WorldWideScience

Sample records for negatively regulates anti-inflammatory

  1. Helicobacter pylori-negative, non-steroidal anti-inflammatory drug: negative idiopathic ulcers in Asia.

    Science.gov (United States)

    Iijima, Katsunori; Kanno, Takeshi; Koike, Tomoyuki; Shimosegawa, Tooru

    2014-01-21

    Since the discovery of Helicobacter pylori (H. pylori) infection in the stomach, the bacteria infection and non-steroidal anti-inflammatory drugs (NSAIDs) use had been considered to be the 2 main causes of peptic ulcers. However, there have been recent reports of an increase in the proportion of peptic ulcers without these known risk factors; these are termed idiopathic peptic ulcers. Such trend was firstly indicated in 1990s from some reports in North America. In Asia, numerous studies reported that idiopathic ulcers accounted for a small percentage of all ulcers in the 1990s, but in the 2000s, multiple studies reported that the proportion of idiopathic ulcers had reached 10%-30%, indicating that the incidence of idiopathic ulcers in Asia has also been rising in recent years. While a decline in H. pylori infection rates of general population in Asia is seen as the main reason for the increased incidence of idiopathic ulcers, it is also possible that the absolute number of idiopathic ulcer cases has increased. Advanced age, serious systemic complication, and psychological stress are considered to be the potential risk factors for idiopathic ulcers. Management of idiopathic ulcers is challenging, at present, because there is no effective preventative measure against recurrence in contrast with cases of H. pylori-positive ulcers and NSAIDs-induced ulcers. As it is expected that H. pylori infection rates in Asia will decline further in the future, measures to treat idiopathic ulcers will also likely become more important.

  2. Extracellular Signal-Regulated Kinase Is a Direct Target of the Anti-Inflammatory Compound Amentoflavone Derived from Torreya nucifera

    Directory of Open Access Journals (Sweden)

    Jueun Oh

    2013-01-01

    Full Text Available Amentoflavone is a biflavonoid compound with antioxidant, anticancer, antibacterial, antiviral, anti-inflammatory, and UV-blocking activities that can be isolated from Torreya nucifera, Biophytum sensitivum, and Selaginella tamariscina. In this study, the molecular mechanism underlying amentoflavone’s anti-inflammatory activity was investigated. Amentoflavone dose dependently suppressed the production of nitric oxide (NO and prostaglandin E2 (PGE2 in RAW264.7 cells stimulated with the TLR4 ligand lipopolysaccharide (LPS; derived from Gram-negative bacteria. Amentoflavone suppressed the nuclear translocation of c-Fos, a subunit of activator protein (AP-1, at 60 min after LPS stimulation and inhibited the activity of purified and immunoprecipitated extracellular signal-regulated kinase (ERK, which mediates c-Fos translocation. In agreement with these results, amentoflavone also suppressed the formation of a molecular complex including ERK and c-Fos. Therefore, our data strongly suggest that amentoflavone’s immunopharmacological activities are due to its direct effect on ERK.

  3. Exercise as an anti-inflammatory therapy for rheumatic diseases—myokine regulation

    DEFF Research Database (Denmark)

    Benatti, Fabiana B; Pedersen, Bente K

    2015-01-01

    muscle communicates with other organs by secreting proteins called myokines. Some myokines are thought to induce anti-inflammatory responses with each bout of exercise and mediate long-term exercise-induced improvements in cardiovascular risk factors, having an indirect anti-inflammatory effect...... of exercise, and indirectly, by improving comorbidities and cardiovascular risk factors. We also discuss the mechanisms by which some myokines have anti-inflammatory functions in inflammatory rheumatic diseases.......Persistent systemic inflammation, a typical feature of inflammatory rheumatic diseases, is associated with a high cardiovascular risk and predisposes to metabolic disorders and muscle wasting. These disorders can lead to disability and decreased physical activity, exacerbating inflammation...

  4. Role of cholinergic anti-inflammatory pathway in regulating host response and its interventional strategy for inflammatory diseases

    Institute of Scientific and Technical Information of China (English)

    WANG Da-wei; ZHOU Rong-bin; YAO Yong-ming

    2009-01-01

    @@ The cholinergic anti-inflammatory pathway (CAP) is a neurophysiological mechanism that regulates the immune system. The CAP inhibits inflammation by suppressing cytokine synthesis via release of acetylcholine in organs of the reticuloendothelial system, including the lungs, spleen, liver, kidneys and gastrointestinal tract.

  5. Posttranscriptional Gene Regulation: Novel Pathways for Glucocorticoids' Anti-inflammatory Action.

    Science.gov (United States)

    Stellato, Cristiana

    2012-05-01

    Posttranscriptional gene regulation (PTR) is a fundamental biological process that integrates with the master transcriptional control of gene expression, in ways that only in the last decade have been increasingly understood [1, 2]. While epigenetic and transcriptional events shape cell response qualitatively, deciding the pattern of gene expression to 'switch on or off' in response to endogenous or environmental triggers, the key task of PTR is to act as a 'rheostat' and rapidly adapt the cellular response by providing the appropriate amplitude and timing to the protein expression patterns [3, 4]. The pivotal role of this mechanism comes to the forefront in inflammatory and immune response, where the changes in amplitude and duration in the expression of dangerous and protective genes are in delicate balance, and are critical in determining either the successful resolution of the immune response or its chronic overexpression [5]. This brief review introduces members of the main classes of molecules mediating the cytoplasmic arm of gene regulation, namely RNA-binding proteins and micro-RNA (miRNA), and summarizes experimental data that underscore the role of these molecules in the pathophysiology of chronic inflammation, as well as their promising value as mechanisms conveying the anti-inflammatory effect of synthetic glucocorticoids.

  6. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation.

    Science.gov (United States)

    Benatti, Fabiana B; Pedersen, Bente K

    2015-02-01

    Persistent systemic inflammation, a typical feature of inflammatory rheumatic diseases, is associated with a high cardiovascular risk and predisposes to metabolic disorders and muscle wasting. These disorders can lead to disability and decreased physical activity, exacerbating inflammation and the development of a network of chronic diseases, thus establishing a 'vicious cycle' of chronic inflammation. During the past two decades, advances in research have shed light on the role of exercise as a therapy for rheumatic diseases. One of the most important of these advances is the discovery that skeletal muscle communicates with other organs by secreting proteins called myokines. Some myokines are thought to induce anti-inflammatory responses with each bout of exercise and mediate long-term exercise-induced improvements in cardiovascular risk factors, having an indirect anti-inflammatory effect. Therefore, contrary to fears that physical activity might aggravate inflammatory pathways, exercise is now believed to be a potential treatment for patients with rheumatic diseases. In this Review, we discuss how exercise disrupts the vicious cycle of chronic inflammation directly, after each bout of exercise, and indirectly, by improving comorbidities and cardiovascular risk factors. We also discuss the mechanisms by which some myokines have anti-inflammatory functions in inflammatory rheumatic diseases.

  7. Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Antonio Barbieri

    2017-02-01

    Full Text Available Among the most important traditional medicinal fungi, Ganoderma lucidum has been used as a therapeutic agent for the treatment of numerous diseases, including cancer, in Oriental countries. The aim of this study is to investigate the anti-inflammatory, anticancer and anti-metastatic activities of Ganoderma lucidum extracts in melanoma and triple-negative breast cancer cells. Ganoderma lucidum extracts were prepared by using common organic solvents; MDA-MB 231 and B16-F10 cell lines were adopted as cellular models for triple-negative breast cancer and melanoma and characterized for cell viability, wound-healing assay and measurement of cytokines secreted by cancer cells under pro-inflammatory conditions (incubation with lipopolysaccharide, LPS and pretreatment with Ganoderma lucidum extract at different concentrations. Our study demonstrates, for the first time, how Ganoderma lucidum extracts can significantly inhibit the release of IL-8, IL-6, MMP-2 and MMP-9 in cancer cells under pro-inflammatory condition. Interestingly, Ganoderma lucidum extracts significantly also decrease the viability of both cancer cells in a time- and concentration-dependent manner, with abilities to reduce cell migration over time, which is correlated with a lower release of matrix metalloproteases. Taken together, these results indicate the possible use of Ganoderma lucidum extract for the therapeutic management of melanoma and human triple-negative breast cancer.

  8. Avoidance of nonsteroidal anti-inflammatory drugs after negative provocation tests in urticaria/angioedema reactions: Real-world experience.

    Science.gov (United States)

    Bommarito, Luisa; Zisa, Giuliana; Riccobono, Francesca; Villa, Elisa; D'Antonio, Cristian; Calamari, Ambra M; Poppa, Mariangela; Moschella, Adele; Di Pietrantonj, Carlo; Galimberti, Maurizio

    2014-01-01

    Drug provocation tests (DPTs) are the gold standard in diagnosing nonsteroidal anti-inflammatory drug (NSAID) hypersensitivity; however, only few data about follow-up of patients with negative DPTs are actually available. The aim of this study was to assess patients' behavior in taking NSAIDs again and to evaluate NSAID tolerability after negative allergological workup. This is a follow-up study involving patients evaluated for history of cutaneous reactions (urticaria and or angioedema) after NSAID intake and with negative DPTs with the suspected NSAID. Patients were asked during a phone interview about the intake of NSAIDs, tolerance, or reasons of avoidance. The negative predictive value (NPV) of NSAIDs DPTs was calculated. One hundred eleven of 142 patients were successfully contacted; 46/111 (41.44%) took the same NSAID previously tested with two adverse reactions reported (4.34%). Fifty-three of 111 (47.74%) patients did not take the same NSAID, but 34 of them took at least another strong cyclooxygenase (COX) 1 inhibitor, with 1 adverse reaction (2.94%) and 19 of them took only weak COX-1 inhibitors. Twelve of 111 patients (10.8%) did not take any NSAID. Reasons for drug avoidance were mainly fear of reactions (70.8%) and no need (29.2%). NPV, overall, was 96.97% (95% confidence interval, 91-99%). Although NSAID hypersensitivity diagnosis was ruled out by oral provocation test, the majority of patients with a history of urticaria/angioedema avoided the intake of the tested NSAIDs for fear of new reactions, particularly when strong COX-1 inhibitor NSAIDs were involved. The high NPV value of DPT resulting from this study should reassure NSAID intake.

  9. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide.

    Science.gov (United States)

    Ganguly, Sudipto; Mula, Soumyaditya; Chattopadhyay, Subrata; Chatterjee, Mitali

    2007-05-01

    The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for the relief of pain; however, the underlying molecular mechanisms of this effect have not been elucidated. The anti-inflammatory and immunomodulatory effects of an ethanolic extract of the leaves of P. betle (100 mg kg(-1); PB) were demonstrated in a complete Freund's adjuvant-induced model of arthritis in rats with dexamethasone (0.1 mg kg(-1)) as the positive control. At non-toxic concentrations of PB (5-25 microg mL(-1)), a dose-dependent decrease in extracellular production of nitric oxide in murine peritoneal macrophages was measured by the Griess assay and corroborated by flow cytometry using the nitric oxide specific probe, 4,5-diaminofluorescein-2 diacetate. This decreased generation of reactive nitrogen species was mediated by PB progressively down-regulating transcription of inducible nitric oxide synthase in macrophages, and concomitantly causing a dose-dependent decrease in the expression of interleukin-12 p40, indicating the ability of PB to down-regulate T-helper 1 pro-inflammatory responses. Taken together, the anti-inflammatory and anti-arthrotic activity of PB is attributable to its ability to down-regulate the generation of reactive nitrogen species, thus meriting further pharmacological investigation.

  10. Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility

    Science.gov (United States)

    Gabunia, Khatuna; Jain, Surbhi; England, Ross N.

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration is an important cellular event in multiple vascular diseases, including atherosclerosis, restenosis, and transplant vasculopathy. Little is known regarding the effects of anti-inflammatory interleukins on VSMC migration. This study tested the hypothesis that an anti-inflammatory Th2 interleukin, interleukin-19 (IL-19), could decrease VSMC motility. IL-19 significantly decreased platelet-derived growth factor (PDGF)-stimulated VSMC chemotaxis in Boyden chambers and migration in scratch wound assays. IL-19 significantly decreased VSMC spreading in response to PDGF. To determine the molecular mechanism(s) for these cellular effects, we examined the effect of IL-19 on activation of proteins that regulate VSMC cytoskeletal dynamics and locomotion. IL-19 decreased PDGF-driven activation of several cytoskeletal regulatory proteins that play an important role in smooth muscle cell motility, including heat shock protein-27 (HSP27), myosin light chain (MLC), and cofilin. IL-19 decreased PDGF activation of the Rac1 and RhoA GTPases, important integrators of migratory signals. IL-19 was unable to inhibit VSMC migration nor was able to inhibit activation of cytoskeletal regulatory proteins in VSMC transduced with a constitutively active Rac1 mutant (RacV14), suggesting that IL-19 inhibits events proximal to Rac1 activation. Together, these data are the first to indicate that IL-19 can have important inhibitory effects on VSMC motility and activation of cytoskeletal regulatory proteins. This has important implications for the use of anti-inflammatory cytokines in the treatment of vascular occlusive disease. PMID:21209363

  11. Novel anti-inflammatory role of SLPI in adipose tissue and its regulation by high fat diet

    Directory of Open Access Journals (Sweden)

    Buhman Kimberly K

    2011-02-01

    Full Text Available Abstract Background Secretory leucocyte protease inhibitor (SLPI is an anti-inflammatory protein that is constitutively expressed in multiple cell types where it functions to counteract localized tissue inflammation by its anti-inflammatory, antimicrobial and anti-protease properties. Little is known about the expression and implication of SLPI in the regulation of adipose tissue inflammation. Therefore, we tested the hypothesis that obesity induces expression of SLPI in adipose tissue where it functions to counteract adipocyte inflammation. Methods Male C57BL6 mice were fed a high fat (60% fat calories or a control diet (10% fat calories diet for 12 weeks. Adipose tissue expression of SLPI was determined by western blotting and PCR. Fully differentiated adipocytes (3T3-L1 were treated with lipopolysaccharide (LPS, 100 ng/ml or peptidoglycan (10 μg/ml for 24 hours in the presence or absence of SLPI. Media was collected for interleukin 6 (IL-6 analysis by enzyme-linked immune absorbent assay (ELISA. RNA was isolated for gene expression analysis by real-time polymerase chain reaction (RT-PCR. Results Visceral fat (mesenteric and epididymal express a higher level of SLPI than subcutaneous fat. The expression of SLPI is mostly in the stromal vascular fraction compared to adipocytes. We also confirmed in vitro that activation of TLR2 and 4 with peptidoglycan and LPS respectively leads to induction of SLPI. Finally, we confirmed that SLPI exerted an anti-inflammatory effect in adipocytes treated with LPS by causing a reduction in expression of IL-6 via a mechanism that included stabilization of cellular IKBα expression. Conclusion Our results show that SLPI is also expressed in adipocytes and adipose tissue where it could play an important feedback role in the resolution of inflammation.

  12. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis.

    Science.gov (United States)

    Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2015-02-01

    Bovine mastitis is defined as the inflammation of mammary gland and is the most multiple diseases in dairy cattle. There is still no effective treatment now. Leonurine, extracted from Leonurus cardiaca, has been proved to have anti-inflammatory effect. In the present study, we utilized a mouse mastitis model to study the effect of leonurine on LPS-induced mastitis. Leonurine was administered three times during the 24 h after inducing infection in the mammary gland. The results showed that leonurine significantly alleviated LPS-induced histopathological changes, downregulated the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), upregulated the level of anti-inflammatory cytokine interleukin-10 (IL-10), and inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further study revealed that leonurine inhibited the expression of Toll-like receptor 4 (TLR4) and the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK). Therefore, the results demonstrated that leonurine could downregulate the expression of TNF-α, IL-6, iNOS, and COX-2 and upregulate the expression of IL-10 mainly by inhibiting the expression of TLR4 and the activation of NF-κB and the phosphorylation of p38, ERK, and JNK. Leonurine may be a potential agent for mastitis therapy.

  13. An anti-inflammatory oligopeptide produced by Entamoeba histolytica down-regulates the expression of pro-inflammatory chemokines.

    Science.gov (United States)

    Utrera-Barillas, Dolores; Velazquez, Juan R; Enciso, Antonio; Cruz, Samira Muñoz; Rico, Guadalupe; Curiel-Quesada, Everardo; Teran, Luis M; Kretschmer, Roberto R

    2003-10-01

    Axenically grown Entamoeba histolytica produces a pentapeptide (Met-Gln-Cys-Asn-Ser) with anti-inflammatory properties that, among others, inhibits the in vitro and in vivo locomotion of human monocytes, sparing polymorphonuclear leucocytes from this effect [hence the name originally given. Monocyte Locomotion Inhibitory Factor (MLIF)]. A synthetic construct of this peptide displays the same effects as the native material. We now added MLIF to resting and PMA-stimulated cells of a human monocyte cell line and measured the effect upon mRNA and protein expression of pro-inflammatory chemokines (RANTES, IP-10, MIP-1alpha, MIP-1beta, MCP-1, IL-8, I-309 and lymphotactin) and the shared CC receptor repertoire. The constitutive expression of these chemokines and the CC receptors was unaffected, whereas induced expression of MIP-1alpha, MIP-1beta, and I-309, and that of the CCR1 receptor--all involved in monocyte chemotaxis--was significantly inhibited by MLIF. This suggests that the inhibition of monocyte functions by MLIF may not only be exerted directly on these cells, but also--and perhaps foremost--through a conglomerate down-regulation of endogenous pro-inflammatory chemokines.

  14. Sunscreen regulations and use of anti-inflammatory agents in sunscreens

    OpenAIRE

    Haydar, Kamran; Burkhart, Craig G

    2013-01-01

    The Food and Drug Administration (FDA) has been more proactive in regulating sunscreen products. In 2011, the FDA publicized a set of new requirements for marketing over-the-counter sunscreens in the United States. The primary goal of the new FDA requirements was to provide consumers with a clear understanding of the level of protection actually provided by a sunscreen. Furthermore, information about protection against ultraviolet A radiation, associated with early aging and skin cancer, was ...

  15. Anti-inflammatory effects of ethanolic extract from Sargassum horneri (Turner) C. Agardh on lipopolysaccharide-stimulated macrophage activation via NF-κB pathway regulation.

    Science.gov (United States)

    Kim, Mi Eun; Jung, Yun Chan; Jung, Inae; Lee, Hee-Woo; Youn, Hwa-Young; Lee, Jun Sik

    2015-01-01

    Inflammation is major symptom of the innate immune response by infection of microbes. Macrophages, one of immune response related cells, play a role in inflammatory response. Recent studies reported that various natural products can regulate the activation of immune cells such as macrophage. Sargassum horneri (Turner) C. Agardh is one of brown algae. Recently, various seaweeds including brown algae have antioxidant and anti-inflammatory effects. However, anti-inflammatory effects of Sargassum horneri (Turner) C. Agardh are still unknown. In this study, we investigated anti-inflammatory effects of ethanolic extract of Sargassum horneri (Turner) C. Agardh (ESH) on RAW 264.7 murine macrophage cell line. The ESH was extracted from dried Sargassum horneri (Turner) C. Agardh with 70% ethanol and then lyophilized at -40 °C. ESH was not cytotoxic to RAW 264.7, and nitric oxide (NO) production induced by LPS-stimulated macrophage activation was significantly decreased by the addition of 200 μg/mL of ESH. Moreover, ESH treatment reduced mRNA level of cytokines, including IL-1β, and pro-inflammatory genes such as iNOS and COX-2 in LPS-stimulated macrophage activation in a dose-dependent manner. ESH was found to elicit anti-inflammatory effects by inhibiting ERK, p-p38 and NF-κB phosphorylation. In addition, ESH inhibited the release of IL-1β in LPS-stimulated macrophages. These results suggest that ESH elicits anti-inflammatory effects on LPS-stimulated macrophage activation via the inhibition of ERK, p-p38, NF-κB, and pro-inflammatory gene expression.

  16. Inflammatory Regulation Effect and Action Mechanism of Anti-Inflammatory Effective Parts of Housefly (Musca domestica Larvae on Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Fu Jiang Chu

    2013-01-01

    Full Text Available The protein-enriched extracts of housefly larvae were segregated by gel-filtration chromatography (GFC and then anti-inflammatory activity screening in RAW264.7 (induced by LPS was carried out. After acquire the anti-inflammatory effective parts, its anti-atherosclerotic properties in vivo were then evaluated. Results showed that the anti-inflammatory effective parts of housefly larvae were low-molecular-weight parts. After treated with the effective parts oral gavaged for 4 weeks, the atherosclerotic lesions of the mouse were significantly decreased. The inflammatory and lipid parameters were also reduced (except HDL which was increased. Western blot analysis demonstrated that the effective parts exerted potent inhibitory effect on expression of p65 in nucleus and cytoplasm. The results of immunofluorescence microscopy analysis also showed that the expressions of p65 both in cytoplasm and nucleus were significantly reduced. The hypothesis that the anti-inflammatory effective parts of housefly larvae possessed anti-atherosclerosis activity in mouse and the possible mechanism could be associated with the inhibition of expression and nuclear transfer of NF-κB p65 could be derived.

  17. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-κB pathway regulation.

    Science.gov (United States)

    Jung, Yun Chan; Kim, Mi Eun; Yoon, Ju Hwa; Park, Pu Reum; Youn, Hwa-Young; Lee, Hee-Woo; Lee, Jun Sik

    2014-12-01

    Inflammation is the major symptom of the innate immune response to microbial infection. Macrophages, immune response-related cells, play a role in the inflammatory response. Galangin is a member of the flavonols and is found in Alpinia officinarum, galangal root and propolis. Previous studies have demonstrated that galangin has antioxidant, anticancer, and antineoplastic activities. However, the anti-inflammatory effects of galangin are still unknown. In this study, we investigated the anti-inflammatory effects of galangin on RAW 264.7 murine macrophages. Galagin was not cytotoxic to RAW 264.7 cells, and nitric oxide (NO) production induced by lipopolysaccharide (LPS)-stimulated macrophages was significantly decreased by the addition of 50 μM galangin. Moreover, galangin treatment reduced mRNA levels of cytokines, including IL-1β and IL-6, and proinflammatory genes, such as iNOS in LPS-activated macrophages in a dose-dependent manner. Galangin treatment also decreased the protein expression levels of iNOS in activated macrophages. Galangin was found to elicit anti-inflammatory effects by inhibiting ERK and NF-κB-p65 phosphorylation. In addition, galangin-inhibited IL-1β production in LPS-activated macrophages. These results suggest that galangin elicits anti-inflammatory effects on LPS-activated macrophages via the inhibition of ERK, NF-κB-p65 and proinflammatory gene expression.

  18. Anti-inflammatory Diets.

    Science.gov (United States)

    Sears, Barry

    2015-01-01

    Chronic disease is driven by inflammation. This article will provide an overview on how the balance of macronutrients and omega-6 and omega-3 fatty acids in the diet can alter the expression of inflammatory genes. In particular, how the balance of the protein to glycemic load of a meal can alter the generation of insulin and glucagon and the how the balance of omega-6 and omega-3 fatty acids can effect eicosanoid formation. Clinical results on the reduction of inflammation following anti-inflammatory diets are discussed as well as the molecular targets of anti-inflammatory nutrition. To overcome silent inflammation requires an anti-inflammatory diet (with omega-3s and polyphenols, in particular those of Maqui). The most important aspect of such an anti-inflammatory diet is the stabilization of insulin and reduced intake of omega-6 fatty acids. The ultimate treatment lies in reestablishing hormonal and genetic balance to generate satiety instead of constant hunger. Anti-inflammatory nutrition, balanced 40:30:30 with caloric restriction, should be considered as a form of gene silencing technology, in particular the silencing of the genes involved in the generation of silent inflammation. To this anti-inflammatory diet foundation supplemental omega-3 fatty acids at the level of 2-3 g of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) per day should be added. Finally, a diet rich in colorful, nonstarchy vegetables would contribute adequate amounts of polyphenols to help not only to inhibit nuclear factor (NF)-κB (primary molecular target of inflammation) but also activate AMP kinase. Understanding the impact of an anti-inflammatory diet on silent inflammation can elevate the diet from simply a source of calories to being on the cutting edge of gene-silencing technology.

  19. Phenolic Acid Profiling, Antioxidant, and Anti-Inflammatory Activities, and miRNA Regulation in the Polyphenols of 16 Blueberry Samples from China

    Directory of Open Access Journals (Sweden)

    Xianming Su

    2017-02-01

    Full Text Available To investigate the anti-atherosclerosis related mechanism of blueberries, the phenolic acids (PAs content, antioxidant and anti-inflammatory activities, as well as the microRNA (miRNA regulation of polyphenol fractions in blueberry samples from China were studied. Sixteen batches of blueberries including 14 commercialized cultivars (Reka, Patriot, Brigitta, Bluecrop, Berkeley, Duke, Darrow, Northland, Northblue, Northcountry, Bluesource, Southgood, O’Neal, and Misty were used in this study. Seven PAs in the polyphenol fractions from 16 blueberry samples in China were quantified by high performance liquid chromatography/tandem mass spectrometry (HPLC/MS2. The antioxidant activities of blueberry polyphenols were tested by (1,1-diphenyl-2-picrylhydrazyl [DPPH] assay. The anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6] activities of the polyphenol fractions of the blueberries were investigated by using lipopolysaccharide (LPS induced RAW 264.7 macrophages. The correlation analysis showed that the antioxidant (1,1-diphenyl-2-picrylhydrazyl [DPPH] and anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6] activities of the polyphenol fractions of the blueberries were in accordance with their PA contents. Although the polyphenol-enriched fractions of blueberries could inhibit the microRNAs (miRNAs (miR-21, miR-146a, and miR-125b to different extents, no significant contribution from the PAs was observed. The inhibition of these miRNAs could mostly be attributed to the other compounds present in the polyphenol-enriched fraction of the blueberries. This is the first study to evaluate the PAs content, antioxidant and anti-inflammatory activities, and miRNA regulation of Chinese blueberries.

  20. Phenolic Acid Profiling, Antioxidant, and Anti-Inflammatory Activities, and miRNA Regulation in the Polyphenols of 16 Blueberry Samples from China.

    Science.gov (United States)

    Su, Xianming; Zhang, Jian; Wang, Hongqing; Xu, Jing; He, Jiuming; Liu, Liying; Zhang, Ting; Chen, Ruoyun; Kang, Jie

    2017-02-18

    To investigate the anti-atherosclerosis related mechanism of blueberries, the phenolic acids (PAs) content, antioxidant and anti-inflammatory activities, as well as the microRNA (miRNA) regulation of polyphenol fractions in blueberry samples from China were studied. Sixteen batches of blueberries including 14 commercialized cultivars (Reka, Patriot, Brigitta, Bluecrop, Berkeley, Duke, Darrow, Northland, Northblue, Northcountry, Bluesource, Southgood, O'Neal, and Misty) were used in this study. Seven PAs in the polyphenol fractions from 16 blueberry samples in China were quantified by high performance liquid chromatography/tandem mass spectrometry (HPLC/MS²). The antioxidant activities of blueberry polyphenols were tested by (1,1-diphenyl-2-picrylhydrazyl [DPPH]) assay. The anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]) activities of the polyphenol fractions of the blueberries were investigated by using lipopolysaccharide (LPS) induced RAW 264.7 macrophages. The correlation analysis showed that the antioxidant (1,1-diphenyl-2-picrylhydrazyl [DPPH]) and anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]) activities of the polyphenol fractions of the blueberries were in accordance with their PA contents. Although the polyphenol-enriched fractions of blueberries could inhibit the microRNAs (miRNAs) (miR-21, miR-146a, and miR-125b) to different extents, no significant contribution from the PAs was observed. The inhibition of these miRNAs could mostly be attributed to the other compounds present in the polyphenol-enriched fraction of the blueberries. This is the first study to evaluate the PAs content, antioxidant and anti-inflammatory activities, and miRNA regulation of Chinese blueberries.

  1. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Song, Xiaojing; Zhang, Wen; Wang, Tiancheng; Jiang, Haichao; Zhang, Zecai; Fu, Yunhe; Yang, Zhengtao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Geniposide is a medicine isolated from Gardenia jasminoides Ellis, which is a traditional Chinese herb that is widely used in Asia for the treatment of inflammation, brain diseases, and hepatic disorders. Mastitis is a highly prevalent and important infectious disease. In this study, we used a lipopolysaccharide (LPS)-induced mouse mastitis model and LPS-stimulated primary mouse mammary epithelial cells (mMECs) to explore the anti-inflammatory effect and the mechanism of action of geniposide. Using intraductal injection of LPS as a mouse model of mastitis, we found that geniposide significantly reduced the infiltration of inflammatory cells and downregulated the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). To further investigate the anti-inflammatory mechanism, we used LPS-stimulated mMECs as an in vitro mastitis model. The results of enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) showed that geniposide inhibited the expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. Western blot analysis demonstrated that geniposide could suppress the phosphorylation of inhibitory kappa B (IκBα), nuclear factor-κB (NF-κB), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Geniposide also inhibited the expression of toll-like receptor 4 (TLR4) in the LPS-stimulated mMECs. In conclusion, geniposide exerted its anti-inflammatory effect by regulating TLR4 expression, which affected the downstream NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, geniposide may be a potential drug for mastitis therapy.

  2. Anti-inflammatory and anti-apoptotic effects of rosuvastatin by regulation of oxidative stress in a dextran sulfate sodium-induced colitis model.

    Science.gov (United States)

    Shin, Seung Kak; Cho, Jae Hee; Kim, Eui Joo; Kim, Eun-Kyung; Park, Dong Kyun; Kwon, Kwang An; Chung, Jun-Won; Kim, Kyoung Oh; Kim, Yoon Jae

    2017-07-07

    To evaluate the anti-inflammatory and anti-apoptotic effects of rosuvastatin by regulation of oxidative stress in a dextran sulfate sodium (DSS)-induced colitis model. An acute colitis mouse model was induced by oral administration of 5% DSS in the drinking water for 7 d. In the treated group, rosuvastatin (0.3 mg/kg per day) was administered orally before and after DSS administration for 21 d. On day 21, mice were sacrificed and the colons were removed for macroscopic examination, histology, and Western blot analysis. In the in vitro study, IEC-6 cells were stimulated with 50 ng/mL tumor necrosis factor (TNF)-α and then treated with or without rosuvastatin (2 μmol/L). The levels of reactive oxygen species (ROS), inflammatory mediators, and apoptotic markers were measured. In DSS-induced colitis mice, rosuvastatin treatment significantly reduced the disease activity index and histological damage score compared to untreated mice (P analysis revealed that rosuvastatin treatment reduced the DSS-induced increase of serum IL-2, IL-4, IL-5, IL-6, IL-12 and IL-17, and G-CSF levels. The increased levels of cleaved caspase-3, caspase-7, and poly (ADP-ribose) polymerase in the DSS group were attenuated by rosuvastatin treatment. In vitro, rosuvastatin significantly reduced the production of ROS, inflammatory mediators and apoptotic markers in TNF-α-treated IEC-6 cells (P < 0.05). Rosuvastatin had the antioxidant, anti-inflammatory and anti-apoptotic effects in DSS-induced colitis model. Therefore, it might be a candidate anti-inflammatory drug in patients with inflammatory bowel disease.

  3. Prevalence of Helicobacter Pylori-Negative, Non-Steroidal Anti-Inflammatory Drug Related Peptic Ulcer Disease in Patients Referred to Afzalipour Hospital.

    Science.gov (United States)

    Seyed Mirzaei, Seyed Mahdi; Zahedi, Mohammad Javad; Shafiei Pour, Sara

    2015-10-01

    BACKGROUND Although Helicobacter pylori and non-steroidal anti-inflammatory drugs (NSAIDs) are the main causes of peptic ulcers disease (PUD), recently the prevalence of idiopathic peptic ulcer (IPU) is increasing in most parts of the world. The aim of this study was to assess the prevalence of IPU in Kerman, the center of largest province in south-east Iran. METHODS We included 215 patients with peptic ulcer in our study. Combined methods rapid urease test (RUT), histology, and real time polymerase chain reaction (PCR) was performed on endoscopic samples of peptic ulcers. NSAID use was determined by medical history. SPSS software version 16 was used for data analysis. p valueulcer, four (1.8%) had H.pylorinegative and NSAID-negative PUD. There were not significant differences between patients with IPU and patients with peptic ulcer associated with H.pylori or NSAIDs regarding the sex, age, cigarette smoking, and opioid abuse. CONCLUSION Our study showed that in contrast to other reports from western and some Asian countries, the prevalence of IPU is low in Kerman and H.pylori infection is still the major cause of PUD. We recommend a large and multi-central study to determine the prevalence of IPU in Iran.

  4. Aspirin and some other nonsteroidal anti-inflammatory drugs inhibit cystic fibrosis transmembrane conductance regulator protein gene expression in T-84 cells.

    Science.gov (United States)

    Tondelier, D; Brouillard, F; Lipecka, J; Labarthe, R; Bali, M; Costa de Beauregard, M A; Torossi, T; Cougnon, M; Edelman, A; Baudouin-Legros, M

    1999-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF gene, which encodes CF transmembrane conductance regulator protein (CFTR), a transmembrane protein that acts as a cAMP-regulated chloride channel The disease is characterized by inflammation but the relationship between inflammation, abnormal transepithelial ion transport, and the clinical manifestations of CF are uncertain. The present study was undertaken to determine whether three nonsteroidal anti-inflammatory drugs (NSAIDs) (aspirin, ibuprofen, and indomethacin) modulate CFTR gene expression in T-84 cells. Treatment with NSAIDs reduced CFTR transcripts, and decreased cAMP-stimulated anion fluxes, an index of CFTR function. However, the two phenomena occurred at different concentrations of both drugs. The results indicate that NSAIDs can regulate both CFTR gene expression and the function of CFTR-related chloride transport, and suggest that NSAIDs act via multiple transduction pathways.

  5. Aspirin and Some Other Nonsteroidal Anti-Inflammatory Drugs Inhibit Cystic Fibrosis Transmembrane Conductance Regulator Protein Gene Expression in T-84 Cells

    Directory of Open Access Journals (Sweden)

    Danielle Tondelier

    1999-01-01

    Full Text Available Cystic fibrosis (CF is caused by mutations in the CF gene, which encodes CF transmembrane conductance regulator protein (CFTR, a transmembrane protein that acts as a cAMP-regulated chloride channel. The disease is characterized by inflammation but the relationship between inflammation, abnormal transepithelial ion transport, and the clinical manifestations of CF are uncertain. The present study was undertaken to determine whether three nonsteroidal anti-inflammatory drugs (NSAIDs (aspirin, ibuprofen, and indomethacin modulate CFTR gene expression in T-84 cells. Treatment with NSAIDs reduced CFTR transcripts, and decreased cAMP-stimulated anion fluxes, an index of CFTR function. However, the two phenomena occurred at different concentrations of both drugs. The results indicate that NSAIDs can regulate both CFTR gene expression and the function of CFTR-related chloride transport, and suggest that NSAIDs act via multiple transduction pathways.

  6. Antipyretic and anti-inflammatory effects of asiaticoside in lipopolysaccharide-treated rat through up-regulation of heme oxygenase-1.

    Science.gov (United States)

    Wan, JingYuan; Gong, Xia; Jiang, Rong; Zhang, Zhuo; Zhang, Li

    2013-08-01

    Asiaticoside (AS), a triterpenoid isolated from Centella asiatica, has been found to exhibit antioxidant and anti-inflammatory activities in several experimental animal models. However, the underlying mechanisms remain elusive. In this study, we provide experimental evidences that AS dose-dependently inhibited lipopolysaccharide (LPS)-induced fever and inflammatory response, including serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 production, liver myeloperoxidase (MPO) activity, brain cyclooxygenase-2 (COX-2) protein expression and prostaglandin E2 (PGE2 ) production. Interestingly, AS increased serum IL-10 level, liver heme oxygenase-1 (HO-1) protein expression and activity. Furthermore, we found that the suppressive effects of AS on LPS-induced fever and inflammation were reversed by pretreatment with ZnPPIX, a HO-1 activity inhibitor. In summary, our results suggest that AS has the antipyretic and anti-inflammatory effects in LPS-treated rat. These effects could be associated with the inhibition of pro-inflammatory mediators, including TNF-α and IL-6 levels, COX-2 expression and PGE2 production, as well as MPO activity, which might be mediated by the up-regulation of HO-1.

  7. Receptor subtype-dependent positive and negative modulation of GABA(A) receptor function by niflumic acid, a nonsteroidal anti-inflammatory drug.

    Science.gov (United States)

    Sinkkonen, Saku T; Mansikkamäki, Salla; Möykkynen, Tommi; Lüddens, Hartmut; Uusi-Oukari, Mikko; Korpi, Esa R

    2003-09-01

    In addition to blocking cyclooxygenases, members of the fenamate group of nonsteroidal anti-inflammatory drugs have been proposed to affect brain GABAA receptors. Using quantitative autoradiography with GABAA receptor-associated ionophore ligand [35S]t-butylbicyclophosphorothionate (TBPS) on rat brain sections, one of the fenamates, niflumate, at micromolar concentration was found to potentiate GABA actions in most brain areas, whereas being in the cerebellar granule cell layer an efficient antagonist similar to furosemide. With recombinant GABAA receptors expressed in Xenopus laevis oocytes, we found that niflumate potentiated 3 microM GABA responses up to 160% and shifted the GABA concentration-response curve to the left in alpha1beta2gamma2 receptors, the predominant GABAA receptor subtype in the brain. This effect needed the gamma2 subunit, because on alpha1beta2 receptors, niflumate exhibited solely an antagonistic effect at high concentrations. The potentiation was not abolished by the specific benzodiazepine site antagonist flumazenil. Niflumate acted as a potent antagonist of alpha6beta2 receptors (with or without gamma2 subunit) and of alphaXbeta2gamma2 receptors containing a chimeric alpha1 to alpha6 subunit, which suggests that niflumate antagonism is dependent on the same transmembrane domain 1- and 2-including fragment of the alpha6 subunit as furosemide antagonism. This antagonism was noncompetitive because the maximal GABA response, but not the potency, was reduced by niflumate. These data show receptor subtype-dependent positive and negative modulatory actions of niflumate on GABAA receptors at clinically relevant concentrations, and they suggest the existence of a novel positive modulatory site on alpha1beta2gamma2 receptors that is dependent on the gamma2 subunit but not associated with the benzodiazepine binding site.

  8. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    Science.gov (United States)

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI.

  9. Anti-inflammatory effect as a mechanism of effectiveness underlying the clinical benefits of pelotherapy in osteoarthritis patients: regulation of the altered inflammatory and stress feedback response

    Science.gov (United States)

    Ortega, E.; Gálvez, I.; Hinchado, M. D.; Guerrero, J.; Martín-Cordero, L.; Torres-Piles, S.

    2017-04-01

    The purpose of the present investigation was to evaluate whether an anti-inflammatory effect together with an improvement of the regulation of the interaction between the inflammatory and stress responses underlies the clinical benefits of pelotherapy in osteoarthritis (OA) patients. This study evaluated the effects of a 10-day cycle of pelotherapy at the spa centre `El Raposo' (Spain) in a group of 21 OA patients diagnosed with primary knee OA. Clinical assessments included pain intensity using a visual analog scale; pain, stiffness and physical function using the Western Ontario and McMaster Universities Arthritis Index; and health-related quality of life using the EuroQol-5D questionnaire. Serum inflammatory cytokine levels (IL-1β, TNF-α, IL-8, IL-6, IL-10 and TGF-β) were evaluated using the Bio-Plex® Luminex® system. Circulating neuroendocrine-stress biomarkers, such as cortisol and extracellular 72 kDa heat shock protein (eHsp72), were measured by ELISA. After the cycle of mud therapy, OA patients improved the knee flexion angle and OA-related pain, stiffness and physical function, and they reported a better health-related quality of life. Serum concentrations of IL-1β, TNF-α, IL-8, IL-6 and TGF-β, as well as eHsp72, were markedly decreased. Besides, systemic levels of cortisol increased significantly. These results confirm that the clinical benefits of mud therapy may well be mediated, at least in part, by its systemic anti-inflammatory effects and neuroendocrine-immune regulation in OA patients. Thus, mud therapy could be an effective alternative treatment in the management of OA.

  10. Potentiated clinoptilolite: artificially enhanced aluminosilicate reduces symptoms associated with endoscopically negative gastroesophageal reflux disease and nonsteroidal anti-inflammatory drug induced gastritis

    Directory of Open Access Journals (Sweden)

    Potgieter W

    2014-07-01

    Full Text Available Wilna Potgieter, Caroline Selma Samuels, Jacques Renè SnymanDepartment of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, South AfricaPurpose: The cation exchanger, a potentiated clinoptilolite (Absorbatox™ 2.4D, is a synthetically enhanced aluminosilicate. The aim of this study was to evaluate the possible benefits of a potentiated clinoptilolite as a gastroprotective agent in reducing the severity of clinical symptoms and signs associated with 1 endoscopically negative gastroesophageal reflux disease (ENGORD and 2 nonsteroidal anti-inflammatory drug (NSAID medication.Methods and patients: Two randomized, double-blind, placebo-controlled, pilot studies, the ENGORD and NSAID studies, were conducted. After initial negative gastroscopy, a total of 25 patients suffering from ENGORD were randomized to receive either placebo capsules or 750 mg Absorbatox twice daily for 14 days. The NSAID study recruited 23 healthy patients who received orally either 1,500 mg Absorbatox or placebo three times daily, plus 500 mg naproxen twice daily. Patients underwent gastroscopic evaluation of their stomach linings prior to and on day 14 of the study. Gastric biopsies were obtained and evaluated via the upgraded Sydney system, whereas visible gastric events and status of the gastric mucosa were evaluated via a 0–3 rating scale. During both studies, patients recorded gastric symptoms in a daily symptom diary.Results: In the ENGORD study, patients who received the potentiated clinoptilolite reported a significant reduction (P≤0.05 in severity of symptoms including reduction in heartburn (44%, discomfort (54%, and pain (56%. Symptom-free days improved by 41% compared to the group who received placebo (not significant. This was over and above the benefits seen with the proton pump inhibitor. In the NSAID study, the reduction in gastric symptom severity was echoed in the group who received the potentiated

  11. Anti-inflammatory effects of mangiferin on sepsis-induced lung injury in mice via up-regulation of heme oxygenase-1.

    Science.gov (United States)

    Gong, Xia; Zhang, Li; Jiang, Rong; Ye, Mengliang; Yin, Xinru; Wan, Jingyuan

    2013-06-01

    Sepsis, a serious unbalanced hyperinflammatory condition, is a tremendous burden for healthcare systems, with a high mortality and limited treatment. Increasing evidences indicated that some active components derived from natural foods have potent anti-inflammatory properties. Here we show that mangiferin (MF), a natural glucosyl xanthone found in both mango and papaya, attenuates cecal ligation and puncture-induced mortality and acute lung injury (ALI), as indicated by reduced systemic and pulmonary inflammatory responses. Moreover, pretreatment with MF inhibits sepsis-activated mitogen-activated protein kinases and nuclear factor kappa-light-chain-enhancer of activated B cells signaling, resulting in inhibiting production of proinflammatory mediators. Notably, MF dose-dependently up-regulates the expression and activity of heme oxygenase (HO)-1 in the lung of septic mice. Further, these beneficial effects of MF on the septic lung injury were eliminated by ZnPP IX, a specific HO-1 inhibitor. Our results suggest that MF attenuates sepsis by up-regulation of HO-1 that protects against sepsis-induced ALI through inhibiting inflammatory signaling and proinflammatory mediators. Thereby, MF may be effective in treating sepsis with ALI. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis.

    Science.gov (United States)

    Broeren, Mathijs G A; de Vries, Marieke; Bennink, Miranda B; Arntz, Onno J; Blom, Arjen B; Koenders, Marije I; van Lent, Peter L E M; van der Kraan, Peter M; van den Berg, Wim B; van de Loo, Fons A J

    2016-03-01

    Disease-inducible promoters for the treatment of rheumatoid arthritis (RA) have the potential to provide regulated expression of therapeutic proteins in arthritic joints. In this study, we set out to identify promoters of human genes that are upregulated during RA and are suitable to drive the expression of relevant amounts of anti-inflammatory interleukin (IL)-10. Microarray analysis of RA synovial biopsies compared with healthy controls yielded a list of 22 genes upregulated during RA. Of these genes, CXCL10 showed the highest induction in lipopolysaccharide-stimulated synovial cells. The CXCL10 promoter was obtained from human cDNA and cloned into a lentiviral vector carrying firefly luciferase to determine the promoter inducibility in primary synovial cells and in THP-1 cells. The promoter activation was strongest 8-12 hr after stimulation with the proinflammatory cytokine tumor necrosis factor (TNF)-α and was reinducible after 96 hr. In addition, the CXCL10 promoter showed a significant response to RA patient serum, compared with sera from healthy individuals. The luciferase gene was replaced with IL-10 to determine the therapeutic properties of the CXCL10p-IL10 lentiviral vector. Primary synovial cells transduced with CXCL10p-IL10 showed a great increase in IL-10 production after stimulation, which reduced the release of proinflammatory cytokines TNF-α and IL-1β. We conclude that the selected proximal promoter of the CXCL10 gene responds to inflammatory mediators present in the serum of patients with RA and that transduction with the lentiviral CXCL10p-IL10 vector reduces inflammatory cytokine production by primary synovial cells from patients with RA. CXCL10 promoter-regulated IL-10 overexpression can thus provide disease-inducible local gene therapy suitable for RA.

  13. Targeting of a Fixed Bacterial Immunogen to Fc Receptors Reverses the Anti-Inflammatory Properties of the Gram-Negative Bacterium, Francisella tularensis, during the Early Stages of Infection.

    Directory of Open Access Journals (Sweden)

    Zulfia Babadjanova

    Full Text Available Production of pro-inflammatory cytokines by innate immune cells at the early stages of bacterial infection is important for host protection against the pathogen. Many intracellular bacteria, including Francisella tularensis, the agent of tularemia, utilize the anti-inflammatory cytokine IL-10, to evade the host immune response. It is well established that IL-10 has the ability to inhibit robust antigen presentation by dendritic cells and macrophages, thus suppressing the generation of protective immunity. The pathogenesis of F. tularensis is not fully understood, and research has failed to develop an effective vaccine to this date. In the current study, we hypothesized that F. tularensis polarizes antigen presenting cells during the early stages of infection towards an anti-inflammatory status characterized by increased synthesis of IL-10 and decreased production of IL-12p70 and TNF-α in an IFN-ɣ-dependent fashion. In addition, F. tularensis drives an alternative activation of alveolar macrophages within the first 48 hours post-infection, thus allowing the bacterium to avoid protective immunity. Furthermore, we demonstrate that targeting inactivated F. tularensis (iFt to Fcγ receptors (FcɣRs via intranasal immunization with mAb-iFt complexes, a proven vaccine strategy in our laboratories, reverses the anti-inflammatory effects of the bacterium on macrophages by down-regulating production of IL-10. More specifically, we observed that targeting of iFt to FcγRs enhances the classical activation of macrophages not only within the respiratory mucosa, but also systemically, at the early stages of infection. These results provide important insight for further understanding the protective immune mechanisms generated when targeting immunogens to Fc receptors.

  14. Anti-Inflammatory Effect of Allium ursinum

    Directory of Open Access Journals (Sweden)

    Alina Elena PÂRVU

    2014-03-01

    Full Text Available The aim of the present study was to evaluate Allium ursinum leaves and flowers extract anti-inflammatory effect. Plant extract 1:1 (w:v was prepared from A. ursinum leaves by a modified Squibb repercolation method. The in vivo anti-inflammatory effects were evaluated on a rat turpentine oil-induced inflammation (i.m. 6 mL/kg BW. The animals were randomly assigned to nine groups (n=8: negative control, inflammation, A. ursinum flower extract (AUF, A. ursinum leaves extract (AUL, indomethacin (INDO (20 mg/kg BW, aminoguanidine (AG (50 mg/kg b.w./d i.p. as a selective NOS2 inhibitor, NG-nitro L-arginine methyl ester (NAME (5 mg/kg b.w./d i.p. as a nonselective NOS inhibitor, L-arginine (ARG (100 mg/kg b.w./d i.p., NO synthesis substrate, and Trolox (20 mg/kg b.w./d i.p as an antioxidant. At 24h from inflammation induction total oxidative status (TOS, oxidative stress index (OSI, nitric oxide (NOx and in vitro phagocytosis test were reduced and the total antioxidative reactivity (TAR was increased by the testes plant extracts. AUF had a better inhibitory effect than AUL. In conclusion, we provided evidence for the hypothesis that A. ursinum leaves and flowers extract exerts anti-inflammatory activity by inhibiting the phagocytosis through the reduction of the nitro-oxidative stress.

  15. Anti-inflammatory effects of oxymatrine on rheumatoid arthritis in rats via regulating the imbalance between Treg and Th17 cells

    Science.gov (United States)

    Ma, Ailing; Yang, Yongya; Wang, Qiuyang; Wang, Yin; Wen, Jing; Zhang, Yanli

    2017-01-01

    Oxymatrine (OMT), a monosomic alkaloid extracted from the Chinese herb, Sophora flavescens Ait, has long been used as a traditional Chinese medicine for the treatment of inflammatory diseases. The aim of the present study was to investigate the potential anti-inflammatory effect of OMT, and its modulation on imbalance between regulatory T (Treg) cells and T helper (Th) 17 cells in rats with collagen-induced arthritis (CIA). Sprague-Dawley rats were immunized with type II collagen and following a second collagen immunization, the rats were treated with OMT or dexamethasone (DXM) intraperitoneally once a day for 43 days. Paw swelling, arthritic score and joint histopathology were evaluated. The Treg/Th17-mediated autoreactive response was assessed by determining serum levels of inflammatory response cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-17, using an enzyme-linked immunosorbent assay. The mRNA levels of forkhead box P3 (FOXP3) and retinoic acid-related orphan receptor (ROR)γt in spleen cells stimulated with type II collagen were determined using reverse transcription-quantitative polymerase chain reaction analysis. In addition, the protein expression levels of FOXP3 and RORγt were measured using western blot analysis. The results showed that OMT treatment significantly reduced the severity of CIA, markedly abrogating paw swelling, arthritic scores and synovial hyperplasia, and the increased loss in body weight. OMT significantly reduced the production of TNF-α and IL-17A, upregulated FOXP3 and downregulated RORγt in rats with CIA. In conclusion, the present study demonstrated that OMT exhibited a protective effect on rheumatoid arthritis (RA) through the inhibition of inflammation and regulation of Treg/Th17 in the CIA rats, suggesting that OMT may be used as an immune suppressive and cartilage protective medicine in human RA. PMID:28440447

  16. Occurrence and behavior of non-steroidal anti-inflammatory drugs and lipid regulators in wastewater and urban river water of the Pearl River Delta, South China.

    Science.gov (United States)

    Huang, Qiuxin; Yu, Yiyi; Tang, Caiming; Zhang, Kun; Cui, Jianlan; Peng, Xianzhi

    2011-04-01

    Occurrence of five non-steroidal anti-inflammatory drugs (salicylic acid, ibuprofen, naproxen, indomethacin and diclofenac) and three lipid regulators (bezafibrate, clofibric acid and gemfibrozil) was investigated in wastewater, sewage sludge, and river water of the urban section of the Pearl River at Guangzhou in South China. Behavior and fate of the pharmaceuticals during treatment in two sewage treatment plants (STPs) were also studied in depth by determining concentrations in the influents and effluents at major treatment units and the sewage sludge. Concentrations of the pharmaceuticals in the raw wastewater were mostly at ng L(-1) levels except salicylic acid whose concentrations ranged from 9.6 to 23.3 μg L(-1). No significant amount of the pharmaceuticals was detected in the suspended particulate matter of wastewater and sewage sludge. Salicylic acid, indomethacin, and naproxen were almost completely removed (≥ 99%); gemfibrozil, ibuprofen and bezafibrate were significantly removed (>75%), whereas diclofenac and clofibric acid were removed by 60-70% during treatment in the STPs. Generally, biodegradation was the governing process for elimination of the investigated pharmaceuticals. Anaerobic biodegradation was responsible for most of the removal of diclofenac whereas aerobic biodegradation also played an important role in elimination of the other pharmaceuticals except SA, which was nearly completely removed after the anoxic process. In the Pearl River, the pharmaceuticals were widely detected. Both the concentrations and detection frequency were higher in March 2008 than those in the other seasons, which may be ascribed mainly to less dilution caused by lower precipitation. Besides the STPs, urban canals directly connected with the Pearl River may also be important contributors to the pharmaceutical contamination in the river.

  17. Nodavirus infection of sea bass (Dicentrarchus labrax) induces up-regulation of galectin-1 expression with potential anti-inflammatory activity.

    Science.gov (United States)

    Poisa-Beiro, Laura; Dios, Sonia; Ahmed, Hafiz; Vasta, Gerardo R; Martínez-López, Alicia; Estepa, Amparo; Alonso-Gutiérrez, Jorge; Figueras, Antonio; Novoa, Beatriz

    2009-11-15

    Sea bass nervous necrosis virus is the causative agent of viral nervous necrosis, a disease responsible of high economic losses in larval and juvenile stages of cultured sea bass (Dicentrarchus labrax). To identify genes potentially involved in antiviral immune defense, gene expression profiles in response to nodavirus infection were investigated in sea bass head kidney using the suppression subtractive hybridization (SSH) technique. A total of 8.7% of the expressed sequence tags found in the SSH library showed significant similarities with immune genes, of which a prototype galectin (Sbgalectin-1), two C-type lectins (SbCLA and SbCLB) from groups II and VII, respectively, and a short pentraxin (Sbpentraxin) were selected for further characterization. Results of SSH were validated by in vivo up-regulation of expression of Sbgalectin-1, SbCLA, and SbCLB in response to nodavirus infection. To examine the potential role(s) of Sbgalectin-1 in response to nodavirus infection in further detail, the recombinant protein (rSbgalectin-1) was produced, and selected functional assays were conducted. A dose-dependent decrease of respiratory burst was observed in sea bass head kidney leukocytes after incubation with increasing concentrations of rSbgalectin-1. A decrease in IL-1beta, TNF-alpha, and Mx expression was observed in the brain of sea bass simultaneously injected with nodavirus and rSbgalectin-1 compared with those infected with nodavirus alone. Moreover, the protein was detected in the brain from infected fish, which is the main target of the virus. These results suggest a potential anti-inflammatory, protective role of Sbgalectin-1 during viral infection.

  18. In vitro studies on the relationship between the anti-inflammatory activity of Physalis peruviana extracts and the phagocytic process.

    Science.gov (United States)

    Martínez, Willington; Ospina, Luis Fernando; Granados, Diana; Delgado, Gabriela

    2010-03-01

    The study of plants used in traditional medicine has drawn the attention of researchers as an alternative in the development of new therapeutics agents, such as the American Solanaceae Physalis peruviana, which has significant anti-inflammatory activity. The Physalis peruviana anti-inflammatory effect of ethanol or ether calyces extracts on the phagocytic process was assessed by using an in vitro phagocytosis model (Leishmania panamensis infection to murine macrophages). The Physalis peruviana extracts do not inhibit microorganism internalization and have no parasiticide effect. Most ET and EP extracts negatively affected the parasite's invasion of macrophages (Infected cells increased.). This observation might result from a down-regulation of the macrophage's microbicide ability associated with a selective reduction of proinflammatory cytokines levels. Physalis peruviana's anti-inflammatory activity described in this model is related to an immunomodulatory effect exerted on macrophages infected, which directly or indirectly "blocks" their ability to secrete soluble proinflammatory mediators.

  19. The anti-inflammatory effect of Andrographis paniculata (Burm. f.) Nees on pelvic inflammatory disease in rats through down-regulation of the NF-κB pathway.

    Science.gov (United States)

    Zou, Wei; Xiao, Zuoqi; Wen, Xiaoke; Luo, Jieying; Chen, Shuqiong; Cheng, Zeneng; Xiang, Daxiong; Hu, Jian; He, Jingyu

    2016-11-25

    Andrographis paniculata (Burm. f.) Nees (APN), a principal constituent of a famous traditional Chinese medicine Fukeqianjin tablet which is used for the treatment of pelvic inflammatory disease (PID), has been reported to have anti-inflammatory effect in vitro. However, whether it has pharmacological effect on PID in vivo is unclear. Therefore, the aim of this study is to test the anti-inflammatory effect of APN and illuminate a potential mechanism. Thirty-six female specific pathogen-free SD rats were randomly divided into control group, PID group, APN1 group, APN2 group, APN3 group and prednisone group. Pathogen-induced PID rats were constructed. The APN1, APN2 and APN3 group rats were orally administrated with APN extract at different levels. The prednisone group rats were administrated with prednisone. Eight days after the first infection, the histological examination of upper genital tract was carried out, and enzyme-linked immunosorbent assay (ELISA) was carried out using homogenate of the uterus and fallopian tube. Furthermore, immunohistochemical evaluations of NF-κB p65 and IκB-α in uterus was conducted. APN obviously suppressed the infiltrations of neutrophils and lymphocytes, and it could significantly reduce the excessive production of cytokines and chemokines including IL-1β, IL-6, CXCL-1, MCP-1 and RANTES in a dose-dependent manner. Furthermore, APN could block the pathogen-induced activation of NF-κB pathway. APN showed potent anti-inflammatory effect on pathogen-induced PID in rats, with a potential mechanism of inhibiting the NF-κB signal pathway.

  20. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages.

    Science.gov (United States)

    Villar-Lorenzo, Andrea; Ardiles, Alejandro E; Arroba, Ana I; Hernández-Jiménez, Enrique; Pardo, Virginia; López-Collazo, Eduardo; Jiménez, Ignacio A; Bazzocchi, Isabel L; González-Rodríguez, Águeda; Valverde, Ángela M

    2016-12-15

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation.

  1. Anti-inflammatory management for tendon injuries - friends or foes?

    Directory of Open Access Journals (Sweden)

    Chan Kai-Ming

    2009-10-01

    Full Text Available Abstract Acute and chronic tendon injuries are very common among athletes and in sedentary population. Most physicians prescribe anti-inflammatory managements to relieve the worst symptoms of swelling and pain, including non-steroidal anti-inflammatory drugs, corticosteroids and physical therapies. However, experimental research shows that pro-inflammatory mediators such as prostaglandins may play important regulatory roles in tendon healing. Noticeably nearly all cases of chronic tendon injuries we treat as specialists have received non-steroidal anti-inflammatory drugs by their physician, suggesting that there might be a potential interaction in some of these cases turning a mild inflammatory tendon injury into chronic tendinopathy in predisposed individuals. We are aware of the fact that non-steroidal anti-inflammatory drugs and corticosteroids may well have a positive effect on the pain control in the clinical situation whilst negatively affect the structural healing. It follows that a comprehensive evaluation of anti-inflammatory management for tendon injuries is needed and any such data would have profound clinical and health economic importance.

  2. Fasting and meal-stimulated residual beta cell function is positively associated with serum concentrations of proinflammatory cytokines and negatively associated with anti-inflammatory and regulatory cytokines in patients with longer term type 1 diabetes

    DEFF Research Database (Denmark)

    Pham, Minh-Long; Kolb, H; Battelino, T

    2013-01-01

    Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes.......Cytokines may promote or inhibit disease progression in type 1 diabetes. We investigated whether systemic proinflammatory, anti-inflammatory and regulatory cytokines associated differently with fasting and meal-stimulated beta cell function in patients with longer term type 1 diabetes....

  3. IL-35 is a novel responsive anti-inflammatory cytokine--a new system of categorizing anti-inflammatory cytokines.

    Science.gov (United States)

    Li, Xinyuan; Mai, Jietang; Virtue, Anthony; Yin, Ying; Gong, Ren; Sha, Xiaojin; Gutchigian, Stefanie; Frisch, Andrew; Hodge, Imani; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-Feng

    2012-01-01

    It remains unknown whether newly identified anti-inflammatory/immunosuppressive cytokine interleukin-35 (IL-35) is different from other anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF)-β in terms of inhibition of inflammation initiation and suppression of full-blown inflammation. Using experimental database mining and statistical analysis methods we developed, we examined the tissue expression profiles and regulatory mechanisms of IL-35 in comparison to other anti-inflammatory cytokines. Our results suggest that in contrast to TGF-β, IL-35 is not constitutively expressed in human tissues but it is inducible in response to inflammatory stimuli. We also provide structural evidence that AU-rich element (ARE) binding proteins and microRNAs target IL-35 subunit transcripts, by which IL-35 may achieve non-constitutive expression status. Furthermore, we propose a new system to categorize anti-inflammatory cytokines into two groups: (1) the house-keeping cytokines, such as TGF-β, inhibit the initiation of inflammation whereas (2) the responsive cytokines including IL-35 suppress inflammation in full-blown stage. Our in-depth analyses of molecular events that regulate the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the design of new strategies of immune therapies.

  4. HLA-DR alpha 2 mediates negative signalling via binding to Tirc7 leading to anti-inflammatory and apoptotic effects in lymphocytes in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Grit-Carsta Bulwin

    Full Text Available Classically, HLA-DR expressed on antigen presenting cells (APC initiates lymphocyte activation via presentation of peptides to TCR bearing CD4+ T-Cells. Here we demonstrate that HLA-DR alpha 2 domain (sHLA-DRalpha2 also induces negative signals by engaging TIRC7 on lymphocytes. This interaction inhibits proliferation and induces apoptosis in CD4+ and CD8+ T-cells via activation of the intrinsic pathway. Proliferation inhibition is associated with SHP-1 recruitment by TIRC7, decreased phosphorylation of STAT4, TCR-zeta chain & ZAP70, and inhibition of IFN-gamma and FasL expression. HLA-DRalpha2 and TIRC7 co-localize at the APC-T cell interaction site. Triggering HLA-DR - TIRC7 pathway demonstrates that sHLA-DRalpha2 treatment inhibits proinflammatory-inflammatory cytokine expression in APC & T cells after lipopolysaccaride (LPS stimulation in vitro and induces apoptosis in vivo. These results suggest a novel antiproliferative role for HLA-DR mediated via TIRC7, revise the notion of an exclusive stimulatory interaction of HLA-DR with CD4+ T cells and highlights a novel physiologically relevant regulatory pathway.

  5. Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects.

    Directory of Open Access Journals (Sweden)

    Dominik M Schulte

    Full Text Available BACKGROUND: Obesity is associated with macrophage infiltration of adipose tissue. These inflammatory cells affect adipocytes not only by classical cytokines but also by the secreted glycopeptide wnt5a. Healthy adipocytes are able to release the wnt5a inhibitor sFRP5. This protective effect, however, was found to be diminished in obesity. The aim of the present study was to examine (1 whether obese human subjects exhibit increased serum concentrations of wnt5a and (2 whether wnt5a and/or sFRP5 serum concentrations in obese subjects can be influenced by caloric restriction. METHODOLOGY: 23 obese human subjects (BMI 44.1 ± 1.1 kg/m(2 and 12 age- and sex-matched lean controls (BMI 22.3 ± 0.4 kg/m(2 were included in the study. Obese subjects were treated with a very low-calorie diet (approximately 800 kcal/d for 12 weeks. Body composition was assessed by impedance analysis, insulin sensitivity was estimated by HOMA-IR and the leptin-to-adiponectin ratio and wnt5a and sFRP5 serum concentrations were measured by ELISA. sFRP5 expression in human adipose tissue biopsies was further determined on protein level by immunohistology. PRINCIPAL FINDINGS: Pro-inflammatory wnt5a was not measurable in any serum sample of lean control subjects. In patients with obesity, however, wnt5a became significantly detectable consistent with low grade inflammation in such subjects. Caloric restriction resulted in a weight loss from 131.9 ± 4.0 to 112.3 ± 3.2 kg in the obese patients group. This was accompanied by a significant decrease of HOMA-IR and leptin-to-adiponectin ratio, indicating improved insulin sensitivity. Interestingly, these metabolic improvements were associated with a significant increase in serum concentrations of the anti-inflammatory factor and wnt5a-inhibitor sFRP5. CONCLUSIONS/SIGNIFICANCE: Obesity is associated with elevated serum levels of pro-inflammatory wnt5a in humans. Furthermore, caloric restriction beneficially affects serum concentrations

  6. Study of the anti-inflammatory effects of low-dose radiation. The contribution of biphasic regulation of the antioxidative system in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Large, Martin; Hehlgans, Stephanie; Reichert, Sebastian; Roedel, Claus; Roedel, Franz [Goethe University Frankfurt, Department of Radiotherapy and Oncology, Frankfurt am Main (Germany); Gaipl, Udo S. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Fournier, Claudia [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Darmstadt (Germany); Weiss, Christian [Goethe University Frankfurt, Department of Radiotherapy and Oncology, Frankfurt am Main (Germany); Klinikum Darmstadt, Institute for Radiooncology and Radiotherapy, Darmstadt (Germany)

    2015-09-15

    We examined (a) the expression of the antioxidative factor glutathione peroxidase (GPx) and the transcription factor nuclear factor E2-related factor 2 (Nrf2) following low-dose X-irradiation in endothelial cells (ECs) and (b) the impact of reactive oxygen species (ROS) and Nrf2 on functional properties of ECs to gain further knowledge about the anti-inflammatory mode of action of low doses of ionizing radiation. EA.hy926 ECs and primary human dermal microvascular ECs (HMVEC) were stimulated by tumor necrosis factor-α (TNF-α, 20 ng/ml) 4 h before irradiation with single doses ranging from 0.3 to 3 Gy. The expression and activity of GPx and Nrf2 were analyzed by flow cytometry, colorimetric assays, and real-time PCR. The impact of ROS and Nrf2 on peripheral blood mononuclear cell (PBMC) adhesion was assayed in the presence of the ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2 activator AI-1. Following a low-dose exposure, we observed in EA.hy926 EC and HMVECs a discontinuous expression and enzymatic activity of GPx concomitant with a lowered expression and DNA binding activity of Nrf2 that was most pronounced at a dose of 0.5 Gy. Scavenging of ROS by NAC and activation of Nrf2 by AI-1 significantly diminished a lowered adhesion of PBMC to EC at a dose of 0.5 Gy. Low-dose irradiation resulted in a nonlinear expression and activity of major compounds of the antioxidative system that might contribute to anti-inflammatory effects in stimulated ECs. (orig.) [German] Ziel der Studie war die Untersuchung der Expression des antioxidativen Enzyms Glutathionperoxidase (GPx) und des Transkriptionsfaktors ''nuclear factor E2-related factor 2'' (Nrf2) in Endothelzellen nach niedrigdosierter Roentgenbestrahlung. Des Weiteren wurde der Einfluss von reaktiven Sauerstoffmetaboliten (ROS) und von Nrf2 auf funktionelle Eigenschaften von Endothelzellen analysiert, um weitere Erkenntnisse ueber die antientzuendliche Wirkung von niedrigdosierten Roentgenstrahlen

  7. Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis.

    Science.gov (United States)

    Kole, Abhisake; He, JianPing; Rivollier, Aymeric; Silveira, Danielle D; Kitamura, Kazuya; Maloy, Kevin J; Kelsall, Brian L

    2013-09-01

    We explored the function of endogenous type I IFNs (IFN-1) in the colon using the T cell adoptive transfer model of colitis. Colon mononuclear phagocytes (MPs) constitutively produced IFN-1 in a Toll/IL-1R domain-containing adapter-inducing IFN-β-dependent manner. Transfer of CD4(+)CD45RB(hi) T cells from wild-type (WT) or IFN-α/β receptor subunit 1 knockout (IFNAR1(-/-)) mice into RAG(-/-) hosts resulted in similar onset and severity of colitis. In contrast, RAG(-/-) × IFNAR1(-/-) double knockout (DKO) mice developed accelerated severe colitis compared with RAG(-/-) hosts when transferred with WT CD4(+)CD45RB(hi) T cells. IFNAR signaling on host hematopoietic cells was required to delay colitis development. MPs isolated from the colon lamina propria of IFNAR1(-/-) mice produced less IL-10, IL-1R antagonist, and IL-27 compared with WT MPs. Accelerated colitis development in DKO mice was characterized by early T cell proliferation and accumulation of CD11b(+)CD103(-) dendritic cells in the mesenteric lymph nodes, both of which could be reversed by systemic administration of IL-1R antagonist (anakinra). Cotransfer of CD4(+)CD25(+) regulatory T cells (Tregs) from WT or IFNAR1(-/-) mice prevented disease caused by CD4(+)CD45RB(hi) T cells. However, WT CD4(+)CD25(+)Foxp3(GFP+) Tregs cotransferred with CD4(+)CD45RB(hi) T cells into DKO hosts failed to expand or maintain Foxp3 expression and gained effector functions in the colon. To our knowledge, these data are the first to demonstrate an essential role for IFN-1 in the production of anti-inflammatory cytokines by gut MPs and the indirect maintenance of intestinal T cell homeostasis by both limiting effector T cell expansion and promoting Treg stability.

  8. Anti-inflammatory peptide regulates the supply of heat shock protein 70 monomers: implications for aging and age-related disease.

    Science.gov (United States)

    Cunningham, Timothy J; Greenstein, Jeffrey I; Loewenstern, Joshua; Degermentzidis, Elias; Yao, Lihua

    2015-04-01

    Reducing the levels of toxic protein aggregates has become a focus of therapy for disorders like Alzheimer's and Parkinson's diseases, as well as for the general deterioration of cells and tissues during aging. One approach has been an attempt to influence the production or activity of a class of reparative chaperones called heat shock proteins (HSPs), of which HSP70 is a promising candidate. Manipulation of HSP70 expression results in disposal of misfolded protein aggregates that accumulate in aging and disease models. Recently, HSP70 has been shown to bind specifically to an amino-terminal sequence of a human diffusible survival evasion peptide (DSEP), dermcidin. This sequence includes CHEC-9, an orally available anti-inflammatory and cell survival peptide. In the present study, we found that the CHEC-9 peptide also binds HSP70 in the cytosol of the cerebral cortex after oral delivery in normal rats. Western analysis of non-heat-denatured, unreduced samples suggested that peptide treatment increased the level of active HSP70 monomers from the pool of chaperone oligomers, a process that may be stimulated by potentiation of the chaperone's adenosine triphosphatase (ATPase). In these samples, a small but consistent gel shift was observed for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a multifunctional protein whose aggregation is influenced by HSP70. CHEC-9 treatment of an in vitro model of α-synuclein aggregation also results in HSP70-dependent dissolution of these aggregates. HSP70 oligomer-monomer equilibrium and its potential to control protein aggregate disease warrant increased experimental attention, especially if a peptide fragment of an endogenous human protein can influence the process.

  9. The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCdelta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1.

    Science.gov (United States)

    Kim, Byung-Chul; Jeon, Woo-Kwang; Hong, Hye-Young; Jeon, Kyung-Bum; Hahn, Jang-Hee; Kim, Young-Myeong; Numazawa, Satoshi; Yosida, Takemi; Park, Eun-Hee; Lim, Chang-Jin

    2007-09-05

    It has been reported that heme oxygenase-1 (HO-1) mediates the anti-inflammatory activity of the n-BuOH subfraction (PL) prepared from fruiting bodies of Phellinus linteus. This continuing work aimed to elucidate the signaling pathway to the up-regulation of HO-1 by PL. In RAW264.7 macrophage cells, PL was able to enhance phosphorylation of protein kinase Cdelta (PKCdelta), but not PKCalpha/betaII, in a time-dependent manner. PL-induced HO-1 expression was dramatically released by GF109203X, a general inhibitor of PKC, and rottlerin, a specific PKCdelta inhibitor but not by Gö6976, a selective inhibitor for PKCalpha/beta. Additionally, PL treatment resulted in a marked increase in antioxidant response element (ARE)-driven transcriptional activity, which was dependent on PKCdelta but not PKCalpha. An increase by PL treatment in the ARE-driven transcriptional activity was further enhanced by Nrf2, whereas it was diminished by Keap1. Furthermore, pretreatment of rottlerin and overexpression of PKCdelta (K376R), a kinase-inactive form of PKCdelta, partly blocked the suppression by PL of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and iNOS promoter activity, which were elevated in the lypopolysaccharide (LPS)-activated macrophages. Similarly, expression of matrix metalloproteinase-9 (MMP-9) and its promoter activity were suppressed by PL, which were dependent upon PKCdelta. The present findings indicate that Phellinus linteus gives rise to an anti-inflammatory activity though the PKCdelta/Nrf2/ARE signaling to the up-regulation of HO-1 in an in vitro inflammation model.

  10. Molecular basis of the anti-inflammatory effects of terpenoids.

    Science.gov (United States)

    de las Heras, B; Hortelano, Sonsoles

    2009-03-01

    Natural products play a significant role in human health in relation to the prevention and treatment of inflammatory conditions. Among them, terpenoids (also referred to as terpenes), are the largest and most widespread class of secondary metabolites. They are found in higher plants, mosses, liverworts, algae and lichens, and also in insects, microbes or marine organisms. Some terpenoids have been used for therapeutic purposes for centuries as antibacterial, anti-inflammatory, antitumoral agents, and in recent decades research activity into the clinical potential of this class of compounds has increased continuously as a source of pharmacologically interesting agents. In the present review, molecular basis of the anti-inflammatory action of diterpenoids is presented with special emphasis on their ability to modulate critical cell signaling pathways involved in the inflammatory response of the body such as nuclear transcription factor-kappaB (NF-kappaB) activation. NF-kappaB plays an important role in the regulation of immune and inflammatory responses. Indeed, deregulated NF-kappaB expression is a characteristic phenomenon in several inflammatory diseases and NF-kappaB has become a major target in drug discovery. Hence, this article also introduces our recently elucidated findings about the potential of labdane diterpenoids as anti-inflammatory agents due to their ability to inhibit NF-kappaB. The future development of this class of compounds as anti-inflammatory drugs requires the introduction of novel molecular targets of therapeutic relevance in addition to biotechnological approaches for the production of these molecules.

  11. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    Directory of Open Access Journals (Sweden)

    Yisett González

    2015-01-01

    Full Text Available The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules.

  12. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    Science.gov (United States)

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  13. Urocortins and CRF receptor type 2 variants in the male rat colon: gene expression and regulation by endotoxin and anti-inflammatory effect.

    Science.gov (United States)

    Yuan, Pu-Qing; Wu, S Vincent; Pothoulakis, Charalabos; Taché, Yvette

    2016-03-15

    Urocortins (Ucns) 1, 2, and 3 and corticotropin-releasing factor receptor 2 (CRF2) mRNA are prominently expressed in various layers of the upper gut. We tested whether Ucns and CRF2 variants are also expressed in the different layers of the rat colon, regulated by LPS (100 μg/kg ip) and play a modulatory role in the colonic immune response to LPS. Transcripts of Ucns and CRF2b, the most common isoform in the periphery, were detected in all laser microdissected layers, including myenteric neurons. LPS increased the mRNA level of Ucn 1, Ucn 2, and Ucn 3 and decreased that of CRF2b in both the colonic mucosa and submucosa + muscle (S+M) layers at 2, 6, and 9 h after injection with a return to basal at 24 h. In addition, CRF2a, another variant more prominent in the brain, and a novel truncated splice variant CRF2a-3 mRNA were detected in all segments of the large intestine. LPS reciprocally regulated the colonic expression of these CRF2 variants by decreasing both CRF2a and CRF2b, while increasing CRF2a-3 in the mucosa and S+M. The CRF2 antagonist astressin2-B further enhanced LPS-induced increase of mRNA level of interleukin (IL)-1β, TNF-α, and inducible nitric oxide synthase in S+M layers and IL-1β in the mucosa and evoked TNF-α expression in the mucosa. These data indicate that Ucns/CRF2 variants are widely expressed in all colonic layers and reciprocally regulated by LPS. CRF2 signaling dampens the CD14/TLR4-mediated acute inflammatory response to Gram-negative bacteria in the colon.

  14. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes.

    Science.gov (United States)

    Iyalomhe, Osigbemhe; Chen, Yuanxiu; Allard, Joanne; Ntekim, Oyonumo; Johnson, Sheree; Bond, Vernon; Goerlitz, David; Li, James; Obisesan, Thomas O

    2015-09-01

    There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, paerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype.

  15. ANTI-INFLAMMATORY ACTIVITY OF DODONAEA VISCOSE

    OpenAIRE

    Mahadevan, N.; Venkatesh, Sama; Suresh, B

    1998-01-01

    Dodonaea viscose, Linn is a widely grown plant of Nilgiris district of Tamil and is commonly used by the tribals of Nilgiris as a traditional medicine for done fracture and joint sprains. Since it is generally believed tat fractures are accompanied by either some degree of injury or inflammations, it was felt desirable to carry our anti inflammatory activity of Dodonaea viscose. Anti-inflammatory activity of the plant was carried out by carrageenin induced paw edema method in Wister albino rats.

  16. Anti-inflammatory activity of dodonaea viscose.

    Science.gov (United States)

    Mahadevan, N; Venkatesh, S; Suresh, B

    1998-10-01

    Dodonaea viscose, Linn is a widely grown plant of Nilgiris district of Tamil and is commonly used by the tribals of Nilgiris as a traditional medicine for done fracture and joint sprains. Since it is generally believed tat fractures are accompanied by either some degree of injury or inflammations, it was felt desirable to carry our anti inflammatory activity of Dodonaea viscose. Anti-inflammatory activity of the plant was carried out by carrageenin induced paw edema method in Wister albino rats.

  17. Nonsteroid Anti-inflammatory Drugs and Kidney

    OpenAIRE

    Yaşar Yıldırım; Zülfükar Yılmaz; A. Veysel Kara1; et al.,

    2016-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are often used in the treatment of chronic and acute pain and inflammation as an analgesic and anti-inflammatory agent. They inhibit the synthesis of prostaglandins which have influence on glomerular capillaries, vasa recta and tubular functions. They lead to significant complications such as hyperkalemia, hyponatremia, edema and hypertension. Usage of NSAIDs is a risk factor for acute kidney injury in some conditions such as advanced age, dehydr...

  18. Anti-inflammatory treatment in schizophrenia.

    Science.gov (United States)

    Müller, Norbert; Myint, Aye-Mu; Krause, Daniela; Weidinger, Elif; Schwarz, Markus J

    2013-04-05

    Antipsychotics, which act predominantly as dopamine D2 receptor antagonists, have several shortcomings. The exact pathophysiological mechanism leading to dopaminergic dysfunction in schizophrenia is still unclear, but inflammation has been postulated to be a key player in the pathophysiology of the disorder. A dysfunction in activation of the type 1 immune response seems to be associated with an imbalance in tryptophan/kynurenine metabolism; the degrading enzymes involved in this metabolism are regulated by cytokines. Kynurenic acid (KYNA), an N-methyl-d-aspartate antagonist, was found to be increased in critical regions of the central nervous system (CNS) in schizophrenia, resulting in reduced glutamatergic neurotransmission. The differential activation of microglial cells and astrocytes as functional carriers of the immune system in the CNS may also contribute to this imbalance. The immunological effects of many existing antipsychotics, however, rebalance in part the immune imbalance and overproduction of KYNA. The immunological imbalance results in an inflammatory state combined with increased prostaglandin E(2) production and increased cyclo-oxygenase-2 (COX-2) expression. Growing evidence from clinical studies with COX-2 inhibitors points to favorable effects of anti-inflammatory therapy in schizophrenia, in particular in an early stage of the disorder. Further options for immunomodulating therapies in schizophrenia will be discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2016-06-01

    Full Text Available Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks.

  20. Regulating autonomic nerve system:a new field of anti-inflammatory therapy for cardiovascular diseases%调节自主神经系统:心血管疾病抗炎治疗的新领域

    Institute of Scientific and Technical Information of China (English)

    马度芳; 姜萍; 杨金龙; 李晓

    2015-01-01

    The role of chronic inflammation and autonomic neuropathy in the crucial underlying process con -tributing to the initiation and the progression of various cardiovascular diseases is well established .It is well known that the immune system is innervated by the autonomic nervous system , and the inflammatory reaction and immune reaction are re-gulated by the autonomic nerve system .Vagus nerve depresses inflammatory reaction via cholinergic anti-inflammatory path-way (CAP), while sympathetic nervous system has bidirectional regulation of pro-inflammation and anti-inflammation, which are affected by several factors such as the concentration of neurotransmitters or types of receptors .In this paper , we reviewed different effects of CAP and sympathetic nervous system on cardiovascular inflammatory reaction .Activation of CAP and regaining normal sympathetic function will improve the chronic inflammation in the process of cardiovascular disea -ses.Low-toxic and selective α7nAchR agonist is expected to be applied in cardiovascular diseases to alleviate chronic in -flammation .

  1. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review.

    Science.gov (United States)

    Zhu, Fengmei; Du, Bin; Xu, Baojun

    2017-06-12

    Inflammation is the first biological response of the immune system to infection, injury or irritation. Evidence suggests that the anti-inflammatory effect is mediated through the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ as well as noncytokine mediator, prostaglandin E2. Fruits, vegetables, and food legumes contain high levels of phytochemicals that show anti-inflammatory effect, but their mechanisms of actions have not been completely identified. The aim of this paper was to summarize the recent investigations and findings regarding in vitro and animal model studies on the anti-inflammatory effects of fruits, vegetables, and food legumes. Specific cytokines released for specific type of physiological event might shed some light on the specific use of each source of phytochemicals that can benefit to counter the inflammatory response. As natural modulators of proinflammatory gene expressions, phytochemical from fruits, vegetables, and food legumes could be incorporated into novel bioactive anti-inflammatory formulations of various nutraceuticals and pharmaceuticals. Finally, these phytochemicals are discussed as the natural promotion strategy for the improvement of human health status. The phenolics and triterpenoids in fruits and vegetables showed higher anti-inflammatory activity than other compounds. In food legumes, lectins and peptides had anti-inflammatory activity in most cases. However, there are lack of human study data on the anti-inflammatory activity of phytochemicals from fruits, vegetables, and food legumes.

  2. Anti-Inflammatory Activity of Natural Products

    Directory of Open Access Journals (Sweden)

    Abdullatif Azab

    2016-10-01

    Full Text Available This article presents highlights of the published literature regarding the anti-inflammatory activities of natural products. Many review articles were published in this regard, however, most of them have presented this important issue from a regional, limited perspective. This paper summarizes the vast range of review and research articles that have reported on the anti-inflammatory effects of extracts and/or pure compounds derived from natural products. Moreover, this review pinpoints some interesting traditionally used medicinal plants that were not investigated yet.

  3. Urocortins and CRF receptor type 2 variants in the male rat colon: gene expression and regulation by endotoxin and anti-inflammatory effect

    OpenAIRE

    2016-01-01

    Urocortin 1, 2 and 3 (Ucns) and corticotropin releasing factor receptor 2 (CRF2) are prominently expressed in various layers of the upper gut while current knowledge of their expression and regulation in the colonic layers are limited. We investigated Ucns and CRF2 isoforms expression by RT-PCR in the proximal colon separated into mucosa and submucosa plus muscle (S+M), or in laser captured layers, their regulations by lipopolysaccharide (LPS, 100 μg/kg ip) and the effects of the CRF2 antagon...

  4. Mangiferin: A xanthonoid with multipotent anti-inflammatory potential.

    Science.gov (United States)

    Saha, Sukanya; Sadhukhan, Pritam; Sil, Parames C

    2016-09-10

    Over the last era, small molecules sourced from different plants have gained attention for their varied and long-term medicinal benefits. Their advantageous therapeutic effects in diverse pathological complications lead researchers to give an ever-increasing emphasis on them and discover their novel therapeutic potentials. Among these, the heat stable, xanthonoid group of organic molecules has gained special importance with distinctive regards to the bioactive molecule mangiferin due to its solubility in water. Mangiferin, a yellow polyphenol having C-glycosyl xanthone structure, is widely present in different edible sources like mango, and possesses numerous biological activities. Extensive research with this molecule shows its antioxidant, anti-inflammatory, antidiabetic, anticancer, antimicrobial, analgesic, and immunomodulatory properties. Thus, it provides protection against a wide range of physiological disorders. The C-glucosyl linkage and polyhydroxy groups in mangiferin's structure contribute essentially to its free radical-scavenging activity. Moreover, its ability in regulating various transcription factors like NF-κB, Nrf-2, etc. and modulating the expression of different proinflammatory signaling intermediates like tumor necrosis factor-α, COX-2, etc. contribute to its anti-inflammatory, anticancer, and antidiabetic potentials. In this comprehensive article, information has been provided about the sources, chemical structure, metabolism, and different biological activities of mangiferin with special emphasis on the underlying cellular signal transduction pathways. Insights into an in-depth assessment of mangiferin's anti-inflammatory therapeutic potential have also been discussed in detail. On an overall perspective, this review aims to stage mangiferin's diversified therapeutic applications and its emerging possibility as a promising drug in future based on its anti-inflammatory property. © 2016 BioFactors, 42(5):459-474, 2016.

  5. Cannabinoids as novel anti-inflammatory drugs.

    Science.gov (United States)

    Nagarkatti, Prakash; Pandey, Rupal; Rieder, Sadiye Amcaoglu; Hegde, Venkatesh L; Nagarkatti, Mitzi

    2009-10-01

    Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors. The discovery of Δ9-tetrahydrocannabinol (THC) as the major psychoactive principle in marijuana, as well as the identification of cannabinoid receptors and their endogenous ligands, has led to a significant growth in research aimed at understanding the physiological functions of cannabinoids. Cannabinoid receptors include CB1, which is predominantly expressed in the brain, and CB2, which is primarily found on the cells of the immune system. The fact that both CB1 and CB2 receptors have been found on immune cells suggests that cannabinoids play an important role in the regulation of the immune system. Recent studies demonstrated that administration of THC into mice triggered marked apoptosis in T cells and dendritic cells, resulting in immunosuppression. In addition, several studies showed that cannabinoids downregulate cytokine and chemokine production and, in some models, upregulate T-regulatory cells (Tregs) as a mechanism to suppress inflammatory responses. The endocannabinoid system is also involved in immunoregulation. For example, administration of endocannabinoids or use of inhibitors of enzymes that break down the endocannabinoids, led to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Manipulation of endocannabinoids and/or use of exogenous cannabinoids in vivo can constitute a potent treatment modality against inflammatory disorders. This review will focus on the potential use of cannabinoids as a new class of anti-inflammatory agents against a number of inflammatory and autoimmune diseases that are primarily triggered by activated T cells or other cellular immune components.

  6. Anti-inflammatory drug therapy in asthma

    NARCIS (Netherlands)

    Rottier, Bart L.; Duiverman, Eric J.

    2009-01-01

    Asthma is a disease with chronic inflammation of the airways and and-inflammatory treatment is a logical treatment. Inhaled corticosteroids [ICS] remain the cornerstone of anti-inflammatory therapy in recent international guidelines. Asthma cannot be cured by any medication: if the drug is discontin

  7. ANTI INFLAMMATORY ACTIVITY OF MORINGA OLIEFERA. LAM

    OpenAIRE

    1999-01-01

    The aqueous and ethanolic (90%) extract of the leaves of M.Oliera Lam (Fam: Moringaceae) were studied for their anti inflammatory action in ale albino rats. Two extracts exhibited maximum action within two hours of challenge. The aqueous extract sowed significant (P

  8. Anti-inflammatory effect of (+)-pinitol.

    Science.gov (United States)

    Singh, R K; Pandey, B L; Tripathi, M; Pandey, V B

    2001-02-01

    In the carrageenin-induced paw oedema in rats, (+)-pinitol (2.5-10 mg/kg, i.p.), isolated from Abies pindrow leaves, showed a significant anti-inflammatory effect, the highest dose being comparable to phenylbutazone (100 mg/kg, i.p.).

  9. Antinociceptive and anti-inflammatory effects of essential oil extracted from Chamaecyparis obtusa in mice.

    Science.gov (United States)

    Park, Yujin; Jung, Seung Min; Yoo, Seung-Ah; Kim, Wan-Uk; Cho, Chul-Soo; Park, Bum-Jin; Woo, Jong-Min; Yoon, Chong-Hyeon

    2015-12-01

    Essential oil extracted from Chamaecyparis obtusa (EOCO) consists of several monoterpenes with anti-inflammatory effects. Monoterpenes are expected to have an analgesic effect through inhibition of pro-inflammatory mediators. The present study investigated the anti-nociceptive and anti-inflammatory effects of EOCO in animal models of pain. Intraperitoneal injection with EOCO (5 or 10mg/kg), aspirin (positive control, 300mg/kg), or DMSO (negative control) was performed 1h before the nociception tests: acetic acid-induced writhing response, formalin test, and hot plate test in mice, and acidic saline-induced allodynia in rats. The expression of pro-inflammatory cytokines and pro-inflammatory enzymes in formalin-injected paws was determined by ELISA and western blotting, respectively. Treatment with EOCO significantly reduced acetic acid-induced writhing and paw-licking time in late response of the formalin tests. The anti-nociceptive effect was comparable with aspirin. However, EOCO did not affect the reaction time of licking of the hind paws or jumping in hot plate test and the mechanical withdrawal thresholds in acidic saline-induced allodynia model. Formalin-injected paws of mice treated with EOCO revealed the down-regulated expression of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and cyclooxygenase-2, as compared with those of control mice. These data showed the anti-nociceptive and anti-inflammatory effects of EOCO. The pain-relieving effect might be attributed to inhibition of peripheral pain in association with inflammatory response. EOCO could be a useful therapeutic strategy to manage pain and inflammatory diseases.

  10. Brazilin plays an anti-inflammatory role with regulating Toll-like receptor 2 and TLR 2 downstream pathways in Staphylococcus aureus-induced mastitis in mice.

    Science.gov (United States)

    Gao, Xue-jiao; Wang, Tian-cheng; Zhang, Ze-cai; Cao, Yong-guo; Zhang, Nai-sheng; Guo, Meng-yao

    2015-07-01

    Mastitis, which commonly occurs during the postpartum period, is caused by the infection of the mammary glands. The most common infectious bacterial pathogen of mastitis is Staphylococcus aureus (S. aureus) in both human and animals. Brazilin, a compound isolated from the traditional herbal medicine Caesalpinia sappan L., has been shown to exhibit multiple biological properties. The present study was performed to determine the effect of brazilin on the inflammatory response in the mouse model of S. aureus mastitis and to confirm the mechanism of action involved. Brazilin treatment was applied in both a mouse model and cells. After brazilin treatment of cells, Western blotting and qPCR were performed to detect the protein levels and mRNA levels, respectively. Brazilin treatment significantly attenuated inflammatory cell infiltration and inhibited the expressions of TNF-α, IL-1β and IL-6 in a dose-dependent manner. Administration of brazilin in mice suppressed S. aureus-induced inflammatory injury and the production of proinflammatory mediators. This suppression was achieved by reducing the increased expression of TLR2 and regulating the NF-κB and MAPK signaling pathways in the mammary gland tissues and cells with S. aureus-induced mastitis. These results suggest that brazilin appears to be an effective drug for the treatment of mastitis and may be applied as a clinical therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Regulated Extracellular Choline Acetyltransferase Activity- The Plausible Missing Link of the Distant Action of Acetylcholine in the Cholinergic Anti-Inflammatory Pathway.

    Directory of Open Access Journals (Sweden)

    Swetha Vijayaraghavan

    Full Text Available Acetylcholine (ACh, the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE and butyrylcholinesterase (BuChE, two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT in human cerebrospinal fluid (CSF and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer's disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic

  12. Anti-inflammatory actions of acupuncture

    Directory of Open Access Journals (Sweden)

    Freek J. Zijlstra

    2003-01-01

    Full Text Available Acupuncture has a beneficial effect when treating many diseases and painful conditions, and therefore is thought to be useful as a complementary therapy or to replace generally accepted pharmacological intervention. The attributive effect of acupuncture has been investigated in inflammatory diseases, including asthma, rhinitis, inflammatory bowel disease, rheumatoid arthritis, epicondylitis, complex regional pain syndrome type 1 and vasculitis. Large randomised trials demonstrating the immediate and sustained effect of acupuncture are missing. Mechanisms underlying the ascribed immunosuppressive actions of acupuncture are reviewed in this communication. The acupuncture-controlled release of neuropeptides from nerve endings and subsequent vasodilative and anti-inflammatory effects through calcitonine gene-related peptide is hypothesised. The complex interactions with substance P, the analgesic contribution of β-endorphin and the balance between cell-specific pro-inflammatory and anti-inflammatory cytokines tumour necrosis factor-α and interleukin-10 are discussed.

  13. Medicinal plants with anti-inflammatory activities.

    Science.gov (United States)

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions.

  14. Ketogenic diet exhibits anti-inflammatory properties.

    Science.gov (United States)

    Dupuis, Nina; Curatolo, Niccolo; Benoist, Jean-François; Auvin, Stéphane

    2015-07-01

    The ketogenic diet (KD) is an established treatment for refractory epilepsy, including some inflammation-induced epileptic encephalopathies. In a lipopolysaccharide (LPS)-induced fever model in rats, we found that animals given the KD for 14 days showed less fever and lower proinflammatory cytokine levels than control animals. However, KD rats exhibited a decrease in circulating levels of arachidonic acid and long-chain n-3 polyunsaturated fatty acids (PUFAs), suggesting that the anti-inflammatory effect of KD was probably not due to an increase in anti-inflammatory n-3 PUFA derivatives. These properties might be of interest in some conditions such as fever-induced refractory epileptic encephalopathy in school-aged children.

  15. Anti inflammatory activity of moringa oliefera. Lam.

    Science.gov (United States)

    Rao, K N; Gopalakrishnan, V; Loganathan, V; Nathan, S S

    1999-01-01

    The aqueous and ethanolic (90%) extract of the leaves of M.Oliera Lam (Fam: Moringaceae) were studied for their anti inflammatory action in ale albino rats. Two extracts exhibited maximum action within two hours of challenge. The aqueous extract sowed significant (P<0.01) odema suppression similar to that of Ibuprofen at the first hour of carrageenan injection. The results confirms the folkers claim of the plant.

  16. Anti-inflammatory glucocorticoid drugs: reflections after 60 years.

    Science.gov (United States)

    Whitehouse, Michael W

    2011-02-01

    This review considers the problem of the serious concomitant side effects of powerful anti-inflammatory drugs modelled upon the principal human glucocorticoid hormone, cortisol. The very nature of the original bio-assays to validate their cortisol-like hormonal and anti-inflammatory activities ensured that pleiotropic toxins were selected for clinical studies. Other complicating factors have been (1) considerable reliance on bio-assays conducted in laboratory animals that primarily secrete corticosterone, not cortisol, as their principal anti-inflammatory adrenal hormone; (2) some differences in the binding of xenobiotic cortisol analogues (vis á vis cortisol) to transport proteins, detoxifying enzymes and even some intra-cellular receptors; (3) the "rogue" properties of these hormonal xenobiotics, acting independently of--but still able to suppress--hormonal mechanisms regulating endogenous cortisol; and (4) problems of intrinsic/acquired "steroid resistance", diminishing their clinical efficacy, but not necessarily all their toxicities. The rather gloomy conclusion is that devising new drugs to reproduce the effect of multi-potent hormones may be a recipe for disaster, in contexts other than simply remedying an endocrine deficiency. Promising new developments include "designed" combination therapies that allow some reduction in total steroid doses (and hopefully their side effects); sharpening strategies to limit the actual duration of steroid administration; and resurgent interest in searching for more selective analogues (both steroidal and non-steroid) with less harmful side effects. Some oversights and neglected areas of research are also considered. Overall, it now seems timely to engage in some drastic rethinking about (retaining?) these "licensed toxins" as fundamental therapies for chronic inflammation.

  17. Novel anti-inflammatory agents in COPD

    DEFF Research Database (Denmark)

    Loukides, Stelios; Bartziokas, Konstantinos; Vestbo, Jørgen

    2013-01-01

    Inflammation plays a central role in chronic obstructive pulmonary disease (COPD). COPD related inflammation is less responsive to inhaled steroids compared to asthma. There are three major novel anti-inflammatory approaches to the management of COPD. The first approach is phosphodiesterase...... on these strategies exist at the moment. A third potential approach involves novel agents whose mechanism of action is closely related to COPD mechanisms and pathophysiology. Such novel treatments are of great interest since they may treat both COPD and co-morbidities. Several novel agents are currently under...

  18. Erdosteine: antitussive and anti-inflammatory effects.

    Science.gov (United States)

    Dal Negro, Roberto W

    2008-01-01

    Erdosteine is a multifactorial drug currently used in COPD for its rheologic activity on bronchial secretions and its positive effects on bacterial adhesiveness. Erdosteine produces an active metabolite (Met 1) which was shown to produce antioxidant effects during the respiratory burst of human PMNs, due to the presence of an SH group. The substantial antitussive effects of erdosteine were first documented in clinical trials even though mucolytic agents are regarded as not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Actually, a mucolytic drug could exert antitussive effects if it also affects mucus consistency and enhances ciliary function. In the last decade, data from several studies on animal models pointed to the possible antitussive and anti-inflammatory properties of erdosteine and an indirect anti-inflammatory mechanism of action was suggested. Recently, data from some controlled versus placebo studies documented the antioxidant properties of erdosteine in humans and in current smokers with COPD. The mechanism of action was described as related to erdosteine's ability to inhibit some inflammatory mediators and some pro-inflammatory cytokines that are specifically involved in oxidative stress. As oxidative stress is also presumed to impair beta-adrenoceptor function and contribute to airway obstruction, specific controlled studies recently investigated the effect of antioxidant intervention on short-term airway response to salbutamol in nonreversible COPD, according to a double-blind design versus placebo and NAC. Only erdosteine consistently restored a significant short-term reversibility in COPD subjects, previously unresponsive to beta(2) adrenergics. This peculiar activity of erdosteine (to our knowledge never previously assessed) proved related to the ROS scavenging activity (which actually proved equal to that of N), and its significant inhibiting effect on

  19. Anti-inflammatory strategies in the treatment of schizophrenia.

    Science.gov (United States)

    Andrade, Chittaranjan

    2016-01-01

    Schizophrenia is a major mental illness with a lifetime prevalence of about 1%. Antipsychotic drugs, with a primary mechanism of action that involves dopamine receptor blockade, are the mainstay in the treatment of the disorder. However, despite optimum antipsychotic treatment, few patients return to pre-morbid levels; the treatment deficit includes refractory positive symptoms, negative symptoms, mood impairments, cognitive impairments, social impairments, and/or a variety of medication-related adverse effects, including extrapyramidal symptoms, metabolic disturbances, hyperprolactinemia, and others. To address these, antipsychotic treatment has been augmented with psychosocial interventions, cognitive rehabilitation, different kinds of electrical and magnetic brain stimulation, and a large range of drugs from the neuropsychiatric as well as, surprise, the general medical pharmacopeia. The pleomorphic pathophysiology of schizophrenia includes abnormalities in immunological and inflammatory pathways, and so it is not surprising that anti-inflammatory drugs have also been trialed as augmentation agents in schizophrenia. This article critically examines the outcomes after augmentation with conventional anti-inflammatory interventions; results from randomized controlled trials do not encourage the use of either aspirin (1000 mg/day) or celecoxib (400 mg/day), both of which have been studied for this indication during the past decade and a half.

  20. Anti-Inflammatory Effects of Epoxyeicosatrienoic Acids

    Directory of Open Access Journals (Sweden)

    Scott J. Thomson

    2012-01-01

    Full Text Available Epoxyeicosatrienoic acids (EETs are generated by the activity of both selective and also more general cytochrome p450 (CYP enzymes on arachidonic acid and inactivated largely by soluble epoxide hydrolase (sEH, which converts them to their corresponding dihydroxyeicosatrienoic acids (DHETs. EETs have been shown to have a diverse range of effects on the vasculature including relaxation of vascular tone, cellular proliferation, and angiogenesis as well as the migration of smooth muscle cells. This paper will highlight the growing evidence that EETs also mediate a number of anti-inflammatory effects in the cardiovascular system. In particular, numerous studies have demonstrated that potentiation of EET activity using different methods can inhibit inflammatory gene expression and signalling pathways in endothelial cells and monocytes and in models of cardiovascular diseases. The mechanisms by which EETs mediate their effects are largely unknown but may include direct binding to peroxisome proliferator-activated receptors (PPARs, G-protein coupled receptors (GPCRs, or transient receptor potential (TRP channels, which initiate anti-inflammatory signalling cascades.

  1. Nonsteroid Anti-inflammatory Drugs and Kidney

    Directory of Open Access Journals (Sweden)

    Yaşar Yıldırım1

    2016-03-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs are often used in the treatment of chronic and acute pain and inflammation as an analgesic and anti-inflammatory agent. They inhibit the synthesis of prostaglandins which have influence on glomerular capillaries, vasa recta and tubular functions. They lead to significant complications such as hyperkalemia, hyponatremia, edema and hypertension. Usage of NSAIDs is a risk factor for acute kidney injury in some conditions such as advanced age, dehydration, vomiting, diuretics, ACE/ARB therapy, heart failure, nephrotic syndrome, cirrhosis and chronic kidney disease. Acute interstitial nephritis is not dependent on the drug dose and it is characterized by immunological inflammatory reaction and a decrease in creatinine clearance. Besides the classical findings, glomerules can be involved and minimal change disease or membranous glomerulonephritis can develop. Analgesic nephropathy is characterized by interstitial nephritis and papillary necrosis. Metabolites of NSAIDs are accumulated in renal medulla which has lowest oxygen pressure in kidney and they disrupt the renal parencymal perfusion by vasoconstriction. Respectively, papillar necrosis, glomerular sclerosis, interstitial fibrosis and cortical atrophy can develop insidiously.

  2. Pro- and Anti-Inflammatory Cytokines Release in Mice Injected with Crotalus durissus terrificus Venom

    Directory of Open Access Journals (Sweden)

    A. Hernández Cruz

    2008-01-01

    Full Text Available The effects of Crotalus durissus terrificus venom (Cdt were analyzed with respect to the susceptibility and the inflammatory mediators in an experimental model of severe envenomation. BALB/c female mice injected intraperitoneally presented sensibility to Cdt, with changes in specific signs, blood biochemical and inflammatory mediators. The venom induced reduction of glucose and urea levels and an increment of creatinine levels in serum from mice. Significant differences were observed in the time-course of mediator levels in sera from mice injected with Cdt. The maximum levels of IL-6, NO, IL-5, TNF, IL-4 and IL-10 were observed 15 min, 30 min, 1, 2 and 4 hours post-injection, respectively. No difference was observed for levels of IFN-γ. Taken together, these data indicate that the envenomation by Cdt is regulated both pro- and anti-inflammatory cytokine responses at time-dependent manner. In serum from mice injected with Cdt at the two first hours revealed of pro-inflammatory dominance. However, with an increment of time an increase of anti-inflammatory cytokines was observed and the balance toward to anti-inflammatory dominance. In conclusion, the observation that Cdt affects the production of pro- and anti-inflammatory cytokines provides further evidence for the role played by Cdt in modulating pro/anti-inflammatory cytokine balance.

  3. A Review on Anti-Inflammatory Activity of Monoterpenes

    Directory of Open Access Journals (Sweden)

    Damião Pergentino de Sousa

    2013-01-01

    Full Text Available Faced with the need to find new anti-inflammatory agents, great effort has been expended on the development of drugs for the treatment of inflammation. This disorder reduces the quality of life and overall average productivity, causing huge financial losses. In this review the anti-inflammatory activity of 32 bioactive monoterpenes found in essential oils is discussed. The data demonstrate the pharmacological potential of this group of natural chemicals to act as anti-inflammatory drugs.

  4. Anti-inflammatory effects of tetradecylthioacetic acid (TTA in macrophage-like cells from Atlantic salmon (Salmo salar L.

    Directory of Open Access Journals (Sweden)

    Grammes Fabian

    2011-07-01

    Full Text Available Abstract Background Commercial Atlantic salmon is fed diets with high fat levels to promote fast and cost-effective growth. To avoid negative impact of obesity, food additives that stimulate fat metabolism and immune function are of high interest. TTA, tetradecylthioacetic acid, is a synthetic fatty acid that stimulates mitochondrial β-oxidation most likely by activation of peroxysome proliferator-activated receptors (PPARs. PPARs are important transcription factors regulating multiple functions including fat metabolism and immune responses. Atlantic salmon experiments have shown that TTA supplemented diets significantly reduce mortality during natural outbreaks of viral diseases, suggesting a modulatory role of the immune system. Results To gain new insights into TTA effects on the Atlantic salmon immune system, a factorial, high-throughput microarray experiment was conducted using a 44K oligo nucleotide salmon microarray SIQ2.0 and the Atlantic salmon macrophage-like cell line ASK. The experiment was used to determine the transcriptional effects of TTA, the effects of TTA in poly(I:C elicited cells and the effects of pretreating the cells with TTA. The expression patterns revealed that a large proportion of genes regulated by TTA were related to lipid metabolism and increased mitochondrial β-oxidation. In addition we found that for a subset of genes TTA antagonized the transcriptional effects of poly(I:C. This, together with the results from qRT-PCR showing an increased transcription of anti-inflammatory IL10 by TTA, indicates anti-inflammatory effects. Conclusions We demonstrate that TTA has significant effects on macrophage-like salmon cells that are challenged by the artificial dsRNA poly(I:C. The immune stimulatory effect of TTA in macrophages involves increased lipid metabolism and suppressed inflammatory status. Thus, suggesting that TTA directs the macrophage-like cells towards alternative, anti-inflammatory, activation. This has

  5. Review of Anti-Inflammatory Herbal Medicines

    Directory of Open Access Journals (Sweden)

    Mona Ghasemian

    2016-01-01

    Full Text Available Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil’s claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle.

  6. Discovery and evaluation of asymmetrical monocarbonyl analogs of curcumin as anti-inflammatory agents

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2014-04-01

    Full Text Available Yali Zhang,1,2,* Chengguang Zhao,1,2,* Wenfei He,2,* Zhe Wang,2 Qilu Fang,2 Bing Xiao,2 Zhiguo Liu,2 Guang Liang,2 Shulin Yang1 1School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, People's Republic of China; 2Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, People's Republic of China *These authors contributed equally to this work Abstract: Sepsis is a systemic inflammatory response syndrome and is mainly caused by lipopolysaccharides (LPS – a component of the cell walls of gram-negative bacteria, via toll-like receptor 4–mitogen-activated protein kinases/nuclear factor-kappa B-dependent proinflammatory signaling pathway. Here, we synthesized 26 asymmetric monocarbonyl analogs of curcumin and evaluated their anti-inflammatory activity by inhibiting the LPS-induced secretion of tumor necrosis factor-α and interleukin-6 in mouse RAW264.7 macrophages. Five active compounds (3a, 3c, 3d, 3j, and 3l exhibited dose-dependent inhibition against the release of tumor necrosis factor-α and interleukin-6, and they also showed much higher chemical stability than curcumin in vitro. The anti-inflammatory activity of analogs 3a and 3c may be associated with their inhibition of the phosphorylation of extracellular signal-regulated kinase and the activation of nuclear factor-kappa B. In addition, 3c exhibited significant protection against LPS-induced septic death in vivo. These results indicate that asymmetrical monocarbonyl curcumin analogs may be utilized as candidates for the treatment of acute inflammatory diseases. Keywords: sepsis, inflammatory cytokines, anti-inflammation, quantitative structure–activity relationship

  7. Study of anti-inflammatory effect of simvastatin in rats

    Directory of Open Access Journals (Sweden)

    Ranga Satya Venkatesh

    2016-08-01

    Results: At a dose of 40 mg Simvastatin showed anti-inflammatory effect which is statically highly significant. Conclusions: However, the above preclinical experiments only give us an idea about the anti-inflammatory activity, but large scale clinical trials are necessary for final assessment. [Int J Basic Clin Pharmacol 2016; 5(4.000: 1520-1523

  8. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    Science.gov (United States)

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking.

  9. Anti-inflammatory activity of Taraxacum officinale.

    Science.gov (United States)

    Jeon, Hye-Jin; Kang, Hyun-Jung; Jung, Hyun-Joo; Kang, Young-Sook; Lim, Chang-Jin; Kim, Young-Myeong; Park, Eun-Hee

    2008-01-04

    Taraxacum officinale has been widely used as a folkloric medicine for the treatment of diverse diseases. The dried plant was extracted with 70% ethanol to generate its ethanol extract (TEE). For some experiments, ethyl acetate (EA), n-butanol (BuOH) and aqueous (Aq) fractions were prepared in succession from TEE. TEE showed a scavenging activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, a diminishing effect on intracellular reactive oxygen species (ROS) level, and an anti-angiogenic activity in the chicken chorioallantoic (CAM) assay. In the carrageenan-induced air pouch model, TEE inhibited production of exudate, and significantly diminished nitric oxide (NO) and leukocyte levels in the exudate. It also possessed an inhibitory effect on acetic acid-induced vascular permeability and caused a dose-dependent inhibition on acetic acid-induced abdominal writhing in mice. Suppressive effects of TEE on the production of NO and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated macrophages were also assessed. Among the fractions, the n-butanol fraction (BuOH) was identified to be most effective in the CAM assay. Collectively, Taraxacum officinale contains anti-angiogenic, anti-inflammatory and anti-nociceptive activities through its inhibition of NO production and COX-2 expression and/or its antioxidative activity.

  10. The anti-inflammatory potential of neuropeptide FF in vitro and in vivo.

    Science.gov (United States)

    Sun, Yu-Long; Zhang, Xiao-Yuan; Sun, Tao; He, Ning; Li, Jing-Yi; Zhuang, Yan; Zeng, Qian; Yu, Jing; Fang, Quan; Wang, Rui

    2013-09-01

    Neuropeptide FF (NPFF) has many functions in regulating various biological processes. However, little attention has been focused on the anti-inflammatory effect of this peptide. In the present study, the in vitro anti-inflammatory activity of NPFF in both primary peritoneal macrophages and RAW 264.7 macrophages was investigated. Our data showed that NPFF suppressed the nitric oxide (NO) production of macrophages in the inflammation process. RF9, a reported antagonist of NPFF receptors, completely blocked the NPFF-induced NO suppression, suggesting a NPFF receptors-mediated pathway is mainly involved. Down-regulation of the nitric oxide synthases significantly inhibited the NPFF-induced NO reduction, indicating the involvement of nitric oxide synthases. However, the nitric oxide synthases were not the only route by which NPFF modulated the NO levels of macrophages. Pharmacological antagonists of the NF-κB signal pathway also completely suppressed the NPFF-induced NO decline. Moreover, we also observed that NPFF is capable of blocking the LPS-induced nuclear translocation of p65 in macrophages, implying the involvement of the NF-κB signal pathway. Finally, we observed that NPFF markedly attenuated the carrageenan-induced mouse paw edema, indicating that NPFF is capable of exerting anti-inflammatory potency in vivo. Collectively, our findings reveal the potential role of NPFF in the anti-inflammatory field both in vitro and in vivo, which will be helpful for the further exploitation of NPFF utility therapeutically.

  11. MicroRNA-155 facilitates skeletal muscle regeneration by balancing pro- and anti-inflammatory macrophages.

    Science.gov (United States)

    Nie, M; Liu, J; Yang, Q; Seok, H Y; Hu, X; Deng, Z-L; Wang, D-Z

    2016-06-09

    Skeletal muscle has remarkable regeneration capacity and regenerates in response to injury. Muscle regeneration largely relies on muscle stem cells called satellite cells. Satellite cells normally remain quiescent, but in response to injury or exercise they become activated and proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Interestingly, the inflammatory process following injury and the activation of the myogenic program are highly coordinated, with myeloid cells having a central role in modulating satellite cell activation and regeneration. Here, we show that genetic deletion of microRNA-155 (miR-155) in mice substantially delays muscle regeneration. Surprisingly, miR-155 does not appear to directly regulate the proliferation or differentiation of satellite cells. Instead, miR-155 is highly expressed in myeloid cells, is essential for appropriate activation of myeloid cells, and regulates the balance between pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages during skeletal muscle regeneration. Mechanistically, we found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT signaling pathway, during the initial inflammatory response upon muscle injury. Our findings thus reveal a novel role of miR-155 in regulating initial immune responses during muscle regeneration and provide a novel miRNA target for improving muscle regeneration in degenerative muscle diseases.

  12. Anti-Inflammatory Activity of Ipomoea reniformis Methanolic Extract

    OpenAIRE

    Sanja S. D.; Sheth N.R.; Joshi D. M.; Golwala D.K.; Patel Dhaval; Raval M. K.

    2009-01-01

    In the present study, methanolic extract of Ipomoea reniformis herb (MEIR) in acute, subacute and chronic models of inflammation was assessed in rats. Administration of MEIR (200, 400 mg/kg, p.o.) exhibited significant anti-inflammatory activity. In acute inflammation as produced by Carrageenan 59.55 % and 64.04 % protection was observed. While in subacute anti-inflammatory models using formaldehyde-induced hind paw edema (after 1.5 h) 38.36 % and 47.95 % and in chronic anti-inflammatory mode...

  13. Anti-inflammatory and immune-regulatory mechanisms prevent contact hypersensitivity to Arnica montana L.

    Science.gov (United States)

    Lass, Christian; Vocanson, Marc; Wagner, Steffen; Schempp, Christoph M; Nicolas, Jean-Francois; Merfort, Irmgard; Martin, Stefan F

    2008-10-01

    Sesquiterpene lactones (SL), secondary plant metabolites from flowerheads of Arnica, exert anti-inflammatory effects mainly by preventing nuclear factor (NF)-kappaB activation because of alkylation of the p65 subunit. Despite its known immunosuppressive action, Arnica has been classified as a plant with strong potency to induce allergic contact dermatitis. Here we examined the dual role of SL as anti-inflammatory compounds and contact allergens in vitro and in vivo. We tested the anti-inflammatory and allergenic potential of SL in the mouse contact hypersensitivity model. We also used dendritic cells to study the activation of NF-kappaB and the secretion of interleukin (IL)-12 in the presence of different doses of SL in vitro. Arnica tinctures and SL potently suppressed NF-kappaB activation and IL-12 production in dendritic cells at high concentrations, but had immunostimulatory effects at low concentrations. Contact hypersensitivity could not be induced in the mouse model, even when Arnica tinctures or SL were applied undiluted to inflamed skin. In contrast, Arnica tinctures suppressed contact hypersensitivity to the strong contact sensitizer trinitrochlorobenzene and activation of dendritic cells. However, contact hypersensitivity to Arnica tincture could be induced in acutely CD4-depleted MHC II knockout mice. These results suggest that induction of contact hypersensitivity by Arnica is prevented by its anti-inflammatory effect and immunosuppression as a result of immune regulation in immunocompetent mice.

  14. An emphasis on molecular mechanisms of anti-inflammatory effects and glucocorticoid resistance.

    Science.gov (United States)

    Ingawale, Deepa K; Mandlik, Satish K; Patel, Snehal S

    2015-03-01

    Glucocorticoids (GC) are universally accepted agents for the treatment of anti-inflammatory and immunosuppressive disorders. They are used in the treatment of rheumatic diseases and various inflammatory diseases such as allergy, asthma and sepsis. They bind with GC receptor (GR) and form GC-GR complex with the receptor and exert their actions. On activation the GC-GR complex up-regulates the expression of nucleus anti-inflammatory proteins called as transactivation and down-regulates the expression of cytoplasmic pro-inflammatory proteins called as transrepression. It has been observed that transactivation mechanisms are notorious for side effects and transrepressive mechanisms are identified for beneficial anti-inflammatory effects of GC therapy. GC hampers the function of numerous inflammatory mediators such as cytokines, chemokines, adhesion molecules, arachidonic acid metabolites, release of platelet-activating factor (PAF), inflammatory peptides and enzyme modulation involved in the process of inflammation. The GC resistance is a serious therapeutic problem and limits the therapeutic response of GC in chronic inflammatory patients. It has been observed that the GC resistance can be attributed to cellular microenvironment changes, as a consequence of chronic inflammation. Various other factors responsible for resistance have been identified, including alterations in both GR-dependent and GR-independent signaling pathways of cytokine action, hypoxia, oxidative stress, allergen exposure and serum-derived factors. The present review enumerates various aspects of inflammation such as use of GC for treatment of inflammation and its mechanism of action. Molecular mechanisms of anti-inflammatory action of GC and GC resistance, alternative anti-inflammatory treatments and new strategy for reversing the GC resistance have also been discussed.

  15. Variation in antibacterial and anti-inflammatory activity of different growth forms of Malva parviflora and evidence for synergism of the anti-inflammatory compounds.

    Science.gov (United States)

    Shale, T L; Stirk, W A; van Staden, J

    2005-01-01

    Malva parviflora leaves and roots were collected from five sites within the Qacha's Nek District in Lesotho. These plants had two distinct growth forms--upright and prostrate. Hexane, methanol and water extracts were made from the plant material and tested for antibacterial and anti-inflammatory activity using the disc diffusion and cyclooxygenase-1 (Cox-1) bioassays, respectively. Hexane, methanol and water extracts made from Malva parviflora with a prostrate growth form inhibited the growth of Gram-positive and Gram-negative bacteria, while extracts made from plants with an upright growth form inhibited the growth of Gram-positive bacteria only. Cox-1 anti-inflammatory activity of hexane, methanol and water extracts did not show any variation between the two growth forms. The hexane extracts of both the leaves and roots were the most inhibitory. The water extracts had the least inhibitory activity. Bioassay-guided fractionation of the root dichloromethane extract showed that Cox-1 anti-inflammatory activity was caused by at least two compounds that acted synergistically to produce the biological effect.

  16. Anti-inflammatory and analgesic activities of Melanthera scandens

    Institute of Scientific and Technical Information of China (English)

    Jude E Okokon; Anwanga E Udoh; Samuel G Frank; Louis U Amazu

    2012-01-01

    Objective: To evaluate the anti-inflammatory and analgesic activities of leaf extract of Melanthera scandens (M. scandens). Methods: The crude leaf extract (39-111 mg/kg) of M. scandens was investigated for anti-inflammatory and analgesic activities using various experimental models. The anti-inflammatory activity was investigated using carragenin, egg-albumin induced oedema models, while acetic acid, formalin-induced paw licking and thermal-induced pain models were used to evaluate the antinociceptive property. Results: The extract caused a significant (P<0.05 - 0.001) dose-dependent reduction of inflammation and pains induced by different agents used. Conclusions: The leaf extract possesses anti-inflammatory and analgesic effects which may be mediated through the phytochemical constituents of the plant.

  17. [Non steroidal anti-inflammatory drugs and rheumatic diseases].

    Science.gov (United States)

    Cossermelli, W; Pastor, E H

    1995-01-01

    Nonsteroidal anti-inflammatory drugs (NSAID) comprise an important class of medicaments that reduced the symptoms of inflamation in rheumatic disease. This article emphasizes similarities and class characteristics of the NSAID, mechanisms of action, and drug-interactions.

  18. Anti-Inflammatory Activity of Delonix regia (Boj. Ex. Hook

    Directory of Open Access Journals (Sweden)

    Vaishali D. Shewale

    2012-01-01

    Full Text Available The present work was to evaluate the anti-inflammatory activity of Delonix regia leaves (Family: Caesalpiniaceae. The powder of Delonix regia leaves was subjected to extraction with ethanol in soxhlet extractor. The ethanol extract after preliminary phytochemical investigation showed the presence of sterols, triterpenoids, phenolic compounds and flavonoids. The anti-inflammatory activity was studied using carrageenan-induced rat paw edema and cotton pellet granuloma at a three different doses (100, 200, and 400 mg/kg b.w. p.o. of ethanol extract. The ethanol extract of Delonix regia leaves was exhibited significant anti-inflammatory activity at the dose of 400 mg/kg in both models when compared with control group. Indomethacin (10 mg/kg b.w. p.o was also shown significant anti-inflammatory activity in both models.

  19. Nonsteroidal Anti-Inflammatory Drugs: Adverse Effects and Their Prevention

    NARCIS (Netherlands)

    Vonkeman, Harald E.; Laar, van de Mart A.F.J.

    2010-01-01

    Objectives: To discuss nonsteroidal anti-inflammatory drugs (NSAIDs), their history, development, mode of action, toxicities, strategies for the prevention of toxicity, and future developments. - Methods: Medline search for articles published up to 2007, using the keywords acetylsalicylic acid, asp

  20. Nonsteroidal anti-inflammatory drugs: adverse effects and their prevention.

    NARCIS (Netherlands)

    Vonkeman, Harald Erwin; van de Laar, Mart A F J

    2010-01-01

    Objectives: To discuss nonsteroidal anti-inflammatory drugs (NSAIDs), their history, development, mode of action, toxicities, strategies for the prevention of toxicity, and future developments. - Methods: Medline search for articles published up to 2007, using the keywords acetylsalicylic acid,

  1. Synthesis and anti-inflammatory activity of chalcone derivatives.

    Science.gov (United States)

    Herencia, F; Ferrándiz, M L; Ubeda, A; Domínguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1998-05-19

    Chalcones and their derivatives were synthesized and evaluated for their anti-inflammatory activity. In vitro, chalcones 2, 4, 8, 10 and 13 inhibited degranulation and 5-lipoxygenase in human neutrophils, whereas 11 behaved as scavenger of superoxide. Only four compounds (4-7) inhibited cyclo-oxygenase-2 activity. The majority of these samples showed anti-inflammatory effects in the mouse air pouch model.

  2. Anti-inflammatory Strategies to Prevent Diabetic Cardiovascular Disease.

    Science.gov (United States)

    Jialal, I; Devaraj, S

    2015-08-01

    Diabetes is a proinflammatory state and inflammation is crucial in the genesis of vascular complications. While there are many anti-inflammatory strategies, most of which have been shown to reduce inflammation in diabetes, there is sparse data on reduction in cardiovascular events (CVEs). To date, the only anti-inflammatory strategies that have been shown to reduce CVE in diabetes include statins, angiotensin receptor blockers, metformin, and pioglitazone. We also discuss the role of novel emerging therapies.

  3. Right Cervical Vagotomy Aggravates Viral Myocarditis in Mice Via the Cholinergic Anti-inflammatory Pathway

    Science.gov (United States)

    Li-Sha, Ge; Xing-Xing, Chen; Lian-Pin, Wu; De-Pu, Zhou; Xiao-Wei, Li; Jia-Feng, Lin; Yue-Chun, Li

    2017-01-01

    The autonomic nervous system dysfunction with increased sympathetic activity and withdrawal of vagal activity may play an important role in the pathogenesis of viral myocarditis. The vagus nerve can modulate the immune response and control inflammation through a ‘cholinergic anti-inflammatory pathway’ dependent on the α7-nicotinic acetylcholine receptor (α7nAChR). Although the role of β-adrenergic stimulation on viral myocarditis has been investigated in our pervious studies, the direct effect of vagal tone in this setting has not been yet studied. Therefore, in the present study, we investigated the effects of cervical vagotomy in a murine model of viral myocarditis. In a coxsackievirus B3 murine myocarditis model (Balb/c), effects of right cervical vagotomy and nAChR agonist nicotine on echocardiography, myocardial histopathology, viral RNA, and proinflammatory cytokine levels were studied. We found that right cervical vagotomy inhibited the cholinergic anti-inflammatory pathway, aggravated myocardial lesions, up-regulated the expression of TNF-α, IL-1β, and IL-6, and worsened the impaired left ventricular function in murine viral myocarditis, and these changes were reversed by co-treatment with nicotine by activating the cholinergic anti-inflammatory pathway. These results indicate that vagal nerve plays an important role in mediating the anti-inflammatory effect in viral myocarditis, and that cholinergic stimulation with nicotine also plays its peripheral anti-inflammatory role relying on α7nAChR, without requirement for the integrity of vagal nerve in the model. The findings suggest that vagus nerve stimulation mediated inhibition of the inflammatory processes likely provide important benefits in myocarditis treatment. PMID:28197102

  4. Analgesic and anti-inflammatory activities of methanol extract from Desmodium triflorum DC in mice.

    Science.gov (United States)

    Lai, Shang-Chih; Peng, Wen-Huang; Huang, Shun-Chieh; Ho, Yu-Ling; Huang, Tai-Hung; Lai, Zhen-Rung; Chang, Yuan-Shiun

    2009-01-01

    In this study, we evaluated the analgesic effect of methanol extract from Desmodium triflorum DC (MDT) by using animal models of acetic acid-induced writhing response and formalin test. The anti-inflammatory effect of MDT was investigated by lambda-carrageenan-induced paw edema in mice. In order to study the anti-inflammatory mechanism of MDT, we detected the activities of glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver, the levels of interleukin-1beta (IL-1beta), tumor necrosis factor (TNF-alpha), malondialdehyde (MDA) and nitric oxide (NO) in the edema paw tissue. In the analgesic test, MDT (0.5 and 1.0 g/kg) decreased the acetic acid-induced writhing response and the licking time on the late phase in the formalin test. In the anti-inflammatory test, MDT (0.5 and 1.0 g/kg) decreased the paw edema at the 3rd, 4th, 5th and 6th hour after lambda-carrageenan administration. On the other hand, MDT increased the activities of SOD and GRd in liver tissues and decreased the MDA level in the edema paw at the 3rd hour after lambda-carrageenan-induced inflammation. MDT also affected the levels of interleukin-1beta, tumor necrosis factor-alpha, NO and MDA which were induced by lambda-carrageenan. The results suggested that MDT possessed analgesic and anti-inflammatory effects. The anti-inflammatory mechanism of MDT might be related to the decreases in the level of MDA in the edema paw via increasing the activities of SOD and GRd in the liver, and the NO level via regulating the IL-1beta production and the level of TNF-alpha in the inflamed tissues.

  5. Anti-inflammatory Effects and M echmdsms of Usnic Acid

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhijun; ZHENG Guohua; TAO Junyan; RUAN Jinlan

    2011-01-01

    The anti-inflammatory effect and mechanism of Usnic acid (UA) were explored on lipopolysaccharide (LPS)-stimulated RAW264.7 cell line.The effects of UA on pro-inflammatory cytokines including tumor necrosis factor-alfa (TNF-a),interleukin-6 (IL-6) and interleukin-I beta (IL-lβ),pro-inflammatory mediators such as nitric oxide (NO),inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)were studied by sandwich ELISA,real-time PCR and western blot analyses.Similarly,the effect of UA on anti-inflammatory cytokine interleukin- 10 (IL- 10) and anti-inflammatory mediator heme oxygenase- l (HO- 1)were also studied following the same methods.Furthermore,nuclear factor-kB (NF-kB) was assayed by immunocytochemistry.The results showed that UA has anti-inflammatory effect by down-regulatinng iNOS,COX-2,IL-lβ,IL-6 and TNF-a,COX-2 gene expression through the suppression of NF-kB activation and increasing anti-inflammatory cytokine IL-10 and anti-inflammatory mediator HO-1 production.

  6. Invited review: The anti-inflammatory properties of dairy lipids.

    Science.gov (United States)

    Lordan, R; Zabetakis, I

    2017-03-22

    Dairy product consumption is often associated with negative effects because of its naturally high levels of saturated fatty acids. However, recent research has shown that dairy lipids possess putative bioactivity against chronic inflammation. Inflammation triggers the onset of several chronic diseases, including cardiovascular disease, type 2 diabetes mellitus, obesity, and cancer. This review discusses the anti-inflammatory properties of dairy lipids found in milk, yogurt, and cheese, and it examines them in relation to their implications for human health: their protective effects and their role in pathology. We also consider the effect of lipid profile alteration in dairy products-by using ruminant dietary strategies to enrich the milk, or by lipid fortification in the products. We critically review the in vivo, in vitro, ex vivo, and epidemiological studies associated with these dairy lipids and their role in various inflammatory conditions. Finally, we discuss some suggestions for future research in the study of bioactive lipids and dairy products, with reference to the novel field of metabolomics and epidemiological studies.

  7. Synthesis, antinociceptive and anti-inflammatory effects of porphyrins.

    Science.gov (United States)

    Alonso-Castro, Angel Josabad; Zapata-Morales, Juan Ramón; Hernández-Munive, Abigail; Campos-Xolalpa, Nimsi; Pérez-Gutiérrez, Salud; Pérez-González, Cuauhtémoc

    2015-05-15

    Porphyrins are natural compounds with several biological activities. We report the synthesis and the evaluation of the anti-inflammatory and antinociceptive effects of 4 porphyrins: 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetra(4'-fluorophenyl)porphyrin (TpFPP), 5,10,15,20-tetra(4'-chlorophenyl)porphyrin (TpClPP), and 5,10,15,20-tetra(4'-bromophenyl)porphyrin (TpBrPP). The in vitro anti-inflammatory effects were evaluated on heat-induced hemolysis. The antinociceptive effects were evaluated using the hot plate and formalin tests. The in vivo anti-inflammatory assays were tested on the acute and chronic TPA (12-O-tetradecanoylphorbol 13-acetate) method to induce ear edema. The anti-arthritic effects were evaluated using carrageenan kaolin induced arthritis (CKIA). All porphyrins inhibited hemolysis with similar potency than naproxen (NPX). In the antinociceptive tests, all porphyrins tested at 200mg/kg showed similar effects compared to 100mg/kg NPX. In the in vivo anti-inflammatory acute assay, only three porphyrins (TPP, TpFPP and TpBrPP) decreased inflammation with similar activity than 2mg/ear indomethacin (IND). Further anti-inflammatory experiments were carried out with TPP, TpFPP and TpBrPP. In the in vivo anti-inflammatory chronic assay, porphyrins decreased inflammation with similar activity than 8mg/kg IND. Porphyrins tested at 200mg/kg showed anti-arthritic effects. The antinociceptive, anti-inflammatory and arthritic activities of porphyrins suggest that these compounds might be a good alternative for the treatment of inflammatory diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Antinociceptive and anti-inflammatory activity of the ethanolic extract of Cymbidium aloifolium (L.).

    Science.gov (United States)

    Howlader, Md Amran; Alam, Mahmudul; Ahmed, Kh Tanvir; Khatun, Farjana; Apu, Apurba Sarker

    2011-10-01

    The ethanol leaf extract of Cymbidium aloifolium (L.) was evaluated for its analgesic and antiinflammatory activities. The extract, at the dose of 200 and 400 mg kg(-1) body weight, exerted the analgesic activity by observing the number of abdominal contractions and anti-inflammatory activity against Carrageenin induced paw edema in mice by measuring the paw volume. The ethanolic extract of Cymbidium aloifolium (L.) showed statistically significant (p < 0.05) reduction of percentage of writhing of 33.57 and 61.31% at 200 and 400 mg kg(-1) oral dose, respectively, when compared to negative control. The Ethanolic plant extract also showed significant (p < 0.05) dose dependent reduction of mean increase of formation of paw edema. The results of the experiment and its statistical analysis showed that the ethanolic plant extract had shown significant (p < 0.05) dose dependent analgesic and anti-inflammatory activities when compared to the control.

  9. Analgesic and anti-inflammatory activities of 80% methanol root extract of Jasminum abyssinicum Hochst. ex. Dc. (Oleaceae) in mice.

    Science.gov (United States)

    Tadiwos, Yohannes; Nedi, Teshome; Engidawork, Ephrem

    2017-04-18

    Pain and inflammation are associated with the pathophysiology of various clinical conditions. Most analgesic and anti-inflammatory drugs available in the market present a wide range of problems. The current study was aimed at investigating the analgesic and anti-inflammatory activity of 80% methanol extract of J. abyssinicum root. The analgesic activity was determined using tail-flick test and acetic acid induced writhing, whereas anti-inflammatory activity was determined by carrageenan induced paw edema and formalin induced pedal edema, carried out in vivo. The test group received three different doses of the extract (50mg/kg, 100mg/kg and 200mg/kg) orally. The positive control group received diclofenac (10mg/kg), aspirin (100mg/kg or 150mg/kg) or morphine (20mg/kg) orally. The negative control group received vehicle (2% Tween 80, 10ml/kg) orally. Furthermore, preliminary phytochemical screening was carried out. Oral administration of J. abbysinicum 80% methanol extract (at all doses) significantly (p<0.001) inhibit pain sensation in the pain models. Similarly, the extract demonstrated anti-inflammatory effect in the inflammation models in mice. Preliminary phytochemical screening showed the presence of saponins, flavonoids, terpenoids, triterpenens and glycosides. The data obtained from the present study indicates that the extract possessed a significant analgesic and anti-inflammatory activity, upholding the folkloric use of the plant. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survival cost in mice.

    Directory of Open Access Journals (Sweden)

    Virginia Belloni

    Full Text Available BACKGROUND: The central paradigm of ecological immunology postulates that selection acts on immunity as to minimize its cost/benefit ratio. Costs of immunity may arise because the energetic requirements of the immune response divert resources that are no longer available for other vital functions. In addition to these resource-based costs, mis-directed or over-reacting immune responses can be particularly harmful for the host. In spite of the potential importance of immunopathology, most studies dealing with the evolution of the immune response have neglected such non resource-based costs. To keep the immune response under control, hosts have evolved regulatory pathways that should be considered when studying the target of the selection pressures acting on immunity. Indeed, variation in regulation may strongly modulate the negative outcome of immune activation, with potentially important fitness consequences. METHODOLOGY/PRINCIPAL FINDINGS: Here, we experimentally assessed the survival costs of reduced immune regulation by inhibiting an anti-inflammatory cytokine (IL-10 with anti-IL-10 receptor antibodies (anti-IL-10R in mice that were either exposed to a mild inflammation or kept as control. The experiment was performed on young (3 months and old (15 months individuals, as to further assess the age-dependent cost of suppressing immune regulation. IL-10 inhibition induced high mortality in old mice exposed to the mild inflammatory insult, whereas no mortality was observed in young mice. However, young mice experienced a transitory lost in body mass when injected with the anti-IL-10R antibodies, showing that the treatment was to a lesser extent also costly for young individuals. CONCLUSIONS: These results suggest a major role of immune regulation that deserves attention when investigating the evolution of immunity, and indicate that the capacity to down-regulate the inflammatory response is crucial for late survival and longevity.

  11. Studies on anti-inflammatory and analgesic properties of Lactobacillus rhamnosus in experimental animal models.

    Science.gov (United States)

    Amdekar, Sarika; Singh, Vinod

    2016-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used for the treatment of inflammatory diseases. However, constant use of NSAID may lead to some side effects like gastrointestinal ulcers, bleeding and renal disorders. This study evaluates analgesic and anti-inflammatory activities of Lactobacillus rhamnosus in female Wistar rats. Diclofenac sodium was used as a standard drug for comparison. L. rhamnosus, drugs and vehicle were administered orally. Acetic acid-induced writhing test and carrageenan-induced paw edema model were used for evaluation. Paw edema and number of writhes were measured subsequently. Pro-inflammatory (interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α and IL-17) and anti-inflammatory (IL-4 and IL-10) cytokines were estimated in serum after 24 h. Results showed that L. rhamnosus significantly decreased the paw thickness at t=24 h by 28.66 % while drug decreased by 19.33 %. Also, L. rhamnosus treatment and standard drug showed a protection of 66.66 % and 41.66 %, respectively. L. rhamnosus and diclofenac sodium treatment significantly down-regulated pro-inflammatory and up-regulated anti-inflammatory cytokines at prhamnosus was more pronounced in comparison to diclofenac sodium. The present study clearly suggests that L. rhamnosus suppressed carrageenan-induced paw edema after second phase and decreased the acetic acid-induced writhings. It ameliorated the inflammatory pathways by down-regulating pro-inflammatory cytokines. However, additional clinical investigations are needed to prove the efficacy of L. rhamnosus in treatment/management of inflammatory joint diseases.

  12. Toxicological analysis and anti-inflammatory effects of essential oil from Piper vicosanum leaves.

    Science.gov (United States)

    Hoff Brait, Débora Regina; Mattos Vaz, Márcia Soares; da Silva Arrigo, Jucicléia; Borges de Carvalho, Luciana Noia; Souza de Araújo, Flávio Henrique; Vani, Juliana Miron; da Silva Mota, Jonas; Cardoso, Claudia Andrea Lima; Oliveira, Rodrigo Juliano; Negrão, Fábio Juliano; Kassuya, Cândida Aparecida Leite; Arena, Arielle Cristina

    2015-12-01

    This study assessed the anti-inflammatory effects of the essential oil from Piper vicosanum leaves (OPV) and evaluated the toxicological potential of this oil through acute toxicity, genotoxicity and mutagenicity tests. The acute toxicity of OPV was evaluated following oral administration to female rats at a single dose of 2 g/kg b.w. To evaluate the genotoxic and mutagenic potential, male mice were divided into five groups: I: negative control; II: positive control; III: 500 mg/kg of OPV; IV: 1000 mg/kg of OPV; V: 2000 mg/kg of OPV. The anti-inflammatory activity of OPV was evaluated in carrageenan-induced pleurisy and paw edema models in rats. No signs of acute toxicity were observed, indicating that the LD50 of this oil is greater than 2000 mg/kg. In the comet assay, OPV did not increase the frequency or rate of DNA damage in groups treated with any of the doses assessed compared to that in the negative control group. In the micronucleus test, the animals treated did not exhibit any cytotoxic or genotoxic changes in peripheral blood erythrocytes. OPV (100 and 300 mg/kg) significantly reduced edema formation and inhibited leukocyte migration analyzed in the carrageenan-induced edema and pleurisy models. These results show that OPV has anti-inflammatory potential without causing acute toxicity or genotoxicity.

  13. Cellular Antioxidant and Anti-Inflammatory Effects of Coffee Extracts with Different Roasting Levels.

    Science.gov (United States)

    Jung, Soohan; Kim, Min Hyung; Park, Jae Hee; Jeong, Yoonhwa; Ko, Kwang Suk

    2017-06-01

    During roasting, major changes occur in the composition and physiological effects of coffee beans. In this study, in vitro antioxidant effects and anti-inflammatory effects of Coffea arabica green coffee extracts were investigated at different roasting levels corresponding to Light, Medium, City, and French roast. Total caffeine did not show huge difference according to roasting level, but total chlorogenic acid contents were higher in light roasted coffee extract than other roasted groups. In addition, light roasted coffee extract had the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. To determine the in vitro antioxidant property, coffee extracts were used to treat AML-12 cells. Intracellular glutathione (GSH) concentration and mRNA expression levels of genes related to GSH synthesis were negatively related to roasting levels. The anti-inflammatory effects of coffee extracts were investigated in lipopolysaccharide-treated RAW 264.7 macrophage cells. The cellular antioxidant activity of coffee extracts exhibited similar patterns as the AML-12 cells. The expression of mRNA for tumor necrosis factor-alpha and interleukin-6 was decreased in cells treated with the coffee extracts and the expression decreased with increasing roasting levels. These data suggest that coffee has physiological antioxidant and anti-inflammatory activities and these effects are negatively correlated with roasting levels in the cell models.

  14. Anti-inflammatory role of obestatin in autoimmune myocarditis.

    Science.gov (United States)

    Pamukcu, Ozge; Baykan, Ali; Bayram, Latife Cakir; Narin, Figen; Cetin, Nazmi; Narin, Nazmi; Argun, Mustafa; Ozyurt, Abdullah; Uzum, Kazim

    2016-01-01

    Obestatin is a popular endogeneous peptide, known to have an autoimmune regulatory effect on energy metabolism and the gastrointestinal system. Studies regarding the anti-inflammatory effects of obestatin are scarce. The aim of this study was to show the anti-inflammatory effect of obestatin in an experimental model of autoimmune myocarditis in rats. Experimental autoimmune myocarditis was induced in Lewis rats by immunization with subcutaneous administration of porcine cardiac myosin, twice at 7-day intervals. Intraperitoneal pretreatment with obestatin (50 μg/kg) was started before the induction of myocarditis and continued for 3 weeks. The severity of myocarditis was evidenced by clinical, echocardiographic and histological findings. In addition, by-products of neutrophil activation, lipid peroxidation, inflammatory and anti-inflammatory cytokines were measured in serum. Obestatin significantly ameliorated the clinical and histopathological severity of autoimmune myocarditis. Therapeutic effects of obestatin in myocarditis were associated with reduced lipid peroxidation, suppression of polymorphonuclear leukocyte infiltration and enhancement of glutathione synthesis, inhibition of serum inflammatory and activation of anti-inflammatory cytokines. Histopathologically, the left ventricle was significantly dilated, and its wall thickened, along with widespread lymphocytic and histocytic infiltration. The myocardium was severely infiltrated with relatively large mononuclear cells. These histopathological changes were observed in lesser degrees in obestatin-treated rats. This study demonstrated a novel anti-inflammatory effect of obestatin in an experimental model of autoimmune myocarditis. Consequently, obestatin administration may represent a promising therapeutic approach for myocarditis and dilated cardiomyopathy in the future.

  15. Potential anti-inflammatory natural products from marine algae.

    Science.gov (United States)

    Fernando, I P Shanura; Nah, Jae-Woon; Jeon, You-Jin

    2016-12-01

    Inflammatory diseases have become one of the leading causes of health issue throughout the world, having a considerable influence on healthcare costs. With the emerging developments in natural product, synthetic and combinatorial chemistry, a notable success has been achieved in discovering natural products and their synthetic structural analogs with anti-inflammatory activity. However, many of these therapeutics have indicated detrimental side effects upon prolonged usage. Marine algae have been identified as an underexplored reservoir of unique anti-inflammatory compounds. These include polyphenols, sulfated polysaccharides, terpenes, fatty acids, proteins and several other bioactives. Consumption of these marine algae could provide defense against the pathophysiology of many chronic inflammatory diseases. With further investigation, algal anti-inflammatory phytochemicals have the potential to be used as therapeutics or in the synthesis of structural analogs with profound anti-inflammatory activity with reduced side effects. The current review summarizes the latest knowledge about the potential anti-inflammatory compounds discovered from marine algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Anti-inflammatory activity of root of Alpinia galanga willd

    Directory of Open Access Journals (Sweden)

    Asim Kumar Ghosh

    2011-01-01

    Full Text Available Objective: The objective of the study is to evaluate the acute and chronic anti-inflammatory activities of root extract of Alpinia galanga in rodents. Materials and Methods: The study was carried out using albino rats of either sex (150-200 g. An extract of the root of A. galanga was prepared using absolute alcohol and distillation in a Soxhlet apparatus. The acute anti-inflammatory effects of this extract were evaluated using carrageenan-, bradykinin-, and 5-HT-induced rat paw edema. The chronic anti-inflammatory effects were evaluated using formaldehyde-induced rat paw edema. Results and Analysis: Inhibition of inflammation was seen to be 32.22% in carrageenan-induced, 37.70% in 5-HT-induced, and 35.21% in bradykinin-induced anti-inflammatory models. In chronic inflammatory model, a progressive inhibition of 34.73% (3 rd day, 37.50% (5 th day, 38.83% (7 th day, 44.66% (9 th day, 49.59% (11 th day, and 55.75% (13 th day was observed with study compound. The efficacy was comparable with the standard drugs. Conclusion: It can be thus concluded that A. galanga has anti-inflammatory properties and probably acts by blocking histaminic and serotonin pathways. It may be an effective alternative to NASAIDs and corticosteroid in inflammatory disorders.

  17. Anti-inflammatory activity of Bromelia hieronymi: comparison with bromelain.

    Science.gov (United States)

    Errasti, María E; Caffini, Néstor O; Pelzer, Lilian E; Rotelli, Alejandra E

    2013-03-01

    Some plant proteases (e. g., papain, bromelain, ficin) have been used as anti-inflammatory agents for some years, and especially bromelain is still being used as alternative and/or complementary therapy to glucocorticoids, nonsteroidal antirheumatics, and immunomodulators. Bromelain is an extract rich in cysteine endopeptidases obtained from Ananas comosus. In this study the anti-inflammatory action of a partially purified extract of Bromelia hieronymi fruits, whose main components are cysteine endopeptidases, is presented. Different doses of a partially purified extract of B. hieronymi were assayed on carrageenan-induced and serotonine-induced rat paw edema, as well as in cotton pellet granuloma model. Doses with equal proteolytic activity of the partially purified extract and bromelain showed significantly similar anti-inflammatory responses. Treatment of the partially purified extract and bromelain with E-64 provoked loss of anti-inflammatory activity on carrageenan-induced paw edema, a fact which is consistent with the hypothesis that the proteolytic activity would be responsible for the anti-inflammatory action.

  18. TWEAK Negatively Regulates Human Dicer

    OpenAIRE

    2016-01-01

    The ribonuclease Dicer plays a central role in the microRNA pathway by processing microRNA precursors (pre-microRNAs) into microRNAs, a class of 19- to 24-nucleotide non-coding RNAs that regulate expression of ≈60% of the genes in humans. To gain further insights into the function and regulation of Dicer in human cells, we performed a yeast two-hybrid (Y2HB) screen using human Dicer double-stranded RNA-binding domain (dsRBD) as bait. This approach identified tumor necrosis factor (TNF)-like w...

  19. Evaluation of anti-inflammatory and antinociceptive effects of D-002 (beeswax alcohols).

    Science.gov (United States)

    Ravelo, Yazmin; Molina, Vivian; Carbajal, Daisy; Fernández, Lilia; Fernández, Julio C; Arruzazabala, María L; Más, Rosa

    2011-04-01

    D-002, a mixture of six higher aliphatic alcohols purified from beeswax, displayed anti-inflammatory effects in carrageenan-induced pleurisy and cotton pellet granuloma in rats. The aim of the present study was to confirm the anti-inflammatory properties of D-002 and to explore its potential analgesic effects. Xylene-induced mouse ear oedema was used to assess the anti-inflammatory effect, acetic acid-induced writhing and hot plate responses for the analgesic activity, and the open field and horizontal rotarod tests for motor performance. For anti-inflammatory tests, mice were randomised into a negative vehicle control and five xylene-treated groups: the vehicle, D-002 (25, 50 and 200 mg/kg) and indomethacin 1 mg/kg (reference drug). Treatments were given for 15 days. Effects on oedema formation and myeloperoxidase (MPO) activity were tested. For analgesia and motor performance tests, mice were randomised into a vehicle control and D-002-treated groups (25, 50 and 200 mg/kg). Two sets of experiments were done, which included acute and repeat (15 days) dosing. D-002 (25, 50 and 200 mg/kg) significantly decreased xylene-induced ear oedema (44.7, 60.8 and 76.4%, respectively) and the increase of MPO activity induced by xylene (38.0, 47.0 and 57.0%, respectively), while indomethacin significantly inhibited xylene-induced oedema (59.9%) and MPO activity (57.5%). Single and repeat doses of D-002 (25, 50 and 200 mg/kg) decreased the acetic acid-induced writhing responses by 21.2, 28.2 and 40.1%, for the single doses; 25.2, 35.1 and 43.2%, respectively, for the repeat doses, but did not affect the hot plate, open field and rotarod behaviours. Aspirin 100 mg/kg significantly decreased acetic acid-induced abdominal constrictions and morphine (5 mg/kg) significantly increased the latency of the hot plate response. This study confirmed the anti-inflammatory effects of D-002 and demonstrated its analgesic effects on the acetic acid-induced writhing, but not on the hot plate

  20. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis

    Directory of Open Access Journals (Sweden)

    Wang JianFei

    2010-02-01

    Full Text Available Abstract Background Nanocrystalline silver dressings have anti-inflammatory activity, unlike solutions containing Ag+ only, which may be due to dissolution of multiple silver species. These dressings can only be used to treat surfaces. Thus, silver-containing solutions with nanocrystalline silver properties could be valuable for treating hard-to-dress surfaces and inflammatory conditions of the lungs and bowels. This study tested nanocrystalline silver-derived solutions for anti-inflammatory activity. Methods Inflammation was induced on porcine backs using dinitrochlorobenzene. Negative and positive controls were treated with distilled water. Experimental groups were treated with solutions generated by dissolving nanocrystalline silver in distilled water adjusted to starting pHs of 4 (using CO2, 5.6 (as is, 7, and 9 (using Ca(OH2. Solution samples were analyzed for total silver. Daily imaging, biopsying, erythema and oedema scoring, and treatments were performed for three days. Biopsies were processed for histology, immunohistochemistry (for IL-4, IL-8, IL-10, TNF-α, EGF, KGF, KGF-2, and apoptotic cells, and zymography (MMP-2 and -9. One-way ANOVAs with Tukey-Kramer post tests were used for statistical analyses. Results Animals treated with pH 7 and 9 solutions showed clear visual improvements. pH 9 solutions resulted in the most significant reductions in erythema and oedema scores. pH 4 and 7 solutions also reduced oedema scores. Histologically, all treatment groups demonstrated enhanced re-epithelialisation, with decreased inflammation. At 24 h, pMMP-2 expression was significantly lowered with pH 5.6 and 9 treatments, as was aMMP-2 expression with pH 9 treatments. In general, treatment with silver-containing solutions resulted in decreased TNF-α and IL-8 expression, with increased IL-4, EGF, KGF, and KGF-2 expression. At 24 h, apoptotic cells were detected mostly in the dermis with pH 4 and 9 treatments, nowhere with pH 5.6, and in both the

  1. Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA.

    Science.gov (United States)

    Kim, Seong-Min; Lim, So-Mang; Yoo, Jeong-Ah; Woo, Moon-Jea; Cho, Kyung-Hyun

    2015-11-01

    Background Although the health effects of vitamin C are well known, its physiological effect on serum lipoproteins and microRNA still remain to be investigated, especially daily consumption of a high dosage. Objectives To investigate the physiological effect of vitamin C on serum lipoprotein metabolism in terms of its anti-oxidant and anti-glycation activities, and gene expression via microRNA regulation. Methods We analyzed blood parameters and lipoprotein parameters in young subjects (n = 46, 22 ± 2 years old) including smokers who consumed a high dose of vitamin C (1250 mg) daily for 8 weeks. Results Antioxidant activity of serum was enhanced with the elevation of Vit C content in plasma during 8 weeks consumption. In the LDL fraction, the apo-B48 band disappeared at 8 weeks post-consumption in all subjects. In the HDL fraction, apoA-I expression was enhanced by 20% at 8 weeks, especially in male smokers. In the lipoprotein fraction, all subjects showed significantly reduced contents of advanced glycated end products and reactive oxygen species (ROS). Triglyceride (TG) contents in each LDL and HDL fraction were significantly reduced in all groups following the Vit C consumption, suggesting that the lipoprotein was changed to be more anti-inflammatory and atherogenic properties. Phagocytosis of LDL, which was purified from each individual, into macrophages was significantly reduced at 8-weeks post-consumption of vitamin C. Anti-inflammatory and anti-senescence effects of HDL from all subjects were enhanced after the 8-weeks consumption. The expression level of microRNA 155 in HDL3 was reduced by 49% and 75% in non-smokers and smokers, respectively. Conclusion The daily consumption of a high dose of vitamin C for 8 weeks resulted in enhanced anti-senescence and anti-atherosclerotic effects via an improvement of lipoprotein parameters and microRNA expression through anti-oxidation and anti-glycation, especially in smokers.

  2. A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL

    DEFF Research Database (Denmark)

    Downer, Eric J; Cowley, Thelma R; Lyons, Anthony;

    2010-01-01

    as a novel anti-inflammatory agent. Administration of FGL to aged rats attenuated the increased expression of markers of activated microglia, the increase in pro-inflammatory interleukin-1beta (IL-1beta) and the impairment in long-term potentiation (LTP). We report that the age-related increase in microglial......Age-related cognitive deficits in hippocampus are correlated with neuroinflammatory changes, typified by increased pro-inflammatory cytokine production and microglial activation. We provide evidence that the neural cell adhesion molecule (NCAM)-derived mimetic peptide, FG loop (FGL), acts...... CD200 in vitro. We provide evidence that the increase in CD200 is reliant on IL-4-induced extracellular signal-regulated kinase (ERK) signal transduction. These findings provide the first evidence of a role for FGL as an anti-inflammatory agent and identify a mechanism by which FGL controls...

  3. Evaluation of the anti-inflammatory effect of chalcone and chalcone analogues in a zebrafish model.

    Science.gov (United States)

    Chen, Yau-Hung; Wang, Wei-Hua; Wang, Yun-Hsin; Lin, Zi-Yu; Wen, Chi-Chung; Chern, Ching-Yuh

    2013-02-05

    The aim of this study was to investigate novel chalcones with potent anti-inflammatory activities in vivo. Chalcone and two chalcone analogues (compound 5 and 9) were evaluated using a caudal fin-wounded transgenic zebrafish line "Tg(mpx:gfp)" to visualize the effect of neutrophil recruitment dynamically. Results showed that treatment with compound 9 not only affected wound-induced neutrophil recruitment, but also affected Mpx enzymatic activity. Moreover, protein expression levels of pro-inflammatory factors (Mpx, NFκB, and TNFα) were also regulated by compound 9. Taken together, our results provide in vivo evidence of the anti-inflammatory effects of synthesized chalcone analogues on wound-induced inflammation.

  4. Topical anti-inflammatory activity of Calea prunifolia HBK (Asteraceae) in the TPA model of mouse ear inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Milton; Gil, Juan F., E-mail: miltongoba@uniquindio.edu.co [Grupo de Busqueda de Principios Bioactivos, Programa de Quimica, Universidad del Quindio, Armenia (Colombia)

    2011-09-15

    Phytochemical study of Calea prunifolia HBK identified two compounds derived from p-hydroxyacetophenone, the 1-(2-hydroxy-5-(1-methoxyethyl)phenyl)-3-methylbut-2.en-1-one showed a satisfactory anti-inflammatory activity (58.33%), when considering that this is a natural product. Although the two derived compounds are structurally similar, the anti-inflammatory activity of 1-(2-hydroxy-5-methoxyphenyl)-3-methylbut-2-en-1-one was not significant (2.08%). The test was conducted in a model of inflammation induced by topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA) in the ear of mice. The positive control was tested with indomethacin and the negative control was done only with vehicle. These results allow the identification of a pharmacophore group that through molecular modeling studies and organic synthesis can result in compounds with improved anti-inflammatory activity. (author)

  5. FORMULATION AND EVALUATION OF POLYHERBAL GEL FOR ANTI - INFLAMMATORY ACTIVITY

    Directory of Open Access Journals (Sweden)

    Gouri Dixit*, Ganesh Misal, Vijay Gulkari and Kanchan Upadhye

    2013-03-01

    Full Text Available ABSTRACT: In the present study, three medicinal plants Cynodon dactylon (L. Pers, Cassia tora Linn. and Cassia alata Linn having significant anti-inflammatory potential were selected to be formulated as polyherbal gels. The gels were prepared using the dried methanolic extract of Cassia tora Linn, Cassia alata Linn and Cynodon dactylon (L. Pers. Polyherbal gel formulations were evaluated for its pH, appearance and homogeneity, viscosity, spreadability and skin irritation studies. Assessment of Anti-inflammatory activity was done by carrageenan induced rat paw edema and formalin- induced rat paw edema. Individual and polyherbal gel of Cassia alata Linn,Cassia tora Linn. and Cynodon dactylon (L. Pers were found to possess anti-inflammatory effect in acute and chronic models. Polyherbal gel also showed synergistic effect as compared to individual gels which can be useful for the treatment of local inflammation.

  6. Anti-inflammatory Activity of Crinum defixum Ker-Gawl

    Directory of Open Access Journals (Sweden)

    Shilpa K

    2012-04-01

    Full Text Available Crinum defixum Ker-Gawl is a bulbous herb which has a wide geographical distribution in India. It is commonly called Bon-naharu (meaning wild garlic in Assam. Traditionally the bulb has been reported to have nauseant, emetic, emollient, diaphoretic properties and it is also used in various inflammatory conditions. The anti-inflammatory activity of the bulbs of the plants has been investigated in the present study in order to establish its traditional claims. The ethyl acetate, chloroform and ethanol extracts of bulbs of Crinum defixum were screened for anti-inflammatory activity by using carrageenan induced rat paw edema method. The study revealed that the ethyl acetate extract of the plant had significant anti-inflammatory activity than the chloroform and ethanol extracts. The study supports the ethanomedicinal use of this plant for inflammatory conditions.

  7. Anti-inflammatory agents in the treatment of bipolar depression

    DEFF Research Database (Denmark)

    Rosenblat, Joshua D; Kakar, Ron; Berk, Michael

    2016-01-01

    OBJECTIVE: Inflammation has been implicated in the risk, pathophysiology, and progression of mood disorders and, as such, has become a target of interest in the treatment of bipolar disorder (BD). Therefore, the objective of the current qualitative and quantitative review was to determine...... the overall antidepressant effect of adjunctive anti-inflammatory agents in the treatment of bipolar depression. METHODS: Completed and ongoing clinical trials of anti-inflammatory agents for BD published prior to 15 May 15 2015 were identified through searching the PubMed, Embase, Psych...... or significant treatment-emergent adverse events were reported. CONCLUSIONS: Overall, a moderate antidepressant effect was observed for adjunctive anti-inflammatory agents compared with conventional therapy alone in the treatment of bipolar depression. The small number of studies, diversity of agents, and small...

  8. Hypoglycemic agents and potential anti-inflammatory activity

    Directory of Open Access Journals (Sweden)

    Kothari V

    2016-04-01

    Full Text Available Vishal Kothari,1 John A Galdo,2 Suresh T Mathews3 1Department of Nutrition and Dietetics, Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, 2Department of Pharmacy Practice, 3Department of Nutrition and Dietetics, Samford University, Birmingham, AL, USA Abstract: Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor- agonist, dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. Keywords: diabetes, inflammation, insulin, metformin, thiazolidinedione, gliptin

  9. Stimulation of the Angiotensin II AT2 Receptor is Anti-inflammatory in Human Lipopolysaccharide-Activated Monocytic Cells

    DEFF Research Database (Denmark)

    Menk, Mario; Graw, Jan Adriaan; von Haefen, Clarissa

    2015-01-01

    in these cells. Human monocytic THP-1 and U937 cells were stimulated with lipopolysaccharide (LPS) and the selective AT2 receptor agonist Compound 21 (C21). Expression of pro- and anti-inflammatory cytokines IL-6, IL-10, tumor necrosis factor-α (TNFα), and IL-1β were analyzed on both the transcriptional...... and the translational level over course of time. Treatment with C21 attenuated the expression of TNFα, IL-6, and IL-10 after LPS challenge in both cell lines in a time- and dose-dependent manner. We conclude that selective AT2 receptor stimulation acts anti-inflammatory in human monocytes. Modulation of cytokine......Recently, AT2 receptors have been discovered on the surface of human immunocompetent cells such as monocytes. Data on regulative properties of this receptor on the cellular immune response are poor. We hypothesized that direct stimulation of the AT2 receptor mediates anti-inflammatory responses...

  10. EVALUATION OF ANTI-INFLAMMATORY ACTIVITY OF FICUS RETUSA (MORACEAE)

    OpenAIRE

    N. Jaya Raju; N. Sreekanth

    2011-01-01

    The study was designed to evaluate the anti-inflammatory effect of leaves of Ficus retusa (Moraceae) in Sanskrit, it is known as ‘Kantalaka’, ‘Kshudra’ and in Telugu it is well known as ‘Yerrajuvvi’. It is also called as “Indian Laurel Fig" of ethyl acetate and methanolic extracts in carrageenan induced albino wistar rats of either sex (175-250g). The anti-inflammatory effects of ethyl acetate extract of Ficus retusa 200, 400 mg/kg p.o were found to be significant (P

  11. Investigation Of Anti-Inflammatory Activity Of Bergamot Oil

    OpenAIRE

    2007-01-01

    Aim: Essential oil of Bergamot (BO) was investigated for anti-inflammatory activity using carrageenan-induced rat paw oedema test. Methods: For the anti-inflammatory activity measurement six different groups were established and BO was administered in three different doses: 0.025, 0.05 and 0.10 mL/kg. Indomethacin was used as a reference agent. Results: It was found that reduction in the inflammation was 95.70% with indomethacin, 27.56% with 0.025 mL/kg BO, 30.77% with 0.05 mL/kg BO and 63.39...

  12. Anti-inflammatory new coumarin from the Ammi majus L.

    Science.gov (United States)

    Selim, Yasser Abdelaal; Ouf, Nabil Hassan

    2012-01-12

    Investigation of the aerial parts of the Egyptian medicinal plant Ammi majus L. led to isolation of new coumarin, 6-hydroxy-7-methoxy-4 methyl coumarin (2) and 6-hydroxy-7-methoxy coumarin (3); this is the first time they have been isolated from this plant. The structures of the compounds (2 &3) were elucidated by spectroscopic data interpretation and showed anti-inflammatory and anti-viral activity. GRAPHICAL An efficient, one-new coumarin (2) was isolated from the aerial parts of the A. Majus L. was evaluated for their anti-viral and anti-inflammatory activities.

  13. Synthesis and anti-inflammatory activity of three nitro chalcones.

    Science.gov (United States)

    Gómez-Rivera, Abraham; Aguilar-Mariscal, Hidemí; Romero-Ceronio, Nancy; Roa-de la Fuente, Luis F; Lobato-García, Carlos E

    2013-10-15

    The aim of this study was to synthesize three nitro substituted chalcones and to evaluate their anti-inflammatory activity in the model of carrageenan induced edema in rats. The nitro chalcone were prepared by aldol condensation using of mechanical agitation and environmentally friendly solvents with 72-73% yields in approximately 2h. The three structures were evaluated on biological activity at dose of 200mg/kg and they showed anti-inflammatory protective effect by both oral and intraperitoneal administration, this effect was time dependent.

  14. Seagrass as a potential source of natural antioxidant and anti-inflammatory agents.

    Science.gov (United States)

    Yuvaraj, N; Kanmani, P; Satishkumar, R; Paari, A; Pattukumar, V; Arul, V

    2012-04-01

    Halophila spp. is a strong medicine against malaria and skin diseases and is found to be very effective in early stages of leprosy. Seagrasses are nutraceutical in nature and therefore of importance as food supplements. The antibacterial, antioxidant, and anti-inflammatory activities of Halophila ovalis R. Br. Hooke (Hydrocharitaceae) methanol extract were investigated and the chemical constituents of purified fractions were analyzed. Plant materials were collected from Pondicherry coastal line, and antimicrobial screening of crude extract, and purified fractions was carried out by the disc diffusion method and the minimum inhibitory concentration (MICs) of the purified fractions and reference antibiotics were determined by microdilution method. Antioxidant and anti-inflammatory activities were investigated in vitro. Chemical constituents of purified fractions V and VI were analyzed by gas chromatography-mass spectrometry (GC-MS), and the phytochemicals were quantitatively determined. Methanol extract inhibited the growth of Bacillus cereus at a minimum inhibitory concentration of 50 µg/mL and other Gram-negative pathogens at 75 µg/ml, except Vibrio vulnificus. Reducing power and total antioxidant level increased with increasing extract concentration. H. ovalis exhibited strong scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals at IC(50) of 0.13 and 0.65 mg/mL, respectively. Methanol extract of H. ovalis showed noticeable anti-inflammatory activity at IC(50) of 78.72 µg/mL. The GC-MS analysis of H. ovalis revealed the presence of triacylglycerols as major components in purified fractions. Quantitative analysis of phytochemicals revealed that phenols are rich in seagrass H. ovalis. These findings demonstrated that the methanol extract of H. ovalis exhibited appreciable antibacterial, noticeable antioxidant, and anti-inflammatory activities, and thus could be use as a potential source for natural health products.

  15. ANTI-INFLAMMATORY AND CYTOTOXICITY EFFECTS OF SALVADORA PERSICA (MESWAK EXTRACTS ON JURKAT T-CELLS

    Directory of Open Access Journals (Sweden)

    Farimah Sardari

    2015-04-01

    Full Text Available Salvadora persica (S. persica, Meswak, is an evergreen shrub to 6-7 m. It has many biological activities such as antipyretic, anti-inflammatory and antifungal activities. This study evaluated in vitro cytotoxic and anti-inflammatory effects of S. persica extracts on human oral Jurkat (T leukemia cells. Extracts from Meswak stick and leaves were tested in different concentrations for their cytotoxic and anti-inflammatory activities on human oral Jurkat T- cells. So treated cells viability with increasing concentrations of S. persica stick extract (0.008-0.2 μg/ml and leaves extract (0.016-0.5 μg/ml for 24, 48 or 72 hours was assessed by using the mitochondrial dependent reduction of yellow MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide to purple formazan. Also Enzyme-linked immunosorbent assay (ELISA was performed on supernatants from treated Jurkat T-cells with phytohemagglutinin (PHA and both extracts to quantify IL-6, IL-8 pro-inflammatory cytokines. Statistically significant differences were indicated by p <0.05. Incubation of Jurkat cells with sterile distilled water, negative control, didn't show any mortality through the incubation period. Against PHA, positive control, both stick and leaves extracts of S. persica like resulted in a dose-dependent decrease of IL-6 and IL-8 secretion (p <0.01. Although both extracts significantly inhibited survival of Jurkat cells (p < 0.01 in a dose- and time-dependent manner, stick extract exerted more cytotoxic effects on Jurkat cells than leaves extract of S. persica (p <0.03. In conclusion, although with increasing concentrations of both extracts anti-inflammatory properties were boosted, S. persica extracts had dose-dependent cytotoxic effects on human oral Jurkat T-cells.

  16. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    Science.gov (United States)

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.

  17. Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases.

    Science.gov (United States)

    Pham, Tho X; Park, Young-Ki; Lee, Ji-Young

    2016-06-21

    We previously demonstrated that the organic extract of Spirulina platensis (SPE), an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs) play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca(2+)/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β), but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα) promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect.

  18. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    Science.gov (United States)

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  19. Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities.

    Science.gov (United States)

    Fonsêca, Diogo V; Salgado, Paula R R; Aragão Neto, Humberto de C; Golzio, Adriana M F O; Caldas Filho, Marcelo R D; Melo, Cynthia G F; Leite, Fagner C; Piuvezam, Marcia R; Pordeus, Liana Clébia de Morais; Barbosa Filho, José M; Almeida, Reinaldo N

    2016-09-01

    Ortho-eugenol is a much used phenylpropanoid whose ability to reduce pain and inflammation has never been studied. Researching ortho-eugenol's antinociceptive and anti-inflammatory activity, and its possible mechanisms of action is therefore of interest. The administration of vehicle, ortho-eugenol (50, 75 and 100mg/kg i.p.), morphine (6mg/kg, i.p.) or dexamethasone (2mg/kg, s.c.) occurred 30min before the completion of pharmacological tests. Pretreatment with ortho-eugenol did not change motor coordination test results, but reduced the number of writhes and licking times in the writhing test and glutamate test, respectively. The reaction time from thermal stimulus was significantly increased in the hot plate test after administration of ortho-eugenol. Treatment with yohimbine reversed the antinociceptive effect of ortho-eugenol, suggesting involvement of the adrenergic system. In anti-inflammatory tests, ortho-eugenol inhibited acetic acid induced vascular permeability and leukocyte migration, reducing TNF-α and IL-1β by virtue of its suppression of NF-κB and p38 phosphorylated forms in the peritonitis test. From these results, ortho-eugenol antinociceptive effects mediated by the adrenergic system and anti-inflammatory activity through regulation of proinflammatory cytokines and phosphorylation of NF-kB and p38 become evident for the first time.

  20. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  1. Triple Negative Breast Cancer and Metabolic Regulation

    Science.gov (United States)

    2015-08-01

    Lactate Dehydrogenase A is an isoform of lactate dehydrogenase, which catalyzes the conversion of pyruvate to lactate . LDHA is expressed in cancer ...AWARD NUMBER: W81XWH-13-1-0167 TITLE: Triple Negative Breast Cancer and Metabolic Regulation PRINCIPAL INVESTIGATOR: Amy S. Yee, Ph.D...Negative Breast Cancer and Metabolic Regulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0167 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amy S

  2. Evaluation of labdane derivatives as potential anti-inflammatory agents.

    Science.gov (United States)

    Girón, Natalia; Pérez-Sacau, Elisa; López-Fontal, Raquel; Amaro-Luis, Juan M; Hortelano, Sonsoles; Estevez-Braun, Ana; de Las Heras, Beatriz

    2010-07-01

    In the present study, a series of labdane derivatives (2-9) were prepared from labdanediol (1) and their potential as anti-inflammatory agents were evaluated on lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. All compounds were able to inhibit LPS-induced nitric oxide (NO), although compounds 1, 2, 5, 8 and 9 exhibited the most potent effects with a range of IC(50) values of 5-15 microM. Similarly to the inhibitory effects on NO release, these labdane derivatives also inhibited prostaglandin E(2) (PGE(2)) production. However, analysis of cell viability demonstrated that effects on NO release and (PGE(2)) production of compounds 1, 8 and 9 were due to citotoxicity, whereas compound 2 and 5 did not show any effect in the survival of RAW 264.7 macrophages. In addition to these in vitro data, compound 5 also showed anti-inflammatory activity in vivo, when tested in mice. They prevented the extent of swelling in the TPA-induced ear edema model and inhibited MPO activity, showing similar potency to that of the widely used anti-inflammatory drug indomethacin. These results indicate that compound 2 and in particular compound 5 might be used for the design of new anti-inflammatory agents. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  3. Proinflammatory and anti-inflammatory cytokines in meningococcal disease.

    OpenAIRE

    Riordan, F A; Marzouk, O; Thomson, A. P.; Sills, J A; Hart, C. A.

    1996-01-01

    Interleukin-10 (IL-10), an anti-inflammatory cytokine, was measured in 131 children with meningococcal disease. IL-10 concentrations were significantly higher in children who died and correlated positively with proinflammatory cytokines. Children who die from meningococcal disease have high IL-10 concentrations, which do not suppress proinflammatory cytokines.

  4. Topical anti-inflammatory activity of yacon leaf extracts

    Directory of Open Access Journals (Sweden)

    Rejane B. Oliveira

    2013-06-01

    Full Text Available Smallanthus sonchifolius (Poepp. H. Rob. , Asteraceae, known as yacon, is an herb that is traditionally used for the treatment of diabetes in folk medicine. However, recent studies have demonstrated that this plant has other interesting properties such as anti-microbial and anti-inflammatory actions. Thus, the purpose of this study was to evaluate the topical anti-inflammatory property of different extracts prepared from yacon leaves and analyze the role of different chemical classes in this activity. Three yacon leaf extracts were obtained: aqueous extract, where chlorogenic acid derivatives and sesquiterpene lactones were detected; leaf rinse extract, rich in sesquiterpene lactones; and polar extract, rich in chlorogenic acid derivatives. All the extracts exhibited anti-edematogenic activity in vivo (aqueous extract: 25.9% edema inhibition at 0.50 mg/ear; polar extract: 42.7% inhibition at 0.25 mg/ear; and leaf rinse extract: 44.1% inhibition at 0.25 mg/ear. The leaf rinse extract furnished the best results regarding neutrophil migration inhibition, and NO, TNF-α and PGE2 inhibition. These data indicate that both sesquiterpene lactones and chlorogenic acid derivatives contribute to the anti-inflammatory action, although sesquiterpene lactones seem to have more pronounced effects. In conclusion, yacon leaf extracts, particularly the sesquiterpene lactone-rich extract, has potential use as topical anti-inflammatory agent.

  5. Anti-Inflammatory Activity of Compounds Isolated from Plants

    Directory of Open Access Journals (Sweden)

    R.M. Perez G.

    2001-01-01

    Full Text Available This review shows over 300 compounds isolated and identified from plants that previously demonstrated anti-inflammatory activity. They have been classified in appropriate chemical groups and data are reported on their pharmacological effects, mechanisms of action, and other properties.

  6. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms.

    Science.gov (United States)

    Geng, Yan; Zhu, Shuiling; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Medicinal mushrooms have been essential components of traditional Chinese herbal medicines for thousands of years, and they protect against diverse health-related conditions. The components responsible for their anti-inflammatory activity have yet to be fully studied. This study investigates the anti-inflammatory activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia in submerged culture from 5 commercially available medicinal mushrooms, namely Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. MTT colorimetric assay was applied to measure the cytotoxic effects of different extracts. Their anti-inflammatory activities were evaluated via inhibition against production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in murine macrophage-like cell line RAW264.7 cells. Of the 20 extracts, n-hexane, chloroform, ethyl acetate, and methanol extracts from C. sinensis, C. mortierella, and G. lucidum; chloroform extracts from H. erinaceus and A. mellea; and ethyl acetate extracts from A. mellea at nontoxic concentrations (mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases.

  7. GLYCOSAMINOGLYCAN ANALOGUES AS A NOVEL ANTI-INFLAMMATORY STRATEGY

    Directory of Open Access Journals (Sweden)

    Amanda E.I. Proudfoot

    2012-10-01

    Full Text Available Heparin, a glycosaminoglycan (GAG, has both anti-inflammatory and anti-coagulant properties. The clinical use of heparin against inflammation, however, has been limited by concerns about increased bleeding. While the anticoagulant activity of heparin is well understood, its anti-inflammatory properties are less so. Heparin is known to bind to certain cytokines, including chemokines, small proteins which mediate inflammation through their control of leukocyte migration and activation. Molecules which can interrupt the chemokine-GAG interaction without inhibiting coagulation could therefore represent a new class of anti-inflammatory agents. In the present study, two approaches were undertaken, both focusing on the heparin-chemokine relationship. In the first, a structure based strategy was used: after an initial screening of potential small molecule binders using protein NMR on a target chemokine, binding molecules were optimized through structure-based design. In the second approach, commercially available short oligosaccharides were polysulfated. In vitro, these molecules prevented chemokine-GAG binding and chemokine receptor activation without disrupting coagulation. However, in vivo, these compounds caused variable results in a murine peritoneal recruitment assay, with a general increase of cell recruitment. In more disease specific models, such as antigen-induced arthritis and delayed-type hypersensitivity, an overall decrease in inflammation was noted, suggesting that the primary anti-inflammatory effect may also involve factors beyond the chemokine system.

  8. Anti-inflammatory defense mechanisms of Entamoeba histolytica.

    Science.gov (United States)

    Silva-García, Raúl; Rico-Rosillo, Guadalupe

    2011-02-01

    The monocyte locomotion inhibitory factor (MLIF), a heat-stable oligopeptide found in the supernatant fluid of Entamoeba histolytica axenic cultures, may contribute to the delayed inflammation observed in amoebic hepatic abscess. This factor was isolated by ultra-filtration and high powered liquid chromatography, obtaining a primary Met-Gln-Cys-Asn-Ser structure, identified afterwards as the carboxyl-terminal (…Cys-Asn-Ser) active site. The selective anti-inflammatory effects of the pentapeptide have been observed in both in vitro and in vivo models, using a synthetic pentapeptide to maintain the same anti-inflammatory conditions during the experimental assays. Anti-inflammatory effects observed include inhibition of human monocyte locomotion and the respiratory burst in monocytes and neutrophils, increasing expression of anti-inflammatory cytokines and inhibiting expression of the adhesion molecules VLA-4 and VCAM, among others. In this review, we will describe the effects of MLIF detected so far and how it might be used as a therapeutical agent against inflammatory diseases.

  9. Anti-Inflammatory Activity of N-(3-Florophenylethylcaffeamide in Mice

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2013-07-01

    Full Text Available In this study, we evaluated the anti-inflammatory activity of one synthetic product, N-(3-Florophenylethylcaffeamide (abbrev. FECA, by using animal model of λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of FECA was determined by measuring the levels of cyclooxygenase-2 (COX-2, nitric oxide (NO, tumor necrosis factor (TNF-α, interleukin-1β (IL-1β, and malondialdehyde (MDA in the edema paw tissue, and the activities of superoxide dismutase (SOD, glutathione peroxidase (GPx, and glutathione reductase (GRd in the liver. The results showed that FECA reduced the paw edema at three, four and five hours after λ-carrageenan administration. The levels of COX-2, NO, TNF-α, and MDA in the λ-carrageenan-induced edema paws were reduced and the activities of SOD, GPx, and GRd in liver tissues were raised by FECA. These results suggested that FECA possessed anti-inflammatory activities and the anti-inflammatory mechanisms might be related to the decrease of the levels of COX-2, NO, and TNF-α in inflamed tissues and the increase in the MDA level by increasing the activities of SOD, GPx, and GRd.

  10. Anti-Inflammatory Activity of Ipomoea reniformis Methanolic Extract

    Directory of Open Access Journals (Sweden)

    Sanja S. D.

    2009-10-01

    Full Text Available In the present study, methanolic extract of Ipomoea reniformis herb (MEIR in acute, subacute and chronic models of inflammation was assessed in rats. Administration of MEIR (200, 400 mg/kg, p.o. exhibited significant anti-inflammatory activity. In acute inflammation as produced by Carrageenan 59.55 % and 64.04 % protection was observed. While in subacute anti-inflammatory models using formaldehyde-induced hind paw edema (after 1.5 h 38.36 % and 47.95 % and in chronic anti-inflammatory model using cotton pellet granuloma 15.02 % and 19.19 % protection from inflammation was observed. MEIR did not show any sign of toxicity and mortality up to a dose level of 1000 mg/kg, p.o. in rats. The results obtained suggest that the methanolic extract of Ipomoea reniformis herb (MEIR is endowed with effective anti-inflammatory activity mediated via either by inhibition of cyclooxygenase cascade and by blocking the release of vasoactive substances (histamine, serotonin and kinins. These findings seem to justify the use of the plant in traditional Indian medicine in the treatment of inflammation, including arthritic conditions.

  11. Anti-inflammatory potential of native Australian herbs polyphenols

    Directory of Open Access Journals (Sweden)

    Yu Guo

    2014-01-01

    Anise myrtle, lemon myrtle and bay leaf selectively inhibited COX-2 and iNOS enzymes, while Tasmannia pepper leaf extract exhibited a pronounced inhibitory activity toward COX-1 and was the least effective inhibitor of iNOS. Anise myrtle and lemon myrtle are potentially more efficient anti-inflammatory agents than Tasmannia pepper leaf.

  12. Anti-inflammatory and antioxidant activities of the nonlipid (aqueous) components of sesame oil: potential use in atherosclerosis.

    Science.gov (United States)

    Selvarajan, Krithika; Narasimhulu, Chandrakala Aluganti; Bapputty, Reena; Parthasarathy, Sampath

    2015-04-01

    Dietary intervention to prevent inflammation and atherosclerosis has been a major focus in recent years. We previously reported that sesame oil (SO) was effective in inhibiting atherosclerosis in low-density lipoprotein-receptor negative mice. We also noted that the levels of many proinflammatory markers were lower in the SO-treated animals. In this study we tested whether the non-lipid, aqueous components associated with SO would have anti-inflammatory and antioxidant effects. Polymerase chain reaction array data indicated that sesame oil aqueous extract (SOAE) was effective in reducing lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. Expression of inflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor α (TNF-α) was also analyzed independently in cells pretreated with SOAE followed by inflammatory assault. Effect of SOAE on TNF-α-induced MCP-1 and VCAM1 expression was also tested in human umbilical vein endothelial cells. We observed that SOAE significantly reduced inflammatory markers in both macrophages and endothelial cells in a concentration-dependent manner. SOAE was also effective in inhibiting LPS-induced TNF-α and IL-6 levels in vivo at different concentrations. We also noted that in the presence of SOAE, transcription and translocation of NF-kappaB was suppressed. SOAE was also effective in inhibiting oxidation of lipoproteins in vitro. These results suggest the presence of potent anti-inflammatory and antioxidant compounds in SOAE. Furthermore, SOAE differentially regulated expression of scavenger receptors and increased ATP-binding cassette A1 (ABCA1) mRNA expression by activating liver X receptors (LXRs), suggesting additional effects on lipid metabolism. Thus, SOAE appears multipotent and may serve as a valuable nonpharmacological agent in atherosclerosis and other inflammatory diseases.

  13. PTP1B Inhibitory and Anti-Inflammatory Effects of Secondary Metabolites Isolated from the Marine-Derived Fungus Penicillium sp. JF-55

    Directory of Open Access Journals (Sweden)

    Youn-Chul Kim

    2013-04-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1, and two known metabolites, anhydrofulvic acid (2 and citromycetin (3. Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1 also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP, an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1 on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1 suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1.

  14. Anti-inflammatory effects of electronic signal treatment.

    Science.gov (United States)

    Odell, Robert H; Sorgnard, Richard E

    2008-01-01

    Inflammation often plays a key role in the perpetuation of pain. Chronic inflammatory conditions (e.g. osteoarthritis, immune system dysfunction, micro-circulatory disease, painful neuritis, and even heart disease) have increased as baby boomers age. Medicine's current anti-inflammatory choices are NSAIDs and steroids; the value in promoting cure and side effect risks of these medications are unclear and controversial, especially considering individual patient variations. Electricity has continuously been a powerful tool in medicine for thousands of years. All medical professionals are, to some degree, aware of electrotherapy; those who directly use electricity for treatment know of its anti-inflammatory effects. Electronic signal treatment (EST), as an extension of presently available technology, may reasonably have even more anti-inflammatory effects. EST is a digitally produced alternating current sinusoidal electronic signal with associated harmonics to produce theoretically reasonable and/or scientifically documented physiological effects when applied to the human body. These signals are produced by advanced electronics not possible even 10 to 15 years ago. The potential long-lasting anti-inflammatory effects of some electrical currents are based on basic physical and biochemical facts listed in the text below, namely that of stimulating and signaling effective and long-lasting anti-inflammatory effects in nerve and muscle cells. The safety of electrotherapeutic treatments in general and EST in particular has been established through extensive clinical use. The principles of physics have been largely de-emphasized in modern medicine in favor of chemistry. These electrical treatments, a familiar application of physics, thus represent powerful and appropriate elements of physicians' pain care armamentaria in the clinic and possibly for prescription for use at home to improve overall patient care and maintenance of quality of life via low-risk and potentially

  15. Anti-Inflammatory Effects of Cajaninstilbene Acid and Its Derivatives.

    Science.gov (United States)

    Huang, Mei-Yan; Lin, Jing; Lu, Kuo; Xu, Hong-Gui; Geng, Zhi-Zhong; Sun, Ping-Hua; Chen, Wei-Min

    2016-04-13

    Cajaninstilbene acid (CSA) is one of the active components isolated from pigeon pea leaves. In this study, anti-inflammatory effects of CSA and its synthesized derivatives were fully valued with regard to their activities on the production of nitric oxide (NO) and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in vitro cell model, as well as their impacts on the migration of neutrophils and macrophages in fluorescent protein labeled zebrafish larvae model by live image analysis. Furthermore, the anti-inflammatory mechanism of this type of compounds was clarified by western-blot and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that CSA, as well as its synthesized derivatives 5c, 5e and 5h, exhibited strong inhibition activity on the release of NO and inflammatory factor TNF-α and IL-6 in lipopolysaccharides (LPS)-stimulated murine macrophages. CSA and 5c greatly inhibited the migration of neutrophils and macrophages in injury zebrafish larvae. CSA and 5c treatment greatly inhibited the phosphorylation of proteins involved in nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Moreover, we found that peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662 could reverse partly the roles of CSA and 5c, and CSA and 5c treatment greatly resist the decrease of PPARγ mRNA and protein induced by LPS stimulation. Our results identified the promising anti-inflammatory effects of CSA and its derivatives, which may serve as valuable anti-inflammatory lead compound. Additionally, the mechanism studies demonstrated that the anti-inflammatory activity of CSA and its derivative is associated with the inhibition of NF-κB and MAPK pathways, relying partly on resisting the LPS-induced decrease of PPARγ through improving its expression.

  16. Anti-inflammatory effects of Zea mays L. husk extracts.

    Science.gov (United States)

    Roh, Kyung-Baeg; Kim, Hyoyoung; Shin, Seungwoo; Kim, Young-Soo; Lee, Jung-A; Kim, Mi Ok; Jung, Eunsun; Lee, Jongsung; Park, Deokhoon

    2016-08-19

    Zea mays L. (Z. mays) has been used for human consumption in the various forms of meal, cooking oil, thickener in sauces and puddings, sweetener in processed food and beverage products, bio-disel. However, especially, in case of husk extract of Z. mays, little is known about its anti-inflammatory effects. Therefore, in this study, the anti-inflammatory effects of Z. mays husk extract (ZMHE) and its mechanisms of action were investigated. The husks of Z. Mays were harvested in kangwondo, Korea. To assess the anti-inflammatory activities of ZMHE, we examined effects of ZMHE on nitric oxide (NO) production, and release of soluble intercellular adhesion molecule-1 (sICAM-1) and eotaxin-1. The expression level of inducible nitric oxide synthase (iNOS) gene was also determined by Western blot and luciferase reporter assays. To determine its mechanisms of action, a luciferase reporter assay for nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) was introduced. ZMHE inhibited lipopolysaccharide (LPS)-induced production of NO in RAW264.7 cells. In addition, expression of iNOS gene was reduced, as confirmed by Western blot and luciferase reporter assays. Effects of ZMHE on the AP-1 and NF-kB promoters were examined to elucidate the mechanism of its anti-inflammatory activity. Activation of AP-1 and NF-kB promoters induced by LPS was significantly reduced by ZMHE treatment. In addition, LPS-induced production of sICAM-1 and IL-4-induced production of eotaxin-1 were all reduced by ZMHE. Our results indicate that ZMHE has anti-inflammatory effects by downregulating the expression of iNOS gene and its downregulation is mediated by inhibiting NF-kB and AP-1 signaling.

  17. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    Science.gov (United States)

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance.

  18. The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, Petra Sabine [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, CH-4056 Basel (Switzerland); Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich (Switzerland); Furrer, Regula; Beer, Markus [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, CH-4056 Basel (Switzerland); Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich (Switzerland)

    2015-08-28

    The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is abundantly expressed in trained muscles and regulates muscle adaptation to endurance exercise. Inversely, mice lacking a functional PGC-1α allele in muscle exhibit reduced muscle functionality and increased inflammation. In isolated muscle cells, PGC-1α and the related PGC-1β counteract the induction of inflammation by reducing the activity of the nuclear factor κB (NFκB). We now tested the effects of these metabolic regulators on inflammatory reactions in muscle tissue of control and muscle-specific PGC-1α/-1β transgenic mice in vivo in the basal state as well as after an acute inflammatory insult. Surprisingly, we observed a PGC-1-dependent alteration of the cytokine profile characterized by an increase in anti-inflammatory factors and a strong suppression of the pro-inflammatory interleukin 12 (IL-12). In conclusion, the anti-inflammatory environment in muscle that is promoted by the PGC-1s might contribute to the beneficial effects of these coactivators on muscle function and provides a molecular link underlying the tight mutual regulation of metabolism and inflammation. - Highlights: • Muscle PGC-1s are insufficient to prevent acute systemic inflammation. • The muscle PGC-1s however promote a local anti-inflammatory environment. • This anti-inflammatory environment could contribute to the therapeutic effect of the PGC-1s.

  19. Anti-inflammatory and antimicrobial profiles of Scilla nervosa (Burch. Jessop (Hyacinthaceae

    Directory of Open Access Journals (Sweden)

    Johannes Bodenstein

    2011-05-01

    Full Text Available Scilla nervosa (Burch. Jessop (Hyacinthaceae [=Schizocarphus nervosus (Burch. Van der Merwe] is a well-known plant in traditional medicine in South Africa, used for conditions associated with pain and inflammation, such as rheumatic fever. However, the topical anti-inflammatory and antimicrobial activities of the plant have not been investigated. A bioassay-guided fractionation approach was implemented to determine the biological activities of different extracts. A crude methanol extract was prepared from the bulbs to investigate the anti-inflammatory properties in a mouse model of acute croton oil-induced auricular contact dermatitis. The non-polar and polar components present in the methanol extract were separated by extraction with dichloromethane and ethanol, respectively; and their antimicrobial activity against the invasive pathogenic microorganisms Staphylococcus aureus, Klebsiellla pneumoniae and Candida albicans was investigated using a microplate method. Oedema induced by application of croton oil was significantly reduced 3 h (~66% and 6 h (~40% after treatment with the extracts. Anti-inflammatory activity was ~1.8-fold lower at 6 h, suggesting a potent, short-acting effect. The non-polar extract exhibited greater efficacy and potency against the microorganisms than the polar extract. The non-polar extract was equipotent against S. aureus and K. pneumoniae, but twice as potent against C. albicans as against the bacteria, suggesting little discrimination between Gram-positive and Gram-negative bacteria but specificity for the fungal yeast. The polar extract was the least potent against K. pneumoniae, but 10-fold more potent against C. albicans, suggesting specificity for Gram-positive bacteria and the fungal yeast. S. nervosa contains compounds that are individually, or in combination, potent anti-inflammatory and antimicrobial agents

  20. Metallothionein as an Anti-Inflammatory Mediator

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Inoue

    2009-01-01

    Full Text Available The integration of knowledge concerning the regulation of MT, a highly conserved, low molecular weight, cystein-rich metalloprotein, on its proposed functions is necessary to clarify how MT affects cellular processes. MT expression is induced/enhanced in various tissues by a number of physiological mediators. The cellular accumulation of MT depends on the availability of cellular zinc derived from the diet. MT modulates the binding and exchange/transport of heavy metals such as zinc, cadmium, or copper under physiological conditions and cytoprotection from their toxicities, and the release of gaseous mediators such as hydroxyl radicals or nitric oxide. In addition, MT reportedly affects a number of cellular processes, such as gene expression, apoptosis, proliferation, and differentiation. Given the genetic approach, the apparently healthy status of MT-deficient mice argues against an essential biological role for MT; however, this molecule may be critical in cells/tissues/organs in times of stress, since MT expression is also evoked/enhanced by various stresses. In particular, because metallothionein (MT is induced by inflammatory stress, its roles in inflammation are implied. Also, MT expression in various organs/tissues can be enhanced by inflammatory stimuli, implicating in inflammatory diseases. In this paper, we review the role of MT of various inflammatory conditions.

  1. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    Science.gov (United States)

    Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  2. Non-steroidal anti-inflammatory drug use and the risk of Parkinson's disease

    DEFF Research Database (Denmark)

    Manthripragada, Angelika D; Schernhammer, Eva S; Qiu, Jiaheng;

    2011-01-01

    Experimental evidence supports a preventative role for non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease (PD).......Experimental evidence supports a preventative role for non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease (PD)....

  3. Galangin Abrogates Ovalbumin-Induced Airway Inflammation via Negative Regulation of NF-κB

    Directory of Open Access Journals (Sweden)

    Wang-Jian Zha

    2013-01-01

    Full Text Available Persistent activation of nuclear factor κB (NF-κB has been associated with the development of asthma. Galangin, the active pharmacological ingredient from Alpinia galanga, is reported to have a variety of anti-inflammatory properties in vitro via negative regulation of NF-κB. This study aimed to investigate whether galangin can abrogate ovalbumin- (OVA- induced airway inflammation by negative regulation of NF-κB. BALB/c mice sensitized and challenged with OVA developed airway hyperresponsiveness (AHR and inflammation. Galangin dose dependently inhibited OVA-induced increases in total cell counts, eosinophil counts, and interleukin-(IL- 4, IL-5, and IL-13 levels in bronchoalveolar lavage fluid, and reduced serum level of OVA-specific IgE. Galangin also attenuated AHR, reduced eosinophil infiltration and goblet cell hyperplasia, and reduced expression of inducible nitric oxide synthase and vascular cell adhesion protein-1 (VCAM-1 levels in lung tissue. Additionally, galangin blocked inhibitor of κB degradation, phosphorylation of the p65 subunit of NF-κB, and p65 nuclear translocation from lung tissues of OVA-sensitized mice. Similarly, in normal human airway smooth muscle cells, galangin blocked tumor necrosis factor-α induced p65 nuclear translocation and expression of monocyte chemoattractant protein-1, eotaxin, CXCL10, and VCAM-1. These results suggest that galangin can attenuate ovalbumin-induced airway inflammation by inhibiting the NF-κB pathway.

  4. New Isorhamnetin Derivatives from Salsola imbricata Forssk. Leaves with Distinct Anti-inflammatory Activity

    OpenAIRE

    Osman, Samir M.; El Kashak, Walaa A.; Michael Wink; El Raey, Mohamed A.

    2016-01-01

    Background: Salsola imbricata Forssk. is a shrub widely growing in Egypt, used as a camel food, traditionally, used as anti-inflammatory agent. Literature survey showed no report about the anti-inflammatory activity of S. imbricata. Aim of the Study: This work was designed to study the phenolic constituents and to provide evidence for the traditional use of S. imbricata as an anti-inflammatory agent. Materials and Methods: The in vitro anti-inflammatory activity of the total aqueous methanol ...

  5. Anti-inflammatory and immunomodulatory effects of Critonia aromatisans leaves: Downregulation of pro-inflammatory cytokines.

    Science.gov (United States)

    la Torre Fabiola, Villa-De; Ralf, Kinscherf; Gabriel, Bonaterra; Victor Ermilo, Arana-Argaez; Martha, Méndez-González; Mirbella, Cáceres-Farfán; Rocio, Borges-Argáez

    2016-08-22

    Critonia aromatisans (Asteraceae), commonly known as "Chiople", is a cultivated species that is used in Mayan traditional medicine to treat inflammation, joint pain and rheumatism. To evaluate the in vivo and in vitro anti-inflammatory and immunomodulatory properties of aqueous and organic extracts prepared from Critonia aromatisans leaves. Methanol, ethyl acetate, methylene chloride, hexanic, and aqueous extracts were obtained from the leaves of C. aromatisans. The anti-inflammatory properties of the extracts were tested in vivo to evaluate their ability to reduce the inflammatory response in the carrageenan-induced hind paw edema model in NIH mice. In addition, to explore the immunomodulatory effects of C. aromatisans, in vitro testing was performed to determine whether C. aromatisans leaf extracts are capable of decreasing macrophage production of nitric oxide (NO), tumour necrosis factor alpha (TNF-α), and cytokines IL-1β, IL-6, and cyclooxygenase 2 (COX-2) without affecting macrophage viability. Single orally administered doses (100mg/kg or 200mg/kg) of a hexanic extract of C. aromatisans leaves significantly reduced carrageenan-induced paw edema in mice (Peffect of the extract in this model was generally comparable to those of the standard drugs used. In the in vitro determination, the extracts reduced the amount of NO mainly at 500 and 1000μg/mL. Hexanic extract and subfractions C, D, E, and F at 50 and 100μg/mL produced the lowest concentration of mediators in culture supernatants (protein) and at the mRNA/gene level by the significant down-regulation of cytokines. These findings explain some of the anti-inflammatory activity of this species. Purification of fractions C and D allowed the complete identification of cyclocolorenone, stigmasterol and stigmasterol derivatives as some of their main components. A hexanic extract of C. aromatisans displayed anti-inflammatory effects, validating the traditional practice of Mayan communities wherein an ointment

  6. Novel anti-inflammatory therapies for the treatment of atherosclerosis.

    Science.gov (United States)

    Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L

    2015-06-01

    The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels.

  7. ANTI-INFLAMMATORY ACTIVITY OF LEPIDAGATHIS CRISTATA FLOWER EXTRACTS

    Directory of Open Access Journals (Sweden)

    Aravinda Reddy Purma

    2013-12-01

    Full Text Available The Lepidigathis cristata Wlld belong to the family of Acanthecae. In the present study the Anti-inflammatory activity of flower extracts were performed. The methanol, ethyl acetate, chloroform extracts were prepared by soxhlet extraction method and were used for Anti-inflammatory activity in two dose level that is 200 and 400 mg/kg body weight in two screening methods, one is carrageenans induced paw edema method (n = 5, another is Formalin induced paw edema method (n = 5. The flower chloroform extracts showed maximum activity in both models with 50 and 43.4 % of protection at 120 and 180 minutes intervals at the dose of 400 mg/kg body weight respectively.

  8. Anti-inflammatory and antipyretic effects of boldine.

    Science.gov (United States)

    Backhouse, N; Delporte, C; Givernau, M; Cassels, B K; Valenzuela, A; Speisky, H

    1994-10-01

    Boldine, an antioxidant alkaloid isolated from Peumus boldus, exhibits a dose-dependent anti-inflammatory activity in the carrageenan-induced guinea pig paw edema test with an oral ED50 of 34 mg/kg. Boldine also reduces bacterial pyrogen-induced hyperthermia in rabbits to an extent which varied between 51% and 98% at a dose of 60 mg/kg p.o. In vitro studies carried out in rat aortal rings revealed that boldine is an effective inhibitor of prostaglandin biosynthesis, promoting 53% inhibition at 75 microM. The latter in vitro effect may be mechanistically linked to the anti-inflammatory and antipyretic effects of boldine exerted in vivo.

  9. Anti-Inflammatory and Gastroprotective Evaluation of Prodrugs of Piroxicam

    Directory of Open Access Journals (Sweden)

    Vivekkumar K. Redasani

    2014-01-01

    Full Text Available Therapeutically potential prodrugs of piroxicam were synthesized by effective masking of enolic hydroxyl group through generation of ester congeners. The reaction facilitated using N,N′-dicyclohexylcarbodiimide coupled with acetic acid, benzoic acid, p-toluic acid, m-toluic acid, and cinnamic acid. Synthesized prodrugs were characterized for confirmation of the said structures. The modification of piroxicam showed better anti-inflammatory activity as evoked by all prodrugs. Interestingly, compound 3e, cinnamic acid ester prodrug, depicted 75 percent inhibition of rat paw edema as compared to 56 percent for parent piroxicam at 6 h of study. The present work proves the applicability not only with increased anti-inflammatory activity, but also with marked attenuation in ulcerogenicity. Novel prodrug 3e, cinnamic acid derivative, was found to be the least ulcerogenic having ulcer index of 0.67 as compared to parent drug piroxicam with 2.67.

  10. CHEMICAL COMPOSITION AND ANTI-INFLAMMATORY ACTIVITY OF Roldana platanifolia

    Directory of Open Access Journals (Sweden)

    Amira Arciniegas

    2015-11-01

    Full Text Available The chemical study of Roldana platanifolia led to the isolation of β-caryophyllene, five eremophilanolides, chlorogenic acid, and a mixture of β-sitosterol-stigmasterol, β-sitosteryl glucopyranoside, and sucrose. The anti-inflammatory activities of the extracts and isolated products were tested using the 12-O-tetradecanoylphorbol-13-acetate (TPA model of induced acute inflammation. The acetone and methanol extracts showed dose dependent activities (ID50 0.21 and 0.32 mg/ear, respectively, while none of the isolated compounds exhibited relevant edema inhibition. The active extracts were also evaluated with the myeloperoxidase assay technique (MPO to determine their ability to prevent neutrophil infiltration. Results showed that the anti-inflammatory activity was related to the compound’s ability to inhibit pro-inflammatory mediators such as neutrophils.

  11. Antimicrobial and anti-inflammatory properties of Funtumia elastica.

    Science.gov (United States)

    Agyare, Christian; Koffuor, George Asumeng; Boakye, Yaw Duah; Mensah, Kwesi Boadu

    2013-04-01

    Funtumia elastica (Preuss) Stapf. (Apocynaceae) has a long ethnopharmacological history for uses such as treatment of whooping cough, asthma, blennorhea, painful menstruation, fungal infections, and wounds. To investigate the antimicrobial and anti-inflammatory properties of ethanol extracts from the leaves and stem bark of Funtumia elastica based on its ethnopharmacological uses and also determine the secondary metabolites present in the extracts. The antimicrobial activities of ethanol leaf and bark extracts of F. elastica were determined using the microdilution technique (MIC determination) and agar diffusion method using 10, 25, and 50 mg/mL concentrations against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Candida albicans, Aspergillus flavus and Aspergillus niger as test organisms. Anti-inflammatory activities of the doses of extracts at 30, 100, and 300 mg/kg per body weight were determined by carrageenan-induced edema in the footpad of 7-day-old chicks and the foot volumes measured at hourly interval post-treatment for 5 h. The MIC ranges of both ethanol leaf and bark extracts against the test organisms were 125 (lowest MIC) to 1550 µg/mL (highest MIC) and 125 (lowest MIC) to 1750 µg/mL (highest MIC), respectively. The ethanol leaf and bark extract of F. elastica showed significant anti-inflammatory activity (p ≤ 0.001) at 30, 100 and 300 mg/kg. Preliminary phytochemical screening revealed that F. elastica bark contains hydrolysable tannins, sapogenetic glycosides, steroids and saponins while the leaves contain hydrolysable tannins, flavonoids, starch and alkaloids. Tannin contents of the leaf and stem bark were 2.4 and 1.3% w/w (related to the dried material), respectively. Both ethanol leaf and bark extracts of F. elastica showed antimicrobial and anti-inflammatory activities and these pharmacological properties may be responsible for the ethnomedicinal uses of the leaves and stem bark of the plant.

  12. Anti-inflammatory activity of arctigenin from Forsythiae Fructus.

    Science.gov (United States)

    Kang, Hyo Sook; Lee, Ji Yun; Kim, Chang Jong

    2008-03-05

    Oleaceae Forsythiae Fructus has been used for anti-inflammatory, diuretics, antidote, and antibacterials in traditional herbal medicine. Our previous screening of medicinal plants showed that methanol (MeOH) extract of Forsythiae Fructus had significant anti-inflammatory activity, but the active ingredients remain unclear. For isolation of active ingredient of MeOH extract of Forsythiae Fructus, it was partitioned with n-hexane and ethylacetate (EtOAc), and arctigenin was isolated from EtOAc fraction by column chromatography with anti-inflammatory activity-guided separation. Its activity was evaluated in the animal models of inflammation including myeloperoxidase (MPO) and eosinophil peroxidase (EPO) activities in the edematous tissues homogenate, and silica-induced reactive oxygen species (ROS) production in the RAW 264.7 cell line. It was shown that arctigenin (100 mg/kg) had significantly decreased not only carrageenan-induced paw edema 3 and 4h after injection of carrageenan, arachidonic acid (AA)-induced ear edema at a painting dose of 0.1-1.0mg/ear, and acetic acid-induced writhing response and acetic acid-induced capillary permeability accentuation at an oral dose of 25-100, and 100 mg/kg, respectively, but also MPO and EPO activities at a painting dose of 0.1-1.0mg/ear in the AA-induced edematous tissues homogenate as indicators of neutrophils and eosinophils recruitment into the inflamed tissue. Further, arctigenin (0.1-10 microM) also significantly inhibited the intracellular ROS production by silica. These results indicate that arctigenin is a bioactive agent of Forsythiae Fructus having significant anti-inflammatory action by inhibition of the exudation, and leukocytes recruitment into the inflamed tissues. The pharmacologic mechanism of action of arctigenin may be due to the inhibition of release/production of inflammatory mediators such as AA metabolites and free radicals.

  13. Anti-inflammatory activity of Lychnophora passerina, Asteraceae (Brazilian Arnica).

    OpenAIRE

    Oliveira, Patricia Capelari de; Paula, Carmem Aparecida de; Rezende, Simone Aparecida; Campos, Fernanda Torres; Guimarães, Andrea Grabe; Lombardi, Júlio Antônio; Guimarães, Dênia Antunes Saúde

    2011-01-01

    Ethnopharmacological relevance: Lychnophora passerina (Asteraceae), popularly known as arnica, is used to treat inflammation, pain, rheumatism, contusions, bruises and insect bites in Brazilian traditional medicine. Materials and methods: The anti-inflammatory activity of crude ethanolic extract of aerial parts of L. passerina and its ethyl acetate and methanolic fractions had their abilities to modulate the production of NO, TNF-α and IL-10 inflammatory mediators in LPS/IFN-γ-stimulated J774...

  14. Two Anti-inflammatory Steroidal Saponins from Dracaena angustifolia Roxb.

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2013-07-01

    Full Text Available Two new steroidal saponins, named drangustosides A–B (1–2, together with eight known compounds 3–10 were isolated and characterized from the MeOH extract of Dracaena angustifolia Roxb. The structures of compounds were assigned based on 1D and 2D NMR spectroscopic analyses, including HMQC, HMBC, and NOESY. Compounds 1 and 2 showed anti-inflammatory activity by superoxide generation and elastase release by human neutrophils in response to fMLP/CB.

  15. Hepatoprotective and anti-inflammatory activities of Plantago major L.

    Directory of Open Access Journals (Sweden)

    Turel Idris

    2009-01-01

    Full Text Available Objective: The aim of this study was to investigate anti-inflammatory and hepatoprotective activities of Plantago major L. (PM. Materials and Methods: Anti-inflammatory activity: Control and reference groups were administered isotonic saline solution (ISS and indomethacin, respectively. Plantago major groups were injected PM in doses of 5 mg/kg (PM-I, 10 mg/kg (PM-II, 20 mg/kg (PM-III and 25 mg/kg (PM-IV. Before and three hours after the injections, the volume of right hind-paw of rats was measured using a plethysmometer. Hepatoprotective Activity: The hepatotoxicity was induced by carbon tetrachloride (CCl4 administration. Control, CCl4 and reference groups received isotonic saline solution, CCl4 and silibinin, respectively. Plantago major groups received CCl4 (0.8 ml/kg and PM in doses of 10, 20 and 25 mg/kg, respectively for seven days. Blood samples and liver were collected on the 8th day after the animals were killed. Results: Plantago major had an anti-inflammatory effect matching to that of control group at doses of 20 and 25 mg/kg. It was found that reduction in the inflammation was 90.01% with indomethacin, 3.10% with PM-I, 41.56% with PM-II, 45.87% with PM-III and 49.76% with PM-IV. Median effective dose (ED50 value of PM was found to be 7.507 mg/kg. Plantago major (25 mg/kg significantly reduced the serum alanine aminotransferase (ALT and aspartate aminotransferase (AST levels when compared to the CCl4 group. The histopathological findings showed a significant difference between the PM (25 mg/kg and CCl4 groups. Conclusion: The results showed that PM had a considerable anti-inflammatory and hepatoprotective activities.

  16. Ceramide and ceramide 1-phosphate are negative regulators of TNF-α production induced by lipopolysaccharide.

    Science.gov (United States)

    Józefowski, Szczepan; Czerkies, Maciej; Łukasik, Anna; Bielawska, Alicja; Bielawski, Jacek; Kwiatkowska, Katarzyna; Sobota, Andrzej

    2010-12-01

    LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.

  17. Anti-inflammatory phytochemicals for chemoprevention of colon cancer.

    Science.gov (United States)

    Madka, Venkateshwar; Rao, Chinthalapally V

    2013-06-01

    Every year more than a million new cancer cases and 600,000 deaths are reported world-wide. Colorectal cancer is the fourth most commonly occurring and second leading cause of cancer deaths in the United States. Significant progress has been made in understanding colorectal cancer through epidemiological, laboratory and clinical studies. Development of metastatic adenocarcinomas is a multistage process occurring over several years during which multiple genetic alterations and pathophysiological changes are associated. Colorectal cancer can be prevented if the transformation of normal colonic crypt cells to malignant can be halted or reversed. Some of the key molecules that are altered significantly and play important roles in colorectal tumor progression are associated with inflammation. Since chronic inflammation is now recognized as a potential risk factor for tumor development, targeting inflammatory pathways has proven effective in preventing formation of colonic tumors and their malignant progression in both preclinical and clinical studies. Synthetic non-steroidal anti-inflammatory drugs (NSAIDS) have been identified as potential colorectal cancer chemopreventive agents; however, most of these synthetic agents are associated with unwanted and sometimes fatal side effects. There is mounting evidence in support of the efficacy of naturally-occurring phytochemicals possessing anti-inflammatory activity. In this review we discuss key inflammatory pathways associated with colorectal cancer and promising naturally-occurring phytochemicals as anti-inflammatory agents for the prevention and treatment of colorectal cancer.

  18. Anti-Inflammatory and Antimicrobial activity of Flacourtia Ramontchi Leaves

    Directory of Open Access Journals (Sweden)

    Sulbha Lalsare

    2011-06-01

    Full Text Available The literature survey revealed that a very merge amount of pharmacological work has been carried out on Flacourtia ramontchi. Also it was observed from the Ayurvedic literature and Ethnobotanical studies that the plant is very useful in treating inflammation and infectious diseases but no scientific investigation has been done in such direction. Very merge work has been done regarding phytochemical and pharmacological effectiveness on this plant. Successive extraction of the leaves with solvents of increasing polarity; preliminary phytochemical studies of different extracts; screening of chloroform, methanol and hydromethanolic extracts for anti-inflammatory (by Carrageenan induced rat paw model and antimicrobial activity (by Cup and plate method and thin layer chromatographic studies of active extracts using mobile phase i.e. chloroform and methanol. The results clearly indicate that all three extracts i.e. chloroform, methanol and hydromethanolic, of the leaves having anti-inflammatory activity. But the chloroform and methano extract showed promising results and even chloroform extract at the dose 150mg/kg exhibits equipotent anti-inflammatory activity as that of the standard Indomethacin. Methanol extract possess broad-spectrum antimicrobial activity at concentration 10000 mg/ml whereas hydromethanolic and chloroform extracts having more or less antimicrobial activity.

  19. Anti-inflammatory activity of traditional Chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Min-Hsiung Pan

    2011-10-01

    Full Text Available Accumulating epidemiological and clinical evidence shows that inflammation is an important risk factor for various human diseases. Thus, suppressing chronic inflammation has the potential to delay, prevent, and control various chronic diseases, including cerebrovascular, cardiovascular, joint, skin, pulmonary, blood, lymph, liver, pancreatic, and intestinal diseases. Various natural products from traditional Chinese medicine (TCM have been shown to safely suppress proinflammatory pathways and control inflammation-associated disease. In vivo and/or in vitro studies have demonstrated that anti-inflammatory effects of TCM occur by inhibition of the expression of master transcription factors (for example, nuclear factor-κB (NF-κB, pro-inflammatory cytokines (for example, tumor necrosis factor-α (TNF-α, chemokines (for example, chemokine (C-C motif ligand (CCL-24, intercellular adhesion molecule expression and pro-inflammatory mediators (for example, inducible nitric oxide synthase (iNOS and cyclooxygenase 2 (COX2. However, a handful of review articles have focused on the anti-inflammatory activities of TCM and explore their possible mechanisms of action. In this review, we summarize recent research attempting to identify the anti-inflammatory constituents of TCM and their molecular targets that may create new opportunities for innovation in modern pharmacology.

  20. Anti-inflammatory effect of thalidomide dithiocarbamate and dithioate analogs.

    Science.gov (United States)

    Talaat, Roba; El-Sayed, Waheba; Agwa, Hussein S; Gamal-Eldeen, Amira M; Moawia, Shaden; Zahran, Magdy A H

    2015-08-05

    Thalidomide has anti-inflammatory, immunomodulatory, and anti-angiogenic properties. It has been used to treat a variety of cancers and autoimmune diseases. This study aimed to characterize anti-inflammatory activities of novel thalidomide analogs by exploring their effects on splenocytes proliferation and macrophage functions and their antioxidant activity. MTT assay was used to assess the cytotoxic effect of thalidomide analogs against splenocytes. Tumor necrosis factor (TNF-α) and nuclear factor kappa B (NF-κB-P65) were determined by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) was estimated by colorimetric assay. Antioxidant activity was examined by ORAC assay. Our results demonstrated that thalidomide dithioate analog 2 and thalidomide dithiocarbamate analog 4 produced a slight increase in splenocyte proliferation compared with thalidomide. Thalidomide dithiocarbamate analog 1 is a potent inhibitor of TNF-α production, whereas thalidomide dithiocarbamate analog 5 is a potent inhibitor of both TNF-α and NO. Analog 2 has a pronounced inhibitory effect on NF-κB-P65 production level. All thalidomide analogs showed prooxidant activity against hydroxyl (OH) radical. Analog 1 and thalidomide dithioate analog 3 have prooxidant activity against peroxyl (ROO) radical in relation to thalidomide. On the other hand, analog 4 has a potent scavenging capacity against peroxyl (ROO) radical compared with thalidomide. Taken together, the results of this study suggest that thalidomide analogs might have valuable anti-inflammatory activities with more pronounced effect than thalidomide itself.

  1. Anti-inflammatory activity in selected Antarctic benthic organisms

    Directory of Open Access Journals (Sweden)

    Juan eMoles

    2014-07-01

    Full Text Available Antarctic benthos was prospected in search for anti-inflammatory activity in polar benthic invertebrates, in two different geographical areas: deep-bottoms of the Eastern Weddell Sea and shallow-waters of the South Shetland Islands. A total of 36 benthic algae and invertebrate species were selected to perform solubility tests in order to test them for anti-inflammatory activity. From these, ethanol extracts of ten species from five different phyla resulted suitable to be studied in cell macrophage cultures (RAW 264.7. Cytotoxicity (MTT method and production of inflammatory mediators (prostaglandin E2, leukotriene B4, interleukin-1 were determined at three extract concentrations (50, 125, 250 g/mL. Bioassays resulted in four different species showing anti-inflammatory activity corresponding to three sponges: Mycale (Oxymycale acerata, Isodictya erinacea, and I. toxophila; and one hemichordate: Cephalodiscus sp. These results show that Antarctic sessile invertebrates may have great value as a source of lead compounds with potential pharmaceutical applications.

  2. Anti-inflammatory activity and chemical profile of Galphimia glauca.

    Science.gov (United States)

    González-Cortazar, Manasés; Herrera-Ruiz, Maribel; Zamilpa, Alejandro; Jiménez-Ferrer, Enrique; Marquina, Silvia; Alvarez, Laura; Tortoriello, Jaime

    2014-01-01

    Galphimia glauca, commonly known as "flor de estrella", is a plant species used in Mexican traditional medicine for the treatment of different diseases that have an acute or chronic inflammatory process in common. Aerial parts of this plant contain nor-seco-triterpenoids with anxiolytic properties, which have been denominated galphimines. Other compounds identified in the plant are tetragalloyl-quinic acid, gallic acid, and quercetin, which are able to inhibit the bronchial obstruction induced by platelet-activating factor. The objective of this work was to evaluate the anti-inflammatory effect of crude extracts from G. glauca and, by means of bioguided chemical separation, to identify the compounds responsible for this pharmacological activity. n-Hexane, ethyl acetate, dichloromethane, and methanol extracts showed an important anti-inflammatory effect. Chemical separation of the active methanol extract allowed us to identify the nor-seco-triterpenes galphimine-A (1) and galphimine-E (3) as the anti-inflammatory principles. Analysis of structure-activity relationships evidenced that the presence of an oxygenated function in C6 is absolutely necessary to show activity. In this work, the isolation and structural elucidation of two new nor-seco-triterpenes denominated as galphimine-K (4) and galphimine-L (5), together with different alkanes, fatty acids, as well as three flavonoids (17-19), are described, to our knowledge for the first time, from Galphimia glauca.

  3. ANTI-INFLAMMATORY ACTIVITY OF ALSTONIA SCHOLARIS IN ALBINO RATS

    Directory of Open Access Journals (Sweden)

    Aruna K. Singh

    2014-04-01

    Full Text Available Evaluation of anti-inflammatory activities along with the phytochemical screening of hot methanolic extract of A. scholaris stem bark (ASE in albino rats was undertaken. The preliminary phytochemical screening of the plant revealed the presence of tannins, alkaloids, saponins, phystosterols, phenolic compounds, glycoside and flavonoids. Oral LD50 of ASE by limit test was found to be above 2000 mg/kg. Two dose level of 200 (1/10 LD50 and 400 mg/kg (1/5 LD50 were selected for studying the anti -inflammatory activity of ASE using the carrageenan - induced acute paw oedema model in rats. The extract showed significant (p < 0.01 dose dependent reduction in rat paw oedema. The percentages of inhibition of oedema were 42.55 and 53.19 with 200 and 400 mg/kg, p.o. doses of ASE, respectively, as compared to control. The anti-inflammatory action of ASE can be attributed to its flavonoid contents, which are known to act through inhibition of prostaglandin biosynthesis.

  4. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats.

    Science.gov (United States)

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Jung, Eui-Man; Kang, Hong-Seok; Choi, In-Gyu; Park, Mi-Jin; Jeung, Eui-Bae

    2013-07-01

    Essential oils are concentrated hydrophobic liquids containing volatile aromatic compounds from plants. In the present study, the essential oil of Chamaecyparis obtusa (C. obtusa), which is commercially used in soap, toothpaste and cosmetics, was extracted. Essential oil extracted from C. obtusa contains several types of terpenes, which have been shown to have anti-oxidative and anti-inflammatory effects. In the present study, we examined the anti-inflammatory effects of C. obtusa essential oil in vivo and in vitro following the induction of inflammation by lipopolysaccharides (LPS) in rats. While LPS induced an inflammatory response through the production of prostaglandin E2 (PGE2) in the blood and peripheral blood mononuclear cells (PMNCs), these levels were reduced when essential oil was pre-administered. Additionally, the mechanism of action underlying the anti-inflammatory effects of C. obtusa essential oil was investigated by measuring the mRNA expression of inflammation‑associated genes. LPS treatment significantly induced the expression of transforming growth factor α (TNFα) and cyclooxygenase-2 (COX-2) in rats, while C. obtusa essential oil inhibited this effect. Taken together, our results demonstrate that C. obtusa essential oil exerts anti‑inflammatory effects by regulating the production of PGE2 and TNFα gene expression through the COX-2 pathway. These findings suggest that C. obtusa essential oil may constitute a novel source of anti-inflammatory drugs.

  5. Pro- and anti-inflammatory cytokines, but not CRP, are inversely correlated with severity and symptoms of major depression.

    Science.gov (United States)

    Schmidt, Frank M; Schröder, Thomas; Kirkby, Kenneth C; Sander, Christian; Suslow, Thomas; Holdt, Lesca M; Teupser, Daniel; Hegerl, Ulrich; Himmerich, Hubertus

    2016-05-30

    To clarify findings of elevated cytokine levels in major depression (MD), this study aimed to investigate the relationship between serum levels of cytokines, symptoms of MD and antidepressant treatment outcome. At baseline (T0) and 4 weeks following initiation of antidepressant treatment (T1), levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, IL-13, granulocyte-macrophage-colony-stimulating-factor (GM-CSF), CRP and depression ratings HAMD-17 and BDI-II were assessed in 30 patients with MD and 30 age-and sex-matched controls. At T0, in the patient group, cytokines, but not CRP, negatively correlated with individual BDI-II-items, factors and severities and showed both negative and positive correlations with HAMD-17 items. At T1 and within the controls, no such relationships were observed. At T0 and T1, levels of both pro- and anti-inflammatory cytokines were significantly higher in treatment responders (ΔHAMD-17T0-T1≥50%,n=15) compared to non-responders. When controlled for baseline BDI, differences between groups were only found significant for IL-2 at T0. The results suggest cytokines are not generally pro-depressive but rather relate to more specific regulation of symptoms and severities in MD. Together with the association between cytokines and treatment responder status, these data support cytokines as a promising but still controversial biomarker of depression.

  6. Viscum album exerts anti-inflammatory effect by selectively inhibiting cytokine-induced expression of cyclooxygenase-2.

    Directory of Open Access Journals (Sweden)

    Pushpa Hegde

    Full Text Available Viscum album (VA preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2 and prostaglandin E2 (PGE2 play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2.

  7. Anti-inflammatory effects of α-galactosylceramide analogs in activated microglia: involvement of the p38 MAPK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Yeon-Hui Jeong

    Full Text Available Microglial activation plays a pivotal role in the development and progression of neurodegenerative diseases. Thus, anti-inflammatory agents that control microglial activation can serve as potential therapeutic agents for neurodegenerative diseases. Here, we designed and synthesized α-galactosylceramide (α-GalCer analogs to exert anti-inflammatory effects in activated microglia. We performed biological evaluations of 25 α-GalCer analogs and observed an interesting preliminary structure-activity relationship in their inhibitory influence on NO release and TNF-α production in LPS-stimulated BV2 microglial cells. After identification of 4d and 4e as hit compounds, we further investigated the underlying mechanism of their anti-inflammatory effects using RT-PCR analysis. We confirmed that 4d and 4e regulate the expression of iNOS, COX-2, IL-1β, and IL-6 at the mRNA level and the expression of TNF-α at the post-transcriptional level. In addition, both 4d and 4e inhibited LPS-induced DNA binding activities of NF-κB and AP-1 and phosphorylation of p38 MAPK without affecting other MAP kinases. When we examined the anti-inflammatory effect of a p38 MAPK-specific inhibitor, SB203580, on microglial activation, we observed an identical inhibitory pattern as that of 4d and 4e, not only on NO and TNF-α production but also on the DNA binding activities of NF-κB and AP-1. Taken together, these results suggest that p38 MAPK plays an important role in the anti-inflammatory effects of 4d and 4e via the modulation of NF-κB and AP-1 activities.

  8. Interleukin-19 acts as a negative autocrine regulator of activated microglia.

    Directory of Open Access Journals (Sweden)

    Hiroshi Horiuchi

    Full Text Available Activated microglia can exert either neurotoxic or neuroprotective effects, and they play pivotal roles in the pathogenesis and progression of various neurological diseases. In this study, we used cDNA microarrays to show that interleukin-19 (IL-19, an IL-10 family cytokine, is markedly upregulated in activated microglia. Furthermore, we found that microglia are the only cells in the nervous system that express the IL-19 receptor, a heterodimer of the IL-20Rα and IL-20Rβ subunits. IL-19 deficiency increased the production of such pro-inflammatory cytokines as IL-6 and tumor necrosis factor-α in activated microglia, and IL-19 treatment suppressed this effect. Moreover, in a mouse model of Alzheimer's disease, we observed upregulation of IL-19 in affected areas in association with disease progression. Our findings demonstrate that IL-19 is an anti-inflammatory cytokine, produced by activated microglia, that acts negatively on microglia in an autocrine manner. Thus, microglia may self-limit their inflammatory response by producing the negative regulator IL-19.

  9. Dietary Indoles Suppress Delayed-Type Hypersensitivity by Inducing a Switch from Proinflammatory Th17 Cells to Anti-Inflammatory Regulatory T Cells through Regulation of MicroRNA.

    Science.gov (United States)

    Singh, Narendra P; Singh, Udai P; Rouse, Michael; Zhang, Jiajia; Chatterjee, Saurabh; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-02-01

    Aryl hydrocarbon receptor (AhR) has been shown to have profound influence on T cell differentiation, and use of distinct AhR ligands has shown that whereas some ligands induce regulatory T cells (Tregs), others induce Th17 cells. In the present study, we tested the ability of dietary AhR ligands (indole-3-carbinol [I3C] and 3,3'-diindolylmethane [DIM]) and an endogenous AhR ligand, 6-formylindolo(3,2-b)carbazole (FICZ), on the differentiation and functions of Tregs and Th17 cells. Treatment of C57BL/6 mice with indoles (I3C or DIM) attenuated delayed-type hypersensitivity (DTH) response to methylated BSA and generation of Th17 cells while promoting Tregs. In contrast, FICZ exacerbated the DTH response and promoted Th17 cells. Indoles decreased the induction of IL-17 but promoted IL-10 and Foxp3 expression. Also, indoles caused reciprocal induction of Tregs and Th17 cells only in wild-type (AhR(+/+)) but not in AhR knockout (AhR(-/-)) mice. Upon analysis of microRNA (miR) profile in draining lymph nodes of mice with DTH, treatment with I3C and DIM decreased the expression of several miRs (miR-31, miR-219, and miR-490) that targeted Foxp3, whereas it increased the expression of miR-495 and miR-1192 that were specific to IL-17. Interestingly, treatment with FICZ had precisely the opposite effects on these miRs. Transfection studies using mature miR mimics of miR-490 and miR-1192 that target Foxp3 and IL-17, respectively, or scrambled miR (mock) or inhibitors confirmed that these miRs specifically targeted Foxp3 and IL-17 genes. Our studies demonstrate, to our knowledge for the first time, that the ability of AhR ligands to regulate the differentiation of Tregs versus Th17 cells may depend on miR signature profile.

  10. Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Tho X. Pham

    2016-06-01

    Full Text Available We previously demonstrated that the organic extract of Spirulina platensis (SPE, an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca2+/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β, but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect.

  11. Anti-inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In vitro Models

    Directory of Open Access Journals (Sweden)

    Dominik Schreiber

    2017-08-01

    Full Text Available Inflammatory bowel diseases (IBD, which include Crohn's disease and ulcerative colitis, are chronic inflammatory disorders that can affect the whole gastrointestinal tract or the colonic mucosal layer. Current therapies aiming to suppress the exaggerated immune response in IBD largely rely on compounds with non-satisfying effects or side-effects. Therefore, new therapeutical options are needed. In the present study, we investigated the anti-inflammatory effects of the fungal metabolites, galiellalactone, and dehydrocurvularin in both an in vitro intestinal inflammation model, as well as in isolated myenteric plexus and enterocyte cells. Administration of a pro-inflammatory cytokine mix through the mesenteric artery of intestinal segments caused an up-regulation of inflammatory marker genes. Treatment of the murine intestinal segments with galiellalactone or dehydrocurvularin by application through the mesenteric artery significantly prevented the expression of pro-inflammatory marker genes on the mRNA and the protein level. Comparable to the results in the perfused intestine model, treatment of primary enteric nervous system (ENS cells from the murine intestine with the fungal compounds reduced expression of cytokines such as IL-6, TNF-α, IL-1β, and inflammatory enzymes such as COX-2 and iNOS on mRNA and protein levels. Similar anti-inflammatory effects of the fungal metabolites were observed in the human colorectal adenocarcinoma cell line DLD-1 after stimulation with IFN-γ (10 ng/ml, TNF-α (10 ng/ml, and IL-1β (5 ng/ml. Our results show that the mesenterially perfused intestine model provides a reliable tool for the screening of new therapeutics with limited amounts of test compounds. Furthermore, we could characterize the anti-inflammatory effects of two novel active compounds, galiellalactone, and dehydrocurvularin which are interesting candidates for studies with chronic animal models of IBD.

  12. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    Directory of Open Access Journals (Sweden)

    Miyatake S

    2016-08-01

    Full Text Available Shouta Miyatake,1 Yuko Shimizu-Motohashi,2 Shin’ichi Takeda,1 Yoshitsugu Aoki1 1Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; 2Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan Abstract: Duchenne muscular dystrophy (DMD, an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. Keywords: calcium channels, ryanodine receptor 1, exon skipping, NF-κB, myokine, ROS

  13. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview.

    Science.gov (United States)

    Wu, Qinghua; Liu, Lian; Miron, Anca; Klímová, Blanka; Wan, Dan; Kuča, Kamil

    2016-08-01

    Spirulina is a species of filamentous cyanobacteria that has long been used as a food supplement. In particular, Spirulina platensis and Spirulina maxima are the most important. Thanks to a high protein and vitamin content, Spirulina is used as a nutraceutical food supplement, although its other potential health benefits have attracted much attention. Oxidative stress and dysfunctional immunity cause many diseases in humans, including atherosclerosis, cardiac hypertrophy, heart failure, and hypertension. Thus, the antioxidant, immunomodulatory, and anti-inflammatory activities of these microalgae may play an important role in human health. Here, we discuss the antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina in both animals and humans, along with the underlying mechanisms. In addition, its commercial and regulatory status in different countries is discussed as well. Spirulina activates cellular antioxidant enzymes, inhibits lipid peroxidation and DNA damage, scavenges free radicals, and increases the activity of superoxide dismutase and catalase. Notably, there appears to be a threshold level above which Spirulina will taper off the antioxidant activity. Clinical trials show that Spirulina prevents skeletal muscle damage under conditions of exercise-induced oxidative stress and can stimulate the production of antibodies and up- or downregulate the expression of cytokine-encoding genes to induce immunomodulatory and anti-inflammatory responses. The molecular mechanism(s) by which Spirulina induces these activities is unclear, but phycocyanin and β-carotene are important molecules. Moreover, Spirulina effectively regulates the ERK1/2, JNK, p38, and IκB pathways. This review provides new insight into the potential therapeutic applications of Spirulina and may provide new ideas for future studies.

  14. Baicalein exhibits anti-inflammatory effects via inhibition of NF-κB transactivation.

    Science.gov (United States)

    Patwardhan, Raghavendra S; Sharma, Deepak; Thoh, Maikho; Checker, Rahul; Sandur, Santosh K

    2016-05-15

    NF-κB is a crucial mediator of inflammatory and immune responses and a number of phytochemicals that can suppress this immune-regulatory transcription factor are known to have promising anti-inflammatory potential. However, we report that inducer of pro-inflammatory transcription factor NF-κB functions as an anti-inflammatory agent. Our findings reveal that a plant derived flavonoid baicalein could suppress mitogen induced T cell activation, proliferation and cytokine secretion. Treatment of CD4+ T cells with baicalein prior to transfer in to lymphopenic allogenic host significantly suppressed graft versus host disease. Interestingly, addition of baicalein to murine splenic lymphocytes induced DNA binding of NF-κB but did not suppress Concanavalin A induced NF-κB. Since baicalein did not inhibit NF-κB binding to DNA, we hypothesized that baicalein may be suppressing NF-κB trans-activation. Thioredoxin system is implicated in the regulation of NF-κB trans-activation potential and therefore inhibition of thioredoxin system may be responsible for suppression of NF-κB dependent genes. Baicalein not only inhibited TrxR activity in cell free system but also suppressed mitogen induced thioredoxin activity in the nuclear compartment of lymphocytes. Similar to baicalein, pharmacological inhibitors of thioredoxin system also could suppress mitogen induced T cell proliferation without inhibiting DNA binding of NF-κB. Further, activation of cellular thioredoxin system by the use of pharmacological activator or over-expression of thioredoxin could abrogate the anti-inflammatory action of baicalein. We propose a novel strategy using baicalein to limit NF-κB dependent inflammatory responses via inhibition of thioredoxin system.

  15. Anti-Inflammatory Effect of Combination of Scutellariae Radix and Liriopis Tuber Water Extract

    Directory of Open Access Journals (Sweden)

    Mi-Hye So

    2015-01-01

    Full Text Available Scutellariae Radix and Liriopis Tuber have been used to treat the inflammatory diseases in traditional Korean medicine and anti-inflammatory effect of each herb has been shown partially in several articles. However, the combined extract of these medicinal herbs (SL has not been reported for its anti-inflammatory effects. In this study, we investigated the effects of SL on the creation of several proinflammatory mediators in RAW 264.7 cell mouse macrophages induced by Lipopolysaccharide (LPS. SL inhibited significantly the increase of NO, the release of intracellular calcium, the increase of interleukin-6 (IL-6, macrophage inflammatory proteins (MIP-1α, MIP-1β, and MIP-2, and granulocyte colony-stimulating factor (G-CSF in LPS-induced RAW 264.7 cell at the concentrations of 25, 50, and 100 μg/mL, and SL inhibited significantly the increase of macrophage colony-stimulating factor (M-CSF at the concentrations of 25 and 50 μg/mL, and tumor necrosis factor (TNF at the concentration of 25 μg/mL. These results implicate that SL has anti-inflammatory effects by suppressing the production of various inflammatory mediators in macrophages. But SL did not inhibit significantly the increase of granulocyte macrophage colony-stimulating factor (GM-CSF, leukemia inhibitory factor (LIF, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES; therefore, further study is demanded for the follow-up research to find out the possibility of SL as a preventive and therapeutic medicine for various inflammatory diseases.

  16. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells.

    Science.gov (United States)

    Lee, Ik-Soo; Lim, Juhee; Gal, Jiyeong; Kang, Jeen Chu; Kim, Hyun Jung; Kang, Bok Yun; Choi, Hyun Jin

    2011-02-01

    Xanthohumol (2',4',4-trihydroxy-6'-methoxy-3'-prenylchalcone) is a major chalcone derivative isolated from hop (Humulus lupulus L.) commonly used in brewing due to its bitter flavors. Xanthohumol has anti-carcinogenic, free radical-scavenging, and anti-inflammatory activities, but its precise mechanisms are not clarified yet. The basic leucine zipper (bZIP) protein NRF2 is a key transcription factor mediating the antioxidant and anti-inflammatory responses in animals. Therefore, we tested whether xanthohumol exerts anti-inflammatory activity in mouse microglial BV2 cells via NRF2 signaling. Xanthohumol significantly inhibited the excessive production of inflammatory mediators NO, IL-1β, and TNF-α, and the activation of NF-κB signaling in LPS-induced stimulated BV2 cells. Xanthohumol up-regulated the transcription of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), and increased the level of the endogenous antioxidant GSH. In addition, xanthohumol induced nuclear translocation of NRF2 and further activation of ARE promoter-related transcription. The anti-inflammatory response of xanthohumol was attenuated by transfection with NRF2 siRNA and in the presence of the HO-1 inhibitor, ZnPP, but not the NQO1 inhibitor, dicoumarol. Taken together, our study suggests that xanthohumol exerts anti-inflammatory activity through NRF2-ARE signaling and up-regulation of downstream HO-1, and could be an attractive candidate for the regulation of inflammatory responses in the brain.

  17. Mast cell, pro-inflammatory and anti-inflammatory: Jekyll and Hyde, the story continues.

    Science.gov (United States)

    Conti, P; Caraffa, Al; Kritas, S K; Ronconi, G; Lessiani, G; Toniato, E; Theoharides, T C

    2017-01-01

    IL-1 family members include inflammatory and anti-inflammatory cytokines. They can be beneficial or detrimental, not only in cancer, but also in inflammatory conditions. Mast cells (MCs) originate from CD34+/CD117+/CD13+ pluripotent hematopoietic stem cells, express c-Kit receptor (c-Kit-R), which regulates the proliferation and sustain the survival, differentiation and maturation of MCs. They are immune cells involved in innate and adaptive immunity, allergy, autoimmunity, cancer and inflammation. MCs along with T cells and macrophages release interleukin (IL)-10, which is a pleiotropic immunoregulatory cytokine with multiple biological effects. IL-10 inhibits Th1 inflammatory cells, in particular TNF mostly generated by macrophages and MCs, and down-regulates IFN-γ, IL-1 and IL-6. IL-37 is a family member cytokine which binds IL-18 receptor α chain and inhibits inflammatory mediators including TNF, IL-1, IL-6, IL-33 and nitric oxide (NO). IL-37 similar to IL-10 inhibits MC inflammatory cytokines in several disorders, including asthma, allergy, arthrtitis and cancer. Here we report a study comparing IL-10 with IL-37, two anti-inflammatory cytokines.

  18. Anti-inflammatory effects of essential oils from Mangifera indica.

    Science.gov (United States)

    Oliveira, R M; Dutra, T S; Simionatto, E; Ré, N; Kassuya, C A L; Cardoso, C A L

    2017-03-16

    Mangifera indica is widely found in Brazil, and its leaves are used as an anti-inflammatory agent in folk medicine. The aim of this study is to perform composition analysis of essential oils from the M. indica varieties, espada (EOMIL1) and coração de boi (EOMIL2), and confirm their anti-inflammatory properties. Twenty-three volatile compounds were identified via gas chromatography-mass spectrometry (GC-MS) in two essential oils from the leaves. Paw edema and myeloperoxidase (MPO) activity were evaluated using the carrageenan-induced paw model, while leukocyte migration was analyzed using the pleurisy model. At oral doses of 100 and 300 mg/kg, the essential oils significantly reduced edema formation and the increase in MPO activity induced by carrageenan in rat paws. For a dose of 300 mg/kg EOMIL1, 62 ± 8% inhibition of edema was observed, while EOMIL2 led to 51 ± 7% inhibition of edema. At a dose of 100 mg/kg, the inhibition was 54 ± 9% for EOMIL1 and 37 ± 7% for EOMIL2. EOMIL1 and EOMIL2 significantly reduced MPO activity at doses of 100 mg/kg (47 ± 5 and 23 ± 8%, respectively) and 300 mg/kg (50 ± 9 and 31 ± 7%, respectively). In the pleurisy model, inhibitions were also observed for EOMIL1 and EOMIL2 in the leukocyte migration test. The results of the present study show that essential oils from M. indica differ in chemical composition and anti-inflammatory activity in rats.

  19. Anti-inflammatory profile of paricalcitol in kidney transplant recipients.

    Science.gov (United States)

    Donate-Correa, Javier; Henríquez-Palop, Fernando; Martín-Núñez, Ernesto; Hernández-Carballo, Carolina; Ferri, Carla; Pérez-Delgado, Nayra; Muros-de-Fuentes, Mercedes; Mora-Fernández, Carmen; Navarro-González, Juan F

    2017-06-13

    Paricalcitol, a selective vitamin D receptor activator, is used to treat secondary hyperparathyroidism in kidney transplant patients. Experimental and clinical studies in non-transplant kidney disease patients have found this molecule to have anti-inflammatory properties. In this exploratory study, we evaluated the anti-inflammatory profile of paricalcitol in kidney-transplant recipients. Thirty one kidney transplant recipients with secondary hyperparathyroidism completed 3 months of treatment with oral paricalcitol (1μg/day). Serum concentrations and gene expression levels of inflammatory cytokines in peripheral blood mononuclear cells were analysed at the beginning and end of the study. Paricalcitol significantly decreased parathyroid hormone levels with no changes in calcium and phosphorous. It also reduced serum concentrations of interleukin (IL)-6 and tumour necrosis factor-alpha (TNF-α) by 29% (P<0.05) and 9.5% (P<0.05) compared to baseline, respectively. Furthermore, gene expression levels of IL-6 and TNF-α in peripheral blood mononuclear cells decreased by 14.1% (P<0.001) and 34.1% (P<0.001), respectively. The ratios between pro-inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory cytokines (IL-10), both regarding serum concentrations and gene expression, also experienced a significant reduction. Paricalcitol administration to kidney transplant recipients has been found to have beneficial effects on inflammation, which may be associated with potential clinical benefits. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Antinociceptive and anti-inflammatory potential of Rhododendron arboreum bark.

    Science.gov (United States)

    Nisar, Muhammad; Ali, Sajid; Muhammad, Naveed; Gillani, Syed N; Shah, Muhmmad R; Khan, Haroon; Maione, Francesco

    2016-07-01

    Rhododendron arboreum Smith. (Ericaceae), an evergreen small tree, is one of the 1000 species that belongs to genus Rhododendron distributed worldwide. In folk medicine, as various parts of this plant exhibit medicinal properties, it is used in the treatment of different ailments.The present study was designed to evaluate the potential anti-inflammatory and antinociceptive effects of methanolic extract of R. arboreum bark, followed by activity-guided fractionation of n-hexane, n-butanol, chloroform, ethyl acetate and aqueous fractions.The ethyl acetate fraction (200 mg/kg i.p.) showed the maximum analgesic effect (82%) in acetic acid-induced writhing, followed, to a less extent, by crude extract and chloroform fraction both at a dose of 200 mg/kg i.p. (65.09% and 67.89%, respectively). In carrageenan-induced mouse paw oedema, the crude extract and its related fractions displayed in a dose-dependent manner (50-200 mg/kg i.p.) an anti-inflammatory activity for all time-courses (1-5 hrs). For the active extract/fractions (200 mg/kg i.p.), the maximum effect was observed 5 h after carrageenan injection. These evidences were also supported by in vitro lipoxygenase inhibitory properties. In conclusion, R. arboreum crude methanolic extract and its fractions exhibited anti-inflammatory and antinociceptive effects. For these reasons, this plant could be a promising source of new compounds for the management of pain and inflammatory diseases. © The Author(s) 2014.

  1. Morroniside cinnamic acid conjugate as an anti-inflammatory agent.

    Science.gov (United States)

    Takeda, Yoshinori; Tanigawa, Naomi; Sunghwa, Fortunatus; Ninomiya, Masayuki; Hagiwara, Makoto; Matsushita, Kenji; Koketsu, Mamoru

    2010-08-15

    A morroniside cinnamic acid conjugate was prepared and evaluated on E-selectin mediated cell-cell adhesion as an important role in inflammatory processes. 7-O-Cinnamoylmorroniside exhibited excellent anti-inflammatory activity (IC(50)=49.3 microM) by inhibiting the expression of E-selectin; further, it was more active than another cinnamic-acid-conjugated iridoid glycoside (harpagoside; IC(50)=88.2 microM), 7-O-methylmorroniside, and morroniside itself. As a result, 7-O-cinnamoylmorroniside was observed to be a potent inhibitor of TNF-alpha-induced E-selectin expression.

  2. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid

    OpenAIRE

    Haj, Christeene G.; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M.; Yektin, Zhana; Mechoulam,Raphael; Feldmann, Mark; Gallily, Ruth

    2015-01-01

    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ9-tetrahydrocannabinol (Δ9-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therape...

  3. ANTI-INFLAMMATORY AND ANTIOXIDANT EFFECT OF ARECA CATECHU

    Directory of Open Access Journals (Sweden)

    Reena Rosy Nelson Anthikat* and A. Michael

    2012-01-01

    Full Text Available Context: The present investigation provides proof for the effectiveness of Arecanut extract as an anti-inflammatory agent. Arecanut extract is a natural plant product mimic of peroxidase.Objective: To explore the Anti-inflammatory activity of aqueous extract of Areca catechu L in carrageenan, dextran and formalin induced inflammation models in Swiss albino mice, by injection into the interdigital area, through the subplantar region of the paw. To explore the antioxidant effects of Arecanut extract on the in-vitro system.Method: Treatment with aqueous extract at 250 mg/kg.bwt and 500 mg/kg.body weight and untreated group was started orally 1 hour prior to the subplantar injection of carrageenan. The paw volume was measured using vernier calipers, before and one hour after carrageenan injection. Similarly in the case of dextran, initial readings were taken on the first day, prior to Formalin administration. Day one readings were taken one hour post formalin administration. This was taken during seven consecutive days challenge period. The drug aqueous arecanut extract at 200mg/kg.bwt, 500 mg/kg.bwt produced reduction in inflammation of the paw produced due to carrageenan, formalin and dextran. In-vitro antioxidant studies showed that aqueous arecanut extract could inhibit superoxide radical production, could inhibit hydroxyl radicals, and could prevent lipid peroxidation. Arecanut extract could scavenge DPPH radicals and also ABTS. In FRAP assay, the reduction of ferric to ferrous is also seen in a concentration dependant manner.Results: The present investigation provides proof for the effectiveness of treatment as an anti-inflammatory and antioxidant agent. Compared with the control group, the arecanut treated group showed free radical scavenging ability. Compared with the control group, the treatment of mice with Arecanut extract showed reduction in paw oedema in a dose dependent manner at 200 mg/kg.bwt and 500 mg/kg.bwt.Discussion and

  4. Terpenoids with anti-inflammatory activity from Abies chensiensis.

    Science.gov (United States)

    Zhao, Qian-Qian; Wang, Shu-Fang; Li, Ya; Song, Qiu-Yan; Gao, Kun

    2016-06-01

    The phytochemical investigation of Abies chensiensis led to the isolation and identification of nine new compounds including eight triterpenoids (1-8) and a new abietane-type diterpene (9), along with three known compounds (10-12). The absolute configuration of 9 was assigned by X-ray diffraction analysis. Compounds 1-11 were evaluated for the anti-inflammatory activity. Among the tested compounds, 1, 2, 5 and 6 exhibited potent inhibitory activity with IC50 values of 15.97, 18.73, 20.18 and 10.97μM, respectively.

  5. Nitro-fatty acids: novel anti-inflammatory lipid mediators

    Directory of Open Access Journals (Sweden)

    H. Rubbo

    2013-09-01

    Full Text Available Nitro-fatty acids are formed and detected in human plasma, cell membranes, and tissue, modulating metabolic as well as inflammatory signaling pathways. Here we discuss the mechanisms of nitro-fatty acid formation as well as their key chemical and biochemical properties. The electrophilic properties of nitro-fatty acids to activate anti-inflammatory signaling pathways are discussed in detail. A critical issue is the influence of nitroarachidonic acid on prostaglandin endoperoxide H synthases, redirecting arachidonic acid metabolism and signaling. We also analyze in vivo data supporting nitro-fatty acids as promising pharmacological tools to prevent inflammatory diseases.

  6. Analgesic and anti-inflammatory activity of the aqueous extract of Rheedia longifolia Planch & Triana

    Directory of Open Access Journals (Sweden)

    Valber da Silva Frutuoso

    2007-02-01

    Full Text Available Rheedia longifolia Planch et Triana belongs to the Clusiaceae family. This plant is widely distributed in Brazil, but its chemical and pharmacological properties have not yet been studied. We report here that leaves aqueous extract of R. longifolia (LAE shows analgesic and anti-inflammatory effects. Oral or intraperitoneal administration of this extract dose-dependently inhibited the abdominal constrictions induced by acetic acid in mice. The analgesic effect and the duration of action were similar to those observed with sodium diclofenac, a classical non-steroidal analgesic. In addition to the effect seen in the abdominal constriction model, LAE was also able to inhibit the hyperalgesia induced by lipopolysaccharide from gram-negative bacteria (LPS in rats. We also found that R. longifolia LAE inhibited an inflammatory reaction induced by LPS in the pleural cavity of mice. Acute toxicity was evaluated in mice treated with the extract for seven days with 50 mg/kg/day. Neither death, nor alterations in weight, blood leukocyte counts or hematocrit were noted. Our results suggest that aqueous extract from R. longifolia leaves has analgesic and anti-inflammatory activity with minimal toxicity and are therefore endowed with a potential for pharmacological control of pain and inflammation.

  7. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis.

    Science.gov (United States)

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; Alencar, Severino Matias de

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1-OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5-100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry.

  8. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis

    Science.gov (United States)

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; de Alencar, Severino Matias

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5–100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry. PMID:27802316

  9. Antibacterial and Anti-Inflammatory activities of Bunchosia armeniaca (Cav. DC. (Malpighiaceae

    Directory of Open Access Journals (Sweden)

    Gustavo S. Queiroz

    2015-04-01

    Full Text Available Bunchosia armeniaca (B. armeniaca is a native plant to America, and popularly called “cafezinho”, “ciruela” or “falso-guaraná”. In traditional medicine is used to treat different pathologies including infectious and inflammatory diseases. From ethanolic extract of B. armeniaca leaves (Malpighiaceae afforded a flavonoid mixture consisting of rutin 1 (83.5%, isoquercitrin 2 (5.6% and afzelin 5 (10.9%, which were identified and individually quantified as helpful for capillary electrophoresis and 1H and 13C NMR spectroscopy. The ethanolic extract showed an excellent antibacterial activity against Staphylococcus aureus (S.aureus and moderate activity against Escherichia coli (E. coli and Pseudomonas aeruginosa (P. aeruginosa. The flavonoid mixture showed antibacterial activity, mainly against the gram negative bacteria. Moreover, this plant demonstrated significant anti-inflammatory action, inhibiting the leukocyte influx and exudate formation in pleural cavity caused by carrageenan. The inflammation mediators involved in this model study, myeloperoxidase, nitric oxide and tumor necrosis factor alpha were significantly inhibited by ethanolic extract and flavonoid mixture of B. armeniaca. The results show that B. armeniaca has a significant antibacterial and anti-inflammatory effects and that these effects is due, at least in part, to the presence of rutin, isoquercetrin and afzelin in large amounts. Hence, these compounds have potential as novel lead compounds for the future development of therapeutic interventions for the treatment of patients with infectious and inflammatory disorders.

  10. FRNK negatively regulates IL-4-mediated inflammation.

    Science.gov (United States)

    Sharma, Ritu; Colarusso, Pina; Zhang, Hong; Stevens, Katarzyna M; Patel, Kamala D

    2015-02-15

    Focal adhesion kinase (FAK)-related nonkinase (PTK2 isoform 6 in humans, hereafter referred to as FRNK) is a cytoskeletal regulatory protein that has recently been shown to dampen lung fibrosis, yet its role in inflammation is unknown. Here, we show for the first time that expression of FRNK negatively regulates IL-4-mediated inflammation in a human model of eosinophil recruitment. Mechanistically, FRNK blocks eosinophil accumulation, firm adhesion and transmigration by preventing transcription and protein expression of VCAM-1 and CCL26. IL-4 activates STAT6 to induce VCAM-1 and CCL26 transcription. We now show that IL-4 also increases GATA6 to induce VCAM-1 expression. FRNK blocks IL-4-induced GATA6 transcription but has little effect on GATA6 protein expression and no effect on STAT6 activation. FRNK can block FAK or Pyk2 signaling and we, thus, downregulated these proteins using siRNA to determine whether signaling from either protein is involved in the regulation of VCAM-1 and CCL26. Knockdown of FAK, Pyk2 or both had no effect on VCAM-1 or CCL26 expression, which suggests that FRNK acts independently of FAK and Pyk2 signaling. Finally, we found that IL-4 induces the late expression of endogenous FRNK. In summary, FRNK represents a novel mechanism to negatively regulate IL-4-mediated inflammation.

  11. Antioxidant activity of anti-inflammatory plant extracts.

    Science.gov (United States)

    Schinella, G R; Tournier, H A; Prieto, J M; Mordujovich de Buschiazzo, P; Ríos, J L

    2002-01-18

    The antioxidant properties of twenty medical herbs used in the traditional Mediterranean and Chinese medicine were studied. Extracts from Forsythia suspensa, Helichrysum italicum, Scrophularia auriculata, Inula viscosa, Coptis chinensis, Poria cocos and Scutellaria baicalensis had previously shown anti-inflammatory activity in different experimental models. Using free radical-generating systems H. italicum. I. viscosa and F. suspensa protected against enzymatic and non-enzymatic lipid peroxidation in model membranes and also showed scavenging property on the superoxide radical. All extracts were assayed at a concentration of 100 microg/ml. Most of the extracts were weak scavengers of the hydroxyl radical and C. chinensis and P. cocos exhibited the highest scavenging activity. Although S. baicalensis inhibited the lipid peroxidation in rat liver microsomes and red blood cells, the extract showed inhibitory actions on aminopyrine N-demethylase and xanthine oxidase activities as well as an pro-oxidant effect observed in the Fe3+-EDTA-H2O2 system. The results of the present work suggest that the anti-inflammatory activities of the same extracts could be explained, at least in part, by their antioxidant properties.

  12. Anti-inflammatory Cerebrosides from Cultivated Cordyceps militaris.

    Science.gov (United States)

    Chiu, Ching-Peng; Liu, Shan-Chi; Tang, Chih-Hsin; Chan, You; El-Shazly, Mohamed; Lee, Chia-Lin; Du, Ying-Chi; Wu, Tung-Ying; Chang, Fang-Rong; Wu, Yang-Chang

    2016-02-24

    Cordyceps militaris (bei-chong-chaw, northern worm grass) is a precious and edible entomopathogenic fungus, which is widely used in traditional Chinese medicine (TCM) as a general booster for the nervous system, metabolism, and immunity. Saccharides, nucleosides, mannitol, and sterols were isolated from this fungus. The biological activity of C. militaris was attributed to the saccharide and nucleoside contents. In this study, the aqueous methanolic fraction of C. militaris fruiting bodies exhibited a significant anti-inflammatory activity. Bioactivity-guided fractionation of the active fraction led to the isolation of eight compounds, including one new and two known cerebrosides (ceramide derivatives), two nucleosides, and three sterols. Cordycerebroside A (1), the new cerebroside, along with soyacerebroside I (2) and glucocerebroside (3) inhibited the accumulation of pro-inflammatory iNOS protein and reduced the expression of COX-2 protein in LPS-stimulated RAW264.7 macrophages. This is the first study on the isolation of cerebrosides with anti-inflammatory activity from this TCM.

  13. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    Science.gov (United States)

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-11-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.

  14. Analgesic and Anti-inflammatory Effects of Ginger Oil

    Institute of Scientific and Technical Information of China (English)

    JIA Yong-liang; XIE Qiang-min; ZHAO Jun-ming; ZHANG Lin-hui; SUN Bao-shan; BAO Meng-jing; LI Fen-fen; SHEN Jian; SHEN Hui-jun; ZHAO Yu-qing

    2011-01-01

    Objective Ginger (Zingiber officinale) is widely used as a spice in cooking and as a medicinal herb in traditional herbal medicine. The present study was to investigate the analgesic and anti-inflammatory activities of ginger oil in experimental animal models. Methods The analgesic effect of the oils was evaluated by the "acetic acid" and "hot-plate" test models of pain in mice. The anti-inflammatory effect of the oil was investigated in rats, using rat paw edema induced by carrageenan, adjuvant arthritis, and vascular permeability induced by bradykinin, arachidonic acid, and histamine. Indomethacin (1 mg/kg), Aspirin (0.5 g/kg) and Dexamethasone (2.5 mg/kg) were used respectively as reference drugs for comparison. Results The ginger oil (0.25-1.0 g/kg) produced significant analgesic effect against chemically- and thermally-induced nociceptive pain stimuli in mice (P < 0.05, 0.01). And the ginger oil (0.25-1.0 g/kg) also significantly inhibited carrageenan-induced paw edema, adjuvant arthritis, and inflammatory mediators-induced vascular permeability in rats (P < 0.05, 0.001). Conclusion These findings confirm that the ginger oil can be used to treat pain and chronic inflammation such as rheumatic arthritis.

  15. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid.

    Science.gov (United States)

    Haj, Christeene G; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M; Yektin, Zhana; Mechoulam, Raphael; Feldmann, Mark; Gallily, Ruth

    2015-10-01

    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ(9)-tetrahydrocannabinol (Δ(9)-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therapeutic in murine collagen-induced arthritis in vivo. However, in acidic media, it can cyclize to the psychoactive Δ(9)-THC. We report the synthesis of a novel CBD derivative, HU-444, which cannot be converted by acid cyclization into a Δ(9)-THC-like compound. In vitro HU-444 had anti-inflammatory activity (decrease of reactive oxygen intermediates and inhibition of TNF-α production by macrophages); in vivo it led to suppression of production of TNF-α and amelioration of liver damage as well as lowering of mouse collagen-induced arthritis. HU-444 did not cause Δ(9)-THC-like effects in mice. We believe that HU-444 represents a potential novel drug for rheumatoid arthritis and other inflammatory diseases.

  16. Anti-inflammatory and antinociceptive activity of Urera aurantiaca.

    Science.gov (United States)

    Riedel, R; Marrassini, C; Anesini, C; Gorzalczany, S

    2015-01-01

    Urera aurantiaca Wedd. (Urticaceae) is a medicinal plant commonly used in traditional medicine to relieve pain in inflammatory processes. In the present study, the in vivo anti-inflammatory and antinociceptive effects of U. aurantiaca methanolic extract and its possible mechanisms of action were investigated. The extract showed anti-inflammatory activity in the ear edema in mice test (34.3% inhibition), myeloperoxidase (MPO) activity was markedly reduced in animals administered with the extract: within 49.6% and 68.5%. In the histological analysis, intense dermal edema and intense cellular infiltration of inflammatory cells were markedly reduced in the ear tissue of the animals treated with the extract. In the carrageenan-induced hind paw edema in rats assay the extract provoked a significant inhibition of the inflammation (45.5%, 5 h after the treatment) and the MPO activity was markedly reduced (maximum inhibition 71.7%), The extract also exhibited significant and dose-dependent inhibitory effect on the increased vascular permeability induced by acetic acid. The extract presented antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis 3-ethylbenzothiazoline 6-sulfonic acid tests and its total phenol content was 35.4 ± 0.06 mg GAE/g of extract. Also, the extract produced significant inhibition on nociception induced by acetic acid (ED50 : 8.7 mg/kg, i.p.) administered intraperitoneally and orally. Naloxone significantly prevented this activity.

  17. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    Directory of Open Access Journals (Sweden)

    Scott J Cameron

    Full Text Available High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC. Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.

  18. Anti-Inflammatory Oleanolic Triterpenes from Chinese Acorns.

    Science.gov (United States)

    Huang, Jie; Wang, Yihai; Li, Chuan; Wang, Xinluan; He, Xiangjiu

    2016-05-20

    Acorns play an important role in human history and are a source of food and recipes for many cultures around the world. In this study, eleven oleanolic triterpenes, one of which was novel, were isolated from Chinese acorns (Quercus serrata var. brevipetiolata). The chemical structure of the novel triterpene, which was identified as 2α,3β,19α-trihydroxy-24-oxo-olean-12-en-28-oic acid (1), was established based on the interpretation of chemical and spectroscopic analyses, including IR, HR-ESI-MS, and NMR experiments (¹H, (13)C NMR, DEPT, ¹H-¹H COSY, HSQC, HMBC, and NOESY). All isolated compounds were tested for their inhibitory effects on LPS-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compared with the positive control drug indomethacin (IC50 = 47.4 μM), compounds 1, 3, 6 and 8 exhibited remarkable anti-inflammatory activities with IC50 values of 5.4, 7.8, 4.0 and 8.9 μM, respectively. Besides, compounds 2, 4, 7 and 9 also showed moderate anti-inflammatory activities with IC50 values of 10.1, 13.0, 20.1 and 17.2 μM, respectively. Furthermore, Compound 1 could inhibit TNF-α-induced IL-6 and IL-8 production in MH7A cells.

  19. Anti-Inflammatory Oleanolic Triterpenes from Chinese Acorns

    Directory of Open Access Journals (Sweden)

    Jie Huang

    2016-05-01

    Full Text Available Acorns play an important role in human history and are a source of food and recipes for many cultures around the world. In this study, eleven oleanolic triterpenes, one of which was novel, were isolated from Chinese acorns (Quercus serrata var. brevipetiolata. The chemical structure of the novel triterpene, which was identified as 2α,3β,19α-trihydroxy-24-oxo-olean-12-en-28-oic acid (1, was established based on the interpretation of chemical and spectroscopic analyses, including IR, HR-ESI-MS, and NMR experiments (1H, 13C NMR, DEPT, 1H-1H COSY, HSQC, HMBC, and NOESY. All isolated compounds were tested for their inhibitory effects on LPS-induced nitric oxide (NO production in RAW 264.7 macrophages. Compared with the positive control drug indomethacin (IC50 = 47.4 μM, compounds 1, 3, 6 and 8 exhibited remarkable anti-inflammatory activities with IC50 values of 5.4, 7.8, 4.0 and 8.9 μM, respectively. Besides, compounds 2, 4, 7 and 9 also showed moderate anti-inflammatory activities with IC50 values of 10.1, 13.0, 20.1 and 17.2 μM, respectively. Furthermore, Compound 1 could inhibit TNF-α-induced IL-6 and IL-8 production in MH7A cells.

  20. Anticancer and anti-inflammatory activities of some dietary cucurbits.

    Science.gov (United States)

    Sharma, Dhara; Rawat, Indu; Goel, H C

    2015-04-01

    In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine.

  1. Anti-inflammatory and analgesic potential of Caesalpinia ferrea

    Directory of Open Access Journals (Sweden)

    Sandrine Maria A. Lima

    2012-02-01

    Full Text Available Caesalpinia ferrea Mart. belongs to the family Fabaceae. Known as pau-ferro and jucá, it is used in folk medicine to treat diabetes, as antipyretic and antirheumatic. This study aimed to evaluate the anti-inflammatory and antinociceptive activities of the ethanol extract of the fruits of C. ferrea (EECf. In the evaluation of anti-inflammatory activity, EECf (50 mg/kg produced significantly inhibition of ear edema by 66.6% compared to control. Indomethacin (10 mg/kg showed inhibition of 83.9% compared to control. EECf (50 mg/kg inhibited of vascular permeability induced by acetic acid and was also able to reduce of cell migration to the peritoneal cavity induced by thioglycolate. In the writhing test induced by acid acetic, EECf (12.5, 25 and 50 mg/kg significantly reduced the number of contortions by 24.9, 46.9 and 74.2%, respectively. In the formalin test, EECf presented effects only in the second phase. The results provided experimental evidence for the effectiveness of the traditional use of C. ferrea in treating various diseases associated with inflammation and pain.

  2. Anti-Inflammatory Effects of Total Isoflavones from Pueraria lobata on Cerebral Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    In-Ho Kim

    2013-08-01

    Full Text Available Puerariae radix, the dried root of Pueraria lobata Ohwi, is one of earliest and most important edible crude herbs used for various medical purposes in Oriental medicine. The aim of the present study was to determine the anti-inflammatory effects of Total Isoflavones from P. lobata (TIPL, which contains the unique isoflavone puerarin, in ischemia in vivo models. Oral administration of TIPL (100 mg/kg reduced the brain infarct volume and attenuated ischemia-induced cyclooxygenase-2 (COX-2 up-regulation at 2 days after middle cerebral artery occlusion (MCAo in rats. Moreover, TIPL reduced activation of glial fibrillary acid protein (GFAP and CD11b antibody (OX-42 at 7 days after MCAo in hippocampal CA1 region. These results show that TIPL can protect the brain from ischemic damage after MCAo. Regarding the immunohistochemical study, the effects of TIPL may be attributable to its anti-inflammatory properties by the inhibition of COX-2 expression, astrocyte expression, and microglia.

  3. Biological evaluation of Phellinus linteus-fermented broths as anti-inflammatory agents.

    Science.gov (United States)

    Lin, Chun-Jung; Lien, Hsiu-Man; Chang, Hsiao-Yun; Huang, Chao-Lu; Liu, Jau-Jin; Chang, Yun-Chieh; Chen, Chia-Chang; Lai, Chih-Ho

    2014-07-01

    Phellinus linteus and its constituent hispolon induce potent anti-inflammatory activity in macrophages. Efficient production of the effective constituent and the biological function of P. linteus in the regulation of innate sensing have rarely been investigated. The aim of this study was to efficiently manufacture P. linteus-fermented broth containing the effective constituent, hispolon, and evaluate its immunoregulatory functions in macrophages. Four distinct fermented broths (PL1-4) and the medium dialyzate (MD) were prepared to screen suitable culture conditions for the mycelial growth of P. linteus. The P. linteus-fermented broth exhibited a dose-responsive inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production by murine macrophages. In addition, the P. linteus-fermented broths suppressed macrophage LPS-mediated nuclear factor (NF)-κB activity and tumor necrosis factor (TNF)-α. Among the tested samples from P. linteus, PL4 contained vast amounts of hispolon and showed the greatest anti-inflammatory activity in both the RAW264.7 cells and murine primary peritoneal exudate macrophages (PEMs). This study demonstrates that the purification of the effective constituent from P. linteus-fermented broth may enable the production of a potent therapeutic agent for anti-inflammation in macrophages.

  4. Corynoline Isolated from Corydalis bungeana Turcz. Exhibits Anti-Inflammatory Effects via Modulation of Nfr2 and MAPKs

    Directory of Open Access Journals (Sweden)

    Chunjuan Yang

    2016-07-01

    Full Text Available Corydalis bungeana Turcz. is an anti-inflammatory medicinal herb used widely in traditional Chinese medicine for upper respiratory tract infections. It is demonstrated that corynoline is its active anti-inflammatory component. The nuclear factor-erythroid-2-related factor 2 (Nrf2/antioxidant response element (ARE pathway and the mitogen-activated protein kinase (MAPK pathway play important roles in the regulation of inflammation. In this study, we investigated the potential anti-inflammatory mechanism of corynoline through modulation of Nfr2 and MAPKs. Lipopolysaccharide (LPS-activated RAW264.7 cells were used to explore modulatory role of NO production and the activation of signaling proteins and transcription factors using nitrite assay, Western bloting and qPCR. Treatment with corynoline reduced production of nitric oxide (NO and the protein and mRNA levels of inducible nitric oxide (iNOS and cyclooxygenase-2 (COX-2 Treatment also significantly increased the expression of Nrf2, quinone oxidoreductase 1 (NQO1 and hemeoxygenase-1 (HO-1 at the mRNA and protein levels, which demonstrated that corynoline may protect cells from inflammation through the Nrf2/ARE pathway In addition, corynoline suppressed the expression of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β, at the mRNA and protein levels. Furthermore, molecular data revealed that corynoline inhibited lipopolysaccharide-stimulated phosphorylation of c-jun NH2-terminal kinase (JNK and p38. Taken together, these results suggest that corynoline reduces the levels of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α and IL-1β, by suppressing extracellular signal-regulated kinase 1/2 (ERK and p38 phosphorylation in RAW264.7 cells, which is regulated by the Nrf2/ARE pathway. These findings reveal part of the molecular basis for the anti-inflammatory properties of corynoline.

  5. Corynoline Isolated from Corydalis bungeana Turcz. Exhibits Anti-Inflammatory Effects via Modulation of Nfr2 and MAPKs.

    Science.gov (United States)

    Yang, Chunjuan; Zhang, Chengyue; Wang, Zhibin; Tang, Zhenqiu; Kuang, Haixue; Kong, Ah-Ng Tony

    2016-07-27

    Corydalis bungeana Turcz. is an anti-inflammatory medicinal herb used widely in traditional Chinese medicine for upper respiratory tract infections. It is demonstrated that corynoline is its active anti-inflammatory component. The nuclear factor-erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and the mitogen-activated protein kinase (MAPK) pathway play important roles in the regulation of inflammation. In this study, we investigated the potential anti-inflammatory mechanism of corynoline through modulation of Nfr2 and MAPKs. Lipopolysaccharide (LPS)-activated RAW264.7 cells were used to explore modulatory role of NO production and the activation of signaling proteins and transcription factors using nitrite assay, Western bloting and qPCR. Treatment with corynoline reduced production of nitric oxide (NO) and the protein and mRNA levels of inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2) Treatment also significantly increased the expression of Nrf2, quinone oxidoreductase 1 (NQO1) and hemeoxygenase-1 (HO-1) at the mRNA and protein levels, which demonstrated that corynoline may protect cells from inflammation through the Nrf2/ARE pathway In addition, corynoline suppressed the expression of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), at the mRNA and protein levels. Furthermore, molecular data revealed that corynoline inhibited lipopolysaccharide-stimulated phosphorylation of c-jun NH2-terminal kinase (JNK) and p38. Taken together, these results suggest that corynoline reduces the levels of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α and IL-1β, by suppressing extracellular signal-regulated kinase 1/2 (ERK) and p38 phosphorylation in RAW264.7 cells, which is regulated by the Nrf2/ARE pathway. These findings reveal part of the molecular basis for the anti-inflammatory properties of corynoline.

  6. Degradable magnesium-based implant materials with anti-inflammatory activity.

    Science.gov (United States)

    Peng, Qiuming; Li, Kun; Han, Zengsheng; Wang, Erde; Xu, Zhigang; Liu, Riping; Tian, Yongjun

    2013-07-01

    The objective of this study was to prepare a new biodegradable Mg-based biomaterial, which provides good mechanical integrity in combination with anti-inflammatory function during the degradation process. The silver element was used, because it improved the mechanical properties as an effective grain refiner and it is also treated as a potential anti-inflammatory core. The new degradable Mg-Zn-Ag biomaterial was prepared by zone solidification technology and extrusion. The mechanical properties were mostly enhanced by fine grain strengthening. In addition, the alloys exhibited good cytocompatibility. The anti-inflammatory function of degradation products was identified by both interleukin-1α and nitric oxide modes. The anti-inflammatory impact was significantly associated with the concentration of silver ion. It was demonstrated that Mg-Zn-Ag system was a potential metallic stent with anti-inflammatory function, which can reduce the long-term dependence of anti-inflammatory drug after coronary stent implantation.

  7. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract.

    Science.gov (United States)

    Kaci, Ghalia; Goudercourt, Denise; Dennin, Véronique; Pot, Bruno; Doré, Joël; Ehrlich, S Dusko; Renault, Pierre; Blottière, Hervé M; Daniel, Catherine; Delorme, Christine

    2014-02-01

    Streptococcus salivarius is one of the first colonizers of the human oral cavity and gut after birth and therefore may contribute to the establishment of immune homeostasis and regulation of host inflammatory responses. The anti-inflammatory potential of S. salivarius was first evaluated in vitro on human intestinal epithelial cells and human peripheral blood mononuclear cells. We show that live S. salivarius strains inhibited in vitro the activation of the NF-κB pathway on intestinal epithelial cells. We also demonstrate that the live S. salivarius JIM8772 strain significantly inhibited inflammation in severe and moderate colitis mouse models. These in vitro and in vivo anti-inflammatory properties were not found with heat-killed S. salivarius, suggesting a protective response exclusively with metabolically active bacteria.

  8. Nitric oxide negatively regulates mammalian adult neurogenesis

    Science.gov (United States)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  9. Topical anti-inflammatory activity of pinda thailam, a herbal gel formulation.

    Science.gov (United States)

    Periyanayagam, K; Venkatarathnakumar, T; Nagaveni, A; Subitha, V G; Sundari, P; Vaijorohini, M; Umamaheswari, V

    2004-07-01

    The present study aims to evaluate the topical anti-inflammatory activity of "Pinda thailam", a herbal gel formulation containing aqueous extract of roots of Rubia cordifolia (Rubiaceae) and Hemidesmus indicus (Asclepiadaceae) which are known for their anti-inflammatory activity using the technique of carrageenin induced paw oedema in albino rats. The herbal gel formulation showed significant anti-inflammatory activity comparable to the reference standard Diclofenac sodium gel.

  10. Morinda citrifolia leaf enhanced performance by improving angiogenesis, mitochondrial biogenesis, antioxidant, anti-inflammatory & stress responses.

    Science.gov (United States)

    Mohamad Shalan, Nor Aijratul Asikin; Mustapha, Noordin M; Mohamed, Suhaila

    2016-12-01

    Morinda citrifolia fruit, (noni), enhanced performances in athletes and post-menopausal women in clinical studies. This report shows the edible noni leaves water extract enhances performance in a weight-loaded swimming animal model better than the fruit or standardized green tea extract. The 4weeks study showed the extract (containing scopoletin and epicatechin) progressively prolonged the time to exhaustion by threefold longer than the control, fruit or tea extract. The extract improved (i) the mammalian antioxidant responses (MDA, GSH and SOD2 levels), (ii) tissue nutrient (glucose) and metabolite (lactate) management, (iii) stress hormone (cortisol) regulation; (iv) neurotransmitter (dopamine, noradrenaline, serotonin) expressions, transporter or receptor levels, (v) anti-inflammatory (IL4 & IL10) responses; (v) skeletal muscle angiogenesis (VEGFA) and (v) energy and mitochondrial biogenesis (via PGC, UCP3, NRF2, AMPK, MAPK1, and CAMK4). The ergogenic extract helped delay fatigue by enhancing energy production, regulation and efficiency, which suggests benefits for physical activities and disease recovery.

  11. COMPARATIVE STUDY OF ANTI-INFLAMMATORY ACTIVITY OF NEWER MACROLIDES WITH ETORICOXIB

    Directory of Open Access Journals (Sweden)

    Gajendra Naidu

    2014-03-01

    Full Text Available The present study was designed to investigate the anti-inflammatory activity of macrolides and to compare with standard non- steroidal anti-inflammatory drug (NSAID etoricoxib. This study was conducted in male wistar albino rats by inducing edema with 1% carrageenan. Animals were divided into 5 groups with 6 in each and paw edema volume was measured by digital plethysmograph before and 3hrs after 1% carrageenan administration. Percentage of inhibition of paw edema was calculated. Results showed macrolides having significant anti-inflammatory activity & the anti-inflammatory activity of roxithromycin was almost equally comparable with etoricoxib

  12. Development of a potential probiotic yoghurt using selected anti-inflammatory lactic acid bacteria for prevention of colitis and carcinogenesis in mice.

    Science.gov (United States)

    Del Carmen, S; de Moreno de LeBlanc, A; LeBlanc, J G

    2016-09-01

    To evaluate the beneficial properties of a potentially probiotic yoghurt obtained by the fermentation of two selected anti-inflammatory bacterial strains using in vivo mouse models of intestinal inflammation and colon carcinogenesis. Yoghurt was administered to mice suffering chemically induced intestinal inflammation or colon carcinogenesis. It was shown that this novel yoghurt was able to prevent local inflammation in the intestines of mice through a regulation of the immune response, prevent macroscopic and histological damages, and prevent colon carcinogenesis through an anti-inflammatory response. The developed yoghurt showed in vivo anti-inflammatory properties by modulation of the host immune response for the prevention of colon inflammation and carcinogenesis. This new yoghurt could thus be considered a probiotic food and be useful as a complement to current treatment protocols for inflammatory bowel diseases and colon cancer, a first since there are no current functional foods specifically oriented for these patients. © 2016 The Society for Applied Microbiology.

  13. Anti-Inflammatory Effects of 6,8-Diprenyl-7,4'-dihydroxyflavanone from Sophora tonkinensis on Lipopolysaccharide-Stimulated RAW 264.7 Cells.

    Science.gov (United States)

    Chae, Hee-Sung; Yoo, Hunseung; Kim, Young-Mi; Choi, Young Hee; Lee, Chang Hoon; Chin, Young-Won

    2016-08-11

    The anti-inflammatory effects and molecular mechanism of 6,8-diprenyl-7,4'-dihydroxyflavanone (DDF), one of the flavanones found in Sophora tonkinensis, were assessed in vitro through macrophage-mediated inflammation in the present study. The anti-inflammatory effects of DDF were not previously reported. DDF inhibited the production of nitric oxide and the expression of tumor necrosis factor α, interleukin-1β, and interleukin-6. Furthermore, the activation of nuclear factor-κB (NF-κB) and extracellular signal-regulated kinases (ERKs) in lipopolysaccharide-stimulated macrophages was suppressed by treatment with DDF. Therefore, DDF demonstrated potentially anti-inflammatory effects via the blockade of NF-κB and ERK activation in macrophages.

  14. Evaluation of anti-proliferative and anti-inflammatory activities of Pelagia noctiluca venom in Lipopolysaccharide/Interferon-γ stimulated RAW264.7 macrophages.

    Science.gov (United States)

    Ayed, Yosra; Sghaier, Rabiaa Manel; Laouini, Dhafer; Bacha, Hassen

    2016-12-01

    Components of Pelagia noctiluca (P. noctiluca) venom were evaluated for their anticancer and nitric Oxide (NO) inhibition activities. Three fractions, out of four, obtained by gel filtration on Sephadex G75 of P. noctiluca venom revealed an important selective anti-proliferative activity on several cell lines such as human bladder carcinoma (RT112), human glioblastoma (U87), and human myelogenous leukemia (K562) but not on mitogen-stimulated peripheral blood mononuclear cells. Interestingly, P. noctiluca components showed an important dose-dependent anti-inflammatory activity, through inhibition of NO production via transcriptional regulation of Inducible NO Synthase (iNOS), in IFN-γ/LPS stimulated RAW 264.7 macrophages. These data strongly suggest that P. noctiluca venom could be used as a natural inhibitor of cancer cell lines and a potent anti-inflammatory agent for the treatment of anti-inflammatory diseases.

  15. [Coumarins from Skimmia arborescens and its anti-inflammatory effect].

    Science.gov (United States)

    He, Lei; Yang, Shunli; Wu, Desong; Cui, Tao; Wei, Di; Ding, Zhongtao

    2012-03-01

    To investigate chemical constituents contained in Skimmia arborescens. The chemical constituents were separated by silica gel column chromatography, pharmadex LH-20, RP-C18, and 1H, 13C-NMR spectroscopic analysis were employed for the structural elucidation. Six coumarin compounds were separated from S. arborescens. Their structures were elucidated as umbelliferone (1), scopoletin (2), scopolin (3), nodakenetin (4), skimmin (5), 6, 7-dimethoxycoumarin (6), and all compounds were separated from the plant for the first time. Using the model of ear swelling caused by xylol of mice, the anti-inflammatory effect of its total extract was evaluated. The result indicated that middle and high dose groups of its total extract could obviously inhibit the ear swelling caused by xylol of mice.

  16. Pharmacological interactions of anti-inflammatory-analgesics in odontology.

    Science.gov (United States)

    Gómez-Moreno, Gerardo; Guardia, Javier; Cutando, Antonio; Calvo-Guirado, José Luis

    2009-02-01

    In this second article we describe the more interesting pharmacological interactions in dental practice based on the prescription of analgesic narcotics, paracetamol and non-selective non-steroid anti-inflammatory drugs (NSAI) (which inhibit cyclooxigenase 1 -COX 1- and cyclooxigenase 2 -COX 2-) and selective NSAIs (COX 2 inhibitors). The importance of preventing the appearance of these pharmacological interactions is because these are medicaments prescribed daily in odontology for moderate pain treatment and inflammation in the oral cavity. Paracetamol can interact with warfarin and therefore care should be taken with chronic alcoholic patients. All NSAIs reduce renal blood flow and consequently are capable of reducing the efficacy of medicaments used for treating arterial hypertension, which act via a renal mechanism. Especial attention should be taken considering the risk of interaction between the antagonists of AT1 receptors of angiostensin II (ARAII) and the NSAIs.

  17. Nonsteroidal Anti-Inflammatory Drugs and the Kidney

    Directory of Open Access Journals (Sweden)

    Walter H. Hörl

    2010-07-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs inhibit the isoenzymes COX-1 and COX-2 of cyclooxygenase (COX. Renal side effects (e.g., kidney function, fluid and urinary electrolyte excretion vary with the extent of COX-2-COX-1 selectivity and the administered dose of these compounds. While young healthy subjects will rarely experience adverse renal effects with the use of NSAIDs, elderly patients and those with co-morbibity (e.g., congestive heart failure, liver cirrhosis or chronic kidney disease and drug combinations (e.g., renin-angiotensin blockers, diuretics plus NSAIDs may develop acute renal failure. This review summarizes our present knowledge how traditional NSAIDs and selective COX-2 inhibitors may affect the kidney under various experimental and clinical conditions, and how these drugs may influence renal inflammation, water transport, sodium and potassium balance and how renal dysfunction or hypertension may result.

  18. Non-steroidal anti-inflammatory drugs and hypertension.

    Science.gov (United States)

    Zheng, Liuying; Du, Xinping

    2014-06-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used to alleviate pain of the patients who suffer from inflammatory conditions like rheumatoid arthritis, osteoarthritis, and other painful conditions like gout. This class of drugs works by blocking cyclooxgenases which in turn block the prostaglandin production in the body. Most often, NSAIDs and antihypertensive drugs are used at the same time, and their use increases with increasing age. Moreover, hypertension and arthritis are common in the elderly patients requiring pharmacological managements. An ample amount of studies put forth evidence that NSAIDs reduce the efficiency of antihypertensive drugs plus aggravate pre-existing hypertension or make the individuals prone to develop high blood pressure through renal dysfunction. This review will help doctors to consider the effects and risk factors of concomitant prescription of NSAIDs and hypertensive drugs.

  19. Antibacterial Activities and In Vitro Anti-Inflammatory (Membrane Stability Properties of Methanolic Extracts of Gardenia coronaria Leaves

    Directory of Open Access Journals (Sweden)

    Amin Chowdhury

    2014-01-01

    Full Text Available This work is carried out with Gardenia coronaria leaves that belong to the family Rubiaceae, which is a small-to-medium-sized but tall, deciduous tree, 7.6–9 m high on an average. Leaves are used for the treatment of rheumatic pain and bronchitis. The leaf of the plant consists of coronalolide, coronalolic acid, coronalolide methyl ester, ethyl coronalolate acetate triterpenes (secocycloartanes, and so forth. Methanol extract from the leaves of Gardenia coronaria was completely screened for membrane stability and antibacterial activity. The lower concentrations of Methanolic leaf extract of Gardenia coronaria gave good antimicrobial and anti-inflammatory activity, but higher concentrations gave relatively more projecting antibacterial activity in vitro as compared with Kanamycin. The crude drug’s anti-inflammatory effects were compared with those of Aspirin as positive control. The Methanolic extracts of Gardenia coronaria leaves possessed a broad spectrum antibacterial activity against a variety of both Gram-negative and Gram-positive organisms like Streptococcus agalactiae, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Shigella sonnei, Shigella boydii, and Proteus mirabilis, with a zone of inhibition from 10 to 16 mm. The extract also showed good membrane stability to be considered as having significant anti-inflammatory action.

  20. Anti-inflammatory and antioxidant effects of Croton celtidifolius bark.

    Science.gov (United States)

    Nardi, G M; Felippi, R; DalBó, S; Siqueira-Junior, J M; Arruda, D C; Delle Monache, F; Timbola, A K; Pizzolatti, M G; Ckless, K; Ribeiro-do-valle, R M

    2003-03-01

    Croton celtidifolius Baill commonly known as "sangue-de-adave" is a tree found in the Atlantic Forest of south of Brazil, mainly in Santa Catarina. The bark and leaf infusions of this medicinal plant have been popularly used for the treatment of inflammatory diseases. In this study we evaluated the anti-inflammatory and antioxidant properties of crude extract (CE), aqueous fraction (AqF), ethyl acetate fraction (EAF), butanolic fraction (BuF) and catechin, gallocatechin and sub-fractions, 19SF, 35SF and 63SF that contained a mixture of proanthocyanidins and were derived from the EAF fraction. The CE, AqF, EAF, BuF, catechin and sub-fractions 35SF and 63SF reduced paw edema induced by carrageenan. The CE, fractions, sub-fractions and isolated compounds showed antioxidant properties in vitro, all were able to scavenge superoxide anions at a concentration of 100 microg ml(-1). The EAF, catechin and gallocatechin were most effective in the deoxyribose assay, IC50 0.69 (0.44-1.06), 0.20 (0.11-0.39), 0.55 (0.28-1.08) microg x ml(-1) respectively. The CE and other fractions and sub-fractions inhibited deoxyribose degradation up to 1 microg x ml(-1). In the hydrophobic system only AqF did not show lipid peroxidation inhibition. The CE, other fractions, sub-fractions and isolated compounds inhibited lipidid peroxidation only at a concentration of 100 microg x ml(-1). In summary, this study demonstrates that Croton celtidifolius bark has significant anti-inflammatory and antioxidant activity.

  1. Anti-inflammatory Natural Prenylated Phenolic Compounds - Potential Lead Substances.

    Science.gov (United States)

    Brezáni, Viliam; Šmejkal, Karel; Hošek, Jan; Tomášová, Veronika

    2017-08-10

    Natural phenolics are secondary plant metabolites, which can be divided into several categories with the common structural feature of phenolic hydroxyl. The biological activity of phenolics is often modified and enhanced by prenylation by prenyl and geranyl; higher terpenoid chains are rare. The type of prenyl connection and modification affects their biological activity. This review summarizes information about prenylated phenols and some of their potential sources, and provides an overview of their anti-inflammatory potential in vitro and in vivo. The literature search was performed using Scifinder and keywords prenyl, phenol, and inflammation. For individual compounds, an additional search was performed to find information about further activities and mechanisms of effects. We summarized the effects of prenylated phenolics in vitro in cellular or biochemical systems on the production and release of inflammation-related cytokines; their effects on inhibition of cyclooxygenases and lipoxygenases; the effects on production of nitric oxide, antiradical and antioxidant activity; and the effect on the inhibition of the release of enzymes and mediators from neutrophils, mast cells and macrophages. The information about the antiphlogistic potential of prenylated phenolics is further supported by a review of their action in animal models. Almost 400 prenylated phenols were reviewed to overview their anti-inflammatory effect. The bioactivity of several prenylated phenols was confirmed also using in vivo assays. A pool of natural prenylated phenols represents a source of inspiration for synthesis, and prenylated phenols as components of various medicinal plants used to combat inflammation could be their active principles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. The Anti-inflammatory mechanisms of Hsp70

    Directory of Open Access Journals (Sweden)

    Thiago J Borges

    2012-05-01

    Full Text Available Immune responses to heat shock proteins (Hsp develop in virtually all inflammatory diseases; however, the significance of such responses is only now becoming clear. In experimental disease models, Hsp administration can prevent or arrest inflammatory damage, and in initial clinical trials in patients with chronic inflammatory diseases, Hsp peptides have been shown to promote the production of anti-inflammatory cytokines, indicating immunoregulatory potential of Hsp. Therefore, the presence of immune responses to Hsp in inflammatory diseases can be seen as an attempt of the immune system to correct the inflammatory condition. Hsp70 can modulate inflammatory responses in models of arthritis, colitis and graft rejection, and the mechanisms underlying this effect are now being elucidated. Incubation with microbial Hsp70 was seen to induce tolerogenic DCs and to promote a suppressive phenotype in myeloid-derived suppressor cells and monocytes. These DC could induce regulatory T cells (Tregs, independently of the antigens they presented. Some Hsp70 family members are associated with autophagy, leading to a preferential uploading of Hsp70 peptides in MHC class II molecules of stressed cells. Henceforth, conserved Hsp70 peptides may be presented in these situations and constitute targets of Tregs, contributing to downregulation of inflammation. Finally, an interfering effect in multiple intracellular inflammatory signaling pathways is also known for Hsp70. Altogether it seems attractive to use Hsp70, or its derivative peptides, for modulation of inflammation. This is a physiological immunotherapy approach, without the immediate necessity of defining disease specific auto-antigens. In this article, we present the evidence on anti-inflammatory effects of Hsp70 and discuss the need for experiments that will be crucial for the further exploration of the immuno-suppressive potential of this protein.

  3. LC-MS method for the simultaneous quantitation of the anti-inflammatory constituents in oregano (Origanum species).

    Science.gov (United States)

    Shen, Diandian; Pan, Min-Hsiung; Wu, Qing-Li; Park, Chung-Heon; Juliani, H Rodolfo; Ho, Chi-Tang; Simon, James E

    2010-06-23

    Oregano (Origanum spp.), a popular herb in western and Middle Eastern cuisine, was reported to show anti-inflammatory activities in vitro and in vivo but without any information as to the compounds responsible, whether the plants were authenticated or only contained true Origanum spp. Using a wide range of botanically authenticated oregano, we were able to show that oregano had anti-inflammatory activity and then using biodirected-guided fractionation, identified the anti-inflammatory agents in oregano as rosmarinic acid, oleanolic acid, and ursolic acid. In this study, we successfully developed an LC-MS (SIM mode) method to achieve coquantitation of these three organic acids with the application of a unique tandem column system. The detection of rosmarinic acid was optimal under negative ion mode of SIM, whereas oleanolic acid and ursolic acid were sensitive to positive ion mode. The simultaneous quantitation was attained by setting two time segments in one run to facilitate the ESI polarity switch. For the investigated analytes romarinic acid, oleanolic acid, and ursolic acid, good linearities (r(2) > 0.999) were obtained for each calibration curve. Validation for this method showed a precision (relative standard deviation) ranging from 4.84 to 6.41%, and the recoveries varied from 92.2 to 100.8% for the three analytes. A quantitative survey of these anti-inflammatory constituents in different oregano species (O. vulgare ssp. hirtum, O. vulgare, and O. syriacum) and chemotypes within the species varied significantly in their accumulation of rosmarinic, oleanolic, and ursolic acids. Significant variation in chemical composition between species and within a species was found.

  4. Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties

    Directory of Open Access Journals (Sweden)

    Jae Youl Cho

    2011-04-01

    Full Text Available The objective of this study was to examine the biological activity of kaempferol and its rhamnosides. We isolated kaempferol (1, a-rhamnoisorobin (2, afzelin (3, and kaempferitrin (4 as pure compounds by far-infrared (FIR irradiation of kenaf (Hibiscus cannabinus L. leaves. The depigmenting and anti-inflammatory activity of the compounds was evaluated by analyzing their structure-activity relationships. The order of the inhibitory activity with regard to depigmentation and nitric oxide (NO production was kaempferol (1 > a-rhamnoisorobin (2 > afzelin (3 > kaempferitrin (4. However, a-rhamnoisorobin (2 was more potent than kaempferol (1 in NF-kB-mediated luciferase assays. From these results, we conclude that the 3-hydroxyl group of kaempferol is an important pharmacophore and that additional rhamnose moieties affect the biological activity negatively.

  5. A strong anti-inflammatory signature revealed by liver transcription profiling of Tmprss6-/- mice.

    Directory of Open Access Journals (Sweden)

    Michela Riba

    Full Text Available Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe(-/- mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe(-/- deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.

  6. LINGO-1 negatively regulates myelination by oligodendrocytes.

    Science.gov (United States)

    Mi, Sha; Miller, Robert H; Lee, Xinhua; Scott, Martin L; Shulag-Morskaya, Svetlane; Shao, Zhaohui; Chang, Jufang; Thill, Greg; Levesque, Melissa; Zhang, Mingdi; Hession, Cathy; Sah, Dinah; Trapp, Bruce; He, Zhigang; Jung, Vincent; McCoy, John M; Pepinsky, R Blake

    2005-06-01

    The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.

  7. Evaluation of the analgesic and anti-inflammatory activity of fixed dose combination: Non-steroidal anti-inflammatory drugs in experimental animals

    Directory of Open Access Journals (Sweden)

    Amit Lahoti

    2014-01-01

    Conclusion: Combining paracetamol with ibuprofen enhances analgesic/anti-inflammatory activity over their individual component but potentiation of analgesic activity of diclofenac was not seen when paracetamol was added to it.

  8. Development of Hydrogel with Anti-Inflammatory Properties Permissive for the Growth of Human Adipose Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    R. Sánchez-Sánchez

    2016-01-01

    Full Text Available Skin wound repair requires the development of different kinds of biomaterials that must be capable of restoring the damaged tissue. Type I collagen and chitosan have been widely used to develop scaffolds for skin engineering because of their cell-related signaling properties such as proliferation, migration, and survival. Collagen is the major component of the skin extracellular matrix (ECM, while chitosan mimics the structure of the native polysaccharides and glycosaminoglycans in the ECM. Chitosan and its derivatives are also widely used as drug delivery vehicles since they are biodegradable and noncytotoxic. Regulation of the inflammatory response is crucial for wound healing and tissue regeneration processes; and, consequently, the development of biomaterials such as hydrogels with anti-inflammatory properties is very important and permissive for the growth of cells. In the last years, it has been shown that mesenchymal stem cells have clinical importance in the treatment of different pathologies, for example, skin injuries. In this paper, we describe the anti-inflammatory activity of collagen type 1/chitosan/dexamethasone hydrogel, which is permissive for the culture of human adipose-derived mesenchymal stem cells (hADMSC. Our results show that hADMSC cultured in the hydrogel are viable, proliferate, and secrete the anti-inflammatory cytokine interleukin-10 (IL-10 but not the inflammatory cytokine Tumor Necrosis Factor-alpha (TNF-α.

  9. The Anti-Inflammatory and Vasodilating Effects of Three Selected Dietary Organic Sulfur Compounds from Allium Species

    Science.gov (United States)

    Chu, Chin-Chen; Wu, Wen-Shiann; Shieh, Ja-Ping; Chu, Heuy-Ling; Lee, Chia-Pu; Duh, Pin-Der

    2017-01-01

    The anti-inflammatory and vasodilating effects of three selected dietary organic sulfur compounds (OSC), including diallyl disulfide (DADS), dimethyl disulfide (DMDS), and propyl disulfide (PDS), from Allium species were investigated. In the anti-inflammatory activity assay, the three OSC demonstrated significant inhibition of nitric oxide (NO) and prostaglandin E2 (PGE2) production in LPS-induced RAW 264.7 cells. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) in activated RAW 264.7 cells was inhibited by the three OSC, indicating that the three OSC prevented the LPS-induced inflammatory response in RAW 264.7 cells. For the vasodilative assay, the three OSC were ineffective in producing NO in SVEC4-10 cells, but they did enhance prostacyclin (PGI2) production. The expression of COX-2 in SVEC4-10 cells was activated by DADS and DMDS. Pretreatment of SVEC4-10 cells with the three OSC decreased ROS generation in H2O2-induced SVEC4-10 cells. In addition, the three OSC significantly inhibited angiotensin-I converting enzyme (ACE). The up-regulation of PGI2 production and COX-2 expression by DADS and DMDS and the reduction of ROS generation by DADS, DMDS, and PDS in SVEC4-10 cells contributed to the vasodilative effect of the three OSC. Collectively, these findings suggest that DADS, DMDS, and PDS are potential anti-inflammatory and vasodilative mediators. PMID:28134777

  10. Fractalkine Mediates Communication between Pathogenic Proteins and Microglia: Implications of Anti-Inflammatory Treatments in Different Stages of Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Nicole M. Desforges

    2012-01-01

    Full Text Available The role of inflammation in neurodegenerative diseases has been widely demonstrated. Intraneuronal protein accumulation may regulate microglial activity via the fractalkine (CX3CL1 signaling pathway that provides a mechanism through which neurons communicate with microglia. CX3CL1 levels fluctuate in different stages of neurodegenerative diseases and in various animal models, warranting further investigation of the mechanisms underlying microglial response to pathogenic proteins, including Tau, β-amyloid (Aβ, and α-synuclein. The temporal relationship between microglial activity and localization of pathogenic proteins (intra- versus extracellular likely determines whether neuroinflammation mitigates or exacerbates disease progression. Evidence in transgenic models suggests a beneficial effect of microglial activity on clearance of proteins like Aβ and a detrimental effect on Tau modification, but the role of CX3CL1 signaling in α-synucleinopathies is less clear. Here we review the nature of fractalkine-mediated neuronmicroglia interaction, which has significant implications for the efficacy of anti-inflammatory treatments during different stages of neurodegenerative pathology. Specifically, it is likely that anti-inflammatory treatment in early stages of disease during intraneuronal accumulation of proteins could be beneficial, while anti-inflammatory treatment in later stages when proteins are secreted to the extracellular space could exacerbate disease progression.

  11. Antioxidant and Anti-Inflammatory Effects of Chaenomeles sinensis Leaf Extracts on LPS-Stimulated RAW 264.7 Cells.

    Science.gov (United States)

    Han, Young-Ki; Kim, Yon-Suk; Natarajan, Sithranga Boopathy; Kim, Won-Suk; Hwang, Jin-Woo; Jeon, Nam-Joo; Jeong, Jae-Hyun; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2016-03-28

    The fruit of Chaenomeles sinensis has been traditionally used in ethnomedicine for the treatment of various human ailments, including pneumonia, bronchitis, and so on, but the pharmacological applications of the leaf part of the plant have not been studied. In this study, we evaluated the various radical scavenging activities and anti-inflammatory effects of different Chaenomeles sinensis leaf (CSL) extracts. The water extract showed a higher antioxidant and radical scavenging activities. However the ethanolic extracts showed higher NO scavenging activity than water extract, therefore the ethanolic extract of CSL was examined for anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The 70% ethanol extract of CSL (CSLE) has higher anti-inflammatory activity and significantly inhibited the production of nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In addition, CSLE suppressed LPS-stimulated inducible nitric oxide synthase (iNOS) and NO production, IL-1β and phospho-STAT1 expression. In this study, we investigated the effect of CSLE on the production of inflammatory mediators through the inhibition of the TRIF-dependent pathways. Furthermore, we evaluated the role of CSLE on LPS-induced expression of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6. Our results suggest that CSLE attenuates the LPS-stimulated inflammatory responses in macrophages through regulating the key inflammatory mechanisms, providing scientific support for its traditional uses in treating various inflammatory diseases.

  12. Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin

    Directory of Open Access Journals (Sweden)

    Yoo Jin Jung

    2014-11-01

    Full Text Available Berteroin (5-methylthiopentyl isothiocyanate is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent.

  13. A Coral-Derived Compound Improves Functional Recovery after Spinal Cord Injury through Its Antiapoptotic and Anti-Inflammatory Effects.

    Science.gov (United States)

    Chen, Chun-Hong; Chen, Nan-Fu; Feng, Chien-Wei; Cheng, Shu-Yu; Hung, Han-Chun; Tsui, Kuan-Hao; Hsu, Chi-Hsin; Sung, Ping-Jyun; Chen, Wu-Fu; Wen, Zhi-Hong

    2016-09-02

    Our previous in vitro results demonstrated that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine-induced cytotoxicity and apoptosis in a human neuroblastoma cell line, SH-SY5Y, and suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 in lipopolysaccharide-stimulated macrophage cells. The neuroprotective and anti-inflammatory effects of 11-dehydrosinulariolide may be suitable for treating spinal cord injury (SCI). In the present study, Wistar rats were pretreated with 11-dehydrosinulariolide or saline through intrathecal injection after a thoracic spinal cord contusion injury induced using a New York University (NYU) impactor. The apoptotic cells were assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression and localization of proinflammatory, apoptosis-associated and cell survival-related pathway proteins were examined through immunoblotting and immunohistochemistry. 11-Dehydrosinulariolide attenuated SCI-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of the inflammatory proteins iNOS and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia, in the injured spinal cord on day 7 after SCI. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. The results show that 11-dehydrosinulariolide exerts antiapoptotic effects at 8 h after SCI and anti-inflammatory effects at 7 days after SCI. We consider that this compound may be a promising therapeutic agent

  14. A Coral-Derived Compound Improves Functional Recovery after Spinal Cord Injury through Its Antiapoptotic and Anti-Inflammatory Effects

    Science.gov (United States)

    Chen, Chun-Hong; Chen, Nan-Fu; Feng, Chien-Wei; Cheng, Shu-Yu; Hung, Han-Chun; Tsui, Kuan-Hao; Hsu, Chi-Hsin; Sung, Ping-Jyun; Chen, Wu-Fu; Wen, Zhi-Hong

    2016-01-01

    Background: Our previous in vitro results demonstrated that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine-induced cytotoxicity and apoptosis in a human neuroblastoma cell line, SH-SY5Y, and suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 in lipopolysaccharide-stimulated macrophage cells. The neuroprotective and anti-inflammatory effects of 11-dehydrosinulariolide may be suitable for treating spinal cord injury (SCI). Methods: In the present study, Wistar rats were pretreated with 11-dehydrosinulariolide or saline through intrathecal injection after a thoracic spinal cord contusion injury induced using a New York University (NYU) impactor. The apoptotic cells were assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression and localization of proinflammatory, apoptosis-associated and cell survival-related pathway proteins were examined through immunoblotting and immunohistochemistry. Results: 11-Dehydrosinulariolide attenuated SCI-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of the inflammatory proteins iNOS and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia, in the injured spinal cord on day 7 after SCI. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. Conclusion: The results show that 11-dehydrosinulariolide exerts antiapoptotic effects at 8 h after SCI and anti-inflammatory effects at 7 days after SCI. We consider that this

  15. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells.

    Science.gov (United States)

    Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L; Jovanovic, Nebojsa; Nie, Linghui; Link, Benjamin J; Otterson, Mary F; Stoner, Gary D; Shaker, Reza; Rafiee, Parvaneh

    2015-01-01

    Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat's digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endothelial cells, (HIMEC) and human esophageal microvascular endothelial cells (HEMEC), isolated from surgically resected human intestinal and donor discarded esophagus, respectively. HEMEC and HIMEC were stimulated with TNF-α/IL-1β with or without BRE. The anti-inflammatory effects of BRE were assessed based upon COX-2, ICAM-1 and VCAM-1 gene and protein expression, PGE2 production, NFκB p65 subunit nuclear translocation as well as endothelial cell-leukocyte adhesion. The anti-angiogenic effects of BRE were assessed on cell migration, proliferation and tube formation following VEGF stimulation as well as on activation of Akt, MAPK and JNK signaling pathways. BRE inhibited TNF-α/IL-1β-induced NFκB p65 nuclear translocation, PGE2 production, up-regulation of COX-2, ICAM-1 and VCAM-1 gene and protein expression and leukocyte binding in HEMEC but not in HIMEC. BRE attenuated VEGF-induced cell migration, proliferation and tube formation in both HEMEC and HIMEC. The anti-angiogenic effect of BRE is mediated by inhibition of Akt, MAPK and JNK phosphorylations. BRE exerted differential anti-inflammatory effects between HEMEC and HIMEC following TNF-α/IL-1β activation whereas demonstrated similar anti-angiogenic effects following VEGF stimulation in both cell lines. These findings may provide more insight into the anti-tumorigenic capacities of BRE in human disease and cancer.

  16. A Coral-Derived Compound Improves Functional Recovery after Spinal Cord Injury through Its Antiapoptotic and Anti-Inflammatory Effects

    Directory of Open Access Journals (Sweden)

    Chun-Hong Chen

    2016-09-01

    Full Text Available Background: Our previous in vitro results demonstrated that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine-induced cytotoxicity and apoptosis in a human neuroblastoma cell line, SH-SY5Y, and suppressed the expression of inducible NO synthase (iNOS and cyclooxygenase 2 in lipopolysaccharide-stimulated macrophage cells. The neuroprotective and anti-inflammatory effects of 11-dehydrosinulariolide may be suitable for treating spinal cord injury (SCI. Methods: In the present study, Wistar rats were pretreated with 11-dehydrosinulariolide or saline through intrathecal injection after a thoracic spinal cord contusion injury induced using a New York University (NYU impactor. The apoptotic cells were assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay. The expression and localization of proinflammatory, apoptosis-associated and cell survival-related pathway proteins were examined through immunoblotting and immunohistochemistry. Results: 11-Dehydrosinulariolide attenuated SCI-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of the inflammatory proteins iNOS and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia, in the injured spinal cord on day 7 after SCI. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. Conclusion: The results show that 11-dehydrosinulariolide exerts antiapoptotic effects at 8 h after SCI and anti-inflammatory effects at 7 days after SCI. We

  17. Non-steroidal anti-inflammatory drugs in prevention of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Yun Dai; Wei-Hong Wang

    2006-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs)including cyclooxygenase 2 (COX-2) selective inhibitors,are potential agents for the chemoprevention of gastric cancer. Epidemiological and experimental studies have shown that NSAID use is associated with a reduced risk of gastric cancer although many questions remain unanswered such as the optimal dose and duration of treatment. The possible mechanisms for the suppressor effect of NSAIDs on carcinogenesis are the ability to induce apoptosis in epithelial cells and regulation of angiogenesis. Both COX-dependent and COX-independent pathways have a role in the biological activity of NSAIDs. Knowledge of how NSAIDs prevent neoplastic growth will greatly aid the design of better chemopreventive drugs and novel treatments for gastric cancer.

  18. Anti-inflammatory effect of interleukin-10 in rabbit immune complex-induced colitis

    NARCIS (Netherlands)

    Grool, TA; Van Dullemen, H; Meenan, J; Koster, F; Ten Kate, FJW; Lebeaut, A; Tytgat, GNJ; Van Deventer, SJH

    1998-01-01

    Background: Interleukin-10 (IL-10) is an anti-inflammatory cytokine that downregulates the secretion of pro-inflammatory cytokines and additionally induces the secretion of anti-inflammatory cytokines, thus possibly leading to reduction of chronic inflammation in inflammatory bowel disease. In this

  19. Anti-inflammatory properties of a novel peptide interleukin 1 receptor antagonist

    DEFF Research Database (Denmark)

    Klementiev, Boris; Li, Shizhong; Korshunova, Irina

    2014-01-01

    Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide.......Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide....

  20. Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice

    Science.gov (United States)

    Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...

  1. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng.

    Science.gov (United States)

    Ravikumar, V R; Dhanamani, M; Sudhamani, T

    2009-04-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium.

  2. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng

    OpenAIRE

    Ravikumar, V.R.; Dhanamani, M.; Sudhamani, T.

    2009-01-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium.

  3. Anti-inflammatory effect of interleukin-10 in rabbit immune complex-induced colitis

    NARCIS (Netherlands)

    Grool, TA; Van Dullemen, H; Meenan, J; Koster, F; ten Kate, F. J. W.; Lebeaut, A; Tytgat, GNJ; Van Deventer, SJH

    Background: Interleukin-10 (IL-10) is an anti-inflammatory cytokine that downregulates the secretion of pro-inflammatory cytokines and additionally induces the secretion of anti-inflammatory cytokines, thus possibly leading to reduction of chronic inflammation in inflammatory bowel disease. In this

  4. DMPD: Molecular mechanisms of the anti-inflammatory functions of interferons. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086388 Molecular mechanisms of the anti-inflammatory functions of interferons. Ko...varik P, Sauer I, Schaljo B. Immunobiology. 2007;212(9-10):895-901. Epub 2007 Nov 8. (.png) (.svg) (.html) (.csml) Show Molecular... mechanisms of the anti-inflammatory functions of interferons. PubmedID 18086388 Title Molecular

  5. Chemical composition and anti-inflammatory activity of the leaves of Byrsonima verbascifolia

    NARCIS (Netherlands)

    Saldanha, Aline Aparecida; Carmo, Do Lucas Fernandes; Nascimento, Do Sara Batista; Matos, de Natália Alves; Carvalho Veloso, de Clarice; Castro, Ana Hortência Fonsêca; Vos, de Ric C.H.; Klein, André; Siqueira, de João Máximo; Carollo, Carlos Alexandre; Nascimento, Do Thalita Vieira; Toffoli-Kadri, Mônica Cristina; Soares, Adriana Cristina

    2016-01-01

    An ethnopharmacological survey indicates that the genus Byrsonima has some medicinal species that are commonly found in the Brazilian Cerrado and has been used as an anti-inflammatory and for gastroduodenal disorders. The aim of this study was to evaluate the anti-inflammatory and antioxidant act

  6. Antioxidant and anti-inflammatory activities of Arbutus unedo aqueous extract

    Directory of Open Access Journals (Sweden)

    Idir Moualek

    2016-11-01

    Conclusions: A. unedo showed in vitro anti-inflammatory activity by inhibiting the heat induced albumin denaturation and red blood cells membrane stabilization. Our results show that aqueous leaf extract of A. unedo has good antioxidant activity and interesting anti-inflammatory properties. A. unedo aqueous extract can be used to prevent oxidative and inflammatory processes.

  7. Hypusine modification of the ribosome-binding protein eIF5A, a target for new anti-inflammatory drugs: understanding the action of the inhibitor GC7 on a murine macrophage cell line.

    Science.gov (United States)

    de Almeida, Oedem Paulo; Toledo, Thais Regina; Rossi, Danuza; Rossetto, Daniella de Barros; Watanabe, Tatiana Faria; Galvão, Fábio Carrilho; Medeiros, Alexandra Ivo; Zanelli, Cleslei Fernando; Valentini, Sandro Roberto

    2014-01-01

    Inflammation is part of an important mechanism triggered by the innate immune response that rapidly responds to invading microorganisms and tissue injury. One important elicitor of the inflammatory response is the Gram-negative bacteria component lipopolysaccharide (LPS), which induces the activation of innate immune response cells, the release of proinflammatory cytokines, such as interleukin 1 and tumor necrosis factor α(TNF-α), and the cellular generation of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS). Although essential to the immune response, uncontrolled inflammatory responses can lead to pathological conditions, such as sepsis and rheumatoid arthritis. Therefore, identifying cellular targets for new anti-inflammatory treatments is crucial to improving therapeutic control of inflammation-related diseases. More recently, the translation factor eIF5A has been demonstrated to have a proinflammatory role in the release of cytokines and the production of NO. As eIF5A requires and essential and unique modification of a specific residue of lysine, changing it to hypusine, eIF5A is an interesting cellular target for anti-inflammatory treatment. The present study reviews the literature concerning the anti-inflammatory effects of inhibiting eIF5A function. We also present new data showing that the inhibition of eIF5A function by the small molecule GC7 significantly decreases TNF-α release without affecting TNF-α mRNA levels. We discuss the mechanisms by which eIF5A may interfere with TNF-α mRNA translation by binding to and regulating the function of ribosomes during protein synthesis.

  8. Clarithromycin and dexamethasone show similar anti-inflammatory effects on distinct phenotypic chronic rhinosinusitis: an explant model study.

    Science.gov (United States)

    Zeng, Ming; Li, Zhi-Yong; Ma, Jin; Cao, Ping-Ping; Wang, Heng; Cui, Yong-Hua; Liu, Zheng

    2015-06-06

    Phenotype of chronic rhinosinusitis (CRS) may be an important determining factor of the efficacy of anti-inflammatory treatments. Although both glucocorticoids and macrolide antibiotics have been recommended for the treatment of CRS, whether they have different anti-inflammatory functions for distinct phenotypic CRS has not been completely understood. The aim of this study is to compare the anti-inflammatory effects of clarithromycin and dexamethasone on sinonasal mucosal explants from different phenotypic CRS ex vivo. Ethmoid mucosal tissues from CRSsNP patients (n = 15), and polyp tissues from eosinophilic (n = 13) and non-eosinophilic (n = 12) CRSwNP patients were cultured in an ex vivo explant model with or without dexamethasone or clarithromycin treatment for 24 h. After culture, the production and/or expression of anti-inflammatory molecules, epithelial-derived cytokines, pro-inflammatory cytokines, T helper (Th)1, Th2 and Th17 cytokines, chemokines, dendritic cell relevant markers, pattern recognition receptors (PRRs), and tissue remodeling factors were detected in tissue explants or culture supernatants by RT-PCR or ELISA, respectively. We found that both clarithromycin and dexamethasone up-regulated the production of anti-inflammatory mediators (Clara cell 10-kDa protein and interleukin (IL)-10), whereas down-regulated the production of Th2 response and eosinophilia promoting molecules (thymic stromal lymphopoietin, IL-25, IL-33, CD80, CD86, OX40 ligand, programmed cell death ligand 1, CCL17, CCL22, CCL11, CCL5, IL-5, IL-13, and eosinophilic cationic protein) and Th1 response and neutrophilia promoting molecules (CXCL8, CXCL5, CXCL10, CXCL9, interferon-γ, and IL-12), from sinonasal mucosa from distinct phenotypic CRS. In contrast, they had no effect on IL-17A production. The expression of PRRs (Toll-like receptors and melanoma differentiation-associated gene 5) was induced, and the production of tissue remodeling factors (transforming growth factor-β1

  9. Involvement of Nrf2-mediated heme oxygenase-1 expression in anti-inflammatory action of chitosan oligosaccharides through MAPK activation in murine macrophages.

    Science.gov (United States)

    Hyung, Jun-Ho; Ahn, Chang-Bum; Il Kim, Boo; Kim, Kyunghoi; Je, Jae-Young

    2016-12-15

    Chitosan and its derivatives have been reported to have anti-inflammatory effects in vitro and in vivo. It is also suggested that chitosan and its derivatives could be up-regulating heme oxygenase-1 (HO-1) in different models. However, the up-regulation of HO-1 by chitosan oligosaccharides (COS) remains unexplored in regard to anti-inflammatory action in lipopolysaccharide (LPS)-stimulated murine macrophages (RAW264.7 cells). Treatment with COS induced HO-1 expression in LPS-stimulated RAW264.7 cells, whereas the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased. Pretreatment with ZnPP, a HO-1 inhibitor, reduced the COS-mediated anti-inflammatory action. HO-1 induction is mediated by activating the nuclear translocation of NF-E2-related factor 2 (Nrf2) using COS. Moreover, COS increased the phosphorylation of extracellular signal regulated kinase (ERK1/2), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), and p38 MAPK. However, specific inhibitors of ERK, JNK, and p38 reduced COS-mediated nuclear translocation of Nrf2. Therefore, HO-1 induction also decreased in RAW264.7 cells. Collectively, COS exert an anti-inflammatory effect through Nrf2/MAPK-mediated HO-1 induction.

  10. Antipyretic, analgesic and anti-inflammatory effects of Kickxia ramosissima.

    Science.gov (United States)

    Jan, Shumaila; Khan, Muhammad Rashid

    2016-04-22

    Branched cancerwort, Kickxia ramosissima (Wall.) Janchen (Scrophulariaceae) is traditionally used for the treatment of inflammatory disorders such as rheumatism, diabetes, jaundice and for activation of immune system. Local communities also used this plant for the treatment of spleen enlargement, as febrifuge and in dysmenorrhea. In this investigation antipyretic, analgesic and anti-inflammatory effects of K. ramosissima have been evaluated. Dried powder of the whole plant of K. ramosissima was extracted with methanol (KRM) and partitioned with solvents to obtain the n-hexane (KRH), chloroform (KRC), ethyl acetate (KRE), n-butanol (KRB) and the residual aqueous (KRA) fraction. KRM and the derived fractions were analyzed for the phytochemical constituents, yeast induced pyrexia, analgesic and anti-inflammatory activities by using carrageenan and Freunds' complete adjuvant-induced paw edema model in rat. On account of appreciable effects of KRM in the aforesaid models, KRM was subjected to the carrageenan induced air pouch model in rat. The exudate of air pouch was analyzed for the count of neutrophils, monocytes, lymphocytes and WBCs and for the estimation of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO) and prostaglandin (PGE2). Phytochemical investigation of KRM indicated the existence of tannins, flavonoids, alkaloids, coumarins, cardiac glycosides, saponins, terpenoids and phlobatannins. Maximum concentration of total phenolic was determined in KRB followed by KRM while reverse was true for total flavonoids contents. KRM (200mg/kg) distinctly decreased the rectal temperature in yeast induced pyrexia comparable to standard, paracetamol. Pain sensation was effectively inhibited at 200mg/kg p.o. of KRM and KRB as manifested by a decrease (PAnti-inflammatory effects of KRM were evident and edema formation induced with carrageenan and Freunds' complete adjuvant-induced paw edema in rat was significantly (Pinflammatory mediators; IL-6, NO

  11. Anti-inflammatory agents and substance P depletion in experimental ileitis

    Directory of Open Access Journals (Sweden)

    M. J. S. Miller

    1993-01-01

    Full Text Available To understand the interactions between substance P and gut inflammation, changes in substance P levels were evaluated in a chronic model of ileitis in response to three anti-inflammatory agents with distinct mechanisms of action. The agents were the prostaglandin E1 analogue misoprostol (30 μg/kg, s.c., b.i.d., the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 100 μg/ml in drinking water and the leumedin, N-(fluorenyl-9-methoxycarbonyl-L-leucine (NPC 15199, 10 mg/kg, s.c.. Ileitis was induced by a transmural injection of trinitrobenzene sulphonic acid (TNBS 30 mg/kg in 50% ethanol into the distal ileum of guinea-pigs. All anti-inflammatory therapies were introduced after TNBS administration and continued until day 7, when guinea-pigs were killed. Ileal substance P levels were measured by radioimmunoassay, and granulocyte infiltration was quantified by myeloperoxidase (MPO activity. Protein and nitrite (an index of nitric oxide formation levels in a luminal saline lavage were quantified in all groups. TNBS ileitis caused a marked reduction in ileal substance P content and increased MPO activity, protein and nitrite secretion. The nitric oxide synthase inhibitor, L-NAME, completely restored all parameters to baseline. Misoprostol attenuated the granulocyte infiltration and exacerbated protein leak but had no effect on substance P levels. In contrast, NPC 15199 had no effect on granulocyte infiltration but normalized substance P levels and protein leak. Only L-NAME and NPC 15199 blocked the TNBS induced increase in nitrite levels. These results suggest that the regulation of granulocyte infiltration in this model is unrelated to changes in substance P levels. Inhibition of nitric oxide synthase was the most effective therapeutic strategy in TNBS ileitis but the precise interactions between nitric oxide and the enteric nervous system during inflammatory states remain to be defined.

  12. Anti-Inflammatory Prostanoids: Focus on the Interactions between Electrophile Signaling and Resolution of Inflammation

    Directory of Open Access Journals (Sweden)

    Beatriz Díez-Dacal

    2010-01-01

    Full Text Available Prostanoids are products of cyclooxygenase biosynthetic pathways and constitute a family of lipidic mediators of widely diverse structures and biological actions. Besides their known proinflammatory role, numerous works have revealed the anti-inflammatory effects of various prostanoids and established their role in the resolution of inflammation. Among these, prostaglandins with cyclopentenone structure (cyPG are electrophilic lipids that may act through various mechanisms, including the activation of nuclear and membrane receptors and, importantly, direct addition to protein cysteine residues and modification of protein function. Due to their ability to influence cysteine modification–mediated signaling, cyPG may play a critical role in the interplay between redox and inflammatory signaling pathways. Moreover, cellular redox status modulates cyPG addition to proteins; thus, a reciprocal regulation exists between these two factors. After initial controversy, it is becoming clear that endogenous cyPG are generated at concentrations sufficient to promote inflammatory resolution. As for other prostanoids, cyPG effects are highly dependent on context factors and they may exert pro- or anti-inflammatory actions in a cell type–dependent manner, or even biphasic or dual actions in a given cell type or tissue. In light of the growing number of cyPG protein targets identified, cyPG resemble other pleiotropic mediators acting through protein modification. However, their complex structure results in an inter- and intramolecular selectivity of the residues being modified, thus opening the way for structure-activity and drug discovery studies. Detailed characterization of cyPG interactions with cellular proteins will help us to understand their mechanism of action fully and establish their therapeutic potential in inflammation.

  13. AP-1-Targeted Anti-Inflammatory Activities of the Nanostructured, Self-Assembling S5 Peptide.

    Science.gov (United States)

    Yang, Woo Seok; Son, Young-Jin; Kim, Mi-Yeon; Kim, Soochan; Kim, Jong-Hoon; Cho, Jae Youl

    2015-01-01

    Peptide-based therapeutics have received increasing attention in medical research. However, the local delivery of such therapeutics poses unique challenges. Self-assembling peptides that use decorated nanofibers are one approach by which these therapeutics may be delivered. We previously found that the self-assembling K5 peptide affects the anti-inflammatory response. The aim of the present study was to investigate another self-assembling peptide, S5. Unlike the K5 peptide which has a positive charge, the S5 peptide has a free hydroxyl (-OH) group. We first examined whether the S5 peptide regulates the inflammatory response in primary cells and found that the S5 peptide reduced the production of prostaglandin E2 (PGE2) and tumor necrosis factor (TNF)-α in lipopolysaccharide- (LPS-) treated bone marrow-derived macrophages. Moreover, the S5 peptide significantly downregulated cyclooxygenase- (COX-) 2, TNF-α, and interleukin- (IL-) 1β expression by blocking the nuclear translocation of c-Jun. Consistent with this finding, the S5 peptide diminished the activation of inflammatory signaling enzymes related to p38. The S5 peptide also inhibited the formation of the p38/c-Jun signaling complex in RAW264.7 cells. Similarly, p38 and MKK3/6 were inhibited by the S5 peptide in LPS-activated peritoneal macrophages. Taken together, these results strongly suggest that the S5 peptide could exert anti-inflammatory effects by inhibiting the c-Jun/p38 signaling pathway.

  14. Anti-inflammatory agents and substance P depletion in experimental ileitis.

    Science.gov (United States)

    Miller, M J; Sadowska-Krowicka, H; Chotinaruemol, S; Wong, M; Clark, D A; Jeng, A Y

    1993-01-01

    To understand the interactions between substance P and gut inflammation, changes in substance P levels were evaluated in a chronic model of ileitis in response to three anti-inflammatory agents with distinct mechanisms of action. The agents were the prostaglandin E(1) analogue misoprostol (30 mug/kg, s.c., b.i.d.), the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mug/ml in drinking water) and the leumedin, N-(fluorenyl-9-methoxycarbonyl)-L-leucine (NPC 15199, 10 mg/kg, s.c.). Ileitis was induced by a transmural injection of trinitrobenzene sulphonic acid (TNBS 30 mg/kg in 50% ethanol) into the distal ileum of guinea-pigs. All anti-inflammatory therapies were introduced after TNBS administration and continued until day 7, when guinea-pigs were killed. Ileal substance P levels were measured by radioimmunoassay, and granulocyte infiltration was quantified by myeloperoxidase (MPO) activity. Protein and nitrite (an index of nitric oxide formation) levels in a luminal saline lavage were quantified in all groups. TNBS ileitis caused a marked reduction in ileal substance P content and increased MPO activity, protein and nitrite secretion. The nitric oxide synthase inhibitor, L-NAME, completely restored all parameters to baseline. Misoprostol attenuated the granulocyte infiltration and exacerbated protein leak but had no effect on substance P levels. In contrast, NPC 15199 had no effect on granulocyte infiltration but normalized substance P levels and protein leak. Only L-NAME and NPC 15199 blocked the TNBS induced increase in nitrite levels. These results suggest that the regulation of granulocyte infiltration in this model is unrelated to changes in substance P levels. Inhibition of nitric oxide synthase was the most effective therapeutic strategy in TNBS ileitis but the precise interactions between nitric oxide and the enteric nervous system during inflammatory states remain to be defined.

  15. Acetylcholinesterase loosens the brain's cholinergic anti-inflammatory response and promotes epileptogenesis

    Directory of Open Access Journals (Sweden)

    Yehudit eGnatek

    2012-05-01

    Full Text Available Recent studies show a key role of brain inflammation in epilepsy. However, the mechanisms controlling brain immune response are only partly understood. In the periphery, acetylcholine (ACh release by the vagus nerve restrains inflammation by inhibiting the activation of leukocytes. Recent reports suggested a similar anti-inflammatory effect for ACh in the brain. Since brain cholinergic dysfunction are documented in epileptic animals, we explored changes in brain cholinergic gene expression and associated immune response during pilocarpine-induced epileptogenesis. Levels of acetylcholinesterase (AChE and inflammatory markers were measured using real-time RT-PCR, in-situ hybridization and immunostaining in wild type (WT and transgenic mice over-expressing the "synaptic" splice variant AChE-S (TgS. One month following pilocarpine, mice were video-monitored for spontaneous seizures. To test directly the effect of ACh on the brain's innate immune response, cytokines expression levels were measured in acute brain slices treated with cholinergic agents. We report a robust upregulation of AChE as early as 48 hrs following pilocarpine-induced status epilepticus (SE. AChE was expressed in hippocampal neurons, microglia and endothelial cells but rarely in astrocytes. TgS mice overexpressing AChE showed constitutive increased microglial activation, elevated levels of pro-inflammatory cytokines 48 hrs after SE and accelerated epileptogenesis compared to their WT counterparts. Finally we show a direct, muscarine-receptor dependant, nicotine-receptor independent anti-inflammatory effect of ACh in brain slices maintained ex vivo. Our work demonstrates for the first time, that ACh directly suppresses brain innate immune response and that AChE up-regulation after SE is associated with enhanced immune response, facilitating the epileptogenic process. Our results highlight the cholinergic system as a potential new target for the prevention of seizures and epilepsy.

  16. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yang, Mi-So [Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Song, Du-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Baek, E-mail: ebbyun80@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@kongju.ac.k [Department of Food Science and Technology, Kongju National University, Yesan 340-800 (Korea, Republic of)

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  17. Echinacea purpurea-derived alkylamides exhibit potent anti-inflammatory effects and alleviate clinical symptoms of atopic eczema.

    Science.gov (United States)

    Oláh, Attila; Szabó-Papp, Judit; Soeberdt, Michael; Knie, Ulrich; Dähnhardt-Pfeiffer, Stephan; Abels, Christoph; Bíró, Tamás

    2017-05-27

    Atopic eczema (AE) is a chronic inflammatory and pruritic skin disease. There is still an unmet need for topical anti-inflammatory and anti-pruritic substances exhibiting an excellent safety profile. The endocannabinoid system is known to regulate various aspects of cutaneous barrier and immune functions, thus targeting it may be a valid approach for alleviating the symptoms of AE. To assess the putative efficacy of Echinacea purpurea-derived alkylamides (Ec. extract) activating cannabinoid (CB)-2 receptors in exerting anti-inflammatory effects and alleviating symptoms of AE. In vitro anti-inflammatory efficiency was investigated by monitoring the effects of Ec. extract on poly-(I:C)-induced pro-inflammatory cytokine expression (Q-PCR) and release (ELISA) of HaCaT keratinocytes. Irritancy and sensitization potential (assessed by Human Repeat Insult Patch Test; Clinical trial 1); clinical efficiency in alleviating symptoms of AE (Clinical trial 2) as well as effects on human skin structure and lipid content (Clinical trial 3 followed by transmission electron microscopy and HPTLC) were investigated in randomized double blind clinical trials. Ec. extract significantly reduced mRNA expression as well as release of poly-(I:C)-induced pro-inflammatory cytokines (IL-6 and IL-8) in keratinocytes. Thus, not surprisingly, the well-tolerated (Clinical trial 1) Ec. extract-based cream reduced local SCORAD statistically significantly, not only compared to baseline, but also compared to the comparator (Clinical trial 2). Of great importance, besides the in vitro anti-inflammatory effects, administration of the Ec. extract-based cream also resulted in significantly higher levels of overall epidermal lipids, ceramide EOS (ω-esterified fatty acid+sphingosine sphingoid base), and cholesterol at Day 15 compared to baseline as well as significantly greater numbers of intercellular lipid lamellae in the intercellular space (Clinical trial 3). The investigated Ec. extract shows great

  18. ANTI-INFLAMMATORY EVALUATION OF LEAF EXTRACT OF MORINGA OLEIFERA

    Directory of Open Access Journals (Sweden)

    Gurvinder Pal Singh

    2012-02-01

    Full Text Available Moringa oleifera Lam. Is a small or medium-sized tree, about 10m high, found wild in the sub-Himalayan tract. The leaves are rich in vitamin A and C and are considered useful in scurvy and catarrhal affections. The leaves are rich in ascorbic acids, amino acids, sterols, isoquercetin glucoside, carotenes, rhamnetin, kaempferol and kaempferitrin. Flowers are traditionally used as tonic, diuretic and abortifacient considered as anthelmintic and also used to cure inflammation, muscle disease, tumors and enlargement of the spleen. All part of this plant is used for the treatment of ascites, rheumatism. Venomous bites and for enhancing cardiac function. In present study, the anti-inflammatory activity was investigated by employing main model Carrageenan induced paw odema (Winter et al., 1962. The results showed a dose dependent decrease in size of odema when observed at 0hr, 1hr, 2hr, 3hr, and 4hr. This effect corresponded with the maximum effect of test dose at 2 hr (Carrageenan-induced paw. The p value<0.0001 was considered to be statistically significant.

  19. Chondroprotective and anti-inflammatory effects of sesamin.

    Science.gov (United States)

    Phitak, Thanyaluck; Pothacharoen, Peraphan; Settakorn, Jongkolnee; Poompimol, Wilart; Caterson, Bruce; Kongtawelert, Prachya

    2012-08-01

    Osteoarthritis (OA) is a major disability of elderly people. Sesamin is the main compound in Sesamun indicum Linn., and it has an anti-inflammatory effect by specifically inhibiting Δ5-desaturase in polyunsaturated fatty acid biosynthesis. The chondroprotective effects of sesamin were thus studied in a porcine cartilage explant induced with interleukin-1beta (IL-1β) and in a papain-induced osteoarthritis rat model. With the porcine cartilage explant, IL-1β induced release of sulfated-glycosaminoglycan (s-GAG) and hydroxyproline release, and this induction was significantly inhibited by sesamin. This ability to inhibit these processes might be due to its ability to decrease expression of MMP-1, -3 and -13, which can degrade both PGs and type II collagen, both at the mRNA and protein levels. Interestingly, activation of MMP-3 might also be inhibited by sesamin. Moreover, in human articular chondrocytes (HACs), some pathways of IL-1β signal transduction were inhibited by sesamin: p38 and JNK. In the papain-induced OA rat model, sesamin treatment reversed the following pathological changes in OA cartilage: reduced disorganization of chondrocytes in cartilage, increased cartilage thickness, and decreased type II collagen and PGs loss. Sesamin alone might increase formation of type II collagen and PGs in the cartilage tissue of control rats. These results demonstrate that sesamin efficiently suppressed the pathological processes in an OA model. Thus, sesamin could be a potential therapeutic strategy for treatment of OA.

  20. Nonsteroidal Anti-Inflammatory Drug Hypersensitivity in Preschool Children

    Directory of Open Access Journals (Sweden)

    Kidon Mona

    2007-12-01

    Full Text Available Although extensively studied in adults, nonsteroidal anti-inflammatory drug (NSAID hypersensitivity in children, especially in young children, remains poorly defined. Pediatricians, prescribing antipyretics for children, rarely encounter significant problems, but the few epidemiologic studies performed show conflicting results. Although it is clear that some patients with acetylsalicylic acid (ASA-sensitive asthma have their clinical onset of disease in childhood and bronchoconstriction after ASA challenge is seen in 0 to 22% of asthmatic children so challenged, ibuprofen at antipyretic doses may cause acute respiratory problems only in a very small number of mild to moderate asthmatics. The recently elucidated mechanism of action of acetaminophen may explain some occurrences of adverse reactions in patients with cross-reactive NSAID hypersensitivity on the basis of its inhibitory activity on the newly described enzyme, cyclooxygenase (COX-3. This nonspecific sensitivity to inhibition of COX is most likely genetically determined and shows a remarkable association with atopic disease even in the very young age group and possibly an increased predilection in specific ethnic groups. This review summarizes state-of-the-art published data on NSAID hypersensitivity in preschool children.

  1. Endoscopical appearances of nonsteroidal anti inflammatory drug (NSAID- enteropathy

    Directory of Open Access Journals (Sweden)

    Marcellus Simadibrata

    2005-12-01

    Full Text Available Non Steroidal Anti Inflammatory Drugs (NSAID have been associated with a sudden and sustained rise in the incidence of gastrointestinal ulcer complications. The aim of the study was to reveal the endoscopical abnormalities found in the duodenum & proximal jejunum due to NSAID. Thirty eight patients taking NSAID for their arthritis or rheumatism were included in this study. Gastro-duodeno-jejunoscopy was done with Olympus PCF-10. The endoscopical appearances of NSAID entero gastropathy were evaluated with a scoring system. The NSAID-entero-gastropathy appearances were endoscopically seen as hyperemia, erosion and ulcer. From all patient recruited, 7.9% complaint of diarrhea and 71.1% complaint of dyspepsia. Endoscopically, in the duodenal bulb we found 79% cases of hyperemia, 39.5% cases of erosion and 7.9% cases of ulcer. In the second part (descending part of the duodenum we found 28.9% cases of hyperemia, 15.8% cases of erosion and 2.6% case of ulcer. In the jejunum, we found 7.9% cases of hyperemia, 2.6% case of erosion and no ulcer. It is concluded that the most frequent abnormal endoscopical appearances in NSAID- enteropathy was hyperemia. The most frequent site of NSAID-enteropathy abnormal findings was in the duodenal bulb. (Med J Indones 2005; 14: 225-9Keywords: NSAID-enteropathy, endoscopical appearances.

  2. Anti-inflammatory properties of drugs from saffron crocus.

    Science.gov (United States)

    Poma, Anna; Fontecchio, Gabriella; Carlucci, Giuseppe; Chichiriccò, Giuseppe

    2012-01-01

    The medicinal uses of saffron (Crocus sativus Linnaeus) have a long history beginning in Asian countries since the Late Bronze Age. Recent studies have validated its potential to lower the risk of several diseases. Some metabolites derived from saffron stigmas exert numerous therapeutic effects due to hypolipidemic, antitussive, antioxidant, antidiabetic activities and many others. Water and ethanol extracts of Crocus sativus L. are cardioprotective and counteract neurodegenerative disorders. Many of these medicinal properties of saffron can be attributed to a number of its compounds such as crocetin, crocins and other substances having strong antioxidant and radical scavenger properties against a variety of radical oxygen species and pro-inflammatory cytokines. Botany, worldwide spreading of cultivars, biochemical pathways, active constituents and chemical detection methods are reviewed. Therapeutic uses of saffron principles with particular regard to those exhibiting antioxidant and thus anti-inflammatory features are discussed. To date, very few adverse health effects of saffron have been demonstrated. At high doses (more than 5 g/die day), it should be avoided in pregnancy owing to its uterine stimulation activity.

  3. Incorporation of anti-inflammatory agent into mesoporous silica

    Science.gov (United States)

    Rodrigues Braz, Wilson; Lamec Rocha, Natállia; de Faria, Emerson H.; Silva, Márcio L. A. e.; Ciuffi, Katia J.; Tavares, Denise C.; Furtado, Ricardo Andrade; Rocha, Lucas A.; Nassar, Eduardo J.

    2016-09-01

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  4. [Meloxicam: the golden mean of nonsteroidal anti-inflammatory drugs].

    Science.gov (United States)

    Karateev, A E

    2014-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are most commonly used to treat acute and chronic pain in locomotor system (LMS) diseases. However, their administration may be accompanied by the development of dangerous complications as organic and functional disorders of the cardiovascular system (CVS) and gastrointestinal tract (GIT). Physicians have currently a wide range of NSAIDs at their disposal; but none of the representatives of this group can be considered the best. Thus, highly selective cyclooxygenase-2 inhibitors (Coxibs) are substantially safer for GIT; however, their use is clearly associated with the increased risk of severe cardiovascular events. Nonselective NSAIDs, such as naproxen or ketoprofen, are safer for CVS, but more frequently cause significant GIT organic and functional disorders. Moderately selective NSAIDs, such as meloxicam (movalis), conceivably could be the most acceptable choice for treating the majority of patients in this situation. This drug has been long and extensively used in global clinical practice and has gained the confidence of physicians and patients. The major benefits of meloxicam are its proven efficacy, convenient treatment regimen, relatively low risk of complications as organic and functional disorders of the GIT and CVD and good compatibility with low-dose aspirin.

  5. Anti-inflammatory effects of glaucocalyxin B in microglia cells

    Directory of Open Access Journals (Sweden)

    Ping Gan

    2015-05-01

    Full Text Available Over-activated microglia is involved in various kinds of neurodegenerative process including Parkinson, Alzheimer and HIV dementia. Suppression of microglial over activation has emerged as a novel strategy for treatment of neuroinflammation-based neurodegeneration. In the current study, anti-inflammatory and neuroprotective effects of the ent-kauranoid diterpenoids, which were isolated from the aerial parts of Rabdosia japonica (Burm. f. var. glaucocalyx (Maxim. Hara, were investigated in cultured microglia cells. Glaucocalyxin B (GLB, one of five ent-kauranoid diterpenoids, significantly decreased the generation of nitric oxide (NO, tumor necrosis factor (TNF-α, interleukin (IL-1β, cyclooxygenase (COX-2 and inducible nitric oxide synthase (iNOS in the lipopolysaccharide (LPS-activated microglia cells. In addition, GLB inhibited activation of nuclear factor-κB (NF-κB, p38 mitogen-activated protein kinase (MAPK and generation of reactive oxygen species (ROS in LPS-activated microglia cells. Furthermore, GLB strongly induced the expression of heme oxygenase (HO-1 in BV-2 microglia cells. Finally, GLB exhibited neuroprotective effect by preventing over-activated microglia induced neurotoxicity in a microglia/neuron co-culture model. Taken together, the present study demonstrated that the GLB possesses anti-nueroinflammatory activity, and might serve as a potential therapeutic agent for treating neuroinflammatory diseases.

  6. Modification of palm oil for anti-inflammatory nutraceutical properties.

    Science.gov (United States)

    Zainal, Zaida; Longman, Andrea J; Hurst, Samantha; Duggan, Katrina; Hughes, Clare E; Caterson, Bruce; Harwood, John L

    2009-07-01

    Palm oil is one of the most important edible oils in the world. Its composition (rich in palmitate and oleate) make it suitable for general food uses but its utility could be increased if its fatty acid quality could be varied. In this study, we have modified a palm olein fraction by transesterification with the n-3 polyunsaturated fatty acids, alpha-linolenate or eicosapentaenoic acid (EPA). Evaluation of the potential nutritional efficacy of the oils was made using chondrocyte culture systems which can be used to mimic many of the degenerative and inflammatory pathways involved in arthritis. On stimulation of such cultures with interleukin-1alpha, they showed increased expression of cyclooxygenase-2, the inflammatory cytokines tumour necrosis factor-alpha (TNF-alpha), IL-1alpha and IL-1beta and the proteinase ADAMTS-4. This increased expression was not affected by challenge of the cultures with palm olein alone but showed concentration-dependent reduction by the modified oil in a manner similar to EPA. These results show clearly that it is possible to modify palm oil conveniently to produce a nutraceutical with effective anti-inflammatory properties.

  7. Topical nonsteroidal anti-inflammatory drugs for osteoarthritis.

    Science.gov (United States)

    Barthel, H Richard; Axford-Gatley, Robert A

    2010-11-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are mainstays of the treatment of osteoarthritis (OA) but have dose- and age-related risks of gastrointestinal, cardiovascular, and renal adverse events (AEs). As a result, US and international guidelines recommend caution when prescribing oral NSAIDs, particularly in older patients and those with significant comorbidities. For OA of the hands and knees, topical NSAIDs provide efficacy similar to oral NSAIDs, with far less systemic distribution. Treatment-related cardiovascular, renal, and other serious AEs with topical NSAIDs have not been reported. At present, only 2 topical NSAIDs are approved in the United States for the treatment of OA: diclofenac sodium 1% gel for hand or knee OA and diclofenac sodium 1.5% in 45.5% dimethylsulfoxide solution for knee OA. Clinical trial data for these products have demonstrated efficacy superior to placebo or similar to oral diclofenac with AE profiles similar to placebo, except for application site reactions. In large double-blind trials, gastrointestinal AEs were infrequent and did not include ulcers, perforations, or bleeding. The purpose of this brief review is to examine the data from controlled double-blind trials evaluating the use of topical NSAIDs in patients with OA. Articles included were identified via a search of PubMed covering the period from January 1, 2005 through March 31, 2010. Reference lists from OA treatment guidelines and meta-analyses were reviewed for additional citations of importance.

  8. Anti-Inflammatory Dimethylfumarate: A Potential New Therapy for Asthma?

    Directory of Open Access Journals (Sweden)

    Petra Seidel

    2013-01-01

    Full Text Available Asthma is a chronic inflammatory disease of the airways, which results from the deregulated interaction of inflammatory cells and tissue forming cells. Beside the derangement of the epithelial cell layer, the most prominent tissue pathology of the asthmatic lung is the hypertrophy and hyperplasia of the airway smooth muscle cell (ASMC bundles, which actively contributes to airway inflammation and remodeling. ASMCs of asthma patients secrete proinflammatory chemokines CXCL10, CCL11, and RANTES which attract immune cells into the airways and may thereby initiate inflammation. None of the available asthma drugs cures the disease—only symptoms are controlled. Dimethylfumarate (DMF is used as an anti-inflammatory drug in psoriasis and showed promising results in phase III clinical studies in multiple sclerosis patients. In regard to asthma therapy, DMF has been anecdotally reported to reduce asthma symptoms in patients with psoriasis and asthma. Here we discuss the potential use of DMF as a novel therapy in asthma on the basis of in vitro studies of its inhibitory effect on ASMC proliferation and cytokine secretion in ASMCs.

  9. Anti-inflammatory polysaccharides of Azadirachta indica seed tegument

    Directory of Open Access Journals (Sweden)

    Lívia de Paulo Pereira

    2012-06-01

    Full Text Available Azadirachta indica A. Juss., Meliaceae, or Indian neem is a plant used to treat inûammatory disorders. Total polysaccharide (TPL and FI (fractioned by ion exchange chromatography from the seed tegument of A. indica were evaluated in models of acute inflammation (paw edema/peritonitis using Wistar rats. Paw edema (measured by hydroplethysmometry was induced s.c. by Λ-carrageenan (300 µg, histamine (100 µg, serotonin (20 µg, compound 48/80 (10 µg, prostaglandin (PGE2 30 µg or L-arginine (15 µg. Peritonitis (analyzed for leukocyte counts/protein dosage was induced i.p. by carrageenan (500 mg or N-formyl-methionyl-leucyl-phenylalanine (fMLP 50 ng. Animals were treated i.v. with TPL (1 mg/kg or FI (0.01, 0.1, 1 mg/kg 30 min before stimuli. FI toxicity (at 0.1 mg/kg, i.v. for seven days was analyzed by the variation of body/organ mass and hematological/biochemical parameters. TPL extraction yielded 1.3%; FI, presenting high carbohydrate and low protein content, at 0.1 mg/kg inhibited paw edema induced by carrageenan (77%, serotonin (54%, PGE2 (69% and nitric oxide (73%, and the peritonitis elicited by carrageenan (48% or fMLP (67%, being well tolerated by animals. FI exhibited potent anti-inflammatory activity, revealing to be important active component in traditionally prepared remedies to treat inflammatory states.

  10. A novel anti-inflammatory oligopeptide produced by Entamoeba histolytica.

    Science.gov (United States)

    Kretschmer, R R; Rico, G; Giménez, J A

    2001-02-01

    The monocyte locomotion inhibitory factor (MLIF), a heat-stable oligopeptide found in the supernatant fluid of Entamoeba histolytica axenic cultures was isolated by ultra-filtration, gel-sieve chromatography and high powered liquid chromatography (HPLC), and its primary structure (Met-Gln-Cys-Asn-Ser) established by Edman sequencing and mass-spectrometry (MS). A synthetic peptide had the same selective anti-inflammatory features as the native material in comparable concentrations: in vitro inhibition of the locomotion in human peripheral blood monocytes, and of the respiratory burst in the same cells and in human neutrophil polymorphonuclear leucocytes; and in vivo depression of delayed hypersensitivity skin reactions to dinitrochlorobenzene in guinea pigs. This oligopeptide is apparently synthesized by the ameba as suggested by [(35)S]-Cys and Met incorporation, probably as part of a larger molecule, from which it is cleaved by proteolysis. The full sequence was not found in the 431 available E. histolytica protein sequences. The factor may contribute to the unexpected paucity of the late inflammatory reaction found in advanced invasive amebiasis and, perhaps in consequence, to the regeneration without scarring (restitutio ad integrum) of the affected organs that is observed following successful treatment of this disease

  11. Non-steroidal Anti-inflammatory Drugs in Raptors

    Science.gov (United States)

    Oaks, J. Lindsay; Meteyer, Carol U.; Miller, R. Eric; Fowler, Murray E.

    2012-01-01

    The use of analgesia has become standard, and appropriate, practice in avian medicine. As in mammals, pain control in avian patients is usually accomplished with opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) used singly or in combination for a multimodal approach. Despite their usefulness, widespread use, and relative safety in clinical use, few controlled studies in birds have been conducted on efficacy, safety, and dosing. The guidelines for the use of NSAIDs in raptors and other birds have mainly been empirical. More recently, NSAIDs in free-living raptors have emerged as a major conservation issue with the discovery that diclofenac sodium was responsible for the population crash of three species of Gyps vultures in southern Asia. In this context, residues of veterinary NSAIDs in domestic animals are now considered environmental contaminants that can be significantly toxic to vultures and possibly other avian scavengers. Ironically, the disaster with Asian vultures has led to a considerable body of research on NSAIDs in raptors to the benefit of clinicians who now have scientific information available to help assess dosing, safety, toxicity, and pharmacokinetics of NSAIDs in their raptor patients.

  12. Anti-Inflammatory Components from the Root of Solanum erianthum

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2013-06-01

    Full Text Available Two new norsesquiterpenoids, solanerianones A and B (1–2, together with nine known compounds, including four sesquiterpenoids, (−-solavetivone (3, (+-anhydro-β-rotunol (4, solafuranone (5, lycifuranone A (6; one alkaloid, N-trans-feruloyltyramine (7; one fatty acid, palmitic acid (8; one phenylalkanoid, acetovanillone (9, and two steroids, β-sitosterol (10 and stigmasterol (11 were isolated from the n-hexane-soluble part of the roots of Solanum erianthum. Their structures were elucidated on the basis of physical and spectroscopic data analyses. The anti-inflammatory activity of these isolates was monitored by nitric oxide (NO production in lipopolysaccharide (LPS-activated murine macrophage RAW264.7 cells. The cytotoxicity towards human lung squamous carcinoma (CH27, human hepatocellular carcinoma (Hep 3B, human oral squamous carcinoma (HSC-3 and human melanoma (M21 cell lines was also screened by using an MTT assay. Of the compounds tested, 3 exhibited the strongest NO inhibition with the average maximum inhibition (Emax at 100 μM and median inhibitory concentration (IC50 values of 98.23% ± 0.08% and 65.54 ± 0.18 μM, respectively. None of compounds (1–9 was found to possess cytotoxic activity against human cancer cell lines at concentrations up to 30 μM.

  13. Evaluation of anti-inflammatory activity of Strobilanthus callosus Nees and Strobilanthus ixiocephala Benth

    Directory of Open Access Journals (Sweden)

    Rupali Vitthal Sarpate

    2012-01-01

    Full Text Available Context: Strobilanthus callosus Nees and Strobilanthus ixiocephala Benth belongs to family Acanthaceae. The plants have been the subject of scientific research which confirms its use in folk medicine as anti-inflammatory drugs showing potent anti-rheumatic effects. Previous research claims the anti-inflammatory and anti-arthritic activities of Lupeol and 19α-H Lupeol isolated from Strobilanthus callosus and Strobilanthus ixiocephala roots. Based on the literature cited, the unexplored parts stems and leaves of the two species were selected for the present study. Aim: The present study is designed to isolate steroidal and alkaloidal components from the two species Strobilanthus callosus and Strobilanthus ixiocephala using the unexplored parts viz. stems and leaves and to investigate its anti-inflammatory effect. Settings and Design: The anti-inflammatory effect was investigated employing subacute anti-inflammatory models namely cotton pellet granuloma and carrageenan-induced rat paw edema. Materials and Methods: Anti-inflammatory activity was carried out using isolated test components RVS-A (Lupeol, RVS-C (Doctriacantone and standard drug Diclofenac sodium (10 mg/kg. Results: The present study has dealt up with isolation of two phytoconstituents Lupeol and Dotriacontane which gave marked anti-inflammatory activity at the dose 20 mg/kg in both the models Carrageenan induced rat paw edema and Cotton pellet granuloma. Conclusion: The results confirm that the mechanism of the anti-inflammatory effect of RVS-A (Lupeol and RVS-C (Doctriacantone involves reduction of prostaglandins through inhibition of cyclooxygenase and suppression of proliferative phase of sub acute inflammation. Thus the steroidal and alkaloidal components Lupeol and Doctriacantone isolated from Strobilanthus callosus Nees and Strobilanthus ixiocephala Benth shows marked anti-inflammatory activity.

  14. The expression of a novel anti-inflammatory cytokine IL-35 and its possible significance in childhood asthma.

    Science.gov (United States)

    Ma, Yanyan; Liu, Xingli; Wei, Zengtao; Wang, Xiaoyan; Xu, Dong; Dai, Shen; Li, Yan; Gao, Meng; Ji, Changqin; Guo, Chun; Zhang, Lining; Wang, Xiaoyan

    2014-11-01

    Interleukin-35 (IL-35) is a novel anti-inflammatory cytokine and has been shown to play an important role in maintaining immune homeostasis. However, the effect of IL-35 on human asthma remains unclear. The present study is to investigate the expression and significance of IL-35 in childhood asthma. Forty-one asthmatic children and forty-two healthy controls were recruited in Qilu Children's Hospital of Shandong University. Serum total immunoglobulin E level was measured by radioimmunosorbent test. Peripheral blood eosinophils were counted using BC-5800 Automatic Blood Cell Analyzer. IL-35 mRNA in peripheral blood mononuclear cells was detected by quantitative real-time polymerase chain reaction. Serum IL-35, IL-4 and interferon-γ levels were measured using enzyme-linked immunosorbent assay. The correlations among the above indexes were also analyzed using Pearson's method. Our results showed that serum total IgE, eosinophil count and serum IL-4 were significantly increased in asthmatic children compared with control children, and serum IFN-γ level in asthmatic patients was obviously lower than that in healthy controls. We also found that there was an obviously positive correlation between serum IgE and IL-4 levels in asthmatic patients. In addition, significantly negative correlation was found between serum total IgE and IFN-γ levels. More importantly, we found that the expression of IL-35 mRNA and protein was both down-regulated in asthmatic children, and serum IL-35 level was inversely related to serum IL-4 level. Moreover, significantly positive correlation was also found between serum IL-35 and IFN-γ levels. The results suggest that the decreased expression of IL-35 could be involved in the pathogenesis of childhood asthma.

  15. DMPD: Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18336664 Mechanisms for the anti-inflammatory effects of adiponectin in macrophages...(.html) (.csml) Show Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. PubmedID 18...336664 Title Mechanisms for the anti-inflammatory effects of adiponectin in macro

  16. DMPD: Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17981503 Anti-inflammatory actions of PPAR ligands: new insights on cellular andmol...) (.html) (.csml) Show Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mech...anisms. PubmedID 17981503 Title Anti-inflammatory actions of PPAR ligands: new in

  17. Evaluation of anti-inflammatory, analgesic and antipyretic activities of Thymus serphyllum Linn. in mice.

    Science.gov (United States)

    Alamger; Mazhar, Uzma; Mushtaq, Muhammad Naveed; Khan, Hafeez Ullah; Maheen, Safirah; Malik, Muhammad Nasir Hayat; Ahmad, Taseer; Latif, Fouzia; Tabassum, Nazia; Khan, Abdul Qayyum; Ahsan, Haseeb; Khan, Wasim; Javed, Ibrahim; Ali, Haider

    2015-01-01

    The present study was conducted to evaluate the analgesic, anti-inflammatory and antipyretic activities of Thymus serphyllum Linn. in mice. Anti-inflammatory activity was evaluated by carrageenan and egg albumin induced paw edema in mice, while analgesic activity was assessed using formalin induced paw licking and acetic acid induced abdominal writhing in mice. For determination of antipyretic activity, pyrexia was induced by subcutaneous injection of 20% yeast. All the extracts produced significant anti-inflammatory effect however, ether extract produced maximum effect 34% inhibition (p Thymus serphyllum in traditional medicine for inflammation accompanied by pain and fever.

  18. Design, Synthesis, Antinociceptive and Anti-Inflammatory Activities of Novel Piroxicam Analogues

    Directory of Open Access Journals (Sweden)

    Eliezer J. Barreiro

    2012-11-01

    Full Text Available In this paper we report the design, synthesis, antinociceptive and anti-inflammatory activities of a series of benzothiazine N-acylhydrazones 14a–h, planned by structural modification of piroxicam (1, a non steroidal anti-inflammatory drug. Among the synthesized analogues, compounds 14f (LASSBio-1637 and 14g (LASSBio-1639 were identified as novel antinociceptive and anti-inflammatory prototypes, active by oral administration, acting by a mechanism of action that seems to be different from that of piroxicam, since they were inactive as an inhibitor of cyclooxygenase (COX-1 and COX-2 at concentrations of 10 mM.

  19. Design, synthesis, antinociceptive and anti-inflammatory activities of novel piroxicam analogues.

    Science.gov (United States)

    de Miranda, Amanda Silva; Bispo Júnior, Walfrido; da Silva, Yolanda Karla Cupertino; Alexandre-Moreira, Magna Suzana; Castro, Rosane de Paula; Sabino, José Ricardo; Lião, Luciano Morais; Lima, Lídia Moreira; Barreiro, Eliezer J

    2012-11-28

    In this paper we report the design, synthesis, antinociceptive and anti-inflammatory activities of a series of benzothiazine N-acylhydrazones 14a–h, planned by structural modification of piroxicam (1), a non steroidal anti-inflammatory drug. Among the synthesized analogues, compounds 14f (LASSBio-1637) and 14g (LASSBio-1639) were identified as novel antinociceptive and anti-inflammatory prototypes, active by oral administration, acting by a mechanism of action that seems to be different from that of piroxicam, since they were inactive as an inhibitor of cyclooxygenase (COX-1 and COX-2) at concentrations of 10 mM.

  20. Anti-Inflammatory Activity of Alkaloids: An Update from 2000 to 2010

    Directory of Open Access Journals (Sweden)

    Margareth de Fátima Formiga Melo Diniz

    2011-10-01

    Full Text Available Many natural substances with proven anti-inflammatory activity have been isolated throughout the years. The aim of this review is to review naturally sourced alkaloids with anti-inflammatory effects reported from 2000 to 2010. The assays were conducted mostly in vivo, and carrageenan-induced pedal edema was the most used experimental model. Of the 49 alkaloids evaluated, 40 demonstrated anti-inflammatory activity. Of these the most studied type were the isoquinolines. This review was based on NAPRALERT data bank, Web of Science and Chemical Abstracts. In this review, 95 references are cited.

  1. 信息动态%Anti-inflammatory and analgesic effects of granule to pelvic inflammation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Objective To study anti-inflammatory and analgesic effects of granucle to pelvic inflammation. Methods The anti-inflammatory effects were studied by dimethylbenzene-induced swelling oar in mouse, carrageenin induced paw edema and tampon-induced proliferation in rats. The analgesic effects were studied by acetic acid-induced writhing and optothermal-induced pain in mice. Results Granule to pelvic inflammation significantly reduced swelling oar in mouse, paw edema and proliferation in rats;prolonged latency of writhing test, reduced the writhing number and improved optothermal-induced analgesia percentage. Conclusion Granule to pelvic inflammation has anti-inflammatory and analgesic effects.

  2. The evaluation of topical anti-inflammatory activity on rat ears subjected to thermal injury.

    Science.gov (United States)

    Bronaugh, R L; Roller, R G; Cargill, R

    1978-10-01

    Topical anti-inflammatory activity of steroidal and non-steroidal agents was assessed on inflammation produced by heat. A burn was produced on the ears of rats and the inflammation was quantitated gravimetrically. Steroidal anti-inflammatory agents were ranked in order of decreasing activity: triamcinolone acetonide, dexamethasone, prednisolone and hydrocortisone acetate. The nonsteroidal agents phenylbutazone and indomethacin were also effective in inhibiting the inflammation. Cholesterol, a steroid devoid of anti-inflammatory activity, was inactive in this test. Hydrocortisone acetate, in particular, appears to be less effective in inhibiting this type of inflammation than inflammation produced by croton oil.

  3. Directional migration of leukocytes: their pathological roles in inflammation and strategies for development of anti-inflammatory therapies

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Directional migration of leukocytes is indispensable to innate immunity for host defense.However,recruitment of leukocytes to a site of tissue injury also constitutes a leading cause for inflammatory responses.Mechanistically,it involves a cascade of cellular events precisely regulated by temporal and spatial presentation of a repertoire of molecules in the migrating leukocytes and their surroundings(microenvironments).Here I will summarize the emerging evidence that has shed lights on the underlying molecular mechanism for directional migration of leukocytes,which has guided the therapeutical development for innovative anti-inflammatory medicines.

  4. Targeting PDE10A GAF Domain with Small Molecules: A Way for Allosteric Modulation with Anti-Inflammatory Effects.

    Science.gov (United States)

    García, Ana M; Brea, José; González-García, Alejandro; Pérez, Concepción; Cadavid, María Isabel; Loza, María Isabel; Martinez, Ana; Gil, Carmen

    2017-09-04

    Phosphodiesterase (PDE) enzymes regulate the levels of cyclic nucleotides, cAMP, and/or cGMP, being attractive therapeutic targets. In order to modulate PDE activity in a selective way, we focused our efforts on the search of allosteric modulators. Based on the crystal structure of the PDE10A GAF-B domain, a virtual screening study allowed the discovery of new hits that were also tested experimentally, showing inhibitory activities in the micromolar range. Moreover, these new PDE10A inhibitors were able to decrease the nitrite production in LPS-stimulated cells, thus demonstrating their potential as anti-inflammatory agents.

  5. Inflammatory and anti-inflammatory effects of soybean agglutinin

    Directory of Open Access Journals (Sweden)

    Benjamin C.F.

    1997-01-01

    Full Text Available Soybean agglutinin (SBA lectin, a protein present in raw soybean meals, can bind to and be extensively endocytosed by intestinal epithelial cells, being nutritionally toxic for most animals. In the present study we show that SBA (5-200 µg/cavity injected into different cavities of rats induced a typical inflammatory response characterized by dose-dependent exudation and neutrophil migration 4 h after injection. This effect was blocked by pretreatment with glucocorticoid (0.5 mg/kg or by co-injection of N-acetyl-galactosamine (100 x [M] lectin, but not of other sugars (100 x [M] lectin, suggesting an inflammatory response related to the lectin activity. Neutrophil accumulation was not dependent on a direct effect of SBA on the macrophage population since the effect was not altered when the number of peritoneal cells was increased or decreased in vivo. On the other hand, SBA showed chemotactic activity for human neutrophils in vitro. A slight increase in mononuclear cells was observed 48 h after ip injection of SBA. Phenotypic analysis of these cells showed an increase in the CD4+/CD8- lymphocyte population that returned to control levels after 15 days, suggesting the development of an immune response. SBA-stimulated macrophages presented an increase in the expression of CD11/CD18 surface molecules and showed some characteristics of activated cells. After intravenous administration, SBA increased the number of circulating neutrophils and inhibited in a dose-dependent manner the neutrophil migration induced by ip injection of carrageenan into peritoneal cavities. The co-injection of N-acetyl-galactosamine or mannose, but not glucose or fucose, inhibited these effects. The data indicate that soybean lectin is able to induce a local inflammatory reaction but has an anti-inflammatory effect when present in circulating blood

  6. The Epidemiology of Nonsteroidal Anti-Inflammatory Drugs

    Directory of Open Access Journals (Sweden)

    Jerry Tenenbaum

    1999-01-01

    Full Text Available Nonsteroidal anti-inflammatory drug (NSAID use has increased dramatically in the past two decades. A large proportion of the elderly population (more than 65 years of age holds a current or recent NSAID prescription, accounting for approximately 90% of all NSAID prescriptions. Despite studies that advise finding alternatives for NSAIDs for the management of osteoarthritis, physicians often prescribe NSAIDs first for such common musculoskeletal conditions. Despite being identified as risk factors for gastrointestinal complications, the simultaneous use of two NSAIDs and the coadministration of NSAIDs with corticosteroids and with coumadin continue to occur. The point prevalence of NSAID-induced ulcers is 10% to 30%, and 15% to 35% of all peptic ulcer complications are caused by NSAIDs. The increased risk of gastrointestinal complications when NSAIDs are used is 3% to 5%. This risk increases with other identified risk factors (eg, older age, previous gastrointestinal history, comorbid diseases and poor health. Gastrointestinal causes of hospitalization (eg, gastrointestinal hemorrhage and perforation and death have increased in parallel to increased NSAID use. ‘Antiulcer’ agents are prescribed twice as often in NSAID users, and the economic impact (eg, diagnostic tests and hospitalization is that about one-third of the arthritis budget has been dedicated to deal with gastrointestinal side effects of NSAIDs. Misoprostol and omeprazole have been shown to be cytoprotective for the gastroduodenal mucosa when NSAIDs are used, and misoprostol has been shown to reduce the risk of gastroduodenal ulcer complications. Economic evaluations have suggested that these agents are a cost effective means of dealing with such NSAID-associated problems. Although no NSAID is totally safe, a number of studies have demonstrated that NSAIDs may be ranked according to relative gastrointestinal toxicity. The role of Helicobacter pylori in NSAID-associated problems

  7. Determination of Teloschistes flavicans (sw norm anti-inflammatory activity

    Directory of Open Access Journals (Sweden)

    Eugênia C Pereira

    2010-01-01

    Full Text Available Background: Lichens produce a variety of substances that possesses pharmacological actions. However, rare products are submitted to rigorous scientific tests or have the risk potential or side effects evaluated. The lack of medical and sanitary control, absence of accurate botanical identification or purity certification, founded in diverse natural products, may represent great danger to population health. This work aimed to evaluate toxic effects and anti-inflammatory action in vivo of Teloschistes flavicans (Sw. Norm. (TFN unrefined extracts, as well as determinate its main constituents. Methods: The carrageenan induced paw edema and cotton pellet implant induced granuloma methods were utilized, besides a classic acute toxicity test. TFN acetone extract inhibited carrageenan paw edema on 60, 120, and 180 min (inhibition percentiles of 45.03%, 60.59% and 41.72%. Results: TFN ethereal (inhibition percentiles of 23.95% and 29.01% and chloroform (inhibition percentiles of 28.8% and 22.04% extracts inhibited edema on 120 and 180 min. None of the extract inhibited the granuloma development. None of the extract caused death or other acute toxicity signs. Vicanicine (60.26% in ethereal extract and 51.17% in acetone extract, parietine (9.60% in ethereal extract and 15.38% on second, falacinol (0.78% in ether and 14.95% in acetone and very low concentration of falacinal (0.15% in ethereal extract and 3.32% in acetone extract were detected in the medicine. Conclusions: The tested extracts have antiedematogenic activity, but are not effective on subchronic inflammation. The extracts do not present toxic effects in administered doses.

  8. Anti-inflammatory activities of mogrosides from Momordica grosvenori in murine macrophages and a murine ear edema model.

    Science.gov (United States)

    Di, Rong; Huang, Mou-Tuan; Ho, Chi-Tang

    2011-07-13

    Momordica grosvenori (Luo Han Guo), grown primarily in Guangxi province in China, has been traditionally used for thousands of years by the Chinese to make hot drinks for the treatment of sore throat and the removal of phlegm. The natural noncaloric sweetening triterpenoid glycosides (mogrosides) contained in the M. grosvenori fruits are also antioxidative, anticarcinogenic, and helpful in preventing diabetic complications. The aim of this study was to assess the anti-inflammatory properties of mogrosides in both murine macrophage RAW 264.7 cells and a murine ear edema model. The results indicate that mogrosides can inhibit inflammation induced by lipopolysaccharides (LPS) in RAW 264.7 cells by down-regulating the expression of key inflammatory genes iNOS, COX-2, and IL-6 and up-regulating some inflammation protective genes such as PARP1, BCL2l1, TRP53, and MAPK9. Similarly, in the murine ear edema model, 12-O-tetradecanoylphorbol-13-acetate-induced inflammation was inhibited by mogrosides by down-regulating COX-2 and IL-6 and up-regulating PARP1, BCL2l1, TRP53, MAPK9, and PPARδ gene expression. This study shows that the anticancer and antidiabetic effects of M. grosvenori may result in part from its anti-inflammatory activity.

  9. Cultural differences in hedonic emotion regulation after a negative event.

    Science.gov (United States)

    Miyamoto, Yuri; Ma, Xiaoming; Petermann, Amelia G

    2014-08-01

    Beliefs about emotions can influence how people regulate their emotions. The present research examined whether Eastern dialectical beliefs about negative emotions lead to cultural differences in how people regulate their emotions after experiencing a negative event. We hypothesized that, because of dialectical beliefs about negative emotions prevalent in Eastern culture, Easterners are less motivated than Westerners to engage in hedonic emotion regulation-up-regulation of positive emotions and down-regulation of negative emotions. By assessing online reactions to a recent negative event, Study 1 found that European Americans are more motivated to engage in hedonic emotion regulation. Furthermore, consistent with the reported motivation to regulate emotion hedonically, European Americans show a steeper decline in negative emotions 1 day later than do Asians. By examining retrospective memory of reactions to a past negative event, Study 2 further showed that cultural differences in hedonic emotion regulation are mediated by cultural differences in dialectical beliefs about motivational and cognitive utility of negative emotions, but not by personal deservingness or self-efficacy beliefs. These findings demonstrate the role of cultural beliefs in shaping emotion regulation and emotional experiences.

  10. Analgesic and anti-inflammatory activities of the water extract from ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines ... The study investigated the analgesic and anti-inflammatory activities in animal models. ... mice by 0.1% formalin, before testing for the analgesic activity of the extract.

  11. Analgesic and anti-inflammatory activities ofPassiflora foetida L

    Institute of Scientific and Technical Information of China (English)

    Sasikala V; Saravanan S; Parimelazhagan T

    2011-01-01

    Objective:To investigate the analgesic and anti-inflammatory activities of ethanol extract of Passiflora foetida (P. foetida) leaves.Methods:Ethanol extract ofP. foetida leaf was evaluated for analgesic action by acetic acid-induced writhing and hot plate method in albino mice. The anti-inflammatory property of ethanolic leaf extract was tested by carrageenan induced acute paw edema and histamine induced acute paw edema in rats.Results:The dose200 mg/kg ofP. foetida leaf extract exhibited highest significant analgesic activity [(13.50±0.43) min] at a reaction time of20 min in hot plate method in mice. The ethanol extract of leaf dose 100 mg/kg produced a highly significant anti inflammatory effect [(1.302±0.079)mL] in rats.Conclusions: It is very clear thatP. foetidaalso has analgesic and anti-inflammatory activities for the pharmaceuticals.

  12. Anti-inflammatory and gastroprotective properties of Hypericum richeri oil extracts.

    Science.gov (United States)

    Zdunić, Gordana; Godevac, Dejan; Milenković, Marina; Savikin, Katarina; Menković, Nebojsa; Petrović, Silvana

    2010-08-01

    Oil extracts of flowering tops of Hypericum richeri Vill. prepared in three different ways were evaluated for chemical composition, and anti-inflammatory and gastroprotective activities. An HPLC method was developed for determination of two dominant flavonoids, quercetin and I3,II8-biapigenin. The carrageenan-induced rat paw edema test was used for screening the anti-inflammatory activity, while indomethacin-induced rat gastric mucosa damage test was used for evaluation of gastroprotective activity. The oil extract prepared by maceration with 96% ethanol, followed by extraction with sunflower oil by heating on a water bath, exhibited the highest anti-inflammatory (38.4%) and gastroprotective activities (gastric damage score of 0.9). The same oil extract had the highest content of quercetin (49 microg/mL) and I3,II8-biapigenin (60 microg/mL). These results approve the usage of oil extracts of H. richeri as an anti-inflammatory and gastroprotective agent.

  13. Isobolographic analysis of the antinociceptive interactions of clonidine with nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Miranda, H F; Pinardi, G

    2004-09-01

    The present study was undertaken to characterize the interactions between nonsteroidal anti-inflammatory drugs and the alpha(2)-adrenoceptor agonist clonidine in an acute nociceptive test. The writhing test was selected as a model of acute visceral pain. Isobolograms were constructed to assess the interactions of clonidine and each nonsteroidal anti-inflammatory drugs, when coadministered intraperitoneally and intrathecally (i.t.). The simultaneous intraperitoneal administration of fixed ratios of ED(50) fractions of all nonsteroidal anti-inflammatory drugs (naproxen, piroxicam, paracetamol, dipyrone or metamizol and nimesulide) combined with clonidine resulted in synergistic interactions. The same combinations administered intrathecally were additive. The synergistic interactions between systemic nonsteroidal anti-inflammatory drugs and clonidine may involve supraspinal mechanisms.

  14. Phenolic composition, anitproliferative and anti-inflammatory properties of conventional and organic cinnamon and peppermint

    Science.gov (United States)

    Conventional and organic cinnamon and peppermint were investigated for their phenolic profile, antiproliferative, anti-inflammatory, and antioxidant properties. Accelerated solvent extraction (ASE) with 75% acetone was a better method than Soxhlet and overnight extraction for phenolic content and a...

  15. Potent anti-inflammatory activity of novel microtubule-modulating brominated noscapine analogs.

    Science.gov (United States)

    Zughaier, Susu; Karna, Prasanthi; Stephens, David; Aneja, Ritu

    2010-02-11

    Noscapine, a plant-derived, non-toxic, over-the-counter antitussive alkaloid has tubulin-binding properties. Based upon the structural resemblance of noscapine to colchicine, a tubulin-binding anti-inflammatory drug, noscapine and its semi-synthetic brominated analogs were examined for in vitro anti-inflammatory activity. Brominated noscapine analogs were found to inhibit cytokine and chemokine release from macrophage cell lines but did not affect cell viability. Brominated noscapine analogs demonstrated anti-inflammatory properties in both TLR- and non-TLR induced in vitro innate immune pathway inflammation models, mimicking septic and sterile infection respectively. In addition, electron microscopy and immunoblotting data indicated that these analogs induced robust autophagy in human macrophages. This study is the first report to identify brominated noscapines as innate immune pathway anti-inflammatory molecules.

  16. Potent anti-inflammatory activity of novel microtubule-modulating brominated noscapine analogs.

    Directory of Open Access Journals (Sweden)

    Susu Zughaier

    Full Text Available Noscapine, a plant-derived, non-toxic, over-the-counter antitussive alkaloid has tubulin-binding properties. Based upon the structural resemblance of noscapine to colchicine, a tubulin-binding anti-inflammatory drug, noscapine and its semi-synthetic brominated analogs were examined for in vitro anti-inflammatory activity. Brominated noscapine analogs were found to inhibit cytokine and chemokine release from macrophage cell lines but did not affect cell viability. Brominated noscapine analogs demonstrated anti-inflammatory properties in both TLR- and non-TLR induced in vitro innate immune pathway inflammation models, mimicking septic and sterile infection respectively. In addition, electron microscopy and immunoblotting data indicated that these analogs induced robust autophagy in human macrophages. This study is the first report to identify brominated noscapines as innate immune pathway anti-inflammatory molecules.

  17. Antispasmodic and anti-inflammatory activity of Carrageenan from Hypnea musciformis Wulfen

    Digital Repository Service at National Institute of Oceanography (India)

    Solimabi; Das, B.

    Pharmacological studies on K-carrageenan extracted from Hypnea musciformis have shown that it antagonizes histamine-induced spasm in guineapig ielum and possesses anti-inflammatory activity against rat hind paw oedema induced by commercial...

  18. Cell-based screening assay for anti-inflammatory activity of bioactive compounds

    NARCIS (Netherlands)

    Meijer, Kees; Vonk, Roel J.; Priebe, Marion G.; Roelofsen, Han

    2015-01-01

    Excess dietary intake may induce metabolic inflammation which is associated with insulin resistance and cardiovascular disease. Recent evidence indicates that dietary bioactive compounds may diminish metabolic inflammation. To identify anti-inflammatory bioactives, we developed a screening assay

  19. Anti-pyretic, anti-inflammatory and anti-diarrhoeal properties of ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... for acute toxicity, its anti-pyretic, anti-inflammatory and anti-diarrhoeal effects using ... These results indicate that aqueous extract of F. albida possesses potent anti- ..... to prostaglandin (PG), or make available the substrate for.

  20. Analgesic and anti-inflammatory activity of root bark of Grewia asiatica Linn. in rodents

    Directory of Open Access Journals (Sweden)

    Udaybhan Singh Paviaya

    2013-01-01

    Conclusions: The present study indicates that root bark of G. asiatica exhibits peripheral and central analgesic effect and anti-inflammatory activity, which may be attributed to the various phytochemicals present in root bark of G. asiatica.

  1. Anti-inflammatory effect of erythropoietin pretreatment on cardiomyocytes with hypoxia/reoxygenation injury and the possible mechanism

    Institute of Scientific and Technical Information of China (English)

    QIN Chuan; XIAO Ying-bin; ZHONG Qian-jin; CHEN Lin; WANG Xue-feng

    2008-01-01

    Objective: To investigate the anti-inflammatory effect of erythropoietin (EPO) pretreatment on cardiomyocytes ex-posed to hypoxia/reoxygenation injury (H/R) and explore the possible mechanism. Methods: The cultured neonatal rats' ventricular cardiomyocytes were divided randomly into 4 groups, con-trol group (C group), EPO pretreatment group (E group), EPO and pyrrolidine dithiocarbamate (PDTC) pretreatment group (EP group) and PDTC pretreatment group (P group). After 24 hours' pretreatment, the cardiomyocytes were exposed to H/R. After pretreatment and H/R, the expression of tumor necrosis factor- α (TNF- α ) gene in all the groups was detected by RT-PCR and Western blot. The nuclear factor- KB (NF- kB) activity was detected by electrophoretic mobility shift assay (EMSA) and the inhibitor-kBα (I- kBα)protein level was detected by Western blot. Results: The decrement of I- K B α protein and the in-creasing NF- kB activity were found in cardiomyocytes pre-treated with EPO before H/R compared to other groups (t=-3.321,4.183, P<0.01). However, after H/R, NF- kB activity and ex-pression of TNF- α gene were significantly reduced, I- k B α protein expression was increased in cardiomyocytes of E group compared to other groups (t=-3.425, 3.687, 3.454, P<0.01). All theses changes caused by EPO pretreatment were eliminated by the intervention of PDTC (an antagonist to NF- kB) dur-ing pretreatment. Conclusions: EPO pretreatment can inhibit the activa-tion of NF- kB and upregulation of TNF- α gene in cardiomyocytes exposed to H/R through a negative feed-back of NF- k B signaling pathway, and thus produces the anti-inflammatory effect. This might be one of the ways EPO produces the anti-inflammatory effect.

  2. Anti-inflammatory effect of the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden, the Tiger Milk mushroom

    OpenAIRE

    Lee, Sook Shien; Tan, Nget Hong; Fung, Shin Yee; Sim, Si Mui; Tan, Chon Seng; Ng, Szu Ting

    2014-01-01

    Background The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) is used as a traditional medicine to relieve cough, asthma and chronic hepatitis. The traditional uses of the sclerotium are presumably related to its anti-inflammatory effect. The present study was carried out to evaluate the anti-inflammatory activity of the sclerotial powder of L. rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) cultivar TM02. Methods The anti-acute inflammatory activity of the scl...

  3. The antioxidant properties of salicylate derivatives: A possible new mechanism of anti-inflammatory activity.

    Science.gov (United States)

    Borges, Rosivaldo S; Castle, Steven L

    2015-11-01

    The synthesis and antioxidant evaluation by DPPH scavenging of a series of salicylic acid derivatives is described. Gentisic acid and its ester, amide, and amino analogs possess more radical scavenging capacity than salicylic acid and other salicylate derivatives. This property can possibly provide an additional pathway for anti-inflammatory activity through either single electron or hydrogen atom transfer, leading to a new strategy for the design of anti-inflammatory agents.

  4. Anti Bacterial and Anti Inflammatory efficacy of Zingiber officinale and Decalepis hamiltonii ? In Vitro Study

    OpenAIRE

    Arun kumar M; Tejaswi B; Susila V Anand

    2014-01-01

    Aim: To evaluate the in vitro anti bacterial and anti inflammatory potential of Zingiber Officinale and Decalepis Hamiltonii against E. faecalis. Materials and Methods: Ethanolic extract of Zingiber and Decalepis was subjected to microbiological assay to determine its Maximum zone of inhibition using Agar disk diffusion test, minimum inhibitory concentration using serial broth dilution method and anti inflammatory potential using protein denaturation assay against E. faecalis. Results: Ethano...

  5. ANTI-INFLAMMATORY ACTIVITY OF WHOLE PLANT OF POLYGALA ROSMARINIFOLIA WIGHT & ARN (POLYGALACEAE

    Directory of Open Access Journals (Sweden)

    V.R. Mohan et al

    2012-10-01

    Full Text Available In the present study, Polygala rosmarinifolia whole plant was extracted with ethanol and evaluated for anti-inflammatory activity in rats using a carrageenan induced paw edema method. Ethanol extract exhibits potent anti-inflammatory activity at 200mg/kg at 3rd hr after administration is compared with reference standard drug, Indomethacin. Observed pharmacological activity in the present study provides scientific validation of ethnomedicinal use of this plant in treating acute inflammation.

  6. Immune-stimulatory and anti-inflammatory activities of Curcuma longa extract and its polysaccharide fraction

    OpenAIRE

    Chandrasekaran, Chinampudur V.; Kannan Sundarajan; Edwin, Jothie R.; Giligar M Gururaja; Deepak Mundkinajeddu; Amit Agarwal

    2013-01-01

    Background: While curcuminoids have been reported to possess diverse biological activities, the anti-inflammatory activity of polar extracts (devoid of curcuminoids) of Curcuma longa (C. longa) has seldom been studied. In this study, we have investigated immune-stimulatory and anti-inflammatory activities of an aqueous based extract of C. longa (NR-INF-02) and its fractions in presence and absence of mitogens. Materials and Methods: Effects of NR-INF-02 (Turmacin TM , Natural Remedies Pvt. Lt...

  7. Preliminary evaluation of the analgesic and anti-inflammatory effects of Tacca integrifolia in rodents

    Directory of Open Access Journals (Sweden)

    Thatree Autsavakitipong

    2015-01-01

    Full Text Available Summary. This is a preliminary investigation of the ethyl acetate extract of the leaf of Tacca integrifolia (TIE for the analgesic activity using writhing response in mice, tail flick test in rats and for anti-inflammatory activity using ethyl phenyl propiolate (EPP-induced ear edema, carrageenan- and arachidonic acid-induced hind paw edema, as well as cotton pellet-induced granuloma formation in rats. The results showed that TIE (200 mg/kg, PO significantly inhibited pain caused by acetic acid injection (65.9% but did not exhibit effect in tail flick test in rats. These findings suggest that analgesic mechanism of TIE may act via peripherally pathway. The study of anti-inflammatory effect showed that TIE significantly inhibited ear edema induced by EPP. TIE (200 mg/kg, PO inhibited paw edema induced by carrageenan (55.5% and arachidonic acid (48.6% but had no effect on cotton-induced granuloma formation in rats. In conclusion, the ethyl acetate extract of leaf of T. integrifolia possessed anti-inflammatory activity in acute inflammation and analgesic activity.Industrial relevant. Plants of the genus Tacca have been reported to possess many activities such as analgesic, anti-inflammatory and, antipyretic activities. Many species have been used to treat high blood pressure, burn, gastric ulcer, and hepatitis. The scientific studies supporting the traditional uses of Tacca integrifolia for some of the alleged activities are still lacking. The screening test for analgesic and anti-inflammatory effect of the ethyl acetate extract of the leaf of Tacca integrifolia provides scientific data to confirm the potentials of T. integrifolia as an analgesic and anti-inflammatory medicinal plant. In addition, the outcomes may be useful to develop a new analgesic and anti-inflammatory drug in the future. Key words. Tacca integrifolia; Taccaceae; ethyl acetate extract; analgesic activity; anti-inflammatory activity

  8. DIURETIC AND ANTI-INFLAMMATORY ACTIVITY OF AQUEOUS EXTRACT OF AERVA SANGUINOLENTA (L.) BLUME

    OpenAIRE

    Srinivas Reddy K; Rajeev Reddy E; Ganapaty S

    2011-01-01

    The study was designed to evaluate the diuretic and anti-inflammatory potency of aqueous extract of whole plant of Aerva sanguinolenta in wistar albino rats. Different parameters viz. total urine volume, urine concentration of electrolytes such as sodium; potassium and chloride have been evaluated for assessment of diuretic activity. Anti-inflammatory was performed against carrageenan induced paw oedema method by using indomethacin as standard.The results revealed that the aqueous extract sho...

  9. Anti-Inflammatory Activity of Different Agave Plants and the Compound Cantalasaponin-1

    OpenAIRE

    Jaime Tortoriello; Maribel Herrera-Ruiz; Manases Gonzalez-Cortazar; Alejandro Zamilpa; Antonio R. Jiménez-Aparicio; Enrique Jiménez-Ferrer; Martha L. Arenas Ocampo; Nayeli Monterrosas-Brisson

    2013-01-01

    Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants’ leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear ede...

  10. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kodera, Ryo, E-mail: kodera@cc.okayama-u.ac.jp [Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Shikata, Kenichi [Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Takatsuka, Tetsuharu; Oda, Kaori; Miyamoto, Satoshi; Kajitani, Nobuo; Hirota, Daisho; Ono, Tetsuichiro [Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Usui, Hitomi Kataoka [Department of Primary Care and Medical Education, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Makino, Hirofumi [Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan)

    2014-01-17

    Highlights: •DPP-4 inhibitor decreased urinary albumin excretion in a rat of type 1 diabetes. •DPP-4 inhibitor ameliorated histlogical changes of diabetic nephropathy. •DPP-4 inhibitor has reno-protective effects through anti-inflammatory action. •DPP-4 inhibitor is beneficial on diabetic nephropathy besides lowering blood glucose. -- Abstract: Introduction: Dipeptidyl peptidase-4 (DPP-4) inhibitors are incretin-based drugs in patients with type 2 diabetes. In our previous study, we showed that glucagon-like peptide-1 (GLP-1) receptor agonist has reno-protective effects through anti-inflammatory action. The mechanism of action of DPP-4 inhibitor is different from that of GLP-1 receptor agonists. It is not obvious whether DPP-4 inhibitor prevents the exacerbation of diabetic nephropathy through anti-inflammatory effects besides lowering blood glucose or not. The purpose of this study is to clarify the reno-protective effects of DPP-4 inhibitor through anti-inflammatory actions in the early diabetic nephropathy. Materials and methods: Five-week-old male Sprague–Dawley (SD) rats were divided into three groups; non-diabetes, diabetes and diabetes treated with DPP-4 inhibitor (PKF275-055; 3 mg/kg/day). PKF275-055 was administered orally for 8 weeks. Results: PKF275-055 increased the serum active GLP-1 concentration and the production of urinary cyclic AMP. PKF275-055 decreased urinary albumin excretion and ameliorated histological change of diabetic nephropathy. Macrophage infiltration was inhibited, and inflammatory molecules were down-regulated by PKF275-055 in the glomeruli. In addition, nuclear factor-κB (NF-κB) activity was suppressed in the kidney. Conclusions: These results indicate that DPP-4 inhibitor, PKF275-055, have reno-protective effects through anti-inflammatory action in the early stage of diabetic nephropathy. The endogenous biological active GLP-1 might be beneficial on diabetic nephropathy besides lowering blood glucose.

  11. Rose geranium essential oil as a source of new and safe anti-inflammatory drugs

    Science.gov (United States)

    Boukhatem, Mohamed Nadjib; Kameli, Abdelkrim; Ferhat, Mohamed Amine; Saidi, Fairouz; Mekarnia, Maamar

    2013-01-01

    Background Since the available anti-inflammatory drugs exert an extensive variety of side effects, the search for new anti-inflammatory agents has been a priority of pharmaceutical industries. Aims The aim of the present study was to assess the anti-inflammatory activities of the essential oil of rose geranium (RGEO). Methods The chemical composition of the RGEO was investigated by gas chromatography. The major components were citronellol (29.13%), geraniol (12.62%), and citronellyl formate (8.06%). In the carrageenan-induced paw edema, five different groups were established and RGEO was administered orally in three different doses. Results RGEO (100 mg/kg) was able to significantly reduce the paw edema with a comparable effect to that observed with diclofenac, the positive control. In addition, RGEO showed a potent anti-inflammatory activity by topical treatment in the method of croton oil-induced ear edema. When the dose was 5 or 10 µl of RGEO per ear, the inflammation was reduced by 73 and 88%, respectively. This is the first report to demonstrate a significant anti-inflammatory activity of Algerian RGEO. In addition, histological analysis confirmed that RGEO inhibited the inflammatory responses in the skin. Conclusion Our results indicate that RGEO may have significant potential for the development of novel anti-inflammatory drugs with improved safety profile. PMID:24103319

  12. Antimicrobial, Antiparasitic, Anti-Inflammatory, and Cytotoxic Activities of Lopezia racemosa

    Directory of Open Access Journals (Sweden)

    Carla Cruz Paredes

    2013-01-01

    Full Text Available The present study investigates the potential benefits of the Mexican medicinal plant Lopezia racemosa (Onagraceae. Extracts and fractions from aerial parts of this plant were assessed to determine their antibacterial, antifungal, antiparasitic, anti-inflammatory and cytotoxic activities in vitro. Aerial parts of the plant were extracted with various solvents and fractionated accordingly. Extracts and fractions were tested against a panel of nine bacterial and four fungal species. The antiparasitic activity was tested against Leishmania donovani, whereas the anti-inflammatory activity of the compounds was determined by measuring the secretion of interleukin-6 from human-derived macrophages. The same macrophage cell line was used to investigate the cytotoxicity of the compounds. Various extracts and fractions showed antibacterial, antifungal, antiparasitic, and anti-inflammatory activities. The hexanic fraction HF 11-14b was the most interesting fraction with antimicrobial, and anti-inflammatory activities. The benefit of L. racemosa as a traditional medicinal plant was confirmed as shown by its antibacterial, antifungal and anti-inflammatory activities. To the best of our knowledge, this is the first study reporting the biological activities of L. racemosa, including antiparasitic and anti-inflammatory activities.

  13. Antimicrobial, Antiparasitic, Anti-Inflammatory, and Cytotoxic Activities of Lopezia racemosa

    Science.gov (United States)

    Cruz Paredes, Carla; Bolívar Balbás, Paulina; Juárez, Zaida Nelly; Sánchez Arreola, Eugenio; Hernández, Luis Ricardo

    2013-01-01

    The present study investigates the potential benefits of the Mexican medicinal plant Lopezia racemosa (Onagraceae). Extracts and fractions from aerial parts of this plant were assessed to determine their antibacterial, antifungal, antiparasitic, anti-inflammatory and cytotoxic activities in vitro. Aerial parts of the plant were extracted with various solvents and fractionated accordingly. Extracts and fractions were tested against a panel of nine bacterial and four fungal species. The antiparasitic activity was tested against Leishmania donovani, whereas the anti-inflammatory activity of the compounds was determined by measuring the secretion of interleukin-6 from human-derived macrophages. The same macrophage cell line was used to investigate the cytotoxicity of the compounds. Various extracts and fractions showed antibacterial, antifungal, antiparasitic, and anti-inflammatory activities. The hexanic fraction HF 11-14b was the most interesting fraction with antimicrobial, and anti-inflammatory activities. The benefit of L. racemosa as a traditional medicinal plant was confirmed as shown by its antibacterial, antifungal and anti-inflammatory activities. To the best of our knowledge, this is the first study reporting the biological activities of L. racemosa, including antiparasitic and anti-inflammatory activities. PMID:23843731

  14. Antibacterial and Anti-Inflammatory Activities of Physalis Alkekengi var. franchetii and Its Main Constituents

    Directory of Open Access Journals (Sweden)

    Zunpeng Shu

    2016-01-01

    Full Text Available This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract of P. Alkekengi (50-EFP has antibacterial and/or anti-inflammatory activity both in vivo and in vitro and to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activity in vitro and efficacy in vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor alpha (TNF-α, interleukin 1 (IL-1, and interleukin 6 (IL-6 production in lipopolysaccharide- (LPS- stimulated THP-1 cells. Nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 (examined at the protein level in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activity in vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities both in vitro and in vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities.

  15. Mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of propolis: a brief review

    Directory of Open Access Journals (Sweden)

    Marcio A. R. Araujo

    2012-02-01

    Full Text Available Many biological properties have been attributed to various types of propolis, including anti-inflammatory, antimicrobial, antioxidant, antitumor, wound healing, and immunomodulatory activities. This article reviewed studies published that investigated the anti-inflammatory activity of propolis of different origins and/or its isolated components, focusing on the mechanisms of action underlying this activity and also addressing some aspects of immunomodulatory effects. The search was performed of the following databases: PubMed, Science Direct, HighWire Press, Scielo, Google Academics, Research Gate and ISI Web of Knowledgement. The anti-inflammatory activity was associated with propolis or compounds such as polyphenols (flavonoids, phenolic acids and their esters, terpenoids, steroids and amino acids. CAPE is the most studied compounds. The main mechanisms underlying the anti-inflammatory activity of propolis included the inhibition of cyclooxygenase and consequent inhibition of prostaglandin biosynthesis, free radical scavenging, inhibition of nitric oxide synthesis, reduction in the concentration of inflammatory cytokines and immunosuppressive activity. Propolis was found to exert an anti-inflammatory activity in vivo and in vitro models of acute and chronic inflammation and others studies, indicating its promising potential as anti-inflammatory agent of natural origin and as a source of chemical compounds for the development of new drugs.

  16. In vitro antioxidant capacity and anti-inflammatory activity of seven common oats.

    Science.gov (United States)

    Chu, Yi-Fang; Wise, Mitchell L; Gulvady, Apeksha A; Chang, Tony; Kendra, David F; Jan-Willem van Klinken, B; Shi, Yuhui; O'Shea, Marianne

    2013-08-15

    Oats are gaining increasing scientific and public interest for their purported antioxidant-associated health benefits. Most reported studies focused on specific oat extracts or particular oat components, such as β-glucans, tocols (vitamin E), or avenanthramides. Studies on whole oats with respect to antioxidant and anti-inflammatory activities are still lacking. Here the antioxidant and anti-inflammatory activities from whole oat groats of seven common varieties were evaluated. All oat varieties had very similar oxygen radical absorption capacity compared with other whole grains. In an anti-inflammatory assay, oat variety CDC Dancer inhibited tumor necrosis factor-α induced nuclear factor-kappa B activation by 27.5% at 2 mg/ml, whereas variety Deiter showed 13.7% inhibition at a comparable dose. Avenanthramide levels did not correlate with the observed antioxidant and anti-inflammatory activities. Further investigations are needed to pinpoint the specific antioxidant and anti-inflammatory compounds, and potential synergistic and/or matrix effects that may help explain the mechanisms of oat's anti-inflammatory actions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Serum amyloid A enrichment impairs the anti-inflammatory ability of HDL from diabetic nephropathy patients.

    Science.gov (United States)

    Mao, Jing Yan; Sun, Jia Teng; Yang, Ke; Shen, Wei Feng; Lu, Lin; Zhang, Rui Yan; Tong, Xuemei; Liu, Yan

    2017-10-01

    Impaired anti-inflammatory ability of high-density lipoprotein (HDL) has been demonstrated in patients with type-2 diabetes mellitus (T2DM). However, whether HDL from patients with diabetic nephropathy (DN) suffers additional damage remains unknown. This study compared the anti-inflammatory capacities of HDL from healthy controls, T2DM patients with normal renal function, and T2DM patients with DN. HDL was isolated from healthy controls (n=33) and T2DM patients with normal renal function (n=21), chronic kidney disease (CKD) (n=27), and end-stage renal disease (ESRD) (n=27). Human peripheral blood mononuclear cells (PBMCs) from healthy volunteers were pretreated with HDL (100μg/mL) for 1h, then incubated with lipopolysaccharide (LPS) (50ng/mL) for 24h. The anti-inflammatory ability of HDL was measured as the secretion of TNF-α in LPS-activated monocytes. The anti-inflammatory ability of HDL was gradually impaired as kidney function declined. Serum amyloid A (SAA) concentration in HDL(DN) significantly increased and was positively correlated with the impaired anti-inflammatory ability of HDL (Pearson r=0.315, P=0.006). Furthermore, HDL supplemented with SAA significantly increased TNF-α release from PBMCs compared with that from control HDL. These findings identified an impaired anti-inflammatory capacity of HDL from DN patients, which might be attributable to SAA enrichment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Topical Anti-inflammatory Activity of New Hybrid Molecules of Terpenes and Synthetic Drugs.

    Science.gov (United States)

    Theoduloz, Cristina; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Cádiz, Solange; Bustamante, Fernanda; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2015-06-18

    The aim of the study was to assess changes in the activity of anti-inflammatory terpenes from Chilean medicinal plants after the formation of derivatives incorporating synthetic anti-inflammatory agents. Ten new hybrid molecules were synthesized combining terpenes (ferruginol (1), imbricatolic acid (2) and oleanolic acid (3)) with ibuprofen (4) or naproxen (5). The topical anti-inflammatory activity of the compounds was assessed in mice by the arachidonic acid (AA) and 12-O-tetradecanoyl phorbol 13-acetate (TPA) induced ear edema assays. Basal cytotoxicity was determined towards human lung fibroblasts, gastric epithelial cells and hepatocytes. At 1.4 µmol/mouse, a strong anti-inflammatory effect in the TPA assay was observed for oleanoyl ibuprofenate 12 (79.9%) and oleanoyl ibuprofenate methyl ester 15 (80.0%). In the AA assay, the best activity was observed for 12 at 3.2 µmol/mouse, with 56.8% reduction of inflammation, in the same range as nimesulide (48.9%). All the terpenyl-synthetic anti-inflammatory hybrids showed better effects in the TPA assay, with best activity for 6, 12 and 15. The cytotoxicity of the compounds 8 and 10 with a free COOH, was higher than that of 2. The derivatives from 3 were less toxic than the triterpene. Several of the new compounds presented better anti-inflammatory effect and lower cytotoxicity than the parent terpenes.

  19. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages.

    Science.gov (United States)

    Maldifassi, Maria C; Atienza, Gema; Arnalich, Francisco; López-Collazo, Eduardo; Cedillo, Jose L; Martín-Sánchez, Carolina; Bordas, Anna; Renart, Jaime; Montiel, Carmen

    2014-01-01

    Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR) powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS)-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs), has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M), a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3) or two convergent cascades (JAK2/STAT3 and PI3K/STAT3), is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the 'endotoxin tolerant' phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases.

  20. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages.

    Directory of Open Access Journals (Sweden)

    Maria C Maldifassi

    Full Text Available Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs, has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M, a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3 or two convergent cascades (JAK2/STAT3 and PI3K/STAT3, is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the 'endotoxin tolerant' phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases.

  1. Physalins with anti-inflammatory activity are present in Physalis alkekengi var. franchetii and can function as Michael reaction acceptors.

    Science.gov (United States)

    Ji, Long; Yuan, Yonglei; Luo, Liping; Chen, Zhe; Ma, Xiaoqiong; Ma, Zhongjun; Cheng, Lin

    2012-04-01

    Michael reaction acceptors (MRAs) are a class of active molecules that are directly or indirectly involved in various cellular processes, including the regulation of many signaling pathways. In this study, the inducible nitric oxide synthase (iNOS) assay was used to demonstrate that the dichloromethane extract of Physalis alkekengi var. franchetii (DCEP) possesses anti-inflammatory activity that might be attributed to the modification of key cysteine residues in IKKβ by the MRAs in DCEP. To isolate these MRAs, glutathione (GSH) was employed, and a simple ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) screening method was developed to investigate the GSH conjugates with potential MRAs. Five physalins, including one new compound isophysalin A (2), together with four known steroidal compounds, physalin A (1), physalin O (3), physalin L (4) and physalin G (5), were isolated to evaluate the GSH conjugating abilities, and it was indicated that compounds 1, 2 and 3, which had a common α,β-unsaturated ketone moiety, exhibited conjugating abilities with GSH and also showed significant nitric oxide (NO) production inhibiting activities. The anti-inflammatory activities of compounds 1, 2 and 3 might be attributed to their targeting multiple cysteine residues on IKKβ; therefore, the alkylation of IKKβ by compound 1 was further studied by micrOTOF-MS. The result showed that six cysteine residues (C(59), C(179), C(299), C(370), C(412), and C(618)) were alkylated, which indicated that IKKβ is a potential target for the anti-inflammatory activity of physalin A.

  2. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS-Stimulated Human THP-1 Macrophages

    Directory of Open Access Journals (Sweden)

    Ruairi C. Robertson

    2015-08-01

    Full Text Available Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus and one microalga (Pavlova lutheri were assessed in lipopolysaccharide (LPS-stimulated human THP-1 macrophages. Extracts contained 34%–42% total fatty acids as n-3 PUFA and 5%–7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL-6 (p < 0.05 and IL-8 (p < 0.05 while that of P. lutheri inhibited IL-6 (p < 0.01 production. Quantitative gene expression analysis of a panel of 92 genes linked to inflammatory signaling pathway revealed down-regulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1 by the lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases.

  3. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Ano

    Full Text Available Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body

  4. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Chiong HS

    2013-03-01

    Full Text Available Hoe Siong Chiong,1 Yoke Keong Yong,1 Zuraini Ahmad,1 Mohd Roslan Sulaiman,1 Zainul Amiruddin Zakaria,1 Kah Hay Yuen,2 Muhammad Nazrul Hakim1,31Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia; 3Sports Academy, Universiti Putra Malaysia, Serdang, MalaysiaBackground: Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.Methods: Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7.Results: Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine.Conclusion: This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.Keywords: liposomes, nitric oxide, cytokines, prostaglandin E2, interleukin-1β, piroxicam

  5. Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats.

    Directory of Open Access Journals (Sweden)

    Chistiane Oliveira Coura

    Full Text Available The anti-inflammatory mechanisms of the sulfated polysaccharidic fraction obtained from red marine alga Gracilaria cornea (Gc-FI were investigated using a paw edema model induced in rats by different inflammatory agents (carrageenan, dextran, serotonin, bradykinin, compound 48/80 or L-arginine. Gc-FI at the doses of 3, 9 or 27 mg/kg, subcutaneously--s.c., significantly inhibited rat paw edema induced by carrageenan and dextran, as confirmed by myeloperoxidase and Evans' blue assessments, respectively. Gc-FI (9 mg/kg, s.c. inhibited rat paw edema induced by histamine, compound 48/80 and L-arginine. Additionally, Gc-FI (9 mg/kg, s.c. inhibited Cg-induced edema in animals with intact mast cells but did not inhibit that with degranulated mast cells by compound 48/80, revealing a protective role on mast cell membranes. Gc-FI down-regulated the IL-1β, TNF-α and COX-2 mRNA and protein levels compared with those of the carrageenan group, based on qRT-PCR and immunohistochemistry analyses. After inhibition with ZnPP IX, a specific heme oxygenase-1 (HO-1 inhibitor, the anti-inflammatory effect of Gc-FI was not observed in Cg-induced paw edema, suggesting that the anti-inflammatory effect of Gc-FI is, in part, dependent on the integrity of the HO-1 pathway. Gc-FI can target a combination of multiple points involved in inflammatory phenomena.

  6. Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats.

    Science.gov (United States)

    Coura, Chistiane Oliveira; Souza, Ricardo Basto; Rodrigues, José Ariévilo Gurgel; Vanderlei, Edfranck de Sousa Oliveira; de Araújo, Ianna Wivianne Fernandes; Ribeiro, Natássia Albuquerque; Frota, Annyta Fernandes; Ribeiro, Kátia Alves; Chaves, Hellíada Vasconcelos; Pereira, Karuza Maria Alves; da Cunha, Rodrigo Maranguape Silva; Bezerra, Mirna Marques; Benevides, Norma Maria Barros

    2015-01-01

    The anti-inflammatory mechanisms of the sulfated polysaccharidic fraction obtained from red marine alga Gracilaria cornea (Gc-FI) were investigated using a paw edema model induced in rats by different inflammatory agents (carrageenan, dextran, serotonin, bradykinin, compound 48/80 or L-arginine). Gc-FI at the doses of 3, 9 or 27 mg/kg, subcutaneously--s.c., significantly inhibited rat paw edema induced by carrageenan and dextran, as confirmed by myeloperoxidase and Evans' blue assessments, respectively. Gc-FI (9 mg/kg, s.c.) inhibited rat paw edema induced by histamine, compound 48/80 and L-arginine. Additionally, Gc-FI (9 mg/kg, s.c.) inhibited Cg-induced edema in animals with intact mast cells but did not inhibit that with degranulated mast cells by compound 48/80, revealing a protective role on mast cell membranes. Gc-FI down-regulated the IL-1β, TNF-α and COX-2 mRNA and protein levels compared with those of the carrageenan group, based on qRT-PCR and immunohistochemistry analyses. After inhibition with ZnPP IX, a specific heme oxygenase-1 (HO-1) inhibitor, the anti-inflammatory effect of Gc-FI was not observed in Cg-induced paw edema, suggesting that the anti-inflammatory effect of Gc-FI is, in part, dependent on the integrity of the HO-1 pathway. Gc-FI can target a combination of multiple points involved in inflammatory phenomena.

  7. Anti-inflammatory effect of Taraxacum officinale leaves on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells.

    Science.gov (United States)

    Koh, Yoon-Jeoung; Cha, Dong-Soo; Ko, Je-Sang; Park, Hyun-Jin; Choi, Hee-Don

    2010-08-01

    To investigate the efficacy and the mechanism of the anti-inflammatory effect of Taraxacum officinale leaves (TOLs), the effect of a methanol extract and its fractions recovered from TOLs on lipopolysaccharide (LPS)-induced responses was studied in the mouse macrophage cell line, RAW 264.7. Cells were pretreated with various concentrations of the methanol extract and its fractions and subsequently incubated with LPS (1 microg/mL). The levels of nitric oxide (NO), prostaglandin (PG) E(2), and pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were determined using enzyme-linked immunosorbent assays. Expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and activation of mitogen-activated protein (MAP) kinases were analyzed using western blotting. The methanol extract and its fractions inhibited LPS-induced production of NO, pro-inflammatory cytokines, and PGE(2) in a dose-dependent manner. The chloroform fraction significantly suppressed production of NO, PGE(2), and two pro-inflammatory cytokines (TNF-alpha and IL-1beta) in a dose-dependent manner with 50% inhibitory concentration values of 66.51, 90.96, 114.76, and 171.06 microg/mL, respectively. The ethyl acetate fraction also inhibited production of the inflammatory molecules. The chloroform and ethyl acetate fractions reduced LPS-induced expressions of iNOS and COX-2 and activation of MAP kinases in a dose-dependent manner. Among the fractions of the methanol extract, the chloroform and ethyl acetate fractions exhibited the most effective anti-inflammatory activities. These results show that the anti-inflammatory effects of TOLs are probably due to down-regulation of NO, PGE(2), and pro-inflammatory cytokines and reduced expressions of iNOS and COX-2 via inactivation of the MAP kinase signal pathway.

  8. Anti-inflammatory activity of Punica granatum L. (Pomegranate) rind extracts applied topically to ex vivo skin.

    Science.gov (United States)

    Houston, David M J; Bugert, Joachim; Denyer, Stephen P; Heard, Charles M

    2017-03-01

    Coadministered pomegranate rind extract (PRE) and zinc (II) produces a potent virucidal activity against Herpes simplex virus (HSV); however, HSV infections are also associated with localised inflammation and pain. Here, the objective was to determine the anti-inflammatory activity and relative depth penetration of PRE, total pomegranate tannins (TPT) and zinc (II) in skin, ex vivo. PRE, TPT and ZnSO4 were dosed onto freshly excised ex vivo porcine skin mounted in Franz diffusion cells and analysed for COX-2, as a marker for modulation of the arachidonic acid inflammation pathway, by Western blotting and immunohistochemistry. Tape stripping was carried out to construct relative depth profiles. Topical application of PRE to ex vivo skin downregulated expression of COX-2, which was significant after just 6h, and maintained for up to 24h. This was achieved with intact stratum corneum, proving that punicalagin penetrated skin, further supported by the depth profiling data. When PRE and ZnSO4 were applied together, statistically equal downregulation of COX-2 was observed when compared to the application of PRE alone; no effect followed the application of ZnSO4 alone. TPT downregulated COX-2 less than PRE, indicating that tannins alone may not be entirely responsible for the anti-inflammatory activity of PRE. Punicalagin was found throughout the skin, in particular the lower regions, indicating appendageal delivery as a significant route to the viable epidermis. Topical application of TPT and PRE had significant anti-inflammatory effects in ex vivo skin, confirming that PRE penetrates the skin and modulates COX-2 regulation in the viable epidermis. Pomegranates have potential as a novel approach in ameliorating the inflammation and pain associated with a range of skin conditions, including cold sores and herpetic stromal keratitis.

  9. Anti-Inflammatory Effects of Vitamin D on Human Immune Cells in the Context of Bacterial Infection

    Science.gov (United States)

    Hoe, Edwin; Nathanielsz, Jordan; Toh, Zheng Quan; Spry, Leena; Marimla, Rachel; Balloch, Anne; Mulholland, Kim; Licciardi, Paul V.

    2016-01-01

    Vitamin D induces a diverse range of biological effects, including important functions in bone health, calcium homeostasis and, more recently, on immune function. The role of vitamin D during infection is of particular interest given data from epidemiological studies suggesting that vitamin D deficiency is associated with an increased risk of infection. Vitamin D has diverse immunomodulatory functions, although its role during bacterial infection remains unclear. In this study, we examined the effects of 1,25(OH)2D3, the active metabolite of vitamin D, on peripheral blood mononuclear cells (PBMCs) and purified immune cell subsets isolated from healthy adults following stimulation with the bacterial ligands heat-killed pneumococcal serotype 19F (HK19F) and lipopolysaccharide (LPS). We found that 1,25(OH)2D3 significantly reduced pro-inflammatory cytokines TNF-α, IFN-γ, and IL-1β as well as the chemokine IL-8 for both ligands (three- to 53-fold), while anti-inflammatory IL-10 was increased (two-fold, p = 0.016) in HK19F-stimulated monocytes. Levels of HK19F-specific IFN-γ were significantly higher (11.7-fold, p = 0.038) in vitamin D-insufficient adults (50 nmol/L). Vitamin D also shifted the pro-inflammatory/anti-inflammatory balance towards an anti-inflammatory phenotype and increased the CD14 expression on monocytes (p = 0.008) in response to LPS but not HK19F stimulation. These results suggest that 1,25(OH)2D3 may be an important regulator of the inflammatory response and supports further in vivo and clinical studies to confirm the potential benefits of vitamin D in this context. PMID:27973447

  10. Exploring the anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Nabanita; Das, Subhadip; Bose, Dipayan; Banerjee, Somenath; Das, Sujata [Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, West Bengal (India); Chattopadhyay, Debprasad [ICMR Virus Unit, ID and BG Hospital, GB 4, 57 Dr Suresh C Banerjee Road, Beliaghata, Kolkata-700010 (India); Saha, Krishna Das, E-mail: krishnaiicb@yahoo.com [Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, West Bengal (India)

    2012-10-15

    Inflammation is a protective immune response against harmful stimuli whose long time continuation results in host disease. Quinazolinones are nitrogen containing heterocyclic compounds with wide spectrum of biological activities. The anticancer effect of a 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative was reported earlier. The anti-inflammatory effect of these quinazolinone derivatives has now been examined in endotoxin stimulated macrophages and in different in vivo models of inflammation by measuring the proinflammatory cytokines (TNF-α, IL-1β and IL-6), mediators NO and NF-κB (by ELISA and western blot), and translocation of the nuclear factor kB (by immunocytochemical analysis). To elucidate the in vivo effect, mice endotoxin model was and the various levels of edema, inflammatory pain and vascular permeability were studied. One of the quinazolinone derivatives showed significant anti-inflammatory activity in stimulated macrophage cells by inhibiting the expression of TNF-α, IL-1β, IL-6, iNOS, COX-2, p-IκB and NF-κBp65. Significant (P < 0.01) improvement was observed in the mortality of endotoxemic mice. The carrageenan and formalin-induced paw edema thicknesses were found to be reduced significantly (P < 0.01) along with the reduction of pain, vascular permeability and edema induced by complete Freund's adjuvant (P < 0.01). These findings indicate that 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative as a potential anti-inflammatory agent. -- Highlights: ► 2-phenylquinazoline analog suppresses the cytokines in stimulated macrophages. ► 2-phenylquinazoline analog down regulated NF-kB P65 translocation. ► Role of 2-phenylquinazoline analog in endotoximia and peripheral inflammations.

  11. Stellera chamaejasme and its constituents induce cutaneous wound healing and anti-inflammatory activities

    Science.gov (United States)

    Kim, Myungsuk; Lee, Hee Ju; Randy, Ahmad; Yun, Ji Ho; Oh, Sang-Rok; Nho, Chu Won

    2017-01-01

    Stellera chamaejasme L. (Thymelaeaceae) is a perennial herb that is widely used in traditional Chinese medicine to treat tumours, tuberculosis and psoriasis. S. chamaejasme extract (SCE) possesses anti-inflammatory, analgesic and wound healing activities; however, the effect of S. chamaejasme and its active compounds on cutaneous wound healing has not been investigated. We assessed full-thickness wounds of Sprague-Dawley (SD) rats and topically applied SCE for 2 weeks. In vitro studies were performed using HaCaT keratinocytes, Hs68 dermal fibroblasts and RAW 264.7 macrophages to determine cell viability (MTT assay), cell migration, collagen expression, nitric oxide (NO) production, prostaglandin E2 (PGE2) production, inflammatory cytokine expression and β-catenin activation. In vivo, wound size was reduced and epithelisation was improved in SCE-treated SD rats. In vitro, SCE and its active compounds induced keratinocyte migration by regulating the β-catenin, extracellular signal-regulated kinase and Akt signalling pathways. Furthermore, SCE and its active compounds increased mRNA expression of type I and III collagen in Hs68 fibroblasts. SCE and chamechromone inhibited NO and PGE2 release and mRNA expression of inflammatory mediators in RAW 264.7 macrophages. SCE enhances the motility of HaCaT keratinocytes and improves cutaneous wound healing in SD rats. PMID:28220834

  12. 抗炎性细胞因子与抑郁症%Anti-inflammatory Cytokines and Depression

    Institute of Scientific and Technical Information of China (English)

    徐说; 林文娟

    2014-01-01

    细胞因子假说是关于抑郁症发病机理的重要假说,为探讨抑郁症的发病机理和临床治疗方法提供了新方向.细胞因子分为前炎性细胞因子和抗炎性细胞因子.前炎性细胞因子与抑郁症的发病密切相关,而抗炎性细胞因子可能具有抗抑郁的作用.本文着重综述抗炎性细胞因子与抑郁症的关系.抗炎性细胞因子如白介素10、白介素1受体拮抗剂、白介素4、白介素13、转化生长因子β和脂联素等,在抑郁症中表达下降;补充外源抗炎性细胞因子则具有一定的抗抑郁作用.抗炎性细胞因子可通过拮抗前炎性细胞因子的作用,并与MAPK信号通路、神经递质和糖皮质激素相互作用而参与到抑郁症中.抗抑郁药能使抗炎性细胞因子的表达上升,这可能是药物起效的机制之一.抗炎策略在抑郁症的治疗中有重要应用前景.%In recent years,the cytokine hypothesis of depression has received considerable research attention,providing insights on the mechanism study and the therapeutic treatment of depressive disorders.Two classes of cytokines,pro-inflammatory cytokines and anti-inflammatory cytokines,are proven to be associated with depression.In this review,the focus is on the research of anti-inflammatory cytokines,which are believed to have a key role in alleviating depression-related symptoms.Anti-inflammatory cytokines,such as interleukin-10,interleukin-1 receptor antagonist,interleukin-4,interleukin-13,transforming growth factor-β,and adiponectin,show decreased concentrations during depressive episodes.Anti-inflammatory cytokines participate in the regulation mechanism of depression through antagonizing pro-inflammatory cytokines and interacting with MAPK signaling,neurotransmitters,and glucocorticoids.Various kinds of antidepressants can lead to an increased secretion of anti-inflammatory cytokines,which might be the action mechanism of antidepressants.Overall,accumulating evidences from

  13. Effect of a non-steroidal, anti-inflammatory drug (Indocin) on selected parameters of muscular function following concentric and eccentric work

    OpenAIRE

    Vejarano, Maria Eugenia

    1985-01-01

    Evidence from various studies indicates that eccentric contractions produce more post-exercise changes in muscular function than do concentric contractions. Delayed muscular soreness, the pain and tenderness present 1 or 2 days after exercise, is negatively correlated with muscular performance and occurs particularly after eccentric work. The action of an analgesic, anti-inflammatory drug (Indocin) on muscular soreness indicates it may be effective in accelerating recover...

  14. Anti-inflammatory effect of Chang-An-Shuan on TNBS-induced experimental colitis in rats.

    Science.gov (United States)

    Mi, Hong; Liu, Feng-Bin; Li, Hai-Wen; Hou, Jiang-Tao; Li, Pei-Wu

    2017-06-15

    the expression levels of NF-κBp-65, p-38 and p-AKT. We suggest that CAS is a potential alternative remedial approach for treating IBD conditions, and the anti-inflammatory effect of CAS is associated with the down-regulation of the NF-κB signaling pathway and the balanced production of pro- and anti-inflammatory cytokines.

  15. Anti-inflammatory effects of enzyme-treated asparagus extract and its constituents in hepatocytes

    Directory of Open Access Journals (Sweden)

    Mikio Nishizawa

    2016-02-01

    Full Text Available Background:Asparagus (Asparagus officinalisL. is one of the most ancient vegetablesin the world, andis rich in asparagine. Enzyme-treated asparagus extract (ETAS™; Amino Up Chemical Co., Ltd., Sapporo, Japan is the final product of enzyme-treatment of asparagus stems and subsequent extraction. Two constituents were purified from ETAS and identified: 5-hydroxymethyl-2-furfural (HMF, an abundant constituent, and (S-asfural, a novel constituent, which is a derivative of HMF. ETAS has been reported to increase the expression of heat shock proteins (HSPs, which are essential for the repair or removal of defective proteins. The expression of Hspfamily genes is regulated by the transcription factor heat shock factor 1 (HSF1. It is unknown whether ETAS and its constituents elicit anti-inflammatory effects, such as the suppression of nitric oxide (NO, an inflammatory mediator synthesized by inducible nitric oxide synthase (iNOS in interleukin (IL-1β-treated hepatocytes. Objective:To examine the anti-inflammatory effects of ETAS, we treated rat hepatocytes with ETAS, or its constituents (S-asfural or HMF, and IL-1β, beforethen analyzingthe expression of the iNOSgene and other genes involved in inflammation.Methods:Primary cultured rat hepatocytes were prepared by collagenase perfusion. ETAS, (S-asfural, or HMF was added to the medium with IL-1β and incubated at 37 °C. When necessary, an inhibitor of HSF1 was added. NO in the medium was measured by the Griess method, and the half-maximal inhibitory concentration (IC50 values were determined. To analyze the mRNA expression, a reverse transcription-quantitative polymerase chain reaction was performed. Antibody arrays were used to determine the levels of cytokines and chemokines in the medium.Results:ETAS suppressed NO production in IL-1β-treated hepatocytes without causing cytotoxicity. ETAS decreased the levels of both iNOS mRNA and the antisense transcript, whereas it increased the levels of Hsf1 m

  16. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Ryota Yamanishi

    Full Text Available Flavanol (flavan-3-ol-rich lychee fruit extract (FRLFE is a mixture of oligomerized polyphenols primarily derived from lychee fruit and is rich in flavanol monomers, dimers, and trimers. Supplementation with this functional food has been shown to suppress inflammation and tissue damage caused by high-intensity exercise training. However, it is unclear whether FRLFE has in vitro anti-inflammatory effects, such as suppressing the production of the proinflammatory cytokine tumor necrosis factor α (TNF-α and the proinflammatory mediator nitric oxide (NO, which is synthesized by inducible nitric oxide synthase (iNOS. Here, we analyzed the effects of FRLFE and its constituents on the expression of inflammatory genes in interleukin 1β (IL-1β-treated rat hepatocytes. FRLFE decreased the mRNA and protein expression of the iNOS gene, leading to the suppression of IL-1β-induced NO production. FRLFE also decreased the levels of the iNOS antisense transcript, which stabilizes iNOS mRNA. By contrast, unprocessed lychee fruit extract, which is rich in flavanol polymers, and flavanol monomers had little effect on NO production. When a construct harboring the iNOS promoter fused to the firefly luciferase gene was used, FRLFE decreased the luciferase activity in the presence of IL-1β, suggesting that FRLFE suppresses the promoter activity of the iNOS gene at the transcriptional level. Electrophoretic mobility shift assays indicated that FRLFE reduced the nuclear transport of a key regulator, nuclear factor κB (NF-κB. Furthermore, FRLFE inhibited the phosphorylation of NF-κB inhibitor α (IκB-α. FRLFE also reduced the mRNA levels of NF-κB target genes encoding cytokines and chemokines, such as TNF-α. Therefore, FRLFE inhibited NF-κB activation and nuclear translocation to suppress the expression of these inflammatory genes. Our results suggest that flavanols may be responsible for the anti-inflammatory and hepatoprotective effects of FRLFE and may be

  17. Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds.

    Directory of Open Access Journals (Sweden)

    Larissa Cardoso Corrêa Araújo

    Full Text Available BACKGROUND: The extract from Moringa oleifera seeds is used worldwide, especially in rural areas of developing countries, to treat drinking water. M. oleifera seeds contain the lectins cmol and WSMoL, which are carbohydrate-binding proteins that are able to reduce water turbidity because of their coagulant activity. Studies investigating the ability of natural products to damage normal cells are essential for the safe use of these substances. This study evaluated the cytotoxic and anti-inflammatory properties of the aqueous seed extract, the extract used by population to treat water (named diluted seed extract in this work, and the isolated lectins cmol and WSMoL. METHODOLOGY/PRINCIPAL FINDINGS: The data showed that the aqueous seed extract and cmol were potentially cytotoxic to human peripheral blood mononuclear cells, while WSMoL and diluted seed extract were not cytotoxic. The M. oleifera aqueous seed extract and the lectins cmol and WSMoL were weakly/moderately cytotoxic to the NCI-H292, HT-29 and HEp-2 cancer cell lines and were not hemolytic to murine erythrocytes. Evaluation of acute toxicity in mice revealed that the aqueous seed extract (2.000 mg/kg did not cause systemic toxicity. The aqueous seed extract, cmol and WSMoL (6.25 µg/mL and diluted seed extract at 50 µg/mL exhibited anti-inflammatory activity on lipopolyssaccharide-stimulated murine macrophages by regulating the production of nitric oxide, TNF-α and IL-1β. The aqueous seed extract reduced leukocyte migration in a mouse model of carrageenan-induced pleurisy; the myeloperoxidase activity and nitric oxide, TNF-α and IL-1β levels were similarly reduced. Histological analysis of the lungs showed that the extract reduced the number of leukocytes. CONCLUSION/SIGNIFICANCE: This study shows that the extract prepared according to folk use and WSMoL may be non-toxic to mammalian cells; however, the aqueous seed extract and cmol may be cytotoxic to immune cells which may explain

  18. Evaluation of Cytotoxic and Anti-Inflammatory Activities of Extracts and Lectins from Moringa oleifera Seeds

    Science.gov (United States)

    Araújo, Larissa Cardoso Corrêa; Aguiar, Jaciana Santos; Napoleão, Thiago Henrique; Mota, Fernanda Virgínia Barreto; Barros, André Luiz Souza; Moura, Maiara Celine; Coriolano, Marília Cavalcanti; Coelho, Luana Cassandra Breitenbach Barroso; Silva, Teresinha Gonçalves; Paiva, Patrícia Maria Guedes

    2013-01-01

    Background The extract from Moringa oleifera seeds is used worldwide, especially in rural areas of developing countries, to treat drinking water. M. oleifera seeds contain the lectins cmol and WSMoL, which are carbohydrate-binding proteins that are able to reduce water turbidity because of their coagulant activity. Studies investigating the ability of natural products to damage normal cells are essential for the safe use of these substances. This study evaluated the cytotoxic and anti-inflammatory properties of the aqueous seed extract, the extract used by population to treat water (named diluted seed extract in this work), and the isolated lectins cmol and WSMoL. Methodology/Principal Findings The data showed that the aqueous seed extract and cmol were potentially cytotoxic to human peripheral blood mononuclear cells, while WSMoL and diluted seed extract were not cytotoxic. The M. oleifera aqueous seed extract and the lectins cmol and WSMoL were weakly/moderately cytotoxic to the NCI-H292, HT-29 and HEp-2 cancer cell lines and were not hemolytic to murine erythrocytes. Evaluation of acute toxicity in mice revealed that the aqueous seed extract (2.000 mg/kg) did not cause systemic toxicity. The aqueous seed extract, cmol and WSMoL (6.25 µg/mL) and diluted seed extract at 50 µg/mL exhibited anti-inflammatory activity on lipopolyssaccharide-stimulated murine macrophages by regulating the production of nitric oxide, TNF-α and IL-1β. The aqueous seed extract reduced leukocyte migration in a mouse model of carrageenan-induced pleurisy; the myeloperoxidase activity and nitric oxide, TNF-α and IL-1β levels were similarly reduced. Histological analysis of the lungs showed that the extract reduced the number of leukocytes. Conclusion/Significance This study shows that the extract prepared according to folk use and WSMoL may be non-toxic to mammalian cells; however, the aqueous seed extract and cmol may be cytotoxic to immune cells which may explain the

  19. Reverse kinetics of angiopoietin-2 and endotoxins in acute pyelonephritis: Implications for anti-inflammatory treatment?

    Science.gov (United States)

    Safioleas, Konstantinos; Giamarellos-Bourboulis, Evangelos J; Carrer, Dionyssia-Pinelopi; Pistiki, Aikaterini; Sabracos, Lambros; Deliveliotis, Charalambos; Chrisofos, Michael

    2016-05-01

    Based on former studies showing an antagonism between angiopoietin-2 (Ang-2) and bacterial endotoxins (LPS), we investigated the role of Ang-2 as immunomodulatory treatment. At first, kinetics of circulating LPS in Gram-negative pyelonephritis developing after urinary obstruction was studied. Serum LPS, interleukin (IL)-6 and Ang-2 were measured in 25 patients with acute pyelonephritis and sepsis before and after removal of the obstruction performed either with insertion of a pigtail catheter (n=12) or percutaneous drainage (n=13). At a second stage, Ang-2 was given as anti-inflammatory treatment in 40 rabbits one hour after induction of acute pyelonephritis by ligation of the ureter at the level of pelvo-ureteral junction and upstream bacterial inoculation. Survival was recorded; blood mononuclear cells were isolated and stimulated for the production of tumour necrosis factor-alpha (TNFα). The decrease in circulating LPS was significantly greater among patients undergoing drainage than pigtail insertion. This was accompanied by reciprocal changes of Ang-2 and IL-6. Treatment with Ang-2 prolonged survival from Escherichia coli pyelonephritis despite high levels of circulating LPS. When Ang-2 was given as treatment of Pseudomonas aeruginosa pyelonephritis, sepsis-induced decrease of TNFα production by circulating mononuclear cells was reversed without an effect on tissue bacterial overgrowth. It is concluded that Ang-2 and LPS follow reverse kinetics in acute pyelonephritis. When given as experimental treatment, Ang-2 prolongs survival through an effect on mononuclear cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mechanism of anti-inflammatory and antibacterial activity of Macrophages regulated by bone marrow mesenchymal stem cells%骨髓间充质干细胞对巨噬细胞抗炎及抗菌活性的调节机制研究

    Institute of Scientific and Technical Information of China (English)

    刘红梅; 张罗献

    2016-01-01

    Objective To study the mechanism of anti-inflammatory and antibacterial activity of Macrophages regulated by bone marrow mesenchymal stem cells .Methods The experiment was di-vided into five groups,①RAW264.7 group;②RAW264.7 +CSE group;③RAW264.7 +HPi group;④RAW264.7+CSE+HPi group; ⑤RAW264.7 +CSE+MSCs+HPi group.To detect the expres-sion of cell surface marker CD206 of M2 phenotype macrophage induced by CSE, Haemophilus Parain-fluenzae ( HPi) , MSCs.The expression of NF-кB p65 and pro-inflammatory cytokines such as tumor nec-rosis factor-α( TNF-α) , interleukin-6 ( IL-6 ) ,IL-1βand phagocytic activity of macrophage was detected . Results Compared with group ①,the expression of NF-кB p65, IL-1β, IL-6, TNF-αwas significantly increased in group ②,③,④,⑤ Compared with the group ④, the expression of NF-кB p65 , IL-1β, IL-6, TNF-αwas significantly reduced in group ⑤ by co-cultured MSCs,the expression of CD206 in RAW 264.7+CSE+MSCs+HPi group was significantly increased .Compared with RAW264.7 +HPi group,the phagocytic activity of macrophage in group and ⑤group was significantly reduced .Compared with RAW 264.7+CSE+HPi group, the phagocytic activity of macrophage in group ⑤was significantly enhanced .Conclusions MSCs through paracrine mechanisms can promote macrophages into anti-in-flammatory phenotype , inhibit the NF-кB signaling pathway , reduce inflammatory response induced by CSE and bacteria , and enhance the antibacterial activity of macrophages .%目的:检测骨髓间充质干细胞(MSCs)对香烟烟雾提取物(CSE)诱导的巨噬细胞抗炎和抗菌能力的作用机制。方法实验分五组,①RAW264.7组;②RAW264.7+CSE组;③RAW264.7+HPi组;④RAW264.7+CSE+HPi组;⑤RAW264.7+CSE+MSCs+HPi组。检测CSE、副流感嗜血杆菌( HPi)、MSCs作用下巨噬细胞M2抗炎表型表面标志CD206的表达,NF-кB p65及促炎细胞因子肿瘤坏死因子-α(TNF-α),白细胞介素-6

  1. Human mesenchymal stem/stromal cells (hMSCs) cultured as spheroids are self-activated to produce prostaglandin E2 (PGE2) that directs stimulated macrophages into an anti-inflammatory phenotype

    Science.gov (United States)

    Ylöstalo, Joni H.; Bartosh, Thomas J.; Coble, Katie; Prockop, Darwin J.

    2012-01-01

    Culturing cells in 3D provides an insight into their characteristics in vivo. We previously reported that human mesenchymal stem/stromal cells (hMSCs) cultured as 3D spheroids acquire enhanced anti-inflammatory properties. Here we explored the effects of hMSC spheroids on macrophages that are critical cells in the regulation of inflammation. Conditioned medium from hMSC spheroids inhibited LPS-stimulated macrophages from secreting pro-inflammatory cytokines TNFα, CXCL2, IL6, IL12p40, and IL23. Conditioned medium also increased the secretion of anti-inflammatory cytokines IL10 and IL1ra by the stimulated macrophages, and augmented expression of CD206, a marker of alternatively activated M2 macrophages. The principal anti-inflammatory activity in conditioned medium had a small molecular weight, and microarray data suggested that it was PGE2. This was confirmed by the observations that PGE2 levels were markedly elevated in hMSC spheroid-conditioned medium, and that the anti-inflammatory activity was abolished by an inhibitor of COX-2, a silencing RNA for COX-2, and an antibody to PGE2. The anti-inflammatory effects of the PGE2 on stimulated macrophages were mediated by the EP4 receptor. Spheroids formed by human adult dermal fibroblasts produced low levels of PGE2 and displayed negligible anti-inflammatory effects on stimulated macrophages, suggesting the features as unique to hMSCs. Moreover, production of PGE2 by hMSC spheroids was dependent on the activity of caspases and NFκB activation in the hMSCs. The results indicated that hMSCs in 3D-spheroid cultures are self-activated, in part by intracellular stress responses, to produce PGE2 that can change stimulated macrophages from a primarily pro-inflammatory M1 phenotype to a more anti-inflammatory M2 phenotype. PMID:22865689

  2. Synthesis, Characterization, Anti-Inflammatory and in Vitro Antimicrobial Activity of Some Novel Alkyl/Aryl Substituted Tertiary Alcohols

    Directory of Open Access Journals (Sweden)

    Rafiuzzaman SaeedulHaq

    2011-12-01

    Full Text Available The synthesis of some novel alkyl/aryl substituted tertiary alcohols was accomplished in two steps. The synthetic route involves preparation of Grignard reagents by treating alkyl/aryl bromides with magnesium turnings in dry ether. Then substituted chalcones were reacted with the Grignard reagents to afford alkyl/aryl substituted tertiary alcohols 1-10. The structures of the synthesized compounds were assigned on the basis of FT-IR, 1H-NMR, 13C-NMR and mass spectroscopic data. The in vivo anti-inflammatory activity of the synthesized compounds was evaluated using the carrageenan-induced hind paw edema method and was compared with that of ibuprofen. Some of the newly synthesized compounds showed promising anti-inflammatory activity. The tertiary alcohols 1-10 were also screened for antibacterial activity against ten bacterial strains using seven Gram-positive and three Gram-negative bacteria and for antifungal activity against Aspergillus Flavus, Aspergillus Niger and Aspergillus pterus. Tertiary alcohols 1-10 were found to exhibit good to excellent antimicrobial activities compared to levofloxacin and fluconazole used as standard drugs.

  3. EVALUATION OF ANALGESIC AND ANTI-INFLAMMATORY ACTIVITY OF METHANOLIC EXTRACT OF COCCULUS HIRSUTUS LEAVES

    Directory of Open Access Journals (Sweden)

    G. Sarvankumar

    2011-12-01

    Full Text Available Inflammation and pain are the most common health problems treated with traditional remedies which mainly comprise medicinal plants. A number of natural products are used in the traditional medical systems in many countries. An alternative medicine for the treatment of various diseases is getting more popular. Many medicinal plants provide relief of symptoms comparable to that of obtained from allopathic medicines. Therefore agents of natural origin with very little side effects are required as substitute chemicals therapeutics. The methanolic leaf extract of Cocculus hirsutus (100& 200mg/kg Linn (Menispermaceae was investigated for its analgesic and anti-inflammatory effects in laboratory animals. The analgesic activity of the methanolic leaf extract of Cocculus hirsutus was investigated by eddy’s hot plate model and acetic acid induced writhing in mice. Anti-inflammatory activity of Cocculus hirsutus was studied by both in-vitro and in vivo models. Human red blood cells membrane stabilization method was adopted for the in-vitro anti-inflammatory activity and for in-vivo, Carrageenan induced paw edema and cotton pellet induced granuloma in rats was employed. In eddy’s hot plate analgesic study, both the doses of Cocculus hirsutus showed significant (p<0.05 and p<0.01 respectively analgesic activity. In acetic acid induced writhing model, the onset of writhing was delayed and duration of writhing was shortened by the methanolic extract of Cocculus hirsutus.In-vitro anti-inflammatory activity of the methanolic leaf extract of Cocculus hirsutus showed significant anti inflammatory activity in a concentration dependent manner. Cocculus hirsutus showed significant anti-inflammatory activity on both carrgeenan as well as cotton pellet induced granuloma models in rats. From the results, it was concluded that the methanolic leaf extract of Cocculus hirsutus possess analgesic and anti-inflammatory.

  4. In Vitro and In Vivo Anti-inflammatory Effects of Struthanthus vulgaris.

    Science.gov (United States)

    Marques, Franciane Martins; da Costa, Maycow Rodrigues; Vittorazzi, Cátia; Gramma, Luciane De Souza Dos Santos; Barth, Thiago; de Andrade, Tadeu Uggere; Endringer, Denise Coutinho; Scherer, Rodrigo; Fronza, Marcio

    2017-06-01

    Struthanthus vulgaris is probably the most common medicinal mistletoe plant in Brazil, and has been used in folk medicine as an anti-inflammatory agent and for cleaning skin wounds. Our proposal was to evaluate the anti-inflammatory activity of S. vulgaris ethanol leaf extract and provide further insights of how this biological action could be explained using in vitro and in vivo assays. In vitro anti-inflammatory activity was preliminarily investigated in lipopolysaccharide/interferon gamma-stimulated macrophages based on their ability to inhibit nitric oxide production and tumor necrosis factor-alpha. In vivo anti-inflammatory activity of S. vulgaris ethanol leaf extract was investigated in the mice carrageenan-induced inflammation air pouch model. The air pouches were inoculated with carrageenan and then treated with 50 and 100 mg/kg of S. vulgaris ethanol leaf extract or 1 mg/kg of dexamethasone. Effects on the immune cell infiltrates, pro- and anti-inflammatory mediators such as tumor necrosis factor-alpha, interleukin 1, interleukin 10, and nitric oxide, were evaluated. The chemical composition of S. vulgaris ethanol leaf extract was characterized by LC-MS/MS. In vitro S. vulgaris ethanol leaf extract significantly decreased the production of nitric oxide and tumor necrosis factor-alpha in macrophages and did not reveal any cytotoxicity. In vivo, S. vulgaris ethanol leaf extract significantly suppressed the influx of leukocytes, mainly neutrophils, protein exudation, nitric oxide, tumor necrosis factor-alpha, and interleukin 1 concentrations in the carrageenan-induced inflammation air pouch. In conclusion, S. vulgaris ethanol leaf extract exhibited prominent anti-inflammatory effects, thereby endorsing its usefulness as a medicinal therapy against inflammatory diseases, and suggesting that S. vulgaris ethanol leaf extract may be a source for the discovery of novel anti-inflammatory agents. Georg Thieme Verlag KG Stuttgart · New York.

  5. Anti-inflammatory activity of the methanolic extracts of leaves and stems from Tabebuia hypoleuca (C. Wright Urb.

    Directory of Open Access Journals (Sweden)

    Ada I. Regalado

    2015-10-01

    Full Text Available Context: There are reports in the literature of species belonging to the genus Tabebuia with pharmacological potential as anti-inflammatory: Tabebuia avellanedae, Tabebuia chrysanta, Tabebuia rosea, Tabebuia ochracea, among others; however, about of the species Tabebuia hypoleuca no studies demonstrating this activity so far. Aims: To determine the anti-inflammatory activity in the acute phase of the methanolic extracts of T. hypoleuca. Methods: Leaves and stems of T. hypoleuca were collected. The anti-inflammatory activity was assessed using the carrageenin-induced paw edema models and the croton oil induced auricular edema in mice. The qualitative identification of secondary metabolites present in the methanolic extracts was performed by a preliminary phytochemical screening. Results: The anti-inflammatory activity assessments showed that methanol extract of the leaves do not have anti-inflammatory activity at doses tested, while the methanol extract of the stems at the dose of 500 mg/kg showed a significant anti-inflammatory activity in the model of carrageenan-induced paw edema. In the model of croton oil induced auricular edema the methanol extract of the stems administered orally and intraperitoneally showed a significant anti-inflammatory activity at all doses tested. The anti-inflammatory activity found could be due to the presence of metabolites such as tannins, phenols and alkaloids. Conclusions: These studies demonstrate the anti-inflammatory activity of the methanol extract of the stems of Tabebuia hypoleuca, and constitute the first report about this species as anti-inflammatory.

  6. Anti-Inflammatory Therapy Modulates Nrf2-Keap1 in Kidney from Rats with Diabetes

    Science.gov (United States)

    Arellano-Buendía, Abraham Said; Tostado-González, Montserrat; García-Arroyo, Fernando Enrique; Cristóbal-García, Magdalena; Loredo-Mendoza, María Lilia; Tapia, Edilia; Sánchez-Lozada, Laura-Gabriela; Osorio-Alonso, Horacio

    2016-01-01

    This study addressed the relationship of proinflammatory cytokines and Nrf2-Keap1 system in diabetic nephropathy. The experimental groups were control, diabetic, and diabetic treated with mycophenolate mofetil (MMF). The renal function, proinflammatory and profibrotic cytokines, oxidative stress, morphology, and nephrin expression were assessed. Diabetic group showed impaired renal function in association with oxidative stress and decreased Nrf2 nuclear translocation. These results were associated with increased mesangial matrix index, interstitial fibrosis, and increased nephrin expression in cortex and urine excretion. Additionally, interleukin-1β, IL-6, and transforming growth factor-β1 were increased in plasma and kidney. MMF treatment conserved renal function, prevented renal structural alterations, and partially prevented the proinflammatory and profibrotic cytokines overexpression. Despite that MMF treatment induced nephrin overexpression in renal tissue, preventing its urinary loss. MMF salutary effects were associated with a partial prevention of oxidative stress, increased Nrf2 nuclear translocation, and conservation of antioxidant enzymes in renal tissue. In conclusion, our results confirm that inflammation is a key factor in the progression of diabetic nephropathy and suggest that treatment with MMF protects the kidney by an antioxidant mechanism, possibly regulated at least in part by the Nrf2/Keap1 system, in addition to its well-known anti-inflammatory effects. PMID:26955430

  7. Novel anti-inflammatory interleukin-35 as an emerging target for antiatherosclerotic therapy.

    Science.gov (United States)

    Bobryshev, Yuri V; Sobenin, Igor A; Orekhov, Alexander N; Chistiakov, Dimitry A

    2015-01-01

    Atherosclerosis has been widely recognized as a slow progressing inflammatory disease of the aorta and other large caliber arterial vessels. Accumulating evidence suggest that interleukin (IL)-35 can represent an attractive target for future anti-atherosclerotic therapy due to several atheroprotective properties. First, immunosuppressive and anti-inflammatory activity of this cytokine could be beneficial against vascular inflammation. Second, IL-35 can suppress a variety of T cells including proinflammatory Th1 and Th17 cells and probably dendritic cells. Third, IL-35 supports proliferation of regulatory T cells (Tregs), increases their inhibitory function, and induces a new set of Tregs called inducible IL-35-producing Tregs (iTr35 cells). Fourth, this cytokine promotes production of antiinflammatory cytokines such as IL-10 and down-regulates expression of proinflammatory cytokines such as IL-17. Finally, IL-35 is inducible. The fact that IL-35 could be induced by simple compounds such as chemical chaperons may provide advances in developing new efficient strategies for treatment of atherosclerosis. However, it is necessary to test IL-35-inducing factors in order to understand mechanisms of induction and then select the most optimal one. Probably, constructing of humanized antibodies that mimic IL-35 function may provide benefits for advanced atheroprotective therapy.

  8. Anti-Inflammatory Therapy Modulates Nrf2-Keap1 in Kidney from Rats with Diabetes

    Directory of Open Access Journals (Sweden)

    Abraham Said Arellano-Buendía

    2016-01-01

    Full Text Available This study addressed the relationship of proinflammatory cytokines and Nrf2-Keap1 system in diabetic nephropathy. The experimental groups were control, diabetic, and diabetic treated with mycophenolate mofetil (MMF. The renal function, proinflammatory and profibrotic cytokines, oxidative stress, morphology, and nephrin expression were assessed. Diabetic group showed impaired renal function in association with oxidative stress and decreased Nrf2 nuclear translocation. These results were associated with increased mesangial matrix index, interstitial fibrosis, and increased nephrin expression in cortex and urine excretion. Additionally, interleukin-1β, IL-6, and transforming growth factor-β1 were increased in plasma and kidney. MMF treatment conserved renal function, prevented renal structural alterations, and partially prevented the proinflammatory and profibrotic cytokines overexpression. Despite that MMF treatment induced nephrin overexpression in renal tissue, preventing its urinary loss. MMF salutary effects were associated with a partial prevention of oxidative stress, increased Nrf2 nuclear translocation, and conservation of antioxidant enzymes in renal tissue. In conclusion, our results confirm that inflammation is a key factor in the progression of diabetic nephropathy and suggest that treatment with MMF protects the kidney by an antioxidant mechanism, possibly regulated at least in part by the Nrf2/Keap1 system, in addition to its well-known anti-inflammatory effects.

  9. Anti-Inflammatory Effects of TRAF-Interacting Protein in Rheumatoid Arthritis Fibroblast-Like Synoviocytes

    Directory of Open Access Journals (Sweden)

    Qing-Zhu Kong

    2016-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic systemic inflammatory disease characterized by inflammatory cell infiltration, synovial inflammation, and cartilage destruction. Proliferative fibroblast-like synoviocytes (FLS play crucial roles in both propagation of inflammation and joint damage because of their production of great amount of proinflammatory cytokines and proteolytic enzymes. In this study, we investigate the role of TRAF-interacting protein (TRIP in regulating inflammatory process in RA-FLS. TRIP expression was attenuated in RA-FLS compared with osteoarthritis- (OA- FLS. Overexpression of TRIP significantly inhibited the activation of NF-κB signaling and decreased the production of proinflammatory cytokines and matrix metalloproteinases (MMPs in TNFα-stimulated RA-FLS. Furthermore, TRIP was found to interact with transforming growth factor β-activated kinase 1 (TAK1 and promoting K48-linked polyubiquitination of TAK1 in RA-FLS. Our results demonstrate that TRIP has anti-inflammatory effects on RA-FLS and suggest TRIP as a potential therapeutic target for human RA.

  10. Enrichment of endogenous fractalkine and anti-inflammatory cells via aptamer-functionalized hydrogels.

    Science.gov (United States)

    Enam, Syed Faaiz; Krieger, Jack R; Saxena, Tarun; Watts, Brian E; Olingy, Claire E; Botchwey, Edward A; Bellamkonda, Ravi V

    2017-10-01

    Early recruitment of non-classical monocytes and their macrophage derivatives is associated with augmented tissue repair and improved integration of biomaterial constructs. A promising therapeutic approach to recruit these subpopulations is by elevating local concentrations of chemoattractants such as fractalkine (FKN, CX3CL1). However, delivering recombinant or purified proteins is not ideal due to their short half-lives, suboptimal efficacy, immunogenic potential, batch variabilities, and cost. Here we report an approach to enrich endogenous FKN, obviating the need for delivery of exogenous proteins. In this study, modified FKN-binding-aptamers are integrated with poly(ethylene glycol) diacrylate to form aptamer-functionalized hydrogels ("aptagels") that localize, dramatically enrich and passively release FKN in vitro for at least one week. Implantation in a mouse model of excisional skin injury demonstrates that aptagels enrich endogenous FKN and stimulate significant local increases in Ly6C(lo)CX3CR1(hi) non-classical monocytes and CD206(+) M2-like macrophages. The results demonstrate that orchestrators of inflammation can be manipulated without delivery of foreign proteins or cells and FKN-aptamer functionalized biomaterials may be a promising approach to recruit anti-inflammatory subpopulations to sites of injury. Aptagels are readily synthesized, highly customizable and could combine different aptamers to treat complex diseases in which regulation or enrichment of multiple proteins may be therapeutic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Therapeutic potential and limitations of cholinergic anti-inflammatory pathway in sepsis.

    Science.gov (United States)

    Kanashiro, Alexandre; Sônego, Fabiane; Ferreira, Raphael G; Castanheira, Fernanda V S; Leite, Caio A; Borges, Vanessa F; Nascimento, Daniele C; Cólon, David F; Alves-Filho, José Carlos; Ulloa, Luis; Cunha, Fernando Q

    2017-03-01

    Sepsis is one of the main causes of mortality in hospitalized patients. Despite the recent technical advances and the development of novel generation of antibiotics, severe sepsis remains a major clinical and scientific challenge in modern medicine. Unsuccessful efforts have been dedicated to the search of therapeutic options to treat the deleterious inflammatory components of sepsis. Recent findings on neuronal networks controlling immunity raised expectations for novel therapeutic strategies to promote the regulation of sterile inflammation, such as autoimmune diseases. Interesting studies have dissected the anatomical constituents of the so-called "cholinergic anti-inflammatory pathway", suggesting that electrical vagus nerve stimulation and pharmacological activation of beta-2 adrenergic and alpha-7 nicotinic receptors could be alternative strategies for improving inflammatory conditions. However, the literature on infectious diseases, such as sepsis, is still controversial and, therefore, the real therapeutic potential of this neuroimmune pathway is not well defined. In this review, we will discuss the beneficial and detrimental effects of neural manipulation in sepsis, which depend on the multiple variables of the immune system and the nature of the infection. These observations suggest future critical studies to validate the clinical implications of vagal parasympathetic signaling in sepsis treatment.

  12. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries.

    Science.gov (United States)

    Luong, Le; Duckles, Hayley; Schenkel, Torsten; Mahmoud, Marwa; Tremoleda, Jordi L; Wylezinska-Arridge, Marzena; Ali, Majid; Bowden, Neil P; Villa-Uriol, Mari-Cruz; van der Heiden, Kim; Xing, Ruoyu; Gijsen, Frank J; Wentzel, Jolanda; Lawrie, Allan; Feng, Shuang; Arnold, Nadine; Gsell, Willy; Lungu, Angela; Hose, Rodney; Spencer, Tim; Halliday, Ian; Ridger, Victoria; Evans, Paul C

    2016-07-04

    Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (pivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.

  13. Anti-atherosclerotic and anti-inflammatory actions of sesame oil.

    Science.gov (United States)

    Narasimhulu, Chandrakala Aluganti; Selvarajan, Krithika; Litvinov, Dmitry; Parthasarathy, Sampath

    2015-01-01

    Atherosclerosis, a major form of cardiovascular disease, has now been recognized as a chronic inflammatory disease. Nonpharmacological means of treating chronic diseases have gained attention recently. We previously reported that sesame oil has anti-atherosclerotic properties. In this study, we have determined the mechanisms by which sesame oil might modulate atherosclerosis by identifying genes and inflammatory markers. Low-density lipoprotein receptor knockout (LDLR(-/-)) female mice were fed with either an atherogenic diet or an atherogenic diet reformulated with sesame oil (sesame oil diet). Plasma lipids and atherosclerotic lesions were quantified after 3 months of feeding. Plasma samples were used for cytokine analysis. RNA was extracted from the liver tissue and used for global gene arrays. The sesame oil diet significantly reduced atherosclerotic lesions, plasma cholesterol, triglyceride, and LDL cholesterol levels in LDLR(-/-) mice. Plasma inflammatory cytokines, such as MCP-1, RANTES, IL-1α, IL-6, and CXCL-16, were significantly reduced, demonstrating an anti-inflammatory property of sesame oil. Gene array analysis showed that sesame oil induced many genes, including ABCA1, ABCA2, APOE, LCAT, and CYP7A1, which are involved in cholesterol metabolism and reverse cholesterol transport. In conclusion, our studies suggest that a sesame oil-enriched diet could be an effective nonpharmacological treatment for atherosclerosis by controlling inflammation and regulating lipid metabolism.

  14. Anti-Inflammatory Activities of a Chinese Herbal Formula IBS-20 In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Zhonghan Yang

    2012-01-01

    Full Text Available Irritable bowel syndrome (IBS is a functional bowel disorder and the etiology is not well understood. Currently there is no cure for IBS and no existing medication induces symptom relief in all patients. IBS-20 is a 20-herb Chinese medicinal formula that offers beneficial effects in patients with IBS; however, the underlying mechanisms are largely unknown. This study showed that IBS-20 potently inhibited LPS- or IFNΓ-stimulated expression of pro-inflammatory cytokines, as well as classically activated macrophage marker nitric oxide synthase 2. Similarly, IBS-20 or the component herb Coptis chinensis decreased LPS-stimulated pro-inflammatory cytokine secretion from JAWS II dendritic cells. IBS-20 or the component herbs also blocked or attenuated the IFNΓ-induced drop in transepithelial electric resistance, an index of permeability, in fully differentiated Caco-2 monolayer. Finally, the up-regulation of key inflammatory cytokines in inflamed colon from TNBS-treated mice was suppressed significantly by orally administrated IBS-20, including IFNΓ and IL-12p40. These data indicate that the anti-inflammatory activities of IBS-20 may contribute to the beneficial effects of the herbal extract in patients with IBS, providing a potential mechanism of action for IBS-20. In addition, IBS-20 may be a potential therapeutic agent against other Th1-dominant gut pathologies such as inflammatory bowel disease.

  15. Anti-inflammatory properties of a new undecyl-rhamnoside (APRC11) against P. acnes.

    Science.gov (United States)

    Isard, O; Lévêque, M; Knol, A C; Ariès, M F; Khammari, A; Nguyen, J M; Castex-Rizzi, N; Dréno, B

    2011-12-01

    Acne vulgaris is a skin disease affecting pilosebaceous glands in which Propionibacterium acnes (P. acnes) induced inflammation plays a central role. In order to develop new therapies against the inflammatory events, we evaluated the modulating effect of a new undecyl-rhamnoside, APRC11, on different markers of the inflammation. For this purpose, normal human keratinocytes taken from five healthy donors were pre-incubated for 24 h with APRC11 or Zinc Gluconate (Zn) which was used as reference molecule for its anti-inflammatory properties. Then, keratinocytes were stimulated with P. acnes Membrane Fraction for 6 h, in the presence of either APRC11 or Zn. Different markers were evaluated at mRNA level using a Luminex-based Quantigene array system and at protein level using an ELISA test and a Luminex array system. Results showed that P. acnes significantly increased the expression of IL-1α, IL-1RA, IL-8 and MMP-9. A 24-h treatment with APRC11 prior to the P. acnes stimulation down-regulated the P. acnes-induced cytokines over expression (IL-1α, IL-8 and MMP-9) and up-regulated IL-1RA level in a similar manner than Zn. These regulations were noted at both protein and mRNA levels. In conclusion, the new undecyl-rhamnoside APRC11 is able to down-regulate the expression of molecules implicated in cutaneous inflammation and whose expression is induced by P. acnes, confirming its potential interest in inflammatory acne.

  16. Anti-Inflammatory Effects of FTY720 Do Not Prevent Neuronal Cell Loss in a Rat Model of Optic Neuritis

    Science.gov (United States)

    Rau, Christian R.; Hein, Katharina; Sättler, Muriel B.; Kretzschmar, Benedikt; Hillgruber, Carina; McRae, Bradford L.; Diem, Ricarda; Bähr, Mathias

    2012-01-01

    In multiple sclerosis, long-term disability is caused by axonal and neuronal damage. Established therapies target primarily the inflammatory component of the disease, but fail to prevent neurodegeneration. Fingolimod (codenamed FTY720) is an oral sphingosine 1-phosphate (S1P) receptor modulator with promising results in phase II trials in multiple sclerosis patients and is under further development as a novel treatment for multiple sclerosis. To evaluate whether FTY720 has neuroprotective properties, we tested this drug in a rat model of myelin oligodendrocyte glycoprotein-induced optic neuritis. FTY720 exerted significant anti-inflammatory effects during optic neuritis and reduced inflammation, demyelination, and axonal damage; however, FTY720 treatment did not prevent apoptosis of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve. Consistent with this lack of effect on RGC survival, FTY720 treatment did not improve visual function, nor did it prevent apoptosis of RGCs in vitro. We observed a persistent activation of apoptotic signaling pathways in RGCs under FTY720 treatment, a possible underlying mechanism for the lack of neuroprotection in the presence of strong anti-inflammatory effects, Furthermore, FTY720 shifted the remaining inflammation in the optic nerve toward neurotoxicity by modest up-regulation of potential neurotoxic cytokines. We conclude that FTY720-induced anti-inflammation and axon protection did not of itself protect neurons from apoptotic cell death. PMID:21406175

  17. Is the Wnt/β-catenin pathway involved in the anti-inflammatory activity of glucocorticoids in spinal cord injury?

    Science.gov (United States)

    Libro, Rosaliana; Giacoppo, Sabrina; Bramanti, Placido; Mazzon, Emanuela

    2016-09-28

    The Wnt canonical or the Wnt/β-catenin pathway has been implicated in the regulation of several physiopathological pathways such as inflammation. Glucocorticoids (GCs) are administered widely to treat inflammation in several diseases, including spinal cord injury (SCI). The aim of this study was to evaluate whether the Wnt canonical pathway is involved in experimental SCI and whether it is implicated in the anti-inflammatory activity of two different GCs: the methylprednisolone sodium succinate (MPSS), considered the standard treatment for acute SCI, and mometasone furoate (MF), mainly administered for the treatment of airway and skin diseases. Experimental SCI was induced in mice by surgical spinal cord compression at the T6-T7 level. Then, mice were treated with MPSS (6 mg/kg) or MF (0.1 mg/kg) for 7 days until they were killed. Both GCs were found to modulate the Wnt canonical pathway, but in particular, the MF treatment was shown to restore completely the downregulated pathway in SCI. The MF treatment also significantly increased peroxisome proliferator-activated receptor-γ, a Wnt target gene with anti-inflammatory properties, compared with MPSS, and it also inhibited the levels of the proinflammatory cytokines interleukin 1β and tumor necrosis factor-α. Here, we suggest that MF has more efficacy than MPSS in inhibiting inflammation in an SCI experimental model and we propose the β-catenin/peroxisome proliferator-activated receptor-γ axis as the mechanism by which MF exerts these beneficial effects.

  18. A Novel Anti-Inflammatory Role for Ginkgolide B in Asthma via Inhibition of the ERK/MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiao Chu

    2011-09-01

    Full Text Available Ginkgolide B is an anti-inflammatory extract of Ginkgo biloba and has been used therapeutically. It is a known inhibitor of platelet activating factor (PAF, which is important in the pathogenesis of asthma. Here, a non-infectious mouse model of asthma is used to evaluate the anti-inflammatory capacity of ginkgolide B (GKB and characterize the interaction of GKB with the mitogen activated protein kinase (MAPK pathway. BALB/c mice that were sensitized and challenged to ovalbumin (OVA were treated with GKB (40 mg/kg one hour before they were challenged with OVA. Our study demonstrated that GKB may effectively inhibit the increase of T-helper 2 cytokines, such as interleukin (IL-5 and IL-13 in bronchoalveolar lavage fluid (BALF. Furthermore, the eosinophil count in BALF significantly decreased after treatment of GKB when compared with the OVA-challenged group. Histological studies demonstrated that GKB substantially inhibited OVA-induced eosinophilia in lung tissue and mucus hyper-secretion by goblet cells in the airway. These results suggest that ginkgolide B may be useful for the treatment of asthma and its efficacy is related to suppression of extracellular regulating kinase/MAPK pathway.

  19. Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer.

    Science.gov (United States)

    Ghanghas, Preety; Jain, Shelly; Rana, Chandan; Sanyal, S N

    2016-03-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging as novel chemopreventive agents against a variety of cancers owing to their capability in blocking the tumor development by cellular proliferation and by promoting apoptosis. Inflammation is principal cause of colon carcinogenesis. A missing link between inflammation and cancer could be the activation of NF-κB, which is a hallmark of inflammatory response, and is commonly detected in malignant tumors. Therefore, targeting pro-inflammatory cyclooxygenase enzymes and transcription factors will be profitable as a mechanism to inhibit tumor growth. In the present study, we have studied the role of various pro-inflammatory enzymes and transcription factors in the development of the 1,2-dimethylhydrazine dihydrochloride (DMH)-induced colorectal cancer and also observed the role of three NSAIDs, viz., Celecoxib, Etoricoxib and Diclofenac. Carcinogenic changes were observed in morphological and histopathological studies, whereas protein regulations of various biomolecules were identified by immunofluorescence analysis. Apoptotic studies was done by TUNEL assay and Hoechst/PI co-staining of the isolated colonocytes. It was found that DMH-treated animals were having an over-expression of pro-inflammatory enzymes, aberrant nuclear localization of activated cell survival transcription factor, NF-κB and suppression of anti-inflammatory transcription factor PPAR-γ, thereby suggesting a marked role of inflammation in the tumor progression. However, co-administration of NSAIDs has significantly reduced the inflammatory potential of the growing neoplasm.

  20. Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Chin-Yi Cheng

    2016-01-01

    Full Text Available Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs, including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation.

  1. Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia

    Science.gov (United States)

    2016-01-01

    Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation. PMID:27703487

  2. Activation of endogenous anti-inflammatory mediator cyclic AMP attenuates acute pyelonephritis in mice induced by uropathogenic Escherichia coli.

    Science.gov (United States)

    Wei, Yang; Li, Ke; Wang, Na; Cai, Gui-Dong; Zhang, Ting; Lin, Yan; Gui, Bao-Song; Liu, En-Qi; Li, Zong-Fang; Zhou, Wuding

    2015-02-01

    The pathogenesis of pyelonephritis caused by uropathogenic Escherichia coli (UPEC) is not well understood. Here, we show that besides UPEC virulence, the severity of the host innate immune response and invasion of renal epithelial cells are important pathogenic factors. Activation of endogenous anti-inflammatory mediator cAMP significantly attenuated acute pyelonephritis in mice induced by UPEC. Administration of forskolin (a potent elevator of intracellular cAMP) reduced kidney infection (ie, bacterial load, tissue destruction); this was associated with attenuated local inflammation, as evidenced by the reduction of renal production of proinflammatory mediators, renal infiltration of inflammatory cells, and renal myeloperoxidase activity. In primary cell culture systems, forskolin not only down-regulated UPEC-stimulated production of proinflammatory mediators by renal tubular epithelial cells and inflammatory cells (eg, monocyte/macrophages) but also reduced bacterial internalization by renal tubular epithelial cells. Our findings clearly indicate that activation of endogenous anti-inflammatory mediator cAMP is beneficial for controlling UPEC-mediated acute pyelonephritis in mice. The beneficial effect can be explained at least in part by limiting excessive inflammatory responses through acting on both renal tubular epithelial cells and inflammatory cells and by inhibiting bacteria invasion of renal tubular epithelial cells. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. GogB is an anti-inflammatory effector that limits tissue damage during Salmonella infection through interaction with human FBXO22 and Skp1.

    Directory of Open Access Journals (Sweden)

    Ana Victoria C Pilar

    Full Text Available Bacterial pathogens often manipulate host immune pathways to establish acute and chronic infection. Many Gram-negative bacteria do this by secreting effector proteins through a type III secretion system that alter the host response to the pathogen. In this study, we determined that the phage-encoded GogB effector protein in Salmonella targets the host SCF E3 type ubiquitin ligase through an interaction with Skp1 and the human F-box only 22 (FBXO22 protein. Domain mapping and functional knockdown studies indicated that GogB-containing bacteria inhibited IκB degradation and NFκB activation in macrophages, which required Skp1 and a eukaryotic-like F-box motif in the C-terminal domain of GogB. GogB-deficient Salmonella were unable to limit NFκB activation, which lead to increased proinflammatory responses in infected mice accompanied by extensive tissue damage and enhanced colonization in the gut during long-term chronic infections. We conclude that GogB is an anti-inflammatory effector that helps regulate inflammation-enhanced colonization by limiting tissue damage during infection.

  4. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2.

    Science.gov (United States)

    Bretscher, Peter; Egger, Julian; Shamshiev, Abdijapar; Trötzmüller, Martin; Köfeler, Harald; Carreira, Erick M; Kopf, Manfred; Freigang, Stefan

    2015-05-01

    Exposure of biological membranes to reactive oxygen species creates a complex mixture of distinct oxidized phospholipid (OxPL) species, which contribute to the development of chronic inflammatory diseases and metabolic disorders. While the ability of OxPL to modulate biological processes is increasingly recognized, the nature of the biologically active OxPL species and the molecular mechanisms underlying their signaling remain largely unknown. We have employed a combination of mass spectrometry, synthetic chemistry, and immunobiology approaches to characterize the OxPL generated from the abundant phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and investigated their bioactivities and signaling pathways in vitro and in vivo. Our study defines epoxycyclopentenones as potent anti-inflammatory lipid mediators that mimic the signaling of endogenous, pro-resolving prostanoids by activating the transcription factor nuclear factor E2-related factor 2 (Nrf2). Using a library of OxPL variants, we identified a synthetic OxPL derivative, which alleviated endotoxin-induced lung injury and inhibited development of pro-inflammatory T helper (Th) 1 cells. These findings provide a molecular basis for the negative regulation of inflammation by lipid peroxidation products and propose a novel class of highly bioactive compounds for the treatment of inflammatory diseases.

  5. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents.

    Science.gov (United States)

    Boukhary, Rima; Raafat, Karim; Ghoneim, Asser I; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs.

  6. Anti-inflammatory and Antihistaminic Study of a Unani Eye Drop Formulation

    Directory of Open Access Journals (Sweden)

    Latif Abdul

    2010-03-01

    Full Text Available The Unani eye drop is an ophthalmic formulation prepared for its beneficial effects in the inflammatory and allergic conditions of the eyes. In the present study, the Unani eye drop formulation was prepared and investigated for its anti-inflammatory and antihistaminic activity, using in vivo and in vitro experimental models respectively. The Unani eye drop formulation exhibited significant anti-inflammatory activity in turpentine liniment-induced ocular inflammation in rabbits. The preparation also showed antihistaminic activity in isolated guinea-pig ileum. The anti-inflammatory and antihistaminic activity of eye drop may be due to presence of active ingredients in the formulation. Although there are many drugs in Unani repository which are mentioned in classical books or used in Unani clinical practice effectively in treatment of eye diseases by various Unani physicians. Inspite of the availability of vast literature, there is a dearth of commercial Unani ocular preparations. So, keeping this in mind, the eye drop formulation was prepared and its anti-inflammatory and antihistaminic activity was carried out in animal models. Thus, in view of the importance of alternative anti-inflammatory and anti- allergic drugs, it becomes imperative to bring these indigenous drugs to the front foot and evaluate their activities.

  7. Evaluation of anti-inflammatory activity of some Libyan medicinal plants in experimental animals

    Directory of Open Access Journals (Sweden)

    Nahar Lutfun

    2012-01-01

    Full Text Available Ballota pseudodictamnus (L. Benth. (Lamiaceae, Salvia fruticosa Mill. (Lamiaceae and Thapsia garganica L. (Apiaceae are three well-known medicinal plants from the Libyan flora, which have long been used for the treatment of inflammations. The aim of the present study was to investigate, for the first time, the anti-inflammatory property of the methanol (MeOH extracts of the aerial parts of these plants. Shade-dried and ground aerial parts of B. pseudodictamnus, S. fruticosa and T. garganica were Soxhlet-extracted with MeOH. The extracts were concentrated by evaporation under reduced pressure at 40°C. The anti-inflammatory activity of the extracts was evaluated using the carrageenan-induced mice paw edema model. The administration of the extracts at a dose of 500 mg/kg body weight produced statistically significant inhibition (p < 0.05 of edema within 3 h of carrageenan administration. The results demonstrated significant anti-inflammatory properties of the test extracts. Among the extracts, the S. fruticosa extract exhibited the most significant inhibition of inflammation after 3 h (62.1%. Thus, S. fruticosa could be a potential source for the discovery and development of newer anti-inflammatory ‘leads’ for drug development. The anti-inflammatory activity of B. pseudodictamnus and S. fruticosa could be assumed to be related to high levels of phenolic compounds, e.g., flavonoids, present in these plants.

  8. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    Science.gov (United States)

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro; Fernandes, Patricia Dias

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

  9. Systems pharmacology dissection of the anti-inflammatory mechanism for the medicinal herb Folium eriobotryae.

    Science.gov (United States)

    Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling

    2015-01-28

    Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations.

  10. Design, synthesis and pharmacological evaluation of omeprazole-like agents with anti-inflammatory activity.

    Science.gov (United States)

    El-Nezhawy, Ahmed O H; Biuomy, Ayman R; Hassan, Fatma S; Ismaiel, Ayman K; Omar, Hany A

    2013-04-01

    A new series of novel benzimidazole derivatives containing substituted pyrid-2-yl moiety and polyhydroxy sugar conjugated to the N-benzimidazole moiety has been synthesized and evaluated as orally bioavailable anti-inflammatory agents with anti-ulcerogenic activity. The anti-inflammatory and anti-ulcerogenic activities of these compounds were compared to diclofenac and omeprazole, respectively. In carrageenan-induced paw oedema assay, 2-methyl-N-((3,4-dimethoxypyridin-2-yl)methyl)-1H-benzimidazol-5-amine (12d) and 1-(1,2,3,5-tetrahydroxy-α-D-mannofuranose)-5-(((3,4-dimethoxypyridin-2yl)methyl)amino)-2-methyl-1H-benzimidazole (15d) displayed dose-dependent anti-inflammatory activities by decreasing the inflammation by 62% and 72%, respectively which is comparable to that of diclofenac (73%). In contrast to diclofenac, the anti-inflammatory activity of these compounds was not only free from any side effects on the gastric mucosa but also showed significant anti-ulcerogenic activity in rat pyloric ligation and ethanol-induced gastric ulcer models similar to that of omeprazole. Together, these findings suggest that 12d and 15d are potent anti-inflammatory agents with concurrent anti-ulcerogenic activity and support its clinical promise as a component of therapeutic strategies for inflammation, for which the gastric side effects are always a major limitation.

  11. Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity.

    Science.gov (United States)

    Franco, Luis A; Ocampo, Yanet C; Gómez, Harold A; De la Puerta, Rocío; Espartero, José L; Ospina, Luis F

    2014-11-01

    Physalis peruviana is a native plant from the South American Andes and is widely used in traditional Colombian medicine of as an anti-inflammatory medicinal plant, specifically the leaves, calyces, and small stems in poultice form. Previous studies performed by our group on P. peruviana calyces showed potent anti-inflammatory activity in an enriched fraction obtained from an ether total extract. The objective of the present study was to obtain and elucidate the active compounds from this fraction and evaluate their anti-inflammatory activity in vivo and in vitro. The enriched fraction of P. peruviana was purified by several chromatographic methods to obtain an inseparable mixture of two new sucrose esters named peruviose A (1) and peruviose B (2). Structures of the new compounds were elucidated using spectroscopic methods and chemical transformations. The anti-inflammatory activity of the peruvioses mixture was evaluated using λ-carrageenan-induced paw edema in rats and lipopolysaccharide-activated peritoneal macrophages. Results showed that the peruvioses did not produce side effects on the liver and kidneys and significantly attenuated the inflammation induced by λ-carrageenan in a dosage-dependent manner, probably due to an inhibition of nitric oxide and prostaglandin E2, which was demonstrated in vitro. To our knowledge, this is the first report of the presence of sucrose esters in P. peruviana that showed a potent anti-inflammatory effect. These results suggest the potential of sucrose esters from the Physalis genus as a novel natural alternative to treat inflammatory diseases.

  12. A Systematic Review for Anti-Inflammatory Property of Clusiaceae Family: A Preclinical Approach

    Directory of Open Access Journals (Sweden)

    Mônica Santos de Melo

    2014-01-01

    Full Text Available Background. Clusiaceae family (sensu lato is extensively used in ethnomedicine for treating a number of disease conditions which include cancer, inflammation, and infection. The aim of this review is to report the pharmacological potential of plants of Clusiaceae family with the anti-inflammatory activity in animal experiments. Methods. A systematic review about experiments investigating anti-inflammatory activity of Clusiaceae family was carried out by searching bibliographic databases such as Medline, Scopus and Embase. In this update, the search terms were “anti-inflammatory agents,” “Clusiaceae,” and “animals, laboratory.” Results. A total of 255 publications with plants this family were identified. From the initial 255 studies, a total of 21 studies were selected for the final analysis. Studies with genera Allanblackia, Clusia, Garcinia or Rheedia, and Hypericum showed significant anti-inflammatory activity. The findings include a decrease of total leukocytes, a number of neutrophils, total protein concentration, granuloma formation, and paw or ear edema formation. Other interesting findings included decreased of the MPO activity, and inflammatory mediators such as NF-κB and iNOS expression, PGE2 and Il-1β levels and a decrease in chronic inflammation. Conclusion. The data reported suggests the anti-inflammatory effect potential of Clusiaceae family in animal experiments.

  13. A systematic review for anti-inflammatory property of clusiaceae family: a preclinical approach.

    Science.gov (United States)

    de Melo, Mônica Santos; Quintans, Jullyana de Souza Siqueira; Araújo, Adriano Antunes de Souza; Duarte, Marcelo Cavalcante; Bonjardim, Leonardo Rigoldi; Nogueira, Paulo Cesar de Lima; Moraes, Valéria Regina de Souza; de Araújo-Júnior, João Xavier; Ribeiro, Eurica Adélia Nogueira; Quintans-Júnior, Lucindo José

    2014-01-01

    Background. Clusiaceae family (sensu lato) is extensively used in ethnomedicine for treating a number of disease conditions which include cancer, inflammation, and infection. The aim of this review is to report the pharmacological potential of plants of Clusiaceae family with the anti-inflammatory activity in animal experiments. Methods. A systematic review about experiments investigating anti-inflammatory activity of Clusiaceae family was carried out by searching bibliographic databases such as Medline, Scopus and Embase. In this update, the search terms were "anti-inflammatory agents," "Clusiaceae," and "animals, laboratory." Results. A total of 255 publications with plants this family were identified. From the initial 255 studies, a total of 21 studies were selected for the final analysis. Studies with genera Allanblackia, Clusia, Garcinia or Rheedia, and Hypericum showed significant anti-inflammatory activity. The findings include a decrease of total leukocytes, a number of neutrophils, total protein concentration, granuloma formation, and paw or ear edema formation. Other interesting findings included decreased of the MPO activity, and inflammatory mediators such as NF- κ B and iNOS expression, PGE2 and Il-1 β levels and a decrease in chronic inflammation. Conclusion. The data reported suggests the anti-inflammatory effect potential of Clusiaceae family in animal experiments.

  14. Antinociceptive and anti-inflammatory effects of olive oil (Olea europeae L.) in mice.

    Science.gov (United States)

    Eidi, Akram; Moghadam-kia, Sara; Moghadam, Jalal Zarringhalam; Eidi, Maryam; Rezazadeh, Shamsali

    2012-03-01

    Olive [Olea europaea L. (Oleaceae)] is a long-lived evergreen tree that is widespread in different parts of the world. Olive oil has been reported to relieve pain; however, there is still insufficient data in the literature on the subject. Thus, it is considered worthwhile investigating the antinociceptive and anti-inflammatory effects of olive oil in adult male Balb/C mice. The antinociceptive effects were studied using formalin, hot plate and writhing tests. The acute anti-inflammatory effects of olive oil in mice were studied using xylene ear edema test. Olive oil (1, 5 and 10 ml/kg body wt.) was injected intraperitoneally. Intact animals served as controls. Our results showed that the olive oil only decreased the second phase of formalin-induced pain. In the hot plate test, olive oil did not raise the pain threshold over the 60 min duration of the test. Olive oil exhibited antinociceptive activity against writhing-induced pain by acetic acid. In the xylene ear edema test, olive oil showed significant anti-inflammatory activity in the mice. The present data indicated that olive oil has antinociceptive and anti-inflammatory effects in mice but further investigation of these effects is required to elucidate the mechanism(s) involved in analgesic and anti-inflammatory effects of Olea europaea oil.

  15. Systems Pharmacology Dissection of the Anti-Inflammatory Mechanism for the Medicinal Herb Folium Eriobotryae

    Directory of Open Access Journals (Sweden)

    Jingxiao Zhang

    2015-01-01

    Full Text Available Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations.

  16. Systems Pharmacology Dissection of the Anti-Inflammatory Mechanism for the Medicinal Herb Folium Eriobotryae

    Science.gov (United States)

    Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling

    2015-01-01

    Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations. PMID:25636035

  17. Exploration of possible mechanisms for anti-inflammatory activity of Ipomoea aquatica Forsk. (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Mital N. Manvar

    2015-11-01

    Full Text Available Currently used steroidal and non steroidal anti-inflammatory drugs have severe side effects. These side effects are very difficult to manage than the disease itself. Hence, there is to search new safe resources to cure such diseases that the use of plant based drugs. This study deals with anti-inflammatory evaluation of the hydroalcoholic extract of Ipomoea aquatica leaves as well as their possible mechanism of action. A carrageenan‐induced rat paw oedema model was used for anti-inflammatory study. The mechanism/s by which Ipomoea aquatica is mediated the ant-inflammatory activity was determined by its effects in antihistamine activity, prostaglandin synthesis inhibition activity, membrane stabilizing activity and protein denaturation inhibition activity. Dose dependent anti-inflammatory activity was found with HAEIA in rat paw oedema model using carrageenan. HAEIA effective to suppressed the wheal area formed by histamine. HAEIA revealed dose dependent prostaglandin synthesis inhibition activity. HAEIA was effectively inhibited the heat induced hemolysis of HRBCs as well as heat induced albumin denaturation. Therefore, it was concluded that the HAEIA has anti-inflammatory activity possibly mediated through inhibition of release of mediator histamine and prostaglandin and has also HRBCs membrane stabilization and protein denaturation inhibition properties.

  18. Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system.

    Science.gov (United States)

    Esmaeili, Fariba; Rajabnejhad, Saeid; Partoazar, Ali Reza; Mehr, Shahram Ejtemaei; Faridi-Majidi, Reza; Sahebgharani, Mousa; Syedmoradi, Leila; Rajabnejhad, Mohammad Reza; Amani, Amir

    2016-11-01

    Eugenol is the main constituent of clove oil with anti-inflammatory properties. In this work, for the first time, O/W nanoemulsion of eugenol was designed for the evaluation of anti-inflammatory effects as a topical delivery system. Topical formulations containing 1%, 2% and 4% of eugenol as well as a nanoemulsion system containing 4% eugenol and 0.5% piroxicam were prepared. Further to physicochemical examinations, such as determination of particle size, polydispersity index, zeta potential and physical stability, anti-inflammatory activity was examined in carrageenan-induced paw edema in rats. The optimum formulation was found to contain 2% eugenol (oil phase), 14% Tween 20 (surfactant) and 14% isopropyl alcohol (co-surfactant) in water. Nanoemulsion with polydispersity index of 0.3 and median droplet diameter of 24.4 nm (d50) was obtained. Animal studies revealed that the nanoemulsions exhibited significantly improved anti-inflammatory activity after 1.5 h, compared with marketed piroxicam gel. Additionally, it was shown that increasing the concentration of eugenol did not show higher inhibition of inflammation. Also, the nanoemulsion having piroxicam showed less anti-inflammatory properties compared with the nanoemulsion without piroxicam.

  19. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  20. Anti-inflammatory activity of Urera baccifera (Urticaceae) in Sprague-Dawley rats.

    Science.gov (United States)

    Badilla, B; Mora, G; Lapa, A J; Emim, J A

    1999-09-01

    On a preliminary test, anti-inflammatory and analgesic dose-related activities on rats were observed for the aqueous fraction of Urera baccifera; this extract was bioassay-guided fractionated and the final aqueous fraction was used according the ethnobotanical use. Carrageenan-induced edema (n = 6), was used as an assay in the fractionating process. The anti-inflammatory and antinociceptive properties of the final aqueous fraction were studied using in vivo models. For the anti-inflammatory activity rat paw edema (n = 6), pleurisy induced by carrageenan (n = 6) and ear edema induced by topical croton oil (n = 6) models were used, and tail-flick test (n = 6), abdominal constrictions induced by acetic acid (n = 6), and formalin test (n = 6), were used for the antinociceptive activity. The tests performed showed an inhibition effect on leukocyte migration, and a reduction on pleural exudate, as well as dose-dependant peripheral analgesic activity, at a range of 25-100 mg/kg i.p. The final aqueous fraction contains most of the anti-inflammatory activity of the plant U. baccifera. A possible mechanism of action is discussed and based on the results we conclude that this plant has a potential for both anti-inflammatory and analgesic activity at the clinical level.

  1. Analgesic and anti-inflammatory properties of the fruits of Vernonia anthelmintica (L Willd.

    Directory of Open Access Journals (Sweden)

    Alok Pandey

    2014-09-01

    Full Text Available Objective: To evaluation of analgesic and anti-inflammatory properties of the fruits of Vernonia anthelmintica (L Willd. (V. anthelmintica. Method: Hot plate method in mice, acetic acid induced writhing response in mice, tail immersion test and carrageenan-induced paw edema in rats and cotton pellet induced granuloma in rats method were used for screening analgesic and anti-inflammatory properties of the fruit of V. anthelmintica (family: Asteraceae. Results: The result of the study showed that the ethanolic extract of V. anthelmintica (100 and 200 mg/kg body weight, p.o. fruits possed peripheral and central analgesic activity in animal model. The V. anthelmintica fruits extract showed in vivo anti-inflammatory activity on acute and chronic anti-inflammatory activity models in rats. Conclusions: On the basis of result it can be concluded that saponins, steroids, tannins and flavonoids are the major constituents that are present in the fruits of V. anthelmintica which may be responsible for its analgesic and anti-inflammatory activity.

  2. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    Directory of Open Access Journals (Sweden)

    Jorge Luis Amorim

    Full Text Available Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o. and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

  3. Anti-inflammatory activity of D-002: an active product isolated from beeswax.

    Science.gov (United States)

    Carbajal, D; Molina, V; Valdés, S; Arruzazabala, M L; Más, R; Magraner, J

    1998-10-01

    D-002 is a natural mixture of high molecular weight alcohols isolated and purified from beeswax, which contains triacontanol among its main components. This study was undertaken to investigate the anti-inflammatory effects of D-002 administered by the oral route in two animal models commonly used in the pharmacological screening of anti-inflammatory drugs. D-002 administered orally to rats (100 and 200 mg/kg) produced a mild but significant reduction of exudate volume in carrageenan-induced pleuritic inflammation that was accompanied by a marked and significant decrease of leukotriene B4 (LTB4) levels in the exudate. D-002 (25, 50 and 200 mg/kg) also significantly diminished the granuloma weight in the cotton pellet granuloma in rats. In both cases, D-002 was less effective than indomethacin, which was used as an established anti-inflammatory reference drug. On the other hand, D-002 administered from 25-1000 mg/kg did not induce erosions or gastromucosal lesions in rats, which differs from results usually obtained with non steroidal anti-inflammatory drugs. These results indicate that D-002 is a mild anti-inflammatory agent without any ulcerogenic effect associated. The results suggest that these effects are probably not mediated through an inhibition of cyclooxygenase, but a reduction in LTB4 levels induced by D-002 could explain these results.

  4. Anti-inflammatory activity of Urera baccifera (Urticaceae in Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Beatriz Badilla

    1999-09-01

    Full Text Available On a preliminary test, anti-inflammatory and analgesic dose-related activities on rats were observed for the aqueous fraction of Urera baccifera; this extract was bioassay-guided fractionated and the final aqueous fraction was used according the ethnobotanical use. Carrageenan-induced edema (n=6, was used as an assay in the fractionating process. The anti-inflammatory and antinociceptive properties of the final aqueous fraction were studied using in vivo models. For the anti-inflammatory activity rat paw edema (n=6, pleurisy induced by carrageenan (n=6 and ear edema induced by topical croton oil (n=6 models were used, and tail-flick test (n=6, abdominal constrictions induced by acetic acid (n=6, and formalin test (n=6, were used for the antinociceptive activity. The tests performed showed an inhibition effect on leukocyte migration, and a reduction on pleural exudate, as well as dose-dependant peripheral analgesic activity, at a range of 25-100 mg/kg i.p. The final aqueous fraction contains most of the anti-inflammatory activity of the plant U. baccifera. A possible mechanism of action is discussed and based on the results we conclude that this plant has a potential for both anti-inflammatory and analgesic activity at the clinical level.

  5. Anti-inflammatory activity of Sri Lankan black tea (Camellia sinensis L. in rats

    Directory of Open Access Journals (Sweden)

    W D Ratnasooriya

    2009-01-01

    Full Text Available This study examined the anti-inflammatory potential of Sri Lankan black tea (Camellia sinensis L. Family: Theaceae using both acute (carrageenan-induced paw oedema and chronic (formaldehyde-induced paw oedema and cotton pellet granuloma test rat inflammatory models. Three dose of black tea brew (BTB [84 mg/ml, equivalent to 1.5 cups; 168 mg/ml, equivalent to 3 cups; and 501 mg/ml, equivalent to 9 cups] were made using high grown unblend Dust grade No: 1 black tea samples and was orally administed to rats (n = 6-9/ dose/ test. The results showed that Sri Lankan BTB possesses marked and significant (P < 0.05 oral anti-inflammatory activity against both acute and chronic inflammation. This anti-inflammatory activity was dose-dependent in the carrageenan-induced paw oedema test and cotton pellet granuloma test. Further, in the carrageenan paw oedema model, the anti-inflammatory activity of BTB was almost identical to green tea brew of both Chinese and Japanese types. Further, the BTB had significant antihistamine activity (in terms of wheal test phagocytic cell migration inhibitory activity (in terms carrageenan-induced leucocyte peritoneal infiltration test, nitric oxide production inhibitory activity, antioxidant activity (DPPH method and prostaglandin synthesis inhibition activity (in terms of rat enteropooling test. It is concluded that Sri Lankan black tea has marked anti-inflammatory potential against both acute and chronic inflammation which is mediated via multiple mechanisms.

  6. Structure–activity relationship of terpenes with anti-inflammatory profile – a systematic review.

    Science.gov (United States)

    Souza, Marilia Trindade de Santana; Almeida, Jackson Roberto Guedes da Silva; Araujo, Adriano Antunes de Souza; Duarte, Marcelo Cavalcante; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca; dos Santos, Marcio Roberto Viana; Quintans-Júnior, Lucindo José

    2014-09-01

    Inflammation is a complex biological response that in spite of having available treatments, their side effects limit their usefulness. Because of this, natural products have been the subject of incessant studies, among which the class of terpenes stands out. They have been the source of study for the development of anti-inflammatory drugs, once their chemical diversity is well suited to provide skeleton for future anti-inflammatory drugs. This systematic review reports the studies present in the literature that evaluate the anti-inflammatory activity of terpenes suffering any change in their structures, assessing whether these changes also brought changes in their effects. The search terms anti-inflammatory agents, terpenes, and structure–activity relationship were used to retrieve English language articles in SCOPUS, PUBMED and EMBASE published between January 2002 and August 2013. Twenty-seven papers were found concerning the structural modification of terpenes with the evaluation of antiinflammatory activity. The data reviewed here suggest that modified terpenes are an interesting tool for the development of new anti-inflammatory drugs.

  7. Antinociceptive and anti-inflammatory activities of a pomegranate (Punica granatum L.) extract rich in ellagitannins.

    Science.gov (United States)

    González-Trujano, María Eva; Pellicer, Francisco; Mena, Pedro; Moreno, Diego A; García-Viguera, Cristina

    2015-01-01

    Pomegranate (Punica granatum L.) has been used for centuries for the treatment of inflammatory diseases. However, there is a lack of comprehensive information focused on the properties of a certain pomegranate (poly)phenolic profile to cure pain and gastric injury induced by anti-inflammatory drugs. This study investigated the systemic effects of different doses of a HPLC-characterized pomegranate extract on the formalin-induced nociceptive behavior in mice. The effect of the extract against gastric injury caused by non-steroidal anti-inflammatory drugs and ethanol was also assessed. Pomegranate reduced nociception in both phases of the formalin test, suggesting central and peripheral activities to inhibit nociception. Indomethacin-induced gastric injury was not produced in the presence of pomegranate, which also protected against ethanol-induced gastric lesions. The present results reinforce the benefits of pomegranate (poly)phenolics in the treatment of pain as well as their anti-inflammatory properties.

  8. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment

    DEFF Research Database (Denmark)

    Köhler, Karl Ole; Krogh, Jesper; Mors, Ole;

    2016-01-01

    the association between inflammation and depression together with the current evidence on use of anti-inflammatory treatment in depression. Based on this, we address the questions and challenges that seem most important and relevant to future studies, such as timing, most effective treatment lengths......Accumulating evidence supports an association between depression and inflammatory processes, a connection that seems to be bidirectional. Clinical trials have indicated antidepressant treatment effects for anti-inflammatory agents, both as add-on treatment and as monotherapy. In particular......, nonsteroidal anti-inflammatory drugs (NSAIDs) and cytokine-inhibitors have shown antidepressant treatment effects compared to placebo, but also statins, poly-unsaturated fatty acids, pioglitazone, minocycline, modafinil, and corticosteroids may yield antidepressant treatment effects. However, the complexity...

  9. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elsayed

    2014-01-01

    Full Text Available For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents.

  10. Anti-inflammatory effect of Semecarpus anacardium Linn. Nut extract in acute and chronic inflammatory conditions.

    Science.gov (United States)

    Ramprasath, Vanu Ramkumar; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2004-12-01

    The article relates to investigation of the anti-inflammatory effects of Semecarpus anacardium LINN. nut extract (SA), and also an anti-inflammatory drug, indomethacin, on carrageenan-induced paw edema and cotton pellet granuloma tests for their effects on acute and chronic phases of inflammation, respectively. The effect of SA on developing and developed adjuvant arthritis was also evaluated. SA significantly decreased the carrageenan-induced paw edema and cotton pellet granuloma. Indomethacin also decreased the acute and chronic phases of inflammation. SA decreased the adjuvant induced (arthritis) paw edema after the treatment, in both developing and developed adjuvant arthritis. These results indicate that the potent anti-inflammatory effect and therapeutic efficacy of Semecarpus anacardium LINN. nut extract against all phases of inflammation, is comparable to that of indomethacin.

  11. Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana.

    Science.gov (United States)

    Toro, Reina M; Aragón, Diana M; Ospina, Luis F; Ramos, Freddy A; Castellanos, Leonardo

    2014-11-01

    Physalis peruviana calyces are used extensively in folk medicine. The crude ethanolic extract and some fractions of calyces were evaluated in order to explore antioxidant and anti-inflammatory activities. The anti-inflammatory activity was evaluated by the TPA-induced ear edema model. The antioxidant in vitro activity was measured by means of the superoxide and nitric oxide scavenging activity of the extracts and fractions. The butanolic fraction was found to be promising due to its anti-inflammatory and antioxidant activities. Therefore, a bio-assay guided approach was employed to isolate and identify rutin (1) and nicotoflorin (2) from their NMR spectroscopic and MS data. The identification of rutin in calyces of P. peruviana supports the possible use of this waste material for phytotherapeutic, nutraceutical and cosmetic preparations.

  12. Antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit extract.

    Science.gov (United States)

    Ahmadiani, A; Hosseiny, J; Semnanian, S; Javan, M; Saeedi, F; Kamalinejad, M; Saremi, S

    2000-09-01

    In this study, probable antinociceptive and anti-inflammatory effects of Elaeagnus angustifolia fruit components, were evaluated. For evaluation of antinociceptive effects, the chronic (formalin test) and acute (tail-flick) pain models of rats were used. For the anti-inflammatory effects, the paw inflammation model was used through subcutaneous injection of 5% formalin to the paw of male rats. Water extracts of the fruit and its components in the single dose were assessed through comparison with the antinociceptive and anti-inflammatory effects of sodium salicylate (SS) as a positive control. Administration of 300 mg/kg of SS (i.p.) had no effect on tail flick latency, while 1000 mg/kg of total (i.p. and p.o.) and endocarp (i.p.) extract, increased this latency (Pangustifolia fruit contains flavonoids, terpenoids and cardiac glycosides.

  13. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment

    DEFF Research Database (Denmark)

    Kohler, Ole; Krogh, Jesper; Mors, Ole

    2016-01-01

    of the inflammatory cascade, limited clinical evidence, and the risk for side effects stress cautiousness before clinical application. Thus, despite proof-of-concept studies of anti-inflammatory treatment effects in depression, important challenges remain to be investigated. Within this paper, we review......Accumulating evidence supports an association between depression and inflammatory processes, a connection that seems to be bidirectional. Clinical trials have indicated antidepressant treatment effects for anti-inflammatory agents, both as add-on treatment and as monotherapy. In particular...... the association between inflammation and depression together with the current evidence on use of anti-inflammatory treatment in depression. Based on this, we address the questions and challenges that seem most important and relevant to future studies, such as timing, most effective treatment lengths...

  14. Exploitation of the nicotinic anti-inflammatory pathway for the treatment of epithelial inflammatory diseases

    Institute of Scientific and Technical Information of China (English)

    David A Scott; Michael Martin

    2006-01-01

    Discoveries in the first few years of the 21st century have led to an understanding of important interactions between the nervous system and the inflammatory response at the molecular level, most notably the acetylcholine (ACh)-triggered, α7-nicotinic acetylcholine receptor (α7nAChR)-dependent nicotinic anti-inflammatory pathway. Studies using the α7nAChR agonist, nicotine, for the treatment of mucosal inflammation have been undertaken but the efficacy of nicotine as a treatment for inflammatory bowel diseases remains debatable. Further understanding of the nicotinic anti-inflammatory pathway and other endogenous anti-inflammatory mechanisms is required in order to develop refined and specific therapeutic strategies for the treatment of a number of inflammatory diseases and conditions, including periodontitis, psoriasis,sarcoidosis, and ulcerative colitis.

  15. 3-Aminothiophene-2-Acylhydrazones: Non-Toxic, Analgesic and Anti-Inflammatory Lead-Candidates

    Directory of Open Access Journals (Sweden)

    Yolanda Karla Cupertino da Silva

    2014-06-01

    Full Text Available Different chemotypes are described as anti-inflammatory. Among them the N-acylhydrazones (NAH are highlighted by their privileged structure nature, being present in several anti-inflammatory drug-candidates. In this paper a series of functionalized 3-aminothiophene-2-acylhydrazone derivatives 5a–i were designed, synthesized and bioassayed. These new derivatives showed great anti-inflammatory and analgesic potency and efficacy. Compounds 5a and 5d stand out in this respect, and were also active in CFA-induced arthritis in rats. After daily treatment for seven days with 5a and 5d (50 µmol/Kg, by oral administration, these compounds were not renal or hepatotoxic nor immunosuppressive. Compounds 5a and 5d also displayed good drug-scores and low risk toxicity calculated in silico using the program OSIRIS Property Explorer.

  16. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control

    Directory of Open Access Journals (Sweden)

    Young-Sun Lee

    2016-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti-inflammatory action.

  17. Cardiovascular outcomes and systemic anti-inflammatory drugs in patients with severe psoriasis

    DEFF Research Database (Denmark)

    Ahlehoff, O; Skov, L; Gislason, Gunnar Hilmar

    2015-01-01

    BACKGROUND: Psoriasis is a common disease and is associated with cardiovascular diseases. Systemic anti-inflammatory drugs may reduce risk of cardiovascular events. We therefore examined the rate of cardiovascular events, i.e. cardiovascular death, myocardial infarction and stroke, in patients...... with severe psoriasis treated with systemic anti-inflammatory drugs. METHODS: Individual-level linkage of administrative registries was used to perform a longitudinal nationwide cohort study. Time-dependent multivariable adjusted Cox regression was used to estimate hazard ratios (HRs) with 95% confidence...... factor inhibitors (HR 0.46; CI 0.22-0.98) were linked to reduced event rates, whereas the interleukin-12/23 inhibitor ustekinumab (HR 1.52; CI 0.47-4.94) was not. CONCLUSION: Systemic anti-inflammatory treatment with methotrexate was associated with significantly lower rates of cardiovascular events...

  18. Smoking, caffeine, and nonsteroidal anti-inflammatory drugs in families with Parkinson disease.

    Science.gov (United States)

    Hancock, Dana B; Martin, Eden R; Stajich, Jeffrey M; Jewett, Rita; Stacy, Mark A; Scott, Burton L; Vance, Jeffery M; Scott, William K

    2007-04-01

    To assess associations between Parkinson disease (PD) and putatively protective factors-smoking, caffeine (coffee, tea, and soft drinks), and nonsteroidal anti-inflammatory drugs (aspirin, ibuprofen, and naproxen). Family-based case-control study. Academic medical center clinic. A total of 356 case subjects and 317 family controls who self-reported environmental exposures. Associations between PD and environmental measures (history, status, dosage, duration, and intensity) of smoking, coffee, caffeine, nonsteroidal anti-inflammatory drugs, and non-aspirin nonsteroidal anti-inflammatory drugs were examined using generalized estimating equations with an independent correlation matrix while controlling for age and sex. Individuals with PD were significantly less likely to report ever smoking (odds ratio = 0.56; 95% confidence interval, 0.41-0.78). Additional measures of smoking revealed significant inverse associations with PD (Pgenetic studies of PD.

  19. Chromones: A Promising Ring System for New Anti-inflammatory Drugs.

    Science.gov (United States)

    Silva, Carlos F M; Pinto, Diana C G A; Silva, Artur M S

    2016-10-19

    The quest for safer anti-inflammatory drugs is still the focus of several medicinal chemistry programs. Chromones (4H-chromen-4-ones) are a group of naturally occurring compounds ubiquitous in plants, and the chromone core has proven to be a privileged scaffold in medicinal chemistry. Herein we provide an overview of the relevance of chromones as anti-inflammatory agents, specifically as inhibitors of cyclooxygenase (COX), 5-lipoxygenase (5-LOX), interleukin-5 (IL-5), and nitric oxide ((.) NO) production. Numerous structure-activity relationships and mechanisms of action are discussed. This review is therefore intended to provide a foundation for the design and synthesis of novel chromone-based compound libraries for further development into safer and more efficient anti-inflammatory agents. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Inflammation in Depression and the Potential for Anti-Inflammatory Treatment

    DEFF Research Database (Denmark)

    Kohler, Ole; Krogh, Jesper; Mors, Ole

    2016-01-01

    Accumulating evidence supports an association between depression and inflammatory processes, a connection that seems to be bidirectional. Clinical trials have indicated antidepressant treatment effects for anti-inflammatory agents, both as add-on treatment and as monotherapy. In particular...... of the inflammatory cascade, limited clinical evidence, and the risk for side effects stress cautiousness before clinical application. Thus, despite proof-of-concept studies of anti-inflammatory treatment effects in depression, important challenges remain to be investigated. Within this paper, we review...... the association between inflammation and depression together with the current evidence on use of anti-inflammatory treatment in depression. Based on this, we address the questions and challenges that seem most important and relevant to future studies, such as timing, most effective treatment lengths...

  1. Intravital Microscopic Methods to Evaluate Anti-inflammatory Effects and Signaling Mechanisms Evoked by Hydrogen Sulfide

    Science.gov (United States)

    Zuidema, Mozow Y.; Korthuis, Ronald J.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption,capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo. PMID:25747477

  2. Study of Analgesic and Anti-inflammatory Effects of Lappaconitine Gelata

    Institute of Scientific and Technical Information of China (English)

    WANG Ying-zi; XIAO YONG-qing; ZHANG Chao; SUN Xiu-mei

    2009-01-01

    Objective:To explore the analgesic and anti-inflammatory effects of lappaconitine gelata (LA). Methods:The writhing response induced by acetic acid, the pain response induced by formaldehyde and hot plate method in the mouse, and the paw edema induced by egg albumen in the rat and the ear edema induced by xylene in the mouse were used for investigation on the analgesic and anti-inflammatory effects of LA.Results: The writhing response induced by acetic acid, the pain response induced by formaldehyde and hot plate methods was significantly inhibited by LA. In addition, the paw edema induced by egg albumen in the rat and the ear edema induced by xylene in the mouse were all significantly suppressed by LA. Conclusion:LA has the analgesic and anti-inflammatory effects.

  3. Analgesic and anti-inflammatory activities of leaf extract of Kydia calycina Roxb.

    Directory of Open Access Journals (Sweden)

    Baburao Bhukya

    2009-06-01

    Full Text Available The methanol extract of leaves of Kydia calycina Roxb. was screened for the analgesic (using hot plate test and acetic acid-induced writhing test in mice and anti-inflammatory (using rat paw edema test activity at the doses of 200 and 400 mg/kg body weight. A significant (p < 0.0005 analgesic effect was observed with 200 mg/kg and 400 mg/kg in both tests. The maximum anti-inflammatory response was produced at 3 hour with extract doses of 200 and 400 mg/kg. These results suggest that the methanol extract of K. calycina has exhibited significant analgesic and anti-inflammatory effects, which were comparable with standard drugs.

  4. Anti-inflammatory activity of the apolar extract from the seaweed Galaxaura marginata (Rhodophyta, Nemaliales

    Directory of Open Access Journals (Sweden)

    E. Rozas

    2007-01-01

    Full Text Available The red seaweed Galaxaura marginata (Ellis & Solander Lamouroux, well known by the antibacterial activity of its polar extract and the cytotoxic activity of its oxygenated desmosterol, showed anti-inflammatory action in its apolar fraction. Topical anti-inflammatory activity was observed in samples collected at São Sebastião channel, northern littoral of São Paulo State, Brazil. The apolar extract and its fractions obtained through Thin-Layer Chromatography (TLC reduced the topical inflammation produced by croton oil in mouse ear. Such data indicated that the apolar extract from the marine red alga G. marginata displayed anti-inflammatory activity (since 1mg/ear extract reduced 95±0.5% inflammation, which could be the result of the synergic activity of the four fractions present in the apolar extract.

  5. EVALUATION OF ANTI INFLAMMATORY ACTIVITY OF GARCINIA INDICA FRUIT RIND EXTRACTS IN WISTAR RATS

    Directory of Open Access Journals (Sweden)

    Khatib N.A

    2010-12-01

    Full Text Available Garcinia indica choisy (Kokum is known for its food, medicinal and commercial values. The present study was carried out to evaluate the effect of aqueous and ethanolic extract of Garcinia indica fruit rind (GIFR for its anti inflammatory activity in rats. The inflammation was induced by carrageenan induced paw odema. The serum enzymes like Acid phoshatase(ACP and Alkaline Phosphatase(ALP were estimated. Both extracts at dose (200 & 400 mg/kg p.o single dose shows significant (P<0.001 anti inflammatory activity in (Carrageenan induced paw odema acute inflammation. The extracts treatment also showed significant (p<0.001 reduction in the levels of serum enzymes ACP & ALP. Similar results were obtained from aspirin (200mg/kg treated group. The result obtained from the present study indicates both aqueous and ethanolic extracts possessing anti inflammatory activity and further study required to establish its mechanism of action.

  6. Analgesic and Anti-inflammatory action of Opuntia elatior Mill fruits

    Directory of Open Access Journals (Sweden)

    Sanjay P Chauhan

    2015-01-01

    Full Text Available Background: Opuntia elatio Mill is a xerophytic plant with potentially active nutrients. It is traditionally appreciated for its pharmacological properties; however, the scientific information on this plant is insufficient. Objective: The present study evaluates the antinociceptive and anti-inflammatory action of prickly pear. Materials and Methods: Writhing and tail-immersion tests were carried out to evaluate analgesic action, while the carrageenan-induced paw edema and neutrophil adhesion tests were conducted in Albino wistar rats to assess anti-inflammatory action. Results: ED 50 values of the fruit juice in writhing, tail immersion, and paw edema test were 0.919, 2.77, and 9.282 ml/kg, respectively. The fruits of Opuntia produced analgesic and anti-inflammatory action in a dose-dependent manner. Conclusion: The results establish the folklore use of prickly pear may be due to the presence of betacyanin and/or other phenolic compounds.

  7. DIURETIC AND ANTI-INFLAMMATORY ACTIVITY OF AQUEOUS EXTRACT OF AERVA SANGUINOLENTA (L. BLUME

    Directory of Open Access Journals (Sweden)

    Srinivas Reddy K

    2011-07-01

    Full Text Available The study was designed to evaluate the diuretic and anti-inflammatory potency of aqueous extract of whole plant of Aerva sanguinolenta in wistar albino rats. Different parameters viz. total urine volume, urine concentration of electrolytes such as sodium; potassium and chloride have been evaluated for assessment of diuretic activity. Anti-inflammatory was performed against carrageenan induced paw oedema method by using indomethacin as standard.The results revealed that the aqueous extract showed significant diuretic activity at a dose of 400 mg/kg body weigh by increasing the total volume of urine and concentration of sodium, potassium and chloride ions in urine and also extract showed significant anti-inflammatory activity.

  8. Effect of Anti-inflammatory Treatment on Depression, Depressive Symptoms, and Adverse Effects

    DEFF Research Database (Denmark)

    Köhler, Ole; Benros, Michael E; Nordentoft, Merete

    2014-01-01

    -controlled trials assessing the efficacy and adverse effects of pharmacologic anti-inflammatory treatment in adults with depressive symptoms, including those who fulfilled the criteria for depression. DATA EXTRACTION AND SYNTHESIS: Data were extracted by 2 independent reviewers. Pooled standard mean difference (SMD......) and odds ratios (ORs) were calculated. MAIN OUTCOMES AND MEASURES: Depression scores after treatment and adverse effects. RESULTS: Ten publications reporting on 14 trials (6262 participants) were included: 10 trials evaluated the use of nonsteroidal anti-inflammatory drugs (NSAIDs) (n=4,258) and 4...... investigated cytokine inhibitors (n=2,004). The pooled effect estimate suggested that anti-inflammatory treatment reduced depressive symptoms (SMD, -0.34; 95% CI, -0.57 to -0.11; I2=90%) compared with placebo. This effect was observed in studies including patients with depression (SMD, -0.54; 95% CI, -1...

  9. Anti-inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts from Artemisia annua L.

    Science.gov (United States)

    Kim, Wan-Su; Choi, Woo Jin; Lee, Sunwoo; Kim, Woo Joong; Lee, Dong Chae; Sohn, Uy Dong; Shin, Hyoung-Shik

    2015-01-01

    The anti-inflammatory, antioxidant, and antimicrobial properties of artemisinin derived from water, methanol, ethanol, or acetone extracts of Artemisia annua L. were evaluated. All 4 artemisinin-containing extracts had anti-inflammatory effects. Of these, the acetone extract had the greatest inhibitory effect on lipopolysaccharide-induced nitric oxide (NO), prostaglandin E2 (PGE2), and proinflammatory cytokine (IL-1β , IL-6, and IL-10) production. Antioxidant activity evaluations revealed that the ethanol extract had the highest free radical scavenging activity, (91.0±3.2%), similar to α-tocopherol (99.9%). The extracts had antimicrobial activity against the periodontopathic microorganisms Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. polymorphum, and Prevotella intermedia. This study shows that Artemisia annua L. extracts contain anti-inflammatory, antioxidant, and antimicrobial substances and should be considered for use in pharmaceutical products for the treatment of dental diseases. PMID:25605993

  10. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.

    Science.gov (United States)

    Intahphuak, S; Khonsung, P; Panthong, A

    2010-02-01

    This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO.

  11. Synthesis and anti-inflammatory activity of 1-acylaminoalkyl-3,4-dialkoxybenzene derivatives.

    Science.gov (United States)

    Labanauskas, L; Brukstus, A; Udrenaite, E; Bucinskaite, V; Susvilo, I; Urbelis, G

    2005-03-01

    New 1-acylaminoalkyl-3,4-dialkoxybenzene derivatives 17-31 were synthesized by the acylation of amines 9-16 with acyl chlorides. Amines 9-16 were obtained from aryl ketones 1-8. Aryl ketones 1-8 were synthesized by the acylation of corresponding aromatic compounds. As it was preliminary predicted by PASS (Prediction of Activity Spectra for Substance) program, all 1-acylaminoalkyl-3,4-dimethoxy- and 3,4-diethoxybenzene derivatives possess anti-inflammatory activity. Activity of compounds 18, 19, 21, 24, 26, 27, 28, 29 was similar to that of acetylsalicylic acid or ibuprofen however their acute toxicity was less than that of mentioned anti-inflammatory drugs. A series of 1-acylaminoalkyl-3,4-dimethoxybenzene, 1-acylaminoalkyl-3,4-diethoxybenzene and 6-acylaminoalkyl-2,3-dihydro-1,4-benzodioxine derivatives have been synthesized. These compounds possess moderate or strong anti-inflammatory activity and low toxicity.

  12. Benzophenone-N-ethyl piperidine ether analogues--synthesis and efficacy as anti-inflammatory agent.

    Science.gov (United States)

    Khanum, Shaukath A; Girish, V; Suparshwa, S S; Khanum, Noor Fatima

    2009-04-01

    A sequence of substituted benzophenone-N-ethyl piperidine ether analogues has been synthesized and evaluated as orally active anti-inflammatory agents with reduced side effects. The anti-inflammatory and ulcerogenic activities of the compounds were compared with naproxen, indomethacin, and phenylbutazone. These analogues showed an interesting anti-inflammatory activity in carrageenan-induced foot pad edema assay. In the air-pouch test, some of the analogues reduced the total number of leukocytes of the exudate, which indicates inhibition of prostaglandin production. Side effects of the compounds were examined on gastric mucosa, in the liver and stomach. None of the compounds illustrated significant side effects compared with standard drugs like indomethacin and naproxen.

  13. Optimization on Extraction Engineering of the Anti - inflammatory Bioactive Materials from Ainsliaea Fragrans Champ

    Directory of Open Access Journals (Sweden)

    Yang Jie

    2016-01-01

    Full Text Available Ainsliaea fragrans Champ.(A.fragrans is a traditional Chinese herbal, phenolic compounds was the major anti - inflammatory bioactive constituents. To improve the bioavailability and enhanced the curative effect of A.fragrans, the anti - inflammatory effect of phenolic acids and the “non-active” group of control vectors constitute a new biomedical material, which is of great significance to the treatment of diseases inflammation. Hence, in this thesis, regarding the total phenolic acid transfer rate as the indicator, L9(34 orthogonal design was used to optimize the extraction process of total Phenolic acid from A.fragrans by reflux extraction method on solvent dosage, extraction times and extraction time.The optimal extraction technology was as follows: 15 times of water volume, reflux extraction 3 times, extraction time 60 min. The result of pharmacological activity indicated anti-inflammatory effect: 95% ethanol extraction > water extraction > 30% ethanol extraction > 60% ethanol extraction.

  14. Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia

    Institute of Scientific and Technical Information of China (English)

    Vijender Kumar; Zulfiqar Ali Bhat; Dinesh Kumar; NA Khan; IA Chashoo

    2012-01-01

    Objective: To evaluate anti-inflammatory potential of leaf extract of Skimmia anquetilia by in-vitro and in-vivo anti-inflammatory models. Methods: Acute toxicity study was carried out to determine the toxicity level of different extract using acute toxic class method as described in Organization of Economic Co-operation and Development Guidelines No.423. Carrageenan (1%w/w) was administered and inflammation was induced in rat paw. The leaf extracts of Skimmiaanquetilia were evaluated for anti-inflammatory activity by in-vitro human red blood cell (HRBC) membrane stabilization method and in-vivo carrangeenan-induced rat paw edema method.Results:The in-vitro membrane stabilizing test showed petroleum ether (PE), chloroform (CE), ethyl acetate (EE), methanol (ME) and aqueous extracts (AE) showed 49.44%, 59.39%, 60.15%, 68.40%and 52.18 % protection, respectively as compared to control groups. The in-vivo results of CE, EE and ME showed 58.20%, 60.17% and 67.53% inhibition of inflammation after 6h administration of test drugs in albino rats. The potency of the leaf extracts of Skimmia anquetilia were compared with standard diclofenac (10 mg/kg) which showed 74.18% protection in in-vitro HRBC membrane stabilization test and 71.64% inhibition in in-vivo carrangeenan-induced rat paw edema model. The ME showed a dose dependent significant (P< 0.01) anti-inflammatory activity in human red blood cell membrane stabilization test and reduction of edema in carrageenan induced rat paw edema. Conclusions: The present investigation has confirmed the anti-inflammatory activity ofSkimmia anquetilia due to presence of bioactive phytoconstitutes for the first time and provide the pharmacological evidence in favor of traditional claim of Skimmia anquetilia as an anti-inflammatory agent.

  15. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages.

    Science.gov (United States)

    Pi, Jiang; Cai, Huaihong; Yang, Fen; Jin, Hua; Liu, Jianxin; Yang, Peihui; Cai, Jiye

    2016-01-01

    A new method based on atomic force microscopy (AFM) was developed to investigate the anti-inflammatory effects of drugs on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-stimulated RAW264.7 macrophage cell line is a widely used in vitro cell model for the screening of anti-inflammatory drugs or the study of anti-inflammatory mechanisms. In this work, the inhibitory effects of dexamethasone and quercetin on LPS-CD14 receptor binding in RAW264.7 macrophages was probed by LPS-functionalized tips for the first time. Both dexamethasone and quercetin were found to inhibit LPS-induced NO production, iNOS expression, IκBα phosphorylation, and IKKα/β phosphorylation in RAW264.7 macrophages. The morphology and ultrastructure of RAW264.7 macrophages were determined by AFM, which indicated that dexamethasone and quercetin could inhibit LPS-induced cell surface particle size and roughness increase in RAW264.7 macrophages. The binding of LPS and its receptor in RAW264.7 macrophages was determined by LPS-functionalized AFM tips, which demonstrated that the binding force and binding probability between LPS and CD14 receptor on the surface of RAW264.7 macrophages were also inhibited by dexamethasone or quercetin treatment. The obtained results imply that AFM, which is very useful for the investigation of potential targets for anti-inflammatory drugs on native macrophages and the enhancement of our understanding of the anti-inflammatory effects of drugs, is expected to be developed into a promising tool for the study of anti-inflammatory drugs.

  16. Anti-inflammatory and Analgesic Effects of Polygonum orientale L. Extracts.

    Science.gov (United States)

    Gou, Kai-Jun; Zeng, Rui; Dong, Yan; Hu, Qi-Qi; Hu, Huang-Wan-Yin; Maffucci, Katherine G; Dou, Qi-Ling; Yang, Qing-Bo; Qin, Xu-Hua; Qu, Yan

    2017-01-01

    Background and Purpose:Polygonum orientale L. (family: Polygonaceae), named Hongcao in China, is a Traditional Chinese Medicinal and has long been used for rheumatic arthralgia and rheumatoid arthritis. However, no pharmacological and mechanism study to confirm these clinic effects have been published. In this investigation, the anti-inflammatory, analgesic effects and representative active ingredient compounds of P. orientale have been studied. Methods: Dried small pieces of the stems and leaves of P. orientale were decocted with water and partitioned successively to obtain ethyl acetate and ethyl ether extract of P. orientale (POEa and POEe). Chemical compositions of them were analyzed by UPLC-Q-Exactive HRMS. Anti-inflammatory and analgesic effects of POEa and POEe were evaluated using xylene induced ear edema, carrageenan induced paw edema, Freunds' complete adjuvant induced arthritis, and formaldehyde induced pain in rat. Their mechanisms of anti-inflammatory and analgesic effects were also studied via assays of TNF-α, IL-1β, IL-6, and PGE2 in serum. Results: UPLC-Q-Exactive HRMS analysis showed that POEa and POEe mainly contained flavonoids including orientin, isoorientin, vitexin, luteolin, and quercetin. Furthermore, anti-inflammatory effects of POEa and POEe were evident in xylene induced ear edema. The paw edema in Freund's complete adjuvant and carrageenan were significantly (P anti-inflammatory and analgesic effects, which was mainly relevant to the presence of flavonoids, including orientin, isoorientin, vitexin, luteolin, and quercetin. The mechanism of anti-inflammatory and analgesic effects of POEa may be to decrease the concentrations of TNF-α, IL-1β, IL-6, and PGE2 in serum.

  17. Identification of an anti-inflammatory potential of Eriodictyon angustifolium compounds in human gingival fibroblasts.

    Science.gov (United States)

    Walker, Jessica; Reichelt, Katharina V; Obst, Katja; Widder, Sabine; Hans, Joachim; Krammer, Gerhard E; Ley, Jakob P; Somoza, Veronika

    2016-07-13

    Polyphenol-rich plant extracts have been shown to possess anti-inflammatory activity against oral pathogen-induced cytokine release in model systems of inflammation. Here, it was hypothesized that a flavanone-rich extract of E. angustifolium exhibits an anti-inflammatory potential against endotoxin-induced inflammatory response in human gingival fibroblasts (HGF-1). HGF-1 cells were stimulated with lipopolysaccharide from Porphyromonas gingivalis (pg-LPS) to release pro-inflammatory cytokines. Concentrations of interleukins IL-6 and IL-8 and macrophage chemoattractant protein-1 in the incubation media upon stimulation were determined by means of magnetic bead analysis. A crude ethanol/water extract of E. angustifolium (EE) was fractionated via gel permeation chromatography into a flavanone-rich fraction (FF) and an erionic acid-rich fraction (EF). Individual flavanones and erionic acids as well as EE, EF and FF were tested in the pg-LPS-stimulated HGF-1 cells for their anti-inflammatory potential. The E. angustifolium extract possessed anti-inflammatory potential in this model system, attenuating the pg-LPS-induced release of IL-6 by up to 52.0 ± 15.5%. Of the individual flavanones, eriodictyol and naringenin had the most pronounced effect. However, a mixture of the flavanones did not possess the same effect as the entire flavanoid fraction, indicating that other compounds may contribute to the anti-inflammatory potential of E. angustifolium. For the first time, an anti-inflammatory potential of E. angustifolium and containing erionic acids has been determined.

  18. Anti-inflammatory changes of gene expression by Artemisia iwayomogi in the LPS-stimulated human gingival fibroblast: microarray analysis.

    Science.gov (United States)

    Choi, Yeong-Gon; Yeo, Sujung; Kim, Sung-Hoon; Lim, Sabina

    2012-03-01

    The leaves and stems of Asteraceae Artemisia iwayomogi (Ai) for a long time have been known to inhibit inflammatory cytokine production and allergic reactions, and have been used to treat liver diseases. It needs to be elucidated in terms of global gene expression whether Ai has an influence as an anti-inflammatory agent on the cultured human gingival fibroblast stimulated with lipopolysaccharide (LPS). This study investigated the anti-inflammatory changes of the genes by Ai using the Affymetrix genechip human gene 1.0 ST array when the cultured human gingival fibroblast was treated with LPS. It was observed that the inflammation- and immune response-related genes were activated by LPS challenge in the cultured human gingival fibroblast. The array analysis showed that 65 of the 344 genes up-regulated by LPS stimulation, when compared to the control, were down-regulated by the Ai treatment. A number of inflammation- and immune response-related genes of the 65 genes were found. In addition, 78 of the 164 genes down-regulated by the LPS, when compared to the control, were up-regulated by the Ai treatment. The regulatory patterns of the representative genes were correlated with the real-time RT-PCR analysis. The Ai extract and its specific components, scopolin and scopoletin, significantly hindered the production of inflammatory mediators such as IL-6, TNF-α and nitrite in the LPS-challenged fibroblast. This study suggests that Ai can comprehensively inhibit the activation of the inflammation- and immune response-related genes and the inflammatory mediators in the human gingival fibroblast.

  19. Anti-Inflammatory and Antinociceptive Activities of a Hydroethanolic Extract of Tamarindus indica Leaves.

    Science.gov (United States)

    Bhadoriya, Santosh Singh; Mishra, Vijay; Raut, Sushil; Ganeshpurkar, Aditya; Jain, Sunil K

    2012-09-01

    The present study aimed to investigate the anti-inflammatory and anti-nociceptive potential of a hydroethanolic extract of Tamarindus indica L. leaves (HTI) along with its possible mode of action. The anti-inflammatory activity of HTI was estimated by carrageenan-induced hind paw oedema in male Wistar albino rats. Furthermore, HTI was assessed to determine its effects on membrane stabilization. The antinociceptive action was determined by acetic acid-induced writhing, tail-flick, and the hot plate model. Oral administration of HTI at the dose of 500, 750, and 1000 mg/kg body weight produced significant (Pindica as were mentioned in Indian traditional and folklore practices.

  20. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines.

    Science.gov (United States)

    Balakumar, C; Lamba, P; Kishore, D Pran; Narayana, B Lakshmi; Rao, K Venkat; Rajwinder, K; Rao, A Raghuram; Shireesha, B; Narsaiah, B

    2010-11-01

    A series of novel 8/10-trifluoromethyl-substituted-imidazo[1,2-c] quinazolines have been synthesized and evaluated in vivo (rat paw edema) for their anti-inflammatory activity and in silico (docking studies) to recognize the hypothetical binding motif of the title compounds with the cyclooxygenase isoenzymes (COX-1 and COX-2) employing GOLD (CCDC, 4.0.1 version) software. The compounds, 9b and 10b, were found to have good anti-inflammatory activity [around 80% of the standard: indomethacin]. The binding mode of the title compounds has been proposed based on the docking studies.

  1. Biological evaluation of angular disubstituted naphthoimidazoles as anti-inflammatory agents.

    Science.gov (United States)

    Cuadrado-Berrocal, Irene; Guedes, Gema; Estevez-Braun, Ana; Hortelano, Sonsoles; de Las Heras, Beatriz

    2015-10-01

    A series of naphthoimidazoles derivatives (3a-3f) were tested for potential anti-inflammatory activity on lipopolysaccharide (LPS)-treated macrophages. Naphthoimidazole 3e exhibited significant inhibitory effects on nitric oxide (NO) production (IC50 <10μM) and decreased the expression of nitric oxide synthase-2 (NOS-2) and cycloxygenase-2 (COX-2) enzymes. It also inhibited the activation of transcription factor NF-κB. Naphthoimidazole 3e might represent a starting point for the synthesis of new anti-inflammatory naphthoimidazoles derivatives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development of anti-inflammatory drugs - the research and development process.

    Science.gov (United States)

    Knowles, Richard Graham

    2014-01-01

    The research and development process for novel drugs to treat inflammatory diseases is described, and several current issues and debates relevant to this are raised: the decline in productivity, attrition, challenges and trends in developing anti-inflammatory drugs, the poor clinical predictivity of experimental models of inflammatory diseases, heterogeneity within inflammatory diseases, 'improving on the Beatles' in treating inflammation, and the relationships between big pharma and biotechs. The pharmaceutical research and development community is responding to these challenges in multiple ways which it is hoped will lead to the discovery and development of a new generation of anti-inflammatory medicines.

  3. Antitussive, expectorant and anti-inflammatory activities of different extracts from Exocarpium Citri grandis.

    Science.gov (United States)

    Jiang, Kun; Song, Qian; Wang, Lei; Xie, Tianzhu; Wu, Xi; Wang, Ping; Yin, Guo; Ye, Wencai; Wang, Tiejie

    2014-10-28

    Exocarpium Citri grandis (C. grandis, Huajuhong in Chinese), the epicarp of C. grandis 'Tomentosa', is used as an antitussive, expectorant and anti-inflammatory drug for hundreds of years in China. The study was aimed at evaluating the antitussive, expectorant and anti-inflammatory effects of different extracts of C. grandis, providing experimental evidence for its traditional use, and laying a foundation for its further researches. Crude drugs of C. grandis were extracted with four kinds of solvents (water, 50% ethanol, 70% ethanol and 90% ethanol) in reflux conditions, respectively. Solutions were concentrated in reduced pressure and lyophilized in vacuum to yield the aqueous extract, 50% ethanolic extract, 70% ethanolic extract, and 90% ethanolic extract of C. grandis. Antitussive evaluations were carried out with ammonia liquor induced mice cough; expectorant effects were tested with phenol red secretion experiments in mice; anti-inflammatory effects were assessed by murine model of xylene induced ear edema in mice. Only aqueous and 70% ethanolic extracts of C. grandis displayed significant antitussive, expectorant and anti-inflammatory activities. Aqueous extract of C. grandis significantly decreased cough frequency caused by ammonia liquor, increased phenol red secretion and inhibited the development of ear edema in anti-inflammatory assay at the dose of 1005 mg/kg (Pstrong effect of decreasing cough frequency, prolonging cough period, increasing phenol red secretion and decreasing the extent of ear edema at the dose of 493 mg/kg (P<0.001). The low, middle, and high dose (247, 493, and 986 mg/kg) of 70% ethanolic extract of C. grandis showed significant antitussive, expectorant and anti-inflammatory effects in good dose dependant manner. The results supported the folk use of C. grandis (decoction of C. grandis) with scientific evidence, and indicated that the 70% ethanolic extract of C. grandis might have better effects of antitussive, expectorant and anti-inflammatory

  4. Treating tendinopathy: perspective on anti-inflammatory intervention and therapeutic exercise.

    Science.gov (United States)

    Joseph, Michael F; Denegar, Craig R

    2015-04-01

    Tendinopathy is a common and complex disorder. Once viewed as an inflammatory condition labeled tendinitis, it is now viewed along a continuum that can lead to tissue necrosis and risk of tendon rupture. Anti-inflammatory medications can alter symptoms but may also promote tissue degeneration. Loading of the tendon through exercise, especially exercise involving eccentric muscle contraction, has been shown to promote symptom resolution and functional recovery in many patients. This article reviews the pathoetiology of tendinopathy and the role anti-inflammatory interventions and therapeutic exercise in treatment of active patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. ANTIOXIDANT AND ANTI-INFLAMMATORY ACTIVITY OF ETHANOLIC EXTRACT OF BETA VULGARIS LINN. ROOTS

    OpenAIRE

    Chakole, Rita; Zade, Shubhangi; Charde, Manoj

    2011-01-01

    The present study deals with evaluation of antioxidant and anti-inflammatory activity of ethanolic extract of Beta Vulgaris roots. The ethanolic extract was subjected to screen forantioxidant activity using DPPH radical scavenging method. The anti-inflammatory activity was carried out by using carageenan induced rat paw edema method. The tested extract ofdifferent dilutions in range 200 µg/ml to 1000 µg/ml shows activity in range of 4.34% to 18.55%. The extract shows prominent anti-inflamma...

  6. Evaluation of In Vitro Anti-inflammatory Activity of Azomethines of Aryl Oxazoles

    Directory of Open Access Journals (Sweden)

    V. Niraimathi

    2011-01-01

    Full Text Available Ability to inhibit erythrocyte hemolysis is often used as a characteristic of the membrane stabilising action of chemical compounds. Azomethines of aryl oxazoles were evaluated for anti-inflammatory by in vitro hemolytic membrane stabilising study. The effect of inflammation condition was studied on erythrocyte exposed to hypotonic solution. In this in vitro method the membrane stabilising action leads to anti-inflammatory activity and was compared with that produced by diclofenac sodium as the reference standard. Results of the evaluation indicate that the synthesised compounds found to exhibit membrane stabilising activity.

  7. Synthesis and pharmacological evaluation of pyrazolopyrimidopyrimidine derivatives: anti-inflammatory agents with gastroprotective effect in rats

    OpenAIRE

    2013-01-01

    We report the synthesis of new anti-inflammatory 1,7-dihydropyrazolo[3′,4′:4,5]pyrimido[1,6-a]pyrimidine 5 from aminocyanopyrazole. All compounds were characterized by physical, chemical and spectral studies. Preliminary pharmacological evaluation of the resulting products showed that compounds 5a, b, f (50–100 mg/kg, i.p) are active anti-inflammatory agents in carrageenan-induced rat paw oedema assay, and their effects are comparable to that of acetylsalicylic–lysine (300 mg/kg, i.p.), used ...

  8. Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia.

    Directory of Open Access Journals (Sweden)

    Beilei Lei

    Full Text Available Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO and prostaglandin E2 (PGE2, mediated by inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone's effects on tumor necrosis factor alpha (TNF-α, iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB and mitogen activated protein kinase (MAPK pathways. LPS (30 ng/ml upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.

  9. Anti-inflammatory Effect of Astaxanthin on the Sickness Behavior Induced by Diabetes Mellitus.

    Science.gov (United States)

    Ying, Chang-jiang; Zhang, Fang; Zhou, Xiao-yan; Hu, Xiao-tong; Chen, Jing; Wen, Xiang-ru; Sun, Ying; Zheng, Kui-yang; Tang, Ren-xian; Song, Yuan-jian

    2015-10-01

    Chronic inflammation appears to play a critical role in sickness behavior caused by diabetes mellitus. Astaxanthin has been used in treating diabetes mellitus and diabetic complications because of its neuroprotective and anti-inflammatory actions. However, whether astaxanthin can improve sickness behavior induced by diabetes and its potential mechanisms are still unknown. The aim of this study was to investigate the effects of astaxanthin on diabetes-elicited abnormal behavior in mice and its corresponding mechanisms. An experimental diabetic model was induced by streptozotocin (150 mg/kg) and astaxanthin (25 mg/kg/day) was provided orally for 10 weeks. Body weight and water consumption were measured, and the sickness behavior was evaluated by the open field test (OFT) and closed field test (CFT). The expression of glial fibrillary acidic protein (GFAP) was measured, and the frontal cortical cleaved caspase-3 positive cells, interleukin-6 (IL-6), and interleukin-1β (IL-1β) expression levels were also investigated. Furthermore, cystathionine β-synthase (CBS) in the frontal cortex was detected to determine whether the protective effect of astaxanthin on sickness behavior in diabetic mice is closely related to CBS. As expected, we observed that astaxanthin improved general symptoms and significantly increase horizontal distance and the number of crossings in the OFT and CFT. Furthermore, data showed that astaxanthin could decrease GFAP-positive cells in the brain and down-regulate the cleaved caspase-3, IL-6, and IL-1β, and up-regulate CBS in the frontal cortex. These results suggest that astaxanthin provides neuroprotection against diabetes-induced sickness behavior through inhibiting inflammation, and the protective effects may involve CBS expression in the brain.

  10. Evaluation of in-vitro antibacterial activity and anti-inflammatory activity for different extracts of Rauvolfia tetraphylla L. root bark

    Institute of Scientific and Technical Information of China (English)

    B. Ganga Rao; P. Umamaheswara Rao; E. Sambasiva Rao; T. Mallikarjuna Rao; V. S. Praneeth. D

    2012-01-01

    To assess the in-vitro antibacterial activity and anti-inflammatory activity of orally administered different extracts (Hydro-alcoholic, methanolic, ethyl acetate and hexane) of Rauvolfia tetraphylla (R. tetraphylla) root bark in Carrageenan induced acute inflammation in rats. Methods: In-vitro antibacterial activity was evaluated for extracts against four Gram positive and four Gram negative bacteria by using cylinder plate assay. Hydro-alcoholic extract (70% v/v ethanol) at 200, 400 and 800 mg/kg doses and methanolic, ethyl acetate and hexane extracts at doses 100, 200 and 400 mg/kg were tested for anti-inflammatory activity in Carrageenan induced rat paw oedema model and paw thickness was measured every one hour up to 6 hrs. Results: All extracts of R. tetraphylla root bark showed good zone of inhibition against tested bacterial strains. In Carrageenan induced inflammation model, hydro-alcoholic and methanolic extract of R. tetraphylla root bark at three different doses produced significant (P<0.001) reduction when compared to vehicle treated control group and hexane, ethyl acetate extracts. Conclusions:In the present study extracts of R. tetraphylla root bark shows good in-vitro antibacterial activity and in-vivo anti-inflammatory activity in rats.

  11. Evaluation of in-vitro antibacterial activity and anti-inflammatory activity for different extracts of Rauvolfia tetraphylla L.root bark

    Institute of Scientific and Technical Information of China (English)

    B.Ganga; Rao; P.Umamaheswara; Rao; E.Sambasiva; Rao; T.Mallikarjuna; Rao; V.S.Praneeth.D

    2012-01-01

    Objective:To assess the in-vitro antihacterial activity and anti-inflammatory activity of orally administered different extracts(Hydro-alcoholic,methanolic,ethyl acetate and hexane)of Rauvolfia tetraphylla(R.tetraphylla)root bark in Carrageetiaii induced acute inflammation in rats.Methods:In-vitro antibacterial activity was evaluated for extracts against four Gram positive and four Gram negative bacteria by using cylinder plate assay.Hydro-alcoholic extract(70%v/v ethanol)at 200,400 and 800 mg/kg doses and methanolic,ethyl acetate and hexane extracts at doses 100,200 and 400 mg/kg were tested for anti-inflammatory activity in Carrageenan induced rat paw oedema model and paw thickness was measured every one hour up to 6 hrs.Results:All extracts of R.tetraphylla root bark showed good zone of inhibition against tested bacterial strains.In Carrageenan induced inflammation model,hydro-alcoholic and methanolic extract of R.tetraphylla root bark at three different doses produced significant(P<0.00l)reduction when compared to vehicle treated control group and hexane,ethyl acetate extracts.Conclusions:In the present study extracts of R.tetraphylla root bark shows good in-vitro antibacterial activity and in-vivo anti-inflammatory activity in rats.

  12. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research August 2017; 16 (8): 1819-1826 ... regulation [6-8]. The objective of this study was to investigate the ... plant compounds kaempferol, myricetin and .... RMSD threshold for multiple cluster poses was.

  13. ANALGESIC AND ANTI-INFLAMMATORY ACTIVITY OF LEECH THERAPY IN THE MANAGEMENT OF ARTHRITIS

    Directory of Open Access Journals (Sweden)

    Singh Akhilesh Kumar

    2011-12-01

    Full Text Available The day-to-day advancement in each and every aspect has made human’s life very fast, hectic and full of stress. In such an outfit every person is compelled to make the life fast and mechanical even shifted their food habits to fast food, altered their social structure and life style, having various negative impacts on the body. Occurrence of arthritis on large scale is one of the outcomes of this modification. It is commonest among acute as well as chronic inflammatory joint disease in which joint become painful, swollen and stiff. This study was designed to access the analgesic and anti-inflammatory activity of Leech Therapy in the treatment Arthritis. The study was randomized open phase clinical trial. Jalauka used for the therapy were obtained from fresh water pond of Madhyam Akara (4-6gms weight. Jalaukas were applied once in every week for six weeks duration.The patients of age group 18 to 60 were selected on the basis of Ayurvedic signs and symptoms of Sandhigata Vata. Observations were recorded for Pain, Swelling, Stiffness, Score of ACR, RA index, ARA joint count, Tenderness. The laboratory values of ESR, CRP and S.uric Acid were also recorded before and after the treatment. Since the assessment criteria was Quantitative, paired 't' test was applied. In the current Study the treatment was found significantly effective in treating arthritis. The effect of treatment was 44% patients were of Uttam Upashya in relieving Pain, 40% in swelling, 28% in stiffness, 32% in restricted movement, 16% in deformity. So, we can conclude that leech therapy is effective in the treatment of arthritis.

  14. The problem in the evaluation of the efficacy and safety of nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    N. V. Chichasova

    2016-01-01

    Full Text Available The review gives data on the safety of nimesulide used for the treatment of chronic joint diseases. The first-line treatment at its any stage for joint diseases is nonsteroidal anti-inflammatory drugs (NSAIDs. Questions have recently arisen of the safety of nimesulide; however, epidemiological findings and clinical experience confirm a positive benefit/risk profile of nimesulide in the treatment of acute pain. The International Consensus Meeting (Vienna, 2014 noted that the risk of severe adverse hepatic NSAID reactions was low and the rate of liver damage associated with nimesulide was completely similar to that observed with other NSAIDs. There are data available in the literature on the rate of serious adverse liver reactions to different NSAIDs and paracetamol. The rate of such reactions to all NSAIDs per million patientyears was 1.55 and that to nimesulide was 1.88. The members of the International Consensus Group concluded that nimesulide, if properly used, remained a valuable and safe drug for the treatment of various conditions, characterized by the presence of acute inflammatory pain, by virtue of the rapid onset of analgesic action and an evidence-based positive benefit/risk profile. The long successful experience with nimesulide in our country suggests that the agent may be successfully used to treat chronic and acute pain (including dysmenorrhea in a daily dose of 200 mg/day. The safety profile of the drug is quite satisfactorily for all adverse reactions typical of NSAIDs, including its negative effect on the liver.

  15. Role of ERK/MAPK signalling pathway in anti-inflammatory effects of Ecklonia cavain activated human mast cell line-1 cells

    Institute of Scientific and Technical Information of China (English)

    Hye Kyung Kim

    2014-01-01

    Objective:The anti-inflammatory effects ofEcklonia cava(EC) and its mechanism of action were examined in phorbol-12 myristate13-acetate(30 nmol/L) andA23187(1 μmol/L)(PMACI) stimulated human mast cell line-1 cells.Methods:Nitric oxide content, inducible nitric oxide synthase and cyclooxygenase-2 protein expression, pro-inflammatory cytokines including IL-1β,TNF-α, andIL-6 mRNA and protein expressions were determined.In addition, extracellular regulated protein kinases/mitogen-activated protein kinase(ERK/MAPK) activation was examined.Results:EC dose-dependently suppressed inducible nitric oxide synthase and cyclooxygenase-2 protein expression and subsequently it reduces nitric oxide content inPMACI stimulated human mast cell line-1 cells.EC dose-dependently inhibited the mRNA as well as protein expression ofTNF-α,IL-1β, andIL-6 in thePMACI stimulated human mast cell line-1 cells without any cytotoxic effect.Furthermore,EC significantly inhibitedPMACI induced phosphorylation ofERK1/2 in a dose-dependent manner without affecting the total protein levels. Conclusions:EC exert its anti-inflammatory actions via inhibition ofERK/MAPK signalling pathway, suggesting thatEC is a potent and efficacious anti-inflammatory agent for mast cell-mediated inflammatory diseases.

  16. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Jimenez, Rosario; Pinto, John T; Ballabh, Praveen; Losonczy, Gyorgy; Pearson, Kevin J; de Cabo, Rafael; Ungvari, Zoltan

    2009-08-01

    Endothelial dysfunction, oxidative stress and inflammation are associated with vascular aging and promote the development of cardiovascular disease. Caloric restriction (CR) mitigates conditions associated with aging, but its effects on vascular dysfunction during aging remain poorly defined. To determine whether CR exerts vasoprotective effects in aging, aortas of ad libitum (AL) fed young and aged and CR-aged F344 rats were compared. Aging in AL-rats was associated with impaired acetylcholine-induced relaxation, vascular oxidative stress and increased NF-kappaB activity. Lifelong CR significantly improved endothelial function, attenuated vascular ROS production, inhibited NF-kappaB activity and down-regulated inflammatory genes. To elucidate the role of circulating factors in mediation of the vasoprotective effects of CR, we determined whether sera obtained from CR animals can confer anti-oxidant and anti-inflammatory effects in cultured coronary arterial endothelial cells (CAECs), mimicking the effects of CR. In CAECs cultured in the presence of AL serum TNFalpha elicited oxidative stress, NF-kappaB activation and inflammatory gene expression. By contrast, treatment of CAECs with CR serum attenuated TNFalpha-induced ROS generation and prevented NF-kappaB activation and induction of inflammatory genes. siRNA knockdown of SIRT1 mitigated the anti-oxidant and anti-inflammatory effects of CR serum. CR exerts anti-oxidant and anti-inflammatory vascular effects, which are likely mediated by circulating factors, in part, via a SIRT1-dependent pathway.

  17. Anti-Inflammatory Effects of Cumin Essential Oil by Blocking JNK, ERK, and NF-κB Signaling Pathways in LPS-Stimulated RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Juan Wei

    2015-01-01

    Full Text Available Cumin seeds (Cuminum cyminum L. have been commonly used in food flavoring and perfumery. In this study, cumin essential oil (CuEO extracted from seeds was employed to investigate the anti-inflammatory effects in lipopolysaccharide- (LPS- stimulated RAW 264.7 cells and the underlying mechanisms. A total of 26 volatile constituents were identified in CuEO by GC-MS, and the most abundant constituent was cuminaldehyde (48.773%. Mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT reduction assay demonstrated that CuEO did not exhibit any cytotoxic effect at the employed concentrations (0.0005–0.01%. Real-time PCR tests showed that CuEO significantly inhibited the mRNA expressions of inducible nitric oxide synthase (iNOS, cyclooxygenase (COX-2, interleukin- (IL- 1, and IL-6. Moreover, western blotting analysis revealed that CuEO blocked LPS-induced transcriptional activation of nuclear factor-kappa B (NF-κB and inhibited the phosphorylation of extracellular signal regulated kinase (ERK and c-Jun N-terminal kinase (JNK. These results suggested that CuEO exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 cells via inhibition of NF-κB and mitogen-activated protein kinases ERK and JNK signaling; the chemical could be used as a source of anti-inflammatory agents as well as dietary complement for health promotion.

  18. Anti-Inflammatory Effects of Cumin Essential Oil by Blocking JNK, ERK, and NF-κB Signaling Pathways in LPS-Stimulated RAW 264.7 Cells

    Science.gov (United States)

    Wei, Juan; Zhang, Xitong; Bi, Yang; Miao, Ruidong; Zhang, Zhong; Su, Hailan

    2015-01-01

    Cumin seeds (Cuminum cyminum L.) have been commonly used in food flavoring and perfumery. In this study, cumin essential oil (CuEO) extracted from seeds was employed to investigate the anti-inflammatory effects in lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and the underlying mechanisms. A total of 26 volatile constituents were identified in CuEO by GC-MS, and the most abundant constituent was cuminaldehyde (48.773%). Mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction assay demonstrated that CuEO did not exhibit any cytotoxic effect at the employed concentrations (0.0005–0.01%). Real-time PCR tests showed that CuEO significantly inhibited the mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), interleukin- (IL-) 1, and IL-6. Moreover, western blotting analysis revealed that CuEO blocked LPS-induced transcriptional activation of nuclear factor-kappa B (NF-κB) and inhibited the phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). These results suggested that CuEO exerted anti-inflammatory effects in LPS-stimulated RAW 264.7 cells via inhibition of NF-κB and mitogen-activated protein kinases ERK and JNK signaling; the chemical could be used as a source of anti-inflammatory agents as well as dietary complement for health promotion. PMID:26425131

  19. Enhancement of Anti-Inflammatory and Osteogenic Abilities of Mesenchymal Stem Cells via Cell-to-Cell Adhesion to Periodontal Ligament-Derived Fibroblasts

    Science.gov (United States)

    Suzuki, Keita; Sawada, Shunsuke; Takizawa, Naoki; Yaegashi, Takashi; Ishisaki, Akira

    2017-01-01

    Mesenchymal stem cells (MSCs) are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs) in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM-) MSCs. The expression of monocyte chemotactic protein- (MCP-)1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue. PMID:28167967

  20. Enhancement of Anti-Inflammatory and Osteogenic Abilities of Mesenchymal Stem Cells via Cell-to-Cell Adhesion to Periodontal Ligament-Derived Fibroblasts

    Directory of Open Access Journals (Sweden)

    Keita Suzuki

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM- MSCs. The expression of monocyte chemotactic protein- (MCP-1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue.

  1. Synthesis and biological evaluation of a novel class of curcumin analogs as anti-inflammatory agents for prevention and treatment of sepsis in mouse model

    Directory of Open Access Journals (Sweden)

    Zhao C

    2015-03-01

    Full Text Available Chengguang Zhao,1,2,* Yali Zhang,1,2,* Peng Zou,1 Jian Wang,3 Wenfei He,2 Dengjian Shi,2 Huameng Li,2 Guang Liang,2 Shulin Yang1 1School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 2Chemical Biology Research Center, School of Pharmaceutical Sciences, 3Department of Orthopedics, The 1st Affiliated Hospital, Wenzhou Medical University, Wenzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A novel class of asymmetric mono-carbonyl analogs of curcumin (AMACs were synthesized and screened for anti-inflammatory activity. These analogs are chemically stable as characterized by UV absorption spectra. In vitro, compounds 3f, 3m, 4b, and 4d markedly inhibited lipopolysaccharide (LPS-induced expression of pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6 in a dose-dependent manner, with IC50 values in low micromolar range. In vivo, compound 3f demonstrated potent preventive and therapeutic effects on LPS-induced sepsis in mouse model. Compound 3f downregulated the phosphorylation of extracellular signal-regulated kinase (ERK1/2 MAPK and suppressed IκBα degradation, which suggests that the possible anti-inflammatory mechanism of compound 3f may be through downregulating nuclear factor kappa binding (NF-κB and ERK pathways. Also, we solved the crystal structure of compound 3e to confirm the asymmetrical structure. The quantitative structure–activity relationship analysis reveals that the electron-withdrawing substituents on aromatic ring of lead structures could improve activity. These active AMACs represent a new class of anti-inflammatory agents with improved stability, bioavailability, and potency compared to curcumin. Our results suggest that 3f may be further developed as a potential agent for prevention and treatment of sepsis or other inflammation-related diseases. Keywords: asymmetric mono-carbonyl analogs of curcumin (AMACs

  2. Anti-Inflammatory Effects, SAR, and Action Mechanism of Monoterpenoids from Radix Paeoniae Alba on LPS-Stimulated RAW 264.7 Cells.

    Science.gov (United States)

    Bi, Xiaoxu; Han, Li; Qu, Tiange; Mu, Yu; Guan, Peipei; Qu, Xiaodan; Wang, Zhanyou; Huang, Xueshi

    2017-04-29

    Nine monoterpenoids from Radix Paeoniae Alba, including paeoniflorin derivatives, paeoniflorin (PF), 4-O-methylpaeoniflorin (MPF), 4-O-methylbenzoylpaeoniflorin (MBPF); paeonidanin derivatives, paeonidanin (PD), paeonidanin A (PDA), albiflorin derivatives, albiflorin (AF), benzoylalbiflorin (BAF), galloylalbiflorin (GAF), and debenzoylalbiflorin (DAF), were obtained in our previous phytochemistry investigations. Their anti-inflammatory effects were determined in the present study. The expression and production of pro-inflammatory cytokines in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells were measured using an Elisa assay and nitric oxide (NO) release was determined using the Griess method. The results demonstrated that the most of the monoterpenoids suppressed the LPS-induced production of NO, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). The anti-inflammatory activities of these monoterpenoids were closely related to their structural characteristics. Paeoniflorins and paeonidanins presented stronger anti-inflammatory activities than those of albiflorin derivatives. Furthermore, the action mechanisms of MBPF, having a strong anti-inflammatory effect, were investigated using quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot methods. The results indicated that MBPF could down-regulate the mRNA and protein expression level of inducible nitric oxide synthase (iNOS) in LPS-stimulated RAW 264.7 cells. The mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT and nuclear factor κB (NF-κB) signaling pathways are involved in mediating the role of MBPF in suppressing the expression and production of pro-inflammatory cytokines in RAW 264.7 cells.

  3. Anti-inflammatory effects of novel barbituric acid derivatives in T lymphocytes.

    Science.gov (United States)

    Xu, Chenjia; Wyman, Arlene R; Alaamery, Manal A; Argueta, Shannon A; Ivey, F Douglas; Meyers, John A; Lerner, Adam; Burdo, Tricia H; Connolly, Timothy; Hoffman, Charles S; Chiles, Thomas C

    2016-09-01

    We have used a high throughput small molecule screen, using a fission yeast-based assay, to identify novel phosphodiesterase 7 (PDE7) inhibitors. One of the most effective hit compounds was BC12, a barbituric acid-based molecule that exhibits unusually potent immunosuppressive and immunomodulatory actions on T lymphocyte function, including inhibition of T cell proliferation and IL-2 cytokine production. BC12 treatment confers a >95% inhibition of IL-2 secretion in phytohaemagglutinin (PHA) plus phorbol-12-myristate-13-acetate (PMA) stimulated Jurkat T cells. The effect of BC12 on IL-2 secretion is not due to decreased cell viability; rather, BC12 blocks up-regulation of IL-2 transcription in activated T cells. BC12 also inhibits IL-2 secretion in human peripheral T lymphocytes stimulated in response to CD3/CD28 co-ligation or the combination of PMA and ionomycin, as well as the proliferation of primary murine T cells stimulated with PMA and ionomycin. A BC12 analog that lacks PDE7 inhibitory activity (BC12-4) displays similar biological activity, suggesting that BC12 does not act via PDE7 inhibition. To investigate the mechanism of inhibition of IL-2 production by BC12, we performed microarray analyses using unstimulated and stimulated Jurkat T cells in the presence or absence of BC12 or BC12-4. Our studies show these compounds affect the transcriptional response to stimulation and act via one or more shared targets to produce both anti-inflammatory and pro-stress effects. These results demonstrate potent immunomodulatory activity for BC12 and BC12-4 in T lymphocytes and suggest a potential clinical use as an immunotherapeutic to treat T lymphocyte-mediated diseases.

  4. Rainbow trout peptidoglycan recognition protein has an anti-inflammatory function in liver cells.

    Science.gov (United States)

    Jang, Ju Hye; Kim, Hyun; Cho, Ju Hyun

    2013-12-01

    Peptidoglycan recognition proteins (PGRPs) are innate immune molecules that are structurally conserved through evolution in both invertebrate and vertebrate animals. PGRPs exert diverse host-defense functions both through direct antibacterial activity and through indirect effects, including the induction of antimicrobial peptides and the modulation of inflammation and immune responses. In this study, we identified the gene encoding a long form of PGRP (OmPGRP-L1) from the rainbow trout, Oncorhynchus mykiss, and investigated whether it has immunomodulating activity in a rainbow trout hepatoma cell line RTH-149 challenged with fish pathogenic bacteria. OmPGRP-L1 contains the conserved PGRP domain and the four Zn(2+)-binding amino acid residues required for amidase activity. In RTH-149 cells, OmPGRP-L1 expression was increased by bacterial stimulation. Loss-of-function and gain-of-function experiments indicated that OmPGRP-L1 is involved in the expression of pro-inflammatory cytokines. Silencing of OmPGRP-L1 in RTH-149 cells challenged with Edwardsiella tarda dramatically increased the expression of IL-1β and TNF-α. In contrast, overexpression of OmPGRP-L1 or its amidase-inactive mutant OmPGRP-L1(C472S) resulted in down-regulation of IL-1β and TNF-α expression. When overexpressed in RTH-149 cells, OmPGRP-L1 inhibited NF-κB activity with or without bacterial stimulation. Collectively, these findings suggest that OmPGRP-L1 has an anti-inflammatory function, independent of its amidase activity, possibly via NF-κB inhibition in liver cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Anti-allergic and anti-inflammatory effects of aqueous extract of Pogostemon cablin.

    Science.gov (United States)

    Yoon, Seok Cheol; Je, In-Gyu; Cui, Xun; Park, Hae Ran; Khang, Dongwoo; Park, Jeong-Suk; Kim, Sang-Hyun; Shin, Tae-Yong

    2016-01-01

    Allergic disease is caused by exposure to normally innocuous substances that activate mast cells. Mast cell-mediated allergic inflammation is closely related to a number of allergic disorders, such as anaphylaxis, allergic rhinitis, asthma and atopic dermatitis. The discovery of drugs for treating allergic disease is an interesting subject and important to human health. The aim of the present study was to investigate the anti‑allergic and anti-inflammatory effects of the aqueous extract of Pogostemon cablin (Blanco) Benth (AEPC) (a member of the Labiatae family) using mast cells, and also to determine its possible mechanisms of action. An intraperitoneal injection of compound 48/80 or a serial injection of immunoglobulin E and antigen was used to induce anaphylaxis in mice. We found that AEPC inhibited compound 48/80‑induced systemic and immunoglobulin E-mediated cutaneous anaphylaxis in a dose-dependent manner. The release of histamine from mast cells was reduced by AEPC, and this suppressive effect was associated with the regulation of calcium influx. In addition, AEPC attenuated the phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated expression of pro-inflammatory cytokines in mast cells. The inhibitory effects of AEPC on pro-inflammatory cytokines were dependent on the activation of nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). AEPC blocked the PMACI-induced translocation of NF-κB into the nucleus by hindering the degradation of IκBα and the phosphorylation of p38 MAPK. Our results thus indicate that AEPC inhibits mast cell‑mediated allergic inflammation by suppressing mast cell degranulation and the expression of pro-inflammatory cytokines caused by reduced intracellular calcium levels and the activation of NF-κB and p38 MAPK.

  6. Proinflammatory and anti-inflammatory cytokine profile in pediatric patients with irritable bowel syndrome.

    Science.gov (United States)

    Vázquez-Frias, R; Gutiérrez-Reyes, G; Urbán-Reyes, M; Velázquez-Guadarrama, N; Fortoul-van der Goes, T I; Reyes-López, A; Consuelo-Sánchez, A

    2015-01-01

    There is evidence that patients with irritable bowel syndrome (IBS) have a low degree of inflammation in the intestinal mucosa. The aim of the study was to evaluate the profile of pro- and anti-inflammatory cytokines in plasma in Mexican pediatric patients with IBS. Fifteen patients with IBS according to Rome III criteria for childhood and 15 healthy children, matched by age and sex, were included in the study. Plasma levels of tumoral necrosis factor alpha (TNF-α), interleukins 10 and 12 (IL-10, IL-12) and transforming growth factor beta (TGF-β) were quantified and compared between groups. Plasma levels of IL-10 were lower in patients with IBS (86.07+21.3 pg/mL vs. 118.71+58.62 pg/mL: P=.045) and IL-12 levels were higher in patients with IBS compared to the control group of healthy children (1,204.2±585.9 pg/mL vs. 655.04±557.80 pg/mL; P=.011). The IL-10/IL-12 index was lower in patients with IBS (0.097±0.07 vs. 0.295±0.336; P=.025). Plasma concentration of TGF-β was higher in patients with IBS (545.67±337.69 pg/mL vs. 208.48±142.21 pg/mL; P=.001). There was no difference in plasma levels of TNF-α between groups. This study suggests that children with IBS have a state of altered immune regulation. This is consistent with the theory of low-grade inflammatory state in these patients. Further studies are needed to elucidate the role played by these cytokines, specifically TGF-β in the pathogenesis of IBS. Copyright © 2014 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  7. Effects of non-steroidal anti-inflammatory drug (NSAID) diclofenac exposure in mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Gonzalez-Rey, Maria; Bebianno, Maria João

    2014-03-01

    In recent years, research studies have increasingly focused on assessing the occurrence of active pharmaceutical ingredients (APIs) in ecosystems. However, much remains unknown concerning the potential effects on APIs on non-target organisms due to the complexity of the mode of action, reactivity and bioconcentration potential for each specific drug. The non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF) is one of the most frequently detected APIs in surface waters worldwide and has recently been included in the list of priority substances under the European Commission. In this study, mussels (Mytilus galloprovincialis) were exposed to an environmentally relevant nominal concentration of DCF (250 ng L(-1)) over 15 days. The responses of several biomarkers were assessed in the mussel tissues: condition index (CI); superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and phase II glutathione-S-transferase (GST) activities, lipid peroxidation levels (LPO) associated with oxidative stress, acetylcholinesterase (AChE) activity related to neurotoxic effects and vitellogenin-like proteins linked to endocrine disruption. This study demonstrated significant induction of SOD and GR activities in the gills in addition to high CAT activity and LPO levels in the digestive gland. Phase II GST remained unaltered in both tissues, while the up-regulation of the AChE activity was directly related to the vitellogenin-like protein levels in exposed females, indicating an alteration in the estrogenic activity, rather than a breakdown in cholinergic neurotransmission function. This study confirmed that DCF at a concentration often observed in surface water induces tissue-specific biomarker responses. Finally, this study also revealed the importance of a multi-biomarker approach when assessing the potentially deleterious effects in a species that may be vulnerable to the continuously discharge of APIs into the ecosystems; this approach provides crucial new

  8. Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent

    Science.gov (United States)

    Borrelli, Francesca; Romano, Barbara; Petrosino, Stefania; Pagano, Ester; Capasso, Raffaele; Coppola, Diana; Battista, Giovanni; Orlando, Pierangelo; Di Marzo, Vincenzo; Izzo, Angelo A

    2015-01-01

    BACKGROUND AND PURPOSE Palmitoylethanolamide (PEA) acts via several targets, including cannabinoid CB1 and CB2 receptors, transient receptor potential vanilloid type-1 (TRPV1) ion channels, peroxisome proliferator-activated receptor alpha (PPAR α) and orphan G protein-coupled receptor 55 (GRR55), all involved in the control of intestinal inflammation. Here, we investigated the effect of PEA in a murine model of colitis. EXPERIMENTAL APPROACH Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Inflammation was assessed by evaluating inflammatory markers/parameters and by histology; intestinal permeability by a fluorescent method; colonic cell proliferation by immunohistochemistry; PEA and endocannabinoid levels by liquid chromatography mass spectrometry; receptor and enzyme mRNA expression by quantitative RT-PCR. KEY RESULTS DNBS administration caused inflammatory damage, increased colonic levels of PEA and endocannabinoids, down-regulation of mRNA for TRPV1 and GPR55 but no changes in mRNA for CB1, CB2 and PPARα. Exogenous PEA (i.p. and/or p.o., 1 mg·kg−1) attenuated inflammation and intestinal permeability, stimulated colonic cell proliferation, and increased colonic TRPV1 and CB1 receptor expression. The anti-inflammatory effect of PEA was attenuated or abolished by CB2 receptor, GPR55 or PPARα antagonists and further increased by the TRPV1 antagonist capsazepine. CONCLUSIONS AND IMPLICATIONS PEA improves murine experimental colitis, the effect being mediated by CB2 receptors, GPR55 and PPARα, and modulated by TRPV1 channels. PMID:25205418

  9. Anti-Inflammatory and Free Radial Scavenging Activities of the Constituents Isolated from Machilus zuihoensis

    Directory of Open Access Journals (Sweden)

    Shui-Tein Chen

    2011-11-01

    Full Text Available A new biflavonol glycoside, quercetin-3-O-β-D-glucopyranoside-(3¢→O-3¢¢¢- quercetin-3-O-β-D-galactopyranoside (9, together with eight known compounds was isolated for the first time from the leaves of Machilus zuihoensis Hayata (Lauraceae. The structure of compound 9 was elucidated by various types of spectroscopic data analysis. Analysis of the biological activity assay found that compound 9 showed significant superoxide anion scavenging activity (IC50 is 30.4 μM and markedly suppressed LPS-induced high mobility group box 1 (HMGB-1 protein secretion in RAW264.7 cells. In addition, the HMGB-1 protein secretion was also inhibited by quercitrin (3, ethyl caffeate (6, and ethyl 3-O-caffeoylquinate (7 treatment. In the LPS-stimulated inducible nitric oxide synthase (iNOS activation analysis, two known compounds, quercetin (1 and ethyl caffeate (6, were found to markedly suppress nitric oxide (NO production (IC50 value, 27.6 and 42.9 μM, respectively in RAW264.7 cells. Additionally, it was determined that ethyl caffeate (6 down-regulated mRNA expressions of iNOS, IL-1β, and IL-10 in the LPS-treatment of RAW264.7 cells via a suppressed NF-kB pathway. These results suggested for the first time that the new compound 9 and other constituents isolated from M. zuihoensis have potential anti-inflammatory and superoxide anion scavenging effects. These constituents may be useful for treating various inflammatory diseases.

  10. Endoplasmic reticulum stress mediates the anti-inflammatory effect of ethyl pyruvate in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Ge Wang

    Full Text Available Ethyl pyruvate (EP is a simple aliphatic ester of the metabolic intermediate pyruvate that has been demonstrated to be a potent anti-inflammatory agent in a variety of in vivo and in vitro model systems. However, the protective effects and mechanisms underlying the actions of EP against endothelial cell (EC inflammatory injury are not fully understood. Previous studies have confirmed that endoplasmic reticulum stress (ERS plays an important role in regulating the pathological process of EC inflammation. In this study, our aim was to explore the effects of EP on tumor necrosis factor-α (TNF-α-induced inflammatory injury in human umbilical vein endothelial cells (HUVECs and to explore the role of ERS in this process. TNF-α treatment not only significantly increased the adhesion of monocytes to HUVECs and inflammatory cytokine (sICAM1, sE-selectin, MCP-1 and IL-8 production in cell culture supernatants but it also increased ICAM and MMP9 protein expression in HUVECs. TNF-α also effectively increased the ERS-related molecules in HUVECs (GRP78, ATF4, caspase12 and p-PERK. EP treatment effectively reversed the effects of the TNF-α-induced adhesion of monocytes on HUVECs, inflammatory cytokines and ERS-related molecules. Furthermore, thapsigargin (THA, an ERS inducer attenuated the protective effects of EP against TNF-α-induced inflammatory injury and ERS. The PERK siRNA treatment not only inhibited ERS-related molecules but also mimicked the protective effects of EP to decrease TNF-α-induced inflammatory injury. In summary, we have demonstrated for the first time that EP can effectively reduce vascular endothelial inflammation and that this effect at least in part depends on the attenuation of ERS.

  11. Anti-Tumor Effect and Anti-Inflammatory Activity of Boschniakia rossica

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the anti-tumor effect and anti-inflammatory activity of Boschniakia rossica (BR). Methods: The expression of tumor marker, GST-P, p53 and p21ras proteins in promotion stage of rat chemical hepatocarcinogenesis were examined by immunohistochemical technique ABC method. Anti-tumor effect of BR was investigated by inhibitory test on Sarcoma180. Anti-inflammatory activity of BR was tested by xylene-induced mouse ear swelling method. Results: BR-H2O extract (the H2O extract fractionated from BR-Methanol extract with CH2Cl2 and H2O) 500 mg/kg has inhibitory effect on the formation of diethylnitrosamine (DEN)-induced glutathione S-transferase placental form (GST-P) positive foci in rat liver with the expression of mutant p53 and p21ras proteins lower than those of non-treated hepatic preneoplastic lesions. BR extract showed inhibitory effect on Sarcoma180 and anti-inflammatory effect in mice by xylene-induced mouse ear swelling tests. Conclusion: BR- H2O extract exerted inhibitory effect on DEN-induced preneoplastic hepatic foci in promotion stage of rat chemical hepatocarcinogenesis and might suppress the growth of solid Sarcoma180 in mice. Both CH2Cl2 and H2O extract from BR exerted anti-inflammatory effect in mice.

  12. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent

    Directory of Open Access Journals (Sweden)

    Nadjet Debbache-Benaida

    2013-09-01

    Conclusions: The extract exerted significant anti-inflammatory, hepatoprotective and vasorelaxant activities, the latter being endothelium-independent believed to be mediated mainly by the ability of components present in the extract to exert antioxidant properties, probably related to an inhibition of Ca2+ influx.

  13. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent

    Institute of Scientific and Technical Information of China (English)

    Nadjet Debbache-Benaida; Dina Atmani-Kilani; Valrie Barbara Schini-Keirth; Nouredine Djebbli; Djebbar Atmani

    2013-01-01

    Objective: To evaluate antioxidant, anti-inflammatory, hepatoprotective and vasorelaxant activities of Populus nigra flower buds ethanolic extract. Methods: Antioxidant and anti-inflammatory activities of the extract were assessed using respectively the ABTS test and the animal model of carrageenan-induced paw edema. Protection from hepatic toxicity caused by aluminum was examined by histopathologic analysis of liver sections. Vasorelaxant effect was estimated in endothelium-intact and-rubbed rings of porcine coronary arteries precontracted with high concentration of U46619. Results:The results showed a moderate antioxidant activity (40%), but potent anti-inflammatory activity (49.9%) on carrageenan-induced mice paw edema, and also as revealed by histopathologic examination, complete protection against AlCl3-induced hepatic toxicity. Relaxant effects of the same extract on vascular preparation from porcine aorta precontracted with high concentration of U46619 were considerable at 10-1 g/L, and comparable (P>0.05) between endothelium-intact (67.74%, IC50=0.04 mg/mL) and-rubbed (72.72%, IC50=0.075 mg/mL) aortic rings. Conclusions: The extract exerted significant anti-inflammatory, hepatoprotective and vasorelaxant activities, the latter being endothelium-independent believed to be mediated mainly by the ability of components present in the extract to exert antioxidant properties, probably related to an inhibition of Ca2+influx.

  14. Synthesis and anti-inflammatory activity of imidazo [1,2-a] pyrimidine derivatives

    Institute of Scientific and Technical Information of China (English)

    Jin Pei Zhou; Yi Wei Ding; Hui Bin Zhang; Lian Xu; Yue Dai

    2008-01-01

    A series of imidazo [1,2-a] pyrimidine derivatives substituted adjacently with two aryls at positions 2 and 3 were designed and synthesized in order to improve their anti-inflammatory activities. Biological tests suggested that these compounds have antiinflammatory activities with COX-2 selectivity to some extent.

  15. Assessment of topical non-steroidal anti-inflammatory drugs in animal models.

    Science.gov (United States)

    Hiramatsu, Y; Akita, S; Salamin, P A; Maier, R

    1990-10-01

    Four commercial gel preparations of topical anti-inflammatory agents have been assessed in six animal models commonly used to determine the biological activity of non-steroidal anti-inflammatory agents for systemic administration. Only UV-induced erythema of the skin, adjuvant induced arthritis and the measurement of vascular permeability proved suitable for differentiation of the potency of the four topical agents. Carrageenin-induced paw oedema, the cotton pellet test and the assessment of the pain threshold according to Randall and Selitto were of little value. The effects of the gel preparation of diclofenac (CAS 15307-86-5) diethylammonium (Voltaren Emulgel) were comparable to two preparations containing 1% and 5% active ingredient, respectively. Gel 4 showed low overall activity. The experiments demonstrated that some of the models used for the assessment of anti-inflammatory agent for systemic administration proved suitable for the testing of topical preparations and that percutaneous absorption was insufficient to elicit anti-inflammatory effect in the animals at sites remote from the site of application.

  16. Anti-Inflammatory and Immunomodulatory Mechanism of Tanshinone IIA for Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Zhuo Chen

    2014-01-01

    Full Text Available Tanshinone IIA (Tan II A is widely used in the treatment of cardiovascular diseases as an active component of Salvia miltiorrhiza Bunge. It has been demonstrated to have pleiotropic effects for atherosclerosis. From the anti-inflammatory and immunomodulatory mechanism perspective, this paper reviewed major progresses of Tan IIA in antiatherosclerosis research, including immune cells, antigens, cytokines, and cell signaling pathways.

  17. Non-corticosteroid anti-inflammatory drugs in asthma - Clinical pharmacology and recommendations for use

    NARCIS (Netherlands)

    deJong, JW; Postma, DS

    1997-01-01

    Asthma is a chronic inflammatory disease of the airways, As airways inflammation plays a principal role in the pathogenesis of asthma, even in patients with mild disease, current recommendations give anti-inflammatory therapy a central position in the treatment of asthma, Although inhaled corticoste

  18. In Vivo Potential Anti-Inflammatory Activity of Melissa officinalis L. Essential Oil

    Science.gov (United States)

    Bounihi, Amina; Hajjaj, Ghizlane; Cherrah, Yahia; Zellou, Amina

    2013-01-01

    Melissa officinalis L. (Lamiaceae) had been reported in traditional Moroccan medicine to exhibit calming, antispasmodic, and strengthening heart effects. Therefore, this study is aimed at determining the anti-inflammatory activities of M. officinalis L. leaves. The effect of the essential oil of the leaves of this plant was investigated for anti-inflammatory properties by using carrageenan and experimental trauma-induced hind paw edema in rats. The essential oil extracted from leaves by hydrodistillation was characterized by means of gas chromatography-mass spectrometry (GC-MS). M. officinalis contained Nerol (30.44%), Citral (27.03%), Isopulegol (22.02%), Caryophyllene (2.29%), Caryophyllene oxide (1.24%), and Citronella (1.06%). Anti-inflammatory properties of oral administration of essential oil at the doses of 200, 400 mg/kg p.o., respectively, showed significant reduction and inhibition of edema with 61.76% and 70.58%, respectively, (P officinalis L. essential oil showed pronounced reduction and inhibition of edema induced by carrageenan at 6 h at 200 and 400 mg/kg with 91.66% and 94.44%, respectively (P officinalis L. possesses potential anti-inflammatory activities, supporting the traditional application of this plant in treating various diseases associated with inflammation and pain. PMID:24381585

  19. In Vivo Potential Anti-Inflammatory Activity of Melissa officinalis L. Essential Oil.

    Science.gov (United States)

    Bounihi, Amina; Hajjaj, Ghizlane; Alnamer, Rachad; Cherrah, Yahia; Zellou, Amina

    2013-01-01

    Melissa officinalis L. (Lamiaceae) had been reported in traditional Moroccan medicine to exhibit calming, antispasmodic, and strengthening heart effects. Therefore, this study is aimed at determining the anti-inflammatory activities of M. officinalis L. leaves. The effect of the essential oil of the leaves of this plant was investigated for anti-inflammatory properties by using carrageenan and experimental trauma-induced hind paw edema in rats. The essential oil extracted from leaves by hydrodistillation was characterized by means of gas chromatography-mass spectrometry (GC-MS). M. officinalis contained Nerol (30.44%), Citral (27.03%), Isopulegol (22.02%), Caryophyllene (2.29%), Caryophyllene oxide (1.24%), and Citronella (1.06%). Anti-inflammatory properties of oral administration of essential oil at the doses of 200, 400 mg/kg p.o., respectively, showed significant reduction and inhibition of edema with 61.76% and 70.58%, respectively, (P officinalis L. essential oil showed pronounced reduction and inhibition of edema induced by carrageenan at 6 h at 200 and 400 mg/kg with 91.66% and 94.44%, respectively (P essential oil of M. officinalis L. possesses potential anti-inflammatory activities, supporting the traditional application of this plant in treating various diseases associated with inflammation and pain.

  20. Anti-Inflammatory and Antiarthritic Activity of Anthraquinone Derivatives in Rodents

    Directory of Open Access Journals (Sweden)

    Ajay D. Kshirsagar

    2014-01-01

    Full Text Available Aloe emodin is isolated compound of aloe vera which is used traditionally as an anti-inflammatory agent. In vitro pharmacokinetic data suggest that glucuronosyl or sulfated forms of aloe emodin may provide some limitations in its absorption capacity. Aloe emodin was reported to have in vitro anti-inflammatory activity due to inhibition of inducible nitric oxide (iNO and prostaglandin E2, via its action on murine macrophages. However, present work evidenced that molecular docking of aloe emodin modulates the anti-inflammatory activity, as well as expression of COX-2 (cyclooxygenase-2 in rodent. The AEC (4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2 carboxylic acid was synthesized using aloe emodin as starting material. The study was planned for evaluation of possible anti-inflammatory and antiarthritic activity in carrageenan rat induced paw oedema and complete Freund’s adjuvant induced arthritis in rats. The AE (aloe emodin and AEC significantly P<0.001 reduced carrageenan induced paw edema at 50 and 75 mg/kg. Complete Freund’s adjuvant induced arthritis model showed significant P<0.001 decrease in injected and noninjected paw volume, arthritic score. AE and AEC showed significant effect on various biochemical, antioxidant, and hematological parameters. Diclofenac sodium 10 mg/kg showed significant P<0.001 inhibition in inflammation and arthritis.

  1. Effects of Non-Steroidal Anti-Inflammatory Drugs on the Gastrointestinal and Cardiovascular System

    NARCIS (Netherlands)

    G.M.C. Masclee (Gwen)

    2016-01-01

    markdownabstractNon-steroidal anti-inflammatory drugs (NSAIDs) are frequently used for pain relief and antiinflammatory purposes. They are often combined with proton pump inhibitors (PPIs), the most potent blockers of gastric acid secretion to reduce gastroduodenal complications of NSAID use. This t

  2. An investigation of antioxidant and anti-inflammatory activities from blood components of Crocodile (Crocodylus siamensis).

    Science.gov (United States)

    Phosri, Santi; Mahakunakorn, Pramote; Lueangsakulthai, Jiraporn; Jangpromma, Nisachon; Swatsitang, Prasan; Daduang, Sakda; Dhiravisit, Apisak; Thammasirirak, Sompong

    2014-10-01

    Antioxidant and anti-inflammatory activities were found from Crocodylus siamensis (C. siamensis) blood. The 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, nitric oxide scavenging, hydroxyl radical scavenging and linoleic peroxidation assays were used to investigate the antioxidant activities of the crocodile blood. Results show that crocodile blood components had antioxidant activity, especially hemoglobin (40.58 % nitric oxide radical inhibition), crude leukocyte extract (78 % linoleic peroxidation inhibition) and plasma (57.27 % hydroxyl radical inhibition). Additionally, the anti-inflammatory activity of the crocodile blood was studied using murine macrophage (RAW 264.7) as a model. The results show that hemoglobin, crude leukocyte extract and plasma were not toxic to RAW 264.7 cells. Also they showed anti-inflammatory activity by reduced nitric oxide (NO) and interleukin 6 (IL-6) productions from lipopolysaccharide (LPS)-stimulated cells. The NO inhibition percentages of hemoglobin, crude leukocyte extract and plasma were 31.9, 48.24 and 44.27 %, respectively. However, only crude leukocyte extract could inhibit IL-6 production. So, the results of this research directly indicate that hemoglobin, crude leukocyte extract and plasma of C. siamensis blood provide both antioxidant and anti-inflammatory activities, which could be used as a supplementary agent in pharmaceutical products.

  3. Antinociceptive and anti-inflammatory activities of ethanolic extracts of Lychnophora species.

    Science.gov (United States)

    Guzzo, L S; Saúde-Guimarães, D A; Silva, A C A; Lombardi, J A; Guimarães, H N; Grabe-Guimarães, A

    2008-02-28

    Extracts from Lychnophora species are traditionally used in Brazil as anti-inflammatory, and to treat bruise, pain and rheumatism. The ethanolic extract of aerial parts of five species of Lychnophoras and one specie of Lychnophoriopsis were examined for the antinociceptive (hot-plate and writhing tests) and anti-inflammatory (carrageenan-induced paw oedema test) activity in mice, by oral and topical routes, respectively. In the hot-plate test, the Lychnophora pinaster (0.75 g/kg) and Lychnophora ericoides (1.50 g/kg) extracts significantly increased the time for licking of the paws. The species Lychnophora passerina, Lychnophoriopsis candelabrum and Lychnophora pinaster, using the dose of 0.75 g/kg, and Lychnophora ericoides and Lychnophora trichocarpha in both doses evaluated (0.75 and 1.50 g/kg) significantly reduced the number of writhes induced by acetic acid. The administration of Lychnophora pinaster and Lychnophora trichocarpha ointments, in both concentrations evaluated (5 and 10%, w/w), and Lychnophora passerina and Lychnophoriopsis candelabrum, in the concentration of 10%, significantly reduced the paw oedema measured 3 h after carrageenan administration, suggesting, for the first time, an anti-inflammatory activity upon topical administration of these species. The present work comparatively demonstrated the antinociceptive and anti-inflammatory activities of some Brazilian Lychnophoras.

  4. Novel coumarin-benzimidazole derivatives as antioxidants and safer anti-inflammatory agents.

    Science.gov (United States)

    Arora, Radha Krishan; Kaur, Navneet; Bansal, Yogita; Bansal, Gulshan

    2014-10-01

    Inspired from occurrence of anti-inflammatory activity of 3-substituted coumarins and antiulcer activity of various 2-substituted benzimidazoles, novel compounds have been designed by coupling coumarin derivatives at 3-position directly or through amide linkage with benzimidazole nucleus at 2-position. The resultant compounds are expected to exhibit both anti-inflammatory and antioxidant activities along with less gastric toxicity profile. Two series of coumarin-benzimidazole derivatives (4a-e and 5a-e) were synthesized and evaluated for anti-inflammatory activity and antioxidant activity. Compounds 4c, 4d and 5a displayed good anti-inflammatory (45.45%, 46.75% and 42.85% inhibition, respectively, versus 54.54% inhibition by indomethacin) and antioxidant (IC50 of 19.7, 13.9 and 1.2 µmol/L, respectively, versus 23.4 µmol/L for butylatedhydroxytoluene) activities. Evaluation of ulcer index and in vivo biochemical estimations for oxidative stress revealed that compounds 4d and 5a remain safe on gastric mucosa and did not induce oxidative stress in tissues. Calculation of various molecular properties suggests the compounds to be sufficiently bioavailable.

  5. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L.

    Science.gov (United States)

    Orhan, I; Küpeli, E; Aslan, M; Kartal, M; Yesilada, E

    2006-04-21

    The ethanolic and aqueous extracts prepared from different parts of Pistacia vera L. (Anacardiaceae) as well as its oleoresin were evaluated for their in vivo anti-inflammatory and antinociceptive activities. Among the extracts screened, only the oleoresin was shown to possess a marked anti-inflammatory activity against carrageenan-induced hind paw edema model in mice without inducing any gastric damage at both 250 and 500 mg/kg doses whereas the rest of the extracts were totally inactive. While the oleoresin was found to display significant antinociceptive activity at 500 mg/kg dose, the ethanolic and aqueous extracts belonging to fruit, leaf, branch and peduncle of Pistacia vera did not exhibit any noticeable antinociception in p-benzoquinone-induced abdominal contractions in mice. Fractionation of the oleoresin indicated the n-hexane fraction to be active, which further led to recognition of some monoterpenes, mainly alpha-pinene (77.5%) by capillary gas chromatography-mass spectrometry (GC-MS) as well as the oleoresin itself. alpha-Pinene was also assessed for its antinociceptive and anti-inflammatory activities in the same manner and exerted a moderate anti-inflammatory effect at 500 mg/kg dose.

  6. Phytol: A chlorophyll component with anti-inflammatory and metabolic properties

    DEFF Research Database (Denmark)

    Olofsson, Peter; Hultqvist, Malin; Hellgren, Lars I.

    2014-01-01

    The naturally occurring dipterpene molecule Phytol is an alcohol that can be extracted from the chlorophyll of green plants. Phytol has been studied for decades and has been suggested to have both metabolic properties as well as potent anti-inflammatory effects. Phytol represents a molecule derived...

  7. Acai juice attenuates atherosclerosis in apoe deficient mice through antioxidant and anti-inflammatory activities

    Science.gov (United States)

    Objective - Acai fruit pulp has received much attention because of its high antioxidant capacity and potential anti-inflammatory effects. In this study, athero-protective effects of açaí juice were investigated in apolipoprotein E deficient (apoE -/-) mice. Methods and Results - ApoE-/- mice were f...

  8. Macrolide Hybrid Compounds: Drug Discovery Opportunities in Anti- Infective and Anti-inflammatory Area.

    Science.gov (United States)

    Paljetak, Hana Cipcic; Tomaskovic, Linda; Matijasic, Mario; Bukvic, Mirjana; Fajdetic, Andrea; Verbanac, Donatella; Peric, Mihaela

    2017-01-01

    Macrolides, polyketide natural products, and their 15-membered semi-synthetic derivatives are composed of substituted macrocyclic lactone ring and used primarily as potent antibiotics. Recently their usefulness was extended to antimalarial and anti-inflammatory area. Hybrid macrolides presented in this article are the next generation semi-synthetic compounds that combine pharmacophores from antibacterial, antimalarial and anti-inflammatory area with 14- and 15-membered azalide scaffolds. Antibacterial azalide hybrids with sulphonamides showed improved activity against resistant streptococci while quinolone conjugates demonstrated full coverage of respiratory pathogens including macrolide resistant strains and their efficacy was confirmed in mouse pneumonia model. Antimalarial macrolide hybrids, mainly involving (chloro)quinoline pharmacophores, showed outstanding activity against chloroquine resistant strains, favourable pharmacokinetics, promising in vivo efficacy as well as encouraging developmental potential. Anti-inflammatory hybrids were obtained by combining macrolides with corticosteroid and non-steroidal anti-inflammatory drugs. They were found active in in vivo animal models of locally induced inflammation, asthma, inflammatory bowel disease and rheumatoid arthritis and demonstrated improved safety over parent steroid drugs. Overall, macrolide hybrids possess significant potential to be developed as potent novel medicines in therapeutic areas of utmost pharmaceutical interest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. General unknown screening, antioxidant and anti-inflammatory potential of Dendrobium macrostach