regulation effects in the unexpected direction, such as strategy selection and task design, are evaluated. Suggestions and recommendations for future research are discussed, including using trial-by-trial manipulation of regulation instructions and studying the effect of stimulus arousal on up- and down-regulation of positive emotions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Emotion regulation strategies mediate the associations of positive and negative affect to upper extremity physical function.

    Science.gov (United States)

    Talaei-Khoei, Mojtaba; Nemati-Rezvani, Hora; Fischerauer, Stefan F; Ring, David; Chen, Neal; Vranceanu, Ana-Maria

    2017-05-01

    The Gross process model of emotion regulation holds that emotion-eliciting situations (e.g. musculoskeletal illness) can be strategically regulated to determine the final emotional and behavioral response. Also, there is some evidence that innate emotional traits may predispose an individual to a particular regulating coping style. We enrolled 107 patients with upper extremity musculoskeletal illness in this cross-sectional study. They completed self-report measures of positive and negative affect, emotion regulation strategies (cognitive reappraisal and expressive suppression), upper extremity physical function, pain intensity, and demographics. We used Preacher and Hayes' bootstrapping approach to process analysis to infer the direct effect of positive and negative affect on physical function as well as their indirect effects through activation of emotion regulation strategies. Negative affect was associated with decreased physical function. The association was partly mediated by expressive suppression (b (SE)=-.10 (.05), 95% BCa CI [-.21, -.02]). Positive affect was associated with increased physical function. Cognitive reappraisal partially mediated this association (b (SE)=.11 (.05), 95% BCa CI [.03, .24]). After controlling for pain intensity, the ratio of the mediated effect to total effect grew even larger in controlled model comparing to uncontrolled model (33% vs. 26% for expressive suppression and 32% vs. 30% for cognitive reappraisal). The relationships between affect, emotion regulation strategies and physical function appear to be more dependent on the emotional response to an orthopedic condition rather than the intensity of the nociceptive stimulation of the pain. Findings support integration of emotion regulation training in skill-based psychotherapy in this population to mitigate the effect of negative affect and enhance the influence of positive affect on physical function. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation

    International Nuclear Information System (INIS)

    Shibata, Mio; Sato, Tomonobu; Nukiwa, Ryota; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-01

    Highlights: ► NF-κB plays an important role in cell survival and carcinogenesis. ► TRIM45 negatively regulates TNFα-induced NF-κB-mediated transcription. ► TRIM45 overexpression suppresses cell growth. ► TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth. -- Abstract: The NF-κB signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-κB is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-κB signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin–proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNFα-induced NF-κB-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-κB signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth.

  14. Trait Affect, Emotion Regulation, and the Generation of Negative and Positive Interpersonal Events.

    Science.gov (United States)

    Hamilton, Jessica L; Burke, Taylor A; Stange, Jonathan P; Kleiman, Evan M; Rubenstein, Liza M; Scopelliti, Kate A; Abramson, Lyn Y; Alloy, Lauren B

    2017-07-01

    Positive and negative trait affect and emotion regulatory strategies have received considerable attention in the literature as predictors of psychopathology. However, it remains unclear whether individuals' trait affect is associated with responses to state positive affect (positive rumination and dampening) or negative affect (ruminative brooding), or whether these affective experiences contribute to negative or positive interpersonal event generation. Among 304 late adolescents, path analyses indicated that individuals with higher trait negative affect utilized dampening and brooding rumination responses, whereas those with higher trait positive affect engaged in rumination on positive affect. Further, there were indirect relationships between trait negative affect and fewer positive and negative interpersonal events via dampening, and between trait positive affect and greater positive and negative interpersonal events via positive rumination. These findings suggest that individuals' trait negative and positive affect may be associated with increased utilization of emotion regulation strategies for managing these affects, which may contribute to the occurrence of positive and negative events in interpersonal relationships. Copyright © 2017. Published by Elsevier Ltd.

  15. IR, Raman and SERS studies of methyl salicylate

    Science.gov (United States)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  16. Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

    1994-06-01

    The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

  17. Electrochemical assisted photocatalytic degradation of salicylic acid with highly ordered TiO{sub 2} nanotube electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [The State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhu, Jinwei [China Aerospace Science and Technology Corporation Fourty-fourth Research Institution (China); Wang, Ying; Feng, Jiangtao [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Yan, Wei, E-mail: yanwei@mail.xjtu.edu.cn [The State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Hao, E-mail: xuhao@mail.xjtu.edu.cn [Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    To explore the kinetics of photoelectrocatalytic degradation of salicylic acid, one of the important PPCPs, highly ordered TiO{sub 2} nanotube arrays (NTs) were prepared by the electrochemical anodization and characterized with scanning electron microscopy and X-ray diffraction techniques. The effect of TiO{sub 2} NTs properties, bias potential, initial salicylic acid concentration and solution pH on the degradation efficiency was studied and carefully analyzed. The results revealed that the salicylic acid degradation follows quasi-first order kinetics in the photoelectrocatalytic process, and the fastest decay kinetics was achieved in acidic environment (pH 2). The result was further interpreted through the electrochemical impedance spectroscopy. It is confirmed that the electrochemical assisted photocatalysis is a synergetic approach to combat stable organic substances with improved efficiency.

  18. Relation between acid back-diffusion and luminal surface hydrophobicity in canine gastric mucosa: Effects of salicylate and prostaglandin

    International Nuclear Information System (INIS)

    Goddard, P.J.

    1989-01-01

    The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E 2 to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabeled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa

  19. Effects of Pretreatment with Salicylic Acid on Growth and Nutrient Uptake of Sesame Seedlings under Salt Stress

    Directory of Open Access Journals (Sweden)

    H Safari

    2018-02-01

    Full Text Available Introduction Salinity stress is regarded as one of the most important abiotic factors limiting plant growth and agricultural products, particularly in arid and semi-arid regions. Sesame (Sesamum indicum L. is an important oilseed crop rated moderately salt tolerant and capable of producing profitable crops in saline conditions. Germination and seedling establishment are critical stages in the life cycle of plants especially under stress conditions. Different methodologies have been adopted by plant physiologists in different crops to alleviate salt stress. Seed priming has proven beneficial in this regard in many important agricultural crops. Salicylic acid is one of the physiological processes regulators that it increases resistant of plants to environmental stresses such as salinity stress. Materials and Methods To evaluate the effect of different levels of salinity and seed pretreatment with salicylic acid (SA, on some growth indices and nutrient uptake of sesame (Sesamum indicum L. seedling, a factorial experiment with completely randomized design and four replicates was conducted in Department of Agronomy, Rafsanjan University of Vali-e- Asr. Factors were seed pretreatment with three levels including, distilled water, 1 mM salicylic acid and 2.5 Mm salicylic acid and salinity at three levels: control (Hoagland standard solution, 2.5 dS.m-1, 6 and 9 dS.m-1. A dry seed treatment (no pretreatment was also added and considered as control. Results and Discussion Results showed that at 9 dS/m-1both SA concentrations caused significant increase in emergence percentage compared to dry seed and distilled water. Plant leaf area and SPAD values decreased along with salinity in dry seed and distilled water, nevertheless, at 2.5 mM SA, values were not significantly different between 6 and 9 dS.m-1. On the other hand, SA seed pretreatment decreased shoot Na and increased K content, although shoot Mg and P contents were the highest at 1 and 2.5 mM SA

  20. Competitive adsorption and photodegradation of salicylate and oxalate on goethite

    Czech Academy of Sciences Publication Activity Database

    Krýsa, J.; Jirkovský, Jaromír; Bajt, O.; Mailhot, G.

    2011-01-01

    Roč. 161, č. 1 (2011), s. 221-227 ISSN 0920-5861 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : goethite * oxalate * salicylate Subject RIV: CG - Electrochemistry Impact factor: 3.407, year: 2011

  1. Methyl salicylate production in tomato affects biotic interactions.

    Science.gov (United States)

    Ament, Kai; Krasikov, Vladimir; Allmann, Silke; Rep, Martijn; Takken, Frank L W; Schuurink, Robert C

    2010-04-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non-infested SAMT-silenced lines, as it could for wild-type tomato plants. Moreover, when given the choice between infested SAMT-silenced and infested wild-type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT-silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses.

  2. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong, E-mail: zhangqzdr@126.com

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  3. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Udinotti, Mario; Durand, Marjorie; Meng, Tzu-Ching; Taouis, Mohammed; Rabinow, Leonard

    2014-10-01

    PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.

  4. Effects of Tumor Necrosis Factor Blocker on Salicylate-Induced Tinnitus in Mice.

    Science.gov (United States)

    Hwang, Juen-Haur; Huang, David Chang-Wei; Lu, Yin-Chang; Yang, Wei-Shiung; Liu, Tien-Chen

    2017-06-01

    Neuroinflammation is considered a novel mechanism for acute tinnitus. Here, we investigated the effects of a tumor necrosis factor (TNF) blocker on the gene expression of inflammatory-cytokine in the cochlea in a tinnitus animal model. Enbrel® (30 mg/kg, intraperitoneally (i.p.)) were administrated to the mice with the salicylate induced tinnitus for 3 days. Tinnitus score and mRNA expression levels of TNFR1, TNFR2, and N-methyl-d-aspartate receptor subunit 2B (NR2B) and its downstream regulatory element antagonist modulator (DREAM) in the cochlea of mice were measured and compared to the control. The tinnitus score significantly decreased in the Enbrel® treated group. The mRNA levels of both TNFR1 and TNFR2 were significantly lower in the treatment than in the control group. The mRNA levels of NR2B and DREAM followed a similar trend. we found that treatment with 30 mg/ kg Enbrel® decreased salicylate-induced behavior associated with tinnitus and reduced the mRNA expression levels of TNFR1/R2, NR2B, and DREAM in the cochlea of mice. These findings supported the hypothesis that neuroinflammation might be a novel mechanism for salicylate-induced tinnitus.

  5. The Role of Depression and Negative Affect Regulation Expectancies in Tobacco Smoking among College Students

    Science.gov (United States)

    Schleicher, Holly E.; Harris, Kari Jo; Catley, Delwyn; Nazir, Niaman

    2009-01-01

    Objective: Expectancies about nicotine's ability to alleviate negative mood states may play a role in the relationship between smoking and depression. The authors examined the role of negative affect regulation expectancies as a potential mediator of depression (history of depression and depressive symptoms) and smoking among college students.…

  6. When death is not a problem: Regulating implicit negative affect under mortality salience.

    Science.gov (United States)

    Lüdecke, Christina; Baumann, Nicola

    2015-12-01

    Terror management theory assumes that death arouses existential anxiety in humans which is suppressed in focal attention. Whereas most studies provide indirect evidence for negative affect under mortality salience by showing cultural worldview defenses and self-esteem strivings, there is only little direct evidence for implicit negative affect under mortality salience. In the present study, we assume that this implicit affective reaction towards death depends on people's ability to self-regulate negative affect as assessed by the personality dimension of action versus state orientation. Consistent with our expectations, action-oriented participants judged artificial words to express less negative affect under mortality salience compared to control conditions whereas state-oriented participants showed the reversed pattern. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  7. Quorum sensing negatively regulates chitinase in Vibrio harveyi.

    Science.gov (United States)

    Defoirdt, Tom; Darshanee Ruwandeepika, H A; Karunasagar, Indrani; Boon, Nico; Bossier, Peter

    2010-02-01

    Quorum sensing, bacterial cell-to-cell communication, regulates the virulence of Vibrio harveyi towards different hosts. Chitinase can be considered as a virulence factor because it helps pathogenic bacteria to attach to the host and to penetrate its tissues (e.g. in case of shrimp). Here, we show that quorum sensing negatively regulates chitinase in V. harveyi. Chitinolytic activity towards natural chitin from crab shells, the synthetic chitin derivative chitin azure, and fluorogenic chitin oligomers was significantly higher in a mutant in which the quorum-sensing system is completely inactivated when compared with a mutant in which the system is maximally active. Furthermore, the addition of signal molecule containing cell-free culture fluids decreased chitinase activity in a Harveyi Autoinducer 1 and Autoinducer 2-deficient double mutant. Finally, chitinase A mRNA levels were fivefold lower in the mutant in which the quorum-sensing system is maximally active when compared with the mutant in which the system is completely inactivated. [Correction added on 25 September 2009, after first online publication: the preceding sentence was corrected from 'Finally, chitinase A mRNA levels were fivefold lower in the mutant in which the quorum-sensing system is completely inactivated when compared with the mutant in which the system is maximally active.'] We argue that this regulation might help the vibrios to switch between host-associated and free-living life styles. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Solution stabilities of some mixed ligand complexes of UO22+ and Th4+ with complexones and salicylic acids

    International Nuclear Information System (INIS)

    Singh, R.K.; Saxena, M.C.

    1991-01-01

    Formation constants (log Ksub(MAL)sup(MA)) of mixed ligands complexes (MAL), where M = UO 2 2+ or Th 4+ , A = IMDA, NTA, HEDTA, EDTA, CDTA or DTPA, L = salicylic acid (SA) or 5-sulphosalicylic acid (SSA), have been determined by pH titrations using Irving-Rossotti approach at 25 o C and at I =0.2 (mol dm -3 , KNO 3 ). The solution stabilities exhibit the sequence (i) Th 4+ >UO 2 2+ , (ii) IMDA>NTA>HEDTA>EDTA>CDTA>DTPA, and (iii) SA>SSA with respect to metal ions, primary ligands and secondary ligands, respectively. The formation constants log Ksub(ML)sup(M) and log Ksub(ML 2 )sup(ML) have also been determined. The Δlog K values have been found to be negative-increasing numerically with the negative charge on the deprotonated primary ligand (A n- ). (author). 17 refs., 1 tab

  9. Optical and electron paramagnetic resonance studies of the excited triplet states of UV-B absorbers: 2-ethylhexyl salicylate and homomenthyl salicylate.

    Science.gov (United States)

    Sugiyama, Kazuto; Tsuchiya, Takumi; Kikuchi, Azusa; Yagi, Mikio

    2015-09-26

    The energy levels and lifetimes of the lowest excited triplet (T1) states of UV-B absorbers, 2-ethylhexyl salicylate (EHS) and homomenthyl salicylate (HMS), and their deprotonated anions (EHS(-) and HMS(-)) were determined through measurements of phosphorescence and electron paramagnetic resonance (EPR) spectra in rigid solutions at 77 K. The observed T1 energies of EHS and HMS are higher than those of butylmethoxydibenzoylmethane, the most widely used UV-A absorber, and octyl methoxycinnamate, the most widely used UV-B absorber. The T1 states of EHS, HMS, EHS(-) and HMS(-) were assigned to almost pure (3)ππ* state from the observed T1 lifetimes and zero-field splitting parameters. EHS and HMS with an intramolecular hydrogen bond show a photoinduced phosphorescence enhancement in ethanol at 77 K. The EPR signals of the T1 states of EHS and HMS also increase in intensity with UV-irradiation time (photoinduced EPR enhancement). The T1 lifetimes of EHS and HMS at room temperature were determined through triplet-triplet absorption measurements in ethanol. The quantum yields of singlet oxygen production by EHS and HMS were determined by using time-resolved near-IR phosphorescence.

  10. Mothering, fathering, and the regulation of negative and positive emotions in high-functioning preschoolers with autism spectrum disorder.

    Science.gov (United States)

    Hirschler-Guttenberg, Yael; Golan, Ofer; Ostfeld-Etzion, Sharon; Feldman, Ruth

    2015-05-01

    Children with autism spectrum disorder (ASD) exhibit difficulties in regulating emotions and authors have called to study the specific processes underpinning emotion regulation (ER) in ASD. Yet, little observational research examined the strategies preschoolers with ASD use to regulate negative and positive emotions in the presence of their mothers and fathers. Forty preschoolers with ASD and 40 matched typically developing children and their mothers and fathers participated. Families were visited twice for identical battery of paradigms with mother or father. Parent-child interactions were coded for parent and child behaviors and children engaged in ER paradigms eliciting negative (fear) and positive (joy) emotions with each parent. ER paradigms were microcoded for negative and positive emotionality, ER strategies, and parent regulation facilitation. During free play, mothers' and fathers' sensitivity and warm discipline were comparable across groups; however, children with ASD displayed lower positive engagement and higher withdrawal. During ER paradigms, children with ASD expressed less positive emotionality overall and more negative emotionality during fear with father. Children with ASD used more simple self-regulatory strategies, particularly during fear, but expressed comparable levels of assistance seeking behavior toward mother and father in negative and positive contexts. Parents of children with ASD used less complex regulation facilitation strategies, including cognitive reappraisal and emotional reframing, and employed simple tactics, such as physical comforting to manage fear and social gaze to maintain joy. Findings describe general and parent- and emotion-specific processes of child ER and parent regulation facilitation in preschoolers with ASD. Results underscore the ability of such children to seek parental assistance during moments of high arousal and the parents' sensitive adaptation to their children's needs. Reduced positive emotionality

  11. Impaired down-regulation of negative emotion in self-referent social situations in bipolar disorder

    DEFF Research Database (Denmark)

    Kjærstad, Hanne L; Vinberg, Maj; Goldin, Philippe R

    2016-01-01

    naturally or dampen their emotional response to positive and negative social scenarios and associated self-beliefs. They were also given an established experimental task for comparison, involving reappraisal of negative affective picture stimuli, as well as a questionnaire of habitual ER strategies. BD...... patients showed reduced ability to down-regulate emotional responses in negative, but not positive, social scenarios relative to healthy controls and UD patients. In contrast, there were no between-group differences in the established ER task or in self-reported habitual reappraisal strategies. Findings...

  12. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    International Nuclear Information System (INIS)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-01-01

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways

  13. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    Science.gov (United States)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  14. A rice gene of de novo origin negatively regulates pathogen-induced defense response.

    Directory of Open Access Journals (Sweden)

    Wenfei Xiao

    Full Text Available How defense genes originated with the evolution of their specific pathogen-responsive traits remains an important problem. It is generally known that a form of duplication can generate new genes, suggesting that a new gene usually evolves from an ancestral gene. However, we show that a new defense gene in plants may evolve by de novo origination, resulting in sophisticated disease-resistant functions in rice. Analyses of gene evolution showed that this new gene, OsDR10, had homologs only in the closest relative, Leersia genus, but not other subfamilies of the grass family; therefore, it is a rice tribe-specific gene that may have originated de novo in the tribe. We further show that this gene may evolve a highly conservative rice-specific function that contributes to the regulation difference between rice and other plant species in response to pathogen infections. Biologic analyses including gene silencing, pathologic analysis, and mutant characterization by transformation showed that the OsDR10-suppressed plants enhanced resistance to a broad spectrum of Xanthomonas oryzae pv. oryzae strains, which cause bacterial blight disease. This enhanced disease resistance was accompanied by increased accumulation of endogenous salicylic acid (SA and suppressed accumulation of endogenous jasmonic acid (JA as well as modified expression of a subset of defense-responsive genes functioning both upstream and downstream of SA and JA. These data and analyses provide fresh insights into the new biologic and evolutionary processes of a de novo gene recruited rapidly.

  15. Strategy of Pseudomonas pseudoalcaligenes C70 for effective degradation of phenol and salicylate.

    Directory of Open Access Journals (Sweden)

    Merike Jõesaar

    Full Text Available Phenol- and naphthalene-degrading indigenous Pseudomonas pseudoalcaligenes strain C70 has great potential for the bioremediation of polluted areas. It harbours two chromosomally located catechol meta pathways, one of which is structurally and phylogenetically very similar to the Pseudomonas sp. CF600 dmp operon and the other to the P. stutzeri AN10 nah lower operon. The key enzymes of the catechol meta pathway, catechol 2,3-dioxygenase (C23O from strain C70, PheB and NahH, have an amino acid identity of 85%. The metabolic and regulatory phenotypes of the wild-type and the mutant strain C70ΔpheB lacking pheB were evaluated. qRT-PCR data showed that in C70, the expression of pheB- and nahH-encoded C23O was induced by phenol and salicylate, respectively. We demonstrate that strain C70 is more effective in the degradation of phenol and salicylate, especially at higher substrate concentrations, when these compounds are present as a mixture; i.e., when both pathways are expressed. Moreover, NahH is able to substitute for the deleted PheB in phenol degradation when salicylate is also present in the growth medium. The appearance of a yellow intermediate 2-hydroxymuconic semialdehyde was followed by the accumulation of catechol in salicylate-containing growth medium, and lower expression levels and specific activities of the C23O of the sal operon were detected. However, the excretion of the toxic intermediate catechol to the growth medium was avoided when the growth medium was supplemented with phenol, seemingly due to the contribution of the second meta pathway encoded by the phe genes.

  16. Theoretical investigation of the photophysics of methyl salicylate isomers

    Science.gov (United States)

    Massaro, Richard D.; Blaisten-Barojas, Estela

    2011-10-01

    The photophysics of methyl salicylate (MS) isomers has been studied using time-dependent density functional theory and large basis sets. First electronic singlet and triplet excited states energies, structure, and vibrational analysis were calculated for the ketoB, enol, and ketoA isomers. It is demonstrated that the photochemical pathway involving excited state intramolecular proton transfer (ESIPT) from the ketoB to the enol tautomer agrees well with the dual fluorescence in near-UV (from ketoB) and blue (from enol) wavelengths obtained from experiments. Our calculation confirms the existence of a double minimum in the excited state pathway along the O-H-O coordinate corresponding to two preferred energy regions: (1) the hydrogen belongs to the OH moiety and the structure of methyl salicylate is ketoB; (2) the hydrogen flips to the closest carboxyl entailing electronic rearrangement and tautomerization to the enol structure. This double well in the excited state is highly asymmetric. The Franck-Condon vibrational overlap is calculated and accounts for the broadening of the two bands. It is suggested that forward and backward ESIPT through the barrier separating the two minima is temperature-dependent and affects the intensity of the fluorescence as seen in experiments. When the enol fluoresces and returns to its ground state, a barrier-less back proton transfer repopulates the ground state of methyl salicylate ketoB. It is also demonstrated that the rotamer ketoA is not stable in an excited state close to the desired emission wavelength. This observation eliminates the conjecture that the near-UV emission of the dual fluorescence originates from the ketoA rotamer. New experimental results for pure MS in the liquid state are reported and theoretical results compared to them.

  17. The effect of sodium salicylate injection on spatial learning and memory of rat

    Directory of Open Access Journals (Sweden)

    Leila Azimi

    2011-11-01

    Full Text Available Background: Cyclooxygenase (COX enzyme known as a regulatory factor in synaptic plasticity. It has been reported that synaptic plasticity is one of the mechanisms involved in learning and memory processes. In the current study peripheral injection's effects of sodium salicylate (as a non selective COX inhibitor on spatial learning and memory have been investigated.Methods: Four groups of male rats received different doses of sodium salicylate (0, 200, 300, 400 mg/kg; i.p.. Studies were performed using Morris Water Maze (MWM. Spatial learning and memory parameters were subjected to the one- and two-way analyses of variance (ANOVAs followed by Tukey’s post hoc test.Results: Data showed that intraperitoneal injection of sodium salicylate had not significant effect on spatial learning parameters (including escape latency and traveled distance to hidden platform in training days; but administration of high dose of the drug (400 mg/kg significantly increased the percentage of time that animals spent in the target quadrant in probe trial testing. Conclusion: Peripheral injection of the COX inhibitor has no significant effect on spatial learning; but potentiates spatial memory consolidation using MWM.

  18. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    Science.gov (United States)

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  19. Influence of Secondary Interactions on the Structure, Sublimation Thermodynamics, and Solubility of Salicylate:4-Hydroxybenzamide Cocrystals. Combined Experimental and Theoretical Study.

    Science.gov (United States)

    Manin, Alex N; Voronin, Alexander P; Shishkina, Anastasia V; Vener, Mikhail V; Churakov, Andrei V; Perlovich, German L

    2015-08-20

    Cocrystal screening of 4-hydroxybenzamide with a number of salicylates (salicylic acid, SA; 4-aminosalicylic acid, PASA; acetylsalicylic acid, ASA; and salicylsalicylic acid, SSA) was conducted to confirm the formation of two cocrystals, [SA+4-OHBZA] (1:1) and [PASA+4-OHBZA] (1:1). Their structures were determined using single-crystal X-ray diffraction, and the hydrogen-bond network topology was studied. Thermodynamic characteristics of salicylic acid cocrystal sublimation were obtained experimentally. It was proved that PASA cocrystallization with 4-OHBZA makes the drug more stable and prevents the irreversible process of decarboxylation of PASA resulting in formation of toxic 3-aminophenol. The pattern of non-covalent interactions in the cocrystals is described quantitatively using solid-state density functional theory followed by Bader analysis of the periodic electron density. It has been found that the total energy of secondary interactions between synthon atoms and the side hydroxyl group of the acid molecule in [SA+4-OHBZA] (1:1) and [PASA+4-OHBZA] (1:1) cocrystals is comparable to the energy of the primary acid-amide heterosynthon. The theoretical value of the sublimation enthalpy of [SA+4-OHBZA], 231 kJ/mol, agrees fairly well with the experimental one, 272 kJ/mol. The dissolution experiments with [SA+4-OHBZA] have proved that the relatively large cocrystal stability in relation to the stability of its components has a negative effect on the dissolution rate and equilibrium solubility. The [PASA+4-OHBZA] (1:1) cocrystal showed an enhancement of apparent solubility compared to that of the corresponding pure active pharmaceutical ingredient, while their intrinsic dissolution rates are comparable.

  20. ESR study of irradiated single crystals of the cocrystalline complex of cytidine: Salicylic acid

    International Nuclear Information System (INIS)

    Close, D.M.; Sagstuen, E.

    1983-01-01

    Irradiation at 77 K of single crystals of the 1:1 complex of cytidine and salicylic acid produces a phenoxyl radical formed by oxidation of the salicylic acid. Anisotropic hyperfine coupling tensors have been determined for this radical which are associated with the para and ortho hydrogens. No cytidine oxidation products (alkoxy or hydroxyalkyl radicals) were observed at 77 K. Following the decay of the phenoxyl radical at room temperature, four radicals were detected. These include the cytosine 5--yl and 6--yl radicals, formed by H addition to the cytosine ring, and an anisotropic doublet. By UV irradiation at room temperature, it is possible to convert a significant fraction of 6-yl radicals into 5-yl radicals. Hyperfine coupling and g tensors determined for the anisotropic doublet indicate that this radical is formed in the C/sub 1'/-C/sub 2'/ region of the sugar moiety. These results indicate a shift in radiation damage away from the salicylic acid upon warming, and show that the radiation chemistry of the cocrystalline complex is different from that of the isolated bases

  1. Salicylic Acid 6% in an ammonium lactate emollient foam vehicle in the treatment of mild-to-moderate scalp psoriasis.

    Science.gov (United States)

    Kircik, Leon

    2011-03-01

    Scalp psoriasis is a common life-altering skin condition causing a great deal of distress. It significantly affects quality of life and is difficult to manage. Treatment can provide variable results, often impacting patient compliance with therapy. Salicylic acid is used as adjunctive therapy to other topical treatments because of its marked keratolytic effect. Its effectiveness as a monotherapy is not fully understood. An emollient foam formulation of 6% salicylic acid (Salkera) in an ammonium lactate vehicle has recently become available. Efficacy, tolerability and patient acceptability of salicylic acid 6% emollient foam were assessed in an open-label pilot study of 10 subjects with scalp psoriasis. All psoriasis severity parameters were reduced with a significant decrease in Psoriasis Scalp Severity Index (PSSI) score from 15.3 to 3.0 after four weeks of monotherapy (Poiliness severity and patient-reported burning tolerability. Salicylic acid 6% emollient foam provides a useful option in the treatment of psoriasis that is highly effective, well tolerated and acceptable to patients.

  2. How is emotional awareness related to emotion regulation strategies and self-reported negative affect in the general population?

    Science.gov (United States)

    Subic-Wrana, Claudia; Beutel, Manfred E; Brähler, Elmar; Stöbel-Richter, Yve; Knebel, Achim; Lane, Richard D; Wiltink, Jörg

    2014-01-01

    The Levels of Emotional Awareness Scale (LEAS) as a performance task discriminates between implicit or subconscious and explicit or conscious levels of emotional awareness. An impaired awareness of one's feeling states may influence emotion regulation strategies and self-reports of negative emotions. To determine this influence, we applied the LEAS and self-report measures for emotion regulation strategies and negative affect in a representative sample of the German general population. A short version of the LEAS, the Hospital Anxiety and Depression Scale (HADS) and the Emotion Regulation Questionnaire (ERQ), assessing reappraisal and suppression as emotion regulation strategies, were presented to N = 2524 participants of a representative German community study. The questionnaire data were analyzed with regard to the level of emotional awareness. LEAS scores were independent from depression, but related to self-reported anxiety. Although of small or medium effect size, different correlational patters between emotion regulation strategies and negative affectivity were related to implict and explict levels of emotional awareness. In participants with implicit emotional awareness, suppression was related to higher anxiety and depression, whereas in participants with explicit emotional awareness, in addition to a positive relationship of suppression and depression, we found a negative relationship of reappraisal to depression. These findings were independent of age. In women high use of suppression and little use of reappraisal were more strongly related to negative affect than in men. Our first findings suggest that conscious awareness of emotions may be a precondition for the use of reappraisal as an adaptive emotion regulation strategy. They encourage further research in the relation between subconsious and conscious emotional awareness and the prefarance of adaptive or maladaptive emotion regulation strategies The correlational trends found in a representative

  3. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Miroshnichenko N.N.

    2011-05-01

    Full Text Available The influence of treatment of millet (Panicum miliaceum L. seeds with the solutions of salicylic and succinic acids on the heat resistance of plantlets and activity of antioxidant enzymes – superoxide dismutase (SOD, catalase and peroxidase – in them have been investigated. In the micro-field experiment the influence of these acids on the millet yield was estimated. The action of salicylic (10 μM and succinic (1 mM acids caused the increase of plantlets resistance to the damaging heating that expressed in the rise of relative quantity of survived plantlets in 5 days after heating at the temperature of 47°С and in the reduced content of lipid peroxidation product malonic dialdehyde during the poststress period. The increase of activity of SOD, catalase and peroxidase took place in millet plantlets under the influence of salicylic and succinic acids. The increase of productivity of millet grain under the action of salicylic and succinic acids on 13,3-52,0 and 6,4-38,8% respectively depending on weather conditions in the field experiments was noted.

  4. Influence of salicylic acid pre-treatment on cadmium tolerance and ...

    African Journals Online (AJOL)

    Dose-dependent changes in cadmium (Cd) tolerance, non-protein thiol (NP-SH) production and their relationship were investigated in sixteen-day-old flax (Linum usitatissimum L.) seedlings derived from seeds pre-soaked with various salicylic acid (SA) doses and grown hydroponically under increased Cd concentrations ...

  5. A critical review of the literature to conduct a toxicity assessment for oral exposure to methyl salicylate.

    Science.gov (United States)

    Greene, Tracy; Rogers, Sarah; Franzen, Allison; Gentry, Robinan

    2017-02-01

    Methyl salicylate is the predominant constituent of oil of wintergreen and is used as a pesticide, a denaturant, an external analgesic, a fragrance ingredient, and a flavoring agent in products such as chewing gum, baked goods, syrups, candy, beverages, ice cream, and tobacco products; and it occurs naturally in some vegetables and berries. Methyl salicylate is of interest to the tobacco industry as oil of wintergreen is used as a flavorant in tobacco products. The purpose of this investigation was to conduct a critical review of the available literature for oral exposure to methyl salicylate, incorporating an analysis of the quality of the studies available and the current understanding of the mode of action. Following a review of all of the available literature, the most appropriate data sets for dose-response modeling were reported by Gulati et al. in which significant changes in reproductive/development endpoints were reported to occur after exposure to 500 mg/kg/d of methyl salicylate in male and female mice. Benchmark dose modeling was performed and the most sensitive endpoint, the number of litters per mating pair, was associated with a BMDL of 220 mg/kg/d. This BMDL was chosen as the point of departure and adjusted by a body weight scaling factor to derive a human equivalent dose. Based on the uncertainty factor analysis, the POD for methyl salicylate was adjusted by a UF of 3 for interspecies uncertainty to derive an allowable daily intake of 11 mg/kg/d.

  6. Complex formation of trivalent americium with salicylic acid at very low concentrations

    International Nuclear Information System (INIS)

    Melanie Mueller; Margret Acker; Steffen Taut; Gert Bernhard; Forschungszentrum Dresden-Rossendorf, Dresden

    2010-01-01

    For the first time, the complexation of americium(III) with salicylic acid was studied at trace metal concentrations using a 2.0 m Long Path Flow Cell for UV-vis spectroscopy. The detection limit of Am(III) in aqueous solution at pH 3.0 was found to be 5 x 10 -9 M. Two Am(III)-salicylate complexes were formed at pH 5.0 in 0.1 M NaClO 4 , indicated by a clear red shift of the absorption maximum. The absorption spectra obtained from spectrophotometric titration were analyzed by means of factor analysis and complex stabilities were calculated to be log β 110 = 2.56 ± 0.08 and log β 120 = 3.93 ± 0.19. (author)

  7. Impact of physical maltreatment on the regulation of negative affect and aggression.

    Science.gov (United States)

    Shackman, Jessica E; Pollak, Seth D

    2014-11-01

    Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children's allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders.

  8. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer.

    Science.gov (United States)

    Wang, Xiao-Feng; Zhang, Xiao-Wei; Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-09-27

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells.

  9. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment

    Directory of Open Access Journals (Sweden)

    Moris Topaz

    2012-01-01

    Full Text Available Regulated negative pressure-assisted wound therapy (RNPT should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound′s environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.

  10. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit.

    Science.gov (United States)

    Yang, Tianbao; Peng, Hui; Whitaker, Bruce D; Jurick, Wayne M

    2013-07-01

    Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage. © 2013 Scandinavian Plant Physiology Society.

  11. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    Science.gov (United States)

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Influence of Salicylic Acid on the Growth of Lettuce (Lactuca sativa ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-10

    Apr 10, 2018 ... Keywords: Water stress, Salicylic acid, Growth, Lactuca sativa. Water stress in plant is an ... processes in plant adaptation to drought stress as it synthesis and ... manure was added to the soil in the preparation for planting.

  13. Complexation efficiency of differently fixed 8-hydroxyquinoline and salicylic acid ligand groups for labile aluminium species determination in soils-comparison of two methods

    International Nuclear Information System (INIS)

    Matus, Peter; Kubova, Jana

    2006-01-01

    Two methods utilizing the complexation of labile Al species by 8-hydroxyquinoline (HQN) and salicylic acid (SA) ligand groups were developed for aluminium operationally defined fractionation in acid soils. First, the solid phase extraction (SPE) procedure by a short-term ion-exchange batch reaction with chelating resins Iontosorb Oxin and Iontosorb Salicyl containing both ligand groups was used previously. Second, the 8-hydroxyquinoline, salicylic acid and ammonium salicylate agents with different concentrations by a single extraction protocol were applied in this paper. The flame atomic absorption spectrometry (FAAS) and optical emission spectrometry with inductively coupled plasma were used for aluminium quantification. The comparison of results from both methods show the possibility to supersede the first laborious method for the second simpler one in Al environmental risk assessment. The use of 1% 8-hydroxyquinoline in 2% acetic acid and 0.2% salicylic acid by a single extraction protocol without a need of sample filtration can supersede the SPE procedure in the Al pollution soil monitoring. Finally, the new scheme usable in a laboratory and moreover, directly in a field was proposed for Al fractionation in solid and liquid environmental samples. The labile Al species in soils and sediments are separated after their single leaching by 8-hydroxyquinoline or salicylic acid without a need of sample filtration. The labile Al species in soil solutions and natural waters are separated after their ultrafiltration followed by the SPE procedure with Iontosorb Oxin or Iontosorb Salicyl

  14. Cryotherapy versus salicylic acid for the treatment of plantar warts (verrucae): a randomised controlled trial

    Science.gov (United States)

    Hewitt, Catherine; Hicks, Kate; Jayakody, Shalmini; Kang’ombe, Arthur Ricky; Stamuli, Eugena; Turner, Gwen; Thomas, Kim; Curran, Mike; Denby, Gary; Hashmi, Farina; McIntosh, Caroline; McLarnon, Nichola; Torgerson, David; Watt, Ian

    2011-01-01

    Objective To compare the clinical effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts. Design A multicentre, open, two arm randomised controlled trial. Setting University podiatry school clinics, NHS podiatry clinics, and primary care in England, Scotland, and Ireland. Participants 240 patients aged 12 years and over, with a plantar wart that in the opinion of the healthcare professional was suitable for treatment with both cryotherapy and salicylic acid. Interventions Cryotherapy with liquid nitrogen delivered by a healthcare professional, up to four treatments two to three weeks apart. Patient self treatment with 50% salicylic acid (Verrugon) daily up to a maximum of eight weeks. Main outcome measures Complete clearance of all plantar warts at 12 weeks. Secondary outcomes were (a) complete clearance of all plantar warts at 12 weeks controlling for age, whether the wart had been treated previously, and type of wart, (b) patient self reported clearance of plantar warts at six months, (c) time to clearance of plantar wart, (d) number of plantar warts at 12 weeks, and (e) patient satisfaction with the treatment. Results There was no evidence of a difference between the salicylic acid and cryotherapy groups in the proportions of participants with complete clearance of all plantar warts at 12 weeks (17/119 (14%) v 15/110 (14%), difference 0.65% (95% CI –8.33 to 9.63), P=0.89). The results did not change when the analysis was repeated but with adjustment for age, whether the wart had been treated previously, and type of plantar wart or for patients’ preferences at baseline. There was no evidence of a difference between the salicylic acid and cryotherapy groups in self reported clearance of plantar warts at six months (29/95 (31%) v 33/98 (34%), difference –3.15% (–16.31 to 10.02), P=0.64) or in time to clearance (hazard ratio 0.80 (95% CI 0.51 to 1.25), P=0.33). There was also no evidence of a difference in the number of plantar

  15. Methyl Salicylate Level Increase in Flax after Fusarium oxysporum Infection Is Associated with Phenylpropanoid Pathway Activation

    OpenAIRE

    Boba, Aleksandra; Kostyn, Kamil; Kostyn, Anna; Wojtasik, Wioleta; Dziadas, Mariusz; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2017-01-01

    Flax (Linum usitatissimum) is a crop plant valued for its oil and fiber. Unfortunately, large losses in cultivation of this plant are caused by fungal infections, with Fusarium oxysporum being one of its most dangerous pathogens. Among the plant's defense strategies, changes in the expression of genes of the shikimate/phenylpropanoid/benzoate pathway and thus in phenolic contents occur. Among the benzoates, salicylic acid, and its methylated form methyl salicylate play an important role in re...

  16. Hypocalcemic action of the several types of salicylic acid analogues.

    Science.gov (United States)

    Kato, Y; Nishishita, K; Sakai, H; Tatsumi, M; Yamamoto, K

    1989-02-01

    The present study was performed to see the structure-activity relationships on the aspirin-induced hypocalcemia. Several kinds of salicylic acid (SA) analogues administered orally with a stomach tube. In general, the drugs were suspended in the 2% CMC solution. At the scheduled times after the treatment, 60 microliters of the blood was collected to determine the level of calcium. Aspirin, sodium salt of o-hydroxybenzoic acid (Na-salicylate), sodium salt of m- and p-hydroxybenzoic acid (HBA), 2,5-dihydroxybenzoic acid (DHBA), PAS sodium dihydrate (PAS-Na), salicylamide (SAM) and 2% CMC control were used. Hypocalcemia was induced by aspirin and Na-salicylate but not by m- and p-HBA-Na. In addition, DHBA and PAS caused hypocalcemia when they were administered intravenously but not orally. These results suggest that the carboxyl group must be adjacent to the hydroxyl group on the benzene ring to induce this type of hypocalcemia and that the SA structure would be able to induce hypocalcemia, even in the presence of the additional third substituent on the same ring. On the comparison between aspirin-DL lysine (water soluble aspirin) and SA-DL lysine, SA-DL lysine, which is not an inhibitor of PG synthetase, was more effective on the hypocalcemic action than ASP-DL lysine. The phenomenon was observed at the stage especially immediately after intravenous injection, when the acetyl group may be more responsible to acetylate the PG synthetase in the aspirin-DL lysine group. The present results seems to be consistent with the previous hypothesis that PGs are not involved in the process of aspirin-induced hypocalcemia in the rat.

  17. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fengtao eWang

    2015-02-01

    Full Text Available Plant-specific NAC transcription factors constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a transcription factor localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid, methyl jasmonate and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.

  18. Fermentation products of solvent tolerant marine bacterium Moraxella spp. MB1 and its biotechnological applications in salicylic acid bioconversion.

    Directory of Open Access Journals (Sweden)

    Solimabi Wahidullah

    Full Text Available As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl with salicylic acid (3-8 were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9-12, metabolites produced by the bacterium include antimicrobial indole (13 and β-carbolines, norharman (14, harman (15 and methyl derivative (16, which are beneficial to the host and the environment.

  19. Use of the water-soluble fluor sodium salicylate for fluorographic detection of tritium in thin-layer chromatograms and nitrocellulose blots

    International Nuclear Information System (INIS)

    Lucher, L.A.; Lego, T.

    1989-01-01

    We have determined that sodium salicylate, a water-soluble fluor which we use routinely for fluorography with polyacrylamide gels, is also useful for fluorography with thin-layer media. Detection of 3 H-labeled material applied to thin-layer chromatography plates, or nitrocellulose membranes, can be enhanced up to 150-fold after treatment with an aqueous solution of 2 M sodium salicylate, while detection of 35 S-labeled material is enhanced only about 2-fold. We demonstrate the utility of sodium salicylate fluorography in detecting 3H-labeled palmitic acid following thin-layer chromatography and 3 H-labeled proteins following blotting to nitrocellulose

  20. Synthesis and characterization of mixed ligand Cu(II) complexes of salicylic acid derivatives with 2-aminobenzotiyazol derivatives

    OpenAIRE

    İlkimen, Halil; Yenikaya, Cengiz

    2018-01-01

    In thisstudy, mixed ligand transitionmetal complexes of Cu(II)have been prepared between salicylic acid derivatives [salicylic acid (H2sal) or acetylsalicylic acid (Hasal)] and 2-aminobenzothiazole derivatives[2-aminobenzothiazole (abt) or 2-amino-6-chlorobenzothiazole (Clabt) or2-amino-6-methylbenzothiazole (Meabt)]. The structures of amorphous metalcomplexes have been proposed by evaluating the data obtained from elementalanalysis, ICP-OES, FT-IR, UV-Vis, thermal analysis, magnetic suscepti...

  1. Expression of tumor necrosis factor-α and interleukin-1β genes in the cochlea and inferior colliculus in salicylate-induced tinnitus.

    Science.gov (United States)

    Hwang, Juen-Haur; Chen, Jin-Cherng; Yang, Shan-Ying; Wang, Ming-Fu; Chan, Yin-Ching

    2011-04-09

    Changes in the gene expressions for tumor necrosis factor-α (TNF-α) and/or interleukin-1β (IL-1β) during tinnitus have not been previously reported. We evaluated tinnitus and mRNA expression levels of TNF-α, IL-1β, and N-methyl D-aspartate receptor subunit 2B (NR2B) genes in cochlea and inferior colliculus (IC) of mice after intraperitoneal injections of salicylate. Forty-eight 3-month-old male SAMP8 mice were randomly and equally divided into two groups: salicylate-treated and saline-treated. All mice were trained to perform an active avoidance task for 5 days. Once conditioned, an active avoidance task was performed 2 hours after daily intraperitoneal injections of saline, either alone or containing 300 mg/kg sodium salicylate. Total numbers of times (tinnitus score) the mice climbed during the inter-trial silent period for 10 trials were recorded daily for 4 days (days 7 to 10), and then mice were euthanized for determination of mRNA expression levels of TNF-α, IL-1β, and NR2B genes in cochlea and IC at day 10. Tinnitus scores increased in response to daily salicylate treatments. The mRNA expression levels of TNF-α increased significantly for the salicylate-treated group compared to the control group in both cochlea (1.89 ± 0.22 vs. 0.87 ± 0.07, P salicylate group compared to the control group in both cochlea (3.50 ± 1.05 vs. 2.80 ± 0.28, p salicylate treatment resulting in tinnitus augments expression of the TNF-α and IL-1β genes in cochlea and IC of mice, and we suggest that these proinflammatory cytokines might lead to tinnitus directly or via modulating the NMDA receptor.

  2. Aquaporin-6 Expression in the Cochlear Sensory Epithelium Is Downregulated by Salicylates

    Directory of Open Access Journals (Sweden)

    Paola Perin

    2010-01-01

    Full Text Available We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.

  3. Aquaporin-6 expression in the cochlear sensory epithelium is downregulated by salicylates.

    Science.gov (United States)

    Perin, Paola; Tritto, Simona; Botta, Laura; Fontana, Jacopo Maria; Gastaldi, Giulia; Masetto, Sergio; Tosco, Marisa; Laforenza, Umberto

    2010-01-01

    We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.

  4. The effects of Co60 gamma rays on the absorption of salicylic natrium orally given to white rats

    International Nuclear Information System (INIS)

    Wiharto, Kunto; Kamal, Zainul; Mulyanto; Muryono, H.

    1982-01-01

    The effects of Co 60 gamma rays on the absorption of salicylic natrium orally taken by white rats after being irradiated were studied. Patients treated with radiation used to be given analgesic drugs to elicit pain. Effects of radiation on the physiology of gastrointestinal tracts of such patients are to be studied. Based on this perception some white rats were irradiated with Co 60 gamma rays at the cumulative doses of 500, 750, and 1000 rads which were fractionated to 5 daily doses of 100, 150, and 200 rads. Salicylate concentration in the rat's blood was measured with spectrophotometer. It was found that the greater the radiation dose was given, the less salicylic natrium was absorbed and at a certain dose saturation point happened. (RUW)

  5. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    International Nuclear Information System (INIS)

    Ruffell, Brian; Johnson, Pauline

    2005-01-01

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding

  6. 21 CFR 201.314 - Labeling of drug preparations containing salicylates.

    Science.gov (United States)

    2010-04-01

    ... distributor, be labeled for use by adults only. If their labeling and advertising clearly offer them for... clearly offered for administration to adults only. (f) If the labeling or advertising of a salicylate... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Labeling of drug preparations containing...

  7. Influence of Salicylic Acid on the Antimicrobial Potential of Stevia ...

    African Journals Online (AJOL)

    Results: Chloroform extracts had the highest amount of α-cadinol, spathulenol, caryophyllene oxide, methyl salicylate and safranal in the SA-treated plants, and were 8, 10, 18, 14 and 11 %, respectively, higher than the non-SA treated control. In the anti-microbial tests, chloroform extract exhibited the highest diameter of ...

  8. Self-regulation as a mediator between sibling relationship quality and early adolescents' positive and negative outcomes.

    Science.gov (United States)

    Padilla-Walker, Laura M; Harper, James M; Jensen, Alexander C

    2010-08-01

    The current study examined the role of adolescents' self-regulation as a mediator between sibling relationship quality and adolescent outcomes, after controlling for the quality of the parent-child relationship. Participants were 395 families (282 two parent; 113 single parent) with an adolescent child (M age of child at Time 1 = 11.15, SD = .96, 49% female) who took part in [project name masked for blind review] at both Time 1 and Time 2. Path analysis via structural equation modeling suggested that sibling affection was longitudinally and positively related to self-regulation and prosocial behaviors, and negatively related to externalizing behaviors; while sibling hostility was positively, and having a sister was negatively related to internalizing behaviors (in general, paths were stronger for adolescents from two- vs. single-parent families). There was also evidence that adolescents' self-regulation partially mediated the relation between sibling affection and positive and negative adolescent outcomes. The discussion focuses on the importance of continued research examining the mechanisms through which the sibling relationship influences development during adolescence.

  9. [Poisonings with paracetamol, salicylates and dextromethorphan – problem evaluation based on data from Toxicological Laboratory and Poison Information Center in Krakow in 2010-2015].

    Science.gov (United States)

    Gomółka, Ewa; Hydzik, Piotr; Szkolnicka, Beata

    The aim of the paper was to study frequency of laboratory determinations and toxicological information related to over-the-counter drugs (OTC): paracetamol (acetaminophen), salicylates and dextromethorphan. The research was based on data from Toxicological Laboratory and Poison Information Center UJ CM in Krakow in years 2010-2015. Paracetamol was determined averagely 102 times a year, more than 50% (57 cases) were positive with confirmation of poisoning. The least number of paracetamol poisoning was noted in 2011 (35 cases), the most were in 2015 (98 cases). In the time span there were averagely 40 salicylates check measurements a year, less than 50% (15 cases) were positive. Dextromethorphane was confirmed averagely in 31 patients a year, decrease of the drug intoxications was noted in 2013-2015. Paracetamol and dextromethorphan were the most often the cause of poisoning in group of patients 13-18 years old, salicylates – more than 30 years. In the group of small children there were only a few poisonings with paracetamol. Toxicological information data related to paracetamol, salicylates and dextromethorphan were similar to data from toxicological laboratory. Mean year numbers of drug poisoning information were: 90 (paracetamol), 14 (salicylates), 30 (dextromethorphan). The differences were in patients age distribution. Acute poisonings with OTC were related mainly to paracetamol, young patients (13- 18 years) and young adults (19-29 years). Salicylates poisoning information were related mainly to the group of adult patients (> 30 years), dextromethorphan was abused mainly by oung patients (13-18 years). There were no observed poisonings with salicylates and dextromethorphan in children, but there were toxicological information about paracetamol and salicylates poisoning and overdose in group of children (1-6 years).

  10. Salicylic acid inhibits UV- and Cis-Pt-induced human immunodeficiency virus expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Panozzo, J.; Libertin, C.R.; Schreck, S.; South Carolina Univ., Columbia, SC

    1994-01-01

    Previous studies have shown that exposure of HeLa cells stably transfected with a human immunodeficiency virus-long terminal repeat-chloramphenicol acetyl transferase (HIV-LTR-CAT) construct to UV light-induced expression from the HIV LTR. By culturing the cells with salicylic acid we demonstrated dose-dependent repression of this induced HIV expression. Repression was evident if salicylic acid was administered 2 h before, at the same time as, or up to 6 h after exposure to the DNA-damaging agent. The kinetics were similar for UV- and for cis-Pt-induced HIV expression, and induction was dependent on the UV dose or cis-Pt concentration added to the culture. These results suggest a role for the prostaglandins or the cyclooxygenase pathway or both in HIV induction mediated by DNA-damaging agents

  11. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  12. Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process.

    Science.gov (United States)

    Arrojo, S; Nerín, C; Benito, Y

    2007-03-01

    The generation of OH* radicals inside hydrodynamic cavitation bubbles was monitored using a salicylic acid dosimeter. The reaction of this scavenger with OH* produces 2,5-dihydroxybenzoic acid (2,5-DHB) and, to a lesser degree, 2,3-DHB. The former, is a specific reaction product that can be determined with a very high sensitivity using HPLC-IF. This method has been applied to study the influence of the flow-rate and the solution pH for a given cavitation chamber geometry. The salicylic dosimetry has proven especially suitable for the characteristic time scales of hydrodynamic cavitation (higher than those of ultrasonic cavitation), which usually gives rise to recombination of radicals before they can reach the liquid-phase. Working at low pH the hydrophobic salicylic acid migrates to the gas-liquid interface and reacts with the OH* radicals, increasing the trapping efficiency of the dosimeter. Hydrodynamic cavitation works as a very low frequency sonochemical reactor, and therefore its potential as an Advanced Oxidation Process might be limited to reactions at the gas-liquid interface and inner bubble (i.e. with volatiles and/or hydrophobic substances).

  13. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...likereceptor signal transduction. O'Neill LA. Immunity. 2008 Jul 18;29(1):12-20. (.png) (.svg) (.html) (.csm

  14. Hydrothermal synthesis spherical TiO{sub 2} and its photo-degradation property on salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Wenlu, E-mail: liu287856624@163.com [School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003 (China); Liu Xiaolin [School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003 (China); Huo Pengwei; Gao Xun; Wu Di; Lu Ziyang; Yan Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-07-01

    Anatase TiO{sub 2} spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO{sub 2} consisted of well-defined spheres with size of 3-5 {mu}m. The photocatalytic activity of spherical TiO{sub 2} was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO{sub 2} which was processed at 150 Degree-Sign C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S{sup -1} of the salicylic acid onto TiO{sub 2} (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg{sup -1} of the salicylic acid onto TiO{sub 2} (temperature: 150, time: 48 h).

  15. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    Directory of Open Access Journals (Sweden)

    Xiaobin Shi

    2016-06-01

    Full Text Available The whitefly Bemisia tabaci (Gennadius (Hemiptera: Aleyrodidae causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV. The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles.

  16. Changes in actin dynamics are involved in salicylic acid signaling pathway

    Czech Academy of Sciences Publication Activity Database

    Matoušková, J.; Janda, M.; Fišer, R.; Šašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, J.; Martinec, Jan; Valentová, O.

    2014-01-01

    Roč. 223, JUN 2014 (2014), s. 36-44 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Actin dynamics * Salicylic acid * PR genes Subject RIV: CE - Biochemistry Impact factor: 3.607, year: 2014

  17. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway.

    Science.gov (United States)

    Liu, Yunxia; Dong, Weibing; Shao, Jing; Wang, Yibin; Zhou, Meiyi; Sun, Haipeng

    2017-01-01

    Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.

  18. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway

    Directory of Open Access Journals (Sweden)

    Yunxia Liu

    2017-10-01

    Full Text Available Recent studies have linked branched-chain amino acid (BCAA with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15 is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.

  19. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu

    2014-09-15

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  20. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    International Nuclear Information System (INIS)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-01-01

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress

  1. Does foliar application of salicylic acid protects nitrate reductase and ...

    African Journals Online (AJOL)

    The present study was conducted to assess whether exogenous applied salicylic acid (SA) as a foliar spray could ameliorate the adverse effects of virus infection in two maize cultivars (maize cv. sabaini and maize cv. Nab El-gamal). The plants were grown under normal field conditions for two weeks in sand clay soil, and ...

  2. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine.

    Science.gov (United States)

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S

    2011-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases. However, it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, commensal bacteria-dependent colitis model in IL-10-deficient mice, we investigated the role of TLR and their negative regulation in intestinal homeostasis. In addition to IL-10(-/-) MyD88(-/-) mice, IL-10(-/-) TLR4(-/-) mice exhibited reduced colitis compared to IL-10(-/-) mice, indicating that TLR4 signaling plays an important role in inducing colitis. Interestingly, the expression of IRAK-M, a negative regulator of TLR signaling, is dependent on intestinal commensal flora, as IRAK-M expression was reduced in mice re-derived into a germ-free environment, and introduction of commensal bacteria into germ-free mice induced IRAK-M expression. IL-10(-/-) IRAK-M(-/-) mice exhibited exacerbated colitis with increased inflammatory cytokine gene expression. Therefore, this study indicates that intestinal microflora stimulate the colitogenic immune system through TLR and negative regulation of TLR signaling is essential in maintaining intestinal homeostasis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. WRKY transcription factors involved in salicylic acid-induced defense gene expression

    NARCIS (Netherlands)

    Verk, Marcel Cristiaan van

    2010-01-01

    The salicylic acid (SA) signaling pathway triggered by attack of biotrophic pathogens leads to broad spectrum resistance against a plethora of pathogenic fungi, bacteria and viruses and is known as systemic acquired resistance (SAR). One of the hallmarks of SAR is the accumulation of PR proteins and

  4. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens

    DEFF Research Database (Denmark)

    Mur, Luis A J; Sivakumaran, Anushen; Mandon, Julien

    2012-01-01

    Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both...

  5. Evidence for the negative impact of reward on self-regulated learning.

    Science.gov (United States)

    Wehe, Hillary S; Rhodes, Matthew G; Seger, Carol A

    2015-01-01

    The undermining effect refers to the detrimental impact rewards can have on intrinsic motivation to engage in a behaviour. The current study tested the hypothesis that participants' self-regulated learning behaviours are susceptible to the undermining effect. Participants were assigned to learn a set of Swahili-English word pairs. Half of the participants were offered a reward for performance, and half were not offered a reward. After the initial study phase, participants were permitted to continue studying the words during a free period. The results were consistent with an undermining effect: Participants who were not offered a reward spent more time studying the words during the free period. The results suggest that rewards may negatively impact self-regulated learning behaviours and provide support for the encouragement of intrinsic motivation.

  6. Effect of Salt and Drought Stresses and Pretreatment of Salicylic acid on Seed Germination Characteristics of Lavender (Lavandula stricta Del.

    Directory of Open Access Journals (Sweden)

    Hadi Sanginabadi

    2017-02-01

    structure. SA is involved in endogenous signaling, mediating in plant defense against pathogens. The signal can also move to nearby plants by salicylic acid being converted to the volatile ester, methyl salicylate. Salicylic acid has an important role in resistance to environmental stresses. In the current study, the effects of pretreatment of salicylic acid to eliminate salinity and drought stresses were evaluated on Lavender seed germination (Lavandula stricta Del.. Materials and Methods: Seed samples of raised lavender were collected from Geno (Bandar Abbas on May 2013. Two experiments were conducted based on completely randomized design with three levels of Salicylic acid (0, 0.1 and 0.5 mM and four levels (0, -2, -4 and -6 bar of drought and salinity stresses with three replications in Horticultural Sciences department, Plant production faculty of Gorgan University of Agricultural Sciences and Natural Resources (GUASNR. Plumule and radicle length, germination percentage and seed vigor were evaluated. Results Discussion: Results indicated that plumule and radicle length, germination percentage and seed vigor were significantly decreased by increasing drought and salinity stresses. The absence of pretreatment with salicylic acid were lead to increase negative effects of salinity in comparison with non-pretreated in the studied trait. However salinity stress levels -2 and -6 bar and pretreatments increased all traits significantly. Overall, the results showed that among total characteristics, plumule length is more sensitive in to drought and salinity stresses. As a result, the best range of moisture for lavender seeds germination is from non-stress conditions to -2 bars. It seems that seed germination on lavender has more tolerance to drought stress conditions than salinity stress conditions. Since the climate change will result in ecological degradation and further threaten the fragility of dry and saline lands, with serious consequences for crop and livestock

  7. Effect of Salt and Drought Stresses and Pretreatment of Salicylic acid on Seed Germination Characteristics of Lavender (Lavandula stricta Del.

    Directory of Open Access Journals (Sweden)

    Hadi Sanginabadi

    2017-09-01

    structure. SA is involved in endogenous signaling, mediating in plant defense against pathogens. The signal can also move to nearby plants by salicylic acid being converted to the volatile ester, methyl salicylate. Salicylic acid has an important role in resistance to environmental stresses. In the current study, the effects of pretreatment of salicylic acid to eliminate salinity and drought stresses were evaluated on Lavender seed germination (Lavandula stricta Del.. Materials and Methods: Seed samples of raised lavender were collected from Geno (Bandar Abbas on May 2013. Two experiments were conducted based on completely randomized design with three levels of Salicylic acid (0, 0.1 and 0.5 mM and four levels (0, -2, -4 and -6 bar of drought and salinity stresses with three replications in Horticultural Sciences department, Plant production faculty of Gorgan University of Agricultural Sciences and Natural Resources (GUASNR. Plumule and radicle length, germination percentage and seed vigor were evaluated. Results Discussion: Results indicated that plumule and radicle length, germination percentage and seed vigor were significantly decreased by increasing drought and salinity stresses. The absence of pretreatment with salicylic acid were lead to increase negative effects of salinity in comparison with non-pretreated in the studied trait. However salinity stress levels -2 and -6 bar and pretreatments increased all traits significantly. Overall, the results showed that among total characteristics, plumule length is more sensitive in to drought and salinity stresses. As a result, the best range of moisture for lavender seeds germination is from non-stress conditions to -2 bars. It seems that seed germination on lavender has more tolerance to drought stress conditions than salinity stress conditions. Since the climate change will result in ecological degradation and further threaten the fragility of dry and saline lands, with serious consequences for crop and livestock

  8. Salinity and Salicylic Acid Interactions in Affecting Nitrogen Assimilation, Enzyme Activity, Ions Content and Translocation Rate of Maize Plants

    International Nuclear Information System (INIS)

    Khodary, S.E.A.; Moussa, H.R.

    2002-01-01

    This study was carried out to establish the relationship between nitrogen metabolism, enzyme activity, ions concentration as well as the translocation rate (TR) of carbohydrates and salicylic acid (SA) in salt-stressed maize (Zea mays L). Salicylic acid plus salinity treatment highly significantly increased: nucleic acids (DNA and RNA), protein content, phosphoenolpyruvate carboxylase (PEPCase) and nitrate reductase (NR) and inhibited nucleases (DNase and RNase) activities compared with Na CI-treated plants. In addition, the ionic levels of potassium (K), phosphorus (P), nitrate (NO 3 ) and the translocation rate of the labelled photo assimilates have also been stimulated while sodium (Na) ions content was decreased. It is concluded that, salinazid maize plants might show an enhancement in their growth pattern upon salicylic acid application

  9. The MAP kinase substrate MKS1 is a regulator of plant defense responses

    DEFF Research Database (Denmark)

    Andreasson, E.; Jenkins, T.; Brodersen, P.

    2005-01-01

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used...

  10. HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation

    Science.gov (United States)

    McQuown, Susan C.; Barrett, Ruth M.; Matheos, Dina P.; Post, Rebecca J.; Rogge, George A.; Alenghat, Theresa; Mullican, Shannon E.; Jones, Steven; Rusche, James R.; Lazar, Mitchell A.; Wood, Marcelo A.

    2011-01-01

    Gene expression is dynamically regulated by chromatin modifications on histone tails, such as acetylation. In general, histone acetylation promotes transcription, whereas histone deacetylation negatively regulates transcription. The interplay between histone acetyl-transerases and histone deacetylases (HDACs) is pivotal for the regulation of gene expression required for long-term memory processes. Currently, very little is known about the role of individual HDACs in learning and memory. We examined the role of HDAC3 in long-term memory using a combined genetic and pharmacologic approach. We used HDAC3–FLOX genetically modified mice in combination with adeno-associated virus-expressing Cre recombinase to generate focal homozygous deletions of Hdac3 in area CA1 of the dorsal hippocampus. To complement this approach, we also used a selective inhibitor of HDAC3, RGFP136 [N-(6-(2-amino-4-fluorophenylamino)-6-oxohexyl)-4-methylbenzamide]. Immunohistochemistry showed that focal deletion or intrahippocampal delivery of RGFP136 resulted in increased histone acetylation. Both the focal deletion of HDAC3 as well as HDAC3 inhibition via RGFP136 significantly enhanced long-term memory in a persistent manner. Next we examined expression of genes implicated in long-term memory from dorsal hippocampal punches using quantitative reverse transcription-PCR. Expression of nuclear receptor subfamily 4 group A, member 2 (Nr4a2) and c-fos was significantly increased in the hippocampus of HDAC3–FLOX mice compared with wild-type controls. Memory enhancements observed in HDAC3–FLOX mice were abolished by intrahippocampal delivery of Nr4a2 small interfering RNA, suggesting a mechanism by which HDAC3 negatively regulates memory formation. Together, these findings demonstrate a critical role for HDAC3 in the molecular mechanisms underlying long-term memory formation. PMID:21228185

  11. The role of abscisic acid in plant–pathogen interactions

    OpenAIRE

    Mauch-Mani, Brigitte; Mauch, Felix

    2006-01-01

    The effect of the abiotic stress hormone abscisic acid on plant disease resistance is a neglected field of research. With few exceptions, abscisic acid has been considered a negative regulator of disease resistance. This negative effect appears to be due to the interference of abscisic acid with biotic stress signaling that is regulated by salicylic acid, jasmonic acid and ethylene, and to an additional effect of ABA on shared components of stress signaling. However, recent research shows tha...

  12. Retrobiosynthetic study of salicylic acid in Catharanthus roseus cell suspension cultures

    NARCIS (Netherlands)

    Mustafa, Natali Rianika

    2007-01-01

    Salicylic acid (SA) is an important signal compound in systemic acquired resistance in plants. The level of this C6C1 compound in plants increases after a pathogenic attack. There are two biosynthetic pathways of SA, the phenylalanine pathway, which is thought to occur in plants, and the

  13. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    Science.gov (United States)

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

  14. Synthesis, Characterization, and Anti-Inflammatory Activities of Methyl Salicylate Derivatives Bearing Piperazine Moiety.

    Science.gov (United States)

    Li, Jingfen; Yin, Yong; Wang, Lisheng; Liang, Pengyun; Li, Menghua; Liu, Xu; Wu, Lichuan; Yang, Hua

    2016-11-23

    In this study, a new series of 16 methyl salicylate derivatives bearing a piperazine moiety were synthesized and characterized. The in vivo anti-inflammatory activities of target compounds were investigated against xylol-induced ear edema and carrageenan-induced paw edema in mice. The results showed that all synthesized compounds exhibited potent anti-inflammatory activities. Especially, the anti-inflammatory activities of compounds M15 and M16 were higher than that of aspirin and even equal to that of indomethacin at the same dose. In addition, the in vitro cytotoxicity activities and anti-inflammatory activities of four target compounds were performed in RAW264.7 macrophages, and compound M16 was found to significantly inhibit the release of lipopolysaccharide (LPS)-induced interleukin (IL)-6 and tumor necrosis factor (TNF)-α in a dose-dependent manner. In addition, compound M16 was found to attenuate LPS induced cyclooxygenase (COX)-2 up-regulation. The current preliminary study may provide information for the development of new and safe anti-inflammatory agents.

  15. QM/MM Free Energy Simulations of Salicylic Acid Methyltransferase: Effects of Stabilization of TS-like Structures on Substrate Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianzhuang [University of Tennessee, Knoxville (UTK); Xu, Qin [University of Tennessee, Knoxville (UTK); Chen, Feng [University of Tennessee, Knoxville (UTK); Guo, Hong [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Salicylic acid methyltransferases (SAMTs) synthesize methyl salicylate (MeSA) using salicylate as the substrate. MeSA synthesized in plants may function as an airborne signal to activate the expression of defense-related genes and could also be a critical mobile signaling molecule that travels from the site of plant infection to establish systemic immunity in the induction of disease resistance. Here the results of QM/MM free energy simulations for the methyl transfer process in Clarkia breweri SAMT (CbSAMT) are reported to determine the origin of the substrate specificity of SAMTs. The free energy barrier for the methyl transfer from S-adenosyl-l-methionine (AdoMet) to 4-hydroxybenzoate in CbSAMT is found to be about 5 kcal/mol higher than that from AdoMet to salicylate, consistent with the experimental observations. It is suggested that the relatively high efficiency for the methylation of salicylate compared to 4-hydroxybenzoate is due, at least in part, to the reason that a part of the stabilization of the transition state (TS) configuration is already reflected in the reactant complex, presumably, through the binding. The results seem to indicate that the creation of the substrate complex (e.g., through mutagenesis and substrate modifications) with its structure closely resembling TS might be fruitful for improving the catalytic efficiency for some enzymes. The results show that the computer simulations may provide important insights into the origin of the substrate specificity for the SABATH family and could be used to help experimental efforts in generating engineered enzymes with altered substrate specificity.

  16. Quantification and spatial distribution of salicylic acid in film tablets using FT-Raman mapping with multivariate curve resolution

    OpenAIRE

    Haslet Eksi-Kocak; Sibel Ilbasmis Tamer; Sebnem Yilmaz; Merve Eryilmaz; Ismail Hakkı Boyaci; Ugur Tamer

    2018-01-01

    In this study, we proposed a rapid and sensitive method for quantification and spatial distribution of salicylic acid in film tablets using FT-Raman spectroscopy with multivariate curve resolution (MCR). For this purpose, the constituents of film tablets were identified by using FT-Raman spectroscopy, and then eight different concentrations of salicylic acid tablets were visualized by Raman mapping. MCR was applied to mapping data to expose the active pharmaceutical ingredients in the presenc...

  17. Dataset on exogenous application of salicylic acid and methyljasmonate and the accumulation of caffeine in young leaf tissues and catabolically inactive endosperms

    Directory of Open Access Journals (Sweden)

    Avinash Kumar

    2017-08-01

    Full Text Available Exogenous exposure of coffee plants to 50 μM and 500 μM salicylic acid through liquid hydroponic medium or the exposure to volatile fumes of methyljasmonate was carried out to study the role of salicylic acid and methyljasmonate on the accumulation of caffeine and other methylxanthines like 7-methylxanthine, theobromine and theophylline. Transcript levels of the first, second and third N-methyltransferase involved in the core caffeine biosynthetic pathway namely, xanthosine methyltransferase (XMT, methylxanthine methyltransferase (MXMT and di-methylxanthine methyltransferase (DXMT was investigated by semi-quantitative RT-PCR for validating the reason behind the changes of caffeine biosynthetic potential under the influence of the two analogues of plant phytohormones. Maturing coffee fruits are known to be biologically inactive with respect to caffeine biosynthetic activity in the endosperms. To understand this, fruits were treated with different doses of salicylic acid in a time-course manner and the de-repression of tissue maturation-mediated knockdown of caffeine biosynthesis by exogenously applied salicylic acid was achieved. In our companion paper [1] it was shown that the repression of NMT genes during the dry weight accumulation phase of maturing endosperm could be relaxed by the exogenous application of salicylic acid and methyljasmonate. A probable model based on the work carried out therein and based on other literature [2–4] was proposed to describe that the crosstalk between salicylic acid or methyljasmonate and the ABA/ethylene pathway and might involve transcription factors downstream to the signaling cascade.

  18. Mindfulness in schizophrenia: Associations with self-reported motivation, emotion regulation, dysfunctional attitudes, and negative symptoms.

    Science.gov (United States)

    Tabak, Naomi T; Horan, William P; Green, Michael F

    2015-10-01

    Mindfulness-based interventions are gaining empirical support as alternative or adjunctive treatments for a variety of mental health conditions, including anxiety, depression, and substance use disorders. Emerging evidence now suggests that mindfulness-based treatments may also improve clinical features of schizophrenia, including negative symptoms. However, no research has examined the construct of mindfulness and its correlates in schizophrenia. In this study, we examined self-reported mindfulness in patients (n=35) and controls (n=25) using the Five-Facet Mindfulness Questionnaire. We examined correlations among mindfulness, negative symptoms, and psychological constructs associated with negative symptoms and adaptive functioning, including motivation, emotion regulation, and dysfunctional attitudes. As hypothesized, patients endorsed lower levels of mindfulness than controls. In patients, mindfulness was unrelated to negative symptoms, but it was associated with more adaptive emotion regulation (greater reappraisal) and beliefs (lower dysfunctional attitudes). Some facets of mindfulness were also associated with self-reported motivation (behavioral activation and inhibition). These patterns of correlations were similar in patients and controls. Findings from this initial study suggest that schizophrenia patients may benefit from mindfulness-based interventions because they (a) have lower self-reported mindfulness than controls and (b) demonstrate strong relationships between mindfulness and psychological constructs related to adaptive functioning. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds. © The

  20. The polyadenylation factor subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A key factor of programmed cell death and a regulator of immunity in arabidopsis

    KAUST Repository

    Bruggeman, Quentin; Garmier, Marie; De Bont, Linda; Soubigou-Taconnat, Ludivine; Mazubert, Christelle; Benhamed, Moussa; Raynaud, Cé cile; Bergounioux, Catherine; Delarue, Marianne

    2014-01-01

    striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD, revealing roles for myoinositol or inositol derivatives in the regulation of PCD. Here, we identified a regulator of plant PCD

  1. Synthesis and biological evaluation of new salicylate macrolactones from anacardic acids

    International Nuclear Information System (INIS)

    Logrado, Lucio P.L.; Santos, Maria Lucilia dos; Silveira, Damaris; Romeiro, Luiz A.S.; Moraes, Manoel O. de; Cavalcanti, Bruno C.; Costa-Lotufo, Leticia V.; Pessoa, Claudia do O

    2005-01-01

    In connection with our ongoing investigation in the search for new bioactive compounds using non-isoprenoid phenolic lipids from Anacardium occidentale as starting material, we describe the synthesis and cytotoxicity screening of some novel salicylate macrolactones prepared from anacardic acids, the major constituents of natural cashew nut-shell liquid (CNSL). (author)

  2. Altered intensity coding in the salicylate-overdose animal model of tinnitus

    Czech Academy of Sciences Publication Activity Database

    Wan, I.; Pokora, O.; Chiu, T.; Lánský, Petr; Poon, P. W.

    2015-01-01

    Roč. 136, Oct 2015 (2015), s. 113-119 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : auditory evoked potential * electrocorticogram * Fisher information * salicylate-overdose * tinnitus * rat Subject RIV: BD - Theory of Information Impact factor: 1.495, year: 2015

  3. Plexin-B2 negatively regulates macrophage motility, Rac, and Cdc42 activation.

    Directory of Open Access Journals (Sweden)

    Kelly E Roney

    Full Text Available Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/- macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/- macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.

  4. Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot-Marie-Tooth 1B Mouse Model.

    Science.gov (United States)

    Florio, Francesca; Ferri, Cinzia; Scapin, Cristina; Feltri, M Laura; Wrabetz, Lawrence; D'Antonio, Maurizio

    2018-05-02

    Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein. SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo , but that their sustained

  5. Arabidopsis phosphoinositide-specific phospholipase C 4 negatively regulates seedling salt tolerance.

    Science.gov (United States)

    Xia, Keke; Wang, Bo; Zhang, Jiewei; Li, Yuan; Yang, Hailian; Ren, Dongtao

    2017-08-01

    Previous physiological and pharmacological studies have suggested that the activity of phosphoinositide-specific phospholipase C (PI-PLC) plays an important role in regulating plant salt stress responses by altering the intracellular Ca 2+ concentration. However, the individual members of plant PLCs involved in this process need to be identified. Here, the function of AtPLC4 in the salt stress response of Arabidopsis seedlings was analysed. plc4 mutant seedlings showed hyposensitivity to salt stress compared with Col-0 wild-type seedlings, and the salt hyposensitive phenotype could be complemented by the expression of native promoter-controlled AtPLC4. Transgenic seedlings with AtPLC4 overexpression (AtPLC4 OE) exhibited a salt-hypersensitive phenotype, while transgenic seedlings with its inactive mutant expression (AtPLC4m OE) did not exhibit this phenotype. Using aequorin as a Ca 2+ indicator in plc4 mutant and AtPLC4 OE seedlings, AtPLC4 was shown to positively regulate the salt-induced Ca 2+ increase. The salt-hypersensitive phenotype of AtPLC4 OE seedlings was partially rescued by EGTA. An analysis of salt-responsive genes revealed that the transcription of RD29B, MYB15 and ZAT10 was inversely regulated in plc4 mutant and AtPLC4 OE seedlings. Our findings suggest that AtPLC4 negatively regulates the salt tolerance of Arabidopsis seedlings, and Ca 2+ may be involved in regulating this process. © 2017 John Wiley & Sons Ltd.

  6. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    Science.gov (United States)

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  7. In vitro evaluation of chitosan coated- and uncoated-calcium alginate beads containing methyl salicylate-lactose physical mixture.

    Science.gov (United States)

    Tamilvanan, S; Karmegam, S

    2012-01-01

    Methyl salicylate-lactose physical mixture (1:1 and 1:1.5 ratios) was incorporated into calcium alginate beads by a coacervation method involving an ionotropic gelation/polyelectrolyte complexation approach. This study aims to determine the influence of chitosan coating over the beads on drug entrapment efficiency (DEE) and release characteristics in artificial saliva compared to that of the uncoated beads. Changes in formulation parameters (gelation time, concentrations of Ca(2+) and alginate) resulted in decrease in DEE of chitosan-uncoated beads (p methyl salicylate-lactose physical mixture.

  8. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne.

    Science.gov (United States)

    Jaffary, Fariba; Faghihi, Gita; Saraeian, Sara; Hosseini, Sayed Mohsen

    2016-01-01

    Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen) were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI) was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant ( P < 0.001) in the course of treatment. However, it was not significant regarding the number of pustules ( P = 0.09). None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients ( P = 0.015). Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  9. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis.

    Science.gov (United States)

    O'Brien, Andrew J; Villani, Linda A; Broadfield, Lindsay A; Houde, Vanessa P; Galic, Sandra; Blandino, Giovanni; Kemp, Bruce E; Tsakiridis, Theodoros; Muti, Paola; Steinberg, Gregory R

    2015-07-15

    Aspirin, the pro-drug of salicylate, is associated with reduced incidence of death from cancers of the colon, lung and prostate and is commonly prescribed in combination with metformin in individuals with type 2 diabetes. Salicylate activates the AMP-activated protein kinase (AMPK) by binding at the A-769662 drug binding site on the AMPK β1-subunit, a mechanism that is distinct from metformin which disrupts the adenylate charge of the cell. A hallmark of many cancers is high rates of fatty acid synthesis and AMPK inhibits this pathway through phosphorylation of acetyl-CoA carboxylase (ACC). It is currently unknown whether targeting the AMPK-ACC-lipogenic pathway using salicylate and/or metformin may be effective for inhibiting cancer cell survival. Salicylate suppresses clonogenic survival of prostate and lung cancer cells at therapeutic concentrations achievable following the ingestion of aspirin (Salicylate concentrations of 1 mM increased the phosphorylation of ACC and suppressed de novo lipogenesis and these effects were enhanced with the addition of clinical concentrations of metformin (100 μM) and eliminated in mouse embryonic fibroblasts (MEFs) deficient in AMPK β1. Supplementation of media with fatty acids and/or cholesterol reverses the suppressive effects of salicylate and metformin on cell survival indicating the inhibition of de novo lipogenesis is probably important. Pre-clinical studies evaluating the use of salicylate based drugs alone and in combination with metformin to inhibit de novo lipogenesis and the survival of prostate and lung cancers are warranted. © 2015 Authors; published by Portland Press Limited.

  10. A Loss-of-Function Screen for Phosphatases that Regulate Neurite Outgrowth Identifies PTPN12 as a Negative Regulator of TrkB Tyrosine Phosphorylation

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Dubreuil, Véronique; Miozzo, Federico

    2013-01-01

    Alterations in function of the neurotrophin BDNF are associated with neurodegeneration, cognitive decline, and psychiatric disorders. BDNF promotes axonal outgrowth and branching, regulates dendritic tree morphology and is important for axonal regeneration after injury, responses that largely....... This approach identified phosphatases from diverse families, which either positively or negatively modulate BDNF-TrkB-mediated neurite outgrowth, and most of which have little or no previously established function related to NT signaling. "Classical" protein tyrosine phosphatases (PTPs) accounted for 13......% of the candidate regulatory phosphatases. The top classical PTP identified as a negative regulator of BDNF-TrkB-mediated neurite outgrowth was PTPN12 (also called PTP-PEST). Validation and follow-up studies showed that endogenous PTPN12 antagonizes tyrosine phosphorylation of TrkB itself, and the downstream...

  11. The Arabidopsis pi4kIIIβ1β2 double mutant is salicylic acid-overaccumulating: A new example of salicylic acid influence on plant stature

    Czech Academy of Sciences Publication Activity Database

    Janda, Martin; Šašek, Vladimír; Ruelland, E.

    2014-01-01

    Roč. 9, č. 12 (2014) ISSN 1559-2324 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : phosphatidylinositol-4-kinase * plant growth * salicylic acid Subject RIV: ED - Physiology http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25482755

  12. Complexes of rare earths with hydrazide of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Abashmadze, M Sh; Pirtskhalava, N I; Kharitonov, Yu Ya; Machkhoshvili, R I [Tbilisskij Gosudarstvennyj Univ. (USSR); AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii; Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1978-10-01

    Complex compounds M(HOC/sub 6/H/sub 4/CONNH/sub 2/)/sub 3/ xnH/sub 2/O, where M is one of the following metals and n=0 or 1, have been obtained in the reactions of salts (chlorides or nitrates) of praseodymium, neodymium, europium, gadolinium, erbium, thulium or lutecium with salicylic acid hydrazide in a weakly alkaline medium. Some properties and infrared absorption spectra of the compounds obtained have been studied.

  13. A Longitudinal Study of Emotion Regulation, Emotion Lability-Negativity, and Internalizing Symptomatology in Maltreated and Nonmaltreated Children

    Science.gov (United States)

    Kim-Spoon, Jungmeen; Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    The longitudinal contributions of emotion regulation and emotion lability-negativity to internalizing symptomatology were examined in a low-income sample (171 maltreated and 151 nonmaltreated children, from age 7 to 10 years). Latent difference score models indicated that for both maltreated and nonmaltreated children, emotion regulation was a…

  14. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    Science.gov (United States)

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Analysis of defense signals in Arabidopsis thaliana leaves by ultra-performance liquid chromatography/tandem mass spectrometry: jasmonates, salicylic acid, abscisic acid.

    Science.gov (United States)

    Stingl, Nadja; Krischke, Markus; Fekete, Agnes; Mueller, Martin J

    2013-01-01

    Defense signaling compounds and phytohormones play an essential role in the regulation of plant responses to various environmental abiotic and biotic stresses. Among the most severe stresses are herbivory, pathogen infection, and drought stress. The major hormones involved in the regulation of these responses are 12-oxo-phytodienoic acid (OPDA), the pro-hormone jasmonic acid (JA) and its biologically active isoleucine conjugate (JA-Ile), salicylic acid (SA), and abscisic acid (ABA). These signaling compounds are present and biologically active at very low concentrations from ng/g to μg/g dry weight. Accurate and sensitive quantification of these signals has made a significant contribution to the understanding of plant stress responses. Ultra-performance liquid chromatography (UPLC) coupled with a tandem quadrupole mass spectrometer (MS/MS) has become an essential technique for the analysis and quantification of these compounds.

  16. Gas Chromatographic Determination of Methyl Salicylate in Rubbing Alcohol: An Experiment Employing Standard Addition.

    Science.gov (United States)

    Van Atta, Robert E.; Van Atta, R. Lewis

    1980-01-01

    Provides a gas chromatography experiment that exercises the quantitative technique of standard addition to the analysis for a minor component, methyl salicylate, in a commercial product, "wintergreen rubbing alcohol." (CS)

  17. Maternal Self-Regulation, Relationship Adjustment, and Home Chaos: Contributions to Infant Negative Emotionality

    Science.gov (United States)

    Bridgett, David J.; Burt, Nicole M.; Laake, Lauren M.; Oddi, Kate B.

    2013-01-01

    There has been increasing interest in the direct and indirect effects of parental self-regulation on children’s outcomes. In the present investigation, the effects of maternal self-regulation, home chaos, and inter-parental relationship adjustment on broad and specific indicators of infant negative emotionality (NE) were examined. A sample of maternal caregivers and their 4-month-old infants (N = 85) from a rural community participated. Results demonstrated that better maternal self-regulation was associated with lower infant NE broadly, as well as with lower infant sadness and distress to limitations/frustration and better falling reactivity (i.e. emotion regulation), specifically. Maternal self-regulation also predicted less chaotic home environments and better maternal inter-parental relationship adjustment. Findings also supported the indirect effects of maternal self-regulation on broad and specific indicators of infant NE through home chaos and maternal relationship adjustment. Some differential effects were also identified. Elevated home chaos appeared to specifically affect infant frustration/distress to limitations whereas maternal relationship adjustment affected broad infant NE, as well as several specific indicators of infant NE: frustration/distress to limitations, sadness, and falling reactivity. In conjunction with other recent investigations that have reported the effects of maternal self-regulation on parenting, the findings in the present investigation suggest that parental self-regulation may influence children’s outcomes through several proximal environmental pathways. PMID:23748168

  18. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans

    Science.gov (United States)

    Graminha, Marcia A. S.; Rocha, Eleusa M. F.; Prade, Rolf A.; Martinez-Rossi, Nilce M.

    2004-01-01

    Resistance to antifungal agents is a recurring and growing problem among patients with systemic fungal infections. UV-induced Aspergillus nidulans mutants resistant to terbinafine have been identified, and we report here the characterization of one such gene. A sib-selected, 6.6-kb genomic DNA fragment encodes a salicylate 1-monooxygenase (salA), and a fatty acid synthase subunit (fasC) confers terbinafine resistance upon transformation of a sensitive strain. Subfragments carrying salA but not fasC confer terbinafine resistance. salA is present as a single-copy gene on chromosome VI and encodes a protein of 473 amino acids that is homologous to salicylate 1-monooxygenase, a well-characterized naphthalene-degrading enzyme in bacteria. salA transcript accumulation analysis showed terbinafine-dependent induction in the wild type and the UV-induced mutant Terb7, as well as overexpression in a strain containing the salA subgenomic DNA fragment, probably due to the multicopy effect caused by the transformation event. Additional naphthalene degradation enzyme-coding genes are present in fungal genomes, suggesting that resistance could follow degradation of the naphthalene ring contained in terbinafine. PMID:15328121

  19. Paracetamol and salicylic acid removal from contaminated water by microalgae.

    Science.gov (United States)

    Escapa, C; Coimbra, R N; Paniagua, S; García, A I; Otero, M

    2017-12-01

    The biomass growth, pharmaceutical removal and light conversion efficiency of Chlorella sorokiniana under the presence of paracetamol (PC) and salicylic acid (SaC) were assessed and compared at two different concentrations of these pharmaceuticals (I: 25 mg l -1 , II: 250 mg l -1 ). Microalgae were resistant to these concentrations and, moreover, their growth was significantly stimulated (p ≤ 0.05) under these drugs (biomass concentration increased above 33% PCI, 35% SaCI, 13% PCII and 45% SaCII, as compared with the respective positive controls). At the steady state of the semicontinuous culture, C. sorokiniana showed removal efficiencies above 41% and 69% for PCI and PCII, respectively; and above 93% and 98% for SaCI and SaCII, respectively. Under an irradiance of 370 μE m -2  s -1 , higher quantum yields were reached by microalgae under the presence of drugs, either at dose I or II, than by the respective positive controls. These results point to C. sorokiniana as a robust strain for the bioremediation of paracetamol and salicylic acid concentrated wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Quantum Chemical Calculations and Molecular Docking Studies of Some NSAID Drugs (Aceclofenac, Salicylic Acid, and Piroxicam as 1PGE Inhibitors

    Directory of Open Access Journals (Sweden)

    S. Suresh

    2016-01-01

    Full Text Available The molecular structure of the three compounds Aceclofenac (I, Salicylic Acid (II, and Piroxicam (III has been determined using Gaussian 03W program with B3LYP method using 6-311++G (d,p basis set calculations. The molecular structures were fully optimized with atomic numbering scheme adopted in the study. To understand the mode of binding and molecular interaction, the docking studies of compounds Aceclofenac (I, Salicylic Acid (II, and Piroxicam (III have been carried out with prostaglandin H2 synthase-1 (1PGE as target using induced fit docking. The molecular docking results show that the interactions and energy for Aceclofenac, Salicylic Acid, and Piroxicam show the best results when docked with prostaglandin H2 synthase-1 (1PGE. The hydrogen bonding interactions of compound I (Aceclofenac are prominent with Arginine moiety, those of compound II (Salicylic Acid are prominent with Tyrosine and Serine moieties, and compound III (Piroxicam shows such interaction with Tyrosine and Arginine moieties. These interactions of prostaglandin H2 synthase-1 (1PGE with substrates are responsible for governing COX-1 inhibitor potency which in turn is a direct measure of the potency of the drug.

  1. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2016-01-29

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  2. Influence of salicylic acid on in vitro propagation and salt tolerance ...

    African Journals Online (AJOL)

    Salicylic acid (SA) has been reported to improve in vitro regeneration as well as induce abiotic stress tolerance in plants. The effects of varying SA concentrations (0, 0.5, and 1 mM) on in vitro shoot apices of two Hibiscus species, Hibiscus moscheutos (cv 'Luna Red') and Hibiscus acetosella, grown under various salt ...

  3. A GC-ECD method for estimation of free and bound amino acids, gamma-aminobutyric acid, salicylic acid, and acetyl salicylic acid from Solanum lycopersicum (L.).

    Science.gov (United States)

    Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra

    2011-01-01

    A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).

  4. Cost-effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts: economic evaluation alongside a randomised controlled trial (EVerT trial

    Directory of Open Access Journals (Sweden)

    Stamuli Eugena

    2012-02-01

    Full Text Available Abstract Background Plantar warts (verrucae are extremely common. Although many will spontaneously disappear without treatment, treatment may be sought for a variety of reasons such as discomfort. There are a number of different treatments for cutaneous warts, with salicylic acid and cryotherapy using liquid nitrogen being two of the most common forms of treatment. To date, no full economic evaluation of either salicylic acid or cryotherapy has been conducted based on the use of primary data in a pragmatic setting. This paper describes the cost-effectiveness analysis which was conducted alongside a pragmatic multicentre, randomised trial evaluating the clinical effectiveness of cryotherapy versus 50% salicylic acid of the treatment of plantar warts. Methods A cost-effectiveness analysis was undertaken alongside a pragmatic multicentre, randomised controlled trial assessing the clinical effectiveness of 50% salicylic acid and cryotherapy using liquid nitrogen at 12 weeks after randomisation of patients. Cost-effectiveness outcomes were expressed as the additional cost required to completely cure the plantar warts of one additional patient. A NHS perspective was taken for the analysis. Results Cryotherapy costs on average £101.17 (bias corrected and accelerated (BCA 95% CI: 85.09-117.26 more per participant over the 12 week time-frame, while there is no additional benefit, in terms of proportion of patients healed compared with salicylic acid. Conclusions Cryotherapy is more costly and no more effective than salicylic acid. Trial registration Current Controlled Trials ISRCTN18994246 [controlled-trials.com] and National Research Register N0484189151.

  5. Cost-effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts: economic evaluation alongside a randomised controlled trial (EVerT trial)

    Science.gov (United States)

    2012-01-01

    Abstract Background Plantar warts (verrucae) are extremely common. Although many will spontaneously disappear without treatment, treatment may be sought for a variety of reasons such as discomfort. There are a number of different treatments for cutaneous warts, with salicylic acid and cryotherapy using liquid nitrogen being two of the most common forms of treatment. To date, no full economic evaluation of either salicylic acid or cryotherapy has been conducted based on the use of primary data in a pragmatic setting. This paper describes the cost-effectiveness analysis which was conducted alongside a pragmatic multicentre, randomised trial evaluating the clinical effectiveness of cryotherapy versus 50% salicylic acid of the treatment of plantar warts. Methods A cost-effectiveness analysis was undertaken alongside a pragmatic multicentre, randomised controlled trial assessing the clinical effectiveness of 50% salicylic acid and cryotherapy using liquid nitrogen at 12 weeks after randomisation of patients. Cost-effectiveness outcomes were expressed as the additional cost required to completely cure the plantar warts of one additional patient. A NHS perspective was taken for the analysis. Results Cryotherapy costs on average £101.17 (bias corrected and accelerated (BCA) 95% CI: 85.09-117.26) more per participant over the 12 week time-frame, while there is no additional benefit, in terms of proportion of patients healed compared with salicylic acid. Conclusions Cryotherapy is more costly and no more effective than salicylic acid. Trial registration Current Controlled Trials ISRCTN18994246 [controlled-trials.com] and National Research Register N0484189151. PMID:22369511

  6. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes.

    Science.gov (United States)

    Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Vitamin a is a negative regulator of osteoblast mineralization.

    Directory of Open Access Journals (Sweden)

    Thomas Lind

    Full Text Available An excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth. Whether the latter is a consequence of direct effects on bone or indirect effects on appetite and general growth is unknown. In this study we therefore used pair-feeding and dynamic histomorphometry to investigate the direct effect of a high intake of vitamin A on bone formation in rats. Although there were no differences in body weight or femur length compared to controls, there was an approximately halved bone formation and mineral apposition rate at the femur diaphysis of rats fed vitamin A. To try to clarify the mechanism(s behind this reduction, we treated primary human osteoblasts and a murine preosteoblastic cell line (MC3T3-E1 with the active metabolite of vitamin A; retinoic acid (RA, a retinoic acid receptor (RAR antagonist (AGN194310, and a Cyp26 inhibitor (R115866 which blocks endogenous RA catabolism. We found that RA, via RARs, suppressed in vitro mineralization. This was independent of a negative effect on osteoblast proliferation. Alkaline phosphatase and bone gamma carboxyglutamate protein (Bglap, Osteocalcin were drastically reduced in RA treated cells and RA also reduced the protein levels of Runx2 and Osterix, key transcription factors for progression to a mature osteoblast. Normal osteoblast differentiation involved up regulation of Cyp26b1, the major enzyme responsible for RA degradation, suggesting that a drop in RA signaling is required for osteogenesis analogous to what has been found for chondrogenesis. In addition, RA decreased Phex, an osteoblast/osteocyte protein necessary for mineralization. Taken together, our data indicate that vitamin A is a negative regulator of osteoblast mineralization.

  8. The Effect of Salicylic Acid and Chelated Magnesium Sulfate on Matters Allocation in Vegetative and Reproductive Parts in Pear cv. Louise Bonne Infected to Fire Blight Disease

    Directory of Open Access Journals (Sweden)

    mahjabin adel

    2017-10-01

    least current shoot growth to chelated magnesium sulfate (0.5 g: 1000 ml express the positive role of sulfur in aforesaid concentration on stimulating leaf growth and its negative role in stimulating growth of shoot and fruit that somehow points on the effect of treatment substances on the allocation of substances (elaborate sap to different organs. The sulfur compounds can cause preventing gibberellin synthesis and the decrease of internode length, like other growth retardants. The maximum fruit length: diameter ratio was belonged to salicylic acid (0.1 g: 1000 ml and chelated magnesium sulfate (0.7 g: 1000 ml. Salicylic acid (0.1 g: 1000 ml treatment induced maximum amounts of fruit length and diameter to itself that confirms the positive role of salicylic acid in stimulating growth in stress conditions (biotic stress derived from Erwinia amylovora. The significant negative correlation (p

  9. ST2 negatively regulates TLR2 signaling, but is not required for bacterial lipoprotein-induced tolerance.

    LENUS (Irish Health Repository)

    Liu, Jinghua

    2010-05-15

    Activation of TLR signaling is critical for host innate immunity against bacterial infection. Previous studies reported that the ST2 receptor, a member of the Toll\\/IL-1 receptor superfamily, functions as a negative regulator of TLR4 signaling and maintains LPS tolerance. However, it is undetermined whether ST2 negatively regulates TLR2 signaling and furthermore, whether a TLR2 agonist, bacterial lipoprotein (BLP)-induced tolerance is dependent on ST2. In this study, we show that BLP stimulation-induced production of proinflammatory cytokines and immunocomplex formation of TLR2-MyD88 and MyD88-IL-1R-associated kinase (IRAK) were significantly enhanced in ST2-deficient macrophages compared with those in wild-type controls. Furthermore, overexpression of ST2 dose-dependently attenuated BLP-induced NF-kappaB activation, suggesting a negative regulatory role of ST2 in TLR2 signaling. A moderate but significantly attenuated production of TNF-alpha and IL-6 on a second BLP stimulation was observed in BLP-pretreated, ST2-deficient macrophages, which is associated with substantially reduced IRAK-1 protein expression and downregulated TLR2-MyD88 and MyD88-IRAK immunocomplex formation. ST2-deficient mice, when pretreated with a nonlethal dose of BLP, benefitted from an improved survival against a subsequent lethal BLP challenge, indicating BLP tolerance develops in the absence of the ST2 receptor. Taken together, our results demonstrate that ST2 acts as a negative regulator of TLR2 signaling, but is not required for BLP-induced tolerance.

  10. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Won Hee Jung

    2010-11-01

    Full Text Available The fungal pathogen Cryptococcus neoformans is a major cause of illness in immunocompromised individuals such as AIDS patients. The ability of the fungus to acquire nutrients during proliferation in host tissue and the ability to elaborate a polysaccharide capsule are critical determinants of disease outcome. We previously showed that the GATA factor, Cir1, is a major regulator both of the iron uptake functions needed for growth in host tissue and the key virulence factors such as capsule, melanin and growth at 37°C. We are interested in further defining the mechanisms of iron acquisition from inorganic and host-derived iron sources with the goal of understanding the nutritional adaptation of C. neoformans to the host environment. In this study, we investigated the roles of the HAP3 and HAPX genes in iron utilization and virulence. As in other fungi, the C. neoformans Hap proteins negatively influence the expression of genes encoding respiratory and TCA cycle functions under low-iron conditions. However, we also found that HapX plays both positive and negative roles in the regulation of gene expression, including a positive regulatory role in siderophore transporter expression. In addition, HapX also positively regulated the expression of the CIR1 transcript. This situation is in contrast to the negative regulation by HapX of genes encoding GATA iron regulatory factors in Aspergillus nidulans and Schizosaccharomyces pombe. Although both hapX and hap3 mutants were defective in heme utilization in culture, only HapX made a contribution to virulence, and loss of HapX in a strain lacking the high-affinity iron uptake system did not cause further attenuation of disease. Therefore, HapX appears to have a minimal role during infection of mammalian hosts and instead may be an important regulator of environmental iron uptake functions. Overall, these results indicated that C. neoformans employs multiple strategies for iron acquisition during infection.

  11. Indomethacin and salicylate decrease epinephrine-induced glycogenolysis

    International Nuclear Information System (INIS)

    Miller, J.D.; Ganguli, S.; Artal, R.; Sperling, M.A.

    1985-01-01

    Epinephrine (E) produces an immediate (0-30 minutes) rise in hepatic glucose production (Ra), largely due to activation of glycogenolysis; thereafter, E-stimulated gluconeogenesis becomes the major factor maintaining glucose production. To investigate the possible role of arachidonic acid metabolites on Ra during E stimulation, the authors infused E in trained conscious dogs before and during administration of two inhibitors of arachidonic acid metabolism, indomethacin (INDO) and salicylate (S). On separate days, experimental animals were treated with both oral and IV INDO and oral acetylsalicylic acid and IV sodium salicylate. Ra and glucose utilization (Rd), both in mg x kg-1 min-1, were calculated by isotope dilution using 3- 3 H-glucose. After achieving steady state specific activity, control (C) and experimental animals (n . 6 per group) received E (0.1 ug x kg-1 min-1) for 150 minutes, raising plasma levels to approximately 1500 pg/mL in each group. In C, plasma glucose (G; mg/dL) rose by 17 +/- 5 at 10 minutes and 19 +/- 3 at 20 minutes due to an initial spike in Ra (2.7 +/- 0.2 to 4.9 +/- 0.5; P less than 0.01) at 10 minutes. INDO and S treatment attenuated this initial (10-20 minutes) rise in G (P less than 0.05) due to a lower stimulated Ra at 10 minutes (3.3 +/- 0.1 with INDO; 3.0 +/- 0.5 with S; P less than 0.05). After 20 minutes Ra was not different in the 3 groups; no overall differences in Rd, glucose clearance, or plasma insulin levels occurred with INDO or S treatment

  12. Effect of Salicylic Acid on Alleviating of Electrolyte Leakage and Flower Organ Damage in Apricot (Prunus armeniaca L. cv. ‘Shahroudi’

    Directory of Open Access Journals (Sweden)

    Morteza ALIREZAIE NOGHONDAR

    2013-02-01

    Full Text Available One of the most important limiting factors in spread of apricot in Iran is late spring frost, which damages flower bud and decrease total yield of crop. It has been found that salicylic acid (SA plays a beneficial role during plant response to chilling and freezing stresses. To evaluate the effects of salicylic acid on alleviating of cold stress, the flower buds (FBs of Prunus armeniaca L. cv. ‘Shahroudi’ were sprayed at pink cluster stage with SA at 4 levels (0, 0.5, 1 and 2 mM and were then exposed to artificial cold stress (4 h at -4°C or without cold stress (+ 25. Experimental attributes including electrolyte leakage of FBs and percentage of damage (PD of pistil, anthers and petals to temperature treatments were determined. The results showed that at -4°C the lowest and highest PD and EL of FBs were observed in application of 0.5 and 0 mM SA, respectively. The highest and lowest PD of flower organ and EL were obtained in application of 0 and 2 mM SA, respectively at +25°C. Based on the results of this experiment, SA alleviates the negative effect of cold stress on electrolyte leakage and flower organ damages in apricot cv. ‘Shahroudi’, depending on the concentrations of SA used.

  13. Hinokitiol Enhanced Vegetative Growth Parameters of Tomato cv. �Falkato� Compared with Salicylic Acid and Paclobutrazol under In Vitro Salinity Condition

    Directory of Open Access Journals (Sweden)

    Behrooz ESMAEILPOUR

    2012-02-01

    Full Text Available The aim of this study was to assess the potential in vitro effect of hinokitiol on improvement of tomato seedling resistance to salinity stress. Effect of hinokitiol was compared with two anti-stress compounds, salicylic acid and paclobutrazol. Leaf numbers, shoot and root fresh weight and root fresh weight were recorded after about 8 weeks. Salt stress was accomplished by application of two levels of pure NaCl (50 and 100 mM on MS basal medium. The treatments consisted of different concentrations of hinokitiol (0, 1, 5 and 10 ppm, paclobutrazol (0, 1, 2 and 4 ?M and salicylic acid (0, 0.01, 0.1 and 1 mM. Results revealed that salinity blocked seed germination in media containing only 100 mM of pure NaCl without any treatment. In general all three compounds increased tomato seedling growth, indicating these compounds are able to alleviate the negative effect of salinity on tomato plants. However, Hinokitiol was the most efficient compound. Compared with SA, application of hinokitiol significantly increased leaf numbers, shoot length and shoot and root dry weight. Also, media containing different concentrations of hinokitiol produced higher root and shoot fresh weight than control and other treatments. Future physiological studies are needed to clarify the mechanism of induction of salt tolerance activity by hinokitiol.

  14. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    Science.gov (United States)

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  15. Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway

    OpenAIRE

    Yunxia Liu; Weibing Dong; Jing Shao; Yibin Wang; Meiyi Zhou; Haipeng Sun

    2017-01-01

    Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively cont...

  16. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate.

    Science.gov (United States)

    Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2016-07-15

    An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Vanadium and titanium determination by resorcinalhydrazide of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Karpova, O I; Pilipenko, A T; Lukachina, V V [AN Ukrainskoj SSR, Kiev. Inst. Kolloidnoj Khimii i Khimii Vody

    1979-02-01

    The complexing of titanium and vanadium with resorcinalhydrazyl of salicylic acid (RHSA) in water-organic media is studied. Titanium (4) forms a complex at pH 0.8-1.8, vanadium - at pH 2.5-5.6, and at pH 7.6-9.8. The complexes are well extracted by polar and nonpolar solvents from acid solutions. The techniques are developed for the determination of titanium and vanadium by the RHSA agent in nickel alloys.

  18. Pharmacokinetics and metabolic rates of acetyl salicylic acid and its metabolites in an Otomi ethnic group of Mexico.

    Science.gov (United States)

    Lares-Asseff, Ismael; Juárez-Olguín, Hugo; Flores-Pérez, Janett; Guillé-Pérez, Adrian; Vargas, Arturo

    2004-05-01

    The objective of this study was to determine pharmacokinetic differences of acetyl salicylic acid (ASA) and its metabolites: gentisic acid (GA), salicylic acid (SA) and salicyluric acid (SUA) between Otomies and Mesticians healthy subjects. Design. Ten Otomies and 10 Mesticians were included. After a single dose of aspirin given orally (15 mg/kg), blood and urine samples were collected at different times. Results. Pharmacokinetic parameters of salicylates showed significant differences, except distribution volume of SA, and elimination half-life of SUA. Metabolic rates of ASA showed significant differences for all rates between both groups. On the other hand, percentages of dose excreted were more reduced for SA and SUA for the Otomies than for the Mesticians. Conclusion. Results reflect differences in the hydrolysis way i.e. from ASA to SA and aromatic hydroxylation i.e. from SA to GA, which were slower in Otomies subjects, showing a possible pharmacokinetic differences about the capabilities of ASA biotransformation as a consequence of ethnic differences.

  19. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants.

    Science.gov (United States)

    Tripathi, Diwaker; Jiang, Yu-Lin; Kumar, Dhirendra

    2010-08-04

    Tobacco SABP2, a 29kDa protein catalyzes the conversion of methyl salicylic acid (MeSA) into salicylic acid (SA) to induce SAR. Pretreatment of plants with acibenzolar-S-methyl (ASM), a functional analog of salicylic acid induces systemic acquired resistance (SAR). Data presented in this paper suggest that SABP2 catalyzes the conversion of ASM into acibenzolar to induce SAR. Transgenic SABP2-silenced tobacco plants when treated with ASM, fail to express PR-1 proteins and do not induce robust SAR expression. When treated with acibenzolar, full SAR is induced in SABP2-silenced plants. These results show that functional SABP2 is required for ASM-mediated induction of resistance. Copyright (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. NKG2H-Expressing T Cells Negatively Regulate Immune Responses

    Directory of Open Access Journals (Sweden)

    Daniela Dukovska

    2018-03-01

    Full Text Available The biology and function of NKG2H receptor, unlike the better characterized members of the NKG2 family NKG2A, NKG2C, and NKG2D, remains largely unclear. Here, we show that NKG2H is able to associate with the signaling adapter molecules DAP12 and DAP10 suggesting that this receptor can signal for cell activation. Using a recently described NKG2H-specific monoclonal antibody (mAb, we have characterized the expression and function of lymphocytes that express this receptor. NKG2H is expressed at the cell surface of a small percentage of peripheral blood mononuclear cell (PBMC and is found more frequently on T cells, rather than NK cells. Moreover, although NKG2H is likely to trigger activation, co-cross-linking of this receptor with an NKG2H-specific mAb led to decreased T cell activation and proliferation in polyclonal PBMC cultures stimulated by anti-CD3 mAbs. This negative regulatory activity was seen only after cross-linking with NKG2H, but not NKG2A- or NKG2C-specific monoclonal antibodies. The mechanism underlying this negative effect is as yet unclear, but did not depend on the release of soluble factors or recognition of MHC class I molecules. These observations raise the intriguing possibility that NKG2H may be a novel marker for T cells able to negatively regulate T cell responses.

  1. Expectancies for Social Support and Negative Mood Regulation Mediate the Relationship between Childhood Maltreatment and Self-Injury

    Directory of Open Access Journals (Sweden)

    Fiona Tresno

    2016-07-01

    Full Text Available Nonsuicidal self-injury (NSSI is common among young people. A majority of individuals who injure themselves do so to alleviate negative affect, as most self-injurers report difficulties with mood regulation. Trauma in childhood is an important risk factor that may cause individuals to develop poor interpersonal relations and impaired emotion-regulation, leading to the use of non-adaptive coping strategies such as NSSI. This study examined factors contributing to self-injury, focusing on the link from childhood maltreatment, through mood regulation expectancies and expectancies for social support (father, mother, and friends, to self-injury. Understanding how these variables relate to NSSI is crucial for early identification of individuals at risk of NSSI. Participants were 377 Japanese university students. Lifetime prevalence of self-injury was 20% among the sample. Results showed childhood maltreatment is a strong predictor that increases the risk for NSSI. However, expectancies for social support and mood regulation seem to be potential protective factors. Mood regulation expectancies mediate the relationship between childhood maltreatment and self-injury. In addition, expectancies for social support were indirectly linked with NSSI through negative mood regulation expectancies. It appears that perceived support from father and friends increases one's confidence in regulating difficult emotions, which in turn reduces risk for NSSI. Results suggest that strong expectancies for social support, especially from friends, increase one's confidence in regulating emotion, which contributes as a protective factor against self-injury.

  2. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.

    Science.gov (United States)

    Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

    2014-06-01

    Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.

  3. Comparative pharmacokinetics of acetyl salicylic acid and its metabolites in children suffering from autoimmune diseases.

    Science.gov (United States)

    Juárez Olguín, Hugo; Flores Pérez, Janett; Lares Asseff, Ismael; Loredo Abdalá, Arturo; Carbajal Rodríguez, Luis

    2004-01-01

    The aim of the present study was to compare the effect produced by juvenile rheumatoid arthritis (JRA) or rheumatic fever (RF) on the pharmacokinetics of acetyl salicylic acid (ASA) and its metabolites in children with autoimmune diseases (AD). A prospective, open labelled study was performed in 17 children with JRA and 17 with RF who received a single dose of 25 mg ASA/kg orally. The pharmacokinetics of ASA and its metabolites were determined. The blood and urine levels of each salicylate collected during 24 h were measured by HPLC. A group of 15 healthy teenage volunteers was included as a control group. The maximum plasma concentration, half-life time, area under the curve and the amount of salicylates excreted were statistically different between the JRA and the RF groups, as well as between the RF group and the controls, however, there were no significant differences between the JRA group and the controls. Dosage schemes must be adjusted for JRA patients, since the half life in these patients is longer than in RF patients. However, due to ample variability of pharmacokinetic parameters it is recommended that dose schemes are individualized on the type of autoimmune disease considered. Copyright 2004 John Wiley & Sons, Ltd.

  4. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2016-01-01

    Full Text Available Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. Materials and Methods: In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. Results: In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant (P < 0.001 in the course of treatment. However, it was not significant regarding the number of pustules (P = 0.09. None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients (P = 0.015. Conclusion: Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  5. Effect of Sodium Salicylate on the Viscoelastic Properties and Stability of Polyacrylate-Based Hydrogels for Medical Applications

    Directory of Open Access Journals (Sweden)

    Zuzana Kolarova Raskova

    2016-01-01

    Full Text Available Investigation was made into the effect exerted by the presence of sodium salicylate (0–2 wt.%, in Carbomer-based hydrogel systems, on processing conditions, rheological and antimicrobial properties in tests against Gram-positive (Staphylococcus aureus and Gram-negative (Escherichia coli bacterial strains, and examples of yeast (Candida albicans and mould (Aspergillus niger. In addition, the work presents an examination of long-term stability by means of aging over one year the given hydrogels at 8°C and 25°C. The results show that 0.5 wt.% NaSal demonstrated a noticeable effect on the hydrogel neutralization process, viscosity, and antimicrobial properties against all of the tested microorganisms. The long-term stability studies revealed that hydrogels can maintain antimicrobial activity as well as viscosity to a degree that would be sufficient for practical use.

  6. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    Science.gov (United States)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  7. Solvent extraction of tricomponent complexes of zirconium and scandium with salicylic acid and collidine

    International Nuclear Information System (INIS)

    Kochetkova, S.K.; Fadeeva, V.I.; Kalistratova, V.P.

    1976-01-01

    Extraction of tricomponent compounds of zirconium and scandium with salicylic acid (Sal) and collidine (Col) has been studied. Addition of Col widens considerably the pH range of maximum extraction of zirconium salicylate and makes it possible to extract quantitatively both zirconium and scandium in the following pH range: scandium at pH 3.8-5.2; zirconium at pH 2-4. Optimum concentrations of salicylic acid and collidine are 0.05 mol/l and 0.375 mol/l, respectively. The composition of the complexes being extracted has been studied by the shift equilibrium method. Chloroform extracts complexes having the ratio Zr:Sal:Col=1:2:1(pH=3); Sc:Sal:Col=1:3:1(pH=4), and 1:2:1(pH=5). The composition of the complexes being formed is assumed to be [Zr(OH) 3 (HSal) 2 ] - [ColH + ] (pH=3); Sc(HSal) 3 xCol (pH=4.0); Sc(OH)(HSal) 2 xCol (pH=5.0). Extraction of collidine-salicylate complexes of Hf, Th, La, and Y under the conditions of optimum extraction of zirconium and scandium has been investigated when concentration of Zr and Sc in the solution is 3.0.10μ- 5 -1.37.10 -4 mol/l, respectively. It has been shown that hafnium is extracted quantitatively (95-100%) at pH 2.3-4.6; thorium at pH 3.0-6.4; 60% of yttrium is extracted at pH 4.0-4.8; 25% of lanthanum is extracted at pH 3.3-4.9. At pH 2.0 it is possible to separate Zr from Sc,Y, and La; at pH 1.4-1.5 from small amounts of Hf and Tn. Separation of zirconium, from small amounts of hafnium, 10-fold amounts of thorium, 100-fold amounts of scandium and lanthanum is also possible

  8. Solvent extraction of tricomponent complexes of zirconium and scandium with salicylic acid and collidine

    Energy Technology Data Exchange (ETDEWEB)

    Kochetkova, S K; Fadeeva, V I; Kalistratova, V P [Moskovskij Gosudarstvennyj Univ. (USSR)

    1976-01-01

    Extraction of tricomponent compounds of zirconium and scandium with salicylic acid (Sal) and collidine (Col) has been studied. Addition of Col widens considerably the pH range of maximum extraction of zirconium salicylate and makes it possible to extract quantitatively both zirconium and scandium in the following pH range: scandium at pH 3.8-5.2; zirconium at pH 2-4. Optimum concentrations of salicylic acid and collidine are 0.05 mol/l and 0.375 mol/l, respectively. The composition of the complexes being extracted has been studied by the shift equilibrium method. Chloroform extracts complexes having the ratio Zr:Sal:Col=1:2:1(pH=3); Sc:Sal:Col=1:3:1(pH=4), and 1:2:1(pH=5). The composition of the complexes being formed is assumed to be (Zr(OH)/sub 3/(HSal)/sub 2/)/sup -/(ColH/sup +/) (pH=3); Sc(HSal)/sub 3/xCol (pH=4.0); Sc(OH)(HSal)/sub 2/xCol (pH=5.0). Extraction of collidine-salicylate complexes of Hf, Th, La, and Y under the conditions of optimum extraction of zirconium and scandium has been investigated when concentration of Zr and Sc in the solution is 3.0.10..mu..-/sup 5/-1.37.10/sup -4/ mol/l, respectively. It has been shown that hafnium is extracted quantitatively (95-100%) at pH 2.3-4.6; thorium at pH 3.0-6.4; 60% of yttrium is extracted at pH 4.0-4.8; 25% of lanthanum is extracted at pH 3.3-4.9. At pH 2.0 it is possible to separate Zr from Sc,Y, and La; at pH 1.4-1.5 from small amounts of Hf and Tn. Separation of zirconium, from small amounts of hafnium, 10-fold amounts of thorium, 100-fold amounts of scandium and lanthanum is also possible.

  9. Alleviation of Salinity Effects by Exogenous Applications of Salicylic Acid in Sugarcane (Saccharum officinarum L. Seedlings

    Directory of Open Access Journals (Sweden)

    F Chaharlang Badil

    2016-12-01

    Full Text Available Introduction Abiotic stresses cause 71% reduction in crop yield around the world, from which 20% is related to salinity stress. The importance of sugarcane increases every day due to greater demand for sugar. Since sugarcane has mainly grown in arid and semi-arid regions, salinity is one of the main problems for this crop due to higher evaporation in these areas. Salicylic acid (SA is classified as a phyto – hormone and belongs to a group of phenol compounds. Salicylic acid can improve plant tolerance to abiotic stresses. This research aimed at studying the effect of SA on the alleviating of salinity stress in sugarcane. Materials and Methods The effects of salicylic acid on the growth and some physiological responses of sugarcane (Saccharum officinarum L. cv. CP69-1062 were studied under salt stress. The experiment design was a factorial of two factors, based on a randomized completely design with three replications. The experiment was conducted in a greenhouse at the Sugarcane Research and Training Institute of Khuzestan, Iran in 2012. Treatments evaluated in this study were three levels of salt stress, including (ECW

  10. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  11. Identification of didecyldimethylammonium salts and salicylic acid as antimicrobial compounds in commercial fermented radish kimchi.

    Science.gov (United States)

    Li, Jing; Chaytor, Jennifer L; Findlay, Brandon; McMullen, Lynn M; Smith, David C; Vederas, John C

    2015-03-25

    Daikon radish (Raphanus sativus) fermented with lactic acid bacteria, especially Leuconostoc or Lactobacillus spp., can be used to make kimchi, a traditional Korean fermented vegetable. Commercial Leuconostoc/radish root ferment filtrates are claimed to have broad spectrum antimicrobial activity. Leuconostoc kimchii fermentation products are patented as preservatives for cosmetics, and certain strains of this organism are reported to produce antimicrobial peptides (bacteriocins). We examined the antimicrobial agents in commercial Leuconostoc/radish root ferment filtrates. Both activity-guided fractionation with Amberlite XAD-16 and direct extraction with ethyl acetate gave salicylic acid as the primary agent with activity against Gram-negative bacteria. Further analysis of the ethyl acetate extract revealed that a didecyldimethylammonium salt was responsible for the Gram-positive activity. The structures of these compounds were confirmed by a combination of (1)H- and (13)C NMR, high-performance liquid chromatography, high-resolution mass spectrometry, and tandem mass spectrometry analyses. Radiocarbon dating indicates that neither compound is a fermentation product. No antimicrobial peptides were detected.

  12. Nfatc2 and Tob1 have non-overlapping function in T cell negative regulation and tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Sarah L May

    Full Text Available Nfatc2 and Tob1 are intrinsic negative regulators of T cell activation. Nfatc2-deficient and Tob1-deficient T cells show reduced thresholds of activation; however, whether these factors have independent or overlapping roles in negative regulation of T cell responses has not been previously examined. Here, we show that Nfatc2 knockout (KO but not Tob1 KO mice have age-associated accumulation of persistently activated T cells in vivo and expansion of the CD44+ memory cell compartment and age-associated lymphocytic infiltrates in visceral organs, without significant changes in numbers of CD4+CD25+Foxp3+ regulatory T cells (Treg. In vitro, CD4+CD25- "conventional" T cells (Tconvs from both KO strains showed greater proliferation than wild type (WT Tconvs. However, while Tregs from Nfatc2 KO mice retained normal suppressive function, Tregs from Tob1 KOs had enhanced suppressive activity. Nfatc2 KO Tconvs expanded somewhat more rapidly than WT Tconvs under conditions of homeostatic proliferation, but their accelerated growth capacity was negated, at least acutely, in a lymphoreplete environment. Finally, Nfatc2 KO mice developed a previously uncharacterized increase in B-cell malignancies, which was not accelerated by the absence of Tob1. The data thus support the prevailing hypothesis that Nfatc2 and Tob1 are non-redundant regulators of lymphocyte homeostasis.

  13. Integrating and differentiating aspects of self-regulation: effortful control, executive functioning, and links to negative affectivity.

    Science.gov (United States)

    Bridgett, David J; Oddi, Kate B; Laake, Lauren M; Murdock, Kyle W; Bachmann, Melissa N

    2013-02-01

    Subdisciplines within psychology frequently examine self-regulation from different frameworks despite conceptually similar definitions of constructs. In the current study, similarities and differences between effortful control, based on the psychobiological model of temperament (Rothbart, Derryberry, & Posner, 1994), and executive functioning are examined and empirically tested in three studies (n = 509). Structural equation modeling indicated that effortful control and executive functioning are strongly associated and overlapping constructs (Study 1). Additionally, results indicated that effortful control is related to the executive function of updating/monitoring information in working memory, but not inhibition (Studies 2 and 3). Study 3 also demonstrates that better updating/monitoring information in working memory and better effortful control were uniquely linked to lower dispositional negative affect, whereas the executive function of low/poor inhibition was uniquely associated with an increased tendency to express negative affect. Furthermore, dispositional negative affect mediated the links between effortful control and, separately, the executive function of updating/monitoring information in working memory and the tendency to express negative affect. The theoretical implications of these findings are discussed, and a potential framework for guiding future work directed at integrating and differentiating aspects of self-regulation is suggested. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  14. A large family of antivirulence regulators modulates the effects of transcriptional activators in Gram-negative pathogenic bacteria.

    Directory of Open Access Journals (Sweden)

    Araceli E Santiago

    2014-05-01

    Full Text Available We have reported that transcription of a hypothetical small open reading frame (orf60 in enteroaggregative E. coli (EAEC strain 042 is impaired after mutation of aggR, which encodes a global virulence activator. We have also reported that the cryptic orf60 locus was linked to protection against EAEC diarrhea in two epidemiologic studies. Here, we report that the orf60 product acts as a negative regulator of aggR itself. The orf60 protein product lacks homology to known repressors, but displays 44-100% similarity to at least fifty previously undescribed small (<10 kDa hypothetical proteins found in many gram negative pathogen genomes. Expression of orf60 homologs from enterotoxigenic E. coli (ETEC repressed the expression of the AraC-transcriptional ETEC regulator CfaD/Rns and its regulon in ETEC strain H10407. Complementation in trans of EAEC 042orf60 by orf60 homologs from ETEC and the mouse pathogen Citrobacter rodentium resulted in dramatic suppression of aggR. A C. rodentium orf60 homolog mutant showed increased levels of activator RegA and increased colonization of the adult mouse. We propose the name Aar (AggR-activated regulator for the clinically and epidemiologically important orf60 product in EAEC, and postulate the existence of a large family of homologs among pathogenic Enterobacteriaceae and Pasteurellaceae. We propose the name ANR (AraC Negative Regulators for this family.

  15. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.

    Science.gov (United States)

    Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan

    2017-02-01

    Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Role of NeuroD1 on the negative regulation of Pomc expression by glucocorticoid.

    Directory of Open Access Journals (Sweden)

    Rehana Parvin

    Full Text Available The mechanism of the negative regulation of proopiomelanocortin gene (Pomc by glucocorticoids (Gcs is still unclear in many points. Here, we demonstrated the involvement of neurogenic differentiation factor 1 (NeuroD1 in the Gc-mediated negative regulation of Pomc. Murine pituitary adrenocorticotropic hormone (ACTH producing corticotroph tumor-derived AtT20 cells were treated with dexamethasone (DEX (1-100 nM and cultured for 24 hrs. Thereafter, Pomc mRNA expression was studied by quantitative real-time PCR and rat Pomc promoter (-703/+58 activity was examined by luciferase assay. Both Pomc mRNA expression and Pomc promoter activity were inhibited by DEX in a dose-dependent manner. Deletion and point mutant analyses of Pomc promoter suggested that the DEX-mediated transcriptional repression was mediated via E-box that exists at -376/-371 in the promoter. Since NeuroD1 is known to bind to and activate E-box of the Pomc promoter, we next examined the effect of DEX on NeuroD1 expression. Interestingly, DEX dose-dependently inhibited NeuroD1 mRNA expression, mouse NeuroD1 promoter (-2.2-kb activity, and NeuroD1 protein expression in AtT20 cells. In addition, we confirmed the inhibitory effect of DEX on the interaction of NeuroD1 and E-box on Pomc promoter by chromatin immunoprecipitation (ChIP assay. Finally, overexpression of mouse NeuroD1 could rescue the DEX-mediated inhibition of Pomc mRNA expression and Pomc promoter activity. Taken together, it is suggested that the suppression of NeuroD1 expression and the inhibition of NeuroD1/E-box interaction may play an important role in the Gc-mediated negative regulation of Pomc.

  17. MODELING OF ALKYL SALICYLATE COMPOUNDS AS UV ABSORBER BASED ON ELECTRONIC TRANSITION BY USING SEMIEMPIRICAL QUANTUM MECHANICS ZINDO/s CALCULATION

    Directory of Open Access Journals (Sweden)

    Iqmal Tahir

    2010-06-01

    Full Text Available Modeling of several alkyl salicylates based on electronic transition by using semiempriical mechanical quantum ZINDO/s calculation has been done. Object of these research were assumed only alkyl salicylates of C4 (butyl until C8 (octyl homologue with 4-7 example structures of each homologue. All of the computation have been performed using quantum chemistry - package software Hyperchem 6.0. The research covered about drawing each of the structure, geometry optimization using semiempirical AM1 algorithm and followed with single point calculation using semiempirical ZINDO/s technique. ZINDO/s calculations used a defined criteria that is singly excited - Configuration Interaction (CI, gap of HOMO-LUMO energy transition was 2 and degeneracy level was 3. Analysis of the theoretical spectra was focused in the UV-B (290-320 nm and UV-C (200-290 nm area. The result showed that modeling of the compound can be used for predicting the type of UV protection activity depending with the electronic transition in the UV area. Modification of the alkyl homologue relatively did not change the value of wavelength absorbtion to indicate the UV protection activity. Alkyl salicylate compounds were predicted as UV-C sunscreen or relatively the compounds have protection effect for UV-C.   Keywords: alkyl salicylate, sunscreen, semiempirical methods

  18. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    Science.gov (United States)

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  19. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  20. The salicylic acid effect on the tomato (lycopersicum esculentum Mill. germination, growth and photosynthetic pigment under salinity stress (NaCl

    Directory of Open Access Journals (Sweden)

    Shahba Zahra

    2010-09-01

    Full Text Available Soil salinity is a serious environmental problem that has negative effect on plant growth, production and photosynthesis. Fresh and dry plant weights decreases with salinity treatments. The very important role of salicylic acid (SA in response to different stress and modification and decline damages due to stresses has established in different studies. In this research tomato seeds planted in pots containing perlite in a growth chamber under controlled conditions of 27±2°c and 23±2°c temperature , 16h lightness and 8h darkness respectively, 15 Klux light intensity and 75% humidity; NaCl concentration of 0, 25, 50, 75 and 100 mM and salicylic acid concentration of 0, 0.5, 1 and 1.5 mM were used in the form of factorial experiment in a complete randomized design (CRD. Results show that germination was decreased with salinity increasing. At low levels of salinity, SA leads to decrease in germination and had no effect in high levels of salinity. The length of shoot were not effected by salinity but decrease with increase in SA concentration. Low salinity concentrations led to significant increase in root length and high concentrations don’t have significant difference with control. SA also had no effect on it. The highest amount of a, b, c and total chlorophyll and carotenoid was show in 50 mM salinity levels.

  1. [Quantitative determination of the main metabolites of acetylsalicylic acid/2nd communication: the concentrations of salicylic acid and its metabolites in patients with renal insufficiency (author's transl)].

    Science.gov (United States)

    Daneels, R; Loew, D; Pütter, J

    1975-07-01

    Quantitative Determination of the Main Metabolites of Acetylsalicylic Acid / 2nd Communication: The concentrations of salicylic acid and its metabolies in patients with renal insufficiency 9 patients suffering from renal insufficiencies of varing degrees and treated regularly by hemodialysis were given 1.5 g Colfarit (microcapsulated acetyl salicylic acid) as a single dose. The concentrations of salicylic acid (SA), salicyluric acid (SU), further salicylic acid conjugates (SAC) and salicyluric acid conjugates (SUC) were determined in the blood plasma. Likewise urea and creatinine were determined. SA concentration decreased continually and, at the end of the trial (72 h after application), had vanished almost completely from the plasma of most patients. SU increased at first and decreased afterwards. With the exception of the dailysis time SAC and SUC increased during the trial. After 3 days the SUC level was more than 50% of total salicylate (SSS) in most patients. SSS (the sum of SA + SU + SAC + SUC) did not change very much before dialysis, but showed a rather high decrease during the first hours of dialysis. tafter dialysis the SSS levels rose again, apparently as a consequence of a redistribution and of the synthesis of conjugates with decreased tissue affinity. It could be shown that SSS in the blood plasma does not parallel SSS in the whole body. The interindividual variation of SA metabolism as well as the variation of the biological blank values was rather high. The results are discussed with regard to salicylate pharmacokinetics in renal insufficiency and to normal salicylate metabolism.

  2. Abscisic acid-cytokinin antagonism modulates resistance against pseudomonas syringae in Tobacco

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2014-01-01

    Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant...... immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction...... of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco...

  3. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Xun-wei Xie

    Full Text Available FOXO genes are involved in many aspects of development and vascular homeostasis by regulating cell apoptosis, proliferation, and the control of oxidative stress. In addition, FOXO genes have been showed to inhibit Wnt/β-catenin signaling by competing with T cell factor to bind to β-catenin. However, how important of this inhibition in vivo, particularly in embryogenesis is still unknown. To demonstrate the roles of FOXO genes in embryogenesis will help us to further understand their relevant physiological functions. Zebrafish foxo3b gene, an orthologue of mammalian FOXO3, was expressed maternally and distributed ubiquitously during early embryogenesis and later restricted to brain. After morpholino-mediated knockdown of foxo3b, the zebrafish embryos exhibited defects in axis and neuroectoderm formation, suggesting its critical role in early embryogenesis. The embryo-developmental marker gene staining at different stages, phenotype analysis and rescue assays revealed that foxo3b acted its role through negatively regulating both maternal and zygotic Wnt/β-catenin signaling. Moreover, we found that foxo3b could interact with zebrafish β-catenin1 and β-catenin2 to suppress their transactivation in vitro and in vivo, further confirming its role relevant to the inhibition of Wnt/β-catenin signaling. Taken together, we revealed that foxo3b played a very important role in embryogenesis and negatively regulated maternal and zygotic Wnt/β-catenin signaling by directly interacting with both β-catenin1 and β-catenin2. Our studies provide an in vivo model for illustrating function of FOXO transcription factors in embryogenesis.

  4. Peroxiredoxin II is an antioxidant enzyme that negatively regulates collagen-stimulated platelet function.

    Science.gov (United States)

    Jang, Ji Yong; Wang, Su Bin; Min, Ji Hyun; Chae, Yun Hee; Baek, Jin Young; Yu, Dae-Yeul; Chang, Tong-Shin

    2015-05-01

    Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  6. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana

    OpenAIRE

    Besseau, Sébastien; Li, Jing; Palva, E. Tapio

    2012-01-01

    The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis leaf senescence has been explored and the results suggest the involvement of two additional WRKY TF...

  7. The negative cell cycle regulator, Tob (transducer of ErbB-2), is involved in motor skill learning

    International Nuclear Information System (INIS)

    Wang Xinming; Gao Xiang; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    Tob (transducer of ErbB-2) is a negative cell cycle regulator with anti-proliferative activity in peripheral tissues. Our previous study identified Tob as a protein involved in hippocampus-dependent memory consolidation (M.L. Jin, X.M. Wang, Y.Y. Tu, X.H. Zhang, X. Gao, N. Guo, Z.Q. Xie, G.P. Zhao, N.H. Jing, B.M. Li, Y.Yu, The negative cell cycle regulator, Tob (Transducer of ErbB-2), is a multifunctional protein involved in hippocampus-dependent learning and memory, Neuroscience 131 (2005) 647-659). Here, we provide evidence that Tob in the central nervous system is engaged in acquisition of motor skill. Tob has a relatively high expression in the cerebellum. Tob expression is up-regulated in the cerebellum after rats receive training on a rotarod-running task. Rats infused with Tob antisense oligonucleotides into the 4th ventricle exhibit a severe deficit in running on a rotating rod or walking across a horizontally elevated beam

  8. Thermal decomposition of anhydrous zinc and cadmium salicylates

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K.

    1984-01-01

    On the basis of studying thermograms, thermogravigrams, IR absorption spectra, X-rayograms of anhydrous znc and cadmium salicylate complexes of the M(HSal) 2 composition, (where M=Zn, Cd; HSal is an anion of once deprotonated salicyclic acid H 2 Sal) and products of their thermal transformations, the processes are characterized of stage-by-stage thermal decomposition of these compounds under continuous heating in the air from room temperature to approximately 1000 deg C. It is shown that the Cd(HSal) 2 pyrolysis proceeds with the formation of CdSal at 170-250 deg C and CdO - at 320-460 deg C

  9. Chlorogenic acids biosynthesis in Centella asiatica cells is not stimulated by salicylic acid manipulation

    CSIR Research Space (South Africa)

    Ncube, EN

    2016-07-01

    Full Text Available Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been...

  10. ALUMINUM TOXICITY VS SALICYLIC ACID EFFECTS IN PEARL MILLET METHYLOME.

    OpenAIRE

    Baba Ngom; Edward Mamati; Ibrahima Sarr; Josphert Kimatu.

    2018-01-01

    Aluminum toxicity is one of most distributed plant abiotic stress in the world, causing root inhibition and therefore crop losses. Plants continuously adapt its defense to abiotic stresses through different mechanisms including DNA methylation. The methylome variation is influenced by external cues from environment or by hormonal signals. Salicylic acid is one of the most important hormones in plants, directing growth and defense. Its application is seen having the capacity to elicit plant de...

  11. SACE_3986, a TetR family transcriptional regulator, negatively controls erythromycin biosynthesis in Saccharopolyspora erythraea.

    Science.gov (United States)

    Wu, Panpan; Pan, Hui; Zhang, Congming; Wu, Hang; Yuan, Li; Huang, Xunduan; Zhou, Ying; Ye, Bang-ce; Weaver, David T; Zhang, Lixin; Zhang, Buchang

    2014-07-01

    Erythromycin, a medically important antibiotic, is produced by Saccharopolyspora erythraea. Unusually, the erythromycin biosynthetic gene cluster lacks a regulatory gene, and the regulation of its biosynthesis remains largely unknown. In this study, through gene deletion, complementation and overexpression experiments, we identified a novel TetR family transcriptional regulator SACE_3986 negatively regulating erythromycin biosynthesis in S. erythraea A226. When SACE_3986 was further inactivated in an industrial strain WB, erythromycin A yield of the mutant was increased by 54.2 % in average compared with that of its parent strain, displaying the universality of SACE_3986 as a repressor for erythromycin production in S. erythraea. qRT-PCR analysis indicated that SACE_3986 repressed the transcription of its adjacent gene SACE_3985 (which encodes a short-chain dehydrogenase/reductase), erythromycin biosynthetic gene eryAI and the resistance gene ermE. As determined by EMSA analysis, purified SACE_3986 protein specifically bound to the intergenic region between SACE_3985 and SACE_3986, whereas it did not bind to the promoter regions of eryAI and ermE. Furthermore, overexpression of SACE_3985 in A226 led to enhanced erythromycin A yield by at least 32.6 %. These findings indicate that SACE_3986 is a negative regulator of erythromycin biosynthesis, and the adjacent gene SACE_3985 is one of its target genes. The present study provides a basis to increase erythromycin production by engineering of SACE_3986 and SACE_3985 in S. erythraea.

  12. Salicylate Poisoning Potential of Topical Pain Relief Agents: From Age Old Remedies to Engineered Smart Patches.

    Science.gov (United States)

    Anderson, Ashleigh; McConville, Aaron; Fanthorpe, Laura; Davis, James

    2017-06-30

    The pain relief capabilities of methyl salicylate are well established and a multitude of over-the-counter products populate pharmacy shelves. Over-application of the topical preparation containing the drug, or its accidental ingestion, invariably result in salicylate poisoning and in severe cases can be fatal. The drug has been a regular feature of the US National Poison Database Survey over the past decade and continues to pose a risk to children and adults alike. The aim of the review has been to cast a spotlight on the drug and assess why its use remains problematic, how technology could offer more efficacious delivery regimes, and minimise the possibility of accidental or intentional misuse.

  13. Salicylate Poisoning Potential of Topical Pain Relief Agents: From Age Old Remedies to Engineered Smart Patches

    Directory of Open Access Journals (Sweden)

    Ashleigh Anderson

    2017-06-01

    Full Text Available The pain relief capabilities of methyl salicylate are well established and a multitude of over-the-counter products populate pharmacy shelves. Over-application of the topical preparation containing the drug, or its accidental ingestion, invariably result in salicylate poisoning and in severe cases can be fatal. The drug has been a regular feature of the US National Poison Database Survey over the past decade and continues to pose a risk to children and adults alike. The aim of the review has been to cast a spotlight on the drug and assess why its use remains problematic, how technology could offer more efficacious delivery regimes, and minimise the possibility of accidental or intentional misuse.

  14. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice.

    Science.gov (United States)

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Watanabe, Mutsumi; Hoefgen, Rainer; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2014-02-01

    Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF.

  15. MicroRNA, miR-374b, directly targets Myf6 and negatively regulates C2C12 myoblasts differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan; Sun, Xiaorui; Xu, Dequan; Xiong, Yuanzhu; Zuo, Bo, E-mail: zuobo@mail.hzau.edu.cn

    2015-11-27

    Myogenesis is a complex process including myoblast proliferation, differentiation and myotube formation and is controlled by myogenic regulatory factors (MRFs), MyoD, MyoG, Myf5 and Myf6 (also known as MRF4). MicroRNA is a kind of ∼22 nt-long non-coding small RNAs, and act as key transcriptional or post-transcriptional regulators of gene expression. Identification of miRNAs involved in the regulation of muscle genes could improve our understanding of myogenesis process. In this study, we investigated the regulation of Myf6 gene by miRNAs. We showed that miR-374b specifically bound to the 3'untranslated region (UTR) of Myf6 and down-regulated the expression of Myf6 gene at both mRNA and protein level. Furthermore, miR-374b is ubiquitously expressed in the tissues of adult C57BL6 mouse, and the mRNA abundance increases first and then decreases during C2C12 myoblasts differentiation. Over-expression of miR-374b impaired C2C12 cell differentiation, while inhibiting miR-374b expression by 2′-O-methyl antisense oligonucleotides promoted C2C12 cell differentiation. Taken together, our findings identified miR-374b directly targets Myf6 and negatively regulates myogenesis. - Highlights: • MiR-374b directly targets 3′UTR of Myf6. • MiR-374b negatively regulates Myf6 in C2C12 cells. • MiR-374b abundance significiently changes during C2C12 cells differentiation. • MiR-374b negatively regulates C2C12 cells differentiation.

  16. Comparison of 30% salicylic acid with jessner's solution for superficial chemical peeling in epidermal melasma

    International Nuclear Information System (INIS)

    Ejaz, A.; Raza, N.; Iftikhar, N.; Muzzafar, F.

    2008-01-01

    To compare the efficacy and safety of Jessner's solution with 30% salicylic acid as superficial chemical peeling agents in treating epidermal melasma in Asian skin. Sixty consenting patients with epidermal melasma were randomly divided into two groups. Group A was treated with Jessner's solution and Group B with 30% salicylic acid. Baseline Melasma Area Severity Index (MASI) score was noted and peeling started at 2-weekly intervals. Sunscreen in morning and moisturizer at night were prescribed in all patients. MASI score and adverse effects were recorded biweekly. Treatment was stopped at 12 weeks and patients were followed-up at 4 weekly intervals for further 12 weeks. Final MASI score and adverse effects were noted at the end of follow-up period. Mean MASI scores were compared using paired sample t-test and one-way ANOVA. Difference in baseline, treatment end and follow-up end MASI scores was not statistically significant between the two groups (p=0.54, 0.26, and 0.55 respectively). On the other hand, within group analysis of difference between pre and posttreatment MASI score was highly significant in both groups (p < 0.0001). Adverse effects were mild and comparable in both groups. Jessner's solution and 30% salicylic acid are equally effective and safe peeling agents for use in epidermal melasma in Asian skin. (author)

  17. Spectroscopy and intramolecular relaxation of methyl salicylate in its first excited singlet state

    Science.gov (United States)

    Kuper, Jerry W.; Perry, David S.

    1984-05-01

    High resolution fluorescence excitation experiments are reported for the blue emitting rotamer of methyl salicylate in its first excited singlet state. These experiments employ moderate expansions of methyl salicylate seeded in argon ( P0D=5-8 Torr cm) to achieve rotational and vibrational cooling in a pulsed supersonic jet. The rotational contour of the electronic origin at 30 055.3 cm-1 is shown to be consistent with a geometrically distorted π-π* excited state, partially polarized along the A axis and with a rotational temperature of 5-7 K. A noticeable broadening of the spectral features beyond the rotational contour begins at 500 cm-1 above the origin and then increases rapidly above 900 cm-1 reaching a width of 12 cm-1 near 1200 cm-1. The constancy of fluorescence decay lifetimes in this region indicate that intramolecular vibrational relaxation in the S1 manifold is the broadening mechanism.

  18. Ameliorative effect of salicylic acid and theophylline on photosynthetic pigment content in gamma irradiated french bean varieties, using "6"0Co as a source

    International Nuclear Information System (INIS)

    Shukla, Pradeep K.; Vishwakarma, Kapil Kumar; Shukla, Saumya; Sharma, Richa; Ramteke, P.W.; Misra, Pragati

    2017-01-01

    Irradiation of seeds may cause genetic variability that enable plant breeders to select new genotypes with improved qualitative and quantitative characteristics. An experiment was conducted to study the protective role of salicylic acid and theophylline on photosynthetic pigments of gamma exposed french bean. Seeds of four French bean were treated by different doses of gamma radiation using "6"0Co as source. The results showed that the application of salicylic acid and theophylline significantly increased chlorophyll a content, chlorophyll b content, total chlorophyll content and carotenoid content. Salicylic acid was more effective than theophylline in overcoming the radiation effects and therefore, showed more protection to the photosynthetic pigments. (author)

  19. Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid.

    Science.gov (United States)

    Bhardwaj, Pardeep Kumar; Kaur, Jagdeep; Sobti, Ranbir Chander; Ahuja, Paramvir Singh; Kumar, Sanjay

    2011-09-01

    Lipoxygenase (LOX) catalyses oxygenation of free polyunsaturated fatty acids into oxylipins, and is a critical enzyme of the jasmonate signaling pathway. LOX has been shown to be associated with biotic and abiotic stress responses in diverse plant species, though limited data is available with respect to low temperature and the associated cues. Using rapid amplification of cDNA ends, a full-length cDNA (CjLOX) encoding lipoxygenase was cloned from apical buds of Caragana jubata, a temperate plant species that grows under extreme cold. The cDNA obtained was 2952bp long consisting of an open reading frame of 2610bp encoding 869 amino acids protein. Multiple alignment of the deduced amino acid sequence with those of other plants demonstrated putative LH2/ PLAT domain, lipoxygenase iron binding catalytic domain and lipoxygenase_2 signature sequences. CjLOX exhibited up- and down-regulation of gene expression pattern in response to low temperature (LT), abscisic acid (ABA), methyl jasmonate (MJ) and salicylic acid (SA). Among all the treatments, a strong up-regulation was observed in response to MJ. Data suggests an important role of jasmonate signaling pathway in response to LT in C. jubata. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Acetyl salicylic acid–ZnAl layered double hydroxide functional nanohybrid for skin care application

    CSIR Research Space (South Africa)

    Mosangi, Damodar

    2016-10-01

    Full Text Available In this study, a pharmaceutically active ingredient, acetyl salicylic acid (ASA), was intercalated into ZnAl layered double hydroxide (LDH). The LDH–ASA nanohybrid material was characterized by XRD, FTIR, SEM, ICP-MS, TEM and TGA. Successful...