International Nuclear Information System (INIS)
Igor Kaganovich
2000-01-01
Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas
DEFF Research Database (Denmark)
Sharma, S.; Pittalis, S.; Kurth, S.
2007-01-01
The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....
Field-induced negative differential spin lifetime in silicon.
Li, Jing; Qing, Lan; Dery, Hanan; Appelbaum, Ian
2012-04-13
We show that the electric-field-induced thermal asymmetry between the electron and lattice systems in pure silicon substantially impacts the identity of the dominant spin relaxation mechanism. Comparison of empirical results from long-distance spin transport devices with detailed Monte Carlo simulations confirms a strong spin depolarization beyond what is expected from the standard Elliott-Yafet theory even at low temperatures. The enhanced spin-flip mechanism is attributed to phonon emission processes during which electrons are scattered between conduction band valleys that reside on different crystal axes. This leads to anomalous behavior, where (beyond a critical field) reduction of the transit time between spin-injector and spin-detector is accompanied by a counterintuitive reduction in spin polarization and an apparent negative spin lifetime.
Negative density-distribution relationship in butterflies.
Päivinen, Jussi; Grapputo, Alessandro; Kaitala, Veijo; Komonen, Atte; Kotiaho, Janne S; Saarinen, Kimmo; Wahlberg, Niklas
2005-03-01
Because "laws of nature" do not exist in ecology, much of the foundations of community ecology rely on broad statistical generalisations. One of the strongest generalisations is the positive relationship between density and distribution within a given taxonomic assemblage; that is, locally abundant species are more widespread than locally sparse species. Several mechanisms have been proposed to create this positive relationship, and the testing of these mechanisms is attracting increasing attention. We report a strong, but counterintuitive, negative relationship between density and distribution in the butterfly fauna of Finland. With an exceptionally comprehensive data set (data includes all 95 resident species in Finland and over 1.5 million individuals), we have been able to submit several of the mechanisms to powerful direct empirical testing. Without exception, we failed to find evidence for the proposed mechanisms creating a positive density-distribution relationship. On the contrary, we found that many of the mechanisms are equally able to generate a negative relationship. We suggest that one important determinant of density-distribution relationships is the geographical location of the study: on the edge of a distribution range, suitable habitat patches are likely to be more isolated than in the core of the range. In such a situation, only the largest and best quality patches are likely to be occupied, and these by definition can support a relatively dense population leading to a negative density-distribution relationship. Finally, we conclude that generalizations about the positive density-distribution relationship should be made more cautiously.
Negative density-distribution relationship in butterflies
Directory of Open Access Journals (Sweden)
Kotiaho Janne S
2005-03-01
Full Text Available Abstract Background Because "laws of nature" do not exist in ecology, much of the foundations of community ecology rely on broad statistical generalisations. One of the strongest generalisations is the positive relationship between density and distribution within a given taxonomic assemblage; that is, locally abundant species are more widespread than locally sparse species. Several mechanisms have been proposed to create this positive relationship, and the testing of these mechanisms is attracting increasing attention. Results We report a strong, but counterintuitive, negative relationship between density and distribution in the butterfly fauna of Finland. With an exceptionally comprehensive data set (data includes all 95 resident species in Finland and over 1.5 million individuals, we have been able to submit several of the mechanisms to powerful direct empirical testing. Without exception, we failed to find evidence for the proposed mechanisms creating a positive density-distribution relationship. On the contrary, we found that many of the mechanisms are equally able to generate a negative relationship. Conclusion We suggest that one important determinant of density-distribution relationships is the geographical location of the study: on the edge of a distribution range, suitable habitat patches are likely to be more isolated than in the core of the range. In such a situation, only the largest and best quality patches are likely to be occupied, and these by definition can support a relatively dense population leading to a negative density-distribution relationship. Finally, we conclude that generalizations about the positive density-distribution relationship should be made more cautiously.
Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points
Bučinský , Luká š; Kucková , Lenka; Malček, Michal; Koží šek, Jozef; Biskupič, Stanislav; Jayatilaka, Dylan; Bü chel, Gabriel E.; Arion, Vladimir B.
2014-01-01
The change of picture of the quasirelativistic Hartree-Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl5(Hpz)]- and [RuCl5(NO)]2- transition metal complexes are considered. Both, scalar relativistic and spin-orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.©2014 Elsevier B.V. All rights reserved.
Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points
Bučinský, Lukáš
2014-06-01
The change of picture of the quasirelativistic Hartree-Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl5(Hpz)]- and [RuCl5(NO)]2- transition metal complexes are considered. Both, scalar relativistic and spin-orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.©2014 Elsevier B.V. All rights reserved.
Negativity of Two-Qubit System Through Spin Coherent States
International Nuclear Information System (INIS)
Berrada, K.; El Baz, M.; Hassouni, Y.; Eleuch, H.
2009-12-01
Using the negativity, we express and analyze the entanglement of two-qubit nonorthogonal pure states through the spin coherent states. We formulate this measure in terms of the amplitudes of coherent states and we give the conditions for the minimal and the maximal entanglement. We generalize this formalism to the case of a class of mixed states and show that the negativity is also a function of probabilities. (author)
Leading Twist GPDs and Transverse Spin Densities in a Proton
Mondal, Chandan; Maji, Tanmay; Chakrabarti, Dipankar; Zhao, Xingbo
2018-05-01
We present a study of both chirally even and odd generalized parton distributions in the leading twist for the quarks in a proton using the light-front wavefunctions of a quark-diquark model predicted by the holographic QCD. For transversely polarized proton, both chiral even and chiral odd GPDs contribute to the spin densities which are related to the GPDs in transverse impact parameter space. Here, we also present a study of the spin densities for transversely polarized quark and proton.
Calculation of nuclear spin-spin coupling constants using frozen density embedding
Energy Technology Data Exchange (ETDEWEB)
Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)
2014-03-14
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.
Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions
International Nuclear Information System (INIS)
Zou Jianfei; Jin Guojun; Ma Yuqiang
2009-01-01
We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.
Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.
Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang
2009-03-25
We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.
International Nuclear Information System (INIS)
Yamanaka, Shusuke; Takeda, Ryo; Nakata, Kazuto; Takada, Toshikazu; Shoji, Mitsuo; Kitagawa, Yasutaka; Yamaguchi, Kizashi
2007-01-01
We present a simple quantum correction scheme for ab initio Kohn-Sham spin density functional theory (KS-SDFT). This scheme is based on a mapping from ab initio results to a Heisenberg model Hamiltonian. The effective exchange integral is estimated by using energies and spin correlation functionals calculated by ab initio KS-SDFT. The quantum-corrected spin-correlation functional is open to be designed to cover specific quantum spin fluctuations. In this article, we present a simple correction for dinuclear compounds having multiple bonds. The computational results are discussed in relation to multireference (MR) DFT, by which we treat the quantum many-body effects explicitly
Spin-density functional for exchange anisotropic Heisenberg model
International Nuclear Information System (INIS)
Prata, G.N.; Penteado, P.H.; Souza, F.C.; Libero, Valter L.
2009-01-01
Ground-state energies for antiferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains.
Spin theory of the density functional: reduced matrices and density functions
International Nuclear Information System (INIS)
Pavlov, R.; Delchev, Y.; Pavlova, K.; Maruani, J.
1993-01-01
Expressions for the reduced matrices and density functions of N-fermion systems of arbitrary order s (1<=s<=N) are derived within the frame of rigorous spin approach to the density functional theory (DFT). Using the local-scale transformation method and taking into account the particle spin it is shown that the reduced matrices and density functions are functionals of the total one-fermion density. Similar dependence is found for the distribution density of s-particle aggregates. Generalization and applicability of DFT to the case of s-particle ensembles and aggregates is discussed. 14 refs
Spin polarization in high density quark matter
DEFF Research Database (Denmark)
Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca
2013-01-01
We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...... the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP....
Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach
International Nuclear Information System (INIS)
Chen, Son-Hsien
2016-01-01
Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin–orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin–orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value. - Highlights: • Density matrix with spin rotations enables multi-terminal arbitrary spin injections. • Gate-voltage tunable in-plane polarizations require intrinsic SO coupling. • Gate-voltage tunable out-of-plane polarizations require Rashba SO coupling. • Oppositely gated silicene yields a large tunable range of in-plan polarizations. • Polarizations in different phases behave distinguishably only in weak disorder.
Spin-density wave state in simple hexagonal graphite
Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.
2018-02-01
Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.
Volume generation of negative ions in high density hydrogen discharges
International Nuclear Information System (INIS)
Hiskes, J.R.; Karo, A.M.
1983-01-01
A parametric survey is made of a high-density tandem two-chamber hydrogen negative ion system. The optimum extracted negative ion current densities are sensitive to the atom concentration in the discharge and to the system scale length. For scale lengths ranging from 10 cm to 0.1 cm optimum current densities range from of order 1 to 100 mA cm -2 , respectively
Gravity dual of spin and charge density waves
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2014-12-01
At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.
Optical pumping of electron and nuclear spin in a negatively-charged quantum dot
Bracker, Allan; Gershoni, David; Korenev, Vladimir
2005-03-01
We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.
An exposition on Friedmann cosmology with negative energy densities
International Nuclear Information System (INIS)
Nemiroff, Robert J.; Joshi, Ravi; Patla, Bijunath R.
2015-01-01
How would negative energy density affect a classic Friedmann cosmology? Although never measured and possibly unphysical, certain realizations of quantum field theories leaves the door open for such a possibility. In this paper we analyze the evolution of a universe comprising varying amounts of negative energy forms. Negative energy components have negative normalized energy densities, Ω < 0. They include negative phantom energy with an equation of state parameter w < −1, negative cosmological constant: w=−1, negative domain walls: w = −2/3, negative cosmic strings: w=−1/3, negative mass: w = 0, negative radiation: w = 1/3 and negative ultralight: w > 1/3. Assuming that such energy forms generate pressure like perfect fluids, the attractive or repulsive nature of negative energy components are reviewed. The Friedmann equation is satisfied only when negative energy forms are coupled to a greater magnitude of positive energy forms or positive curvature. We show that the solutions exhibit cyclic evolution with bounces and turnovers.The future and fate of such universes in terms of curvature, temperature, acceleration, and energy density are reviewed. The end states are dubbed ''big crunch,' '' big void,' or ''big rip' and further qualified as ''warped',''curved', or ''flat',''hot' versus ''cold', ''accelerating' versus ''decelerating' versus ''coasting'. A universe that ends by contracting to zero energy density is termed ''big poof.' Which contracting universes ''bounce' in expansion and which expanding universes ''turnover' into contraction are also reviewed
Self-interaction corrected local spin density calculations of actinides
DEFF Research Database (Denmark)
Petit, Leon; Svane, Axel; Szotek, Z
2010-01-01
We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....
Wigner Function of Density Operator for Negative Binomial Distribution
International Nuclear Information System (INIS)
Xu Xinglei; Li Hongqi
2008-01-01
By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator
International Nuclear Information System (INIS)
Capelle, K.; Gross, E.
1997-01-01
It is shown that the exchange-correlation functional of spin-density functional theory is identical, on a certain set of densities, with the exchange-correlation functional of current-density functional theory. This rigorous connection is used to construct new approximations of the exchange-correlation functionals. These include a conceptually new generalized-gradient spin-density functional and a nonlocal current-density functional. copyright 1997 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2016-08-01
To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.
Negative vacuum energy densities and the causal diamond measure
International Nuclear Information System (INIS)
Salem, Michael P.
2009-01-01
Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.
Critical current density for spin transfer torque switching with composite free layer structure
You, Chun-Yeol
2009-01-01
Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...
Double-spin-flip resonance of rhodium nuclei at positive and negative spin temperatures
DEFF Research Database (Denmark)
Tuoriniemi, J.T.; Knuuttila, T.A.; Lefmann, K.
2000-01-01
Sensitive SQUID-NMR measurements were used to study the mutual interactions in the highly polarized nuclear-spin system of rhodium metal. The dipolar coupling gives rise to a weak double-spin-flip resonance. The observed frequency shifts allow deducing separately the dipolarlike contribution...
Bučinský, Lukáš
2015-05-11
"Kramers pairs symmetry breaking" is evaluated at the 2-component (2c) Kramers unrestricted and/or general complex Hartree-Fock (GCHF) level of theory, and its analogy with "spin contamination" at the 1-component (1c) unrestricted Hartree-Fock (UHF) level of theory is emphasized. The GCHF "Kramers pairs symmetry breaking" evaluation is using the square of overlaps between the set of occupied spinorbitals with the projected set of Kramers pairs. In the same fashion, overlaps between α and β orbitals are used in the evaluation of "spin contamination" at the UHF level of theory. In this manner, UHF Š2 expectation value is made formally extended to the GCHF case. The directly evaluated GCHF expectation value of the Š2 operator is considered for completeness. It is found that the 2c GCHF Kramers pairs symmetry breaking has a very similar extent in comparison to the 1c UHF spin contamination. Thus higher excited states contributions to the 1c and 2c unrestricted wave functions of open shell systems have almost the same extent and physical consequences. Moreover, it is formally shown that a single determinant wave function in the restricted open shell Kramers case has the expectation value of K2 operator equal to the negative number of open shell electrons, while the eigenvalue of K2 for the series of simple systems (H, He, He*-triplet, Li and Li*-quartet) are found to be equal to minus the square of the number of open shell electrons. The concept of unpaired electron density is extended to the GCHF regime and compared to UHF and restricted open shell Hartree-Fock spin density. The "collinear" and "noncollinear" analogs of spin density at the GCHF level of theory are considered as well. Spin contamination and/or Kramers pairs symmetry breaking, spin populations and spin densities are considered for H2O+, Cl, HCl+, phenoxyl radical (C6H5O) as well as for Cu, Cu2+, Fe and the [OsCl5(1H-pyrazole)]- anion. The 1c and 2c unpaired electron density representation is found
Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet
Xie, Haiqing; Wang, Qiang; Xue, Hai-Bin; Jiao, HuJun; Liang, J.-Q.
2013-06-01
We investigate theoretically the effects of intrinsic spin-relaxation on the spin-dependent transport through a single-molecule magnet (SMM), which is weakly coupled to ferromagnetic leads. The tunnel magnetoresistance (TMR) is obtained by means of the rate-equation approach including not only the sequential but also the cotunneling processes. It is shown that the TMR is strongly suppressed by the fast spin-relaxation in the sequential region and can vary from a large positive to slight negative value in the cotunneling region. Moreover, with an external magnetic field along the easy-axis of SMM, a large negative TMR is found when the relaxation strength increases. Finally, in the high bias voltage limit the TMR for the negative bias is slightly larger than its characteristic value of the sequential region; however, it can become negative for the positive bias caused by the fast spin-relaxation.
Maximum entropy reconstruction of spin densities involving non uniform prior
International Nuclear Information System (INIS)
Schweizer, J.; Ressouche, E.; Papoular, R.J.; Zheludev, A.I.
1997-01-01
Diffraction experiments give microscopic information on structures in crystals. A method which uses the concept of maximum of entropy (MaxEnt), appears to be a formidable improvement in the treatment of diffraction data. This method is based on a bayesian approach: among all the maps compatible with the experimental data, it selects that one which has the highest prior (intrinsic) probability. Considering that all the points of the map are equally probable, this probability (flat prior) is expressed via the Boltzman entropy of the distribution. This method has been used for the reconstruction of charge densities from X-ray data, for maps of nuclear densities from unpolarized neutron data as well as for distributions of spin density. The density maps obtained by this method, as compared to those resulting from the usual inverse Fourier transformation, are tremendously improved. In particular, any substantial deviation from the background is really contained in the data, as it costs entropy compared to a map that would ignore such features. However, in most of the cases, before the measurements are performed, some knowledge exists about the distribution which is investigated. It can range from the simple information of the type of scattering electrons to an elaborate theoretical model. In these cases, the uniform prior which considers all the different pixels as equally likely, is too weak a requirement and has to be replaced. In a rigorous bayesian analysis, Skilling has shown that prior knowledge can be encoded into the Maximum Entropy formalism through a model m(rvec r), via a new definition for the entropy given in this paper. In the absence of any data, the maximum of the entropy functional is reached for ρ(rvec r) = m(rvec r). Any substantial departure from the model, observed in the final map, is really contained in the data as, with the new definition, it costs entropy. This paper presents illustrations of model testing
Interplay of charge density wave and spin density wave in high-T{sub c} superconductors
Energy Technology Data Exchange (ETDEWEB)
Pradhan, B. [Government Science College, Malkangiri 764 048 (India)], E-mail: brunda@iopb.res.in; Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C. [Condensed Matter Physics Group, P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)], E-mail: gcr@iopb.res.in
2008-12-01
We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T{sub c} cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters.
Interplay of charge density wave and spin density wave in high-Tc superconductors
International Nuclear Information System (INIS)
Pradhan, B.; Raj, B.K.; Rout, G.C.
2008-01-01
We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T c cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters
Response functions of cold neutron matter: density, spin and current fluctuations
Energy Technology Data Exchange (ETDEWEB)
Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)
2014-07-01
We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.
Dual descriptors within the framework of spin-polarized density functional theory.
Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P
2008-08-14
Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.
Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant
You, Chun-Yeol
2012-01-01
We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...
Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains
Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian
2017-11-01
We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.
Kumar, Krishan; Moudgil, R K
2012-10-17
We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.
Spin transfer in an open ferromagnetic layer: from negative damping to effective temperature
Energy Technology Data Exchange (ETDEWEB)
Wegrowe, J-E; Ciornei, M C; Drouhin, H-J [Laboratoire des Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642 and CEA/DSM/DRECAM, 91128 Palaiseau Cedex (France)
2007-04-23
Spin transfer is a typical spintronics effect that allows a ferromagnetic layer to be switched by spin injection. All experimental results concerning spin transfer (quasi-static hysteresis loops or AC resonance measurements) are described on the basis of the Landau-Lifshitz-Gilbert equation of the magnetization, in which additional current dependent terms are added, like current dependent effective fields and current dependent damping factors, that can be positive or negative. The origin of these terms can be investigated further by performing stochastic experiments, like one-shot relaxation experiments under spin injection in the activation regime of the magnetization. In this regime, the Neel-Brown activation law is observed which leads to the introduction of a current dependent effective temperature. In order to define these counterintuitive parameters (effective temperature and negative damping), a detailed thermokinetic analysis of the different sub-systems involved is performed. This report presents a thermokinetic description of the different forms of energy exchanged between the electric and the ferromagnetic sub-systems at a normal/ferromagnetic junction. The derivation of the Fokker-Planck equation in the framework of the thermokinetic theory allows the transport parameters to be defined from the entropy variation and refined with the Onsager reciprocity relations and symmetry properties of the magnetic system. The contribution of the spin polarized current is introduced as an external source term in the conservation laws of the ferromagnetic layer. Due to the relaxation time separation, this contribution can be reduced to an effective damping. The flux of energy transferred between the ferromagnet and the spin polarized current can be positive or negative, depending on the spin accumulation configuration. The effective temperature is deduced in the activation (stationary) regime, provided that the relaxation time that couples the magnetization to the
Temperature dependent spin momentum densities in Ni-Mn-In alloys
International Nuclear Information System (INIS)
Ahuja, B L; Dashora, Alpa; Vadkhiya, L; Heda, N L; Priolkar, K R; Lobo, Nelson; Itou, M; Sakurai, Y; Chakrabarti, Aparna; Singh, Sanjay; Barman, S R
2010-01-01
The spin-dependent electron momentum densities in Ni 2 MnIn and Ni 2 Mn 1.4 In 0.6 shape memory alloy using magnetic Compton scattering with 182.2 keV circularly polarized synchrotron radiation are reported. The magnetic Compton profiles were measured at different temperatures ranging between 10 and 300 K. The profiles have been analyzed mainly in terms of Mn 3d electrons to determine their role in the formation of the total spin moment. We have also computed the spin polarized energy bands, partial and total density of states, Fermi surfaces and spin moments using full potential linearized augmented plane wave and spin polarized relativistic Korringa-Kohn-Rostoker methods. The total spin moments obtained from our magnetic Compton profile data are explained using both the band structure models. The present Compton scattering investigations are also compared with magnetization measurements.
Energy Technology Data Exchange (ETDEWEB)
Giner, Emmanuel, E-mail: gnrmnl@unife.it; Angeli, Celestino, E-mail: anc@unife.it [Dipartimento di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato di Mortara 17, I-44121 Ferrara (Italy)
2016-03-14
The present work describes a new method to compute accurate spin densities for open shell systems. The proposed approach follows two steps: first, it provides molecular orbitals which correctly take into account the spin delocalization; second, a proper CI treatment allows to account for the spin polarization effect while keeping a restricted formalism and avoiding spin contamination. The main idea of the optimization procedure is based on the orbital relaxation of the various charge transfer determinants responsible for the spin delocalization. The algorithm is tested and compared to other existing methods on a series of organic and inorganic open shell systems. The results reported here show that the new approach (almost black-box) provides accurate spin densities at a reasonable computational cost making it suitable for a systematic study of open shell systems.
Energy Technology Data Exchange (ETDEWEB)
Nakano, Masayoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Minami, Takuya, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Fukui, Hitoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Yoneda, Kyohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Shigeta, Yasuteru, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Kishi, Ryohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Champagne, Benoît; Botek, Edith [Laboratoire de Chimie Théorique, Facultés Universitaires Notre-Dame de la Paix (FUNDP), rue de Bruxelles, 61, 5000 Namur (Belgium)
2015-01-22
We develop a novel method for the calculation and the analysis of the one-electron reduced densities in open-shell molecular systems using the natural orbitals and approximate spin projected occupation numbers obtained from broken symmetry (BS), i.e., spin-unrestricted (U), density functional theory (DFT) calculations. The performance of this approximate spin projection (ASP) scheme is examined for the diradical character dependence of the second hyperpolarizability (γ) using several exchange-correlation functionals, i.e., hybrid and long-range corrected UDFT schemes. It is found that the ASP-LC-UBLYP method with a range separating parameter μ = 0.47 reproduces semi-quantitatively the strongly-correlated [UCCSD(T)] result for p-quinodimethane, i.e., the γ variation as a function of the diradical character.
Spin observables in antiproton-proton to AntiLambda-Lambda and density-matrix constraints
Elchikh, Mokhtar; Richard, Jean-Marc
2005-01-01
The positivity conditions of the spin density matrix constrain the spin observables of the reaction antiproton-proton to AntiLambda-Lambda, leading to model-independent, non-trivial inequalities. The formalism is briefly presented and examples of inequalities are provided.
Spin observables in p-barp → ΛΛ and density-matrix constraints
International Nuclear Information System (INIS)
Elchikh, Mokhtar; Richard, Jean-Marc
2005-01-01
The positivity conditions of the spin density matrix constrain the spin observables of the reaction p-barp → Λ-barΛ, leading to model-independent, non-trivial inequalities. The formalism is briefly presented and examples of inequalities are provided
Interplay between spin polarization and color superconductivity in high density quark matter
DEFF Research Database (Denmark)
Tsue, Yasuhiko; da Providência, João; Providência, Constança
2013-01-01
Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical pot...
Spin density measurement of water-bridged Co-dimer using polarized neutrons
DEFF Research Database (Denmark)
Damgaard-Møller, Emil; Overgaard, Jacob; Chilton, Nick
present an experimentally determined spin density using polarized neutron diffraction in a simple water-bridged cobalt dimer [Co2(H2O)(piv)4(Hpiv)2(py)2] which is known to have a small ferromagnetic coupling between the spin centers. Visualizing the SDD could get us one step further in understanding...
Nuclear reactivity indices in the context of spin polarized density functional theory
International Nuclear Information System (INIS)
Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio
2006-01-01
In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented
Observability of the probability current density using spin rotator as a quantum clock
International Nuclear Information System (INIS)
Home, D.; Alok Kumar Pan; Md Manirul Ali
2005-01-01
Full text: An experimentally realizable scheme is formulated which can test any quantum mechanical approach for calculating the arrival time distribution. This is specifically illustrated by using the modulus of the probability current density for calculating the arrival time distribution of spin-1/2 neutral particles at the exit point of a spin rotator (SR) which contains a constant magnetic field. Such a calculated time distribution is then used for evaluating the distribution of spin orientations along different directions for these particles emerging from the SR. Based on this, the result of spin measurement along any arbitrary direction for such an ensemble is predicted. (author)
Most negative and most positive expectation values of the spin operator
International Nuclear Information System (INIS)
Zamick, Larry
2011-01-01
Formulas for the most positive and most negative values of the expectation of the spin operator are given and compared with single-particle values. The Nilsson model is used to evaluate these expectations and a scenario is discussed where the value is greater than one.
Positive and negative peptide signals control stomatal density.
Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko
2011-06-01
The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.
Spin Propensities of Octahedral Complexes From Density Functional Theory
DEFF Research Database (Denmark)
Mortensen, Sara R.; Kepp, Kasper Planeta
2015-01-01
assessment of spin state propensities versus ligand and metal type and reveal, e.g., that CN- is consistently weaker than CO for M(II) but stronger than CO for M(III) and SCN- and NCS- change order in M(II) versus M(III) complexes. Contrary to expectation based on the spectrochemical series, Cl- and Br...
Negative muon spin precession measurement of the hyperfine states of muonic sodium
International Nuclear Information System (INIS)
Brewer, J.H.; Ghandi, K.; Froese, A.M.; Fryer, B.A.
2005-01-01
Both hyperfine states of muonic 23 Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2 μs -1 , is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8 μs -1 , leaving medium-dependent effects ambiguous
Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities
Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.
2017-11-01
The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.
Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model
Bayat, Abolfazl; Sodano, Pasquale; Bose, Sougato
2009-01-01
We study the entanglement of an impurity at one end of a spin chain with a block of spins using negativity as a true measure of entanglement to characterize the unique features of the gapless Kondo regime in the spin chain Kondo model. For this spin chain in the Kondo regime we determine- with a true entanglement measure- the spatial extent of the Kondo screening cloud, we propose an ansatz for its ground state and demonstrate that the impurity spin is indeed maximally entangled with the clou...
Spinning solutions in general relativity with infinite central density
Flammer, P. D.
2018-05-01
This paper presents general relativistic numerical simulations of uniformly rotating polytropes. Equations are developed using MSQI coordinates, but taking a logarithm of the radial coordinate. The result is relatively simple elliptical differential equations. Due to the logarithmic scale, we can resolve solutions with near-singular mass distributions near their center, while the solution domain extends many orders of magnitude larger than the radius of the distribution (to connect with flat space-time). Rotating solutions are found with very high central energy densities for a range of adiabatic exponents. Analytically, assuming the pressure is proportional to the energy density (which is true for polytropes in the limit of large energy density), we determine the small radius behavior of the metric potentials and energy density. This small radius behavior agrees well with the small radius behavior of large central density numerical results, lending confidence to our numerical approach. We compare results with rotating solutions available in the literature, which show good agreement. We study the stability of spherical solutions: instability sets in at the first maximum in mass versus central energy density; this is also consistent with results in the literature, and further lends confidence to the numerical approach.
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
García de la Vega, J M; Omar, S; San Fabián, J
2017-04-01
Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.
Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au
International Nuclear Information System (INIS)
Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.
2009-01-01
The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)
Glass transition in the spin-density wave phase of (TMTSF)2PF6
DEFF Research Database (Denmark)
Lasjaunias, J.C.; Biljakovic, K.; Nad, F.
1994-01-01
We present the results of low frequency dielectric measurements and a detailed kinetic investigation of the specific heat anomaly in the spin-density wave phase of (TMTSF)(2)PF6 in the temperature range between 2 and 4 K. The dielectric relaxation shows a critical slowing down towards a ''static'......'' glass transition around 2 K. The jump in the specific heat in different controlled kinetic conditions shows all the characteristics of freezing in supercooled liquids. Both effects give direct evidence of a glass transition in the spin-density wave ground state....
Quantum entanglement and thermal reduced density matrices in fermion and spin systems on ladders
International Nuclear Information System (INIS)
Chen, Xiao; Fradkin, Eduardo
2013-01-01
Numerical studies of the reduced density matrix of a gapped spin-1/2 Heisenberg antiferromagnet on a two-leg ladder find that it has the same form as the Gibbs density matrix of a gapless spin-1/2 Heisenberg antiferromagnetic chain at a finite temperature determined by the spin gap of the ladder. We investigate this interesting result by considering a model of free fermions on a two-leg ladder (gapped by the inter-chain tunneling operator) and in spin systems on a ladder with a gapped ground state using exact solutions and several controlled approximations. We calculate the reduced density matrix and the entanglement entropy for a leg of the ladder (i.e. a cut made between the chains). In the fermionic system we find the exact form of the reduced density matrix for one of the chains and determine the entanglement spectrum explicitly. Here we find that in the weak tunneling limit of the ladder the entanglement entropy of one chain of the gapped ladder has a simple and universal form dictated by conformal invariance. In the case of the spin system, we consider the strong coupling limit by using perturbation theory and get the reduced density matrix by the Schmidt decomposition. The entanglement entropies of a general gapped system of two coupled conformal field theories (in 1 + 1 dimensions) are discussed using the replica trick and scaling arguments. We show that (1) for a system with a bulk gap the reduced density matrix has the form of a thermal density matrix, (2) the long-wavelength modes of one subsystem (a chain) of a gapped coupled system are always thermal, (3) the von Neumann entropy equals the thermodynamic entropy of one chain, and (4) the bulk gap plays the role of effective temperature. (paper)
Mullaney, Benjamin R; Goux-Capes, Laurence; Price, David J; Chastanet, Guillaume; Létard, Jean-François; Kepert, Cameron J
2017-10-20
External control over the mechanical function of materials is paramount in the development of nanoscale machines. Yet, exploiting changes in atomic behaviour to produce controlled scalable motion is a formidable challenge. Here, we present an ultra-flexible coordination framework material in which a cooperative electronic transition induces an extreme abrupt change in the crystal lattice conformation. This arises due to a change in the preferred coordination character of Fe(II) sites at different spin states, generating scissor-type flexing of the crystal lattice. Diluting the framework with transition-inactive Ni(II) sites disrupts long-range communication of spin state through the lattice, producing a more gradual transition and continuous lattice movement, thus generating colossal positive and negative linear thermal expansion behaviour, with coefficients of thermal expansion an order of magnitude greater than previously reported. This study has wider implications in the development of advanced responsive structures, demonstrating electronic control over mechanical motion.
Entangled spins and ghost-spins
Directory of Open Access Journals (Sweden)
Dileep P. Jatkar
2017-09-01
Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
International Nuclear Information System (INIS)
Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.
1994-01-01
Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)
Spin and orbital magnetisation densities determined by Compton scattering of photons
International Nuclear Information System (INIS)
Collins, S.P.; Laundy, D.; Cooper, M.J.; Lovesey, S.W.; Uppsala Univ.
1990-03-01
Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)
Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms
International Nuclear Information System (INIS)
Guo, Y.; Whitehead, M.A.
1988-01-01
The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, and Bogdanovic's Fermi-hole parameters [Phys. Rev. A 14, 1 (1976)], and Vosko, Wilk, and Nusair's correlation correction [Can. J. Phys. 58, 1200 (1980)], are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered
Ferroelectricity Induced by Acentric Spin-Density Waves in YMn2O5
Chapon, L.C.; Radaelli, P.G.; Blake, G.R.; Park, S.; Cheong, S.-W.
2006-01-01
The commensurate and incommensurate magnetic structures of the magnetoelectric system YMn2O5, as determined from neutron diffraction, were found to be spin-density waves lacking a global center of symmetry. We propose a model, based on a simple magnetoelastic coupling to the lattice, which enables
Spin-polarized versus chiral condensate in quark matter at finite temperature and density
DEFF Research Database (Denmark)
Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao
2016-01-01
It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef...
Spin polarization versus color–flavor locking in high-density quark matter
DEFF Research Database (Denmark)
Tsue, Yasuhiko; da Providência, João; Providência, Constança
2015-01-01
It is shown that spin polarization with respect to each flavor in three-flavor quark matter occurs instead of color–flavor locking at high baryon density by using the Nambu–Jona-Lasinio model with four-point tensor-type interaction. Also, it is indicated that the order of phase transition between...
Effect of deformation and orientation on spin orbit density dependent nuclear potential
Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.
2017-11-01
Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.
Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density
Wu, Ying; Lai, Yun; Zhang, Zhao-Qing
2011-01-01
We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse
The spin polarized linear response from density functional theory: Theory and application to atoms
Energy Technology Data Exchange (ETDEWEB)
Fias, Stijn, E-mail: sfias@vub.ac.be; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul [General Chemistry (ALGC), Vrije Universiteit Brussel (Free University Brussels – VUB), Pleinlaan 2, 1050 Brussels (Belgium)
2014-11-14
Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.
Hardness and softness reactivity kernels within the spin-polarized density-functional theory
International Nuclear Information System (INIS)
Chamorro, Eduardo; De Proft, Frank; Geerlings, Paul
2005-01-01
Generalized hardness and softness reactivity kernels are defined within a spin-polarized density-functional theory (SP-DFT) conceptual framework. These quantities constitute the basis for the global, local (i.e., r-position dependent), and nonlocal (i.e., r and r ' -position dependents) indices devoted to the treatment of both charge-transfer and spin-polarization processes in such a reactivity framework. The exact relationships between these descriptors within a SP-DFT framework are derived and the implications for chemical reactivity in such context are outlined
Electronic structure of the Fe2 molecule in the local-spin-density approximation
International Nuclear Information System (INIS)
Dhar, S.; Kestner, N.R.
1988-01-01
Ab initio self-consistent all-electron spin-polarized calculations have been performed for the ground-state properties of the Fe 2 molecule using the local-spin-density approximation. A Gaussian orbital basis is employed and all the two-electron integrals are evaluated analytically. The matrix elements of the exchange-correlation potential are computed numerically. The total energy, the binding energy, the equilibrium distance, vibrational frequency, and the ground-state configurations are reported and compared with other calculations and experimental results
Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei
Energy Technology Data Exchange (ETDEWEB)
Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)
2017-10-15
The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)
Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam
International Nuclear Information System (INIS)
Mitri, F.G.
2016-01-01
An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas. - Highlights: • Optical nondiffracting nonparaxial fractional Bessel vortex beam is considered. • Negative spin torque on an absorptive dielectric Rayleigh sphere is predicted numerically. • Negative spin torque occurs as the sphere departs from the center of the beam.
Phase Transition in the Density of States of Quantum Spin Glasses
Energy Technology Data Exchange (ETDEWEB)
Erdős, László, E-mail: lerdos@ist.ac.at [IST Austria (Austria); Schröder, Dominik, E-mail: schroeder.dominik@gmail.com [Ludwig-Maximilians-Universität München (Germany)
2014-12-15
We prove that the empirical density of states of quantum spin glasses on arbitrary graphs converges to a normal distribution as long as the maximal degree is negligible compared with the total number of edges. This extends the recent results of Keating et al. (2014) that were proved for graphs with bounded chromatic number and with symmetric coupling distribution. Furthermore, we generalise the result to arbitrary hypergraphs. We test the optimality of our condition on the maximal degree for p-uniform hypergraphs that correspond to p-spin glass Hamiltonians acting on n distinguishable spin- 1/2 particles. At the critical threshold p = n{sup 1/2} we find a sharp classical-quantum phase transition between the normal distribution and the Wigner semicircle law. The former is characteristic to classical systems with commuting variables, while the latter is a signature of noncommutative random matrix theory.
Towards the improvement of spin-isospin properties in nuclear energy density functionals
International Nuclear Information System (INIS)
Roca-Maza, X.; Colò, G.; Liang, H. Z.; Sagawa, H.; Meng, J.; Ring, P.; Zhao, P. W.
2016-01-01
We address the problem of improving existing nuclear Energy Density Functionals (EDFs) in the spin-isospin channel. For that, we propose two different ways. The first one is to carefully take into account in the fitting protocol some of the key ground state properties for an accurate description of the most studied spin-isospin resonances: the Gamow-Teller Resonance (GTR) [1]. The second consists in providing a strategy to build local covariant EDF keeping the main features from their non-local counterparts [2]. The RHF model based on a Lagrangian where heavy mesons carry the nuclear effective interaction have been shown to be successful in the description of spin-isospin resonances [3]. (paper)
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
Energy Technology Data Exchange (ETDEWEB)
Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory
International Nuclear Information System (INIS)
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.
2015-01-01
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H 12 C– 12 CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Magnetic properties of the spin-density wave in (TMTSF)2X and (TMTTF)2Br
International Nuclear Information System (INIS)
Matsunaga, N.; Hosokawa, Y.; Iwasaki, H.; Nomura, K.; Nakamura, T.; Takahashi, T.; Saito, G.
1999-01-01
Magnetic properties of the spin density wave (SDW) phase in (TMTSF) 2 X (X=AsF 6 , PF 6 ) and (TMTTF) 2 Br were investigated through analyses of 1 H-NMR and static magnetization measurements. A divergent peak was observed, at the temperature T * well below the SDW transition temperature, in the 1 H spin-lattice relaxation rate in the incommensurate SDW phase of (TMTSF) 2 X. A decrease of the differential magnetic susceptibility of (TMTSF) 2 X with the field parallel to the a-axis was observed around T * . This anomaly indicates a difference of the spin canting above and below T * which divides the SDW phase. In the measurements of magnetic susceptibility on the commensurate SDW phase of (TMTTF) 2 Br, a large decrease of the spin susceptibility was observed above T SDW and non-activated type behavior in the b'-axis susceptibility is observed below the spin-flop field at low temperature. The data are discussed on the basis of commensurability. (orig.)
Breaking the current density threshold in spin-orbit-torque magnetic random access memory
Zhang, Yin; Yuan, H. Y.; Wang, X. S.; Wang, X. R.
2018-04-01
Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are, respectively, of the order of 105 A/cm 2 and 106 A/cm 2 far below 107 A/cm 2 and 108 A/cm 2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.
Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.
2018-01-01
We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.
Two-magnon Raman scattering in a spin density wave antiferromagnet
Schoenfeld, Friedhelm; Kampf, Arno P.; Mueller-Hartmann, Erwin
1996-01-01
We present the results for a model calculation of resonant two-magnon Raman scattering in a spin density wave (SDW) antiferromagnet. The resonant enhancement of the two-magnon intensity is obtained from a microscopic analysis of the photon-magnon coupling vertex. By combining magnon-magnon interactions with `triple resonance` phenomena in the vertex function the resulting intensity line shape is found to closely resemble the measured two-magnon Raman signal in antiferromagnetic cuprates. Both...
International Nuclear Information System (INIS)
Liu Xuan; Ito, Haruhiko; Torikai, Eiko
2012-01-01
We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n , Na n , K n , Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.
Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Pedersen, Thomas Garm; Brandbyge, Mads
2009-01-01
thereof. We find from DFT that all structures investigated have band gaps ranging from 0.2 to 1.5 eV. Band gap sizes and general trends are well captured by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the two methods is found to offer a good trade...... properties. In this work, we perform calculations of the band structure for various hydrogen-passivated hole geometries using both spin-polarized density functional theory (DFT) and DFT based tight-binding (DFTB) and address the importance of relaxation of the structures using either method or a combination......-off between computational cost and accuracy. Both methods predict nondegenerate midgap states for certain antidot hole symmetries. The inclusion of spin results in a spin-splitting of these states as well as magnetic moments obeying the Lieb theorem. The local-spin texture of both magnetic and nonmagnetic...
Giant Negative Magnetoresistance Driven by Spin-Orbit Coupling at the LaAlO3/SrTiO3 Interface.
Diez, M; Monteiro, A M R V L; Mattoni, G; Cobanera, E; Hyart, T; Mulazimoglu, E; Bovenzi, N; Beenakker, C W J; Caviglia, A D
2015-07-03
The LaAlO3/SrTiO3 interface hosts a two-dimensional electron system that is unusually sensitive to the application of an in-plane magnetic field. Low-temperature experiments have revealed a giant negative magnetoresistance (dropping by 70%), attributed to a magnetic-field induced transition between interacting phases of conduction electrons with Kondo-screened magnetic impurities. Here we report on experiments over a broad temperature range, showing the persistence of the magnetoresistance up to the 20 K range--indicative of a single-particle mechanism. Motivated by a striking correspondence between the temperature and carrier density dependence of our magnetoresistance measurements we propose an alternative explanation. Working in the framework of semiclassical Boltzmann transport theory we demonstrate that the combination of spin-orbit coupling and scattering from finite-range impurities can explain the observed magnitude of the negative magnetoresistance, as well as the temperature and electron density dependence.
Mitri, F. G.
2016-10-01
Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yachao, E-mail: yczhang@nano.gznc.edu.cn [Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Normal College, Guiyang 550018, Guizhou (China)
2014-12-07
A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.
Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan
2016-03-21
The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.
Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.
2017-08-01
Motivated by a recent tunneling magnetoresistance (TMR) measurement in which the negative TMR is observed in MgO/NiO-based magnetic tunnel junctions (MTJs), we have performed systematic calculations of transmission, current, and TMR of Fe/MgO/NiO/Fe MTJ with different thicknesses of NiO and MgO layers based on noncollinear density functional theory and non-equilibrium Green's function theory. The calculations show that, as the thickness of NiO and MgO layers is small, the negative TMR can be obtained which is attributed to the spin mixing effect and interface state. However, in the thick MTJ, the spin-flipping scattering becomes weaker, and thus, the MTJs recover positive TMR. Based on our theoretical results, we believe that the interface state at Fe/NiO interface and the spin mixing effect induced by noncollinear interfacial magnetization will play important role in determining transmission and current of Fe/MgO/NiO/Fe MTJ. The results reported here will be important in understanding the electron tunneling in MTJ with the barrier made by transition metal oxide.
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
Rauner, D.; Kurutz, U.; Fantz, U.
2015-04-01
As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.
International Nuclear Information System (INIS)
Zhang, Xing; Herbert, John M.
2014-01-01
We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state
Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega
Energy Technology Data Exchange (ETDEWEB)
M. Williams, D. Applegate, M. Bellis, C.A. Meyer
2009-12-01
High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.
Spin Density Matrix Elements in exclusive production of ω mesons at Hermes
Directory of Open Access Journals (Sweden)
Marianski B.
2014-03-01
Full Text Available Spin density matrix elements have been determined for exclusive ω meson production on hydrogen and deuterium targets, in the kinematic region of 1.0 < Q2 < 10.0 GeV2, 3.0 < W < 6.3 GeV and –t' < 0.2 GeV2. The data, from which SDMEs are determined, were accumulated with the HERMES forward spectrometer during the running period of 1996 to 2007 using the 27.6 GeV electron or positron beam of HERA. A sizable contribution of unnatural parity exchange amplitudes is found for exclusive ω meson production.
Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed
2012-11-01
New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.
Qiao, X J; Salamon, N; Wang, D J J; He, R; Linetsky, M; Ellingson, B M; Pope, W B
2013-01-01
A substantial portion of clinically diagnosed TIA cases is imaging-negative. The purpose of the current study is to determine if arterial spin-labeling is helpful in detecting perfusion abnormalities in patients presenting clinically with TIA. Pseudocontinuous arterial spin-labeling with 3D background-suppressed gradient and spin-echo was acquired on 49 patients suspected of TIA within 24 hours of symptom onset. All patients were free of stroke history and had no lesion-specific findings on general MR, DWI, and MRA sequences. The calculated arterial spin-labeling CBF maps were scored from 1-3 on the basis of presence and severity of perfusion disturbance by 3 independent observers blinded to patient history. An age-matched cohort of 36 patients diagnosed with no cerebrovascular events was evaluated as a control. Interobserver agreement was assessed by use of the Kendall concordance test. Scoring of perfusion abnormalities on arterial spin-labeling scans of the TIA cohort was highly concordant among the 3 observers (W = 0.812). The sensitivity and specificity of arterial spin-labeling in the diagnosis of perfusion abnormalities in TIA was 55.8% and 90.7%, respectively. In 93.3% (70/75) of the arterial spin-labeling CBF map readings with positive scores (≥2), the brain regions where perfusion abnormalities were identified by 3 observers matched with the neurologic deficits at TIA onset. In this preliminary study, arterial spin-labeling showed promise in the detection of perfusion abnormalities that correlated with clinically diagnosed TIA in patients with otherwise normal neuroimaging results.
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd
International Nuclear Information System (INIS)
Soderlind, P
2008-01-01
The electronic structure of plutonium is studied within the density-functional theory (DFT) model. Key features of the electronic structure are correctly modeled and bonding, total energy, and electron density of states are all consistent with measure data, although the prediction of magnetism is not consistent with many observations. Here we analyze the contributions to the electronic structure arising from spin polarization, orbital polarization, and spin-orbit interaction. These effects give rise to spin and orbital moments that are of nearly equal magnitude, but anti-parallel, suggesting a magnetic-moment cancellation with a zero total moment. Quantifying the spin versus orbital effects on the bonding, total energy, and electron spectra it becomes clear that the spin polarization is much less important than the orbital correlations. Consequently, a restricted DFT approach with a non-spin polarized electronic structure can produce reasonable equation-of-state and electron spectra for (delta)-Pu when the orbital effects are accounted for. Hence, we present two non-magnetic models. One in which the spin moment is canceled by the orbital moment and another in which the spin moment (and therefore the orbital moment) is restricted to zero
Spin alignment and density matrix measurement in 28Si + 12C orbiting reaction
International Nuclear Information System (INIS)
Ray, A.; Shapira, D.; Halbert, M.L.; Gomez del Campo, J.; Kim, H.J.; Sullivan, J.P.; Shivakumar, B.; Mitchell, J.
1990-01-01
Gamma-ray angular correlations have been measured for the strongly damped reactions 12 C( 28 Si, 12 C) 28 Si between θ cm = (120 degree - 160 degree) for E cm = 43.5 and 48 MeV. We find that the density matrices for the 12 C(2 1 + ) and 28 Si states are almost diagonal with respect to the direction of motion of the outgoing particle. The measured density matrices and spin alignments are consistent with the picture of formation of a long-lived dinuclear complex undergoing orbiting, bending and wriggling motions, but not with those obtained from statistical compound nucleus or sticking model calculations. 17 refs., 2 figs., 1 tab
Charge and spin density in s-stable rare earth intermetallic compounds
International Nuclear Information System (INIS)
Graaf, H. de.
1982-01-01
This thesis deals with a study of the electronic structure of rare earth intermetallic compounds, in particular the electronic charge and spin density distribution. These are closely related to the properties of the rare earth ions, which carry the partly filled 4f shell. In chapter 1 a survey of the theory of hyperfine interaction as far as it has a bearing on the Moessbauer effect of 155 Gd and 151 Eu is given. Also some details of the Moessbauer spectra, which have practical importance are discussed. In chapter 2 the experimental set-up is described. Special attention is paid to the gamma radiation source and gamma detection requirements. In chapter 3 the author introduces the theoretical framework which will be used to interpret the measurements. In chapter 4 the results of the 155 Gd Moessbauer measurements are presented. Also it is discussed how the result can be understood in terms of the charge and spin density in rare earth intermetallic compounds. In order to lend support to the picture emerging from the previous chapter, in chapter 5 the conduction electron band structure of some representative Gd intermetallics is computed with an approximate semi-empirical LCAO method. The results are compared with those from chapter 4. Finally, in chapter 6, the 151 Eu resonance is used to investigate the temperature dependence of the hyperfine field and line width in the Eu intermetallic compounds Eu 2 Mg 17 and EuMg 5 . (Auth.)
Quantum Monte Carlo studies of a metallic spin-density wave transition
Energy Technology Data Exchange (ETDEWEB)
Gerlach, Max Henner
2017-01-20
Plenty experimental evidence indicates that quantum critical phenomena give rise to much of the rich physics observed in strongly correlated itinerant electron systems such as the high temperature superconductors. A quantum critical point of particular interest is found at the zero-temperature onset of spin-density wave order in two-dimensional metals. The appropriate low-energy theory poses an exceptionally hard problem to analytic theory, therefore the unbiased and controlled numerical approach pursued in this thesis provides important contributions on the road to comprehensive understanding. After discussing the phenomenology of quantum criticality, a sign-problem-free determinantal quantum Monte Carlo approach is introduced and an extensive toolbox of numerical methods is described in a self-contained way. By the means of large-scale computer simulations we have solved a lattice realization of the universal effective theory of interest. The finite-temperature phase diagram, showing both a quasi-long-range spin-density wave ordered phase and a d-wave superconducting dome, is discussed in its entirety. Close to the quantum phase transition we find evidence for unusual scaling of the order parameter correlations and for non-Fermi liquid behavior at isolated hot spots on the Fermi surface.
Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density
Wu, Ying
2011-09-02
We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.
Filatov, M; Cremer, D
2005-01-01
It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of
International Nuclear Information System (INIS)
Gao Xianlong
2008-01-01
Using the Bethe-ansatz density-functional theory, we study a one-dimensional Hubbard model of confined attractively interacting fermions in the presence of a uniformly distributed disorder. The strongly correlated Luther-Emery nature of the attractive one-dimensional Hubbard model is fully taken into account as the reference system in the density-functional theory. The effects of the disorder are investigated on the atomic density waves in the weak-to-intermediate attractive interaction and on the spin-singlet dimers of doubly occupied sites in the strongly attractive regime. It is found that atomic density waves are sensitive to the disorder and the spin-singlet dimers of doubly occupied sites are quite unstable against the disorder. We also show that a very weak disorder could smear the singularities in the stiffness, thus, suppresses the spin-singlet pairs
Negative baryon density and the folding structure of the B = 3 skyrmion
International Nuclear Information System (INIS)
Foster, D; Krusch, S
2013-01-01
The Skyrme model is a nonlinear field theory whose solitonic solutions, once quantized, describe atomic nuclei. The classical static soliton solutions, so-called skyrmions, have interesting symmetries and can only be calculated numerically. Mathematically, these skyrmions can be viewed as maps between two three-manifolds and, as such, their stable singularities can only be folds, cusps and swallowtails. Physically, the occurrence of singularities is related to negative baryon density. In this paper, we calculate the charge three skyrmion to a high resolution in order to examine its singularity structure in detail. Thereby, we explore regions of negative baryon density. We also discuss how the negative baryon density depends on the pion mass. (paper)
Can the nuclear symmetry potential at supra-saturation densities be negative?
International Nuclear Information System (INIS)
Yong Gaochan
2010-01-01
In the framework of an isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, for the central 197 Au+ 197 Au reaction at an incident beam energy of 400 MeV/nucleon, the effect of nuclear symmetry potential at supra-saturation densities on the preequilibrium clusters emission is studied. It is found that for the positive symmetry potential at supra-saturation densities the neutron-to-proton ratio of lighter clusters with mass number A≤3[(n/p) A≤3 ] is larger than that of the heavier clusters with mass number A>3[(n/p) A>3 ], whereas for the negative symmetry potential at supra-saturation densities the (n/p) A≤3 is smaller than the (n/p) A>3 . This may be considered as a probe of the negative symmetry potential at supra-saturation densities.
Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam
Mitri, F. G.
2016-10-01
An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
Energy Technology Data Exchange (ETDEWEB)
Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)
2015-04-08
As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines
Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory
International Nuclear Information System (INIS)
Chamorro, E.; Proft, F. de; Geerlings, P.
2005-01-01
An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions
Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons
Energy Technology Data Exchange (ETDEWEB)
Wu, Xiaohua; Zhang, Xiaoli; Wang, Xianlong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zeng, Zhi, E-mail: zzeng@theory.issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China)
2016-04-15
The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene) has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs) based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW) caused by electron-electron interaction and charge density wave (CDW) caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1) comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2) comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3) SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.
Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons
Directory of Open Access Journals (Sweden)
Xiaohua Wu
2016-04-01
Full Text Available The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW caused by electron-electron interaction and charge density wave (CDW caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1 comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2 comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3 SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.
Galvanomagnetic properties in the spin-density-wave phase of (TMTSF)2PF6
International Nuclear Information System (INIS)
Korin-Hamzic, B.; Bechgaard, K.
1999-01-01
We have measured the magnetoresistance and the Hall effect in the spin-density-wave (SDW) state of (TMTSF) 2 PF 6 down to 2 K and in magnetic fields up to 9 T in order to gain an additional insight into the nature of the possible subphases in the SDW state. We have found that the temperature dependent magnetoresistance anisotropy changes below 4 K; this change being maximal for the current in the lowest conductivity direction. The Hall resistivity has showed different magnetic field dependencies for T>4 K and T<4 K. The resistivity and the Hall resistivity were also investigated as the function of the electric field. The backflow coefficient α does not change below 4 K. (orig.)
Heisenberg spin-one chain in staggered magnetic field: A density matrix renormalization group study
International Nuclear Information System (INIS)
Jizhong Lou; Xi Dai; Shaojin Qin; Zhaobin Su; Lu Yu
1999-04-01
Using the density matrix renormalization group technique, we calculate numerically the low energy excitation spectrum and magnetization curve of the spin-1 antiferromagnetic chain in a staggered magnetic field, which is expected to describe the physics of R 2 BaNiO 5 (R ≠ Y) family below the Neel temperature of the magnetic rare-earth (R) sublattice. These results are valid in the entire range of the staggered field, and agree with those given by the non-linear σ model study for small fields, but differ from the latter for large fields. They are consistent with the available experimental data. The correlation functions for this model are also calculated. The transverse correlations display the anticipated exponential decay with shorter correlation length, while the longitudinal correlations show explicitly the induced staggered magnetization. (author)
Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional
DEFF Research Database (Denmark)
Siig, Oliver S; Kepp, Kasper P.
2018-01-01
Spin crossover (SCO) plays a major role in biochemistry, catalysis, materials, and emerging technologies such as molecular electronics and sensors, and thus accurate prediction and design of SCO systems is of high priority. However, the main tool for this purpose, density functional theory (DFT......), is very sensitive to applied methodology. The most abundant SCO systems are Fe(II) and Fe(III) systems. Even with average good agreement, a functional may be significantly more accurate for Fe(II) or Fe(III) systems, preventing balanced study of SCO candidates of both types. The present work investigates....../precise, inaccurate/imprecise) are observed. More generally, our work illustrates the importance not only of overall accuracy but also of balanced accuracy for systems likely to occur in context....
Hirayasu, Y; Potts, G F; O'Donnell, B F; Kwon, J S; Arakaki, H; Akdag, S J; Levitt, J J; Shenton, M E; McCarley, R W
1998-09-01
The mismatch negativity, a negative component in the auditory event-related potential, is thought to index automatic processes involved in sensory or echoic memory. The authors' goal in this study was to examine the topography of auditory mismatch negativity in schizophrenia with a high-density, 64-channel recording montage. Mismatch negativity topography was evaluated in 23 right-handed male patients with schizophrenia who were receiving medication and in 23 nonschizophrenic comparison subjects who were matched in age, handedness, and parental socioeconomic status. The Positive and Negative Syndrome Scale was used to measure psychiatric symptoms. Mismatch negativity amplitude was reduced in the patients with schizophrenia. They showed a greater left-less-than-right asymmetry than comparison subjects at homotopic electrode pairs near the parietotemporal junction. There were correlations between mismatch negativity amplitude and hallucinations at left frontal electrodes and between mismatch negativity amplitude and passive-apathetic social withdrawal at left and right frontal electrodes. Mismatch negativity was reduced in schizophrenia, especially in the left hemisphere. This finding is consistent with abnormalities of primary or adjacent auditory cortex involved in auditory sensory or echoic memory.
Kumar, Manoranjan
2016-02-03
An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.
Kumar, Manoranjan; Parvej, Aslam; Thomas, Simil; Ramasesha, S.; Soos, Z. G.
2016-01-01
An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.
International Nuclear Information System (INIS)
Wang Qin; Chen Hong; Zheng Hang
2007-01-01
The effects of DM interaction on the density-of-states, the dimerization and the phase diagram in the antiferromagnetic Heisenberg chain coupled with quantum phonons have been studied by a nonadiabatic analytical approach. The results show that the effect of the DM interaction is to increase the staggered antisymmetric spin exchange interaction order but to decrease the spin dimerization and their competitions result in the lattice dimerization ordering parameter to increase for large staggered DM interaction parameter β and decrease for small β. A crossover of β exists in which the dimerization ordering parameter changes non-monotonously. As the DM interaction parameter D increases, depending on the appropriate values of spin-phonon coupling, phonon frequency and β, the system undergoes phase transition from spin gapless state to gapped state or reversely and can even reenter between the two states. The relation between the phonon-staggered ordering parameter, the spin-dimer order parameter and the staggered DM interaction order parameter gives clearly their contributing weights to the lattice dimerization
Energy Technology Data Exchange (ETDEWEB)
Liu Xuan, E-mail: liu.x.ad@m.titech.ac.jp; Ito, Haruhiko [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Torikai, Eiko [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi (Japan)
2012-08-15
We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li{sub n}, Na{sub n}, K{sub n}, Rb{sub n}, and Cs{sub n} with n = 2-8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.
Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.
Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S
2018-04-01
It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.
Acoustic noise reduction in T 1- and proton-density-weighted turbo spin-echo imaging.
Ott, Martin; Blaimer, Martin; Breuer, Felix; Grodzki, David; Heismann, Björn; Jakob, Peter
2016-02-01
To reduce acoustic noise levels in T 1-weighted and proton-density-weighted turbo spin-echo (TSE) sequences, which typically reach acoustic noise levels up to 100 dB(A) in clinical practice. Five acoustic noise reduction strategies were combined: (1) gradient ramps and shapes were changed from trapezoidal to triangular, (2) variable-encoding-time imaging was implemented to relax the phase-encoding gradient timing, (3) RF pulses were adapted to avoid the need for reversing the polarity of the slice-rewinding gradient, (4) readout bandwidth was increased to provide more time for gradient activity on other axes, (5) the number of slices per TR was reduced to limit the total gradient activity per unit time. We evaluated the influence of each measure on the acoustic noise level, and conducted in vivo measurements on a healthy volunteer. Sound recordings were taken for comparison. An overall acoustic noise reduction of up to 16.8 dB(A) was obtained by the proposed strategies (1-4) and the acquisition of half the number of slices per TR only. Image quality in terms of SNR and CNR was found to be preserved. The proposed measures in this study allowed a threefold reduction in the acoustic perception of T 1-weighted and proton-density-weighted TSE sequences compared to a standard TSE-acquisition. This could be achieved without visible degradation of image quality, showing the potential to improve patient comfort and scan acceptability.
New correlation potential for the local-spin-density functional formalism. II
International Nuclear Information System (INIS)
Kolar, M.; Farkas, L.
1982-01-01
Using the new parameterization for the correlation potential which seems to be the best that is at present available within the local-spin-density (LSD) functional formalism, the Fermi contact term in light atoms (up to Ni) is calculated. Although the overall improvement of the previous LSD results is obtained, discrepancy between theory and experiment remains rather large. It seems that the local approximation for exchange and correlation fails to predict such quantities as magnetic-moment density near the nucleus. It is also shown that the self-interaction correction does not remedy this failure. Further, the effect of the nonzero nuclear radius is investigated and found to be most important in the lightest atoms (e.g. a factor of 0.664 appears in the case of Li). This fact was omitted in all previous calculations and throws doubt on the reported excellent agreement of the results of many-body perturbation theory with experiment. It was also verified that the contact approximation of the Fermi contact term is really good enough. (author)
Developing and testing the density of states FFA method in the SU(3) spin model
Energy Technology Data Exchange (ETDEWEB)
Giuliani, Mario; Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Törek, Pascal
2016-12-15
The Density of States Functional Fit Approach (DoS FFA) is a recently proposed modern density of states technique suitable for calculations in lattice field theories with a complex action problem. In this article we present an exploratory implementation of DoS FFA for the SU(3) spin system at finite chemical potential μ – an effective theory for the Polyakov loop. This model has a complex action problem similar to the one of QCD but also allows for a dual simulation in terms of worldlines where the complex action problem is solved. Thus we can compare the DoS FFA results to the reference data from the dual simulation and assess the performance of the new approach. We find that the method reproduces the observables from the dual simulation for a large range of μ values, including also phase transitions, illustrating that DoS FFA is an interesting approach for exploring phase diagrams of lattice field theories with a complex action problem.
Negative g-Force Ocular Trauma Caused by a Rapidly Spinning Carousel
Directory of Open Access Journals (Sweden)
Elad Moisseiev
2013-10-01
Full Text Available We present a case of a 10-year-old boy who presented with bilateral diffuse subconjunctival hemorrhages after spinning rapidly on a carousel attached to an electrical scooter. We present his clinical course and discuss the physics and pathophysiology of this unique mechanism of ocular trauma.
Proximity effects on the spin density waves in X/Cr(001) multilayers (X = Sn, V, and Mn)
International Nuclear Information System (INIS)
Amitouche, F.; Bouarab, S.; Tazibt, S.; Vega, A.; Demangeat, C.
2011-01-01
We present ab initio density functional calculations of the electronic structure and magnetic properties of X 2 /Cr 36 (001) and X 1 /Cr 37 (001) multilayers, with X = Sn, V and Mn, to investigate the impact of the proximity effects of the X layers on the spin density waves of the Cr slab. We find different magnetic profiles corresponding to the spin density wave and to the layered antiferromagnetic configurations. The nature of the different magnetic solutions is discussed in terms of the different interfacial environments in the proximity of Sn, V or Mn. The magnetic behavior at the interface is discussed in connection with the electronic structure through the density of electronic states projected at the interfacial X and Cr sites. We compare the results with those previously obtained for Fe 3 /X 1 /Cr 37 /X 1 (001) multilayers to analyze the role played by the ferromagnetic iron slab.
Directory of Open Access Journals (Sweden)
Tomohiro Miyanishi
Full Text Available INTRODUCTION: Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN, by using low-resolution brain electromagnetic tomography (LORETA, and neuropsychological performance in subjects with early schizophrenia. METHODS: Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J. RESULTS: Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. CONCLUSIONS: This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.
Li, Zhendong; Liu, Wenjian
2011-11-21
The recently proposed spin-adapted time-dependent density functional theory (S-TD-DFT) [Z. Li and W. Liu, J. Chem. Phys. 133, 064106 (2010)] resolves the spin-contamination problem in describing singly excited states of high spin open-shell systems. It is an extension of the standard restricted open-shell Kohn-Sham-based TD-DFT which can only access those excited states due to singlet-coupled single excitations. It is also far superior over the unrestricted Kohn-Sham-based TD-DFT (U-TD-DFT) which suffers from severe spin contamination for those excited states due to triplet-coupled single excitations. Nonetheless, the accuracy of S-TD-DFT for high spin open-shell systems is still inferior to TD-DFT for well-behaved closed-shell systems. The reason can be traced back to the violation of the spin degeneracy conditions (SDC) by approximate exchange-correlation (XC) functionals. Noticing that spin-adapted random phase approximation (S-RPA) can indeed maintain the SDC by virtue of the Wigner-Eckart theorem, a hybrid ansatz combining the good of S-TD-DFT and S-RPA can immediately be envisaged. The resulting formalism, dubbed as X-TD-DFT, is free of spin contamination and can also be viewed as a S-RPA correction to the XC kernel of U-TD-DFT. Compared with S-TD-DFT, X-TD-DFT leads to much improved results for the low-lying excited states of, e.g., N(2)(+), yet with much reduced computational cost. Therefore, X-TD-DFT can be recommended for routine calculations of excited states of high spin open-shell systems.
Directory of Open Access Journals (Sweden)
Shenghan Jiang
2014-09-01
Full Text Available Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1
Commensurate and incommensurate spin-density waves in heavy electron systems
Directory of Open Access Journals (Sweden)
P. Schlottmann
2016-05-01
Full Text Available The nesting of the Fermi surfaces of an electron and a hole pocket separated by a nesting vector Q and the interaction between electrons gives rise to itinerant antiferromagnetism. The order can gradually be suppressed by mismatching the nesting and a quantum critical point (QCP is obtained as the Néel temperature tends to zero. The transfer of pairs of electrons between the pockets can lead to a superconducting dome above the QCP (if Q is commensurate with the lattice, i.e. equal to G/2. If the vector Q is not commensurate with the lattice there are eight possible phases: commensurate and incommensurate spin and charge density waves and four superconductivity phases, two of them with modulated order parameter of the FFLO type. The renormalization group equations are studied and numerically integrated. A re-entrant SDW phase (either commensurate or incommensurate is obtained as a function of the mismatch of the Fermi surfaces and the magnitude of |Q − G/2|.
Annealing effect on spin density of broken bonds and on the structure of amorphous germanium
International Nuclear Information System (INIS)
Bukhan'ko, F.N.; Okunev, V.D.; Samojlenko, Z.A.
1989-01-01
Dependence of volumetric spin density of broken bonds in a-Ge films, produced by cathode sputtering in argon, on the annealing temperature is investigated by ESR method. The film structure is controlled by the X-ray method. Two ESR lines with g=2.019 and g=2.003, their intensities changing non-monotonously with annealing temperature are observed. The line with g=2.019 is typical of only amorphous germanium state, and the line with g=2.003 is preserved after film crystallization. Under comparison of results with structural data a conclusion is made that the observed lines in ESR spectra are linked with broken bonds in peripheral regions of two types of clusters. The line with g=2.003 is conditioned by broken bonds in the peripheral cluster regions with standard cubic atom packing and the line with g=2.019 is linked with clusters of hexagonal type which is not typical of crystalline germanium standard structure
Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density
Fennelly, A. J.; Krisch, Jean P.; Ray, John R.; Smalley, Larry L.
1988-01-01
The physical implications of the Raychaudhuri equation for a spinning fluid in a Riemann-Cartan spacetime is developed and discussed using the self-consistent Lagrangian based formulation for the Einstein-Cartan theory. It was found that the spin-squared terms contribute to expansion (inflation) at early times and may lead to a bounce in the final collapse. The relationship between the fluid's vorticity and spin angular velocity is clarified and the effect of the interaction terms between the spin angular velocity and the spin in the Raychaudhuri equation investigated. These results should prove useful for studies of systems with an intrinsic spin angular momentum in extreme astrophysical or cosmological problems.
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin
Negative tunneling magneto-resistance in quantum wires with strong spin-orbit coupling.
Han, Seungju; Serra, Llorenç; Choi, Mahn-Soo
2015-07-01
We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the quantum-wire axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.
Negative Longitudinal Magnetoresistance in the Density Wave Phase of Y_{2}Ir_{2}O_{7}.
Juyal, Abhishek; Agarwal, Amit; Mukhopadhyay, Soumik
2018-03-02
The ground state of nanowires of single-crystalline pyrochlore Y_{2}Ir_{2}O_{7} is a density wave. The application of a transverse magnetic field increases the threshold electric field for the collective depinning of the density wave state at a low temperature, leading to colossal magnetoresistance for voltages around the depinning threshold. This is in striking contrast to the case where even a vanishingly small longitudinal magnetic field sharply reduces the depinning threshold voltage, resulting in negative magnetoresistance. Ruling out several other possibilities, we argue that this phenomenon is likely to be a consequence of the chiral anomaly in the gapped out Weyl semimetal phase in Y_{2}Ir_{2}O_{7}.
Negative Longitudinal Magnetoresistance in the Density Wave Phase of Y2Ir2O7
Juyal, Abhishek; Agarwal, Amit; Mukhopadhyay, Soumik
2018-03-01
The ground state of nanowires of single-crystalline pyrochlore Y2Ir2O7 is a density wave. The application of a transverse magnetic field increases the threshold electric field for the collective depinning of the density wave state at a low temperature, leading to colossal magnetoresistance for voltages around the depinning threshold. This is in striking contrast to the case where even a vanishingly small longitudinal magnetic field sharply reduces the depinning threshold voltage, resulting in negative magnetoresistance. Ruling out several other possibilities, we argue that this phenomenon is likely to be a consequence of the chiral anomaly in the gapped out Weyl semimetal phase in Y2Ir2O7 .
Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application.
Li, Zhendong; Liu, Wenjian; Zhang, Yong; Suo, Bingbing
2011-04-07
The excited states of open-shell systems calculated by unrestricted Kohn-Sham-based time-dependent density functional theory (U-TD-DFT) are often heavily spin-contaminated and hence meaningless. This is solved ultimately by the recently proposed spin-adapted time-dependent density functional theory (TD-DFT) (S-TD-DFT) [J. Chem. Phys. 133, 064106 (2010)]. Unlike the standard restricted open-shell Kohn-Sham-based TD-DFT (R-TD-DFT) which can only access the singlet-coupled single excitations, the S-TD-DFT can capture both the singlet- and triplet-coupled single excitations with the same computational effort as the U-TD-DFT. The performances of the three approaches (U-TD-DFT, R-TD-DFT, and S-TD-DFT) are compared for both the spin-conserving and spin-flip excitations of prototypical open-shell systems, the nitrogen (N(2)(+)) and naphthalene (C(10)H(8)(+)) cations. The results show that the S-TD-DFT gives rise to balanced descriptions of excited states of open-shell systems.
International Nuclear Information System (INIS)
Rozhkov, A.V.
2007-01-01
A mechanism for superconductivity in a quasi-one-dimensional system with repulsive Ising-anisotropic interaction is studied. The Ising anisotropy opens the gap Δ s in the spin sector of the model. This gap allows the triplet superconductivity and the spin-density wave as the only broken symmetry phases. These phases are separated by the first order transition. The transport properties of the system are investigated in different parts of the phase diagram. The calculation of DC conductivity σ(T) in the high-temperature phase shows that the function σ(T) cannot be used as an indicator of a superconducting ground state: even if σ(T) is a decreasing function at high temperature, yet, the ground state may be insulating spin-density wave; the opposite is also true. The calculation of the spin dynamical structure factor S zz (q, ω) demonstrates that it is affected by the superconducting phase transition in a qualitative fashion: below T c the structure factor develops a gap with a coherent excitation inside this gap
Electron and Negative Ion Densities in C2F6 and CHF3 Containing Inductively Coupled Discharges
International Nuclear Information System (INIS)
HEBNER, GREGORY A.; MILLER, PAUL A.
1999-01-01
Electron and negative ion densities have been measured in inductively coupled discharges containing C 2 F 6 and CHF 3 . Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10 12 cm -2 (line-integrated) or approximately 9 x 10 11 cm -3 . The negative ion density peaked at approximately 1.3 x 10 11 cm -3 . A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F - . Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF 4 , C 2 F 6 and CHF 3 discharges
Spin polarization driven by a charge-density wave in monolayer 1T−TaS2
Zhang, Qingyun
2014-08-06
Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.
Energy Technology Data Exchange (ETDEWEB)
Pradhan, B., E-mail: brunda@iopb.res.i [Govt. Science College, Malkangiri 764 048 (India); Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group P.G. Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)
2009-07-01
A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at +-(z+z{sub 1}) and +-(z-z{sub 1}). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.
International Nuclear Information System (INIS)
Pradhan, B.; Raj, B.K.; Rout, G.C.
2009-01-01
A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at ±(z+z 1 ) and ±(z-z 1 ). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.
Spin polarization driven by a charge-density wave in monolayer 1T−TaS2
Zhang, Qingyun; Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo
2014-01-01
Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.
International Nuclear Information System (INIS)
Ohsumi, Hiroyuki; Takata, Masaki
2007-01-01
We present a polarization study of non-resonant X-ray magnetic scattering in pure chromium. Satellite reflections are observed at +/-Q and +/-2Q, where Q is the modulation wave vector of an itinerant spin-density-wave. The first and second harmonics are confirmed to have magnetic and charge origin, respectively, by means of polarimetry without using an analyzer crystal. This alternative technique eliminates intolerable intensity loss at an analyzer by utilizing the sample crystal also as an analyzer crystal
Voufack, Ariste Bolivard; Claiser, Nicolas; Lecomte, Claude; Pillet, Sébastien; Pontillon, Yves; Gillon, Béatrice; Yan, Zeyin; Gillet, Jean Michel; Marazzi, Marco; Genoni, Alessandro; Souhassou, Mohamed
2017-08-01
Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.
Energy Technology Data Exchange (ETDEWEB)
Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
2015-07-28
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.
Density-Imbalance Stability Diagram of the νT = 1 Bilayer Electron System at Full Spin Polarization
International Nuclear Information System (INIS)
Takase, Keiko; Muraki, Koji
2011-01-01
We investigate the evolution of the total Landau level filling factor ν T = 1 bilayer quantum Hall (QH) state versus density imbalance at full spin polarization under a tilted magnetic field. When the system is well below the compressible-incompressible transition point at the balanced density, the ν T = 1 QH state extends widely versus density imbalance, continuously merging into the single-layer ν = 1 QH state. In the vicinity of the transition point, the ν T = 1 QH state is only weakly developed at small imbalance but increases in strength toward ν T = 1/3 + 2/3, where it is clearly separated from the single-layer ν = 1 QH state. These results suggest that the system at the imbalance of Δν = 1/3 undergoes a transition from the correlated ν T = 1 QH state to single-layer fractional QH states with increasing density.
Spin state of negative charge-transfer material SrCoO.sub.3./sub..
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan; Křápek, Vlastimil; Parragh, N.; Sangiovanni, G.; Toschi, A.; Kozhevnikov, A.V.
2012-01-01
Roč. 109, č. 11 (2012), "117206-1"-"117206-5" ISSN 0031-9007 R&D Projects: GA ČR GAP204/10/0284 Keywords : negative charge tranfer * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.943, year: 2012 http://link.aps.org/doi/10.1103/PhysRevLett.109.117206
Jenni, Kevin; Scherthan, Lena; Faus, Isabelle; Marx, Jennifer; Strohm, Cornelius; Herlitschke, Marcus; Wille, Hans-Christian; Würtz, Peter; Schünemann, Volker; Wolny, Juliusz A
2017-07-26
Nuclear inelastic scattering (NIS) experiments have been performed in order to study the vibrational dynamics of the low- and high-spin states of the polynuclear 1D spin crossover compound [Fe(1,2,4-triazole) 2 (1,2,4-triazolato)](BF 4 ) (1). Density functional theory (DFT) calculations using the functional B3LYP* and the basis set CEP-31G for heptameric and nonameric models of the compound yielded the normal vibrations and electronic energies for high-spin and low-spin isomers of three models differing in the distribution of anionic trz - ligands and BF 4 - anions. On the basis of the obtained energies a structural model with a centrosymmetric Fe(trzH) 4 (trz - ) 2 coordination core of the mononuclear unit of the chain is proposed. The obtained distribution of the BF 4 - counteranions in the proposed structure is similar to that obtained on the basis of X-ray powder diffraction studies by Grossjean et al. (Eur. J. Inorg. Chem., 2013, 796). The NIS data of the system diluted to 10% Fe(ii) content in a 90% Zn(ii) matrix (compound (2)) show a characteristic change of the spectral pattern of the low-spin centres, compared to the low-spin phase of the parent Fe(ii) complex (1). DFT calculations reveal that this is caused by a change of the structure of the neighbours of the low-spin centres. The spectral pattern of the high-spin centres in (2) is within a good approximation identical to that of the high-spin Fe(ii) isomer of (1). The inspection of the molecular orbitals of the monomeric model systems of [Fe(trzH) 4 (trz - ) 2 ] and [Fe(trzH) 6 ], together with calculations of spin transition energies, point towards the importance of an electrostatic effect caused by the negatively charged ligands. This results in the stabilisation of the low-spin state of the complex containing the anionic ligand and shortening of the Fe-N(trz - ) compared to the Fe-N(trzH) bond in high-spin, but not in low-spin [Fe(trzH) 4 (trz - ) 2 ].
International Nuclear Information System (INIS)
Guo, Hao; Li, Yang; He, Yan; Chien, Chih-Chun
2014-01-01
We present a theoretical study of the density and spin (representing the two components) linear response of Fermi superfluids with tunable attractive interactions and population imbalance. In both linear response theories, we find that the fluctuations of the order parameter must be treated on equal footing with the gauge transformations associated with the symmetries of the Hamiltonian so that important constraints including various sum rules can be satisfied. Both theories can be applied to the whole BCS–Bose–Einstein condensation crossover. The spin linear responses are qualitatively different with and without population imbalance because collective-mode effects from the fluctuations of the order parameter survive in the presence of population imbalance, even though the associated symmetry is not broken by the order parameter. Since a polarized superfluid becomes unstable at low temperatures in the weak and intermediate coupling regimes, we found that the density and spin susceptibilities diverge as the system approaches the unstable regime, but the emergence of phase separation preempts the divergence. (paper)
Proximity effects on the spin density waves in X/Cr(001) multilayers (X = Sn, V, and Mn)
Energy Technology Data Exchange (ETDEWEB)
Amitouche, F. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Bouarab, S., E-mail: bouarab_said@mail.ummto.d [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Tazibt, S. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Vega, A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Prado de la Magdalena s/n, E-47011 Valladolid (Spain); Demangeat, C. [Institut de Physique, 3 rue de l' Universite 67000 Strasbourg (France)
2011-01-03
We present ab initio density functional calculations of the electronic structure and magnetic properties of X{sub 2}/Cr{sub 36}(001) and X{sub 1}/Cr{sub 37}(001) multilayers, with X = Sn, V and Mn, to investigate the impact of the proximity effects of the X layers on the spin density waves of the Cr slab. We find different magnetic profiles corresponding to the spin density wave and to the layered antiferromagnetic configurations. The nature of the different magnetic solutions is discussed in terms of the different interfacial environments in the proximity of Sn, V or Mn. The magnetic behavior at the interface is discussed in connection with the electronic structure through the density of electronic states projected at the interfacial X and Cr sites. We compare the results with those previously obtained for Fe{sub 3}/X{sub 1}/Cr{sub 37}/X{sub 1}(001) multilayers to analyze the role played by the ferromagnetic iron slab.
The Medium Shapes the Message: The Surprising Negative Spin of Close Friends’ Word-of-Mouth
Directory of Open Access Journals (Sweden)
Dubois David
2017-11-01
Full Text Available Many social media handbooks recommend targeting customers’ close connections and encouraging consumers to spread the word about their products and services among friends. But according to the findings of this research this strategy might not be the most effective way to build positive momentum. In fact, it might just do the opposite. The feelings of closeness that WOM senders experience toward their recipients determine what they share. Being close instills the desire to protect a recipient from having a bad experience. Therefore, communicating negative information, which highlights potential negative outcomes or attributes of a product, becomes more likely to be shared among close friends. In relations with loose acquaintances the motive to impress is more prevalent. Therefore, communicating positive information, which is more likely to shed a positive light on the WOM sender, is more likely to be shared in such instances. To encourage positive WOM for seeding campaigns, marketers should select the right platform and monitor closeness. Further, by framing the context of the campaign in the right way, they can also insure more positive WOM for a brand.
Giner, Emmanuel; Angeli, Celestino
2015-09-28
The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl2 and [CuCl4](2-) systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that each valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.
Plant diversity increases with the strength of negative density dependence at the global scale
LaManna, Joseph A.; Mangan, Scott A.; Alonso, Alfonso; Bourg, Norman; Brockelman, Warren Y.; Bunyavejchewin, Sarayudh; Chang, Li-Wan; Chiang, Jyh-Min; Chuyong, George B.; Clay, Keith; Condit, Richard; Cordell, Susan; Davies, Stuart J.; Furniss, Tucker J.; Giardina, Christian P.; Gunatilleke, I.A.U. Nimal; Gunatilleke, C.V. Savitri; He, Fangliang; Howe, Robert W.; Hubbell, Stephen P.; Hsieh, Chang-Fu; Inman-Narahari, Faith M.; Janik, David; Johnson, Daniel J.; Kenfack, David; Korte, Lisa; Kral, Kamil; Larson, Andrew J.; Lutz, James A.; McMahon, Sean M.; McShea, William J.; Memiaghe, Herve R.; Nathalang, Anuttara; Novotny, Vojtech; Ong, Perry S.; Orwig, David A.; Ostertag, Rebecca; Parker, Geoffrey G.; Phillips, Richard P.; Sack, Lawren; Sun, I-Fang; Tello, J. Sebastian; Thomas, Duncan W.; Turner, Benjamin L.; Vela Diaz, Dilys M.; Vrska, Tomas; Weiblen, George D.; Wolf, Amy; Yap, Sandra; Myers, Jonathan A.
2017-01-01
Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.
International Nuclear Information System (INIS)
SivaRanjan, Uppala; Ramachandran, Ramesh
2014-01-01
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R 2 ) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R 2 experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR
Energy Technology Data Exchange (ETDEWEB)
SivaRanjan, Uppala; Ramachandran, Ramesh, E-mail: rramesh@iisermohali.ac.in [Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli, P.O. Box-140306, Mohali, Punjab (India)
2014-02-07
A quantum-mechanical model integrating the concepts of reduced density matrix and effective Hamiltonians is proposed to explain the multi-spin effects observed in rotational resonance (R{sup 2}) nuclear magnetic resonance (NMR) experiments. Employing this approach, the spin system of interest is described in a reduced subspace inclusive of its coupling to the surroundings. Through suitable model systems, the utility of our theory is demonstrated and verified with simulations emerging from both analytic and numerical methods. The analytic results presented in this article provide an accurate description/interpretation of R{sup 2} experimental results and could serve as a test-bed for distinguishing coherent/incoherent effects in solid-state NMR.
International Nuclear Information System (INIS)
Higuchi, M.; Onuki, Y.; Osaka Univ., Toyonaka; Hasegawa, A.
1998-01-01
A new single-particle equation of the Kohn-Sham-Dirac type is derived from a relativistic current- and spin-density functional theory (RCSDFT), and is here applied to the calculations of the atomic structures of the rare-earth elements. Both the relativistic effects and the magnetic effects are taken into account on an equal footing, and the numerical calculation is carried out by modifying the method of Cortona et al. Because of the presence of the effective magnetic field, the degeneracies in all orbits are completely resolved like the Zeeman splittings. Total spin and orbital angular momenta over all the occupied states are shown to agree reasonably well with the Hund's rules for the rare-earth ions. (orig.)
International Nuclear Information System (INIS)
Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.
2015-01-01
It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH 4 , NH 3 , H 2 O, SiH 4 , PH 3 , SH 2 , C 2 H 2 , C 2 H 4 , and C 2 H 6 . The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states
Energy Technology Data Exchange (ETDEWEB)
Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)
2015-12-28
It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.
Fu, Chenghua; Hu, Zhanning
2018-03-01
In this paper, we investigate the characteristics of the nuclear spin entanglement generated by an intermedium with an optically excited triplet. Significantly, the interaction between the two nuclear spins presents to be a direct XY coupling in each of the effective subspace Hamiltonians which are obtained by applying a transformation on the natural Hamiltonian. The quantum concurrence and negativity are discussed to quantitatively describe the quantum entanglement, and a comparison between them can reveal the nature of their relationship. An innovative general equation describing the relationship between the concurrence and negativity is explicitly obtained.
International Nuclear Information System (INIS)
Wang Guangli; Chen Yubin; Shi Yi; Pu Lin; Pan Lijia; Zhang Rong; Zheng Youdou
2010-01-01
A novel two-step method is employed, for the first time, to fabricate nonvolatile memory devices that have metal nanocrystals. First, size-averaged Au nanocrystals are synthesized chemically; second, they are assembled into memory devices by a spin-coating technique at room temperature. This attractive approach makes it possible to tailor the diameter and control the density of nanocrystals individually. In addition, processes at room temperature prevent Au diffusion, which is a main concern for the application of metal nanocrystal-based memory. The experimental results, both the morphology characterization and the electrical measurements, reveal that there is an optimum density of nanocrystal monolayer to balance between long data retention and a large hysteresis memory window. At the same time, density-controllable devices could also feed the preferential emphasis on either memory window or retention time. All these facts confirm the advantages and novelty of our two-step method. (semiconductor devices)
International Nuclear Information System (INIS)
Hopper, M.A.; Robinson, P.; Grainger, A.J.
2011-01-01
Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.
Energy Technology Data Exchange (ETDEWEB)
Hopper, M.A.; Robinson, P. [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Grainger, A.J., E-mail: andrew.grainger@leedsth.nhs.u [Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom)
2011-04-15
Aim: To determine the sensitivities, specificities, and receiver-operating characteristics (ROCs) for sagittal conventional spin-echo proton density (SE-PD) and fast spin-echo proton density (FSE-PD) sequences in the diagnosis of meniscal tears when compared to arthroscopic findings utilizing increased FSE matrix acquisition size. Method and materials: Magnetic resonance imaging (MRI) studies of 97 knees (194 menisci) were independently and prospectively interpreted by two experienced musculoskeletal radiologists over four separate readings at least 3 weeks apart. Readings 1 and 2 included images in all three planes in accordance with the standard protocol with either a SE or FSE sagittal PD, at readings 3 and 4 just the SE or FSE sagittal PD sequences were reported. The FSE sequence was acquired with an increased matrix size, compared to the SE sequence, to provide increased resolution. Menisci were graded for the presence of a tear and statistical analysis to calculate sensitivity and specificity was performed comparing to arthroscopy as the reference standard. ROC analysis for the diagnosis of meniscal tears on the SE and FSE sagittal sequences was also evaluated. Reader concordance for the SE and FSE sequences was calculated. Results: Sixty-seven tears were noted at arthroscopy; 60 were detected on SE and 56 on FSE. The sensitivity and specificity for SE was 90 and 90%, and for FSE was 84 and 94%, respectively, with no significant difference. ROC analysis showed no significant difference between the two sequences and kappa values demonstrated a higher level of reader agreement for the FSE than for the SE reading. Conclusion: Use of a FSE sagittal PD sequence with an increased matrix size provides comparable performance to conventional SE sagittal PD when evaluating meniscal disease with a modern system. The present study indicates an increased level of concordance between readers for the FSE sagittal sequence compared to the conventional SE.
Kosterlitz-Thouless transitions in simple spin-models with strongly varying vortex densities
Himbergen, J.E.J.M. van
1985-01-01
A generalized XY-model, consisting of a family of nearest neighbour potentials of varying shape, for classical planar spins on a two-dimensional square lattice is analysed by a combination of Migdal-Kadanoff real-space renormalization and Monte Carlo simulations on a sequence of finite lattices of
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2018-05-01
We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.
Magnetic field influence on the spin-density wave of the organic conductor (TMTSF)2NO3
International Nuclear Information System (INIS)
Tomic, S.; Biskup, N.; Korin-Hamzic, B.; Basletic, M.; Hamzic, A.; Maki, K.; Fabre, J.M.; Bechgaard, K.
1993-01-01
We present the influence of a transverse magnetic field on the spin-density wave (SDW) ground state of the organic conductor (TMTSF) 2 NO 3 . Magnetic field increases the single-particle activation energy. A finite magnetic field (H C ) induces discontinuities in the magnetoresistance behaviour and its value is temperature dependent. The threshold electric field (E T ) for the SDW sliding increases in a magnetic field. All observed effects are strongly angle-dependent indicating that they are determined by the magnetic field component along the least-conduction (c * ) direction. We discuss these results in the framework of a theoretical model for the SDW with large imperfect nesting. (orig.)
Johnson, Erin R; Contreras-García, Julia
2011-08-28
We develop a new density-functional approach combining physical insight from chemical structure with treatment of multi-reference character by real-space modeling of the exchange-correlation hole. We are able to recover, for the first time, correct fractional-charge and fractional-spin behaviour for atoms of groups 1 and 2. Based on Becke's non-dynamical correlation functional [A. D. Becke, J. Chem. Phys. 119, 2972 (2003)] and explicitly accounting for core-valence separation and pairing effects, this method is able to accurately describe dissociation and strong correlation in s-shell many-electron systems. © 2011 American Institute of Physics
International Nuclear Information System (INIS)
Singh, Dhananjay K.; Malik, Hitendra K.
2007-01-01
Soliton propagation at critical density of negative ions is studied for weakly inhomogeneous magnetized cold plasma having positive ions, negative ions, and electrons. A general phase velocity relation is obtained and possible modes are studied for different cases involving different constituents of the plasma. Two types of modes (fast and slow) are found to propagate for the equal mass of the positive and negative ions. However, a limit on the obliqueness of magnetic field is obtained for the propagation of slow mode. For both types of modes, a variable coefficient modified Korteweg-deVries equation with an additional term arisen due to the density gradient is realized, which admits solutions for compressive solitons and rarefactive solitons of the same amplitudes at critical negative ion density. The propagation characteristics of these solitons are studied under the effect of densities of ions, magnetic field, and its obliqueness. The amplitudes of fast and slow wave solitons show their opposite behavior with the negative ion concentration, which is consistent with the variation of phase velocities with the negative ion density
Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel
2018-04-28
In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.
Chen, Xu; Wang, Ya-Wen; Gao, Peng
2018-05-09
Spindlin1 (SPIN1), a protein highly expressed in several human cancers, has been correlated with tumorigenesis and development. Alterations of drug metabolizing enzymes and drug transporters are major determinants of chemoresistance in tumor cells. However, whether the metabolizing enzymes and transporters are under the control of SPIN1 in breast cancer chemoresistance has not yet been defined. SPIN1 expression in breast cancer cells and tissues was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Chemosensitivity assays in vitro and in vivo were performed to determine the effect of SPIN1 on Adriamycin resistance. Downstream effectors of SPIN1 were screened by microarray and confirmed by qRT-PCR and Western blot. Luciferase assay and Western blot were used to identify miRNAs regulating SPIN1. We showed that SPIN1 was significantly elevated in drug-resistant breast cancer cell lines and tissues, compared with the chemosensitive ones. SPIN1 enhanced Adriamycin resistance of breast cancer cells in vitro, and downregulation of SPIN1 by miRNA could decrease Adriamycin resistance in vivo. Mechanistically, drug metabolizing enzymes and transporter CYP2C8, UGT2B4, UGT2B17 and ABCB4 were proven to be downstream effectors of SPIN1. Notably, SPIN1 was identified as a direct target of the miR-148/152 family (miR-148a-3p, miR-148b-3p and miR-152-3p). As expected, miR-148a-3p, miR-148b-3p or miR-152-3p could increase Adriamycin sensitivity in breast cancer cells in vitro. Moreover, high expression of SPIN1 or low expression of the miR-148/152 family predicted poorer survival in breast cancer patients. Our results establish that SPIN1, negatively regulated by the miR-148/152 family, enhances Adriamycin resistance in breast cancer via upregulating the expression of drug metabolizing enzymes and drug transporter.
An efficient method for hybrid density functional calculation with spin-orbit coupling
Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui
2018-03-01
In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.
Polarization dependence of the spin-density-wave excitations in single-domain chromium
Energy Technology Data Exchange (ETDEWEB)
Boeni, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Roessli, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France); Sternlieb, B.J. [Brookhaven (United States); Lorenzo, E. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Werner, S.A. [Missouri (United States)
1997-09-01
A polarized neutron scattering experiment has been performed with a single-Q, single domain sample of chromium in a magnetic field of 4 T. It is confirmed that the longitudinal fluctuations are enhanced for small energy transfers and that the spin wave modes with {delta}S parallel to Q and {delta}S perpendicular to Q are similar. (author) 2 figs., 1 tab., 2 refs.
Correction of auto interaction in the formalism of the local spin density: molecular systems
International Nuclear Information System (INIS)
Figueiredo, S.K. de.
1987-01-01
The auto-insertion correction proposed by Perdew and Zunger is introduced in the multiple scattering. The orbital spin relaxation is analyzed and this model is applied to the molecules = CH 4 , SiH 4 , GeH 4 as well as for the molecular compound GaAs with seventeen atoms in the [1Ga4As12Ga] configuration. (A.C.A.S.) [pt
Directory of Open Access Journals (Sweden)
Joe Yeong
2018-05-01
Full Text Available Breast cancer is the most common malignancy affecting women, but the heterogeneity of the condition is a significant obstacle to effective treatment. Triple negative breast cancers (TNBCs do not express HER2 or the receptors for estrogen or progesterone, and so often have a poor prognosis. Tumor-infiltrating T cells have been well-characterized in TNBC, and increased numbers are associated with better outcomes; however, the potential roles of B cells and plasma cells have been large. Here, we conducted a retrospective correlative study on the expression of B cell/plasma cell-related genes, and the abundance and localization of B cells and plasma cells within TNBCs, and clinical outcome. We analyzed 269 TNBC samples and used immunohistochemistry to quantify tumor-infiltrating B cells and plasma cells, coupled with NanoString measurement of expression of immunoglobulin metagenes. Multivariate analysis revealed that patients bearing TNBCs with above-median densities of CD38+ plasma cells had significantly better disease-free survival (DFS (HR = 0.44; 95% CI 0.26–0.77; p = 0.004 but not overall survival (OS, after adjusting for the effects of known prognostic factors. In contrast, TNBCs with higher immunoglobulin gene expression exhibited improved prognosis (OS p = 0.029 and DFS p = 0.005. The presence of B cells and plasma cells was positively correlated (p < 0.0001, R = 0.558, while immunoglobulin gene IGKC, IGHM, and IGHG1 mRNA expression correlated specifically with the density of CD38+ plasma cells (IGKC p < 0.0001, R = 0.647; IGHM p < 0.0001, R = 0.580; IGHG1 p < 0.0001, R = 0.655. Interestingly, after adjusting the multivariate analysis for the effect of intratumoral CD38+ plasma cell density, the expression levels of all three genes lost significant prognostic value, suggesting a biologically important role of plasma cells. Last but not least, the addition of intratumoral CD38+ plasma cell
A temperature dependent tunneling study of the spin density wave gap in EuFe2As2 single crystals.
Dutta, Anirban; Anupam; Hossain, Z; Gupta, Anjan K
2013-09-18
We report temperature dependent scanning tunneling microscopy and spectroscopy measurements on single crystals of EuFe2As2 in the 15-292 K temperature range. The in situ cleaved crystals show atomic terraces with homogeneous tunnel spectra that correlate well with the spin density wave (SDW) transition at a temperature, TSDW ≈ 186 K. Above TSDW the local tunnel spectra show a small depression in the density of states (DOS) near the Fermi energy (EF). The gap becomes more pronounced upon entering the SDW state with a gap value ∼90 meV at 15 K. However, the zero bias conductance remains finite down to 15 K indicating a finite DOS at the EF in the SDW phase. Furthermore, no noticeable change is observed in the DOS at the antiferromagnetic ordering transition of Eu(2+) moments at 19 K.
International Nuclear Information System (INIS)
Wolff, Andrew B.; Pesce, Lorenzo L.; Wu, Jim S.; Smart, L.R.; Medvecky, Michael J.; Haims, Andrew H.
2009-01-01
At our institution, fast spin-echo (FSE) proton density (PD) imaging is used to evaluate articular cartilage, while conventional spin-echo (CSE) T1-weighted sequences have been traditionally used to characterize meniscal pathology. We sought to determine if FSE PD-weighted sequences are equivalent to CSE T1-weighted sequences in the detection of meniscal tears, obviating the need to perform both sequences. We retrospectively reviewed the records of knee arthroscopies performed by two arthroscopy-focused surgeons from an academic medical center over a 2-year period. The preoperative MRI images were interpreted independently by two fellowship-trained musculoskeletal radiologists who graded the sagittal CSE T1 and FSE PD sequences at different sittings with grades 1-5, where 1 = normal meniscus, 2 = probable normal meniscus, 3 indeterminate, 4 = probable torn meniscus, and 5 = torn meniscus. Each meniscus was divided into an anterior and posterior half, and these halves were graded separately. Operative findings provided the gold standard. Receiver operating characteristic (ROC) analysis was performed to compare the two sequences. There were 131 tears in 504 meniscal halves. Using ROC analysis, the reader 1 area under curve for FSE PD was significantly better than CSE T1 (0.939 vs. 0.902, >95% confidence). For reader 2, the difference met good criteria for statistical non-inferiority but not superiority (0.913 for FSE PD and 0.908 for CSE T1; >95% non-inferiority for difference at most of -0.027). FSE PD-weighted sequences, using our institutional protocol, are not inferior to CSE T1-weighted sequences for the detection of meniscal tears and may be superior. (orig.)
Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.
Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki
2016-02-01
To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.
Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator
Energy Technology Data Exchange (ETDEWEB)
Hiratsuka, Junichi, E-mail: hiratsuka.junichi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Miyamoto, Kenji [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)
2016-02-15
To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.
DEFF Research Database (Denmark)
Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond
2009-01-01
into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...... → ns1np1 excitation energies in the Zn, Cd, and Hg atoms (n = 4-6) and (vertical) excitation energies of UO2+ 2 ; and we test the performance of various functionals by comparison with experimental data (group 12 atoms) or higher-level computational results (UO2+2 ). The results indicate...
International Nuclear Information System (INIS)
Simserides, Constantinos
2005-01-01
We study the magnetization, M, and the spin polarization, ζ, of n-doped non-magnetic-semiconductor (NMS)/narrow to wide dilute-magnetic-semiconductor (DMS)/n-doped NMS quantum wells, as a function of the temperature, T, and the in-plane magnetic field, B. Under such conditions the density of states (DOS) deviates from the occasionally stereotypic step-like form, both quantitatively and qualitatively. The DOS modification causes an impressive fluctuation of M in cases of vigorous competition between spatial and magnetic confinement. At low T, the enhanced electron spin-splitting, U oσ , acquires its bigger value. At higher T, U oσ decreases, augmenting the influence of the spin-up electrons. Increasing B, U oσ increases and accordingly electrons populate spin-down subbands while they abandon spin-up subbands. Furthermore, due to the DOS modification, all energetically higher subbands become gradually depopulated
International Nuclear Information System (INIS)
Christ-Koch, Sina
2007-01-01
This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields (∝ 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H - )=1.10 17 1/m 3 , which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)
1H NMR studies in the regime of the field-induced spin-density wave phases of (TMTSF)2PF6
International Nuclear Information System (INIS)
Brown, S.E.; Pieper, M.; Clark, W.G.; Chow, D.S.; Alavi, B.
1999-01-01
We report 1 H proton spin-lattice relaxation measurements T 1 -1 on pressurized (TMTSF) 2 PF 6 in high magnetic fields. Maxima in T 1 -1 identify the phase transition to the field-induced spin-density wave (FISDW) state. Fluctuation effects are evident at temperatures above the transition, and vanish continuously in strength as the field is lowered to the critical field B c for the onset of the FISDW cascade. (orig.)
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-03-01
Development of high performance spin valves formed by amorphous magnetic layer and head-medium interface with nano-thickness molecular film for realizing an ultra-high density of 20 Gbit/in{sup 2} using contact recording. The giant magnetoresistance effect was investigated for spin valves using very thin amorphous magnetic layer. In amorphous-CoFeB/Cu/ Co spin valves, the maximum MR ratio of 6% was achieved at the thickness of the amorphous layer of 2 nm. The spin valves with the amorphous layer exhibit very good thermal stability. Design guideline for molecularly thin lubricant was established using newly derived lubrication equation considering lubricant porosity. Novel method for accurately measuring surface force due to molecularly thin lubricant was developed by using Michelson interferometry to detect cantilever displacement, which enabled two-dimensional transient force measurement. (NEDO)
Energy Technology Data Exchange (ETDEWEB)
Afzali, R., E-mail: afzali@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, Tehran, 15418 (Iran, Islamic Republic of); Ebrahimian, N., E-mail: n.ebrahimian@shahed.ac.ir [Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, 18155-159 (Iran, Islamic Republic of); Eghbalifar, B., E-mail: b.eghbali2011@yahoo.com [Department of Agricultural Management, Marvdasht Branch, Azad University, Marvdasht (Iran, Islamic Republic of)
2016-10-07
Highlights: • In contrast to a s-wave superconductor, the quantum correlation of the d-wave superconductor is sensitive to the change of the gap magnitude. • Quantum discord of the d-wave superconductor oscillates. • Quantum discord becomes zero at a characteristic length of the d-wave superconductor. • Quantum correlation strongly depends on the length of grain. Length of the superconductor lower, the quantum correlation length higher. • Quantum tripartite entanglement for a nano-scale d-wave superconductor is better than for a bulk d-wave superconductor. - Abstract: By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.
Spin temperature and density of cold and warm H I in the Galactic disk: Hidden H I
Sofue, Yoshiaki
2018-05-01
We present a method to determine the spin temperature TS and volume density n of H I gas simultaneously along the tangent-point circle of Galactic rotation in the Milky Way by using the χ2 method. The best-fit TS is shown to range either in TS ˜ 100-120 K or in 1000-3000 K, indicating that the gas is in the cold H I phase with high density and large optical depth, or in warm H I with low density and small optical depth. Averaged values at 3 ≤ R ≤ 8 kpc are obtained to be TS = 106.7 ± 16.0 K and n = 1.53 ± 0.86 H cm-3 for cold H I, and 1720 ± 1060 K and 0.38 ± 0.10 H cm-3 for warm H I, where R = 8 |sinl| kpc is the galacto-centric distance along the tangent-point circle. The cold H I appears in spiral arms and rings, whereas warm H I appears in the inter-arm regions. The cold H I is denser by a factor of ˜4 than warm H I. The present analysis has revealed the hidden H I mass in the cold and optically thick phase in the Galactic disk. The total H I mass inside the solar circle is shown to be greater by a factor of 2-2.5 than the current estimation by the optically thin assumption.
Directory of Open Access Journals (Sweden)
Mahdi Afshar
2013-11-01
Full Text Available We have demonstrated electronic structure and magnetic properties of Cu3, Ag3 and Au3 trimers using a full potential local orbital method in the framework of relativistic density functional theory. We have also shown that the non-relativistic generalized gradient approximation for the exchange-correlation energy functional gives reliable magnetic properties in coinage metal trimers compared to experiment. In addition we have indicated that the spin-orbit coupling changes the structure and magnetic properties of gold trimer while the structure and magnetic properties of copper and silver trimers are marginally affected. A significant orbital moment of 0.21μB was found for most stable geometry of the gold trimer whereas orbital magnetism is almost quenched in the copper and silver trimers.
Energy Technology Data Exchange (ETDEWEB)
Garza, Alejandro J.; Jiménez-Hoyos, Carlos A. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2014-06-28
Several schemes to avoid the double counting of correlations in methods that merge multireference wavefunctions with density functional theory (DFT) are studied and here adapted to a combination of spin-projected Hartree-Fock (SUHF) and DFT. The advantages and limitations of the new method, denoted SUHF+f{sub c}DFT, are explored through calculations on benchmark sets in which the accounting of correlations is challenging for pure SUHF or DFT. It is shown that SUHF+f{sub c}DFT can greatly improve the description of certain molecular properties (e.g., singlet-triplet energy gaps) which are not improved by simple addition of DFT dynamical correlation to SUHF. However, SUHF+f{sub c}DFT is also shown to have difficulties dissociating certain types of bonds and describing highly charged ions with static correlation. Possible improvements to the current SUHF+f{sub c}DFT scheme are discussed in light of these results.
Zhekova, Hristina R; Seth, Michael; Ziegler, Tom
2011-11-14
We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics
Spin polarization in high density quark matter under a strong external magnetic field
DEFF Research Database (Denmark)
Tsue, Yasuhiko; Da Providência, João; Providência, Constança
2016-01-01
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact...
Polarized proton spin density images the tyrosyl radical locations in bovine liver catalase
Directory of Open Access Journals (Sweden)
Oliver Zimmer
2016-09-01
Full Text Available A tyrosyl radical, as part of the amino acid chain of bovine liver catalase, supports dynamic proton spin polarization (DNP. Finding the position of the tyrosyl radical within the macromolecule relies on the accumulation of proton polarization close to it, which is readily observed by polarized neutron scattering. The nuclear scattering amplitude due to the polarization of protons less than 10 Å distant from the tyrosyl radical is ten times larger than the amplitude of magnetic neutron scattering from an unpaired polarized electron of the same radical. The direction of DNP was inverted every 5 s, and the initial evolution of the intensity of polarized neutron scattering after each inversion was used to identify those tyrosines which have assumed a radical state. Three radical sites, all of them close to the molecular centre and the haem, appear to be equally possible. Among these is tyr-369, the radical state of which had previously been proven by electron paramagnetic resonance.
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.
MR fingerprinting for rapid quantification of myocardial T1 , T2 , and proton spin density.
Hamilton, Jesse I; Jiang, Yun; Chen, Yong; Ma, Dan; Lo, Wei-Ching; Griswold, Mark; Seiberlich, Nicole
2017-04-01
To introduce a two-dimensional MR fingerprinting (MRF) technique for quantification of T 1 , T 2 , and M 0 in myocardium. An electrocardiograph-triggered MRF method is introduced for mapping myocardial T 1 , T 2 , and M 0 during a single breath-hold in as short as four heartbeats. The pulse sequence uses variable flip angles, repetition times, inversion recovery times, and T 2 preparation dephasing times. A dictionary of possible signal evolutions is simulated for each scan that incorporates the subject's unique variations in heart rate. Aspects of the sequence design were explored in simulations, and the accuracy and precision of cardiac MRF were assessed in a phantom study. In vivo imaging was performed at 3 Tesla in 11 volunteers to generate native parametric maps. T 1 and T 2 measurements from the proposed cardiac MRF sequence correlated well with standard spin echo measurements in the phantom study (R 2 > 0.99). A Bland-Altman analysis revealed good agreement for myocardial T 1 measurements between MRF and MOLLI (bias 1 ms, 95% limits of agreement -72 to 72 ms) and T 2 measurements between MRF and T 2 -prepared balanced steady-state free precession (bias, -2.6 ms; 95% limits of agreement, -8.5 to 3.3 ms). MRF can provide quantitative single slice T 1 , T 2 , and M 0 maps in the heart within a single breath-hold. Magn Reson Med 77:1446-1458, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Hall, Aidan A G; Johnson, Scott N; Cook, James M; Riegler, Markus
2017-08-26
Insect herbivore outbreaks frequently occur and this may be due to factors that restrict top-down control by parasitoids, for example, host-parasitoid asynchrony, hyperparasitization, resource limitation and climate. Few studies have examined host-parasitoid density relationships during an insect herbivore outbreak in a natural ecosystem with diverse parasitoids. We studied parasitization patterns of Cardiaspina psyllids during an outbreak in a Eucalyptus woodland. First, we established the trophic roles of the parasitoids through a species-specific multiplex PCR approach on mummies from which parasitoids emerged. Then, we assessed host-parasitoid density relationships across three spatial scales (leaf, tree and site) over one year. We detected four endoparasitoid species of the family Encyrtidae (Hymenoptera); two primary parasitoid and one heteronomous hyperparasitoid Psyllaephagus species (the latter with female development as a primary parasitoid and male development as a hyperparasitoid), and the hyperparasitoid Coccidoctonus psyllae. Parasitoid development was host-synchronized, although synchrony between sites appeared constrained during winter (due to temperature differences). Parasitization was predominantly driven by one primary parasitoid species and was mostly inversely host-density dependent across the spatial scales. Hyperparasitization by C. psyllae was psyllid-density dependent at the site scale, however, this only impacted the rarer primary parasitoid. High larval parasitoid mortality due to density-dependent nymphal psyllid mortality (a consequence of resource limitation) compounded by a summer heat wave was incorporated in the assessment and resulted in density independence of host-parasitoid relationships. As such, high larval parasitoid mortality during insect herbivore outbreaks may contribute to the absence of host density-dependent parasitization during outbreak events. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal Conductivity
Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.; Movshovich, Roman
Unconventional superconductor CeCoIn5 orders magnetically in a spin-density-wave (SDW) in the low-temperature and high-field corner of the superconducting phase. Recent neutron scattering experiment revealed that the single-domain SDW's ordering vector Q depends strongly on the direction of the magnetic field, switching sharply as the field is rotated through the anti-nodal direction. This switching may be manifestation of a pair-density-wave (PDW) p-wave order parameter, which develops in addition to the well-established d-wave order parameter due to the SDW formation. We have investigated the hypersensitivity of the magnetic domain with a thermal conductivity measurement. The heat current (J) was applied along the [110] direction such that the Q vector is either perpendicular or parallel to J, depending on the magnetic field direction. A discontinuous change of the thermal conductivity was observed when the magnetic field is rotated around the [100] direction within 0 . 2° . The thermal conductivity with the Q parallel to the heat current (J ∥Q) is approximately 15% lager than that with the Q perpendicular to the heat current (J ⊥Q). This result is consistent with additional gapping of the nodal quasiparticle by the p-wave PDW coupled to SDW. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.
Yan, YiJing
2014-02-07
This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.
Low-frequency permittivity of spin-density wave in (TMTSF)_{2}PF_{6} at low temperatures
DEFF Research Database (Denmark)
Nad, F.; Monceau, P.; Bechgaard, K.
1995-01-01
Conductivity and permittivity epsilon of(TMTSF)(2)PF6 have been measured at low frequencies of (10(2)-10(7) Hz) at low temperatures below the spin-density wave (SDW) transition temperature T-p. The temperature dependence of the conductivity shows a deviation from thermally activated behavior at T...
Roch, Loïc M; Baldridge, Kim K
2018-02-07
Correction for 'General optimization procedure towards the design of a new family of minimal parameter spin-component-scaled double-hybrid density functional theory' by Loïc M. Roch and Kim K. Baldridge, Phys. Chem. Chem. Phys., 2017, 19, 26191-26200.
Experimental study of the spin density of metastable fcc ferromagnetic Fe-Cu alloys
International Nuclear Information System (INIS)
Bove, L. E.; Petrillo, C.; Sacchetti, F.; Mazzone, G.
2000-01-01
Magnetization density measurements on metastable Fe x Cu 1-x alloys at four compositions (x=20, 40, 50, and 60 at. %) and at 5 K temperature were carried out by means of polarized neutron diffraction. The samples were produced by high-energy ball milling and characterized by x-ray diffraction and fluorescence measurements. Additional bulk magnetization measurements were carried out on the two samples at high Fe concentration. Over the present concentration region, the Fe-Cu system is ferromagnetic and the four samples were found to be in the fcc phase. Fe-Cu is therefore a very suitable system to investigate the magnetic state of Fe in an fcc environment. Other than confirming that the Fe-Cu system is not a simple dilution alloy, the present results were compatible with a two-state model for fcc Fe--that is, two different coexisting electronic states associated with different magnetic moments and form factors
A density functional theory investigation of the electronic structure and spin moments of magnetite
Noh, Junghyun; Osman, Osman I; Aziz, Saadullah G; Winget, Paul; Bredas, Jean-Luc
2014-01-01
We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.
A density functional theory investigation of the electronic structure and spin moments of magnetite
Noh, Junghyun
2014-08-01
We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.
Visceral Fat Is a Negative Predictor of Bone Density Measures in Obese Adolescent Girls
Russell, Melissa; Mendes, Nara; Miller, Karen K.; Rosen, Clifford J.; Lee, Hang; Klibanski, Anne; Misra, Madhusmita
2010-01-01
Context: Regional fat is increasingly recognized as a determinant of bone mineral density (BMD), an association that may be mediated by adipokines, such as adiponectin and leptin, and inflammatory fat products. Chronic inflammation is deleterious to bone, and visceral adipose tissue (VAT) predicts inflammatory markers such as soluble intercellular adhesion molecule-1 and E-selectin, whereas sc adipose tissue (SAT) and VAT predict IL-6 in adolescents.
Pramanik, S.; bandyopadhyay, S.; Cahay, M.
2003-01-01
We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...
Caffarel, Michel; Giner, Emmanuel; Scemama, Anthony; Ramírez-Solís, Alejandro
2014-12-09
We present a comparative study of the spatial distribution of the spin density of the ground state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-Hartree-Fock wave function theory (WFT). A number of studies have shown that an accurate description of the electronic structure of the lowest-lying states of this molecule is particularly challenging due to the interplay between the strong dynamical correlation effects in the 3d shell and the delocalization of the 3d hole over the chlorine atoms. More generally, this problem is representative of the difficulties encountered when studying open-shell metal-containing molecular systems. Here, it is shown that qualitatively different results for the spin density distribution are obtained from the various quantum-mechanical approaches. At the DFT level, the spin density distribution is found to be very dependent on the functional employed. At the QMC level, Fixed-Node Diffusion Monte Carlo (FN-DMC) results are strongly dependent on the nodal structure of the trial wave function. Regarding wave function methods, most approaches not including a very high amount of dynamic correlation effects lead to a much too high localization of the spin density on the copper atom, in sharp contrast with DFT. To shed some light on these conflicting results Full CI-type (FCI) calculations using the 6-31G basis set and based on a selection process of the most important determinants, the so-called CIPSI approach (Configuration Interaction with Perturbative Selection done Iteratively) are performed. Quite remarkably, it is found that for this 63-electron molecule and a full CI space including about 10(18) determinants, the FCI limit can almost be reached. Putting all results together, a natural and coherent picture for the spin distribution is proposed.
Pressure effects on spin density wave in Cr rich Cr-Al, Si, Mn, Fe and Co alloys
International Nuclear Information System (INIS)
Mizuki, Jun-ichiro; Endoh, Yasuo; Ishikawa, Yoshikazu
1982-01-01
The effect of pressure on the spin density wave (SDW) state in Cr rich Cr-Al, Si, Nn, Fe and Co alloys has been elucidated by neutron diffraction studies. We found that the change of the SDW wave vector Q, by applying pressure, 1/Q. delta Q/ delta P, is linearly related to the decrease of T sub(N) with increasing pressure 1/T sub(N). delta T sub(N)/ delta P and that all the results from the Cr-Si, Fe and Co alloys fall on a single straight line independent of their concentrations. Their magnetic phase diagrams in a temperature-pressure coordinate system can be related to the alloy phase diagram by employing an empirical rule that applying pressure corresponds to a decrese in the electron to atom ratio. The non transition metal Si impurity has been found to act as an electron donor, while the effect of Al is not interpreted by the two band nesting model. (author)
Energy Technology Data Exchange (ETDEWEB)
Di, Ningning; Pang, Haopeng; Ren, Yan; Yao, Zhenwei; Feng, Xiaoyuan [Huashan Hospital Fudan University, Department of Radiology, Shanghai (China); Dang, Xuefei [Shang Hai Gamma Knife Hospital, Shanghai (China); Cheng, Wenna [Binzhou Medical University Affiliated Hospital, Department of Pharmacy, Binzhou (China); Wu, Jingsong; Yao, Chengjun [Huashan Hospital Fudan University, Department of Neurosurgery, Shanghai (China)
2017-01-15
This study was designed to determine if cerebral blood flow (CBF) derived from arterial spin labeling (ASL) perfusion imaging could be used to quantitatively evaluate the microvascular density (MVD) of brain gliomas on a ''point-to-point'' basis by matching CBF areas and surgical biopsy sites as accurate as possible. The study enrolled 47 patients with treatment-naive brain gliomas who underwent preoperative ASL, 3D T1-weighted imaging with gadolinium contrast enhancement (3D T1C+), and T2 fluid acquisition of inversion recovery (T2FLAIR) sequences before stereotactic surgery. We histologically quantified MVD from CD34-stained sections of stereotactic biopsies and co-registered biopsy locations with localized CBF measurements. The correlation between CBF and MVD was determined using Spearman's correlation coefficient. P ≤.05 was considered statistically significant. Of the 47 patients enrolled in the study, 6 were excluded from the analysis because of brain shift or poor co-registration and localization of the biopsy site during surgery. Finally, 84 biopsies from 41 subjects were included in the analysis. CBF showed a statistically significant positive correlation with MVD (ρ = 0.567; P =.029). ASL can be a useful noninvasive perfusion MR method for quantitative evaluation of the MVD of brain gliomas. (orig.)
Bučinský , Luká š; Malček, Michal; Biskupič, Stanislav; Jayatilaka, Dylan; Bü chel, Gabriel E.; Arion, Vladimir B.
2015-01-01
"Kramers pairs symmetry breaking" is evaluated at the 2-component (2c) Kramers unrestricted and/or general complex Hartree-Fock (GCHF) level of theory, and its analogy with "spin contamination" at the 1-component (1c) unrestricted Hartree-Fock (UHF
Energy Technology Data Exchange (ETDEWEB)
Tokuzawa, T., E-mail: tokuzawa@nifs.ac.jp; Kisaki, M.; Nagaoka, K.; Ito, Y.; Ikeda, K.; Nakano, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tsumori, K.; Osakabe, M.; Takeiri, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Kaneko, O. [National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)
2016-11-15
The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 10{sup 15} to 3 × 10{sup 18} m{sup −3} in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.
Ito, Takehito; Kimura, Yasuyuki; Seki, Chie; Ichise, Masanori; Yokokawa, Keita; Kawamura, Kazunori; Takahashi, Hidehiko; Higuchi, Makoto; Zhang, Ming-Rong; Suhara, Tetsuya; Yamada, Makiko
2018-06-14
The histamine H 3 receptor is regarded as a drug target for cognitive impairments in psychiatric disorders. H 3 receptors are expressed in neocortical areas, including the prefrontal cortex, the key region of cognitive functions such as working memory. However, the role of prefrontal H 3 receptors in working memory has not yet been clarified. Therefore, using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) techniques, we aimed to investigate the association between the neural activity of working memory and the density of H 3 receptors in the prefrontal cortex. Ten healthy volunteers underwent both fMRI and PET scans. The N-back task was used to assess the neural activities related to working memory. H 3 receptor density was measured with the selective PET radioligand [ 11 C] TASP457. The neural activity of the right dorsolateral prefrontal cortex during the performance of the N-back task was negatively correlated with the density of H 3 receptors in this region. Higher neural activity of working memory was associated with lower H 3 receptor density in the right dorsolateral prefrontal cortex. This finding elucidates the role of H 3 receptors in working memory and indicates the potential of H 3 receptors as a therapeutic target for the cognitive impairments associated with neuropsychiatric disorders.
Kuhns, P. L.; Hoch, M. J. R.; Reyes, A. P.; Moulton, W. G.; Wang, L.; Leighton, C.
2006-04-01
Highly spin polarized (SP) and half-metallic ferromagnetic systems are of considerable current interest and of potential importance for spintronic applications. Recent work has demonstrated that Co1-xFexS2 is a highly polarized ferromagnet (FM) where the spin polarization can be tuned by alloy composition. Using Co59 FM-NMR as a probe, we have measured the low-temperature spin relaxation in this system in magnetic fields from 0 to 1.0 T for 0≤x≤0.3. The Co59 spin-lattice relaxation rates follow a linear T dependence. Analysis of the data, using expressions for a FM system, permits information to be obtained on the d-band density of states at the Fermi level. The results are compared with independent density of states values inferred from electronic specific heat measurements and band structure calculations. It is shown that FM-NMR can be an important method for investigating highly SP systems.
Abreu, P; Adye, T; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bonesini, M; Bonivento, W; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gonçalves, P; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Roos, L; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Sheridan, A; Siegrist, P; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Yi, J; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G
1997-01-01
The spin density matrix elements for the $\\rho^0$, K$^{*0}(892)$ and $\\phi$ produced in hadronic Z$^0$ decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K$^{*0}(892)$ and $\\phi$ in the region $x_p \\leq 0.3$ ($x_p = p/p_{beam}$), where $\\rho_{00} = 0.33 \\pm 0.05$ and $\\rho_{00} = 0.30 \\pm 0.04$, respectively. In the fragmentation region, $x_p \\geq 0.4$, there is some indication for spin alignment of the $\\rho^0$ and K$^{*0}(892)$, since $\\rho_{00} = 0.43 \\pm 0.05$ and $\\rho_{00} = 0.46 \\pm 0.08$, respectively. These values are compared with those found in meson-induced hadronic reactions. For the $\\phi$, $\\rho_{00} = 0.30 \\pm 0.04$ for $x_p \\geq 0.4$ and $0.55 \\pm 0.10$ for $x_p \\geq 0.7$. The off-diagonal spin density matrix element $\\rho_{1-1}$ is consistent with zero in all cases.
International Nuclear Information System (INIS)
Schaefer, F.K.W.; Schaefer, P.J.; Brossmann, J.; Frahm, C.; Hilgert, R.E.; Heller, M.; Jahnke, T.
2006-01-01
Purpose: To evaluate fat-suppressed (FS) proton-density-weighted (PDw) turbo spin-echo (TSE) magnetic resonance imaging (MRI) compared to arthroscopy in the detection of meniscal lesions. Material and Methods: In a prospective study, 31 knee joints were imaged on a 1.5T MR scanner before arthroscopy using the following sequences: (a) coronal and sagittal FS-PDw TSE (TR/TE: 4009/15 ms); (b) coronal T1w SE (TR/TE: 722/20 ms), and sagittal PDw TSE (TR/TE: 3800/15 ms). Other imaging parameters were: slice thickness 3 mm, FOV 160 mm, matrix 256x256. A total of 186 meniscal regions (62 menisci; anterior horn, body, posterior horn) were evaluated. Standard of reference was arthroscopy. Sensitivity, specificity, negative predictive value (npv), positive predictive value (ppv), and accuracy were calculated. Results: Arthroscopically, meniscal lesions were detected in 55/186 segments (35 medial and 20 lateral meniscal lesions). Sensitivity, specificity, npv, ppv, and accuracy for combination of coronal and sagittal FS PDw TSE were 91.4%, 98.3%, 95%, 97%, and 93.5% for the medial meniscus, and 90%, 98.6%, 97.3%, 94.7%, and 96.8% for the lateral. The results were comparable to the combination of coronal T1w SE and sagittal PDw TSE for the medial (88.6%, 98.3%, 93.4%, 96.9%, 91.4%) and the lateral (90%, 95.9%, 97.2%, 85.7%, 92.5%) meniscus. Conclusion: FS PDw TSE-MR sequences are an excellent alternative for the detection of meniscal lesions in comparison with diagnostic arthroscopy
Amashukeli, Medea; Korinteli, Maka; Zerekidze, Tamar; Jikurauli, Nino; Shanava, Shorena; Tsagareli, Marina; Giorgadze, Elen
2013-06-01
Graves' disease is an autoimmune disorder with various clinical manifestations. Thyrotropin receptor antibodies (TRAbs), the circulating autoantibodies specific to Graves' disease, are the cause for hyperthyroidism, the most prevalent abnormality. Hyperthyroidism leads to increased bone turnover and a negative bone balance. The aims of the present study were to determine the relationship between TRAbs and bone mineral density (BMD), to assess the extent of BMD change in patients with Graves' disease, and to determine the impact of conservative and surgical therapy on BMD. Fifty female postmenopausal patients with Graves' disease were chosen for this study. Twenty women had a recent diagnosis of Graves' disease, 30 women presented with a compensated disease state after either conservative or surgical treatment, and 30 healthy postmenopausal women served as controls. Thyroid parameters were measured, and BMD values were obtained by dual energy x-ray absorptiometry scan.Femoral neck and lumbar spine BMD and T-scores were significantly lower in newly diagnosed patients compared with the control group, but a difference was not observed between the treated and control groups. Statistical analysis revealed a strong and significant negative correlation between femoral neck and lumbar spine BMD and TRAb values.Both surgical and conservative therapies are effective for restoring BMD in postmenopausal patients with Graves' disease, and the increased level of TRAb can be a useful marker of bone density impairment.
Filip, Jaroslav; Andicsová-Eckstein, Anita; Vikartovská, Alica; Tkac, Jan
2017-03-15
Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (k S ) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm -2 and the highest Γ of (23.6±0.9)pmolcm -2 were obtained on BOD-GO composite having the same moderate negative charge density, but the highest k S of (79.4±4.6)s -1 was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; Johnston, D. C.
2017-01-01
Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions. PMID:28211520
Yin, Shi; Bernstein, Elliot R
2017-10-05
Iron sulfur cluster anions (FeS) m - (m = 2-8) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The most probable structures and ground state spin multiplicities for (FeS) m - (m = 2-8) clusters are tentatively assigned through a comparison of their theoretical and experiment first vertical detachment energy (VDE) values. Many spin states lie within 0.5 eV of the ground spin state for the larger (FeS) m - (m ≥ 4) clusters. Theoretical VDEs of these low lying spin states are in good agreement with the experimental VDE values. Therefore, multiple spin states of each of these iron sulfur cluster anions probably coexist under the current experimental conditions. Such available multiple spin states must be considered when evaluating the properties and behavior of these iron sulfur clusters in real chemical and biological systems. The experimental first VDEs of (FeS) m - (m = 1-8) clusters are observed to change with the cluster size (number m). The first VDE trends noted can be related to the different properties of the highest singly occupied molecular orbitals (NBO, HSOMOs) of each cluster anion. The changing nature of the NBO/HSOMO of these (FeS) m - (m = 1-8) clusters from a p orbital on S, to a d orbital on Fe, and to an Fe-Fe bonding orbital is probably responsible for the observed increasing trend for their first VDEs with respect to m.
Burg, G William; Prasad, Nitin; Fallahazad, Babak; Valsaraj, Amithraj; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Wang, Qingxiao; Kim, Moon J; Register, Leonard F; Tutuc, Emanuel
2017-06-14
We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe 2 . We observe large interlayer current densities of 2 and 2.5 μA/μm 2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.
International Nuclear Information System (INIS)
Biagini, M.; Calandra, C.; Ossicini, S.
1995-01-01
Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa 2 Cu 3 O 7 (PBCO). We have performed linear muffin-tin orbital--atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a Cu II oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between Cu I and Cu II . The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa 2 Cu 3 O 7
Energy Technology Data Exchange (ETDEWEB)
Embaid, B.P., E-mail: pembaid@fisica.ciens.ucv.ve [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of); Gonzalez-Jimenez, F. [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of)
2013-03-15
Iron-vanadium sulfides of the monoclinic system Fe{sub x}V{sub 3-x}S{sub 4} (1.0{<=}x{<=}2.0) have been investigated by {sup 57}Fe Moessbauer Spectroscopy in the temperature range 30-300 K. Incommensurate spin density waves (SDW) have been found in this system. An alternative treatment of the spectra allows a direct measurement of the temperature evolution of condensate density of the SDW state which follows the Maki-Virosztek formula. For composition (x=1.0) the SDW condensate is unpinned while for compositions (x>1.0) the SDW condensate is pinned. Possible causes of the pinning-unpinning SDW will be discussed. - Highlights: Black-Right-Pointing-Pointer Fe{sub x}V{sub 3-x}S{sub 4}(1.0{<=}x{<=}2.0) system was investigated by {sup 57}Fe Moessbauer Spectroscopy. Black-Right-Pointing-Pointer Incommensurate spin density wave (SDW) has been found in this system. Black-Right-Pointing-Pointer We report the temperature evolution of the condensate density of SDW state. Black-Right-Pointing-Pointer For composition (x=1.0) the SDW is unpinned while for (x>1.0) is pinned.
Energy Technology Data Exchange (ETDEWEB)
Giner, Emmanuel, E-mail: gnrmnl@unife.it; Angeli, Celestino, E-mail: anc@unife.it [Dipartimento di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato di Mortara 17, I-44121 Ferrara (Italy)
2015-09-28
The aim of this paper is to unravel the physical phenomena involved in the calculation of the spin density of the CuCl{sub 2} and [CuCl{sub 4}]{sup 2−} systems using wave function methods. Various types of wave functions are used here, both variational and perturbative, to analyse the effects impacting the spin density. It is found that the spin density on the chlorine ligands strongly depends on the mixing between two types of valence bond structures. It is demonstrated that the main difficulties found in most of the previous studies based on wave function methods come from the fact that each valence bond structure requires a different set of molecular orbitals and that using a unique set of molecular orbitals in a variational procedure leads to the removal of one of them from the wave function. Starting from these results, a method to compute the spin density at a reasonable computational cost is proposed.
Evolution of the phonon density of states of LaCoO.sub.3./sub. over the spin state transition
Czech Academy of Sciences Publication Activity Database
Golosova, N.O.; Kozlenko, D. P.; Kolesnikov, A.I.; Kazimirov, V.Y.; Smirnov, M. B.; Jirák, Zdeněk; Savenko, B. N.
2011-01-01
Roč. 83, č. 21 (2011), "214305-1"-"214305-6" ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : first-principles theory * spin crossover Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011
Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U
2017-09-01
We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.
Tresca, C.; Brun, C.; Bilgeri, T.; Menard, G.; Cherkez, V.; Federicci, R.; Longo, D.; Debontridder, F.; D'angelo, M.; Roditchev, D.; Profeta, G.; Calandra, M.; Cren, T.
2018-05-01
We investigate the 1 /3 monolayer α -Pb /Si (111 ) surface by scanning tunneling spectroscopy (STS) and fully relativistic first-principles calculations. We study both the high-temperature √{3 }×√{3 } and low-temperature 3 ×3 reconstructions and show that, in both phases, the spin-orbit interaction leads to an energy splitting as large as 25% of the valence-band bandwidth. Relativistic effects, electronic correlations, and Pb-substrate interaction cooperate to stabilize a correlated low-temperature paramagnetic phase with well-developed lower and upper Hubbard bands coexisting with 3 ×3 periodicity. By comparing the Fourier transform of STS conductance maps at the Fermi level with calculated quasiparticle interference from nonmagnetic impurities, we demonstrate the occurrence of two large hexagonal Fermi sheets with in-plane spin polarizations and opposite helicities.
International Nuclear Information System (INIS)
Vasil'kovskij, V.A.; Gorlenko, A.A.; Kupriyanov, A.K.; Ostrovskij, V.F.
1988-01-01
It is shown that in intermettalic compounds local fields in rare earth (RE) element nuclei directed by 3d-sublattice atoms depend on 3d-atom type but they practically do not depend on the value of its magnetic moment and the compound stoichiometry. The results are explained in the assumption concerning the presence of a system of collectivized electrons, their spin polarization determining the field in RE nuclei and contributing to 3d-atom magnetic moment
Czech Academy of Sciences Publication Activity Database
Středa, Pavel; Drchal, Václav
2012-01-01
Roč. 86, č. 19 (2012), "195204-1"-"195204-8" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : nonmagnetic semiconductors * spin Hall currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012
Electrodynamics of spin currents in superconductors
International Nuclear Information System (INIS)
Hirsch, J.E.
2008-01-01
In recent work we formulated a new set of electrodynamic equations for superconductors as an alternative to the conventional London equations, compatible with the prediction of the theory of hole superconductivity that superconductors expel negative charge from the interior towards the surface. Charge expulsion results in a macroscopically inhomogeneous charge distribution and an electric field in the interior, and because of this a spin current is expected to exist. Furthermore, we have recently shown that a dynamical explanation of the Meissner effect in superconductors leads to the prediction that a spontaneous spin current exists near the surface of superconductors (spin Meissner effect). In this paper we extend the electrodynamic equations proposed earlier for the charge density and charge current to describe also the space and time dependence of the spin density and spin current. This allows us to determine the magnitude of the expelled negative charge and interior electric field as well as of the spin current in terms of other measurable properties of superconductors. We also provide a 'geometric' interpretation of the difference between type I and type II superconductors, discuss how superconductors manage to conserve angular momentum, discuss the relationship between our model and Slater's seminal work on superconductivity, and discuss the magnitude of the expected novel effects for elemental and other superconductors. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
The molecular spin filter constructed from 1D organic chain
International Nuclear Information System (INIS)
Chen, Wei; Xu, Ning; Wang, Baolin; Bian, Baoan
2014-01-01
We proposed a molecular spin filter, which is constructed from the 1D metallic organic chain (Fe n+1 (C 6 H 4 ) n ). The spin-polarized transport properties of the molecular spin filter are explored by combining density functional theory with nonequilibrium Green's function formalism. Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect, and only the spin-down electrons can transmit through the molecular chain. At the given bias voltage window [−1 eV,1 eV], the calculated spin filter efficiency is close to 100% in the case of n≥3. We find that the effect of spin polarization origin from both Fe n+1 and (C 6 H 4 ) n . In addition, negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain. The results can help us understand the spin transport properties of organic molecular chain. - Highlights: • Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect. • The effect of spin polarization origin from both of Fe n+1 and (C 6 H 4 ) n . • Negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain
Xu, Xin; Goddard, William A., III
2004-01-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energ...
Energy Technology Data Exchange (ETDEWEB)
Nagata, M.; Hirase, T.; Miyajima, K., E-mail: miyajima@rs.tus.ac.jp
2017-04-15
Characteristics of photoluminescence (PL) originating from high-density exciton magnetic polarons (HD-EMPs) for Cd{sub 0.8}Mn{sub 0.2}Te were investigated. The PL appeared only under selective excitation of the localized excitons, and the intensity increased superlinearly with the excitation density. Directivity of the PL was revealed. Therefore, it is concluded that the superlinear increase in the PL intensity resulted from a light amplification process owing to the stimulated emission. In addition, the existence of birefringence that originates from a uniaxial gradation of the Mn ion concentrations was revealed. The degree of circular polarization (DOCP) of the PL is important to obtain the spin alignment state of the HD-EMPs. The initial DOCPs of the PL were examined by removing a variation of the polarization during propagation inside the sample. As a result, it was found that the initial DOCPs of the PL were almost constant for the photon energy. The obtained initial DOCPs exhibited different values for right- and left-circularly polarized excitations, which resulted from different mechanisms of the spin alignment of the HD-EMPs.
Compound nucleus effects in spin-spin cross sections
International Nuclear Information System (INIS)
Thompson, W.J.
1976-01-01
By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)
Bellou, Elena; Maraki, Maria; Magkos, Faidon; Botonaki, Helena; Panagiotakos, Demosthenes B.; Kavouras, Stavros A.; Sidossis, Labros S.
2013-01-01
Background Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG) concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. Objective The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. Design Ten healthy women (age: 22.0±2.9 years, BMI: 21.2±1.3 kg/m2) underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i) isocaloric feeding (control) ii) hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii) hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. Results Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037), owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023) and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016). Hypercaloric feeding increased plasma glucose concentration (P = 0.042) but had no effect on VLDL-TG concentration and kinetics compared to the control trial. Conclusion Acute dietary energy deficit (∼3MJ) leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ) does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women. PMID:23533676
Directory of Open Access Journals (Sweden)
Elena Bellou
Full Text Available BACKGROUND: Acute reduction in dietary energy intake reduces very low-density lipoprotein triglyceride (VLDL-TG concentration. Although chronic dietary energy surplus and obesity are associated with hypertriglyceridemia, the effect of acute overfeeding on VLDL-TG metabolism is not known. OBJECTIVE: The aim of the present study was to investigate the effects of acute negative and positive energy balance on VLDL-TG metabolism in healthy women. DESIGN: Ten healthy women (AGE: 22.0±2.9 years, BMI: 21.2±1.3 kg/m(2 underwent a stable isotopically labeled tracer infusion study to determine basal VLDL-TG kinetics after performing, in random order, three experimental trials on the previous day: i isocaloric feeding (control ii hypocaloric feeding with a dietary energy restriction of 2.89±0.42 MJ and iii hypercaloric feeding with a dietary energy surplus of 2.91±0.32 MJ. The three diets had the same macronutrient composition. RESULTS: Fasting plasma VLDL-TG concentrations decreased by ∼26% after hypocaloric feeding relative to the control trial (P = 0.037, owing to decreased hepatic VLDL-TG secretion rate (by 21%, P = 0.023 and increased VLDL-TG plasma clearance rate (by ∼12%, P = 0.016. Hypercaloric feeding increased plasma glucose concentration (P = 0.042 but had no effect on VLDL-TG concentration and kinetics compared to the control trial. CONCLUSION: Acute dietary energy deficit (∼3MJ leads to hypotriglyceridemia via a combination of decreased hepatic VLDL-TG secretion and increased VLDL-TG clearance. On the other hand, acute dietary energy surplus (∼3MJ does not affect basal VLDL-TG metabolism but disrupts glucose homeostasis in healthy women.
International Nuclear Information System (INIS)
Noguchi, M; Hirao, T; Shindo, M; Sakurauchi, K; Yamagata, Y; Uchino, K; Kawai, Y; Muraoka, K
2003-01-01
The newly developed method of the negative ion density measurement in a plasma by laser Thomson scattering (LTS) was checked by comparing the obtained results against an independent technique, namely the Langmuir probe method. Both measurements were performed at the same position of the same inductively coupled plasma. The results agree quite well with each other and this has given confidence in the LTS method of negative ion density measurement. At the same time, both methods are complementary to each other, because the Langmuir probe measurement requires knowledge of the positive ion mass number
Kim, Jihoon; Zhang, Ruzhi M.; Wolfer, Elizabeth; Patel, Bharatkumar K.; Toukhy, Medhat; Bogusz, Zachary; Nagahara, Tatsuro
2012-03-01
Patternable dielectric materials were developed and introduced to reduce semiconductor manufacturing complexity and cost of ownership (CoO). However, the bestowed dual functionalities of photo-imageable spin-on dielectrics (PSOD) put great challenges on the material design and development. In this work, we investigated the combinatorial process optimization for the negative-tone PSOD lithography by employing the Temperature Gradient Plate (TGP) technique which significantly reduced the numbers of wafers processed and minimized the developmental time. We demonstrated that this TGP combinatorial is very efficient at evaluating the effects and interactions of several independent variables such as post-apply bake (PAB) and post-exposure bake (PEB). Unlike most of the conventional photoresists, PAB turned out to have a great effect on the PSOD pattern profiles. Based on our extensive investigation, we observed great correlation between PAB and PEB processes. In this paper, we will discuss the variation of pattern profiles as a matrix of PAB and PEB and propose two possible cross-linking mechanisms for the PSOD materials to explain the unusual experimental results.
International Nuclear Information System (INIS)
Dhar, S.
1989-01-01
In electronic-structure calculations for finite systems using the local-spin-density (LSD) approximation, it is assumed that the eigenvalues of the Kohn-Sham equation should obey Fermi-Dirac (FD) statistics. In order to comply with this assumption for some of the transition-metal atoms, a nonintegral occupation number is used which also minimizes the total energy. It is shown here that for finite systems it is not necessary that the eigenvalues of the Kohn-Sham equation obey FD statistics. It is also shown that the Kohn-Sham exchange potential used in all LSD models is correct only for integer occupation number. With a noninteger occupation number the LSD exchange potential will be smaller than that given by the Kohn-Sham potential. Ab initio self-consistent spin-polarized calculations have been performed numerically for the total energy of an iron atom. It is found that the ground state belongs to the 3d 6 4s 2 configuration. The ionization potentials of all the Fe/sup n/ + ions are reported and are in agreement with experiment
Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A
2016-01-12
Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.
Xu, Xin; Goddard, William A.
2004-01-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235
Spin-polarized states in neutron matter in a strong magnetic field
International Nuclear Information System (INIS)
Isayev, A. A.; Yang, J.
2009-01-01
Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.
International Nuclear Information System (INIS)
Hiskes, J.R.
1991-01-01
The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two-chamber hydrogen negative-ion-source system subject to the beam-line constraint of a maximum gas pressure, the density of vibrationally excited molecules reaches an asymptote for increasing discharge current or the equivalent fast electron density. Operating near this first-chamber asymptote, there exists a spatially-dependent maximum negative-ion density in the second chamber. With the extraction grid placed at this maximum the optimum performance of a hydrogen-based system is determined. This optimum performance provides a criterion for the selection of differing source types for fusion applications
Directory of Open Access Journals (Sweden)
N. Liu
2017-12-01
Full Text Available We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC and the antiparallel configuration (APC. At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.
International Nuclear Information System (INIS)
Wang Haobin; Thoss, Michael
2010-01-01
Graphical abstract: □□□ - Abstract: The dynamics of the spin-boson model at zero temperature is studied for a bath characterized by a sub-Ohmic spectral density. Using the numerically exact multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method, the population dynamics of the two-level subsystem has been investigated in a broad range of parameter space. The results show the transition of the dynamics from weakly damped coherent motion to localization upon increase of the system-bath coupling strength. Comparison of the exact ML-MCTDH simulations with the non-interacting blip approximation (NIBA) shows that the latter performs rather poorly in the weak coupling regime with small Kondo parameters. However, NIBA improves significantly upon increase in the coupling strength and is quantitatively correct in the strong coupling, nonadiabatic limit. The transition from coherent motion to localization as a function of the different parameters of the model is analyzed in some detail.
Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom
2012-03-08
The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.
Directory of Open Access Journals (Sweden)
C. Gutt
2017-09-01
Full Text Available We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q-resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Qz, we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.
Energy Technology Data Exchange (ETDEWEB)
Bradley, James W.; Dodd, Robert; You, S.-D.; Sirse, Nishant; Karkari, Shantanu Kumar [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool (United Kingdom); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland and Institute for Plasma Research, Bhat Gandhinagar, Gujarat (India)
2011-05-15
The time-resolved negative oxygen ion density n{sub -} close to the center line in a reactive pulsed dc magnetron discharge (10 kHz and 50% duty cycle) has been determined for the first time using a combination of laser photodetachment and resonance hairpin probing. The discharge was operated at a power of 50 W in 70% argon and 30% oxygen gas mixtures at 1.3 Pa pressure. The results show that the O{sup -} density remains pretty constant during the driven phase of the discharge at values typically below 5x10{sup 14} m{sup -3}; however, in the off-time, the O{sup -} density grows reaching values several times those in the on-time. This leads to the negative ion fraction (or degree of electronegativity) {alpha}=n{sub -}/n{sub e} being higher in the off phase (maximum value {alpha}{approx}1) than in the on phase ({alpha}=0.05-0.3). The authors also see higher values of {alpha} at positions close to the magnetic null than in the more magnetized region of the plasma. This fractional increase in negative ion density during the off-phase is attributed to the enhanced dissociative electron attachment of highly excited oxygen molecules in the cooling plasma. The results show that close to the magnetic null the photodetached electron density decays quickly after the laser pulse, followed by a slow decay over a few microseconds governed by the negative ion temperature. However, in the magnetized regions of the plasma, this decay is more gradual. This is attributed to the different cross-field transport rates for electrons in these two regions. The resonance hairpin probe measurements of the photoelectron densities are compared directly to photoelectron currents obtained using a conventional Langmuir probe. There is good agreement in the general trends, particularly in the off-time.
Unidirectional spin density wave state in metallic (Sr_{1-x}Lax)_{2}IrO_{4}
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiang; Schmehr, Julian L.; Islam, Zahirul; Porter, Zach; Zoghlin, Eli; Finkelstein, Kenneth; Ruff, Jacob P. C.; Wilson, Stephen D.
2018-01-09
Materials that exhibit both strong spin–orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the J_{eff} = 1/2 Mott state in Sr_{2}IrO_{4}, where introducing carriers is predicted to manifest high temperature superconductivity analogous to the S=1/2 Mott state of La_{2}CuO_{4}. While bulk super- conductivity currently remains elusive, anomalous quasiparticle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr_{2}IrO_{4}. Here we establish a magnetic parallel between electron-doped Sr_{2}IrO_{4} and hole-doped La_{2}CuO_{4} by unveiling a spin density wave state in electron-doped Sr_{2}IrO_{4}. Our magnetic resonant X-ray scattering data reveal the presence of an incom- mensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La_{1-x}Sr_{x})_{2}CuO_{4}. This link supports the conjecture that the quenched Mott phases in electron-doped Sr_{2}IrO_{4} and hole-doped La_{2}CuO_{4} support common competing electronic phases.
Nizovtsev, A. P.; Kilin, S. Ya; Pushkarchuk, A. L.; Pushkarchuk, V. A.; Kuten, S. A.; Zhikol, O. A.; Schmitt, S.; Unden, T.; Jelezko, F.
2018-02-01
Single NV centers in diamond coupled by hyperfine interaction (hfi) to neighboring 13C nuclear spins are now widely used in emerging quantum technologies as elements of quantum memory adjusted to a nitrogen-vacancy (NV) center electron spin qubit. For nuclear spins with low flip-flop rate, single shot readout was demonstrated under ambient conditions. Here we report on a systematic search for such stable NV-13C systems using density functional theory to simulate the hfi and spatial characteristics of all possible NV-13C complexes in the H-terminated cluster C510[NV]-H252 hosting the NV center. Along with the expected stable ‘NV-axial-13C’ systems wherein the 13C nuclear spin is located on the NV axis, we found for the first time new families of positions for the 13C nuclear spin exhibiting negligible hfi-induced flipping rates due to near-symmetric local spin density distribution. Spatially, these positions are located in the diamond bilayer passing through the vacancy of the NV center and being perpendicular to the NV axis. Analysis of available publications showed that, apparently, some of the predicted non-axial near-stable NV-13C systems have already been observed experimentally. A special experiment performed on one of these systems confirmed the prediction made.
International Nuclear Information System (INIS)
Bučinský, Lukáš; Biskupič, Stanislav; Jayatilaka, Dylan
2012-01-01
Graphical abstract: The dependence of the radial distribution of the spin density in the vicinity of the nucleus on the formal oxidation state of the copper atom is shown on the top three figures. Note also the large impact of PCE as well as relativistic effects. The bottom three figures present the relativistic effects and PCE in the electron density of the [CuL 2 ] model compound (of the size 1 bohr 2 ). PCE is very little affecting the relativistic effects in the electron density close to the nucleus of copper atom, i.e. the PCE in the relativistic effects of the electron density are hardly discernable in the case of compounds containing copper. Highlights: ► The extent of PCE in a model compound containing copper atom is presented. ► The spin/electron density along bond the Cu–N is the most affected by PCE only at the nucleus of the copper atom. ► The 2D inspection of relativistic effects in electron/spin densities is not sensitive to PCE. ► Structure factors are an order of magnitude less affected by PCE than by relativistic effects. ► PCE in the Mulliken populations and spin contamination is considered. - Abstract: The analytic correction and the extent of the picture change error (PCE) at the scalar 2nd order Douglas–Kroll–Hess level of theory is considered. The one-dimensional (1D), two-dimensional (2D) spin/electron densities and/or difference densities, structure factors and Mulliken populations of the Bis [bis-(methoxycarbimido) aminato] copper (II) model compound are presented. For further comparison the radial distributions of the electron and spin density of the copper atom (as well as of the copper di-cation) are presented. In addition, the infinite order two component (IOTC) radial distributions of electron and spin density of the copper atom and copper dication are presented as well. The PCE is almost hidden in the 2D densities of the studied model compound. The 1D electron/spin difference densities along the Cu–N bond show the
Roch, Loïc M; Baldridge, Kim K
2017-10-04
A general optimization procedure towards the development and implementation of a new family of minimal parameter spin-component-scaled double-hybrid (mSD) density functional theory (DFT) is presented. The nature of the proposed exchange-correlation functional establishes a methodology with minimal empiricism. This new family of double-hybrid (DH) density functionals is demonstrated using the PBEPBE functional, illustrating the optimization procedure to the mSD-PBEPBE method, and the performance characteristics shown for a set of non-covalent complexes covering a broad regime of weak interactions. With only two parameters, mSD-PBEPBE and its cost-effective counterpart, RI-mSD-PBEPBE, show a mean absolute error of ca. 0.4 kcal mol -1 averaged over 66 weak interacting systems. Following a successive 2D-grid refinement for a CBS extrapolation of the coefficients, the optimization procedure can be recommended for the design and implementation of a variety of additional DH methods using any of the plethora of currently available functionals.
Liu, Pan; Chan, David; Qiu, Lin; Tov, William; Tong, Victor Joo Chuan
2018-05-01
Using data from 13,789 Facebook users across U.S. states, this study examined the main effects of societal-level cultural tightness-looseness and its interaction effects with individuals' social network density on impression management (IM) in terms of online emotional expression. Results showed that individuals from culturally tight (vs. loose) states were more likely to express positive emotions and less likely to express negative emotions. Meanwhile, for positive emotional expression, there was a tightness-looseness by social network density interaction effect. In culturally tight states, individuals with dense (vs. sparse) networks were more likely to express positive emotions, while in culturally loose states this pattern was reversed. For negative emotional expression, however, no such interaction was observed. Our findings highlight the influence of cultural norms and social network structure on emotional expressions as IM strategies.
Directory of Open Access Journals (Sweden)
Luca Luiselli
2008-05-01
Full Text Available A series of 59 transect surveys was conducted in selected wet forest habitats, along the coast of West Africa, to estimate the density distribution of African Hinge-back tortoises (Kinixys homeana and K. erosa. Line transect data were fed into a simple model to derive a detection function. The parameters estimated by the model produced an elaborate characterisation of tortoise distribution, which proved to be useful in the formulation of hypotheses about tortoise densities. Line transect data were analysed by DISTANCE, with a series of key and the series adjustment: the uniform function, the 1-parameter half-normal function, and the 2-parameter hazard-rate function were considered as key functions; the cosine series, simple polynomials, and Hermite polynomials were considered as series expansions. The detection function was estimated separately for Kinixys homeana and K. erosa, and for transects grouped for each study area by considering all the combinations of the above key functions and series expansions. The Akaike Information Criterion (AIC was computed for each candidate model and used for model selection. The best model of the detection function, for both the tortoise species was the uniform function with no series expansion. Model results indicated that the density of the two species was inversely related at the local scale, and complementary across the region; such that the density of one species increases from West to East while the other one declines. Overall, the comparison of density estimates between the two tortoises is consistent with a former hypothesis suggesting inter-specific competition and consequent resource partitioning. Other causes may contribute to explain the observed patterns, including the low productivity of rainforest habitats and long-term human perturbation.
Korenev, V. L.
2007-01-01
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...
International Nuclear Information System (INIS)
Penrose, Harrison; Heller, Sandra; Cable, Chloe; Makboul, Rania; Chadalawada, Gita; Chen, Ying; Crawford, Susan E.; Savkovic, Suzana D.
2016-01-01
The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.
Energy Technology Data Exchange (ETDEWEB)
Penrose, Harrison; Heller, Sandra; Cable, Chloe [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Makboul, Rania [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Pathology Department, Assiut University, Assiut (Egypt); Chadalawada, Gita; Chen, Ying [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Crawford, Susan E. [Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104 (United States); Savkovic, Suzana D., E-mail: ssavkovi@tulane.edu [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States)
2016-01-15
The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.
Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang
2018-04-01
Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.
Spontaneous spin-polarization and phase transition in the relativistic approach
International Nuclear Information System (INIS)
Maruyama, Tomoyuki; Tatsumi, Toshitaka
2001-01-01
We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)
International Nuclear Information System (INIS)
Nam, Pham Cam; Nguyen, Minh Tho
2013-01-01
Highlights: ► BDE(Se–H)s of C 6 H 5 SeH and its para and meta-substituted derivatives are calculated. ► A relationship between the BDE(Se–H)s and Mulliken atomic spin densities of YC 6 H 4 Se radical is found. ► Good correlations are also observed between the BDE(Se–H)s and the Hammett’s parameters. ► The proton affinity of C 6 H 5 SeH is evaluated to be in the range of 814–818 kJ/mol. ► Ionization energies (IE) of the substituted benzeneselenols are also evaluated. - Abstract: Bond dissociation enthalpies (BDE) of benzeneselenol (ArSe-H) and its para and meta-substituted derivatives are calculated using the (RO)B3LYP/6-311++G(2df,2p)//(U)B3LYP/6-311G(d,p) procedure. The computed BDE(Se–H) = 308 ± 8 kJ/mol for the parent PhSe-H is significantly smaller than the experimental value of 326.4 ± 16.7 kJ/mol [Kenttamaa and coworkers, J. Phys. Chem. 100 (1996) 6608] but larger than a previous value of 280.3 kJ/mol [Newcomb et al., J. Am. Chem. Soc. 113 (1991) 949]. The substituent effects on BDE’s are analyzed in terms of a relationship between BDE(Se–H) and Mulliken atomic spin densities at the Se radical centers of ArSe (π radicals). Good correlations between Hammett’s substituent constants with BDE(Se–H) are established. Proton affinity and ionization energy amount to PA(C 6 H 5 SeH) = 814 ± 4 kJ/mol and IE(C 6 H 5 SeH) = 8.0 ± 0.1 eV. IEs of the substituted benzeneselenols are also determined. Calculated results thus suggest that 4-amino-benzeneselenol derivatives emerge as efficient antioxidants
Energy Technology Data Exchange (ETDEWEB)
Wang, Qiang, E-mail: wangqiang@njtech.edu.cn; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui [Nanjing Tech University, School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis (IAS) (China)
2017-02-15
Bimetallic core–shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu–Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu{sub 12}@Ni{sub 42} is more stable than two-shell Cu{sub 13}@Ni{sub 42}, while two-shell Ni{sub 13}@Cu{sub 42} is more stable than three-shell Cu@Ni{sub 12}@Cu{sub 42}. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu–Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core–shell catalysts.
Høstmark, Arne Torbjørn; Søgaard, Anne Johanne; Alvær, Kari; Meyer, Haakon E.
2011-01-01
Background. Since nutritional factors may affect bone mineral density (BMD), we have investigated whether BMD is associated with an index estimating the intake of soft drinks, fruits, and vegetables. Methods. BMD was measured in distal forearm in a subsample of the population-based Oslo Health Study. 2126 subjects had both valid BMD measurements and answered all the questions required for calculating a Dietary Index = the sum of intake estimates of colas and non-cola beverages divided by the sum of intake estimates of fruits and vegetables. We did linear regression analyses to study whether the Dietary Index and the single food items included in the index were associated with BMD. Results. There was a consistent negative association between the Dietary Index and forearm BMD. Among the single index components, colas and non-cola soft drinks were negatively associated with BMD. The negative association between the Dietary Index and BMD prevailed after adjusting for gender, age, and body mass index, length of education, smoking, alcohol intake, and physical activity. Conclusion. An index reflecting frequent intake of soft drinks and rare intake of fruit and vegetables was inversely related to distal forearm bone mineral density. PMID:21772969
Directory of Open Access Journals (Sweden)
Pierfilippo De Sanctis
2009-04-01
Full Text Available That language processing is primarily a function of the left hemisphere has led to the supposition that auditory temporal discrimination is particularly well-tuned in the left hemisphere, since speech discrimination is thought to rely heavily on the registration of temporal transitions. However, physiological data have not consistently supported this view. Rather, functional imaging studies often show equally strong, if not stronger, contributions from the right hemisphere during temporal processing tasks, suggesting a more complex underlying neural substrate. The mismatch negativity (MMN component of the human auditory evoked-potential (AEP provides a sensitive metric of duration processing in human auditory cortex and lateralization of MMN can be readily assayed when sufficiently dense electrode arrays are employed. Here, the sensitivity of the left and right auditory cortex for temporal processing was measured by recording the MMN to small duration deviants presented to either the left or right ear. We found that duration deviants differing by just 15% (i.e. rare 115 ms tones presented in a stream of 100 ms tones elicited a significant MMN for tones presented to the left ear (biasing the right hemisphere. However, deviants presented to the right ear elicited no detectable MMN for this separation. Further, participants detected significantly more duration deviants and committed fewer false alarms for tones presented to the left ear during a subsequent psychophysical testing session. In contrast to the prevalent model, these results point to equivalent if not greater right hemisphere contributions to temporal processing of small duration changes.
Wagle, Fabian; Steinle-Neumann, Gerd; de Koker, Nico
2018-03-01
We report results on electronic transport properties of liquid Fe-S alloys at conditions of planetary cores, computed using first-principle techniques in the Kubo-Greenwood formalism. We describe a combined effect of resistivity saturation due to temperature, compression, and chemistry by comparing the electron mean free path from the Drude response of optical conductivity to the mean interatomic distance. At high compression and high sulfur concentration the Ioffe-Regel condition is satisfied, and the temperature coefficient of resistivity changes sign from positive to negative. We show that this happens due to a decrease in the d density of states at the Fermi level in response to thermal broadening.
Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei
2014-08-21
We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).
Spin-filtering and giant magnetoresistance effects in polyacetylene-based molecular devices
Chen, Tong; Yan, Shenlang; Xu, Liang; Liu, Desheng; Li, Quan; Wang, Lingling; Long, Mengqiu
2017-07-01
Using the non-equilibrium Green's function formalism in combination with density functional theory, we performed ab initio calculations of spin-dependent electron transport in molecular devices consisting of a polyacetylene (CnHn+1) chain vertically attached to a carbon chain sandwiched between two semi-infinite zigzag-edged graphene nanoribbon electrodes. Spin-charge transport in the device could be modulated to different magnetic configurations by an external magnetic field. The results showed that single spin conduction could be obtained. Specifically, the proposed CnHn+1 devices exhibited several interesting effects, including (dual) spin filtering, spin negative differential resistance, odd-even oscillation, and magnetoresistance (MR). Marked spin polarization with a filtering efficiency of up to 100% over a large bias range was found, and the highest MR ratio for the CnHn+1 junctions reached 4.6 × 104. In addition, the physical mechanisms for these phenomena were also revealed.
Spin selection at organic spinterface by anchoring group
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhao; Qiu, Shuai; Miao, Yuan-yuan; Ren, Jun-feng; Wang, Chuan-kui [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Hu, Gui-chao, E-mail: hgc@sdnu.edu.cn [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Institute of Theoretical Physics, Technische Universität Dresden, 01062 Dresden (Germany)
2017-07-01
Highlights: • The sign of interfacial spin polarization can be selected by using different anchoring groups. • A sp{sup 3}-d or sp-d hybridization may occur and induce spin polarization when the anchoring group changes. • Interfacial spin polarization depends on both the type of the outer orbital of the anchoring atom as well as its energy. - Abstract: Control of organic interfacial spin polarization is crucial in organic spintronics. Based on ab initio theory, here we proposed a spin selection at organic interface via anchoring group by adsorbing an organic molecule onto Ni(111) surface. The results demonstrate that either a positive or negative interfacial spin polarization may be obtained by choosing different anchoring groups. The orbital analysis via the projected density of states shows that the interfacial spin polarization is sensitive to the hybridization of the outer orbital of the anchoring atom as well as its energy relative to the d orbital of the ferromagnetic atom. The work indicates a feasible way to realize spin selection at the organic spinterface by anchoring group.
Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.
1987-01-01
It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.
Energy Technology Data Exchange (ETDEWEB)
Barnes, Alexander E. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-31
The quark model has been successful in classifying the spectrum of mesons observed since the 1960s, however, it fails to explain some of the measured bound states. Lattice QCD predictions have shown that an excited gluonic field may contribute to the quantum numbers of the bound state and form hybrid mesons, qq-bar-g, where g is a constituent gluon. It is possible for some hybrids to possess quantum numbers forbidden by the quark model and are known as \\smoking gun" hybrids due to their lack of mixing with conventional qq-bar states. The GlueX photoproduction experiment at Jefferson Lab in Newport News, VA is designed to study hybrid mesons and to map their spectrum. A 12 GeV electron beam produces 9 GeV linearly polarized photons via coherent bremsstrahlung in a diamond radiator which are incident on a liquid H2 target. In order to determine the photon energy, the use of a tagging spectrometer which measures the energy of the post-bremsstrahlung electron is required. The tagger microscope is a scintillating fiber detector designed to measure the energy of electrons corresponding to the polarized photons. The main focus of this work is the design and construction of the tagger microscope electronics as well as the calibration of the microscope within the experiment. Additionally, the analysis of the reaction gamma-p -> phi-p, where phi (1020) -> K+K-, is discussed. This analysis provides a high-level calibration for GlueX in regards to understanding the acceptance and sensitivity of the detectors to mesons with strange quark content. By studying the phi with linearly polarized photons, information on the production mechanism can be extracted. The measurement of the phi spin-density matrix elements are shown and compared with past data which are found to be in agreement.
International Nuclear Information System (INIS)
Yi, Ming
2011-01-01
Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C 4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe 1-x Co x ) 2 As 2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d xz and d yz character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T S ) precedes the magnetic transition (T SDW ), an anisotropic splitting is observed to develop above T SDW , indicating that it is specifically associated with T S . For unstressed crystals, the band splitting is observed close to T S , whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.
Dey, B.; Meyer, C. A.; Bellis, M.; Williams, M.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2014-05-01
High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γp →ϕp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s ) from 1.97 to 2.84 GeV, with an extensive coverage in the ϕ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the ϕ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (ϕ →K+K-) and neutral- (ϕ →KS0KL0) KK ¯ decay modes of the ϕ. Further, for the charged mode, we differentiate between the cases where the final K- track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed ϕ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-modes, respectively. Possible effects from K+Λ* channels with pKK ¯ final states are discussed. These present results constitute the most precise and extensive ϕ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.
Phase space representations for spin23
International Nuclear Information System (INIS)
Polubarinov, I.V.
1991-01-01
General properties of spin matrices and density ones are considered for any spin s. For spin 2 3 phase space representations are constructed. Representations, similar to the Bell one, for the correlator of projections of two spins 2 3 in the singlet state are found. Quantum analogs of the Bell inequality are obtained. 14 refs
Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun
2018-03-01
Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2012-01-01
In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.
Spin transport in spin filtering magnetic tunneling junctions.
Li, Yun; Lee, Eok Kyun
2007-11-01
Taking into account spin-orbit coupling and s-d interaction, we investigate spin transport properties of the magnetic tunneling junctions with spin filtering barrier using Landauer-Büttiker formalism implemented with the recursive algorithm to calculate the real-space Green function. We predict completely different bias dependence of negative tunnel magnetoresistance (TMR) between the systems composed of nonmagnetic electrode (NM)/ferromagnetic barrier (FB)/ferromagnet (FM) and NM/FB/FM/NM spin filtering tunnel junctions (SFTJs). Analyses of the results provide us possible ways of designing the systems which modulate the TMR in the negative magnetoresistance regime.
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Li, Peifang; Mei, Tingting; Lv, Linxia; Lu, Cheng; Wang, Weihua; Bao, Gang; Gutsev, Gennady L
2017-08-31
The geometrical structure and electronic properties of the neutral RhB n and singly negatively charged RhB n - clusters are obtained in the range of 3 ≤ n ≤ 10 using the unbiased CALYPSO structure search method and density functional theory (DFT). A combination of the PBE0 functional and the def2-TZVP basis set is used for determining global minima on potential energy surfaces of the Rh-doped B n clusters. The photoelectron spectra of the anions are simulated using the time-dependent density functional theory (TD-DFT) method. Good agreement between our simulated and experimentally obtained photoelectron spectra for RhB 9 - provides support to the validity of our theoretical method. The relative stabilities of the ground-state RhB n and RhB n - clusters are estimated using the calculated binding energies, second-order total energy differences, and HOMO-LUMO gaps. It is found that RhB 7 and RhB 8 - are the most stable species in the neutral and anionic series, respectively. The chemical bonding analysis reveals that the RhB 8 - cluster possesses two sets of delocalized σ and π bonds. In both cases, the Hückel 4N + 2 rule is fulfilled and this cluster possesses both σ and π aromaticities.
Kametani, F; Jiang, J; Scheuerlein, C; Malagoli, A; Di Michiel, M; Huang, Y; Miao, H; Parrell, J A; Hellstrom, E E; Larbalestier, D C
2011-01-01
Most studies of Bi2Sr2CaCu2Ox (Bi2212) show that the critical current density Jc is limited by the connectivity of the filaments, but what determines the connectivity is still elusive. Here we report on the role played by filament porosity in limiting Jc. By a microstructural investigation of wires quenched from the melt state, we find that porosity in the unreacted wire agglomerates into bubbles that segment the Bi2212 melt within the filaments into discrete sections. These bubbles do not disappear during subsequent processing because they are only partially filled by Bi2212 grains as the Bi2212 forms on cooling. Correlating the microstructure of quenched wires to their final, fully processed Jc values shows an inverse relation between Jc and bubble density. Bubbles are variable between conductors and perhaps from sample to sample, but they occur frequently and almost completely fill the filament diameter, so they exert a strongly variable but always negative effect on Jc. Bubbles reduce the continuous Bi221...
International Nuclear Information System (INIS)
Semenkovich, C.F.; Ostlund, R.E. Jr.; Yang, J.; Reaban, M.E.
1985-01-01
We report the detection of low-density lipoprotein (LDL) receptors by the technique of receptor blotting in fibroblasts from a patient with homozygous familial hypercholesterolemia (FHC) previously classified as ''receptor negative.'' Solubilized receptors were electrophoresed, transferred to nitrocellulose paper, treated with LDL followed by radiolabeled antibody to LDL, and visualized by autoradiography. GM 2000 FHC fibroblasts revealed LDL receptors with an apparent molecular weight of approximately 140,000, the same as in normal cells. LDL receptor activity by blotting in GM 2000 cells was greatly diminished in comparison with normal cells, but was calcium dependent. Receptor activity was also detectable by conventional monolayer binding and degradation assays. Thus, GM 2000 cells have profoundly diminished LDL receptor activity, but retain the genetic capacity to make LDL receptor material of normal molecular weight that is capable of binding LDL. Previous studies have demonstrated the presence of trace amounts of immunoreactive LDL receptor protein in fibroblasts from some receptor-negative FHC homozygotes. These studies are extended by demonstrating the ability of this material to bind LDL
Hermes, Matthew R; Hirata, So
2015-09-14
One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.
Field-controlled spin current in frustrated spin chains
Directory of Open Access Journals (Sweden)
A.K. Kolezhuk
2009-01-01
Full Text Available We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-S chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.
Directory of Open Access Journals (Sweden)
D. H. Berman
2014-03-01
Full Text Available Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization for special values of the channel width and applied magnetic field (so-called ballistic spin resonance. A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system provides the dependence of the spin density on the applied magnetic field and channel width and position along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence of disorder.
Spin Transport in Semiconductor heterostructures
International Nuclear Information System (INIS)
Marinescu, Domnita Catalina
2011-01-01
The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.
Spin Funneling for Enhanced Spin Injection into Ferromagnets
Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo
2016-07-01
It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.
Spin diffusion in disordered organic semiconductors
Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz
2015-12-01
An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.
Effects of the plasma-facing materials on the negative ion H ‑ density in an ECR (2.45 GHz) plasma
Bentounes, J.; Béchu, S.; Biggins, F.; Michau, A.; Gavilan, L.; Menu, J.; Bonny, L.; Fombaron, D.; Bès, A.; Lebedev, Yu A.; Shakhatov, V. A.; Svarnas, P.; Hassaine, T.; Lemaire, J. L.; Lacoste, A.
2018-05-01
Within the framework of fundamental research, the present work focuses on the role of surface material in the production of H ‑ negative ion, with a potential application of designing cesium-free H ‑ negative ion sources oriented to fusion application. It is widely accepted that the main reaction leading to H ‑ production, in the plasma volume, is the dissociative attachment of low-energy electrons (T e ≤ 1 eV) on highly ro-vibrationally excited hydrogen molecules. In parallel with other mechanisms, the density of these excited molecules may be enhanced by means of the recombinative desorption, i.e. the interaction between surface absorbed atoms with other atoms (surface adsorbed or not) through the path {H}{{ads}}+{H}{{gas}/{{ads}}}\\to {H}2{(v,J)}{{gas}}+{{Δ }}E. Accordingly, a systematic study on the role played by the surface in this reaction, with respect to the production of H ‑ ion in the plasma volume, is here performed. Thus, tantalum and tungsten (already known as H ‑ enhancers) and quartz (inert surface) materials are employed as inner surfaces of a test bench chamber. The plasma inside the chamber is produced by electron cyclotron resonance (ECR) driving and it is characterized with conventional electrostatic probes, laser photodetachment, and emission and absorption spectroscopy. Two different positions (close to and away from the ECR driving zone) are investigated under various conditions of pressure and power. The experimental results are supported by numerical data generated by a 1D model. The latter couples continuity and electron energy balance equations in the presence of magnetic field, and incorporates vibrational kinetics, H2 molecular reactions, H electronically excited states and ground-state species kinetics. In the light of this study, recombinative desorption has been evidenced as the most probable mechanism, among others, responsible for an enhancement by a factor of about 3.4, at 1.6 Pa and 175 W of microwave power, in the
International Nuclear Information System (INIS)
Hashimoto, Muneaki; Nara, Takeshi; Enomoto, Masahiro; Kurebayashi, Nagomi; Yoshida, Mitsutaka; Sakurai, Takashi; Mita, Toshihiro; Mikoshiba, Katsuhiko
2015-01-01
Inositol 1,4,5-trisphosphate receptor (IP_3R) is a key regulator of intracellular Ca"2"+ concentration that release Ca"2"+ from Ca"2"+ stores in response to various external stimuli. IP_3R also works as a signal hub which form a platform for interacting with various proteins involved in diverse cell signaling. Previously, we have identified an IP_3R homolog in the parasitic protist, Trypanosoma cruzi (TcIP_3R). Parasites expressing reduced or increased levels of TcIP_3R displayed defects in growth, transformation, and infectivity. In the present study, we established parasitic strains expressing a dominant negative form of TcIP_3R, named DN-TcIP_3R, to further investigate the physiological role(s) of TcIP_3R. We found that the growth of epimastigotes expressing DN-TcIP_3R was significantly slower than that of parasites with TcIP_3R expression levels that were approximately 65% of wild-type levels. The expression of DN-TcIP_3R in epimastigotes induced metacyclogenesis even in the normal growth medium. Furthermore, these epimastigotes showed the presence of dense mitochondria under a transmission electron microscope. Our findings confirm that TcIP_3R is crucial for epimastigote growth, as previously reported. They also suggest that a strong inhibition of the IP_3R-mediated signaling induces metacyclogenesis and that mitochondrial integrity is closely associated with this signaling. - Highlights: • We established T. cruzi strains expressing a dominant negative form of the TcIP_3R. • DN-TcIP_3R expression inhibits epimastigote growth and induces metacyclogenesis. • Microscopic analysis indicated TcIP_3R role in maintaining mitochondrial integrity. • Growth, but not microbial density, was altered by mammalian IP_3R inhibitor (2-APB).
Nuclear spins in nanostructures
International Nuclear Information System (INIS)
Coish, W.A.; Baugh, J.
2009-01-01
We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
International Nuclear Information System (INIS)
Liang, G; Fang, H; Luo, Z P; Hoyt, C; Yen, F; Guchhait, S; Lv, B; Markert, J T
2007-01-01
Ti-sheathed MgB 2 wires doped with nanosize crystalline-SiC up to a concentration of 15 wt% SiC have been fabricated, and the effects of the SiC doping on the critical current density (J c ) and other superconducting properties studied. In contrast with the previously reported results that nano-SiC doping with a doping range below 16 wt% usually enhances J c , particularly at higher fields, our measurements show that SiC doping decreases J c over almost the whole field range from 0 to 7.3 T at all temperatures. Furthermore, it is found that the degradation of J c becomes stronger at higher SiC doping levels, which is also in sharp contrast with the reported results that J c is usually optimized at doping levels near 10 wt% SiC. Our results indicate that these negative effects on J c could be attributed to the absence of significant effective pinning centres (mainly Mg 2 Si) due to the high chemical stability of the crystalline-SiC particles
International Nuclear Information System (INIS)
Bai, Byong Chol; Kang, Seok Chang; Im, Ji Sun; Lee, Se Hyun; Lee, Young-Seak
2011-01-01
Graphical abstract: The electrical properties of MWCNT-filled HDPE polymeric switches and their effect on oxyfluorination. Highlights: → Oxyfluorinated MWCNTs were used to reduce the PTC/NTC phenomenon in MWCNT-filled HDPE polymeric switches. → Electron mobility is difficult in MWCNT particles when the number of oxygen functional groups (C-O, C=O) increases by oxyfluorination. → A mechanism of improved electrical properties of oxyfluorinated MWCNT-filled HDPE polymeric switches was suggested. -- Abstract: Multi-walled carbon nanotubes (MWCNTs) were embedded into high-density polyethylene (HDPE) to improve the electrical properties of HDPE polymeric switches. The MWCNT surfaces were modified by oxyfluorination to improve their positive temperature coefficient (PTC) and negative temperature coefficient (NTC) behaviors in HDPE polymeric switches. HDPE polymeric switches exhibit poor electron mobility between MWCNT particles when the number of oxygen functional groups is increased by oxyfluorination. Thus, the PTC intensity of HDPE polymeric switches was increased by the destruction of the electrical conductivity network. The oxyfluorination of MWCNTs also leads to weak NTC behavior in the MWCNT-filled HDPE polymeric switches. This result is attributed to the reduction of the mutual attraction between the MWCNT particles at the melting temperature of HDPE, which results from a decrease in the surface free energy of the C-F bond in MWCNT particles.
International Nuclear Information System (INIS)
Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi; Lee, Sang-Mi; Kang, Man-Jong; Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho; Saeki, Shigeru
2010-01-01
Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/β-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/β-catenin signaling pathway. The β-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3β phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated β-catenin. Nuclear β-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the β-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/β-catenin signaling pathway.
Luo, Sijie; Truhlar, Donald G
2013-12-10
When the spins of molecular orbitals are allowed to be aligned with different directions in space rather than being aligned collinearly, the resulting noncollinear spin orbitals add extra flexibility to variational optimization of the orbitals, and solutions obtained with collinear spin orbitals may be unstable with respect to becoming noncollinear in the expanded variational space. The goal of the present work is to explore whether and in what way the molecular orbitals of the Kohn-Sham density functional theory become noncollinear when fully optimized for multi-reference molecules, transition states, and reaction paths. (We note that a noncollinear determinant has intermediate flexibility between a collinear determinant and a linear combination of many collinear determinants with completely independent coefficients. However, the Kohn-Sham method is defined to involve the variational optimization of a single determinant, and a noncollinear determinant represents the limit of complete optimization in the Kohn-Sham scheme.) We compare the results obtained with the noncollinear Kohn-Sham (NKS) scheme to those obtained with the widely used unrestricted Kohn-Sham (UKS) scheme for two types of multi-reference systems. For the dissociation of the MnO and NiO transition metal oxides, we find UKS fails to dissociate to the ground states of neutral atoms, while NKS dissociates to the correct limit and predicts potential energy curves that vary smoothly at intermediate bond lengths. This is due to the instability of UKS solutions at large bond distances. For barrier heights of O3, BeH2, and H4, NKS is shown to stabilize the multi-reference transition states by expanding the variational space. Although the errors vary because they are closely coupled with the capability of the employed exchange-correlation functionals in treating the multi-configurational states, these findings demonstrate that results with collinear spin orbitals should be further scrutinized, and future
Source of spin polarized electrons
International Nuclear Information System (INIS)
Pierce, D.T.; Meier, F.A.; Siegmann, H.C.
1976-01-01
A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, Muneaki, E-mail: muneaki@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Nara, Takeshi, E-mail: tnara@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Enomoto, Masahiro, E-mail: menomoto@uhnres.utoronto.ca [Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, 351-0198 (Japan); Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7, Toronto, Ontario (Canada); Kurebayashi, Nagomi, E-mail: nagomik@juntendo.ac.jp [Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421 (Japan); Yoshida, Mitsutaka, E-mail: myoshida@juntendo.ac.jp [Laboratoly of Morphology and Image Analysis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Sakurai, Takashi, E-mail: tsakurai@juntendo.ac.jp [Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421 (Japan); Mita, Toshihiro, E-mail: tmita@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Mikoshiba, Katsuhiko, E-mail: mikosiba@brain.riken.jp [Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, 351-0198 (Japan); Calcium Oscillation Project, International Cooperative Research Project and Solution-Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012 (Japan)
2015-10-23
Inositol 1,4,5-trisphosphate receptor (IP{sub 3}R) is a key regulator of intracellular Ca{sup 2+} concentration that release Ca{sup 2+} from Ca{sup 2+} stores in response to various external stimuli. IP{sub 3}R also works as a signal hub which form a platform for interacting with various proteins involved in diverse cell signaling. Previously, we have identified an IP{sub 3}R homolog in the parasitic protist, Trypanosoma cruzi (TcIP{sub 3}R). Parasites expressing reduced or increased levels of TcIP{sub 3}R displayed defects in growth, transformation, and infectivity. In the present study, we established parasitic strains expressing a dominant negative form of TcIP{sub 3}R, named DN-TcIP{sub 3}R, to further investigate the physiological role(s) of TcIP{sub 3}R. We found that the growth of epimastigotes expressing DN-TcIP{sub 3}R was significantly slower than that of parasites with TcIP{sub 3}R expression levels that were approximately 65% of wild-type levels. The expression of DN-TcIP{sub 3}R in epimastigotes induced metacyclogenesis even in the normal growth medium. Furthermore, these epimastigotes showed the presence of dense mitochondria under a transmission electron microscope. Our findings confirm that TcIP{sub 3}R is crucial for epimastigote growth, as previously reported. They also suggest that a strong inhibition of the IP{sub 3}R-mediated signaling induces metacyclogenesis and that mitochondrial integrity is closely associated with this signaling. - Highlights: • We established T. cruzi strains expressing a dominant negative form of the TcIP{sub 3}R. • DN-TcIP{sub 3}R expression inhibits epimastigote growth and induces metacyclogenesis. • Microscopic analysis indicated TcIP{sub 3}R role in maintaining mitochondrial integrity. • Growth, but not microbial density, was altered by mammalian IP{sub 3}R inhibitor (2-APB).
Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors
International Nuclear Information System (INIS)
Miah, M Idrish
2008-01-01
We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs
Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au
2008-09-21
We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.
International Nuclear Information System (INIS)
Hara, Takaaki; Senami, Masato; Tachibana, Akitomo
2012-01-01
The spin torque and zeta force, which govern spin dynamics, are studied by using monoatoms in their steady states. We find nonzero local spin torque in transition metal atoms, which is in balance with the counter torque, the zeta force. We show that d-orbital electrons have a crucial effect on these torques. Nonzero local chirality density in transition metal atoms is also found, though the electron mass has the effect to wash out nonzero chirality density. Distribution patterns of the chirality density are the same for Sc–Ni atoms, though the electron density distributions are different. -- Highlights: ► Nonzero local spin torque is found in the steady states of transition metal atoms. ► The spin steady state is realized by the existence of a counter torque, zeta force. ► D-orbital electrons have a crucial effect on the spin torque and zeta force. ► Nonzero local chiral density is found in spite of the washout by the electron mass. ► Chiral density distribution have the same pattern for Sc–Ni atoms.
Search for negative U in the Ba1-xKxBi1-yPbyO3 system using constrained density-functional theory
International Nuclear Information System (INIS)
Vielsack, G.; Weber, W.
1996-01-01
Calculations using constrained density-functional theory have been carried out for the Ba 1-x K x Bi 1-y Pb y O 3 system, using a full-potential linearized-augmented-plane-wave method and employing fcc supercell geometries with two formula units. The results have been mapped onto Hubbard-type models in order to extract values of interaction parameters U at the Bi sites. Two different mapping procedures have been utilized. The first one is the standard method, based on the comparison of total-energy curvatures. The second method, proposed in the present work, relies on the analysis of single particle energies and yields much smaller numerical errors. For BaBiO 3 interaction parameters are obtained for the following models: (i) s and p orbitals at Bi and p orbitals at O sites. Here, U s =3.1±0.4 eV, U sp =1.4±0.2 eV, U p =2.2±0.4 eV are found, (ii) s(Bi) and p(O) orbitals, yielding U s =1.9±0.7 eV, and (iii) an effective one-band model, leading to U s =0.6±0.4 eV. Further studies have been performed for breathing distorted BaBiO 3 and for various Ba 1-x K x Bi 1-y Pb y O 3 alloys using virtual crystal approximations. The resulting U values are somewhat larger than for pure BaBiO 3 . Thus, in all cases, the values of Bi U parameters are found to be positive. There is no indication of a negative U of electronic origin. copyright 1996 The American Physical Society
Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J
2007-02-01
Seeing a speaker's facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the "McGurk illusion", where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at approximately 290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350-400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process.
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2017-01-01
Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.
Energy Technology Data Exchange (ETDEWEB)
Christ-Koch, Sina
2007-12-20
This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields ({proportional_to} 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H{sup -})=1.10{sup 17} 1/m{sup 3}, which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)
Vozková, Markéta
2011-01-01
1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...
Entanglement negativity in the critical Ising chain
International Nuclear Information System (INIS)
Calabrese, Pasquale; Tagliacozzo, Luca; Tonni, Erik
2013-01-01
We study the scaling of the traces of the integer powers of the partially transposed reduced density matrix Tr(ρ A T 2 ) n and of the entanglement negativity for two spin blocks as a function of their length and separation in the critical Ising chain. For two adjacent blocks, we show that tensor network calculations agree with universal conformal field theory (CFT) predictions. In the case of two disjoint blocks the CFT predictions are recovered only after taking into account the finite size corrections induced by the finite length of the blocks. (paper)
Spin Transfer Torque in Graphene
Lin, Chia-Ching; Chen, Zhihong
2014-03-01
Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.
Two perspectives on a decohering spin
International Nuclear Information System (INIS)
Albrecht, A.
1992-01-01
I study the quantum mechanics of a spin interacting with an environment. Although the evolution of the whole system is unitary, the spin evolution is not. The system is chosen so that the spin exhibits loss of quantum coherence, or ''wavefunction collapse,'' of the sort usually associated with a quantum measurement. The system is analyzed from the point of view of the spin density matrix (or ''Schmidt path''), and also using the consistent histories (or decoherence functional) approach
Majorana spin in magnetic atomic chain systems
Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei
2018-03-01
In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.
International Nuclear Information System (INIS)
Anton, Gisela
1990-01-01
The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.
Energy Technology Data Exchange (ETDEWEB)
Anton, Gisela
1990-12-15
The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.
Energy Technology Data Exchange (ETDEWEB)
D' Ariano, G M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Maccone, L [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Paini, M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy)
2003-02-01
We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique.
International Nuclear Information System (INIS)
D'Ariano, G M; Maccone, L; Paini, M
2003-01-01
We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique
Bovier, Anton
2007-01-01
Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.
Energy Technology Data Exchange (ETDEWEB)
Anon.
1989-01-15
The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.
International Nuclear Information System (INIS)
Yang, Zhi; Ouyang, Bin; Lan, Guoqing; Xu, Li-Chun; Liu, Ruiping; Liu, Xuguang
2017-01-01
Using density functional theory and the non-equilibrium Green’s function method, we investigate the spin-dependent transport and optoelectronic properties of the graphyne-based molecular magnetic tunnel junctions (MMTJs). We find that these MMTJs exhibit an outstanding tunneling magnetoresistance (TMR) effect. The TMR value is as high as 10 6 %. When the magnetization directions of two electrodes are antiparallel under positive or negative bias voltages, two kinds of pure spin currents can be obtained in the systems. Furthermore, under the irradiation of infrared, visible or ultraviolet light, spin-polarized photocurrents can be generated in the MMTJs, but the corresponding microscopic mechanisms are different. More importantly, if the magnetization directions of two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents. (paper)
Moon, Jiwon; Kim, Joonghan
2016-09-29
Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.
Xu, Xin; Goddard, William A., III
2004-03-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.
Quantum spin circulator in Y junctions of Heisenberg chains
Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.
2018-06-01
We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.
Spontaneous spin polarization in quantum wires
Energy Technology Data Exchange (ETDEWEB)
Vasilchenko, A.A., E-mail: a_vas2002@mail.ru
2015-12-04
The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.
Spontaneous spin polarization in quantum wires
International Nuclear Information System (INIS)
Vasilchenko, A.A.
2015-01-01
The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.
Spin correlations in quantum wires
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
Caspers, W J
1989-01-01
This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy
Caughlin, T.T.; Ferguson, J.M.; Lichstein, J.W.; Zuidema, P.A.; Bunyavejchewin, S.; Levey, D.J.
2015-01-01
Overhunting in tropical forests reduces populations of vertebrate seed dispersers. If reduced seed dispersal has a negative impact on tree population viability, overhunting could lead to altered forest structure and dynamics, including decreased biodiversity. However, empirical data showing
Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael
2004-01-01
This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...
Spin-spin correlations in the tt'-Hubbard model
International Nuclear Information System (INIS)
Husslein, T.; Newns, D.M.; Mattutis, H.G.; Pattnaik, P.C.; Morgenstern, I.; Singer, J.M.; Fettes, W.; Baur, C.
1994-01-01
We present calculations of the tt'-Hubbard model using Quantum Monte Carlo techniques. The parameters are chosen so that the van Hove Singularity in the density of states and the Fermi level coincide. We study the behaviour of the system with increasing Hubbard interaction U. Special emphasis is on the spin-spin correlation (SSC). Unusual behaviour for large U is observed there and in the momentum distribution function (n(q)). (orig.)
Numerical renormalization group method for entanglement negativity at finite temperature
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
International Nuclear Information System (INIS)
Anon.
1983-01-01
The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets
Quantum entanglement at negative temperature
International Nuclear Information System (INIS)
Furman, G B; Meerovich, V M; Sokolovsky, V L
2013-01-01
An isolated spin system that is in internal thermodynamic equilibrium and that has an upper limit to its allowed energy states can possess a negative temperature. We calculate the thermodynamic characteristics and the concurrence in this system over the entire range of positive and negative temperatures. Our calculation was performed for different real structures, which can be used in experiments. It is found that the temperature dependence of the concurrence is substantially asymmetrical similarly to other thermodynamic characteristics. At a negative temperature the maximum concurrence and the absolute temperature of the entanglement appearance are significantly larger than those at a positive temperature. The concurrence can be characterized by two dimensionless parameters: the ratio between the Zeeman and dipolar energies and the ratio of the thermal and dipolar energies. It was shown that for all considered structures the dimensionless temperatures of the transition between entanglement and separability of the first and second spins are independent of spin structure and the number of spins. (paper)
Spinning fluids in general relativity
Ray, J. R.; Smalley, L. L.
1982-01-01
General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.
DEFF Research Database (Denmark)
Sonne, Christian; Rigét, Frank F; Beck Jensen, Jens-Erik
2008-01-01
an impact on BMD using the present time frame and OHC concentrations (threshold levels not reached), or the difference in food composition (mainly vitamins and n3 fatty acids) conceal the potential OHC impact on BMD. Such information is important when evaluating the positive and negative health consequences...
DEFF Research Database (Denmark)
Sonne, Christian; Riget, Frank F.; Jensen, Jens-Erik Beck
2008-01-01
using the present time frame and OHC concentrations (threshold levels not reached), or the difference in food composition (mainly vitamins and n3 fatty acids) conceal the potential OHC impact on BMD. Such information is important when evaluating the positive and negative health consequences from eating...
International Nuclear Information System (INIS)
Volkov, A.G.; Kortov, S.V.; Povzner, A.A.
1996-01-01
The low temperature measurements of thermal coefficient of linear expansion of strong paramagnet FeSi are carried out. The results obtained are discussed with in the framework of spin-fluctuation theory. It is shown that electronic part of the thermal coefficient of linear expansion is negative in the range of temperatures lower that of the semiconductor-metal phase transition. In metal phase it becomes positive. This specific features of the thermal coefficient is explained by the spin-fluctuation renormalization of d-electronic states density
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Inverse Magnetoresistance in Polymer Spin Valves.
Ding, Shuaishuai; Tian, Yuan; Li, Yang; Mi, Wenbo; Dong, Huanli; Zhang, Xiaotao; Hu, Wenping; Zhu, Daoben
2017-05-10
In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La 2/3 Sr 1/3 MnO 3 (LSMO)/P3HT/AlO x /Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlO x /Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.
International Nuclear Information System (INIS)
Gaarde, C.
1985-01-01
An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)
Directory of Open Access Journals (Sweden)
Pei-Yang Liu
2014-01-01
Conclusions: Although LM has strong positive relationship with BMD, FM above 33% in overweight/obese women is negatively related to BMD of most skeletal sites. Therefore, overweight/obesity after certain amount of FM, may not be a protective factor against osteoporosis in females. For clinical practice in women, it is important to maintain LM and keep FM accrual below ~30% body fat to maintain good skeletal health.
High frequency spin torque oscillators with composite free layer spin valve
International Nuclear Information System (INIS)
Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda
2016-01-01
We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.
High frequency spin torque oscillators with composite free layer spin valve
Energy Technology Data Exchange (ETDEWEB)
Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda
2016-07-15
We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.
Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei
2017-05-01
The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.
DEFF Research Database (Denmark)
Ercolano, Monica A; Drnovsek, Monica L; Croome, Maria C
2013-01-01
Thyrotoxicosis is a cause of secondary osteoporosis. High concentrations of triiodotironine (T3) in Graves' disease stimulate bone turnover, but it is unclear if euthyroidism will always normalize bone metabolism. Thyrotropin (TSH) is known to affect directly the bone metabolism through the TSH...... receptor and TSH receptor antibodies (TRAb) may have an important role in bone turn-over.The aim of our study was to determine, in pre and postmenopausal euthyroidism patients with previous overt hyperthyroidism due to Graves' disease the bone mineral density (BMD) as well as factors that could affect BMD...
Spin wave spectrum of magnetic nanotubes
International Nuclear Information System (INIS)
Gonzalez, A.L.; Landeros, P.; Nunez, Alvaro S.
2010-01-01
We investigate the spin wave spectra associated to a vortex domain wall confined within a ferromagnetic nanotube. Basing our study upon a simple model for the energy functional we obtain the dispersion relation, the density of states and dissipation induced life-times of the spin wave excitations in presence of a magnetic domain wall. Our aim is to capture the basics spin wave physics behind the geometrical confinement of nobel magnetic textures.
Spin polarized states in strongly asymmetric nuclear matter
International Nuclear Information System (INIS)
Isayev, A.A.; Yang, J.
2004-01-01
The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density
Schwarz, H.
2017-01-01
The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1
Spin-lattice relaxation of individual solid-state spins
Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.
2018-03-01
Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
Relativistic fluid dynamics with spin
Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico
2018-04-01
Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.
Uspenskaya, Yu. A.; Mamin, G. V.; Babunts, R. A.; Badalyan, A. G.; Edinach, E. V.; Asatryan, H. R.; Romanov, N. G.; Orlinskii, S. B.; Khanin, V. M.; Wieczorek, H.; Ronda, C.; Baranov, P. G.
2018-03-01
The presence of aluminum and gallium isotopes with large nuclear magnetic and quadrupole moments in the nearest environment of impurity ions Mn2+ and Ce3+ in garnets made it possible to use hyperfine and quadrupole interactions with these ions to determine the spatial distribution of the unpaired electron and the gradient of the electric field at the sites of aluminum and gallium in the garnet lattice. High-frequency (94 GHz) electron spin echo detected electron paramagnetic resonance and electron-nuclear double resonance measurements have been performed. Large difference in the electric field gradient and quadrupole splitting at octahedral and tetrahedral sites allowed identifying the positions of aluminum and gallium ions in the garnet lattice and proving that gallium first fills tetrahedral positions in mixed aluminum-gallium garnets. This should be taken into account in the development of garnet-based scintillators and lasers. It is shown that the electric field gradient at aluminum nuclei near Mn2+ possessing an excess negative charge in the garnet lattice is ca. 2.5 times larger than on aluminum nuclei near Ce3+.
Spin polarization of electrons in quantum wires
Vasilchenko, A. A.
2013-01-01
The total energy of a quasi-one-dimensional electron system is calculated using density functional theory. It is shown that spontaneous ferromagnetic state in quantum wire occurs at low one-dimensional electron density. The critical electron density below which electrons are in spin-polarized state is estimated analytically.
International Nuclear Information System (INIS)
Liu Jia; Xiao Jingling
2006-01-01
We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.
Influence of spin on fission fragments anisotropy
Directory of Open Access Journals (Sweden)
Ghodsi Omid N.
2005-01-01
Full Text Available An analysis of selected fission fragment angular distribution when at least one of the spins of the projectile or target is appreciable in induced fission was made by using the statistical scission model. The results of this model predicate that the spins of the projectile or target are affected on the nuclear level density of the compound nucleus. The experimental data was analyzed by means of the couple channel spin effect formalism. This formalism suggests that the projectile spin is more effective on angular anisotropies within the limits of energy near the fusion barrier.
Spin Coherence in Semiconductor Nanostructures
National Research Council Canada - National Science Library
Flatte, Michael E
2006-01-01
... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...
International Nuclear Information System (INIS)
Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.
2010-01-01
The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.
Mulligan, Kathleen; Glidden, David V.; Anderson, Peter L.; Liu, Albert; McMahan, Vanessa; Gonzales, Pedro; Ramirez-Cardich, Maria Esther; Namwongprom, Sirianong; Chodacki, Piotr; de Mendonca, Laura Maria Carvalo; Wang, Furong; Lama, Javier R.; Chariyalertsak, Suwat; Guanira, Juan Vicente; Buchbinder, Susan; Bekker, Linda-Gail; Schechter, Mauro; Veloso, Valdilea G.; Grant, Robert M.; Vargas, Lorena; Sanchez, Jorge; Mai, Chiang; Saokhieo, Pongpun; Murphy, Kerry; Gilmore, Hailey; Holland, Sally; Faber, Elizabeth; Duda, John; Bewerunge, Linda; Batist, Elizabeth; Hoskin, Christine; Brown, Ben; de Janeiro, Rio; Beppu-Yoshida, Carina; da Costa, Marcellus Dias; Assis de Jesus, Sergio Carlos; Grangeiro da Silva, Jose Roberto; Millan, Roberta; de Siqueira Hoagland, Brenda Regina; Martinez Fernandes, Nilo; da Silva Freitas, Lucilene; Grinsztejn, Beatriz; Pilotto, Jose; Bushman, Lane; Zheng, Jia-Hua; Anthony Guida, Louis; Kline, Brandon; Goicochea, Pedro; Manzo, Jonathan; Hance, Robert; McConnell, Jeff; Defechereux, Patricia; Levy, Vivian; Robles, Malu; Postle, Brian; Burns, David; Rooney, James
2015-01-01
Background. Daily preexposure prophylaxis (PrEP) with oral emtricitabine and tenofovir disoproxil fumarate (FTC/TDF) decreases the risk of human immunodeficiency virus (HIV) acquisition. Initiation of TDF decreases bone mineral density (BMD) in HIV-infected people. We report the effect of FTC/TDF on BMD in HIV-seronegative men who have sex with men and in transgender women. Methods. Dual-energy X-ray absorptiometry was performed at baseline and 24-week intervals in a substudy of iPrEx, a randomized, double-blind, placebo-controlled trial of FTC/TDF PrEP. Plasma and intracellular tenofovir concentrations were measured in participants randomized to FTC/TDF. Results. In 498 participants (247 FTC/TDF, 251 placebo), BMD in those randomized to FTC/TDF decreased modestly but statistically significantly by 24 weeks in the spine (net difference, −0.91% [95% confidence interval {CI}, −1.44% to −.38%]; P = .001) and hip (−0.61% [95% CI, −.96% to −.27%], P = .001). Changes within each subsequent 24-week interval were not statistically significant. Changes in BMD by week 24 correlated inversely with intracellular tenofovir diphosphate (TFV-DP), which was detected in 53% of those randomized to FTC/TDF. Net BMD loss by week 24 in participants with TFV-DP levels indicative of consistent dosing averaged −1.42% ± 29% and −0.85% ± 19% in the spine and hip, respectively (P < .001 vs placebo). Spine BMD tended to rebound following discontinuation of FTC/TDF. There were no differences in fractures (P = .62) or incidence of low BMD. Conclusions. In HIV-uninfected persons, FTC/TDF PrEP was associated with small but statistically significant decreases in BMD by week 24 that inversely correlated with TFV-DP, with more stable BMD thereafter. Clinical Trials Registration. NCT00458393. PMID:25908682
Coupled spin and charge collective excitations in a spin polarized electron gas
International Nuclear Information System (INIS)
Marinescu, D.C.; Quinn, J.J.; Yi, K.S.
1997-01-01
The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system
Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas
International Nuclear Information System (INIS)
Alducin, M.; Diez Muino, R.; Juaristi, J.I.
2005-01-01
The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state
Nuclear spin circular dichroism
International Nuclear Information System (INIS)
Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia
2014-01-01
Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra
Large spin accumulation due to spin-charge coupling across a break-junction
Chen, Shuhan; Zou, Han; Chui, Siu-Tat; Ji, Yi
2013-03-01
We investigate large spin signals in break-junction nonlocal spin valves (NLSV). The break-junction is a nanometer-sized vacuum tunneling gap between the spin detector and the nonmagnetic channel, formed by electro-static discharge. The spin signals can be either inverted or non-inverted and the magnitudes are much larger than those of standard NLSV. Spin signals with high percentage values (10% - 0%) have been observed. When the frequency of the a.c. modulation is varied, the absolute magnitudes of signals remain the same although the percentage values change. These observations affirm the nonlocal nature of the measurements and rule out local magnetoresistive effects. Owing to the spin-charge coupling across the break-junction, the spin accumulation in a ferromagnet splits into two terms. One term decays on the charge screening length (0.1 nm) and the other decays on the spin diffusion length (10 nm nm). The magnitude of the former is proportional to the resistance of the junction. Therefore a highly resistive break-junction leads to a large spin accumulation and thereby a large spin signal. The signs of the spin signal are determined by the relationship between spin-dependent conductivities, diffusion constants, and density of states of the ferromagnet. This work was supported by US DOE grant No. DE-FG02-07ER46374.
Competition between Bose-Einstein Condensation and Spin Dynamics.
Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B
2016-10-28
We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.
Shokeen, V.; Sanchez Piaia, M.; Bigot, J.-Y.; Müller, T.; Elliott, P.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.
2017-09-01
A joint theoretical and experimental investigation is performed to understand the underlying physics of laser-induced demagnetization in Ni and Co films with varying thicknesses excited by 10 fs optical pulses. Experimentally, the dynamics of spins is studied by determining the time-dependent amplitude of the Voigt vector, retrieved from a full set of magnetic and nonmagnetic quantities performed on both sides of films, with absolute time reference. Theoretically, ab initio calculations are performed using time-dependent density functional theory. Overall, we demonstrate that spin-orbit induced spin flips are the most significant contributors with superdiffusive spin transport, which assumes only that the transport of majority spins without spin flips induced by scattering does not apply in Ni. In Co it plays a significant role during the first ˜20 fs only. Our study highlights the material dependent nature of the demagnetization during the process of thermalization of nonequilibrium spins.
Zhu, Zhiyong
2011-10-14
Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.
High spin-filter efficiency and Seebeck effect through spin-crossover iron–benzene complex
Energy Technology Data Exchange (ETDEWEB)
Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)
2016-04-21
Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.
Spin crossover and high spin filtering behavior in Co-Pyridine and Co-Pyrimidine molecules
Wen, Zhongqian; Zhou, Liping; Cheng, Jue-Fei; Li, Shu-Jin; You, Wen-Long; Wang, Xuefeng
2018-03-01
We present a theoretical study on a series of cobalt complexes, which are constructed with cobalt atoms and pyridine/pyrimidine rings, using density functional theory. We investigate the structural and electric transport properties of spin crossover (SCO) Co complex with two spin states, namely low-spin configuration [LS] and high-spin configuration [HS]. Energy analyses of the two spin states imply that the SCO Co-Pyridine2 and Co-Pyrimidine2 complexes may display a spin transition process accompanied by a geometric modification driven by external stimuli. A nearly perfect spin filtering effect is observed in the Co-Pyrimidine2 complex with [HS] state. In addition, we also discover the contact-dependent transmission properties of Co-Pyridine2. These findings indicate that SCO Co complexes are promising materials for molecular spintronic devices.
Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo
2011-01-01
Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.
Positivity of spin foam amplitudes
International Nuclear Information System (INIS)
Baez, John C; Christensen, J Daniel
2002-01-01
The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model
Brown, G C; Patton, W N; Tapp, H E; Taylor, D J; St Pierre, T G
2012-09-01
To assess the impact of non-invasive monitoring of liver iron concentration (LIC) on management of body iron stores in patients receiving multiple blood transfusions. A retrospective audit was conducted on clinical data from 40 consecutive subjects with haemolytic anaemias or ineffective haematopoiesis who had been monitored non-invasively for LIC over a period of at least 1 year. LIC was measured with spin density projection-assisted proton transverse relaxation rate-magnetic resonance imaging. Nineteen clinical decisions were explicitly documented in the case notes as being based on LIC results. Decisions comprised initiation of chelation therapy, increasing chelator dose, decreasing chelator dose and change of mode of delivery of deferioxamine from subcutaneous to intravenous. The geometrical mean LIC for the cohort dropped significantly (P= 0.008) from 6.8 mg Fe/g dry tissue at initial measurement to 4.8 mg Fe/g dry tissue at final measurement. The proportion of subjects with LIC in the range associated with greatly increased risk of cardiac disease and death (>15 mg Fe/g dry tissue) dropped significantly (P= 0.01) from 14 of 40 subjects at initial measurement to 5 of 40 subjects at final measurement. No significant changes in the geometrical mean of serum ferritin or the proportion of subjects with serum ferritin above 2500 or 1500 µg/L were observed. The data are consistent with previous observations that introduction of non-invasive monitoring of LIC can contribute to a decreased body iron burden through improved clinical decision making and improved feedback to patients and hence improved adherence to chelation therapy.
Unconventional spin texture of a topologically nontrivial semimetal Sb(110)
DEFF Research Database (Denmark)
Strózecka, A.; Eiguren, A.; Bianchi, Marco
2012-01-01
The surfaces of antimony are characterized by the presence of spin-split states within the projected bulk band gap and the Fermi contour is thus expected to exhibit a spin texture. Using spin-resolved density functional theory calculations, we determine the spin polarization of the surface bands...... signal.We identify the allowed scattering vectors and analyze their bias evolution in relation to the surface-state dispersion....
Spin-excited oscillations in two-component fermion condensates
International Nuclear Information System (INIS)
Maruyama, Tomoyuki; Bertsch, George F.
2006-01-01
We investigate collective spin excitations in two-component fermion condensates with special consideration of unequal populations of the two components. The frequencies of monopole and dipole modes are calculated using Thomas-Fermi theory and the scaling approximation. As the fermion-fermion coupling is varied, the system shows various phases of the spin configuration. We demonstrate that spin oscillations have more sensitivity to the spin phase structures than the density oscillations
Spin-orbit interaction in multiple quantum wells
Energy Technology Data Exchange (ETDEWEB)
Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)
2015-01-07
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.
Spin-orbit interaction in multiple quantum wells
International Nuclear Information System (INIS)
Hao, Ya-Fei
2015-01-01
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices
International Nuclear Information System (INIS)
Mookerjee, Abhijit
1976-01-01
''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)
Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes
Zhang, Yongyou; Zhang, Qingyun; Schwingenschlö gl, Udo
2017-01-01
Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective
Milicevic, Nataša
2008-01-01
In this paper I will discuss the formation of different types of yes/no questions in Serbian (examples in (1)), focusing on the syntactically and semantically puzzling example (1d), which involves the negative auxiliary inversion. Although there is a negative marker on the fronted auxiliary, the construction does not involve sentential negation. This coincides with the fact that the negative quantifying NPIs cannot be licensed. The question formation and sentential negation have similar synta...
International Nuclear Information System (INIS)
Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji
2017-01-01
Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)
Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets
Hung, Yu-Ming
This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then
Zihlmann, Simon; Cummings, Aron W.; Garcia, Jose H.; Kedves, Máté; Watanabe, Kenji; Taniguchi, Takashi; Schönenberger, Christian; Makk, Péter
2018-02-01
Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition-metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit coupling and its relaxation mechanism remained unknown. We show an increased spin-orbit coupling close to the charge neutrality point in graphene, where topological states are expected to appear. Single-layer graphene encapsulated between the transition-metal dichalcogenide WSe2 and h -BN is found to exhibit exceptional quality with mobilities as high as 1 ×105 cm2 V-1 s-1. At the same time clear weak antilocalization indicates strong spin-orbit coupling, and a large spin relaxation anisotropy due to the presence of a dominating symmetric spin-orbit coupling is found. Doping-dependent measurements show that the spin relaxation of the in-plane spins is largely dominated by a valley-Zeeman spin-orbit coupling and that the intrinsic spin-orbit coupling plays a minor role in spin relaxation. The strong spin-valley coupling opens new possibilities in exploring spin and valley degree of freedom in graphene with the realization of new concepts in spin manipulation.
International Nuclear Information System (INIS)
Klimko, G.T.; Luzanov, A.V.
1988-01-01
An analysis has been made of the problem of calculating one- and two-particle spin densities, which are needed in calculations of spin-orbit and spin-spin coupling. The proposed solution is oriented toward the application of computational algorithms using unitary group representations; the solution consists of explicit expressions for the matrix elements of spin density operators in terms of the means of products of spin-free generators. This has eliminated a serious problem encountered previously in determining spin characteristics of molecules within the framework of unitary formalism
Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite
Dodds, Tyler; Bhattacharjee, Subhro; Kim, Yong Baek
2013-12-01
It has been suggested that the nearest-neighbor antiferromagnetic Heisenberg model on the Kagome lattice may be a good starting point for understanding the spin-liquid behavior discovered in herbertsmithite. In this work, we investigate possible quantum spin liquid phases in the presence of spin-rotation symmetry-breaking perturbations such as Dzyaloshinskii-Moriya and Ising interactions, as well as second-neighbor antiferromagnetic Heisenberg interactions. Experiments suggest that such perturbations are likely to be present in herbertsmithite. We use the projective symmetry group analysis within the framework of the slave-fermion construction of quantum spin liquid phases and systematically classify possible spin liquid phases in the presence of perturbations mentioned above. The dynamical spin-structure factor for relevant spin liquid phases is computed and the effect of those perturbations are studied. Our calculations reveal dispersive features in the spin structure factor embedded in a generally diffuse background due to the existence of fractionalized spin-1/2 excitations called spinons. For two of the previously proposed Z2 states, the dispersive features are almost absent, and diffuse scattering dominates over a large energy window throughout the Brillouin zone. This resembles the structure factor observed in recent inelastic neutron-scattering experiments on singlet crystals of herbertsmithite. Furthermore, one of the Z2 states with the spin structure factor with mostly diffuse scattering is gapped, and it may be adiabatically connected to the gapped spin liquid state observed in recent density-matrix renormalization group calculations for the nearest-neighbor antiferromagnetic Heisenberg model. The perturbations mentioned above are found to enhance the diffuse nature of the spin structure factor and reduce the momentum dependencies of the spin gap. We also calculate the electron spin resonance (ESR) absorption spectra that further characterize the role of
International Nuclear Information System (INIS)
Sukhanov, Aleksei A; Sablikov, Vladimir A; Tkach, Yurii Ya
2009-01-01
Spin effects in a normal two-dimensional (2D) electron gas in lateral contact with a 2D region with spin-orbit interaction are studied. The peculiarity of this system is the presence of spin-dependent scattering of electrons from the interface. This results in an equilibrium edge spin current and nontrivial spin responses to a particle current. We investigate the spatial distribution of the spin currents and spin density under non-equilibrium conditions caused by a ballistic electron current flowing normal or parallel to the interface. The parallel electron current is found to generate a spin density near the interface and to change the edge spin current. The perpendicular electron current changes the edge spin current proportionally to the electron current and produces a bulk spin current penetrating deep into the normal region. This spin current has two components, one of which is directed normal to the interface and polarized parallel to it, and the second is parallel to the interface and is polarized in the plane perpendicular to the contact line. Both spin currents have a high degree of polarization (∼40-60%).
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.
2005-11-01
Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.
Charge and Spin Transport in Dilute Magnetic Semiconductors. Final report
International Nuclear Information System (INIS)
Ullrich, Carsten A.
2009-01-01
This proposal to the DOE outlines a three-year plan of research in theoretical and computational condensed-matter physics, with the aim of developing a microscopic theory for charge and spin dynamics in disordered materials with magnetic impurities. Important representatives of this class of materials are the dilute magnetic semiconductors (DMS), which have attracted great attention as a promising basis for spintronics devices. There is an intense experimental effort underway to study the transport properties of ferromagnetic DMS such as (Ga,Mn)As, and a number of interesting features have emerged: negative magnetoresistance, anomalous Hall effect, non-Drude dynamical conductivity, and resistivity maxima at the Curie temperature. Available theories have been able to account for some of these features, but at present we are still far away from a systematic microscopic understanding of transport in DMS. We propose to address this challenge by developing a theory of charge and spin dynamics based on a combination of the memory-function formalism and time-dependent density functional theory. This approach will be capable of dealing with two important issues: (a) the strong degree of correlated disorder in DMS, close to the localization transition (which invalidates the usual relaxation-time approximation to the Boltzmann equation), (b) the essentially unknown role of dynamical many-body effects such as spin Coulomb drag. We will calculate static and dynamical conductivities in DMS as functions of magnetic order and carrier density, which will advance our understanding of recent transport and infrared absorption measurements. Furthermore, we will study collective plasmon excitations in DMS (3D, 2D and quantum wells), whose linewidths could constitute a new experimental probe of the correlation of disorder, many-body effects and charge and spin dynamics in these materials.
Universal spin-momentum locked optical forces
Energy Technology Data Exchange (ETDEWEB)
Kalhor, Farid [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Jacob, Zubin, E-mail: zjacob@purdue.edu [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Birck Nanotechnology Center, Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)
2016-02-08
Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.
Half-metallic superconducting triplet spin multivalves
Alidoust, Mohammad; Halterman, Klaus
2018-02-01
We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.
Gali, Adam; Thiering, Gergő
Dopants in solids are promising candidates for implementations of quantum bits for quantum computing. In particular, the high-spin negatively charged nitrogen-vacancy defect (NV) in diamond has become a leading contender in solid-state quantum information processing. The initialization and readout of the spin is based on the spin-selective decay of the photo-excited electron to the ground state which is mediated by spin-orbit coupling between excited states states and phonons. Generally, the spin-orbit coupling plays a crucial role in the optical spinpolarization and readout of NV quantum bit (qubit) and alike. Strong electron-phonon coupling in dynamic Jahn-Teller (DJT) systems can substantially influence the effective strength of spin-orbit coupling. Here we show by ab initio supercell density functional theory (DFT) calculations that the intrinsic spin-orbit coupling is strongly damped by DJT effect in the triplet excited state that has a consequence on the rate of non-radiative decay. This theory is applied to the ground state of silicon-vacancy (SiV) and germanium-vacancy (GeV) centers in their negatively charged state that can also act like qubits. We show that the intrinsic spin-orbit coupling in SiV and GeV centers is in the 100 GHz region, in contrast to the NV center of 10 GHz region. Our results provide deep insight in the nature of SiV and GeV qubits in diamond. EU FP7 DIADEMS project (Contract No. 611143).
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
International Nuclear Information System (INIS)
Jen, M; Johnson, J; Hou, P; Liu, H
2016-01-01
Purpose: Cerebral blood flow quantification in arterial spin labeling (ASL) MRI requires an estimate of the equilibrium magnetization of blood, which is often obtained by a set of proton density (PD) reference image. Normally, a constant blood-brain partition coefficient is assumed across the brain. However, this assumption may not be valid for brain lesions. This study aimed to evaluate the impact of lesion-related PD variations on ASL quantification in patients with brain tumors. Methods: MR images for posttreatment evaluation of 42 patients with brain tumors were retrospectively analyzed. These images were acquired on a 3T MRI scanner, including T2-weighted FLAIR, 3D pseudo-continuous ASL and post-contrast T1-weighted images. Anatomical images were coregistered with ASL images using the SPM software. Regions of interest (ROIs) of the enhancing and FLAIR lesions were manually drawn on the coregistered images. ROIs of the contralateral normal appearing tissues were also determined, with the consideration of approximating coil sensitivity patterns in lesion ROIs. Relative lesion blood flow (lesion/contralateral tissue) was calculated from both the CBF map (dependent on the PD) and the ΔM map for comparison. Results: The signal intensities in both enhancing and FLAIR lesions were significantly different than contralateral tissues on the PD reference image (p<0.001). The percent signal difference ranged from −15.9 to 19.2%, with a mean of 5.4% for the enhancing lesion, and from −2.8 to 22.9% with a mean of 10.1% for the FLAIR lesion. The high/low lesion-related PD signal resulted in inversely proportional under-/over-estimation of blood flow in both enhancing and FLAIR lesions. Conclusion: Significant signal differences were found between lesions and contralateral tissues in the PD reference image, which introduced errors in blood flow quantification in ASL. The error can be up to 20% in individual patients with an average of 5- 10% for the group of patients
Energy Technology Data Exchange (ETDEWEB)
Jen, M; Johnson, J; Hou, P; Liu, H [UT MD Anderson Cancer Center, Houston, TX (United States)
2016-06-15
Purpose: Cerebral blood flow quantification in arterial spin labeling (ASL) MRI requires an estimate of the equilibrium magnetization of blood, which is often obtained by a set of proton density (PD) reference image. Normally, a constant blood-brain partition coefficient is assumed across the brain. However, this assumption may not be valid for brain lesions. This study aimed to evaluate the impact of lesion-related PD variations on ASL quantification in patients with brain tumors. Methods: MR images for posttreatment evaluation of 42 patients with brain tumors were retrospectively analyzed. These images were acquired on a 3T MRI scanner, including T2-weighted FLAIR, 3D pseudo-continuous ASL and post-contrast T1-weighted images. Anatomical images were coregistered with ASL images using the SPM software. Regions of interest (ROIs) of the enhancing and FLAIR lesions were manually drawn on the coregistered images. ROIs of the contralateral normal appearing tissues were also determined, with the consideration of approximating coil sensitivity patterns in lesion ROIs. Relative lesion blood flow (lesion/contralateral tissue) was calculated from both the CBF map (dependent on the PD) and the ΔM map for comparison. Results: The signal intensities in both enhancing and FLAIR lesions were significantly different than contralateral tissues on the PD reference image (p<0.001). The percent signal difference ranged from −15.9 to 19.2%, with a mean of 5.4% for the enhancing lesion, and from −2.8 to 22.9% with a mean of 10.1% for the FLAIR lesion. The high/low lesion-related PD signal resulted in inversely proportional under-/over-estimation of blood flow in both enhancing and FLAIR lesions. Conclusion: Significant signal differences were found between lesions and contralateral tissues in the PD reference image, which introduced errors in blood flow quantification in ASL. The error can be up to 20% in individual patients with an average of 5- 10% for the group of patients
Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu
2018-05-01
The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.
Spin-drift transport in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong-4331 (Bangladesh)
2008-02-07
We present a study on spin transport in semiconductors under applied electric fields. Our experiments detect photoinjected electron spins and their relaxation during drift transport in intrinsic and moderately n-doped GaAs, based on the extraordinary Hall (eH) effect. For relatively low electric field (E), the optically spin-induced eH effect in n-doped GaAs is found to be enhanced with increasing doping density and not to depend much on E, indicating that a substantial amount of optical spin polarization is preserved during the drift transport in these extrinsic semiconductors. However, when the spin-oriented electrons are injected with a high E, a very significant decrease is observed in the eH voltage (V{sub eH}) due to an increase in the spin precession frequency of the hot electrons. Spin relaxation by the D'yakonov-Perel' mechanism is calculated, and is suggested to be the reason for such a rapid spin relaxation for hot electrons under a high E. However, in an intrinsic GaAs (i-GaAs), a much weaker V{sub eH} is observed and, as the electron spins scattered by holes due to the Coulomb interaction in i-GaAs, the spin relaxation by the Bir-Aronov-Pikus mechanism is considered. Skew scattering and side jump as possible mechanisms of the optically spin-induced transverse Hall currents are discussed. Based on a spin drift-diffusion model, drift and diffusion contributions to the V{sub eH} are examined. The results are also discussed in comparison with theoretical investigations.
International Nuclear Information System (INIS)
Hammond, Richard T
2015-01-01
Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given. (paper)
Magnetic proximity control of spin currents and giant spin accumulation in graphene
Singh, Simranjeet
Two dimensional (2D) materials provide a unique platform to explore the full potential of magnetic proximity driven phenomena. We will present the experimental study showing the strong modulation of spin currents in graphene layers by controlling the direction of the exchange field due to the ferromagnetic-insulator (FMI) magnetization in graphene/FMI heterostructures. Owing to clean interfaces, a strong magnetic exchange coupling leads to the experimental observation of complete spin modulation at low externally applied magnetic fields in short graphene channels. We also discover that the graphene spin current can be fully dephased by randomly fluctuating exchange fields. This is manifested as an unusually strong temperature dependence of the non-local spin signals in graphene, which is due to spin relaxation by thermally-induced transverse fluctuations of the FMI magnetization. Additionally, it has been a challenge to grow a smooth, robust and pin-hole free tunnel barriers on graphene, which can withstand large current densities for efficient electrical spin injection. We have experimentally demonstrated giant spin accumulation in graphene lateral spin valves employing SrO tunnel barriers. Nonlocal spin signals, as large as 2 mV, are observed in graphene lateral spin valves at room temperature. This high spin accumulations observed using SrO tunnel barriers puts graphene on the roadmap for exploring the possibility of achieving a non-local magnetization switching due to the spin torque from electrically injected spins. Financial support from ONR (No. N00014-14-1-0350), NSF (No. DMR-1310661), and C-SPIN, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.
Spin diffusion in bulk GaN measured with MnAs spin injector
Jahangir, Shafat; Dogan, Fatih; Kum, Hyun; Manchon, Aurelien; Bhattacharya, Pallab
2012-01-01
Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.
Spin diffusion in bulk GaN measured with MnAs spin injector
Jahangir, Shafat
2012-07-16
Spin injection and precession in bulk wurtzite n-GaN with different doping densities are demonstrated with a ferromagnetic MnAs contact using the three-terminal Hanle measurement technique. Theoretical analysis using minimum fitting parameters indicates that the spin accumulation is primarily in the n-GaN channel rather than at the ferromagnet (FM)/semiconductor (SC) interface states. Spin relaxation in GaN is interpreted in terms of the D’yakonov-Perel mechanism, yielding a maximum spin lifetime of 44 ps and a spin diffusion length of 175 nm at room temperature. Our results indicate that epitaxial ferromagnetic MnAs is a suitable high-temperature spin injector for GaN.
International Nuclear Information System (INIS)
Fu Xi; Zhou Guanghui
2009-01-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j s,xi T and j s,yi T (i = x, y, z). We find that the elements j T s,xx and j T s,yy have a antisymmetrical relation and the element j T s,yz has the same amount level as j s,xx T and j s,yy T . We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
Control phase shift of spin-wave by spin-polarized current and its application in logic gates
International Nuclear Information System (INIS)
Chen, Xiangxu; Wang, Qi; Liao, Yulong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong
2015-01-01
We proposed a new ways to control the phase shift of propagating spin waves by applying a local spin-polarized current on ferromagnetic stripe. Micromagnetic simulation showed that a phase shift of about π can be obtained by designing appropriate width and number of pinned magnetic layers. The ways can be adopted in a Mach-Zehnder-type interferometer structure to fulfill logic NOT gates based on spin waves. - Highlights: • Spin-wave phase shift can be controlled by a local spin-polarized current. • Spin-wave phase shift increased with the increasing of current density. • Spin-wave phase shift can reach about 0.3π at a particular current density. • The ways can be used in a Mach-Zehnder-type interferometer to fulfill logic gates
Institute of Scientific and Technical Information of China (English)
FU Xi; ZHOU Guang-Hui
2009-01-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
Out-of-equilibrium spin transport in mesoscopic superconductors.
Quay, C H L; Aprili, M
2018-08-06
The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
Dynamics of domain wall driven by spin-transfer torque
International Nuclear Information System (INIS)
Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.
2011-01-01
Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.
Current-induced Rashba spin orbit torque in silicene
Energy Technology Data Exchange (ETDEWEB)
Chen, Ji, E-mail: muze7777@hdu.edu.cn [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Peng, Yingzi [Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Center for Integrated Spintronic Devices, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhou, Jie [Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)
2017-06-15
Highlights: • The spin dynamics of a ferromagnetic layer coupled to a silicene is investigated. • The Rashba spin orbit torque is obtained and the well-known LLG equation is modified. • The explicit forms of spin orbit torques in Domain Wall and vortex is also obtained. - Abstract: We study theoretically the spin torque of a ferromagnetic layer coupled to a silicene in the presence of the intrinsic Rashba spin orbit coupling (RSOC) effect. By using gauge field method, we find that under the applied current, the RSOC can induce an effective field which will result in the spin precession of conduction electron without applying any magnetic field. We also derive the spin torques due to the RSOC, which generalize the Landau-Lifshitz-Gilbert (LLG) equation. The spin torques are related to the applied current, the carrier density and Rashba strength of the system.
2013-03-01
Negative Leadership by Colonel David M. Oberlander United States Army United States Army War...SUBTITLE Negative Leadership 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Colonel David M...Dr. Richard C. Bullis Department of Command Leadership , and Management 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
Dari-Mattiacci, G.
2009-01-01
Negative and positive externalities pose symmetrical problems to social welfare. The law internalizes negative externalities by providing general tort liability rules. According to such rules, those who cause harm to others should pay compensation. In theory, in the presence of positive
Giannakidou, A
The main claim of this paper is that a general theory of negative concord (NC) should allow for the possibility of NC involving scoping of a universal quantifier above negation. I propose that Greek NC instantiates this option. Greek n-words will be analyzed as polarity sensitive universal
SPINS OF LARGE ASTEROIDS: A HINT OF A PRIMORDIAL DISTRIBUTION IN THEIR SPIN RATES
Energy Technology Data Exchange (ETDEWEB)
Steinberg, Elad; Sari, Re’em [The Hebrew University of Jerusalem, Jerusalem (Israel)
2015-04-15
The Asteroid Belt and the Kuiper Belt are relics from the formation of our solar system. Understanding the size and spin distribution of the two belts is crucial for a deeper understanding of the formation of our solar system and the dynamical processes that govern it. In this paper, we investigate the effect of collisions on the evolution of the spin distribution of asteroids and KBOs. We find that the power law nature of the impactors’ size distribution leads to a Lévy distribution of the spin rates. This results in a power law tail in the spin distribution, in stark contrast to the usually quoted Maxwellian distribution. We show that for bodies larger than 10 km, collisions alone lead to spin rates peaking at 0.15–0.5 revolutions per day. Comparing that to the observed spin rates of large asteroids (R > 50 km), we find that the spins of large asteroids, peaking at ∼1–2 revolutions per day, are dominated by a primordial component that reflects the formation mechanism of the asteroids. Similarly, the Kuiper Belt has undergone virtually no collisional spin evolution, assuming current densities. Collisions contribute a spin rate of ∼0.01 revolutions per day, thus the observed fast spin rates of KBOs are also primordial in nature.
Relativistic shifts of bound negative-muon precession frequencies
International Nuclear Information System (INIS)
Brewer, J.H.; Froese, A. M.; Fryer, B.A.; Ghandi, K.
2005-01-01
High-field negative-muon spin precession experiments have been performed using a backward-muon beam with substantial transverse spin polarization, facilitating high-precision measurements of the magnetogyric ratio of negative muons bound to nuclei in the ground states of muonic atoms. These results may provide a testing ground for quantum electrodynamics in very strong electromagnetic fields
Dual chiral density wave in quark matter
International Nuclear Information System (INIS)
Tatsumi, Toshitaka
2002-01-01
We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)
Spin-polarized spin excitation spectroscopy
International Nuclear Information System (INIS)
Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J
2010-01-01
We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.
Spin asymmetry in proton-proton collisions as a probe of sea and gluon polarization in a proton
International Nuclear Information System (INIS)
Cheng, H.; Lai, S.
1990-01-01
Quark and gluon spin densities in a proton are phenomenologically parametrized based on the European Muon Collaboration (EMC) data and on some plausible theoretical arguments. Four different characteristic values of gluon and sea polarizations suggested by various theoretical conjectures are considered. The sea polarization in a proton is probed by measuring the spin-spin asymmetry A LL DY in the Drell-Yan process, while the helicity asymmetry A LL γ in direct photon production at high p T is employed to test the gluon spin content. Helicity asymmetries in both processes are quite sizable. A LL DY is positive and of order 10 -1 if the sea is polarized opposite to the proton spin, as suggested by the EMC data. However, even in the absence of the sea polarization at the EMC energies, we find A LL DY to be large and negative. Experimental measurements of A LL DY and A LL γ together will not only provide a clean probe of sea and gluon polarizations, but also test whether the combination Δs-(α s /4π)ΔG inferred from the EMC data is valid, i.e., whether gluons contribute to the spin-dependent structure function g 1 p (x,Q 2 ) via the triangular anomaly
The spin-Peierls chain revisited
International Nuclear Information System (INIS)
Hager, Georg; Weisse, Alexander; Wellein, Gerhard; Jeckelmann, Eric; Fehske, Holger
2007-01-01
We extend previous analytical studies of the ground-state phase diagram of a one-dimensional Heisenberg spin chain coupled to optical phonons, which for increasing spin-lattice coupling undergoes a quantum phase transition from a gapless to a gaped phase with finite lattice dimerisation. We check the analytical results against established four-block and new two-block density matrix renormalisation group (DMRG) calculations. Different finite-size scaling behaviour of the spin excitation gaps is found in the adiabatic and anti-adiabatic regimes
Thermal stability of tunneling spin polarization
International Nuclear Information System (INIS)
Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de
2005-01-01
We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet
Arian Zad, Hamid; Ananikian, Nerses
2017-11-01
We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.
Gate-Driven Pure Spin Current in Graphene
Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng
2017-09-01
The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.
Spin nematics next to spin singlets
Yokoyama, Yuto; Hotta, Chisa
2018-05-01
We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.
Fairweather-Tait, Susan J; Skinner, Jane; Guile, Geoffrey R; Cassidy, Aedín; Spector, Tim D; MacGregor, Alex J
2011-11-01
The effect of diet on bone mineral density (BMD) remains controversial, mainly because of difficulties in isolating dietary factors from the confounding influences of age, lifestyle, and genetic factors. The aim of this study was to use a novel method to examine the relation between BMD and diet. A co-twin control study design with linear regression modeling was used to test for associations between BMD and habitual intakes of calcium, vitamin D, protein, and alcohol plus 5 previously identified dietary patterns in postmenopausal women from the TwinsUK registry. This approach exploited the unique matching of twins to provide an estimate of an association that was not confounded by age, genetic background, or shared lifestyle. In >2000 postmenopausal women (BMD data on 1019, 1218, and 1232 twin pairs at the hip neck, hip, and spine, respectively), we observed a positive association between alcohol intake (from wine but not from beer or spirits) and spine BMD (P = 0.01) and a negative association with a traditional 20th-century English diet at the hip neck (P = 0.01). Both associations remained borderline significant after adjustment for mean twin-pair intakes (P = 0.04 and P = 0.055, respectively). Other dietary patterns and intakes of calcium, vitamin D, and protein were unrelated to BMD. Our results showed that diet has an independent but subtle effect on BMD; wine intake was positively associated with spine BMD, whereas a traditional (20th-century) English diet had a negative association with hip BMD.
Spin precession and spin waves in a chiral electron gas: Beyond Larmor's theorem
Karimi, Shahrzad; Baboux, Florent; Perez, Florent; Ullrich, Carsten A.; Karczewski, Grzegorz; Wojtowicz, Tomasz
2017-07-01
Larmor's theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor's theorem is broken: for systems of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths α and β . Comparison with experimental data from inelastic light scattering allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.
Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B
2014-05-01
Four-component relativistic calculations of (77)Se-(13)C spin-spin coupling constants have been performed in the series of selenium heterocycles and their parent open-chain selenides. It has been found that relativistic effects play an essential role in the selenium-carbon coupling mechanism and could result in a contribution of as much as 15-25% of the total values of the one-bond selenium-carbon spin-spin coupling constants. In the overall contribution of the relativistic effects to the total values of (1)J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin-orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second-order polarization propagator approach (CC2) with the four-component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of (1)J(Se,C). Solvent effects in the values of (1)J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2-78.4) are next to negligible decreasing negative (1)J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of (77)Se-(13)C spin-spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1-0.2-Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
International Nuclear Information System (INIS)
Laloee, F.; Freed, J.H.
1988-01-01
Low-density gases, in which atoms are separated by large distances, have long provided an enjoyable playground for physicists. One might suppose the pleasure of the playground would by now have been exhausted by the very simplicity of low-density gases. Recent work by a number of investigators including the author shows that this is not the case low-density gases continue to serve up a rich variety of phenomena as well as counterintuitive surprises. In particular, the macroscopic properties of a gas composed of individual hydrogen or helium atoms can under special circumstances by changed dramatically by quantum-mechanical effects. According to quantum theory, the nucleus of an atom behaves in a way similar to a rotating top, which has angular momentum about its axis of rotation; that is, the nucleus has spin, known more precisely as spin angular momentum. If the atoms of a gas are spin-polarized, so that their nuclei all have their spins pointing in the same direction, the viscosity of the gas can be changed enormously and so can its ability to conduct heat. Quantum-mechanical correlations among the nuclei called spin waves, which up to now had been observed only in certain liquids and solids such as magnets, can also arise. The changes are large enough for one to say the quantum-mechanical effects have caused the gas to take on entirely new properties. In a certain sense it is amazing to think that polarizing the nuclear spins can have any effect on the macroscopic properties of the gas, since the nuclear spins are son weakly coupled to the outside world. Yet the observations are in full agreement with with theory. Moreover, because spin-polarized gases are still fairly simple systems, they can be understood in terms fundamental principles, something that is still not possible to do in the case of liquids and solids
Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor
International Nuclear Information System (INIS)
Kominis, I. K.
2008-01-01
Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks
Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids
International Nuclear Information System (INIS)
Laflorencie, Nicolas; Rachel, Stephan
2014-01-01
Quantum critical chains are well-described and understood by virtue of conformal field theory. Still, the meaning of the real space entanglement spectrum—the eigenvalues of the reduced density matrix—of such systems remains elusive in general, even when there is an additional quantum number available such as the spin or particle number. In this paper, we explore in detail the properties and structure of the reduced density matrix of critical XXZ spin- (1/2) chains. We investigate the quantum/thermal correspondence between the reduced density matrix of a T = 0 pure quantum state and the thermal density matrix of an effective entanglement Hamiltonian. Using large scale DMRG and QMC simulations, we investigate the conformal structure of the spectra, the entanglement Hamiltonian, and temperature. We then introduce the notion of spin-resolved entanglement entropies, which display interesting scaling features. (paper)
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)
Dynamic nuclear spin polarization
Energy Technology Data Exchange (ETDEWEB)
Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
Inozemtsev's hyperbolic spin model and its related spin chain
International Nuclear Information System (INIS)
Barba, J.C.; Finkel, F.; Gonzalez-Lopez, A.; Rodriguez, M.A.
2010-01-01
In this paper we study Inozemtsev's su(m) quantum spin model with hyperbolic interactions and the associated spin chain of Haldane-Shastry type introduced by Frahm and Inozemtsev. We compute the spectrum of Inozemtsev's model, and use this result and the freezing trick to derive a simple analytic expression for the partition function of the Frahm-Inozemtsev chain. We show that the energy levels of the latter chain can be written in terms of the usual motifs for the Haldane-Shastry chain, although with a different dispersion relation. The formula for the partition function is used to analyze the behavior of the level density and the distribution of spacings between consecutive unfolded levels. We discuss the relevance of our results in connection with two well-known conjectures in quantum chaos.
Spin effects in intermediate-energy heavy-ion collisions
International Nuclear Information System (INIS)
Xu Jun; Li Baoan; Xia Yin; Shen Wenqing
2014-01-01
In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)
Pumped double quantum dot with spin-orbit coupling
Directory of Open Access Journals (Sweden)
Sherman Eugene
2011-01-01
Full Text Available Abstract We study driven by an external electric field quantum orbital and spin dynamics of electron in a one-dimensional double quantum dot with spin-orbit coupling. Two types of external perturbation are considered: a periodic field at the Zeeman frequency and a single half-period pulse. Spin-orbit coupling leads to a nontrivial evolution in the spin and orbital channels and to a strongly spin- dependent probability density distribution. Both the interdot tunneling and the driven motion contribute into the spin evolution. These results can be important for the design of the spin manipulation schemes in semiconductor nanostructures. PACS numbers: 73.63.Kv,72.25.Dc,72.25.Pn
International Nuclear Information System (INIS)
Ji Xiangdong
2003-01-01
Spin is a beautiful concept that plays an ever important role in modern physics. In this talk, I start with a discussion of the origin of spin, and then turn to three themes in which spin has been crucial in subatomic physics: a lab to explore physics beyond the standard model, a tool to measure physical observables that are hard to obtain otherwise, a probe to unravel nonperturbative QCD. I conclude with some remarks on a world without spin
Negative parity non-strange baryons
International Nuclear Information System (INIS)
Stancu, F.; Stassart, P.
1991-01-01
Our previous study is extended to negative parity baryon resonances up to J=(9/2) - . The framework is a semi-relativistic constituent quark model. The quark-quark interaction contains a Coulomb plus linear confinement terms and a short distance spin-spin and tensor terms. It is emphasized that a linear confinement potential gives too large a mass to the D 35 (1930) resonance. (orig.)
Meysman, F.J.R.; Montserrat, F.
2017-01-01
Negative emission technologies (NETs) target the removal of carbon dioxide (CO_{2}) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to
Ariso, José María
2017-01-01
The definitions of "negative knowledge" and the studies in this regard published to date have not considered the categorial distinction Wittgenstein established between knowledge and certainty. Hence, the important role that certainty, despite its omission, should have in these definitions and studies has not yet been shown. In this…
Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems
Energy Technology Data Exchange (ETDEWEB)
Lueffe, Matthias Clemens
2012-02-10
The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid
International Nuclear Information System (INIS)
Anon.
1980-01-01
From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible
DEFF Research Database (Denmark)
Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang
2017-01-01
The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...
Cross, Rod
2013-01-01
Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…
Spin Dynamics in Highly Spin Polarized Co1-xFexS2
Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris
2006-09-01
Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.
Hansen, Nienke L; Barrett, Tristan; Koo, Brendan; Doble, Andrew; Gnanapragasam, Vincent; Warren, Anne; Kastner, Christof; Bratt, Ola
2017-05-01
To evaluate the influence of prostate-specific antigen density (PSAD) on positive (PPV) and negative (NPV) predictive values of multiparametric magnetic resonance imaging (mpMRI) to detect Gleason score ≥7 cancer in a repeat biopsy setting. Retrospective study of 514 men with previous prostate biopsy showing no or Gleason score 6 cancer. All had mpMRI, graded 1-5 on a Likert scale for cancer suspicion, and subsequent targeted and 24-core systematic image-fusion guided transperineal biopsy in 2013-2015. The NPVs and PPVs of mpMRIs for detecting Gleason score ≥7 cancer were calculated (±95% confidence intervals) for PSAD ≤0.1, 0.1-0.2, ≤0.2 and >0.2 ng/mL/mL, and compared by chi-square test for linear trend. Gleason score ≥7 cancer was detected in 31% of the men. The NPV of Likert 1-2 mpMRI was 0.91 (±0.04) with a PSAD of ≤0.2 ng/mL/mL and 0.71 (±0.16) with a PSAD of >0.2 ng/mL/mL (P = 0.003). For Likert 3 mpMRI, PPV was 0.09 (±0.06) with a PSAD of ≤0.2 ng/mL/mL and 0.44 (±0.19) with a PSAD of >0.2 ng/mL/mL (P = 0.002). PSAD also significantly affected the PPV of Likert 4-5 mpMRI lesions: the PPV was 0.47 (±0.08) with a PSAD of ≤0.2 ng/mL/mL and 0.66 (±0.10) with a PSAD of >0.2 ng/mL/mL (P prostate cancer, not only in men with negative mpMRI, but also in men with equivocal imaging. Surveillance, rather than repeat biopsy, may be appropriate for these men. Conversely, biopsies are indicated in men with a high PSAD, even if an mpMRI shows no suspicious lesion, and in men with an mpMRI suspicious for cancer, even if the PSAD is low. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
Anisotropic intrinsic spin Hall effect in quantum wires
International Nuclear Information System (INIS)
Cummings, A W; Akis, R; Ferry, D K
2011-01-01
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [1-bar 10] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications. (paper)
Designing organic spin filters in the coherent tunneling regime.
Herrmann, Carmen; Solomon, Gemma C; Ratner, Mark A
2011-06-14
Spin filters, that is, systems which preferentially transport electrons of a certain spin orientation, are an important element for spintronic schemes and in chemical and biological instances of spin-selective electronic communication. We study the relation between molecular structure and spin filtering functionality employing a theoretical analysis of both model and stable organic radicals based on substituted benzene, which are bound to gold electrodes, with a combination of density functional theory and the Landauer-Imry-Büttiker approach. We compare the spatial distribution of the spin density and of the frontier central subsystem molecular orbitals, and local contributions to the transmission. Our results suggest that the delocalization of the singly occupied molecular orbital and of the spin density onto the benzene ring connected to the electrodes, is a good, although not the sole indicator of spin filtering functionality. The stable radicals under study do not effectively act as spin filters, while the model phenoxy-based radicals are effective due to their much larger spin delocalization. These conclusions may also be of interest for electron transfer experiments in electron donor-bridge-acceptor complexes.
Spinning superfluid 4He nanodroplets
Ancilotto, Francesco; Barranco, Manuel; Pi, Martí
2018-05-01
We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.
Spin-flip and spin orbit interactions in heavy ion systems
International Nuclear Information System (INIS)
Bybell, D.P.
1983-01-01
The role of spin orbit forces in heavy ion reactions is not completely understood. Experimental data is scarce for these systems but the data that does exist indicates a stronger spin orbit force than predicted by the folding models. The spin-flip probability of non-spin zero projectiles is one technique used for these measurements and is often taken as a direct indicator of a spin orbit interaction. This work measures the projectile spin-flip probability for three inelastic reactions; 13 C + 24 Mg, E/sub cm/ = 22.7 MeV; 13 C + 12 C, E/sub cm/ = 17.3 MeV; and 6 Li + 12 C, E/sub cm/ = 15.2 MeV, all leading to the first J/sup π/ = 2 + state of the target. The technique of particle-γ angular correlations was used for measuring the final state density matrix elements, of which the absolute value M = 1 magnetic substate population is equivalent to the spin-flip probability. The method was explored in detail and found to be sensitive to spin-flip probabilities smaller than 1%. The technique was also found to be a good indicator of the reaction mechanism involved. Nonzero and occasionally large spin-flip probabilities were observed in all systems, much larger than the folding model predictions. Information was obtained on the non-spin-flip density matrix elements. In the 13 C + 24 Mg reaction, these were found to agree with calculations when the finite size of the particle detector is included
Experimental energy-dependent nuclear spin distributions
International Nuclear Information System (INIS)
Egidy, T. von; Bucurescu, D.
2009-01-01
A new method is proposed to determine the energy-dependent spin distribution in experimental nuclear-level schemes. This method compares various experimental and calculated moments in the energy-spin plane to obtain the spin-cutoff parameter σ as a function of mass A and excitation energy using a total of 7202 levels with spin assignment in 227 nuclei between F and Cf. A simple formula, σ 2 =0.391 A 0.675 (E-0.5Pa ' ) 0.312 , is proposed up to about 10 MeV that is in very good agreement with experimental σ values and is applied to improve the systematics of level-density parameters.
Nonlinear stability of spin-flip excitations
International Nuclear Information System (INIS)
Arunasalam, V.
1975-01-01
A rather complete discussion of the nonlinear electrodynamic behavior of a negative-temperature spin system is presented. The method presented here is based on a coupled set of master equations, one describing the time evolution of the photon (i.e., the spin-flip excitation) distribution function and the other describing the time evolution of the particle distribution function. It is found that the initially unstable (i.e., growing) spin-flip excitations grow to such a large amplitude that their nonlinear reaction on the particle distribution function becomes important. It is then shown that the initially totally inverted two-level spin system evolves rapidly (through this nonlinear photon-particle coupling) towards a quasilinear steady state where the populations of the spin-up and the spin-down states are equal to each other. Explicit expressions for the time taken to reach this quasilinear steady state and the energy in the spin-flip excitations at this state are also presented
Influence of soliton distributions on the spin-dependent electronic ...
Indian Academy of Sciences (India)
interactions, so that spin memory can only be as long as a few seconds [6]. Therefore, spin-flip .... In addition, the term −σ · hβ is the internal exchange energy with hβ .... electrons density of states for short chains containing 100 carbon atoms.
Spin physics in semiconductors
2017-01-01
This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.
Spin exchange in polarized deuterium
International Nuclear Information System (INIS)
Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.
2003-01-01
We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field
Spin polarized electron source technology transferred from HE accelerators to electron microscopes
International Nuclear Information System (INIS)
Nakanishi, Tsutomu
2009-01-01
For many years, we have developed a technology of spin-polarized-electron-source (PES) for a future linear collider project (ILC). Various new techniques for achieving high polarization, high quantum efficiency, high current density, sub-nanosecond multi-bunch generation etc. were developed. Two fundamental technologies; reduction of dark current and preparation of extremely high vacuum environment to protect the Negative Electron Affinity (NEA) surface have been also developed. Using these PES technologies and a new transmission type photocathode, we recently succeeded in producing the high brightness and high polarization electron beam for the low energy electron microscope (LEEM). Our Spin-LEEM system enables the world-first dynamic observation of surface magnetic domain formed by evaporation on the metal substrate with ∼ 20 nm space resolutions. (author)
Spin-polarized transport properties of a pyridinium-based molecular spintronics device
Zhang, J.; Xu, B.; Qin, Z.
2018-05-01
By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.
Max Auwaerter symposium: spin mapping and spin manipulation on the atomic scale
International Nuclear Information System (INIS)
Wiesendanger, R.
2008-01-01
excitations in magnetic systems of reduced dimensions now become experimentally accessible. Finally, the combination of spin state read-out and spin state manipulation, based on spin-current induced switching across a vacuum gap by means of SP-STM, provides a fascinating novel type of approach towards ultra-high density magnetic recording without the use of magnetic stray fields. (author)
Inverse spin Hall effect by spin injection
Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.
2007-09-01
Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.
Spin noise spectroscopy of donor-bound electrons in ZnO
Horn, H.; Balocchi, A.; Marie, X.; Bakin, A.; Waag, A.; Oestreich, M.; Hübner, J.
2013-01-01
We investigate the intrinsic spin dynamics of electrons bound to Al impurities in bulk ZnO by optical spin noise spectroscopy. Spin noise spectroscopy enables us to investigate the longitudinal and transverse spin relaxation time with respect to nuclear and external magnetic fields in a single spectrum. On one hand, the spin dynamic is dominated by the intrinsic hyperfine interaction with the nuclear spins of the naturally occurring 67Zn isotope. We measure a typical spin dephasing time of 23 ns, in agreement with the expected theoretical values. On the other hand, we measure a third, very high spin dephasing rate which is attributed to a high defect density of the investigated ZnO material. Measurements of the spin dynamics under the influence of transverse as well as longitudinal external magnetic fields unambiguously reveal the intriguing connections of the electron spin with its nuclear and structural environment.
International Nuclear Information System (INIS)
Engel, J.
2007-01-01
The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals
Spin-torque generation in topological insulator based heterostructures
Fischer, Mark H.
2016-03-11
Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.
Bulk electron spin polarization generated by the spin Hall current
Korenev, V. L.
2005-01-01
It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.
Bulk electron spin polarization generated by the spin Hall current
Korenev, V. L.
2006-07-01
It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.
CFD model of a spinning pipe gas lens
CSIR Research Space (South Africa)
Snedden, Glen C
2006-07-01
Full Text Available Slides on: Spinning Pipe Gas Lens; Focal Length; Refractive Index; Gas Dynamics; Guess at the gas dynamics; Density Profile; Flow Profile; Rosby Waves; Rayleigh–Taylor Instabilities...
Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng
2018-06-01
We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].
Energy Technology Data Exchange (ETDEWEB)
Hong, Byungsik [Korea University, Seoul (Korea, Republic of)
2017-07-15
Topological fluctuation of the gluon field in quantum chromodynamics modifies the vacuum structure, and causes various chiral anomalies. In the strong magnetic field generated by semi-central heavy-ion collisions, the axial and vector density fluctuations propagate along the external magnetic field, called the chiral magnetic wave. Up to now the investigation of the various chiral anomalies in heavy ion collisions has been focussed on the charge distribution in the transverse plane. However, this paper points out that the information on the charge distribution is not enough and the spin effect should also be taken into account. Considering the charge and spin distributions together, π{sup ±} with spin 0 are not proper particle species to study the chiral anomalies, as the signal may be significantly suppressed as one of the constituent (anti)quarks should come from background to form the pseudoscalar states. It is, therefore, necessary to analyze explicitly the vector mesons with spin 1 (K⋆{sup ±} (892)) and baryons with spin 3/2 (Δ{sup ++}(1232), Σ{sup −} (1385) and Ω{sup −} ). If the chiral anomaly effects exist, the elliptic flow parameter is expected to be larger for negative particles for each particle species.
Muon spin relaxation in random spin systems
International Nuclear Information System (INIS)
Toshimitsu Yamazaki
1981-01-01
The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)
Transition currents in diagonal spin basis
International Nuclear Information System (INIS)
Rogalev, R.N.
1996-01-01
Scalar and pseudoscalar densities, vector, pseudovector and tensor currents are expressed in terms of momentum and spin vectors of the corresponding particles in an explicitly covariant way. The obtained expressions are free of singularities and make it possible to draw a number of identities, which relate axial-vector, vector and tensor currents to each other. 8 refs
Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect
Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo
2018-05-01
We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.
International Nuclear Information System (INIS)
Lin, J.; Millis, A.J.
2011-01-01
We calculate the frequency-dependent longitudinal (σ xx ) and Hall (σ xy ) conductivities for two-dimensional metals with thermally disordered antiferromagnetism using a generalization of a theoretical model, involving a one-loop quasistatic fluctuation approximation, which was previously used to calculate the electron self-energy. The conductivities are calculated from the Kubo formula, with current vertex function treated in a conserving approximation satisfying the Ward identity. In order to obtain a finite dc limit, we introduce phenomenologically impurity scattering, characterized by a relaxation time τ. σ xx ((Omega)) satisfies the f-sum rule. For the infinitely peaked spin-correlation function, χ(q)∝(delta)(q-Q), we recover the expressions for the conductivities in the mean-field theory of the ordered state. When the spin-correlation length ζ is large but finite, both σ xx and σ xy show behaviors characteristic of the state with long-range order. The calculation runs into difficulty for (Omega) ∼ xx ((Omega)) and σ xy ((Omega)) are qualitatively consistent with data on electron-doped cuprates when (Omega) > 1/τ.
Quantum separability of thermal spin one boson systems
International Nuclear Information System (INIS)
Lee, Jae-Weon; Oh, Sangchul; Kim, Jaewan
2007-01-01
Using the temperature Green's function approach we investigate entanglement between two non-interacting spin 1 bosons in thermal equilibrium. We show that, contrary to the fermion case, the entanglement is absent in the spin density matrix. Separability is demonstrated using the Peres-Horodecki criterion for massless particles such as photons in black body radiation. For massive particles, we show that the density matrix can be decomposed with separable states
Pressure and Temperature Sensors Using Two Spin Crossover Materials.
Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann
2016-02-02
The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.
Pressure and Temperature Sensors Using Two Spin Crossover Materials
Jureschi, Catalin-Maricel; Linares, Jorge; Boulmaali, Ayoub; Dahoo, Pierre Richard; Rotaru, Aurelian; Garcia, Yann
2016-01-01
The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices. PMID:26848663
Pressure and Temperature Sensors Using Two Spin Crossover Materials
Directory of Open Access Journals (Sweden)
Catalin-Maricel Jureschi
2016-02-01
Full Text Available The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.
Multi-scale modeling of spin transport in organic semiconductors
Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo
In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.
Spin dynamics in tunneling decay of a metastable state
Ban, Yue; Sherman, E. Ya.
2012-01-01
We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent...
Spin-accumulation effect in magnetic nano-bridge
International Nuclear Information System (INIS)
Khvalkovskii, A.V.; Zvezdin, A.A.; Zvezdin, K.A.; Pullini, D.; Perlo, P.
2004-01-01
Large values of magnetoresistance experimentally observed in magnetic nano-contacts and nano-wires are explained in terms of spin accumulation. The investigation of the spin-accumulation effect in magnetic nano-contacts (Phys. Rev. Lett. 82 (1999) 2923) and nano-bridges (JETP Lett. 75 (10) (2002) 613), which are considered to be very promising for various spintronic applications, is presented. The two-dimensional spin-diffusion problem in a magnetic nano-bridge is solved. Dependences of the specific resistance of the domain wall and of the distribution of non-equilibrium spin density on the nano-bridge geometry and the material parameters are obtained
International Nuclear Information System (INIS)
Li, Xin-Mei; Long, Meng-Qiu; Cui, Li-Ling; Xiao, Jin; Zhang, Xiao-Jiao; Zhang, Dan; Xu, Hui
2014-01-01
Based on nonequilibrium Green's function in combination with density functional theory calculations, the spin-dependent electronic transport properties of one-dimensional zigzag molybdenum disulfide (MoS 2 ) nanoribbons with V-shaped defect and H-saturation on the edges have been studied. Our results show that the spin-polarized transport properties can be found in all the considered zigzag MoS 2 nanoribbons systems. The edge defects, especially the V-shaped defect on the Mo edge, and H-saturation on the edges can suppress the electronic transport of the systems. Also, the spin-filtering and negative differential resistance behaviors can be observed obviously. The mechanisms are proposed for these phenomena. - Highlights: • The spin-dependent electronic transport of zigzag MoS 2 nanoribbons. • The effects of V-shaped edge defect and H-saturation. • The effects of spin-filter and negative differential resistance can be observed
Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot
Korenev, V. L.
2007-12-01
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.
Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.
2015-10-01
Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical
The susceptibilities in the spin-S Ising model
International Nuclear Information System (INIS)
Ainane, A.; Saber, M.
1995-08-01
The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs
Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá
2018-05-01
We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.
Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer
International Nuclear Information System (INIS)
Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.
1996-01-01
Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)
Energy Technology Data Exchange (ETDEWEB)
Hundt, Andreas
2007-10-09
Semiconductor quantum dots (QD) are objects on the nanometer scale, where charge carriers are confined in all three dimensions. This leads to a reduced interaction with the semiconductor lattice and to a discrete density of states. The spin state of a particle defines the polarisation of the emitted light when relaxating to an energetically lower state. Spin exchange and optical transition selection rules (conservation law for spin) define the optical control of spin states. In the examined QD in II-VI seminconductor systems the large polar character of the bindings enables to observe particle interactions by spectroscopy of the photo-luminescence (PL), making QD attractive for basic research. This work subjects in its first part single negatively charged non-magnetic QD. The odd number of carriers allows to study the latter in an unpaired state. By using polarization-resolved micro-PL spectroscopy, the spin-states of single, isolated QD can be studied reproducibly. Of special interest are exchange interactions in this few-particle system named trion. By excitation spectroscopy energetically higher states can be identified and characterized. The exchange interactions appearing here lead to state mixing and fine structure patterns in the spectra. Couplings in excited hole states show the way to the optical orientation of the resident electron spin. The spin configuration of the trion triplet state can be used to optically control the resident electron spin. Semimagnetic QD are focused in the second part of this work. The interaction with a paramagnetic environment of manganese spins leads to new magneto-optical properties of the QD. They reveal on a single dot level by line broadening due to spin fluctuations and by the giant Zeeman effect of the dot ensemble. Of special interest in this context is the influence of the reduced system dimension and the relatively larger surface of the system on the exchange mechanisms. The strong temperature dependence of the spin
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Spin-dependent current in resonant tunneling diode with ferromagnetic GaMnN layers
International Nuclear Information System (INIS)
Tang, N.Y.
2009-01-01
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.
Local spin torque induced by electron electric dipole moment in the YbF molecule
Energy Technology Data Exchange (ETDEWEB)
Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)
2014-10-06
In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.
Spin currents of charged Dirac particles in rotating coordinates
Dayi, Ö. F.; Yunt, E.
2018-03-01
The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established.
100% spin accumulation in non-half-metallic ferromagnet-semiconductor junctions
International Nuclear Information System (INIS)
Petukhov, A G; Niggemann, J; Smelyanskiy, V N; Osipov, V V
2007-01-01
We show that the spin polarization of electron density in non-magnetic degenerate semiconductors can achieve 100%. The effect of 100% spin accumulation does not require a half-metallic ferromagnetic contact and can be realized in ferromagnet-semiconductor FM-n + -n junctions even at moderate spin selectivity of the FM-n + contact when the electrons with spin 'up' are extracted from n semiconductor through the heavily doped n + layer into the ferromagnet and the electrons with spin 'down' are accumulated near the n + -n interface. We derived a general equation relating spin polarization of the current to that of the electron density in non-magnetic semiconductors. We found that the effect of complete spin polarization is achieved near the n + -n interface when the concentration of the spin 'up' electrons tends to zero in this region while the diffusion current of these electrons remains finite
Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions
Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui
2016-05-01
We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.
Investigation of spin-polarized transport in GaAs nanostructures
Energy Technology Data Exchange (ETDEWEB)
Tierney, B D; Day, T E; Goodnick, S M [Department of Electrical Engineering and Center for Solid State Electronics Research Arizona State University, Tempe, AZ 85287-5706 (United States)], E-mail: brian.tierney@asu.edu
2008-03-15
A spin field effect transistor (spin-FET) has been fabricated that employs nanomagnets as components of quantum point contact (QPC) structures to inject spin-polarized carriers into the high-mobility two-dimensional electron gas (2DEG) of a GaAs quantum well and to detect them. A centrally-placed non-magnetic Rashba gate controls both the density of electrons in the 2DEG and the electronic spin precession. Initial results are presented for comparable device structures modeled with an ensemble Monte Carlo (EMC) method. In the EMC the temporal and spatial evolution of the ensemble carrier spin polarization is governed by a spin density matrix formalism that incorporates the Dresselhaus and Rashba contributions to the D'yakanov-Perel spin-flip scattering mechanism, the predominant spin scattering mechanism in AlGaAs/GaAs heterostructures from 77-300K.
Negative snakes in JET: evidence for negative shear
Energy Technology Data Exchange (ETDEWEB)
Gill, R D; Alper, B; Edwards, A W [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pearson, D [Reading Univ. (United Kingdom)
1994-07-01
The signature of the negative snakes from the soft X-ray cameras is very similar to the more usual snakes except that the localised region of the snake has, compared with its surroundings, decreased rather than increased emission. Circumstances where negative snakes have been seen are reviewed. The negative snake appears as a region of increased resistance and of increased impurity density. The relationship between the shear and the current perturbation is shown, and it seem probable that the magnetic shear is reversed at the point of the negative snake, i.e. that q is decreasing with radius. 6 refs., 6 figs.
Negative snakes in JET: evidence for negative shear
International Nuclear Information System (INIS)
Gill, R.D.; Alper, B.; Edwards, A.W.
1994-01-01
The signature of the negative snakes from the soft X-ray cameras is very similar to the more usual snakes except that the localised region of the snake has, compared with its surroundings, decreased rather than increased emission. Circumstances where negative snakes have been seen are reviewed. The negative snake appears as a region of increased resistance and of increased impurity density. The relationship between the shear and the current perturbation is shown, and it seem probable that the magnetic shear is reversed at the point of the negative snake, i.e. that q is decreasing with radius. 6 refs., 6 figs
Ballistic spin filtering across the ferromagnetic-semiconductor interface
Directory of Open Access Journals (Sweden)
Y.H. Li
2012-03-01
Full Text Available The ballistic spin-filter effect from a ferromagnetic metal into a semiconductor has theoretically been studied with an intention of detecting the spin polarizability of density of states in FM layer at a higher energy level. The physical model for the ballistic spin filtering across the interface between ferromagnetic metals and semiconductor superlattice is developed by exciting the spin polarized electrons into n-type AlAs/GaAs superlattice layer at a much higher energy level and then ballistically tunneling through the barrier into the ferromagnetic film. Since both the helicity-modulated and static photocurrent responses are experimentally measurable quantities, the physical quantity of interest, the relative asymmetry of spin-polarized tunneling conductance, could be extracted experimentally in a more straightforward way, as compared with previous models. The present physical model serves guidance for studying spin detection with advanced performance in the future.
Creating and manipulating nonequilibrium spins in nanoscale superconductors
Energy Technology Data Exchange (ETDEWEB)
Wolf, Michael J.; Kolenda, Stefan; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Suergers, Christoph; Fischer, Gerda [Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)
2015-07-01
We report on nonlocal transport in superconductor hybrid structures, with ferromagnetic as well as normal-metal tunnel junctions attached to the superconductor. In the presence of a strong Zeeman splitting of the density of states, we find signatures of spin transport over distances of several μm, exceeding other length scales such as the coherence length, the normal-state spin-diffusion length, and the charge-imbalance length. Using a combination of ferromagnetic and normal-metal contacts, we demonstrate spin injection from a normal metal, and show a complete separation of charge and spin imbalance. An exchange splitting induced by the ferromagnetic insulator europium sulfide enables spin transport at very small applied magnetic fields, and therefore paves the way to manipulating spin currents by local exchange fields.
Spin diffusion from an inhomogeneous quench in an integrable system.
Ljubotina, Marko; Žnidarič, Marko; Prosen, Tomaž
2017-07-13
Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.
Charge and spin separation in one-dimensional systems
International Nuclear Information System (INIS)
Balseiro, C.A.; Jagla, E.A.; Hallberg, K.
1995-01-01
In this article we discuss charge and spin separation and quantum interference in one-dimensional models. After a short introduction we briefly present the Hubbard and Luttinger models and discuss some of the known exact results. We study numerically the charge and spin separation in the Hubbard model. The time evolution of a wave packet is obtained and the charge and spin densities are evaluated for different times. The charge and spin wave packets propagate with different velocities. The results are interpreted in terms of the Bethe-ansatz solution. In section IV we study the effect of charge and spin separation on the quantum interference in a Aharonov-Bohm experiment. By calculating the one-particle propagators of the Luttinger model for a mesoscopic ring with a magnetic field we calculate the Aharonov-Bohm conductance. The conductance oscillates with the magnetic field with a characteristic frequency that depends on the charge and spin velocities. (author)
International Nuclear Information System (INIS)
Hakioglu, T
2009-01-01
Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.
International Nuclear Information System (INIS)
Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy
2011-01-01
The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin
Dieny, B.; Sousa, R.; Prejbeanu, L.
2007-04-01
Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic
Tunable spin waves in diluted magnetic semiconductor nanoribbon
Lyu, Pin; Zhang, Jun-Yi
2018-01-01
The spin wave excitation spectrum in diluted magnetic semiconductor (DMS) nanoribbons was calculated by taking account of the quantum confinement effect of carriers and spin waves. By introducing the boundary condition for the spin waves, we derived the spin wave dispersion using the path-integral formulation and Green's function method. It was shown that the spin wave excitation spectrum is discrete due to the confinement effect and strongly dependent on the carrier density, the magnetic ion density, and the width of the nanoribbon. When the width of the nanoribbon is beyond the typical nanoscales, the size effect on the excitation energies of the spin waves disappears in our calculation, which is in qualitative agreement with no obvious size effect observed in the as-made nanodevices of (Ga,Mn)As in this size regime. Our results provide a potential way to control the spin waves in the DMS nanoribbon not only by the carrier density and the magnetic ion density but also by the nanostructure geometry.
Production of polarized negative deuterium ion beam with dual optical pumping in KEK
Energy Technology Data Exchange (ETDEWEB)
Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.
1997-02-01
To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)
Topologically Massive Higher Spin Gravity
Bagchi, A.; Lal, S.; Saha, A.; Sahoo, B.
2011-01-01
We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the
Spin interactions in InAs quantum dots
Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.
2006-03-01
Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)
Energy Technology Data Exchange (ETDEWEB)
Song, Xuerui; Zhang, Jian; Feng, Fupan; Wang, Junfeng; Zhang, Wenlong; Lou, Liren; Zhu, Wei; Wang, Guanzhong, E-mail: gzwang@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 (China)
2014-04-15
We investigated the influence of spins on surface of nanodiamonds (NDs) to the longitudinal relaxation time (T{sub 1}) and transverse relaxation time (T{sub 2}) of nitrogen vacancy (NV) centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T{sub 1} and T{sub 2}, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T{sub 1} of NV center inside is highly dependent to the surface spins of the NDs. However, for the T{sub 2} of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T{sub 1} of an NV center in NDs is more sensitive to the change of the surface spin density than T{sub 2}.
Directory of Open Access Journals (Sweden)
Xuerui Song
2014-04-01
Full Text Available We investigated the influence of spins on surface of nanodiamonds (NDs to the longitudinal relaxation time (T1 and transverse relaxation time (T2 of nitrogen vacancy (NV centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T1 and T2, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T1 of NV center inside is highly dependent to the surface spins of the NDs. However, for the T2 of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T1 of an NV center in NDs is more sensitive to the change of the surface spin density than T2.
Spin-orbit and spin-lattice coupling
International Nuclear Information System (INIS)
Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu
2014-01-01
We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)
Reversible spin texture in ferroelectric Hf O2
Tao, L. L.; Paudel, Tula R.; Kovalev, Alexey A.; Tsymbal, Evgeny Y.
2017-06-01
Spin-orbit coupling effects occurring in noncentrosymmetric materials are known to be responsible for nontrivial spin configurations and a number of emergent physical phenomena. Ferroelectric materials may be especially interesting in this regard due to reversible spontaneous polarization making possible a nonvolatile electrical control of the spin degrees of freedom. Here, we explore a technologically relevant oxide material, Hf O2 , which has been shown to exhibit robust ferroelectricity in a noncentrosymmetric orthorhombic phase. Using theoretical modelling based on density-functional theory, we investigate the spin-dependent electronic structure of the ferroelectric Hf O2 and demonstrate the appearance of chiral spin textures driven by spin-orbit coupling. We analyze these spin configurations in terms of the Rashba and Dresselhaus effects within the k .p Hamiltonian model and find that the Rashba-type spin texture dominates around the valence-band maximum, while the Dresselhaus-type spin texture prevails around the conduction band minimum. The latter is characterized by a very large Dresselhaus constant λD= 0.578 eV Å, which allows using this material as a tunnel barrier to produce tunneling anomalous and spin Hall effects that are reversible by ferroelectric polarization.
Spin current induced by a charged tip in a quantum point contact
Energy Technology Data Exchange (ETDEWEB)
Shchamkhalova, B.S., E-mail: s.bagun@gmail.com
2017-03-15
We show that the charged tip of the probe microscope, which is widely used in studying the electron transport in low-dimensional systems, induces a spin current. The effect is caused by the spin–orbit interaction arising due to an electric field produced by the charged tip. The tip acts as a spin-flip scatterer giving rise to the spin polarization of the net current and the occurrence of a spin density in the system.
International Nuclear Information System (INIS)
Sugiyama, J; Brewer, J H; Ansaldo, E J; Itahara, H; Dohmae, K; Xia, C; Seno, Y; Hitti, B; Tani, T
2003-01-01
Magnetism of a misfit layered cobaltite [Ca 2 Co 4/3 Cu 2/3 O 4 ] x RS [CoO 2 ] (x ∼ 0.62, RS denotes a rocksalt-type block) was investigated by a positive muon spin rotation and relaxation (μ + SR) experiment. A transition to an incommensurate (IC) spin density wave (SDW) state was found below 180 K (= T C on ); and a clear oscillation due to a static internal magnetic field was observed below 140 K(= T C ). Furthermore, an anisotropic behaviour of the zero-field μ + SR experiment indicated that the IC-SDW lies in the a-b plane, with oscillating moments directed along the c axis. These results were quite similar to those for the related compound [Ca 2 CoO 3 ] 0.62 RS [CoO 2 ], i.e., Ca 3 Co 4 O 9 . Since the IC-SDW field in [Ca 2 Co 4/3 Cu 2/3 O 4 ] 0.62 RS [CoO 2 ] was approximately the same as those in pure and doped [Ca 2 CoO 3 ] 0.62 RS [CoO 2 ], it was concluded that the IC-SDW exists in the [CoO 2 ] planes
International Nuclear Information System (INIS)
Gurevich, G.S.; Lebedev, V.M.; Orlova, N.V.; Spasskij, A.V.; Teplov, I.B.; Shakhvorostova, G.V.; Belkina, M.R.
1984-01-01
The results of measuring double differential cross sections of the reaction of inelastic scattering 24.8 MeV α-particles sup(12)C(α, αsub(1)γsub(4.43))sup(12)C in different planes of γ-quantum escape relatively to the plane of the reaction phisub(γ)=30, 60 and 90 deg are presented. Non-monochromaticity of the beam-made up 1%. Functions of angular correlation of the reaction are measured for four angles THETAsub(α)=21, 39, 59 and 135 deg corresponding to maxima of differential cross section in angular distribution of inelastically scattered α-particles and for THETAsub(α)=89 deg corresponding to the minimum of angular distribution. The results of measurements permit to reconstruct all the components of irreducible spin-tensors of the matrix of state density 4.43 MeV (2 + ) formed in this reaction. The values of populations of substates by the projection of the spin of this state are obtained. The analysis of the obtained results testify to the fact that mechanism of inelastic scattering is not reduced to impulse approximation and mechanisms associated with delay in interaction do not make noticeable contribution for the given angles of α-particle escape
Energy Technology Data Exchange (ETDEWEB)
Gurevich, G.S.; Lebedev, V.M.; Orlova, N.V.; Spasskij, A.V.; Teplov, I.B.; Shakhvorostova, G.V.; Belkina, M.R. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki)
1984-01-01
The results of measuring double differential cross sections of the reaction of inelastic scattering 24.8 MeV ..cap alpha..-particles sup(12)C(..cap alpha.., ..cap alpha..sub(1)..gamma..sub(4.43))sup(12)C in different planes of ..gamma..-quantum escape relatively to the plane of the reaction phisub(..gamma..)=30, 60 and 90 deg are presented. Non-monochromaticity of the beam made up 1%. Functions of angular correlation of the reaction are measured for four angles THETAsub(..cap alpha..)=21, 39, 59 and 135 deg corresponding to maxima of differential cross section in angular distribution of inelastically scattered ..cap alpha..-particles and for THETAsub(..cap alpha..)=89 deg corresponding to the minimum of angular distribution. The results of measurements permit to reconstruct all the components of irreducible spin-tensors of the matrix of state density 4.43 MeV (2/sup +/) formed in this reaction. The values of populations of substates by the projection of the spin of this state are obtained. The analysis of the obtained results testify to the fact that mechanism of inelastic scattering is not reduced to impulse approximation and mechanisms associated with delay in interaction do not make noticeable contribution for the given angles of ..cap alpha..-particle escape.
Spin-Polarization in Quasi-Magnetic Tunnel Junctions
Xie, Zheng-Wei; Li, Ling
2017-05-01
Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.
Spin Current Noise of the Spin Seebeck Effect and Spin Pumping
Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.
2018-01-01
We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.
Revisiting the flocking transition using active spins.
Solon, A P; Tailleur, J
2013-08-16
We consider an active Ising model in which spins both diffuse and align on lattice in one and two dimensions. The diffusion is biased so that plus or minus spins hop preferably to the left or to the right, which generates a flocking transition at low temperature and high density. We construct a coarse-grained description of the model that predicts this transition to be a first-order liquid-gas transition in the temperature-density ensemble, with a critical density sent to infinity. In this first-order phase transition, the magnetization is proportional to the liquid fraction and thus varies continuously throughout the phase diagram. Using microscopic simulations, we show that this theoretical prediction holds in 2D whereas the fluctuations alter the transition in 1D, preventing, for instance, any spontaneous symmetry breaking.
High spin effects in superdense matter
International Nuclear Information System (INIS)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.
1978-04-01
A model of relativistic interacting superdense matter with vector, scalar and symmetric second rank tensor exchange is developed. The Green's functions of the model are solved in the self consistent Hartree approximation. The contributions of the symmetric second rank tensor are emphasized. It is found that these high spin contributions effect the superdense matter at densities just beyond those predicted to occur in neutron star matter or nuclear collisions. The spin-two effects do produce an unusual asymptotic dependence, p = - 1 / 3 epsilon. This effect is examined in a simple model of the early universe
Magnon condensation and spin superfluidity
Bunkov, Yury M.; Safonov, Vladimir L.
2018-04-01
We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.
Effect of spin rotation coupling on spin transport
International Nuclear Information System (INIS)
Chowdhury, Debashree; Basu, B.
2013-01-01
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied