WorldWideScience

Sample records for negative deuterium ions

  1. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  2. Deuterium results at the negative ion source test facility ELISE

    Science.gov (United States)

    Kraus, W.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Bonomo, F.; Riedl, R.

    2018-05-01

    The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.

  3. Transport of negative hydrogen and deuterium ions in RF-driven ion sources

    International Nuclear Information System (INIS)

    Gutser, R; Wuenderlich, D; Fantz, U

    2010-01-01

    Negative hydrogen ion sources are major components of neutral beam injection systems for plasma heating in future large-scale fusion experiments such as ITER. In order to fulfill the requirements of the ITER neutral beam injection, a high-performance, large-area RF-driven ion source for negative ions is being developed at the MPI fuer Plasmaphysik. Negative hydrogen ions are mainly generated on a converter surface by impinging neutral particles and positive ions under the influence of magnetic fields and the plasma sheath potential. The 3D transport code TrajAn has been applied in order to obtain the total and spatially resolved extraction probabilities for H - and D - ions under identical plasma parameters and the realistic magnetic field topology of the ion source. A comparison of the isotopes shows a lower total extraction probability in the case of deuterium ions, caused by a different transport effect. The transport calculation shows that distortions of the spatial distributions of ion birth and extraction by the magnetic electron suppression field are present for both negative hydrogen and deuterium ions.

  4. Atomic processes in hydrogen and deuterium negative ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1992-01-01

    A knowledge of the atomic processes active in a hydrogen negative ion discharge and their respective rates is an essential component of the interpretation, modeling, and enhancement of negative ion systems. The generation of the cross sections and rate processes appropriate to this problem has been a principal activity at several laboratories. In this paper is discussed those collision processes that are of major importance for the destruction of the vibrationally excited molecules generated in the discharge, processes that are essential to the valuation of the optimization procedure that is to be discussed in this paper

  5. A dual-optically-pumped polarized negative deuterium ion source

    International Nuclear Information System (INIS)

    Kinsho, M.; Mori, Y.; Ikegami, K.; Takagi, A.

    1994-01-01

    An optically pumped polarized H - source (OPPIS), which is based on the charge exchange between H + ions and electron-spin-polarized alkali atoms has been developed at KEK. Just by applying this scheme to a deuteron beam, it is difficult to obtain a highly vector polarized deuteron beam. To obtain highly vector polarized D - ions, we have developed a 'dual optical pumping type' of polarized D - source. With this scheme, a 100% vector nuclear-spin polarization for D - ions is possible in principle. In a preliminary experiment, a 60% of vector nuclear-spin polarized D - ions was obtained. (author)

  6. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Industrial Univ. of Santander, Bucaramanga (Colombia)

    2001-04-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D{sup -}, is close to the production of negative ions of light hydrogen isotope, H{sup -}. The comparison of the experimental data with the calculated ones shows that the most probable process of the H{sup -} and D{sup -} ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  7. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.

    2001-01-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D - , is close to the production of negative ions of light hydrogen isotope, H - . The comparison of the experimental data with the calculated ones shows that the most probable process of the H - and D - ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  8. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    Science.gov (United States)

    Brombin, M.; Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R.; Schiesko, L.

    2014-11-01

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  9. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    International Nuclear Information System (INIS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R.; Schiesko, L.

    2014-01-01

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors’ holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns

  10. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  11. Negative ion sourcery

    International Nuclear Information System (INIS)

    Os, C.F.A. van.

    1989-01-01

    The work described in this thesis is involved by current research programs in the field of nuclear-fusion. A brief introduction to fusion is given, anticipated problems related to current drive of the fusion plasma are pinpointed and probable suggestions to overcome these problems are described. One probable means for current drive is highlighted; Neutral Beam Injection (NBI). This is based on injecting a 1 MeV neutral hydrogen or deuterium beam into a fusion plasma. Negative ions are needed as primary particles because they can easily be neutralized at 1 MeV. The two current schemes for production of negative ions are described, volume production and negative surface ionization. The latter method is extensively studied in this thesis. (author). 171 refs.; 55 figs.; 7 tabs

  12. Sputtering of solid deuterium by He-ions

    DEFF Research Database (Denmark)

    Schou, Jørgen; Stenum, B.; Pedrys, R.

    2001-01-01

    Sputtering of solid deuterium by bombardment of 3He+ and 4He+ ions was studied. Some features are similar to hydrogen ion bombardment of solid deuterium, but for the He-ions a significant contribution of elastic processes to the total yield can be identified. The thin-film enhancement is more pro...... pronounced than that for hydrogen projectiles in the same energy range....

  13. Radiation damage and deuterium trapping in deuterium-ion-irradiated Fe–9Cr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Iwakir, Hirotomo, E-mail: iwakiri@edu.u-ryukyu.ac.jp [Faculty and Graduate School of Education, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan); Tani, Munechika [Interdisciplinary Graduate School of Engineering Sciences, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan); Watanabe, Yoshiyuki [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Yoshida, Naoaki [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-01-15

    Thermal desorption of deuterium (D{sub 2}) from deuterium-ion (D{sub 2}{sup +})-irradiated Fe–9Cr was correlated with the microstructural evolution of the alloy during irradiation with 8-keV D{sub 2}{sup +} ions following annealing to determine the retention and desorption behavior of the implanted deuterium and to identify effective traps for them, particularly at high temperature. After irradiation at 573 K, a new desorption stage formed between 650 and 1100 K at higher fluences, and cavities were observed using transmission electron microscopy. The total amount of trapped deuterium following irradiation with a fluence of 3.0 × 10{sup 22} ions/m{sup 2} was 6.8 × 10{sup 17} D{sub 2}/m{sup 2}, or approximately 0.007%. These results indicate that the deuterium atoms recombined to form D{sub 2} molecules at the surfaces of the cavities.

  14. Negative ion sources

    International Nuclear Information System (INIS)

    Ishikawa, Junzo; Takagi, Toshinori

    1983-01-01

    Negative ion sources have been originally developed at the request of tandem electrostatic accelerators, and hundreds of nA to several μA negative ion current has been obtained so far for various elements. Recently, the development of large current hydrogen negative ion sources has been demanded from the standpoint of the heating by neutral particle beam injection in nuclear fusion reactors. On the other hand, the physical properties of negative ions are interesting in the thin film formation using ions. Anyway, it is the present status that the mechanism of negative ion action has not been so fully investigated as positive ions because the history of negative ion sources is short. In this report, the many mechanisms about the generation of negative ions proposed so far are described about negative ion generating mechanism, negative ion source plasma, and negative ion generation on metal surfaces. As a result, negative ion sources are roughly divided into two schemes, plasma extraction and secondary ion extraction, and the former is further classified into the PIG ion source and its variation and Duoplasmatron and its variation; while the latter into reflecting and sputtering types. In the second half of the report, the practical negative ion sources of each scheme are described. If the mechanism of negative ion generation will be investigated more in detail and the development will be continued under the unified know-how as negative ion sources in future, the development of negative ion sources with which large current can be obtained for any element is expected. (Wakatsuki, Y.)

  15. Negative-ion states

    International Nuclear Information System (INIS)

    Compton, R.N.

    1982-01-01

    In this brief review, we discuss some of the properties of atomic and molecular negative ions and their excited states. Experiments involving photon reactions with negative ions and polar dissociation are summarized. 116 references, 14 figures

  16. Negative ion detachment processes

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1990-10-01

    This paper discusses the following topics: H - and D - collisions with atomic hydrogen; collisional decomposition of SF 6 - ; two-electron loss processes in negative ion collisions; associative electron detachment; and negative ion desorption from surfaces

  17. Codeposition of deuterium ions with beryllium oxide at elevated temperatures

    CERN Document Server

    Markin, A V; Gorodetsky, A E; Negodaev, M A; Rozhanskii, N V; Scaffidi-Argentina, F; Werle, H; Wu, C H; Zalavutdinov, R K; Zakharov, A P

    2000-01-01

    Deuterium-loaded BeO films were produced by sputtering the beryllium target with 10 keV Ne ions in D sub 2 gas at a pressure of approximately 1 Pa. The sputtered beryllium reacts - on the substrate surface - with the residual oxygen, thus forming a beryllium oxide layer. Biasing the substrate negatively with respect to the target provides the simultaneous bombardment of the growing film surface with D ions formed by Ne-D sub 2 collisions. Substrate potential governs the maximum energy of ions striking the growing film surface while its size governs the flux density. According to X-ray photoelectron spectroscopy (XPS), electron probe microanalysis (EPMA) and reflection high energy electron diffraction (RHEED) data, the beryllium is deposited in the form of polycrystalline hcp-BeO layers with negligible (about 1 at.%) carbon and neon retention. Thermal desorption spectroscopy (TDS) data shows a strong deuterium bonding, with a desorption peak at 950 K, in the films deposited at -50 and -400 V substrate potentia...

  18. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    Science.gov (United States)

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  19. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  20. Selective deuterium ion acceleration using the Vulcan petawatt laser

    Science.gov (United States)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  1. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    International Nuclear Information System (INIS)

    Deslandes, Alec; Guenette, Mathew C.; Corr, Cormac S.; Karatchevtseva, Inna; Thomsen, Lars; Ionescu, Mihail; Lumpkin, Gregory R.; Riley, Daniel P.

    2014-01-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10 24 ions m −2 . Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four

  2. Atomic negative ions

    International Nuclear Information System (INIS)

    Brage, T.

    1991-01-01

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given

  3. Design of a negative ion neutral beam system for TNS

    International Nuclear Information System (INIS)

    Easoz, J.R.

    1978-05-01

    A conceptual design of a neutral beam line based on the neutralization of negative deuterium ions is presented. This work is a detailed design of a complete neutral beam line based on using negative ions from a direct extraction source. Anticipating major technological advancements, beam line components have been scaled including the negative ion sources and components for the direct energy recovery of charged beams and high speed cryogenic pumping. With application to the next step in experimental fusion reactors (TNS), the neutral beam injector system that has been designed provides 10 MW of 200 keV neutral deuterium atoms. Several arms are required for plasma ignition

  4. Ion-induced emission of charged particles from solid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Borgesen, P.; Schou, J.; Sorensen, H.

    1980-01-01

    Measurements have been made of the emission of both positive and negative particles from solid hydrogen and deuterium for normal incidence of H + , H + 2 , H + 3 , D 2 H + , D + 3 and He + ions up to 10 keV. For positive particles the emission coefficient increased with increasing energy of incidence to reach a value of 0.08 per atom for 10 keV H + onto hydrogen. Apparently the positive particles are sputtered ones. The negative particles emitted are predominantly electrons. The emission coefficient per incident atom as a function of the velocity of the incident particle agress fairly well with results published earlier for incidence of hydrogen and deuterium ions. However, systematic differences of up to 10% are now observed between the coefficients for the different types of ions. (orig.)

  5. Selective deuterium ion acceleration using the Vulcan petawatt laser

    Energy Technology Data Exchange (ETDEWEB)

    Krygier, A. G. [Laboratoire pour l' Utilisation des Lasers Intenses, École Polytechnique, 91128 Palasiseau (France); Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Alejo, A.; Green, A.; Jung, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Clarke, R.; Notley, M. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fuchs, J.; Vassura, L. [Laboratoire pour l' Utilisation des Lasers Intenses, École Polytechnique, 91128 Palasiseau (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany); Najmudin, Z.; Nakamura, H. [The John Adams Institute, Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Norreys, P. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Oliver, M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Zepf, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Helmholtz Institute Jena, D-07743 Jena (Germany); Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic); Freeman, R. R. [Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-15

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  6. Selective deuterium ion acceleration using the Vulcan petawatt laser

    International Nuclear Information System (INIS)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Green, A.; Jung, D.; Clarke, R.; Notley, M.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-01-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10 20 W/cm 2 laser pulse by cryogenically freezing heavy water (D 2 O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%

  7. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  8. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    International Nuclear Information System (INIS)

    Chacon Velasco, A.J.; Dougar-Jabon, V.D.

    2004-01-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H - and D - ion production involves the process of high Rydberg state excitation. (authors)

  9. Trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Suzuki, Sachiko; Wang, Wanjing; Kurata, Rie; Kida, Katsuya; Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Sagara, Akio; Yoshida, Naoaki

    2009-01-01

    The trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions was investigated by thermal desorption spectroscopy (TDS) and x-ray photoelectron spectroscopy (XPS). The D 2 TDS spectrum consisted of three desorption stages, namely desorption of deuterium trapped by intrinsic defects, ion-induced defects and carbon with the formation of the C-D bond. Although the deuterium retention trapped by intrinsic defects was almost constant, that by ion-induced defects increased as the ion fluence increased. The retention of deuterium with the formation of the C-D bond was saturated at an ion fluence of 0.5x10 22 D + m -2 , where the major process was changed from the sputtering of tungsten with the formation of a W-C mixture to the formation of a C-C layer, and deuterium retention as the C-D bond decreased. It was concluded that the C-C layer would enhance the chemical sputtering of carbon with deuterium with the formation of CD x and the chemical state of carbon would control the deuterium retention in tungsten under C + -D 2 + implantation.

  10. Deuterium ion irradiation damage and deuterium trapping mechanism in candidate stainless steel material (JPCA2) for fusion reactor

    International Nuclear Information System (INIS)

    Ashizuka, Norihiro; Kurita, Takaaki; Yoshida, Naoaki; Fujiwara, Tadashi; Muroga, Takeo

    1987-01-01

    An improved austenitic stainless steel (JPCA), a candidate material for fusion reactor, is irradiated at room temperature with deuterium ion beams. Desorption spectra of deuterium gas is measured at various increased temperatures and defects formed under irradiation are observed by transmission electron microscopy to determine the mechanism of the thermal release of deuteriums and the characteristics of irradiation-induced defects involved in the process. In the deuterium deportion spectra observed, five release stages are found to exist at 90 deg C, 160 deg C, 220 deg C, 300 deg C and 400 deg C, referred to as Stage I, II, III, IV and V, respectively. Stage I is interpreted as representing the release of deuteriums trapped in point defects (presumably vacancies) formed under irradiation. The energy of desorption from the trapping sites is estimated at 0.8 eV. Stage II is concluded to be associated with the release of deuteriums trapped in a certain kind of existing defects. Stage III involves the release of deuteriums that are trapped in dislocations, dislocation loops or dislocated portions of stacking fault tetrahedra. This release occurs significantly in processed materials and other materials irradiated with high energy ion beams that may cause cascade damage. Stage IV is interpreted in terms of thermal decomposition of small deuterium clusters. Stage V is associated with the decomposition of rather large deuterium clusters grown on the {111} plane. (Nogami, K.)

  11. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  12. Negative ions as a source of low energy neutral beams

    International Nuclear Information System (INIS)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems

  13. Negative ion beam processes

    International Nuclear Information System (INIS)

    Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.

    1975-06-01

    Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad

  14. Deuterium ion irradiation induced blister formation and destruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaemin; Kim, Nam-Kyun; Kim, Hyun-Su; Jin, Younggil; Roh, Ki-Baek; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-11-01

    Highlights: • The areal number density of blisters on the grain with (1 1 1) plane orientation increased with increasing ion fluence. • No more blisters were created above the temperature about 900 K due to high thermal mobility of ions and inactivity of traps. • The destruction of blister at the boundary induced by sputtering is proposed. • The blisters were destructed at the position about the boundary by high sputtering yield of oblique incident ions and thin thickness due to plastic deformation at the boundary. - Abstract: The blisters formation and destruction induced by the deuterium ions on a polycrystalline tungsten were investigated with varying irradiation deuterium ion fluence from 3.04 × 10{sup 23} to 1.84 × 10{sup 25} D m{sup −2} s{sup −1} and an fixed irradiated ion energy of 100 eV in an electron cyclotron resonance plasma source, which was similar to the far-scrape off layer region in the nuclear fusion reactors. Target temperature was monitored during the irradiation. Most of blisters formed easily on the grain with (1 1 1) plane orientation which had about 250 nm in diameter. In addition, the areal number density of blisters increased with increasing the ion fluence under the surface temperature reaching to about 900 K. When the fluence exceeded 4.6 × 10{sup 24} D m{sup −2}, the areal number density of the blister decreased. It could be explained that the destruction of the blister was initiated by erosion at the boundary region where the thickness of blister lid was thin and the sputtering yield was high by oblique incident ions, resulting in remaining the lid open, e.g., un-eroded center dome. It is possible to work as a tungsten dust formation from the plasma facing divertor material at far-SOL region of fusion reactor.

  15. Surface negative ion production in ion sources

    International Nuclear Information System (INIS)

    Belchenko, Y.

    1993-01-01

    Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail

  16. Ion-driven deuterium permeation through tungsten at high temperatures

    Science.gov (United States)

    Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.

    2009-06-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  17. Ion-driven deuterium permeation through tungsten at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, Yu.M., E-mail: yury.gasparyan@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Golubeva, A.V. [RRC ' Kurchatov Institute' , Ac. Kurchatov sq., 1/1, Moscow RU-123182 (Russian Federation); Mayer, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany); Pisarev, A.A. [Moscow Engineering and Physics Institute, Kashirskoe sh. 31, Moscow 115409 (Russian Federation); Roth, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstrasse 2, D-85748 Garching (Germany)

    2009-06-15

    The ion-driven permeation (IDP) through 50 mum thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D{sup +} ion beam with a flux of 10{sup 17}-10{sup 18} D/m{sup 2}s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 +- 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  18. Ion-driven deuterium permeation through tungsten at high temperatures

    International Nuclear Information System (INIS)

    Gasparyan, Yu.M.; Golubeva, A.V.; Mayer, M.; Pisarev, A.A.; Roth, J.

    2009-01-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17 -10 18 D/m 2 s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  19. Large area negative ion source for high voltage neutral beams

    International Nuclear Information System (INIS)

    Poulsen, P.; Hooper, E.B. Jr.

    1979-11-01

    A source of negative deuterium ions in the multi-ampere range is described that is readily extrapolated to reactor size, 10 amp or more of neutral beam, that is of interest in future experiments and reactors. The negative ion source is based upon the double charge exchange process. A beam of positive ions is created and accelerated to an energy at which the attachment process D + M → D - + M + proceeds efficiently. The positive ions are atomically neutralized either in D 2 or in the charge exchange medium M. Atomic species make a second charge exchange collision in the charge target to form D - . For a sufficiently thick target, the beam reaches an equilibrium fraction of negative ions. For reasons of efficiency, the target is typically alkali metal vapor; this experiment uses sodium. The beam of negative ions can be accelerated to high (>200 keV) energy, the electrons stripped from the ions, and a high energy neutral beam formed

  20. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins.

    Science.gov (United States)

    Donohoe, Gregory C; Khakinejad, Mahdiar; Valentine, Stephen J

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  1. Fundamental ion cyclotron resonance heating of JET deuterium plasmas

    International Nuclear Information System (INIS)

    Krasilnikov, A V; Amosov, V N; Kaschuck, Yu A; Van Eester, D; Lerche, E; Ongena, J; Bonheure, G; Biewer, T; Crombe, K; Ericsson, G; Giacomelli, L; Hellesen, C; Hjalmarsson, A; Esposito, B; Marocco, D; Jachmich, S; Kiptily, V; Leggate, H; Mailloux, J; Kallne, J

    2009-01-01

    Radio frequency heating of majority ions is of prime importance for understanding the basic role of auxiliary heating in the activated D-T phase of ITER. Majority deuterium ion cyclotron resonance heating (ICRH) experiments at the fundamental cyclotron frequency were performed in JET. In spite of the poor antenna coupling at 25 MHz, this heating scheme proved promising when adopted in combination with D neutral beam injection (NBI). The effect of fundamental ICRH of a D population was clearly demonstrated in these experiments: by adding ∼25% of heating power the fusion power was increased up to 30-50%, depending on the type of NBI adopted. At this power level, the ion and electron temperatures increased from T i ∼ 4.0 keV and T e ∼ 4.5 keV (NBI-only phase) to T i ∼ 5.5 keV and T e ∼ 5.2 keV (ICRH + NBI phase), respectively. The increase in the neutron yield was stronger when 80 keV rather than 130 keV deuterons were injected in the plasma. It is shown that the neutron rate, the diamagnetic energy and the electron as well as the ion temperature scale roughly linearly with the applied RF power. A synergistic effect of the combined use of ICRF and NBI heating was observed: (i) the number of neutron counts measured by the neutron camera during the combined ICRF + NBI phases of the discharges exceeded the sum of the individual counts of the NBI-only and ICRF-only phases; (ii) a substantial increase in the number of slowing-down beam ions was detected by the time of flight neutron spectrometer when ICRF power was switched on; (iii) a small D subpopulation with energies slightly above the NBI launch energy was detected by the neutral particle analyzer and γ-ray spectroscopy.

  2. Plasma-surface interaction in negative hydrogen ion sources

    Science.gov (United States)

    Wada, Motoi

    2018-05-01

    A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.

  3. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Ghent University (Belgium); Temmerman, Greg de [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Reinhart, Michael; Matveev, Dmitry; Unterberg, Bernhard; Wienhold, Peter; Breuer, Uwe; Kreter, Arkadi [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); Oost, Guido van [Ghent University (Belgium)

    2014-07-01

    Tungsten is to be used as plasma-facing material for the ITER divertor due to its favourable thermal properties, low erosion and fuel retention. Bombardment of tungsten by low energy ions of hydrogen isotopes, at different surface temperature, can lead to surface modifications and influence the fuel accumulation in the material. This contribution will assess the impact of material microstructure and the correlation between the particle flux, surface modifications and deuterium retention in tungsten. Tungsten samples were exposed to deuterium plasma at a surface temperature of 510 K, 670 K and 870 K, ion energy of 40 eV and ion fluence of 10{sup 26} m{sup -2}. The high and low ion flux ranges were in the order 10{sup 24} m{sup -2}s{sup -1} and 10{sup 22} m{sup -2}s{sup -1}. Depth profiling of deuterium in all the samples was done by secondary ion mass spectroscopy technique and a scanning electron microscope was used to investigate the surface modifications. Modelling of the D desorption spectra with the coupled reaction diffusion system model will be also presented.

  4. Recent negative ion source developments

    International Nuclear Information System (INIS)

    Alton, G.D.

    1978-01-01

    This report describes recent results obtained from studies associated with the development of negative ion sources which utilize sputtering in a diffuse cesium plasma as a means of ion beam generation. Data are presented which relate negative ion yield and important operational parameters such as cesium oven temperature and sputter probe voltage from each of the following sources: (1) A source based in principle according to the University of Aarhus design and (2) an axial geometry source. The important design aspects of the sources are given--along with a list of the negative ion intensities observed to date. Also a qualitative description and interpretation of the negative ion generation mechanism in sources which utilize sputtering in the presence of cesium is given

  5. Effect of noble gas ion pre-irradiation on deuterium retention in tungsten

    NARCIS (Netherlands)

    Cheng, L.; Zhao, Z. H.; De Temmerman, G.; Yuan, Y.; Morgan, T. W.; Guo, L. P.; Wang, B.; Zhang, Y.; Wang, B. Y.; Zhang, P.; Cao, X. Z.; Lu, G. H.

    2016-01-01

    Impurity seeding of noble gases is an effective way of decreasing the heat loads onto the divertor targets in fusion devices. To investigate the effect of noble gases on deuterium retention, tungsten targets have been implanted by different noble gas ions and subsequently exposed to deuterium

  6. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  7. Negative ion sources for tandem accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1980-08-01

    Four kinds of negative ion sources (direct extraction Duoplasmatron ion source, radial extraction Penniing ion source, lithium charge exchange ion source and Middleton-type sputter ion source) have been installed in the JAERI tandem accelerator. The ion sources can generate many negative ions ranging from Hydrogen to Uranium with the exception of Ne, Ar, Kr, Xe and Rn. Discussions presented in this report include mechanisms of negative ion formation, electron affinity and stability of negative ions, performance of the ion sources and materials used for negative ion production. Finally, the author will discuss difficult problems to be overcome in order to get any negative ion sufficiently. (author)

  8. SM-1 negative ion source

    International Nuclear Information System (INIS)

    Huang Zhenjun; Wang Jianzhen

    1987-01-01

    The working principle and characteristics of SM-1 Negative Ion Source is mainly introduced. In the instrument, there is a device to remove O 3 . This instrument can keep high density of negative ions which is generated by the electrical coronas setting out electricity at negative high voltage and can remove the O 3 component which is harmful to the human body. The density of negative ions is higher than 2.5 x 10 6 p./cm 3 while that of O 3 components is less than 1 ppb at the distance of 50 cm from the panel of the instrument. The instrument sprays negative ions automatically without the help of electric fan, so it works noiselessly. It is widely used in national defence, industry, agriculture, forestry, stock raising, sidelines and in the places with an equipment of low density of negative ion or high concentration of O 3 components. Besides, the instrument may also be used to treat diseases, to prevent against rot, to arrest bacteria, to purify air and so on

  9. Depth concentrations of deuterium ions implanted into some pure metals and alloys

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Wisniewski, R.; Kitowski, K.; Wilczynska, T.; Hofman, A.; Kulikauskas, V.; Shiryaev, A.A.; Zubavichyus, Ya.V.

    2011-01-01

    Pure metals (Cu, Ti, Zr, V, Pd) and diluted Pd alloys (Pd-Ag, Pd-Pt, Pd-Ru, Pd-Rh) were implanted by 25-keV deuterium ions at fluences in the range (1.2-2.3) x 10 22 D + /m 2 . The post-treatment depth distributions of deuterium ions were measured 10 days and three months after the implantation by using Elastic Recoil Detection Analysis (ERDA) and Rutherford Backscattering (RBS). Comparison of the obtained results allowed us to make conclusions about relative stability of deuterium and hydrogen gases in pure metals and diluted Pd alloys. Very high diffusion rates of implanted deuterium ions from V and Pd pure metals and Pd alloys were observed. Small-angle X-ray scattering revealed formation of nanosized defects in implanted corundum and titanium

  10. Simulations of negative hydrogen ion sources

    Science.gov (United States)

    Demerdjiev, A.; Goutev, N.; Tonev, D.

    2018-05-01

    The development and the optimisation of negative hydrogen/deuterium ion sources goes hand in hand with modelling. In this paper a brief introduction on the physics and types of different sources, and on the Kinetic and Fluid theories for plasma description is made. Examples of some recent models are considered whereas the main emphasis is on the model behind the concept and design of a matrix source of negative hydrogen ions. At the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences a new cyclotron center is under construction which opens new opportunities for research. One of them is the development of plasma sources for additional proton beam acceleration. We have applied the modelling technique implemented in the aforementioned model of the matrix source to a microwave plasma source exemplifying a plasma filled array of cavities made of a dielectric material with high permittivity. Preliminary results for the distribution of the plasma parameters and the φ component of the electric field in the plasma are obtained.

  11. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    OpenAIRE

    G. Fubiani; H. P. L. de Esch; A. Simonin; R. S. Hemsworth

    2008-01-01

    The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER) is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses). The resulting seco...

  12. Deuterium trapping in ion implanted and co-deposited beryllium oxide layers

    International Nuclear Information System (INIS)

    Markin, A.V.; Gorodetsky, A.E.; Zakharov, A.P.; Wu, C.H.

    2000-01-01

    Deuterium trapping in beryllium oxide films irradiated with 400 eV D ions has been studied by thermal desorption spectroscopy (TDS). It has been found that for thermally grown BeO films implanted in the range 300 - 900 K the total deuterium retention doesn't depend whereas TDS spectra do markedly on irradiation temperature. For R.T. implantation the deuterium is released in a wide range from 500 to 1100 K. At implantation above 600 K the main portion of retained deuterium is released in a single peak centered at about 1000 K. The similar TDS peak is measured for D/BeO co-deposited layer. In addition we correlate our implantation data on BeO with the relevant data on beryllium metal and carbon. The interrelations between deuterium retention and microstructure are discussed. (orig.)

  13. Energy cost of negative pion production on deuterium-tritium target

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminov, V.V. (Petersburg Nuclear Physics Inst., Gatchina, St. Petersburg (Russian Federation)); Petrov, Yu.V. (Petersburg Nuclear Physics Inst., Gatchina, St. Petersburg (Russian Federation)); Shabelski, Yu.M. (Petersburg Nuclear Physics Inst., Gatchina, St. Petersburg (Russian Federation))

    1993-12-01

    The negative pion production by deuterons (T[sub 0] = 0.8 GeV/nucl.) was calculated for a cylindrical gaseous deuterium-tritium target (the density of DT-mixture is [phi] = 0.5). Revised cross sections of nucleon-nucleus interaction were used in a Monte Carlo simulation and multiple nucleon-nuclei collisions were taken into account. The energy cost of negative pion production is [epsilon][sub [pi][sup -

  14. Production of negative helium ions

    International Nuclear Information System (INIS)

    Toledo, A.S. de; Sala, O.

    1977-01-01

    A negative helium ion source using potassium charge exchange vapor has been developed to be used as an injector for the Pelletron accelerator. 3 He and α beam currents of up to 2μA have been extracted with 75% particle transmission through the machine [pt

  15. The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten

    Science.gov (United States)

    Roszell, John Patrick Town

    Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 e

  16. Negative ion detachment cross sections

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1992-10-01

    The authors have measured absolute cross sections for electron detachment and charge exchange for collision of O and S with atomic hydrogen, have investigated the sputtering and photodesorption of negative ions from gas covered surfaces, and have begun an investigation of photon-induced field emission of electrons from exotic structures. Brief descriptions of these activities as well as future plans for these projects are given below

  17. Effect of periodic deuterium ion irradiation on deuterium retention and blistering in Tungsten

    Directory of Open Access Journals (Sweden)

    M. Oya

    2017-08-01

    Full Text Available The effect of periodic irradiation on Deuterium (D retention and blistering in Tungsten (W was investigated. W samples were exposed to D plasma at a fixed fluence while varying the irradiation cycle number (1-shot, 2-shots and 3-shots. Exposure energy and flux were ∼50eV and ∼1 ×1022 D m−2 s−1, respectively. Sample temperatures were 537K and 643K. At 573K, D retention and blister density decreased with increasing number of irradiation cycle. In contrast at 643K, D retention showed no dependence on number of irradiation cycle. Therefore, sample temperature during irradiation is an important parameter in comparing the results of continuous and periodic irradiation, especially in studies involving extremely-high-flux (>1024 D m−2 s−1 irradiation and fluence dependency of D retention.

  18. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    International Nuclear Information System (INIS)

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2004-01-01

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm 2 was obtained under the same conditions that gave 57 45 mA/cm 2 of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl - was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm 2 , sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source

  19. Optimization of negative ion accelerators

    International Nuclear Information System (INIS)

    Pamela, J.

    1991-01-01

    We have started to study negative ion extraction and acceleration systems in view of designing a 1 MeV D - accelerator. This study is being made with a two-Dimensional code that has been specifically developed in our laboratory and validated by comparison to three sets of experimental data. We believe that the criteria for negative ion accelerator design optimization should be: (i) to provide the best optics; (ii) to reduce the power load on the extraction grid; (iii) to allow operation with low electric fields in order to reduce the problem of breakdowns. We show some results of optics calculations performed for two systems that will be operational in the next months: the CEA-JAERI collaboration at Cadarache and the european DRAGON experiment at Culham. Extrapolations to higher energies of 500 to 1100 keV have also been conducted. All results indicate that the overall accelerator length, whatever be the number of gaps, is constrained by space charge effects (Child-Langmuir). We have combined this constraint with high-voltage hold-off empirical laws. As a result, it appears that accelerating 10 mA/cm 2 of D - at 1 MeV with good optics, as required for NET or ITER, is close to the expected limit of high-voltage hold-off

  20. Influence of ion implanted helium on deuterium trapping in Kh18N10T stainless steel

    International Nuclear Information System (INIS)

    Tolstolutskaya, G.D.; Ruzhitskij, V.V.; Kopanets, I.E.

    2004-01-01

    The results are presented on evolution of distribution profiles and helium and deuterium thermal desorption ion implanted in steel 18Cr10NiTi. Accumulation, trapping, retention and microstructure evolution are studied; effect helium and hydrogen simultaneous implantation on these processes is also studied

  1. Charge transfer between hydrogen(deuterium) ions and atoms in metal vapors

    International Nuclear Information System (INIS)

    Alvarez T, I.; Cisneros G, C.

    1981-01-01

    The current state of the experiments on charge transfer between hydrogen (deuterium) ions and atoms in metal vapors are given. Emphasis is given to describing different experimental techniques. The results of calculations if available, are compared with existing experimental data. (author)

  2. Design of a continuously operated 1-keV deuterium-ion extractor

    International Nuclear Information System (INIS)

    Fink, J.H.

    1978-01-01

    A novel grid structure that is cooled only by radiation and conduction is shown to be capable of continuously extracting 2.5 kA.m -2 of 1-keV positive deuterium ions while dissipating a power loading of 0.4 MW.m -2

  3. Negative Ions in low pressure discharges

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Vender, D.; Haverlag, M.; Kroesen, G.M.W.; Hoog, de F.J.

    1995-01-01

    Several aspects of negative ions in low pressure discharges are treated. The elementary processes, in which negative ions are produced and destroyed, are summarized. The influence of negative ions on plasma operation is analyzed in terms of transport equations. It is shown that diffusion, electric

  4. Influence of He ions irradiation on the deuterium permeation and retention behavior in the CLF-1 steel

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Lu, Tao; Li, Xiao-Chun; Liu, Feng; Liu, Hao-Dong; Wang, Jing; An, Zhong-Qing; Ding, Fang; Hong, Suk-Ho; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    To evaluate the influence of He ions irradiation on the deuterium permeation and retention behavior in RAFM steels, samples made of the CLF-1 steel was irradiated with 3.5 MeV He ions. Gas driven permeation experiments were performed, and the permeability of virgin sample and pre-irradiated sample were obtained and compared. In order to characterize the effect of He ions irradiation on the deuterium retention behavior, deuterium gas exposure was carried out at 623 K, followed by thermal desorption spectra experiments. The total deuterium retention of the CLF-1 steel increased owing to He ions implantation, which could be attributed to the increase in trapping site for deuterium by the He pre-irradiation.

  5. Nonlinear waves in plasma with negative ion

    International Nuclear Information System (INIS)

    Saito, Maki; Watanabe, Shinsuke; Tanaca, Hiroshi.

    1984-01-01

    The propagation of nonlinear ion wave is investigated theoretically in a plasma with electron, positive ion and negative ion. The ion wave of long wavelength is described by a modified K-dV equation instead of a K-dV equation when the nonlinear coefficient of the K-dV equation vanishes at the critical density of negative ion. In the vicinity of the critical density, the ion wave is described by a coupled K-dV and modified K-dV equation. The transition from a compressional soliton to a rarefactive soliton and vice versa are examined by the coupled equation as a function of the negative ion density. The ion wave of short wavelength is described by a nonlinear Schroedinger equation. In the plasma with a negative ion, the nonlinear coefficient of the nonlinear Schroedinger equation changes the sign and the ion wave becomes modulationally unstable. (author)

  6. Implantation of D+ ions in niobium and deuterium gas reemission

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tel'kovskij, V.G.

    1975-01-01

    This is a study of the implanting and reflex gasoisolation of D ions in niobium. It has been discovered that deutrium scope and gasoisolation are defined by several processes. An assumption is made that in ion bombarding conditions the implanting solutions are possible to exist and that deutrium can be replaced on the basis of niobium and hydrid compounds NbxDy. The portion of the particles entrained in the metal in one or another way depends on the ion energy. The dependence of the scope coefficient of n D + ions from the target temperature in the range of 290-1500 K was registered. An increase of the scope coefficient of the ions at high temperature with an increase of the ion energy was discovered

  7. Negative ion formation and neutralization processes, (1)

    International Nuclear Information System (INIS)

    Sugiura, Toshio

    1982-01-01

    This review has been made preliminary for the purpose of contribute to the plasma heating by ''negative ion based neutral beam injection'' in the magnetic confinement fusion reactor. A compilation includes the survey of the general processes of negative ion formation, the data of the cross section of H - ion formation and the neutralization of H - ion, and some of new processes of H - ion formation. The data of cross section are mainly experimental, but partly include the results of theoretical calculation. (author)

  8. Ion-driven permeation of deuterium through tungsten under simultaneous helium and deuterium irradiation

    International Nuclear Information System (INIS)

    Lee, H.T.; Tanaka, H.; Ohtsuka, Y.; Ueda, Y.

    2011-01-01

    Ion-driven permeation of D through tungsten under simultaneous irradiation with He-D was measured as a function of temperature, flux, and energy. He reduced the permeation flux with the reduction increasing with decreasing temperature. The reduction in permeation flux followed a linear dependence to the incident flux at T > 1000 K, but shifted to a square root dependence at T < 1000 K. The results were interpreted as shifts from diffusion limited to recombination limited H transport according to Doyle and Brice's theory. Arrhenius functions of front diffusivity and recombination coefficients were derived and used to calculate the transport parameter W. The effect of He can be interpreted as changes to the front diffusivity that approaches H diffusion behavior in the absence of traps. The reduction in total concentration results in a shallower concentration gradient that can describe the observed decrease in permeation.

  9. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  10. Studies on the determination of surface deuterium in AISI 1062, 4037, and 4140 steels by secondary ion mass spectrometry

    Science.gov (United States)

    Sastri, V. S.; Donepudi, V. S.; McIntyre, N. S.; Johnston, D.; Revie, R. W.

    1988-12-01

    The concentration of deuterium at the surface of cathodically charged high strength steels AISI 1062, 4037, and 4140 has been determined by secondary ion mass spectrometry (SIMS). The beneficial effects of pickling in NAP (a mixture of nitric, acetic, and phosphoric acids) to remove surfacebound deuterium have been observed.

  11. Cesium injection system for negative ion duoplasmatrons

    International Nuclear Information System (INIS)

    Kobayashi, M.; Prelec, K.; Sluyters, T.J.

    1978-01-01

    A design for admitting cesium vapor into a hollow hydrogen plasma discharge in a duoplasmatron ion source for the purpose of increasing the negative hydrogen ion output current is described. 60 mA beam currents for negative hydrogen ions are reported

  12. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  13. Negative ion formation processes: A general review

    International Nuclear Information System (INIS)

    Alton, G.D.

    1990-01-01

    The principal negative ion formation processes will be briefly reviewed. Primary emphasis will be placed on the more efficient and universal processes of charge transfer and secondary ion formation through non-thermodynamic surface ionization. 86 refs., 20 figs

  14. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Dittmar, T.; Matveev, D.; Linsmeier, C.; Breuer, U.; Kreter, A.; Van Oost, G.

    2015-01-01

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (1026 m−2) and

  15. Production of solid deuterium targets by ion implantation

    International Nuclear Information System (INIS)

    Csikai, J.; Szegedi, S.; Olah, L.; El-Megrab, A.M.; Molla, N.I.; Rahman, M.M.; Miah, R.U.; Habbani, F.; Shaddad, I.

    1997-01-01

    Solid metal, semiconductor and metallic glass samples were irradiated with deuteron atomic ions between 60 and 180 keV incident energies. Accumulation rates of deuterons in different targets were recorded by the detection of protons and neutrons via the 2 H(d,p) and 2 H(d,n) reactions. A simple analytical expression is given to describe the kinetics of the accumulation. The dependence of the reaction rate on the deuteron energy gives information on the concentration profile in addition to the neutron flux density spectra. A varying distortion of the implanted deuteron profiles by a change in the beam energy were also observed for different targets. (orig.)

  16. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Petty, C.C.; Baity, F.W.; Bernabei, S.; Greenough, N.; Heidbrink, W.W.; Mau, T.K.; Porkolab, M.

    1999-05-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f = 60 MHz, B T = 1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (monster sawteeth), at relatively low rf power levels of ∼1 MW

  17. Experiments on ion cyclotron damping at the deuterium fourth harmonic in DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R. I.; Baity, F. W.; Bernabei, S.; Greenough, N.; Heidbrink, W. W.; Mau, T. K.; Petty, C. C.; Porkolab, M.

    1999-01-01

    Absorption of fast Alfven waves by the energetic ions of an injected beam is evaluated in the DIII-D tokamak. Ion cyclotron resonance absorption at the fourth harmonic of the deuteron cyclotron frequency is observed with deuterium neutral beam injection (f=60 MHz, B T =1.9 T). Enhanced D-D neutron rates are evidence of absorption at the Doppler-shifted cyclotron resonance. Characteristics of global energy confinement provide further proof of substantial beam acceleration by the rf. In many cases, the accelerated deuterons cause temporary stabilization of the sawtooth (''monster sawteeth''), at relatively low rf power levels of ∼1 MW. (c) 1999 American Institute of Physics

  18. Solvent-dependent deuterium isotope effects in the 15N NMR spectra of an ammonium ion

    International Nuclear Information System (INIS)

    Wielogorska, E.; Jackowski, K.

    2000-01-01

    Deuterium isotope effects on 15 N NMR chemical shifts and spin-spin coupling constants have been investigated for the 15 N enriched ammonium chloride (conc. 15 NH 4 + ion has been observed in water, methanol, ethanol and dimethylsulfoxide, while the 15 ND 4 + has been monitored in the analogous deuterated liquids. It is shown that the isotope effect in nitrogen chemical shifts ( 1 Δ 15 N( 2/1 H)), significantly different in various solvents, changes from -1.392 ppm in dimethylsulfoxide to -0.071 ppm in ethanol. The 1 J(N,H) and 1 J(N,D) coupling constants have been measured for acidic solutions under conditions of slow proton (or deuterium) exchange. The reduced coupling constants have been estimated to present isotope effects in the spin-spin coupling constants. The latter isotope effects are fairly small. (author)

  19. Negative Halogen Ions for Fusion Applications

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85-90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams

  20. A model for negative ion extraction and comparison of negative ion optics calculations to experimental results

    International Nuclear Information System (INIS)

    Pamela, J.

    1990-10-01

    Negative ion extraction is described by a model which includes electron diffusion across transverse magnetic fields in the sheath. This model allows a 2-Dimensional approximation of the problem. It is used to introduce electron space charge effects in a 2-D particle trajectory code, designed for negative ion optics calculations. Another physical effect, the stripping of negative ions on neutral gas atoms, has also been included in our model; it is found to play an important role in negative ion optics. The comparison with three sets of experimental data from very different negative ion accelerators, show that our model is able of accurate predictions

  1. Charging of dust grains in a plasma with negative ions

    International Nuclear Information System (INIS)

    Mamun, A.A.; Shukla, P.K.

    2003-01-01

    The role of negative ions on the charging of dust grains in a plasma is examined. Two models for negative ion distributions are considered. These are streaming negative ions and Boltzmannian negative ions. It is found that the effects of the negative ion number density, negative ion charge, and negative ion streaming speed significantly affect the dust grain surface potential or the dust grain charge

  2. The european programme on negative ion beam development

    International Nuclear Information System (INIS)

    Pamela, J.; Hemsworth, R.; Jacquot, C.; Holmes, A.J.T.

    1991-01-01

    The European Programme on Negative Ion Beam development consists presently of three main tasks: (i) the DRAGON experiment starting at Culham, with the objective of accelerating 4 A of D - to 200 keV; (ii) the conceptual study of a 1 MV, 15 A power supply, conducted in european industry under the supervision of Cadarache; (iii) the design study of a 1MV, 4 A, deuterium test bed at Cadarache, conducted by the EURATOM-CEA Association (Cadarache) with support from the EURATOM-UKAEA association (Culham) and the FOM institute (Amsterdam). The conclusions of these three tasks are to be brought together during the first half of 1992, in order to prepare a proposal for a 1 MV, 4 A, deuterium test bed. Other experimental activities are being conducted in european laboratories, either directly related to the main programme (RF source and plasma neutralizer at Culham; discharge pulsing at Dublin and FOM-Amsterdam) or under separate contracts (energy recovery and cesium seeding at Cadarache)

  3. Negative electrodes for Na-ion batteries.

    Science.gov (United States)

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  4. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  5. Investigation of the deuterium solubility in niobium using secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Zuechner, H.; Bruening, T.

    1991-01-01

    From SIMS measurements on deuterium charged niobium foils a pressure-composition isotherm was obtained. The plateau pressure of the α-β-two-phase region is in good agreement with that known from electrochemical p-n isotherm measurements. The solubility in the homogeneous α-phase measured by SIMS, however, is enhanced compared with the electrochemical p-n isotherm, i.e. the homogeneous α-phase is broadened. These results are due to the ion bombardment causing a lattice distortion within the near surface region during the SIMS experiment. (orig.)

  6. Negative ion beam extraction in ROBIN

    International Nuclear Information System (INIS)

    Bansal, Gourab; Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren; Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak

    2013-01-01

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10 12 cm −3 is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm 2 as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10 11 cm −3 has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated

  7. Deuterium ion irradiation induced precipitation in Fe–Cr alloy: Characterization and effects on irradiation behavior

    International Nuclear Information System (INIS)

    Liu, P.P.; Yu, R.; Zhu, Y.M.; Zhao, M.Z.; Bai, J.W.; Wan, F.R.; Zhan, Q.

    2015-01-01

    Highlights: • A new phase precipitated in Fe–Cr alloy after deuterium ion irradiation at 773 K. • B2 structure was proposed for the Cr-rich new phase. • Strain fields around the precipitate have been measured by GPA. • The precipitate decrease growth rate of dislocation loop under electron irradiation. - Abstract: A new phase was found to precipitate in a Fe–Cr model alloy after 58 keV deuterium ion irradiation at 773 K. The nanoscale radiation-induced precipitate was studied systematically using high resolution transmission electron microscopy (HRTEM), image simulation and in-situ ultrahigh voltage transmission electron microscopy (HVEM). B2 structure is proposed for the new Cr-rich phase, which adopts a cube-on-cube orientation relationship with regard to the Fe matrix. Geometric phase analysis (GPA) was employed to measure the strain fields around the precipitate and this was used to explain its characteristic 1-dimensional elongation along the 〈1 0 0〉 Fe direction. The precipitate was stable under subsequent electron irradiation at different temperatures. We suggest that the precipitate with a high interface-to-volume ratio enhances the radiation resistance of the material. The reason for this is the presence of a large number of interfaces between the precipitate and the matrix, which may greatly reduce the concentration of point defects around the dislocation loops. This leads to a significant decrease in the growth rate

  8. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source--Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    Science.gov (United States)

    Fubiani, G.; Boeuf, J. P.

    2013-11-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).

  9. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    International Nuclear Information System (INIS)

    Fubiani, G.; Boeuf, J. P.

    2013-01-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  10. Surface generation of negative hydrogen ion beams

    International Nuclear Information System (INIS)

    Bommel, P.J.M. van.

    1984-01-01

    This thesis describes investigations on negative hydrogen ion sources at the ampere level. Formation of H - ions occurs when positive hydrogen ions capture two electrons at metal surfaces. The negative ionization probability of hydrogen at metal surfaces increases strongly with decreasing work function of the surface. The converters used in this study are covered with cesium. Usually there are 'surface plasma sources' in which the hydrogen source plasma interacts with a converter. In this thesis the author concentrates upon investigating a new concept that has converters outside the plasma. In this approach a positive hydrogen ion beam is extracted from the plasma and is subsequently reflected from a low work function converter surface. (Auth.)

  11. Negative Ion Sources: Magnetron and Penning

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    The history of the magnetron and Penning electrode geometry is briefly outlined. Plasma generation by electrical discharge-driven electron impact ionization is described and the basic physics of plasma and electrodes relevant to magnetron and Penning discharges are explained. Negative ions and their applications are introduced, along with their production mechanisms. Caesium and surface production of negative ions are detailed. Technical details of how to build magnetron and Penning surface plasma sources are given, along with examples of specific sources from around the world. Failure modes are listed and lifetimes compared. (author)

  12. Negative Ion Sources: Magnetron and Penning

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    The history of the magnetron and Penning electrode geometry is briefly outlined. Plasma generation by electrical discharge-driven electron impact ionization is described and the basic physics of plasma and electrodes relevant to magnetron and Penning discharges are explained. Negative ions and their applications are introduced, along with their production mechanisms. Caesium and surface production of negative ions are detailed. Technical details of how to build magnetron and Penning surface plasma sources are given, along with examples of specific sources from around the world. Failure modes are listed and lifetimes compared.

  13. Negative ion sound solitary waves revisited

    Science.gov (United States)

    Cairns, R. A.; Cairns

    2013-12-01

    Some years ago, a group including the present author and Padma Shukla showed that a suitable non-thermal electron distribution allows the formation of ion sound solitary waves with either positive or negative density perturbations, whereas with Maxwellian electrons only a positive density perturbation is possible. The present paper discusses the qualitative features of this distribution allowing the negative waves and shared with suitable two-temperature distributions.

  14. Autoconditioning system for BNL negative ion sources

    International Nuclear Information System (INIS)

    Larson, R.A.

    1979-01-01

    The autoconditioning system at BNL is being used to condition negative ion sources now under development. A minicomputer with appropriate interface hardware is employed to implement simple algorithims, slowly increasing the operating point of the source. This paper gives a brief description of the hardware and the software system

  15. Negative secondary ion emission from oxidized surfaces

    International Nuclear Information System (INIS)

    Gnaser, H.; Kernforschungsanlage Juelich G.m.b.H.

    1984-01-01

    The emission of negative secondary ions from 23 elements was studied for 10 keV O 2 + and 10 keV In + impact at an angle of incidence of 45 0 . Partial oxidation of the sample surfaces was achieved by oxygen bombardment and/or by working at a high oxygen partial pressure. It was found that the emission of oxide ions shows an element-characteristic pattern. For the majority of the elements investigated these features are largely invariant against changes of the surface concentration of oxygen. For the others admission of oxygen strongly changes the relative intensities of oxide ions: a strong increase of MO 3 - signals (M stands for the respective element) is accompanied by a decrease of MO - and M - intensities. Different primary species frequently induce changes of both the relative and the absolute negative ion intensities. Carbon - in contrast to all other elements - does not show any detectable oxide ion emission but rather intense cluster ions Csub(n) - (detected up to n=12) whose intensities oscillate in dependence on n. (orig./RK)

  16. The production and destruction of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.

    1991-01-01

    During the present grant period we are continuing our measurements of cross sections and asymmetry parameters for single photon-single electron detachment from atomic negative ions. In this period we have studied the stable ions B - and Li - . As a by product of these measurements we have investigated a new technique for measuring electron affinities. As in our previous work, we have made energy- and angle-resolved spectroscopic measurements of the yields and angular distributions of photoelectrons ejected at the intersection of perpendicularly crossed laser and negative ion beams. A combination of measurements of photoelectron yields, which are proportional to differential cross sections, and angular distributions allow us to determine angle-integrated cross sections for the photodetachment process. Cross sections for the inverse process of radiative attachment can be obtained from the photodetachment data by applying the principle of detailed balance

  17. Design of a negative-ion based NBI system for JT-60U

    International Nuclear Information System (INIS)

    Kuriyama, M.; Araki, M.; Inoue, T.; Kunieda, S.; Matsuoka, M.; Mizuno, M.; Ohara, Y.; Okumura, Y.; Oohara, H.; Watanabe, K.

    1992-01-01

    This paper reports on a negative-ion based NBI system which is planned as a key device on the JT-60U in the experiments of current drive and plasma core heating with high density plasmas. The NBI system will inject neutral beams of 500keV, 10MW for 10sec from a beamline with two ion sources. The neutral beam will be injected tangentially in the codirection. Each ion source is a modified volume production-type negative-ion source with cesium vapor. The acceleration current is 22A with deuterium beam, and the current density is 13mA/cm 2 . An operational pressure in the negative-ion generator is less than 0.5 Pa. A three-stage electro static acceleration system is adopted as the accelerator. The beamline length between the ion source and the injection port is 24m. The beamline consists of an ion source tank, neutralizer cells of 10m in length, an ion dump tank and a drift duct. The ion source tank contains large cryopumps to maintain the exit of the ion source sufficiently low. The ion dump tank contains ion deflecting coils, ion dumps for positive and negative ions, a calorimeter, cryopumps and beam scrapers. Residual ions are deflected by the combined magnetic fields produced by the deflecting coils and the stray field form the tokamak. The two sources are connected to an acceleration power supply of 500kV/64A/10sec, while the negative-ion generator power, the extraction voltage, and electron-suppression voltage are fed individually

  18. Fundamental atomic collisional processes in negative ion sources for H-

    International Nuclear Information System (INIS)

    Crandall, D.H.; Barnett, C.F.

    1977-01-01

    The basic collision processes which create or destroy H - in gas-phase collisions like those which occur in ion sources are discussed. Cross sections are presented which show that, for known processes, destruction is generally more likely than production. One possible production mechanism (on which there is no data) is suggested, and isotope effects between hydrogen and deuterium are discussed

  19. Massive parallel 3D PIC simulation of negative ion extraction

    Science.gov (United States)

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-09-01

    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  20. Size scaling of negative hydrogen ion sources for fusion

    Science.gov (United States)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  1. Development of versatile multiaperture negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Cavenago, M.; Minarello, A.; Sattin, M. [INFN-LNL, v.le dell' Universita n 2, I-35020, Legnaro (PD) Italy (Italy); Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S. [Consorzio RFX, Associazione Euratom-ENEA sulla fusione, c.so S. Uniti 4, 35127 Padova (Italy); and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  2. Formation of hydrogen negative ions by surface and volume processes with application to negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1979-01-01

    During the last few decades interest in negative-hydrogen ion sources has been directed mainly toward synchrotron and other particle accelerator applications, with emphasis on high current densities delivered for short pulses. But within the last several years there has been an awareness in the magnetic fusion program of the future need for negative ions as a means for generating high energy neutral beams, beams with energies above a few hundred keV. Negative ions seem to be the only effective intermediary for efficiently producing such beams. Although methods for generating negative ion beams have relied upon synchrotron concepts, the requirements for fusion are very different: here one is interested in more moderate current densities, up to 100 m A cm -2 , but with continuous operation. Proposed source modules would accelerate of the order of 10 A of beam current and deliver several megawatts of beam power. Both H - and D - beams are being considered for application in different reactor systems. The conceptualization of negative ion sources is now in a very volatile stage. But of the great variety of proposals that have been offered to date, three general areas appear ready for development. These are: first, the double charge exchange method for converting a positive ion beam into a negative ion beam; second, electron-volume processes wherein low energy electrons interacting with molecular species lead to negative ion products via dissociative attachment or recombination; and third, generation of negative ions in surface interactions, principally via desorption and backscattering. Both our qualitative and our quantitative understanding of these processes diminishes as one proceeds from the first through the third. The physics of these three methods is considered in detail

  3. Design study of a negative-ion based NBI system for JT-60U

    International Nuclear Information System (INIS)

    Akino, Noboru; Araki, Masanori; Ebisawa, Noboru

    1994-03-01

    A high energy negative-ion based NBI system for JT-60U has been designed. The objective of the NBI system is to demonstrate mega-ampere level NB current drive and plasma core heating in a reactor-grade high density plasma. This is the first negative-ion based NBI system in the world. The required specifications of the NBI system are; a beam energy of 500 keV, an injection power of 10 MW, a beam pulse duration of 10 sec with a duty cycle of 1/60 and a beam species of deuterium or hydrogen. The neutral beam power of 10 MW is injected tangentially using one beam-line with two large negative-ion sources. The construction of the NBI system has been started, and will be operational in 1996. (author)

  4. Photodetachment of negative C60- ions

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Baltenkov, A.S.; Krakov, B.G.

    1998-01-01

    A model that describes the electron structure of negative fullerene C 60 - ions is proposed. The model contains only two experimentally observed parameters, namely the fullerene radius and the affinity energy of the electron to neutral C 60 . In the frame of this model, cross sections are calculated of elastic scattering of slow electrons on neutral fullerene, of C 60 - photodetachment near the threshold of this process and of radiative recombination of slow electrons with neutral fullerenes. (orig.)

  5. Collective phenomena in negative ion photodetachment

    International Nuclear Information System (INIS)

    Ivanov, V.K.

    1996-01-01

    The many-electron collective effects in negative ion photodetachment are discussed. The calculations of photodetachment cross sections and photoelectron angular distributions have been performed within the Many-Body Theory Methods. It is shown that the role of many-electron interactions leading to the collective effects like dynamical polarizability, interchannel interaction, core polarization, core relaxation, is very important to describe the photodetachment processes. (author)

  6. Characteristics and dynamics of the boundary layer in RF-driven sources for negative hydrogen ions

    International Nuclear Information System (INIS)

    Wimmer, Christian

    2014-01-01

    The design of the neutral beam injection system of the upcoming ITER fusion device is based on the IPP (Max-Planck-Institut fuer Plasmaphysik, Garching) prototype source for negative hydrogen ions. The latter consists of a driver, in which hydrogen (or deuterium) molecules are dissociated in a large degree in a hydrogen plasma; the plasma expands then towards the plasma grid, on which negative hydrogen ions are formed by conversion of atoms or positive ions by the surface process and are extracted in the following accompanied by the co-extraction of electrons via a three grid system. Electrons are removed out of the extracted beam prior full acceleration using deflection magnets, bending them onto the second grid. The thermal load limits the tolerable amount of co-extracted electrons. A magnetic filter field in the expansion chamber reduces the electron temperature and density, on the one hand in order to minimize the destruction process of negative hydrogen ions by electron collisions and on the other hand in order to reduce the co-extracted electron current density. Caesium is evaporated into the source for an effective production of negative hydrogen ions, lowering the work function of the plasma grid. Due to the high chemical reactivity of caesium, the high vacuum condition in the source and the plasma-wall interaction, complex redistribution processes of Cs take place in the ion source. The boundary layer is the plasma volume between the magnetic filter field and the plasma grid, in which the most important physics of the negative ion source takes place: the production of negative hydrogen ions at the plasma grid, their transport through the plasma and the following extraction. A deeper understanding of the plasma and Cs dynamics in the boundary layer is desirable in order to achieve a stable long-pulse operation as well as to identify possible future improvements. For this reason, the boundary layer of the prototype source has been characterized in this work

  7. Recent negative ion source developments at ORNL

    International Nuclear Information System (INIS)

    Alton, G.D.

    1979-01-01

    According to specifications written for the 25 MV ORNL tandem accelerator, the ion source used during acceptance testing must be capable of producing a negative ion beam of intensity greater than or equal to 7.5 μA within a phase space of less than or equal to 1 π cm-mrad (MeV)/sup 1/2/. The specifications were written prior to the development of an ion source with such capabilities but fortunately Andersen and Tykesson introduced a source in 1975 which could easily meet the specified requirements. The remarkable beam intensity and quality properties of this source has motivated the development of other sources which utilize sputtering in the presence of a diffuse cesium plasma - some of which will be described in these proceedings. This report describes results of studies associated with the development of a modified Aarhus geometry and an axial geometry source which utilize sputtering in the presence of a diffuse cesium plasma for the production of negative ion beams

  8. Determination of deuterium adsorption site on palladium(1 0 0) using low energy ion recoil spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kambali, I. [Department of Physics, University of Newcastle, Callaghan (Australia); O' Connor, D.J. [Department of Physics, University of Newcastle, Callaghan (Australia)], E-mail: john.oconnor@newcastle.edu.au; Gladys, M.J. [Department of Physics, University of Newcastle, Callaghan (Australia); Karolewski, M.A. [Department of Chemistry, University of Brunei Darussalam, Gadong BE1410 (Brunei Darussalam)

    2008-05-15

    Ion beam analysis has been recently applied to study the adsorption phenomena of some adsorbates on metal surfaces. In this paper, surface recoils created by low energy Ne{sup +} ions are employed to study the adsorption site of deuterium (D) atoms on Pd(1 0 0). This technique is extremely surface sensitive with the capacity for atomic layer depth resolution. From azimuthal angle observations of Pd(1 0 0) specimen, it was found that at room temperature, D was adsorbed in the fourfold hollow site of Pd(1 0 0) at a height of 0.25 {+-} 0.05 A above the surface. The adsorbate remains in the hollow site at all temperatures to 383 K though the vertical height above the surface is found to depend on coverage and for the first time evidence is found of a transition to a p(2 x 2) structure for the adsorbate. There is no evidence of D sitting in the Pd(1 0 0) subsurface at room and higher temperatures.

  9. Hydrogen/deuterium exchange of multiply-protonated cytochrome c ions

    International Nuclear Information System (INIS)

    Wood, T.D.; Guan, Ziqiang; O'Connor, P.B.

    1995-01-01

    Low resolution measurements show gaseous multiply-protonated cytochrome c ions undergo hydrogen/deuterium (H/D) exchange with pseudo first-order kinetics at three distinct exchange levels, suggesting the co-existence of gaseous protein conformations. Although exchange levels first increase with increasing charge values, they decrease at the highest charge values, consistent with solution-phase behavior of cytochrome c, where the native structure unfolds with decreasing pH until folding into a compact A-state at lowest pH. High resolution measurements indicate the presence of at least six H/D exchange levels. Infrared (IR) laser heating and fast collisions via quadrupolar excitation (QE) increase H/D exchange levels (unfolding) while charge-stripping ions to lower charge values can increase or decrease H/D exchange levels (unfolding or folding). Wolynes has suggested studying proteins in vacuo could play an important role in delineating the contributions various forces play in the protein folding process, provided appropriate comparisons can be made between gas-phase and solution-phase structures

  10. JT-60 negative ion beam NBI apparatus. Present state of its construction and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)

  11. Effect of electrode materials on a negative ion production in a cesium seeded negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi; Morishita, Takutoshi; Kashiwagi, Mieko; Hanada, Masaya; Iga, Takashi; Inoue, Takashi; Watanabe, Kazuhiro; Imai, Tsuyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Wada, Motoi [Doshisha Univ., Kyoto (Japan)

    2003-03-01

    Effects of plasma grid materials on the negative ion production efficiency in a cesium seeded ion source have been experimentally studied. Grid materials of Au, Ag, Cu, Ni, and Mo were examined. A 2.45 GHz microwave ion source was utilized in the experiment to avoid contamination of tungsten from filament cathode. Relations between the negative ion currents and work functions of the grid were measured for these materials. Influence of the contamination by tungsten on the grid was also investigated. If was clarified that the negative ion production efficiency was determined only by the work function of the grid. The efficiency did not depend on the material itself. The lowest work function of 1.42 eV was obtained for Au grid with Cs, and a high H{sup -} production efficiency of 20.7 mA/kW was measured. This efficiency is about 1.3 times larger than that of Cs/Mo and Cs/Cu. Further improvement of the production efficiency was observed by covering the plasma grid with tungsten and cesium simultaneously. Such co-deposition of W and Cs on the plasma grid produced the negative ion production efficiency of 1.7 times higher than that from the tungsten grid simply covered with Cs. (author)

  12. Structure and Dynamics of Negative Ions

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report describes progress made during the final three-year grant period 1997-2000. During this period, we experimentally investigated the structure and dynamics of negative ions by detaching the outermost electron in controlled processes induced by photon-, electron- and heavy particle-impact. In this manner we studied, at a fundamental level, the role of electron correlation in the structure and dynamics of simple, few-particle atomic systems. Our measurements have provided sensitive tests of the ability of theory to go beyond the independent electron model

  13. Alkali deuteride negative ion source development plan

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A three phase program is described for the development of neutral beam systems. In the first phase, concluded in May, 1977, the laser initiated source was characterized. In phase two, scheduled for completion in September, 1978, negative ion confinement and extraction are investigated using laser energy deposition as a baseline method to produce D - . In addition other energy deposition schemes are studied in order to define a baseline energetic beam source system. The third phase is devoted to producing an integrated baseline system and scaling it up in current and energy to meet magnetic confinement system requirements

  14. The new BNL polarized negative ion source

    International Nuclear Information System (INIS)

    Hershcovitch, A.I.; Alessi, J.G.; DeVito, B.; Kponou, A.E.

    1991-01-01

    A new ground state source of negative hydrogen ions with polarized nuclei (rvec H - ) is being developed at BNL. Extensive developmental research has been aimed at improving each element of (rvec H - ) production: cold H degrees beam, spin selection and focusing magnets, and ionizer. These elements have recently been integrated into a source. A first test with the accommodator nozzle cooled only to liquid nitrogen temperatures resulted in 5 μA of H - . Tests at liquid helium temperatures are now beginning. 7 refs., 1 fig

  15. Status and plans for the development of an RF negative ion source for ITER NBI

    International Nuclear Information System (INIS)

    Falter, H.D.; Franzen, P.; Speth, E.; Kraus, W.; Bandyopadhyay, M.; Encheva, A.; Fantz, U.; Franke, Th.; Heinemann, B.; Holtum, D.; Martens, C.; McNeely, P.; Riedl, R.; Tanga, A.; Wilhelm, R.

    2005-01-01

    Inductively coupled RF ion sources are being developed at IPP for the production of negatively charged hydrogen ions. The source volume is approximately 50 litres. The extraction area varies between 70 and 300 cm 2 . With an extraction area of 70 cm 2 current densities of 26 mA/cm 2 for hydrogen and 16 mA/cm 2 for deuterium have been achieved. Experiments in deuterium have so far been very limited and the system is not yet optimised for deuterium. The RF source requires a pressure of at least 0.1 Pa in the driver. It is expected, that the ITER requirement of 0.3 Pa filling pressure can be met in a source with a relevant extraction area and gas flow. The co-extracted electron current can be kept at or near the level of the ion current. The extracted current scales almost linearly with extraction area and a current of 7.5 A has been extracted from a 306 cm 2 area. Due to the strong variation in filter field over the width of the grid so far only part of this current passes through the accelerator and is detected on the calorimeter. One of the test beds is at present being upgraded to allow one hour pulses and deuterium operation with approximately 250 cm 2 extraction area. A third test bed is being assembled to house a half size ITER source with approximately 1000 cm 2 extraction area. This so-called half size ITER source is being manufactured and will be used to demonstrate scalability of the RF source concept. (author)

  16. Peculiarities of using mixed deuterium and tritium ion beams of complicated atomic-molecular composition for fast neutron generation

    International Nuclear Information System (INIS)

    Kir'yanov, G.I.; Syromukov, S.V.

    1983-01-01

    The neutron yield is calculated depending on deuterium and tritium beam parameters as well as on the target parameters. Cases of target presaturation with hydrogen nuclides and of target stuffing with the ion beam in the process of the system functioning are discussed. It is shown that the neutron yield is approximately three times more in the case with a pure beam compared to the case with a niked beam

  17. Comparison of deuterium retention for ion-irradiated and neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Kobayashi, Makoto; Okuno, Kenji; Shimada, Masashi; Calderoni, Pattrick; Oda, Takuji; Hara, Masanori; Hatano, Yuji; Watanabe, Hideo

    2014-01-01

    The behavior of D retentions for Fe 2+ irradiated tungsten with the damage of 0.025-3 dpa was compared with that for neutron irradiated tungsten with 0.025 dpa. The D 2 TDS spectra for Fe 2+ irradiated tungsten consisted of two desorption stages at 450 K and 550 K although that for neutron irradiated tungsten was composed of three stages and addition desorption stage was found around 750 K. The desorption rate of major desorption stage at 550 K increased as the number of dpa by Fe 2+ irradiation increased. In addition, the first desorption stage at 450 K was only found for the damaged samples, indicating that the second stage would be based on intrinsic defects or vacancy produced by Fe 2+ irradiation and the first stage should be the accumulation of D in mono vacancy leading to the lower activation energy, where the dislocation loop and vacancy was produced. The third one was only found for the neutron irradiation, showing the D trapping by void or vacancy cluster and the diffusion effect is also contributed due to high FWHM of TDS spectrum. It can be said that the D 2 TDS spectra for Fe 2+ -irradiated tungsten could not represent that for neutron-irradiated one, showing that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten has a difference from that for ion-irradiated one. (author)

  18. Negative ion based neutral beams for plasma heating

    International Nuclear Information System (INIS)

    Prelec, K.

    1978-01-01

    Neutral beam systems based on negative ions have been considered because of a high expected power efficiency. Methods for the production, acceleration and neutralization of negative ions will be reviewed and possibilities for an application in neutral beam lines explored

  19. Performance of a dual-process PVD/PS tungsten coating structure under deuterium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunmyung; Lee, Ho Jung; Kim, Sung Hwan [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Song, Jae-Min [Department of Nuclear Engineering, Seoul National University, Seoul (Korea, Republic of); Jang, Changheui, E-mail: chjang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • D{sup +} irradiation performance of a dual-process PVD/PS W coating was evaluated. • Low-energy plasmas exposure of 100 eV D{sup +} with 1.17 × 10{sup 21} D/s{sup −1} m{sup 2} flux was applied. • After D ion irradiation, flakes were observed on the surface of the simple PS coating. • While, sub-μm size protrusions were observed for dual-process PVD/PS W coating. • Height of D spike in depth profile was lower for dual-process PVD/PS W coating. - Abstract: A dual-process coating structure was developed on a graphite substrate to improve the performance of the coating structure under anticipated operating condition of fusion devices. A thin multilayer W/Mo coating (6 μm) was deposited by physical vapor deposition (PVD) method with a variation of Mo interlayer thickness on plasma spray (PS) W coating (160 μm) of a graphite substrate panel. The dual-process PVD/PS W coatings then were exposed to 3.08 × 10{sup 24} D m{sup −2} of 100 eV D ions with a flux of 1.71 × 10{sup 21} D m{sup −2} s{sup −1} in an electron cyclotron resonance (ECR) chamber. After irradiation, surface morphology and D depth profiles of the dual-process coating were analyzed and compared to those of the simple PS W coating. Both changes in surface morphology and D retention were strongly dependent on the microstructure of surface coating. Meanwhile, the existence of Mo interlayer seemed to have no significant effect on the retention of deuterium.

  20. 2D accelerator design for SITEX negative ion source

    International Nuclear Information System (INIS)

    Whealton, J.H.; Raridon, R.J.; McGaffey, R.W.; McCollough, D.H.; Stirling, W.L.; Dagenhart, W.K.

    1983-01-01

    Solving the Poisson-Vlasov equations where the magnetic field, B, is assumed constant, we optimize the optical system of a SITEX negative ion source in infinite slot geometry. Algorithms designed to solve the above equations were modified to include the curved emitter boundary data appropriate to a negative ion source. Other configurations relevant to negative ion sources are examined

  1. Size scaling of negative hydrogen ion sources for fusion

    International Nuclear Information System (INIS)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-01-01

    The RF-driven negative hydrogen ion source (H − , D − ) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size

  2. Interaction of atomic and low-energy deuterium with tungsten pre-irradiated with self-ions

    International Nuclear Information System (INIS)

    Ogorodnikova, O. V.; Markelj, S.; Toussaint, U. von

    2016-01-01

    Polycrystalline tungsten (W) specimens were pre-irradiated with self-ions to create identical samples with high density of defects up to ∼2.5 μm near the surface. Then, W specimens were exposed to either thermal atomic deuterium (D) beam with an incident energy of ∼0.2 eV or low energy D plasma with the incident energy varied between 5 and 200 eV at different sample temperatures. Each sample was exposed once at certain temperature and fluence. The D migration and accumulation in W were studied post-mortem by nuclear reaction method. It was shown that the rate of the D to occupy radiation-induced defects increases with increasing the incident energy, ion flux, and temperature. Experimental investigation was accompanied by modelling using the rate-equation model. Moreover, the analytical model was developed and benchmarked against numerical model. The calculations of the deuterium diffusion with trapping at radiation-induced defects in tungsten by analytical model are consistent with numerical calculations using rate-equation model. The data of reflection and penetration of atomic and low-energy D were taking from calculations using molecular dynamics (MD) with Juslin interatomic potentials and a binary collision code TRIM. MD calculations show an agreement with a binary collision code TRIM only in a very narrow range of deuterium energies between 1 and 20 eV. Incorporation of the data of reflection and penetration of deuterium in the macroscopic modelling has been done to verify the range of validity of calculations using MD and binary collision code TRIM by comparison of modelling results with experimental data. Modelling results are consistent with experiments using reflection and penetration data of D obtained from TRIM code for incident ion energy above 1 eV. Otherwise, the parameters obtained from MD should be incorporated in the rate-equation model to have a good agreement with the experiments

  3. Fundamental properties of secondary negative ion emission by sputtering

    International Nuclear Information System (INIS)

    Shimizu, Toshiki; Tsuji, Hiroshi; Ishikawa, Junzo

    1989-01-01

    The report describes some results obtained from preliminary experiments on secondary negative ion emission from a cesiated surface by Xe-ion beam sputtering, which give the production probability. A measuring system is constructed for secondary negative ion emission. The system consists of a microwave ion source with a lens, a sputtering target holder with a heater, a cesium oven, a limiting aperture with a substrate for deposition, a negative-ion extractor and lens, and a ExB type mass separator. Observations are made on the dependence of negative ion current on cesium supply, dependence of negative ion current on target temperature, and negative ion production probability. The cesium supply and the target temperature are found to strongly influence the negative ion emission. By controlling these factors, the optimum condition for secondary negative ion emission is achieved with a minimum surface work function. The production probability of the negative ion is found to be very high, about 20% for carbon. Therefore, the secondary negative ion emission is considered a useful and highly efficient method to obtain high current ion beams. The constant in the Rasser's theoretical equation is experimentally determined to be 4.1 x 10 -4 eV sec/m. (N.K.)

  4. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1988-03-01

    A dc negative hydrogen and/or deuterium ion source is needed to prouce high-power, high-energy neutral beams for alpha diagnostics and current drive applicatiosn in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radio-frequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions effeciently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summariezed. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  5. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1987-01-01

    A dc negative hydrogen and/or deuterium ion source is needed to produce high-power, high-energy neutral beams for alpha diagnostics and current drive applications in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radiofrequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions efficiently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summarized. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  6. Formation of thin film of negative and positive ions

    Energy Technology Data Exchange (ETDEWEB)

    Horino, Yuji; Tsubouchi, Nobuteru [Osaka National Research Inst., AIST, Ikeda (Japan)

    1997-02-01

    Positive and negative ions deposition apparatus (PANDA) was developed by us as new synthesis method of materials. This apparatus is able to form simultaneously or independently the positive and negative ion beams to separate the mass and to control the energy from 10 eV to 3 KeV. It consists of positive beam line, negative beam line and a film formation room. Microwave discharge ion source and plasma sputtering source are used as the positive ion and the negative ion source, respectably. The beam generation test was carried out. The negative ion beams were generated from silicon wafer (target) and measured by MS. The mass spectrum of extracted negative silicon beams showed mass number 28, 29, and 30 of Si{sup -} and Si{sub 2}{sup -}. It proved that ions were separated in the isotope level. Therefore, film, it`s purity is isotope level, may be formed by such ion beams. (S.Y.)

  7. Design of laser-aided diagnostics for the negative hydrogen ion source SPIDER

    International Nuclear Information System (INIS)

    Pasqualotto, R

    2012-01-01

    ITER nuclear fusion experiment requires additional heating via neutral beams by means of two injectors, delivering 16.5 MW each, up to one hour. This power level results from the neutralization of negative deuterium ions generated by an RF source and accelerated to 1 MeV. Such specifications have never been simultaneously achieved so far and therefore a test facility is being constructed at Consorzio RFX, to demonstrate the feasibility of a prototype neutral beam injector. The facility will host two experimental devices: SPIDER, a 100 kV negative hydrogen/deuterium RF source, full size prototype of the ITER source, and MITICA, a prototype of the full ITER injector. SPIDER will be devoted to optimize the extracted negative ion current density and its spatial uniformity and to minimize the co-extracted electron current. Negative hydrogen is mainly produced by conversion of hydrogen particles at the cesium coated surface of the plasma grid. The interplay of these two species is fundamental to understand and optimize the source performance. Two laser-aided diagnostics play an important role in measuring the negative hydrogen and cesium density: cavity ring down spectroscopy and laser absorption spectroscopy. Cavity ring down spectroscopy will use the photo-detachment process to measure the absolute line-of-sight integrated negative ion density in the extraction region of the source. Laser absorption spectroscopy will be employed to measure the line integrated neutral cesium density, allowing to study the cesium distribution in the source volume, during both the plasma and the vacuum phases. In this paper, the design of the laser-aided diagnostic systems on SPIDER is presented, supported by a review of results obtained in other operating experiments.

  8. Concepts of magnetic filter fields in powerful negative ion sources for fusion

    International Nuclear Information System (INIS)

    Kraus, W.; Fantz, U.; Heinemann, B.; Wünderlich, D.

    2016-01-01

    The performance of large negative ion sources used in neutral beam injection systems is in long pulses mainly determined by the increase of the currents of co-extracted electrons. This is in particular a problem in deuterium and limits the ion currents which are for long pulses below the requirements for the ITER source. In the source of the ELISE test facility, the magnetic field in front of the first grid, which is essential to reduce the electron current, is generated by a current of several kA flowing through the plasma facing grid. Weakening of this field by the addition of permanent magnets placed close to the lateral walls has led to a reduction of the electron current by a factor three without loss of ion current when source was operated in volume production. If this effect can be validated for the cesiated source, it would be a large step towards achieving the ITER parameter in long pulses

  9. Construction of negative-ion based NBI for JT-60U

    International Nuclear Information System (INIS)

    Kawai, Mikito; Akino, Noboru; Ebisawa, Noboru

    2001-11-01

    The world's first negative-ion based neutral beam injector (N-NBI) system has been developed for studies of non-inductive current drive and plasma core heating with high energy neutral beam injection in higher density plasma. Construction of the N-NBI system for JT-60U was completed in March 1996. The system is composed of a beamline with two ion sources, a set of ion source power supplies, control system and auxiliary sub-system such as cooling water, refrigeration and vacuum system. In July 2001, deuterium neutral beam injection of 400keV and 5.8MW into JT-60U plasma was achieved. In order to increase both beam power and energy we have to go on more improvement of the N-NBI. (author)

  10. Secondary Electron Emission from Solid Hydrogen and Deuterium Resulting from Incidence of keV Electrons and Hydrogen Ions

    DEFF Research Database (Denmark)

    Sørensen, H.

    1977-01-01

    are small, in contrast to what is expected for insulating materials. One explanation is that the secondary electrons lose energy inside the target material by exciting vibrational and rotational states of the molecules, so that the number of electrons that may escape as secondary electrons is rather small....... The losses to molecular states will be largest for hydrogen, so that the SEE coefficients are smallest for solid hydrogen, as was observed. For the incidence of ions, the values of δ for the different molecular ions agree when the number of secondary electrons per incident atom is plotted versus the velocity...... or the stopping power of the incident particles. Measurements were also made for oblique incidence of H+ ions on solid deuterium for angles of incidence up to 75°. A correction could be made for the emission of secondary ions by also measuring the current calorimetrically. At largest energies, the angular...

  11. Towards large and powerful radio frequency driven negative ion sources for fusion

    International Nuclear Information System (INIS)

    Heinemann, B; Fantz, U; Kraus, W; Schiesko, L; Wimmer, C; Wünderlich, D; Bonomo, F; Fröschle, M; Nocentini, R; Riedl, R

    2017-01-01

    The ITER neutral beam system will be equipped with radio-frequency (RF) negative ion sources, based on the IPP Garching prototype source design. Up to 100 kW at 1 MHz is coupled to the RF driver, out of which the plasma expands into the main source chamber. Compared to arc driven sources, RF sources are maintenance free and without evaporation of tungsten. The modularity of the driver concept permits to supply large source volumes. The prototype source (one driver) demonstrated operation in hydrogen and deuterium up to one hour with ITER relevant parameters. The ELISE test facility is operating with a source of half the ITER size (four drivers) in order to validate the modular source concept and to gain early operational experience at ITER relevant dimensions. A large variety of diagnostics allows improving the understanding of the relevant physics and its link to the source performance. Most of the negative ions are produced on a caesiated surface by conversion of hydrogen atoms. Cs conditioning and distribution have been optimized in order to achieve high ion currents which are stable in time. A magnetic filter field is needed to reduce the electron temperature and co-extracted electron current. The influence of different field topologies and strengths on the source performance, plasma and beam properties is being investigated. The results achieved in short pulse operation are close to or even exceed the ITER requirements with respect to the extracted ion currents. However, the extracted negative ion current for long pulse operation (up to 1 h) is limited by the increase of the co-extracted electron current, especially in deuterium operation. (paper)

  12. Kinetic effects in the propagation of ion-acoustic negative solitons in plasmas with negative ions

    International Nuclear Information System (INIS)

    Roberto, M.

    1986-12-01

    The existence of ion-acoustic negative (rarefactive) solitons in plasmas was experimentally verified and explained by means of the Korteweg-de Vries equation, obtained from a fluid model. The experimental results obtained in a double-plasma machine of the Institute for Space Research, however, have provided values of Mach number larger than predicted by this simple model. In order to improve the analysis of the phenomenon, Kinetic effects resultant from the occurrence of reflected electrons and trapped ions in the soliton potential were considered, using the theory of Sagdeev potential. For the description of the negative ion dynamics the fluid model treatment was preserved. It was verified that the effects of the finite temperature and trapping of the positive ions modify the results predicted by the simple KdV model in such a way that the Mach number is reduced as the ion temperature increases. It was shown that reflection of electrons is consistent with the large experimental values of Mach number. (Author) [pt

  13. Development of a compact powdery sample negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi [Doshisha Univ., Tanabe, Kyoto (Japan). Faculty of Engineering; Sasao, Mamiko; Kawano, Hiroyuki

    1997-02-01

    A gas-feed-free compact negative ion source can be realized by utilizing the process of electron stimulated desorption from powdery sample. A negative ion source of this type is designed to be attached to a standard 1.33 inch copper-gasket-flange. The ion source is operated stable with LiH powder for more than 10 hours with the mass-separated negative hydrogen ion current of 1 nA. The source causes minute gas emission, and particularly suitable for ion beam applications in which a good vacuum is required. The present status of the compact ion source development is briefly described. (author)

  14. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  15. Observation of ion-acoustic rarefaction solitons in a multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Ferreira, J.L.; Nakamura, Y.

    1984-01-01

    The propagation of ion-acoustic solitons in a plasma with negative ions has been observed. For sufficiently large concentration of negative ions, applied rarefactive (negative) voltage pulses break up into solitons, whereas compressive pulses evolve into wave trains, with exactly the opposite behavior as that for a plasma composed only of positive ions. There is a critical value of the negative-ion concentration for which a finite-amplitude pulse propagates without steepening

  16. Status of world research on neutral injectors based on negative ions for fusion

    International Nuclear Information System (INIS)

    Jacquot, Claude

    1999-01-01

    The large tokamak installations (JET, TFTR, JT 60) use successfully injection of medium energy (100 keV) neutral atoms at powers of about 20 to 30 MW. These are produced starting from positive ions which transform into neutral atoms by charge exchange on a gas target. For tokamaks of next generation (ITER, for instance), the plasma dimensions will require 1 MeV neutral atoms. As the positive ions have a very low conversion yield at these energies, deuterium negative ions will be needed to be produced, as these have a rather high independent of energy neutralization yield (∼ 60%), the total electric efficiency being 40 to 50%. For ITER, three 1 MeV injectors, each of 16 MW during 1000 s will be provided, what requires acceleration at 1 MV of 40 A deuterium per injector. In this report we present the research status on large sources and on the relating problems and the progress on research on high voltage acceleration and also we present some high power systems

  17. Parametrics for Molecular Deuterium Concentrations in the Source Region of the UW-IEC Device Using an Ion Acoustic Wave Diagnostic

    Science.gov (United States)

    Boris, D. R.; Emmert, G. A.

    2007-11-01

    The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.

  18. Ion pair formation in the vacuum ultraviolet region of NO studied by negative ion imaging spectroscopy

    International Nuclear Information System (INIS)

    Hikosaka, Y.; Kaneyasu, T.; Shigemasa, E.

    2007-01-01

    The pair formation of positive and negative fragment ions has been studied in the vacuum ultraviolet region of NO, with negative ion imaging spectroscopy. The negative ion yield curve obtained in the photon energy region of 19-25 eV exhibits many structures which are absent from the photoabsorption spectrum in the same region. The partial yields and asymmetry parameters associated with the dissociations into individual ion pair limits have been extracted from the negative ion images observed. On the basis of these quantities, the assignments for the structures exhibited on the negative ion yield curve are given and the dynamical properties on the ion pair dissociation are discussed

  19. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    International Nuclear Information System (INIS)

    Davis, V.T.; Covington, A.M.; Duvvuri, S.S.; Kraus, R.G.; Emmons, E.D.; Kvale, T.J.; Thompson, J.S.

    2007-01-01

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps

  20. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    Science.gov (United States)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  1. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources

    International Nuclear Information System (INIS)

    Christ-Koch, Sina

    2007-01-01

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields (∝ 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H - )=1.10 17 1/m 3 , which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  2. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    Science.gov (United States)

    Serianni, G.; De Muri, M.; Muraro, A.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M.; Franzen, P.; Ruf, B.; Schiesko, L.

    2014-02-01

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions.

  3. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    International Nuclear Information System (INIS)

    Serianni, G.; De Muri, M.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M.; Muraro, A.; Franzen, P.; Ruf, B.; Schiesko, L.

    2014-01-01

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions

  4. Status and plans for the development of a RF negative ion source for ITER NBI

    International Nuclear Information System (INIS)

    Franzen, P.; Falter, H.D.; Speth, E.; Kraus, W.; Bandyopadhyay, M.; Encheva, A.; Fantz, U.; Franke, Th.; Heinemann, B.; Holtum, D.; Martens, C.; McNeely, P.; Riedl, R.; Tanga, A.; Wilhelm, R.

    2005-01-01

    IPP Garching is currently developing a RF driven negative ion source for the ITER neutral beam injection system as an alternative to the present design with filamented sources. This paper reports an overview on the present status and the further prospects of the RF source development. Current densities of 26 mA/cm 2 and 15 mA/cm 2 have been achieved for hydrogen and deuterium, respectively, at a pressure of less than 0.5 Pa and an electron/ion ratio of 1. Size scaling experiments indicate a maximum extraction area which can be illuminated by a driver without losses of beam quality and uniformity. The preparation of a test facility for pulse lengths of up to 3600 s is proceeding; commissioning is expected end of 2004. As an intermediate step tests of a large source with the half size of the ITER source are foreseen to be commissioned in 2005

  5. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    Energy Technology Data Exchange (ETDEWEB)

    Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; De Muri, M.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M. [Consorzio RFX, Euratom-ENEA association, Corso Stati Uniti 4, 35127 Padova (Italy); Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Franzen, P.; Ruf, B.; Schiesko, L. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching bei München (Germany)

    2014-02-15

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions.

  6. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    Directory of Open Access Journals (Sweden)

    G. Fubiani

    2008-01-01

    Full Text Available The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses. The resulting secondary particles (positive ions, neutrals, and electrons are accelerated and deflected by the electric and magnetic fields inside the accelerator and may induce more secondaries after a likely impact with the accelerator grids. This chain of reactions is responsible for a non-negligible heat load on the grids and must be understood in detail. In this paper, we will provide a comprehensive summary of the physics involved in the process of secondary emission in a typical ITER-like negative ion electrostatic accelerator together with a precise description of the numerical method and approximations involved. As an example, the multiaperture-multigrid accelerator concept will be discussed.

  7. Sheath structure in negative ion sources for fusion (invited)

    International Nuclear Information System (INIS)

    McAdams, R.; King, D. B.; Surrey, E.; Holmes, A. J. T.

    2012-01-01

    In fusion negative ion sources, the negative ions are formed on the caesiated plasma grid predominantly by hydrogen atoms from the plasma. The space charge of the negative ions leaving the wall is not fully compensated by incoming positive ions and at high enough emission a virtual cathode is formed. This virtual cathode limits the flux of negative ions transported across the sheath to the plasma. A 1D collisionless model of the sheath is presented taking into account the virtual cathode. The model will be applied to examples of the ion source operation. Extension of the model to the bulk plasma shows good agreement with experimental data. A possible role for fast ions is discussed.

  8. Investigation of a large volume negative hydrogen ion source

    International Nuclear Information System (INIS)

    Courteille, C.; Bruneteau, A.M.; Bacal, M.

    1995-01-01

    The electron and negative ion densities and temperatures are reported for a large volume hybrid multicusp negative ion source. Based on the scaling laws an analysis is made of the plasma formation and loss processes. It is shown that the positive ions are predominantly lost to the walls, although the observed scaling law is n + ∝I 0.57 d . However, the total plasma loss scales linearly with the discharge current, in agreement with the theoretical model. The negative ion formation and loss is also discussed. It is shown that at low pressure (1 mTorr) the negative ion wall loss becomes a significant part of the total loss. The dependence of n - /n e versus the electron temperature is reported. When the negative ion wall loss is negligible, all the data on n - /n e versus the electron temperatures fit a single curve. copyright 1995 American Institute of Physics

  9. Iminium-ion formation and deuterium exchange by acetone in the presence of pyrrolidine, pyrazolidine, isoxazolidine, and their acyclic analogues

    International Nuclear Information System (INIS)

    Hine, J.; Evangelista, R.A.

    1980-01-01

    Equilibrium constants for iminium-ion-formation in the reaction of in acetone in aqueous solution at 35 0 C with pyrazolidinium, isoxazolidinium, O,N-dimethylhydroxylammonium, and N,N'-dimethylhydrazinium ions were found to be 9.33, 8.96, 0.117, and 0.057 M -1 , respectively. The kinetics of hydrolysis of the iminium ions were studied in every case except that of the N-isopropylidene-O,N-dimethylhydroxylammonium ion, whose hydrolysis is too fast to follow by the techniques used with the other iminium ions. The rate of hydrolysis of the N-isopropylidenepyrazolidinium ion is independent of the pH from about pH 3 to 6; it is hydrogen ion catalyzed at lower pHs and hydroxide ion catalyzed at higher pHs. The rate of hydrolysis of N-isopropylidenisoxazolidinium ions is Ph independent from pH 0.5 to about 2, increases until about pH 4, remains pH independent until pH 6.5, and has become too fast to measure above pH 8. Both reactions are general base catalyzed in all the buffers studied. A mechanism is described to fit the kinetics of each of these reactions. The dedeuteration of acetone-d 6 was studied pyridine buffers in the presence of each of the four hydrazine and hydroxylamine derivatives and also in the presence of the dimethylammonium and pyrrolidinium ion. All six of these secondary ammonium ions catalyze the dedeuteration by transforming the acetone-d 6 to an iminium ion that is dedeuterated by pyridine more rapidly than the ketone is. The iminium-ion formation is a relatively rapid equilibrium in all cases except that of pyrrolidinium ions, where the intermediate iminium ion loses deuterium and hydrolyzes at comparable rates, and possibly the case of dimethylammonium ions, where the amount of catalysis via iminium-ion formation is too small to reveal mechanistic details. The effect of structure on the efficiency of catalysis of dedeuteration via iminium-ion formation is discussed. 3 figures, 7 tables

  10. Castellated tiles as the beam-facing components for the diagnostic calorimeter of the negative ion source SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzo, S., E-mail: simone.peruzzo@igi.cnr.it; Cervaro, V.; Dalla Palma, M.; Delogu, R.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Rizzolo, A.; Tollin, M.; Serianni, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); De Muri, M. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, v.le dell’Università 2, I-35020 Legnaro, PD (Italy); Pimazzoni, A. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Università degli Studi di Padova, Via 8 Febbraio 2, I-35122 Padova (Italy); Zampieri, L. [Università degli Studi di Padova, Via 8 Febbraio 2, I-35122 Padova (Italy)

    2016-02-15

    This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale.

  11. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    International Nuclear Information System (INIS)

    Goto, I.; Nishioka, S.; Hatayama, A.; Miyamoto, K.

    2015-01-01

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H − ions from the double-ion plasma in H − negative ion sources. The result shows the same tendency of the H − ion density n H − as that observed in the experiments, i.e.,n H − in the upstream region away from the plasma meniscus (H − emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H − transport will be studied in the future

  12. Ion acoustic waves in one- and two-negative ion species plasmas

    International Nuclear Information System (INIS)

    Ichiki, Ryuta; Shindo, Masako; Yoshimura, Shinji; Watanabe, Tsuguhiro; Kawai, Yoshinobu

    2001-01-01

    Ion acoustic waves in multi-ion plasmas including two negative ion species are investigated both numerically and experimentally. Numerically, the kinetic dispersion relation in two-negative ion plasmas is investigated. There are three modes of the ion acoustic waves in two-negative ion plasmas. In an Ar + -F - -SF 6 - plasma, only one of the three modes is dominant, regardless of the values of the electron and the ion temperatures. In a Xe + -F - -SF 6 - plasma, on the other hand, two modes can be important for a certain range of the electron-ion temperature ratio. The results also imply the possibility of the coexistence of the fast mode and the slow mode in one-negative ion plasmas. Experimentally, ion acoustic waves are observed in an Ar + -F - -SF 6 - plasma and are found to show a mode transition that agrees with the theoretical prediction for one of the three ion acoustic modes

  13. Negative ion formation and neutralization processes, (2)

    International Nuclear Information System (INIS)

    Sugiura, Toshio

    1982-09-01

    This review is 2nd part of the report published at January 1982 (JAERI-M-9902). A compilation includes the survey of the data of the cross sections of H - and D - ion formations and the neutralization of these ions. This is also presented new information about the photosensitization by laser beam in dissociative-resonance electron capture of sulfur hexafluoride reported by Chen et al., for reference to enhancement of D - ions in discharge. For neutralization, the data of mutual neutralization and photodetachment are also presented. (author)

  14. Energy- and angled-resolved photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    Energy- and angle-resolved photoelectron detachment spectroscopy is currently being used to investigate the structure of negative ions and their interaction with radiation. Measurements of the electron affinity of the Ca atom and the partial cross sections for photodetachment of the metastable negative ion, He - (1s2s2p 4 P), are reported. 5 refs., 5 figs

  15. Transient effects during erosion of WN by deuterium ions studied with the quartz crystal microbalance technique

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Bernhard M., E-mail: berger@iap.tuwien.ac.at [Institute of Applied Physics, TU Wien, Fusion@ÖAW, Wiedner Hauptstr. 8-10, 1040 Vienna (Austria); Stadlmayr, Reinhard [Institute of Applied Physics, TU Wien, Fusion@ÖAW, Wiedner Hauptstr. 8-10, 1040 Vienna (Austria); Meisl, Gerd [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Čekada, Miha [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Eisenmenger-Sittner, Christoph [Institute of Solid State Physics, TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna (Austria); Schwarz-Selinger, Thomas [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Aumayr, Friedrich, E-mail: aumayr@iap.tuwien.ac.at [Institute of Applied Physics, TU Wien, Fusion@ÖAW, Wiedner Hauptstr. 8-10, 1040 Vienna (Austria)

    2016-09-01

    Transient effects during erosion of polycrystalline tungsten-nitride (WN) films by mono-energetic deuterium projectiles are studied using a quartz crystal microbalance technique. The evolution of the mass removal rate of a 360 nm thin WN film under 500 eV/D and 1000 eV/D bombardment is investigated at a temperature of 465 K in situ and in real-time as a function of the deuterium fluence. The measurements are performed at a typical flux of 10{sup 18} m{sup −2} s{sup −1}. A strong dependency of the observed mass change rate on the deuterium fluence is found. The mass loss is initially higher than for pure tungsten (W) and drops with fluence, finally reaching the same steady state value as for pure W sputtering. Steady state surface conditions are obtained at a fluence of about 0.2 × 10{sup 23} D/m{sup 2} for 500 eV/D and 0.6 × 10{sup 23} D/m{sup 2} for 1000 eV/D. SDTrimSP simulations indicate a preferential removal of N and a corresponding W enrichment of the surface.

  16. A negative ion source test facility

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, S.; Dehnel, M., E-mail: morgan@d-pace.com; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada); Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B. [Buckley Systems Ltd., 6 Bowden Road, Mount Wellington, Auckland 1060 (New Zealand)

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  17. Design of a negative ion neutral beam system for TNS

    International Nuclear Information System (INIS)

    Easoz, J.R.; Sink, D.A.

    1979-01-01

    A design is presented that suggests that a negative ion neutral beam based on direct extraction is applicable to TNS, assuming technological advancements in several areas. Improvements in negative ion sources, direct energy conversion of charged beams, and high speed cryogenic pumping are needed. The increase in efficiency over a positive ion system and the encouraging results of the first attempt at a total design justify increased effort in the development of the above mentioned areas

  18. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses

    Science.gov (United States)

    Maleki, Hossein; Karanji, Ahmad K.; Majuta, Sandra; Maurer, Megan M.; Valentine, Stephen J.

    2018-02-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate ( in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.

  19. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  20. Charging of dust grains in a plasma with negative ions

    International Nuclear Information System (INIS)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-01-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended Q machine when SF 6 is admitted into the vacuum system. The relatively cold Q machine electrons (T e ≅0.2 eV) readily attach to SF 6 molecules to form SF 6 - negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ε, the ratio of the electron to positive ion density, is sufficiently small. The Q machine plasma is operated with K + positive ions (mass 39 amu) and SF 6 - negative ions (mass 146 amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains

  1. Charging of dust grains in a plasma with negative ions

    Science.gov (United States)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-05-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended SF6 is admitted into the vacuum system. The relatively cold (Te≈0.2eV ) readily attach to SF6 molecules to form SF6- negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ɛ, the ratio of the electron to positive ion density, is sufficiently small. The K+ positive ions (mass 39amu) and SF6- negative ions (mass 146amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.

  2. Hypothesis for the mechanism of negative ion production in the surface-plasma negative hydrogen ion source

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1975-01-01

    An analysis of the surface-plasma negative hydrogen ion source has shown that the tungsten cathode supports approximately a monolayer of cesium. The backscattering of protons from the cathode as energetic neutrals and the subsequent backscattering of these neutrals from the anode provides for a flux of energetic atoms incident upon the cathode which is comparable to the ion flux. A hypothesis is proposed for the generation of negative ions during the collision of these energetic atoms with the cathode. Several mechanisms for negative ion production by proton collision with the surface are discussed. (U.S.)

  3. Negative ion production by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi [Doshisha Univ., Tanabe, Kyoto (Japan). Faculty of Engineering; Sasao, Mamiko

    1997-02-01

    The status of the development of Li{sup -} production by generating a neutral Li flux with an intense radiation of a laser beam onto the surface of Li metal has been reported. The experimental apparatus was arranged to detect a mass separated Li{sup +} and Li{sup -} ion beams. A Li sputtering probe, immersed in the extraction region of a compact (6cm diam. 7cm long) magnetic multipole ion source was irradiated with a Nd-YAG laser of 0.4 J/pulse. The production of mass-separated positive ions of Li by laser irradiation has been confirmed, but the production of Li{sup -} has not been confirmed yet due to the noise caused by a temporal discharge. (author)

  4. Dosimetry and radiobiology of negative pions and heavy ions

    International Nuclear Information System (INIS)

    Raju, M.R.

    1978-01-01

    The depth dose distribution of pion beams has not been found superior to protons. Pion radiation quality at the plateau region is comparable to conventional low-LET radiations, and radiobiology results also indicate RBE values close to unity. In the pion stopping region, the radiation quality increases considerably. Radiobiology data for negative pions at the Bragg peak position clearly indicate the increase in RBE and the reduction in OER. Even at the Bragg peak position, compared to fast neutrons, the average LET of negative pions is lower. Pion radiobiology data have indicated lower RBE values and higher OER values compared to fast neutrons. The radiation quality of fast neutrons is in between that of carbon and neon ions at the peak region and that of neon ions at the plateau is lower than for fast neutrons. The mean LET value for helium ions, even at the distal end of the peak, is lower than for fast neutrons. Dose localization of heavy ions has been found to decrease slowly with increasing charge of the heavy ion. The intercellular contact that protects cells after exposure to low-LET radiations is not detected after exposure to heavy ions. Single and fractionated doses of heavy ions produce dose-response curves for heavy ions having reduced shoulders but similar slopes when compared to gamma rays. Fractionated treatments of heavy ions produce an enhanced effect in the peak region compared to the plateau region and could lead to a substantial gain in therapeutic ratio. The OER for protons was similar to that for x rays. The OER values for negative pions, helium ions, and carbon ions were larger, for neon ions similar, and for argon ions smaller when compared to fast neutrons.Negative pions, helium ions, and carbon ions may be very effective clinically because the radiation quality of these beams is similar to that of the mixed scheme of neutrons and x rays

  5. Production techniques for rare earth and other heavy negative ions

    International Nuclear Information System (INIS)

    McK Hyder, H.R.; Ashenfelter, J.; McGrath, R.

    1998-01-01

    Current nuclear structure studies demand a wide range of heavy negative ion beams for tandem acceleration. Some of the wanted isotopes have low natural abundances and many have low or negative electron affinities. For these, gas injection or the use of hydrides, oxides, or fluorides is required to achieve usable intensities. The chemical properties of the target materials, and of the additive gases used to form molecular ions, often have detrimental effects on ion source performance and life. These effects include insulator breakdown, ionizer poisoning, and the erosion or deposition of material on critical electrodes. Methods of controlling sputter source conditions are being studied on the Wright Nuclear Structure Laboratory ion source test bench with the object of extending source life, increasing target efficiency, and achieving consistent negative ion outputs. Results are reported for several heavy ions including tellurium, neodymium, and ytterbium. copyright 1998 American Institute of Physics

  6. Chemisorption on size-selected metal clusters: activation barriers and chemical reactions for deuterium and aluminum cluster ions

    International Nuclear Information System (INIS)

    Jarrold, M.F.; Bower, J.E.

    1988-01-01

    The authors describe a new approach to investigating chemisorption on size-selected metal clusters. This approach involves investigating the collision-energy dependence of chemisorption using low-energy ion beam techniques. The method provides a direct measure of the activation barrier for chemisorption and in some cases an estimate of the desorption energy as well. They describe the application of this technique to chemisorption of deuterium on size-selected aluminum clusters. The activation barriers increase with cluster size (from a little over 1 eV for Al 10 + to around 2 eV for Al 27 + ) and show significant odd-even oscillations. The activation barriers for the clusters with an odd number of atoms are larger than those for the even-numbered clusters. In addition to chemisorption of deuterium onto the clusters, chemical reactions were observed, often resulting in cluster fragmentation. The main products observed were Al/sub n-1/D + , Al/sub n-2/ + , and Al + for clusters with n + and Al/sub n-1/D + for the larger clusters

  7. Negative hydrogen ion sources for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D.P.; /Fermilab; Peters, J.; /DESY; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  8. Long-pulse operation of an intense negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Kaneko, Osamu; Oka, Yoshihide; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the National Institute for Fusion Science, as the heating system for the Large Helical Device (LHD), the negative ion NBI system of 20 MW incident power has been planned, and the development of a large current, large size negative ion source has been advanced. Based on the results obtained so far, the design of the LHD-NBI system was reconsidered, and the specification of the actual negative ion source was decided as 180 KeV-40A. This time, the grounding electrode with heightened heat removal capacity was made, and the long pulse operation was attempted, therefore, its results are reported. The structure of the external magnetic filter type large negative ion source used for the long pulse experiment is explained. In order to form the negative ion beam of long pulses, it is necessary to form stable are discharge plasma for long time, and variable resistors were attached to the output side of arc power sources of respective filament systems. By adjusting the resistors, uniform are discharge was able to be caused for longer than 10 s stably. The results of the long pulse experiment are reported. The dependence of the characteristics of negative ion beam on plasma electrode temperature was small, and the change of the characteristics of negative ion beam due to beam pulse width was not observed. (K.I.)

  9. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) imaging of deuterium assisted cracking in a 2205 duplex stainless steel micro-structure

    Energy Technology Data Exchange (ETDEWEB)

    Sobol, Oded; Holzlechner, Gerald; Nolze, Gert; Wirth, Thomas [BAM – Federal Institute for Materials Research and Testing, Berlin (Germany); Eliezer, Dan [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer Sheva (Israel); Boellinghaus, Thomas, E-mail: thomas.boellinghaus@bam.de [BAM – Federal Institute for Materials Research and Testing, Berlin (Germany); Unger, Wolfgang E.S. [BAM – Federal Institute for Materials Research and Testing, Berlin (Germany)

    2016-10-31

    In the present work, the influence of deuterium on the microstructure of a duplex stainless steel type EN 1.4462 has been characterized by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) supported by scanning electron microscopy (SEM), focused ion beam (FIB), electron back scattered diffraction (EBSD) and energy dispersive x-ray (EDX) investigations. Characterization has been carried out before and after electrochemical charging with deuterium which has been used as a tracer, due to its similar behavior to hydrogen in the steel microstructure. In a first approach, the distribution of the deuterium occurring at temperatures above −58 °C has been visualized. Further it turned out that sub-surface micro blisters are formed in the ferrite-austenite interface, followed by the formation of needle shaped plates and subsequent cracking at the ferrite surface. In the austenite phase, parallel cracking alongside twins and hexagonal close packed (martensitic) regions has been observed. In both phases and even in the apparent interface, cracking has been associated with high deuterium concentrations, as compared to the surrounding undamaged microstructure. Sub-surface blistering in the ferrite has to be attributed to the accumulation and recombination of deuterium at the ferrite-austenite interface underneath the respective ferrite grains and after fast diffusing through this phase. Generally, the present application of chemometric imaging and structural analyses allows characterization of hydrogen assisted degradation at a sub-micron lateral resolution.

  10. Effect of negative ions on the formation of weak ion acoustic double layers

    International Nuclear Information System (INIS)

    Kalita, M.K.; Bujarbarua, S.

    1985-01-01

    Using kinetic theory, small amplitude double layers associated with ion acoustic waves in a plasma containing negative species of ions were investigated. Analytic solution for the double layer potential was carried out. The limiting values of the negative ion density for the existence of this type of DL were calculated and the application of this result to space plasmas is discussed. (author)

  11. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D - ions and then removing the electron. Sources are being developed that generate the D - ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D - beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D - beam can be transported through a maze in the neutron shielding. The D - ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  12. Microstructure and deuterium retention after ion irradiation of W–Lu2O3 composites

    International Nuclear Information System (INIS)

    Lin, Jin–Shan; Luo, Lai–Ma; Xu, Qiu; Zan, Xiang; Zhu, Xiao–Yong; Wu, Yu–Cheng

    2017-01-01

    W–3Lu 2 O 3 composites were prepared by mechanical milling and spark plasma sintering. The obtained composites were subjected to He + irradiation experiments. The irradiated samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and measurement of Vickers hardness. Thermal desorption spectroscopy analysis was performed to analyze the samples at different damage levels after Fe 2+ and D + irradiation. Results showed varied degrees of He + damage under different energies. Fuzz structures were observed on the surface of the material after irradiation. TEM results indicated that the existence of these fuzz structures was related to the formation of He bubbles. Amorphous, polycrystalline, and γ-W phases formed in areas where He bubbles existed. The measured Vickers hardness proved that radiation hardening occurred after irradiation. After Fe 2+ irradiation at different damage levels, the total retained deuterium amount of W–3Lu 2 O 3 and pure W differed, and the impact of Fe 2+ radiation for deuterium retention on pure tungsten was greater.

  13. Production of intense negative ion beams in magnetically insulated diodes

    International Nuclear Information System (INIS)

    Lindenbaum, H.

    1988-01-01

    Production of intense negative ion beams in magnetically insulated diodes was studied in order to develop an understanding of this process by measuring the ion-beam parameters as a function of diode and cathode plasma conditions in different magnetically insulated diodes. A coral diode, a racetrack diode, and an annular diode were used. The UCI APEX pulse line, with a nominal output of 1MV, 140kA, was used under matched conditions with a pulse length of 50 nsec. Negative-ion intensity and divergence were measured with Faraday cups and CR-39 track detectors. Cathode plasma was produced by passive dielectric cathodes and later, by an independent plasma gun. Negative-ion currents had an intensity of a few A/cm 2 with a divergence ranging between a few tenths milliradians for an active TiH 2 plasma gun and 300 milliradians for a passive polyethelene cathode. Negative ions were usually emitted from a few hot spots on the cathode surface. These hot spots are believed to cause transverse electrical fields in the diode gap responsible for the beam divergence. Mass spectrometry measurements showed that the ion beam consists of mainly H - ions when using a polyethelene or a TiH 2 cathodes, and mainly of negative carbon ions when using a carbon cathode

  14. Installation and first operation of the negative ion optimization experiment

    International Nuclear Information System (INIS)

    De Muri, Michela; Cavenago, Marco; Serianni, Gianluigi; Veltri, Pierluigi; Bigi, Marco; Pasqualotto, Roberto; Barbisan, Marco; Recchia, Mauro; Zaniol, Barbara; Kulevoy, Timour; Petrenko, Sergey; Baseggio, Lucio; Cervaro, Vannino; Agostini, Fabio Degli; Franchin, Luca; Laterza, Bruno; Minarello, Alessandro; Rossetto, Federico; Sattin, Manuele; Zucchetti, Simone

    2015-01-01

    Highlights: • Negative ion sources are key components of the neutral beam injectors. • The NIO1 experiment is a RF ion source, 60 kV–135 mA hydrogen negative ion beam. • NIO1 can contribute to beam extraction and optics thanks to quick replacement and upgrading of parts. • This work presents installation, status and first experiments results of NIO1. - Abstract: Negative ion sources are key components of the neutral beam injectors for thermonuclear fusion experiments. The NIO1 experiment is a radio frequency ion source generating a 60 kV–135 mA hydrogen negative ion beam. The beam is composed of nine beamlets over an area of about 40 × 40 mm"2. This experiment is jointly developed by Consorzio RFX and INFN-LNL, with the purpose of providing and optimizing a test ion source, capable of working in continuous mode and in conditions similar to those foreseen for the larger ion sources of the ITER neutral beam injectors. At present research and development activities on these ion sources still address several important issues related to beam extraction and optics optimization, to which the NIO1 test facility can contribute thanks to its modular design, which allows for quick replacement and upgrading of components. This contribution presents the installation phases, the status of the test facility and the results of the first experiments, which have demonstrated that the source can operate in continuous mode.

  15. The emittance and brightness characteristics of negative ion sources suitable for MeV ion implantation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1987-01-01

    This paper provides the description and beam properties of ion sources suitable for use with ion implantation devices. Particular emphasis is placed on the emittance and brightness properties of state-of-the-art, high intensity, negative ion sources based on the cesium ion sputter principle

  16. Automatic control of a negative ion source

    International Nuclear Information System (INIS)

    Saadatmand, K.; Sredniawski, J.; Solensten, L.

    1989-01-01

    A CAMAC based control architecture is devised for a Berkeley-type H - volume ion source. The architecture employs three 80386 PCs. One PC is dedicated to control and monitoring of source operation. The other PC functions with digitizers to provide data acquisition of waveforms. The third PC is used for off-line analysis. Initially, operation of the source was put under remote computer control (supervisory). This was followed by development of an automated startup procedure. Finally, a study of the physics of operation is now underway to establish a data base from which automatic beam optimization can be derived. (orig.)

  17. Automatic control of a negative ion source

    Science.gov (United States)

    Saadatmand, K.; Sredniawski, J.; Solensten, L.

    1989-04-01

    A CAMAC based control architecture is devised for a Berkeley-type H - volume ion source [1]. The architecture employs three 80386 TM PCs. One PC is dedicated to control and monitoring of source operation. The other PC functions with digitizers to provide data acquisition of waveforms. The third PC is used for off-line analysis. Initially, operation of the source was put under remote computer control (supervisory). This was followed by development of an automated startup procedure. Finally, a study of the physics of operation is now underway to establish a data base from which automatic beam optimization can be derived.

  18. Automatic control of a negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Saadatmand, K.; Sredniawski, J.; Solensten, L. (Grumman Corp., Long Island, NY (USA))

    1989-04-01

    A CAMAC based control architecture is devised for a Berkeley-type H/sup -/ volume ion source. The architecture employs three 80386 PCs. One PC is dedicated to control and monitoring of source operation. The other PC functions with digitizers to provide data acquisition of waveforms. The third PC is used for off-line analysis. Initially, operation of the source was put under remote computer control (supervisory). This was followed by development of an automated startup procedure. Finally, a study of the physics of operation is now underway to establish a data base from which automatic beam optimization can be derived. (orig.).

  19. The next step in a development of negative ion beam plasma neutraliser for ITER NBI

    International Nuclear Information System (INIS)

    Kulygin, V.M.; Dlougach, E.D.; Gorbunov, E.P.

    2001-01-01

    Injectors of deuterium atom beams developing for ITER plasma heating and current drive are based on the negative ion acceleration and further neutralization with a gas target. The maximal efficiency of a gas stripping process is 60%. The replacement of the gas neutralizer by plasma one must increase the neutral yield to 80%. The experimental study overview of the microwave discharge in a multi-cusp magnetic system chosen as a base device for Plasma Neutralizer realization and the design development for ITER Neutral Beam Injectors are presented. The experimental results achieved at a plasma neutralizer model PNX-U is discussed. Plasma confinement, gas flows, ionization degree were investigated. The plasma in the volume 0.5m 3 with density n e ∼ 10 18 m -3 has been achieved at power density 80kW/m 3 in operation with Argon. (author)

  20. Honeycomb surface-plasma negative-ion source

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.

    1983-01-01

    A honeycomb surface-plasma source (SPS) of negative hydrogen ions the cathode of which consists of a great number of cells with spherical-concave surfaces, is described. Negative ions, knocked off the cathode by cesium-hydrogen discharge fast particles are accelerated in the near-cathode potential drop layer and focused geometrically on small emission apertures in the anode. Due to this, the gas and energy efficiency of the source is increased and the power density on the cathode is decreased. The H - yield is proportional to the number of celts. A pulse beam of negative ions with current up to 4 A is obtained and accelerated to 25 kV from the cathode effective area of 10.6 cm 2 through emission ports of 0.5 cm 2 total area. The honeycomb SPSs with a greater number of cells are promising as regards obtaining negative ion-beams with the current of scores of amperes

  1. Development of the computer system for the JT-60 negative-ion based NBI

    International Nuclear Information System (INIS)

    Kawai, Mikito; Oohara, Hiroshi; Honda, Atsushi; Kuriyama, Masaaki; Aoyagi, Tetsuo.

    1997-03-01

    The negative-ion based NBI system (N-NBI) for JT-60 is the first NBI system using a negative-ion source in the world. The N-NBI is designed do deliver a neutral beam injection power of 10 MW at 500 keV. The computer for the N-NBI system is composed of UNIX workstations and VMEbus systems, and has the functions of ion source operation and data acquisition and processing. Since a real-time operating system compatible with the UNIX is adopted for the VMEbus systems, the software development environment both for the workstation and the VMEbus system is unified with the UNIX. The software has been developed with a priority to the software required for the verification tests which are performed in accordance with the progress of the N-NBI construction. The first beam injection with the N-NBI has been conducted in March using the newly developed software, and the deuterium neutral beam injection of 350 keV, 2.5 MW has achieved as of the end of October 1996. (author)

  2. Review of particle-in-cell modeling for the extraction region of large negative hydrogen ion sources for fusion

    Science.gov (United States)

    Wünderlich, D.; Mochalskyy, S.; Montellano, I. M.; Revel, A.

    2018-05-01

    Particle-in-cell (PIC) codes are used since the early 1960s for calculating self-consistently the motion of charged particles in plasmas, taking into account external electric and magnetic fields as well as the fields created by the particles itself. Due to the used very small time steps (in the order of the inverse plasma frequency) and mesh size, the computational requirements can be very high and they drastically increase with increasing plasma density and size of the calculation domain. Thus, usually small computational domains and/or reduced dimensionality are used. In the last years, the available central processing unit (CPU) power strongly increased. Together with a massive parallelization of the codes, it is now possible to describe in 3D the extraction of charged particles from a plasma, using calculation domains with an edge length of several centimeters, consisting of one extraction aperture, the plasma in direct vicinity of the aperture, and a part of the extraction system. Large negative hydrogen or deuterium ion sources are essential parts of the neutral beam injection (NBI) system in future fusion devices like the international fusion experiment ITER and the demonstration reactor (DEMO). For ITER NBI RF driven sources with a source area of 0.9 × 1.9 m2 and 1280 extraction apertures will be used. The extraction of negative ions is accompanied by the co-extraction of electrons which are deflected onto an electron dump. Typically, the maximum negative extracted ion current is limited by the amount and the temporal instability of the co-extracted electrons, especially for operation in deuterium. Different PIC codes are available for the extraction region of large driven negative ion sources for fusion. Additionally, some effort is ongoing in developing codes that describe in a simplified manner (coarser mesh or reduced dimensionality) the plasma of the whole ion source. The presentation first gives a brief overview of the current status of the ion

  3. Volume generation of negative ions in high density hydrogen discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1983-01-01

    A parametric survey is made of a high-density tandem two-chamber hydrogen negative ion system. The optimum extracted negative ion current densities are sensitive to the atom concentration in the discharge and to the system scale length. For scale lengths ranging from 10 cm to 0.1 cm optimum current densities range from of order 1 to 100 mA cm -2 , respectively

  4. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I.; Nishioka, S.; Hatayama, A. [Graduate school of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2015-04-08

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H{sup −} ions from the double-ion plasma in H{sup −} negative ion sources. The result shows the same tendency of the H{sup −} ion density n{sub H{sup −}} as that observed in the experiments, i.e.,n{sub H{sup −}} in the upstream region away from the plasma meniscus (H{sup −} emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H{sup −} transport will be studied in the future.

  5. Modelling of caesium dynamics in the negative ion sources at BATMAN and ELISE

    Science.gov (United States)

    Mimo, A.; Wimmer, C.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The knowledge of Cs dynamics in negative hydrogen ion sources is a primary issue to achieve the ITER requirements for the Neutral Beam Injection (NBI) systems, i.e. one hour operation with an accelerated ion current of 40 A of D- and a ratio between negative ions and co-extracted electrons below one. Production of negative ions is mostly achieved by conversion of hydrogen/deuterium atoms on a converter surface, which is caesiated in order to reduce the work function and increase the conversion efficiency. The understanding of the Cs transport and redistribution mechanism inside the source is necessary for the achievement of high performances. Cs dynamics was therefore investigated by means of numerical simulations performed with the Monte Carlo transport code CsFlow3D. Simulations of the prototype source (1/8 of the ITER NBI source size) have shown that the plasma distribution inside the source has the major effect on Cs dynamics during the pulse: asymmetry of the plasma parameters leads to asymmetry in Cs distribution in front of the plasma grid. The simulated time traces and the general simulation results are in agreement with the experimental measurements. Simulations performed for the ELISE testbed (half of the ITER NBI source size) have shown an effect of the vacuum phase time on the amount and stability of Cs during the pulse. The sputtering of Cs due to back-streaming ions was reproduced by the simulations and it is in agreement with the experimental observation: this can become a critical issue during long pulses, especially in case of continuous extraction as foreseen for ITER. These results and the acquired knowledge of Cs dynamics will be useful to have a better management of Cs and thus to reduce its consumption, in the direction of the demonstration fusion power plant DEMO.

  6. Effect of cesium seeding on hydrogen negative ion volume production

    International Nuclear Information System (INIS)

    Bacal, M.; Balghiti-Sube, F. El; Elizarov, L. I.; Tontegode, A. J.

    1998-01-01

    The effect of cesium vapor partial pressure on the plasma parameters has been studied in the dc hybrid negative ion source ''CAMEMBERT III.'' The cesium vapor pressure was varied up to 10 -5 Torr and was determined by a surface ionization gauge in the absence of the discharge. The negative ion relative density measured by laser photodetachment in the center of the plasma extraction region increases by a factor of four when the plasma is seeded with cesium. However the plasma density and the electron temperature (determined using a cylindrical electrostatic probe) are reduced by the cesium seeding. As a result, the negative ion density goes up by a factor of two at the lowest hydrogen pressure studied. The velocity of the directed negative ion flow to the plasma electrode, determined from two-laser beam photodetachment experiments, appears to be affected by the cesium seeding. The variation of the extracted negative ion and electron currents versus the plasma electrode bias will also be reported for pure hydrogen and cesium seeded plasmas. The cesium seeding leads to a dramatic reduction of the electron component, which is consistent with the reduced electron density and temperature. The negative ion current is enhanced and a goes through a maximum at plasma electrode bias lower than 1 V. These observations lead to the conclusion that the enhancement of pure volume production occurs in this type of plasma. Possible mechanisms for this type of volume process will be discussed

  7. Negative ion source improvement by introduction of a shutter mask

    International Nuclear Information System (INIS)

    Belchenko, Yu.I.; Oka, Y.; Kaneko, O.; Takeiri, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Asano, E.; Kawamoto, T.

    2004-01-01

    Studies of a multicusp source were recently done at the National Institute for Fusion Science by plasma grid masking. The maximal H - ion yield is ∼1.4 times greater for the shutter mask case than that for the standard source. Negative ion current evolution during the cesium feed to the masked plasma grid evidenced that about 60% of negative ions are produced on the shutter mask surface, while about 30% are formed on the plasma grid emission hole edges, exposed by cesium with the mask open

  8. A future, intense source of negative hydrogen ions

    Science.gov (United States)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  9. Molecular and negative ion production by a standard electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, H-4026 Debrecen (Hungary); University of Debrecen, Egyetem ter 1, H-4010 Debrecen (Hungary); Biri, S.; Juhasz, Z.; Sulik, B. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, H-4026 Debrecen (Hungary); Palinkas, J. [University of Debrecen, Egyetem ter 1, H-4010 Debrecen (Hungary)

    2012-02-15

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H{sup -}, O{sup -}, OH{sup -}, O{sub 2}{sup -}, C{sup -}, C{sub 60}{sup -} negative ions and H{sub 2}{sup +}, H{sub 3}{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, O{sub 2}{sup +} positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several {mu}A and positive molecular ion beams in the mA range were successfully obtained.

  10. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-01-01

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  11. Electrochemically induced nuclear fusion of deuterium

    International Nuclear Information System (INIS)

    Jorne, J.

    1990-01-01

    In this paper cold fusion of deuterium by electrolysis of heavy water onto a palladium (or titanium) cathode is reported. Contrary to the assumption of Fleishmann and Pons that electrochemically compressed D + exists inside the palladium cathode, the observations of Jones et al. can be partially explained by the simultaneous presence of deuteride D - and the highly mobile positive deuterium ion D + . The opposite charges reduce the intranuclear distance and enhance the tunneling fusion rate. Furthermore, alloying of lithium with palladium can stabilize a negatively charged deuteride ion due to the salinelike character of lithium deuteride. The enormous pressure (or fugacity), achieved by the applied electrochemical potential (10 30 atm), is a virtual pressure that would have existed in equilibrium with palladium deuteride (PdD x ). It is speculated that nuclear fusion occurs at the surface, and the PdD x serves as a reservoir for the supply of deuteride ions

  12. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    Science.gov (United States)

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  13. Negative ion collisions. Progress report, April 1, 1994 - March 31, 1997

    International Nuclear Information System (INIS)

    Champion, R.L.

    1996-08-01

    During the last three years, the experimental activities have concentrated on several somewhat distinct projects. First, the author has measured total cross sections for electron detachment and charge transfer for collisions of various negative ions with atomic hydrogen and the molecular target, O 3 (ozone). The second type of gas phase experiments investigated the collisional decomposition of the molecular ion H 3 + . Specifically he has measured total cross sections for dissociation and proton transfer with an apparatus utilizing a static gas target cell. The targets include hydrogen, deuterium and the rare gases. He has extended these experiments to include D 3 + in a crossed beam configuration in order to provide a more detailed understanding of the collisional dynamics for these reactants. In the area of ion-surface collisions he has measured sputtering yields for O - and electrons arising from collisions of ions with an Al/O surface. The amount of oxygen on the surface is carefully controlled and the kinetic energy distributions of the ejected anions and electrons have been determined. He has been able to develop a theoretical model which, to a large degree, can describe the process. In a slightly speculative endeavor, he has begun investigating the role of atom-catalyzed field emission, i.e., the extent to which an unoccupied negative ion state for an atom near a surface--under the influence of a strong electric field--can serve as a stepping-stone for electron field emission. Very brief accounts of these activities will be given in this report in section 2. Detailed discussions of the experimental results and their analyses published during the contract period may be found in the following articles which have appeared in the archival literature. Copies of these publications are appended to this report as section 4

  14. Boron erosion and carbon deposition due to simultaneous bombardment with deuterium and carbon ions in plasmas

    International Nuclear Information System (INIS)

    Ohya, K.; Kawata, J.; Wienhold, P.; Karduck, P.; Rubel, M.; Seggern, J. von

    1999-01-01

    Erosion of boron out of a thin film exposed to deuterium edge plasmas and the simultaneous carbon deposition have been investigated in the tokamak TEXTOR-94 and simulated by means of a dynamic Monte Carlo code. The calculated results are compared with some observations (colorimetry, spectroscopy and AES) during and after the exposures. The implantation of carbon impurities strongly changes the effective boron sputtering yield of the film, which results into a lowering of the film erosion and a formation of thick carbon deposits. A strong decrease in the observed BII line emission around a surface location far from the plasma edge can be explained by a carbon deposition on the film. The calculated carbon depth profiles in the film, depending on the distance of the exposed surface from the plasma edge, are in reasonable agreement with measurements by AES after the exposures. Although simultaneous surface erosion and carbon deposition can be simulated, the calculated erosion rate is larger, by a factor of 2, than the observations by colorimetry at the early stage of the exposure

  15. Deuterium permeation measurements on tungsten using ion-beam-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Kapser, Stefan [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Physik-Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany); Manhard, Armin; Toussaint, Udo von [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-07-01

    Tungsten (W) is promising for the inner wall of a future fusion reactor, where it will be exposed to high fluxes of hydrogen (H) isotopes. Knowledge of their diffusion in W is important for safety and economic considerations, particularly concerning tritium. A common method to investigate H diffusion in metals are permeation experiments. Typically, gas loading and mass-spectrometric detection are used. Information about the diffusion can be gained from the temporal evolution of the permeation flux, whose magnitude is determined by the permeability (product of diffusivity and solubility). However, for low-permeability metals, the permeation flux can be unmeasurably small. For W this is the case near room temperature. We present a method that circumvents this problem. It is an improved version of experiments on nickel and stainless steel. The W is exposed to deuterium (D) plasma on one side and the permeating D is accumulated in a getter on the other side. A cover prevents D gettering from the gas phase. The amount in the getter is analysed by the nuclear reaction D({sup 3}He,p){sup 4}He.

  16. Peculiarity of deuterium ions interaction with tungsten surface in the condition imitating combination of normal operation with plasma disruption in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I. E-mail: martyn@nfi.kiae.ru; Vasiliev, V.I.; Gureev, V.M.; Danelyan, L.S.; Khirpunov, B.I.; Korshunov, S.N.; Kulikauskas, V.S.; Martynenko, Yu.V.; Petrov, V.B.; Strunnikov, V.N.; Stolyarova, V.G.; Zatekin, V.V.; Litnovsky, A.M

    2001-03-01

    Tungsten is a candidate material for the ITER divertor. For the simulation of ITER normal operation conditions in combination with plasma disruptions samples of various types of tungsten were exposed to both steady-state and high power pulsed deuterium plasmas. Tungsten samples were first exposed in a steady-state plasma with an ion current density {approx}10{sup 21} m{sup -2} s{sup -1} up to a dose of 10{sup 25} m{sup -2} at a temperature of 770 K. The energy of deuterium ions was 150 eV. The additional exposure of the samples to 10 pulses of deuterium plasma was performed in the electrodynamical plasma accelerator with an energy flux 0.45 MJ/m{sup 2} per pulse. Samples of four types of tungsten (W-1%La{sub 2}O{sub 3}, W-13I, monocrystalline W(1 1 1) and W-10%Re) were investigated. The least destruction of the surface was observed for W(1 1 1). The concentration of retained deuterium in tungsten decreased from 2.5x10{sup 19} m{sup -2} to 1.07x10{sup 19} m{sup -2} (for W(1 1 1)) as a result of the additional pulsed plasma irradiation. Investigation of the tungsten erosion products after the high power pulsed plasma shots was also carried out.

  17. Ion-acoustic double layers in multi-species plasmas maintained by negative ions

    International Nuclear Information System (INIS)

    Verheest, F.

    1989-01-01

    A study is made of ion-acoustic double layers in a plasma consisting of any number of cold positive and negative ion (and cold electron) species in addition to one isothermal electron population. The Sagdeev potential is obtained in general, together with limits on both compressive and rarefactive solutions for ion-acoustic double layers and/or solitons. Weak ion-acoustic double layers are described by a modified Korteweg-de Vries equation. Such double layers are not possible in plasmas with only positive ion species and one electron population. When one or more negative ion and/or cold electron species are included above a certain threshold density, rarefactive ion-acoustic double layers occur, but no compressive ones. The double-layer form of the potential is given, together with an application to a plasma with one positive and one negative ion component. It is shown that there is indeed such a threshold density for the negative ion density, depending on the charge-to-mass ratios of both types of ions. The threshold density is determined numerically for a range of such ratios and discussed in view of possible relevance to auroral and experimental plasmas. In the discussion, cold electrons can play the role of the negative ion species. (author)

  18. Development of the long pulse negative ion source for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R.S.; Svensson, L.; Esch, H.P.L. de; Krylov, A.; Massmann, P. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA-Cadarache, 13 - St Paul-lez-Durance (France); Boilson, D. [Association EURATOM -DCU, PRL/NCPST, Glasnevin, Dublin (Ireland); Fanz, U. [Association EURATOM-IPP, Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Zaniol, B. [CONSORZIO RFX Association EURATOM-ENEA, Padova (Italy)

    2005-07-01

    A model of the ion source designed for the neutral beam injectors of the International Thermonuclear Experimental Reactor (ITER), the KAMABOKO III ion source, is being tested on the MANTIS test stand at the DRFC Cadarache in collaboration with JAERI, Japan, who designed and supplied the ion source. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter located 1.6 m from the source. During experiments on MANTIS three adverse effects of long pulse operation were found. First the negative ion current to the calorimeter is {approx} 50% of that obtained from short pulse operation. Secondly increasing the plasma grid (PG) temperature results in {<=} 40% enhancement in negative ion yield, substantially below that reported for short pulse operation, {>=} 100%. And thirdly the caesium 'consumption' is up to 1500 times that expected. Results presented here indicate that each of these is, at least partially, explained by thermal effects. Additionally presented are the results of a detailed characterisation of the source, which enable the most efficient mode of operation to be identified. (authors)

  19. Chemistry of radio-frequency source of negative hydrogen ions; Chemia radio-frekvencneho zdroja negativnych ionov vodika

    Energy Technology Data Exchange (ETDEWEB)

    Skoviera, J.; Cernusak, I. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra fyzikalnej a teoretickej chemie, 84215 Bratislava (Slovakia)

    2013-04-16

    International Thermonuclear Experimental Reactor (ITER) is a prototype of nuclear fusion reactor Tokamak currently build in Cadarache. It will use as one of primary plasma heating components a radiofrequency driven negative ion source of deuterium. The purpose of cesium evaporated in the part of this ion source is to react with free electrons which can incidentally destroy generated hydrogen ions and are co-extracted with the hydrogen beam. Goal of this work is to investigate majority of processes which might have impact on hydrogen anion in either formative or destructive way associated with cesium. Generally the caesium dynamics is very complex in such sources and the interplay of the individual contributions and their control to establish optimum caesium coverage of the plasma grid is still an open issue. (authors)

  20. Experiments on ion-acoustic rarefactive solitons in a multi-component plasma with negative ions

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ferreira, J.L.; Ludwig, G.O.

    1987-09-01

    Ion-acoustic solitons in a three-component plasma which consists of electrons, positive and negative ions have been investigated experimentally. When the concentration of negative ions is smaller than a certain value, positive or compressive solitons are observed. At the critical concentration, a broad pulse of small but finite amplitude propagates without changing its shape. When the concentration is larger than this value, negative or rarefactive solitons are excited. The velocity and the width of these solitons are measured and compared with predictions of the Korteweg- de Vries equation which takes the negative ions and the ion temperature into consideration. Head-ion and over-taking collisions of the rarefactive solitons have been observed to show that the solitons are not affected by these collisions. (author) [pt

  1. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  2. Study on the hydrogen negative ion in low pressure discharges

    International Nuclear Information System (INIS)

    Bruneteau, A.M.

    1983-07-01

    A new use of negative hydrogen ions is the production of intense fast neutral atom beams useful in plasma heating in thermonuclear heating. That is one of the reasons that started this study. The density of negative hydrogen ions in diffusion, and multipole-type low pressure (10 -3 - 10-2 Torr) discharges is deduced from the various formation and destruction processes of the species present in these discharges. The H - ions are essentially produced by dissociative attachment to vibrationally excited molecules and destroyed by processes the relative importance of which is discussed as a function of the discharge parameters. The experimental study of the density of the H - ions, measured by photodetachment, as a function of these parameters, coroborates the theoretical model [fr

  3. Negative ion photoelectron spectroscopy of SeO-

    International Nuclear Information System (INIS)

    Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H.

    1985-01-01

    Negative ion photoelectron spectroscopy (NIPES) involves a kinetic energy analysis of electrons which are photodetached when a mass selected beam of negative ions is crossed with a fixed frequency laser beam. The photodetachment spectra of SeO - displays transitions from the X 2 PI state of SeO - to both the X 3 Σ - and a 1 Δ states of SeO. The singlet-triplet splitting of SeO is readily observable since selection rules regarding spin do not apply in the bound to free state process of photodetachment. The electron affinity of SeO and the negative ion potential parameters of SeO - have been determined

  4. The mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Solomaa, M.

    1982-01-01

    This article reviews recent experimental and theoretical work on the mobility of negative ions in the superfluid A and B phases of liquid 3 He. In the normal Fermi liquid at temperatures below approximately 50 mK and also in the superfluid close to the superfluid transition temperature, Tsub(c), the mobility of a negative ion may simply be considered as limited by the elastic scattering of 3 He quasiparticles. This explains the constancy of the ion mobility in the normal phase. However, underlying the rapid increase of the measured mobility in the superfluid phases there is a subtle quantum-mechanical scattering effect. Detailed solutions of the 3 He quasiparticle-negative ion scattering process in the pair-correlated state provide a simple physical picture of an energy-dependent forward-peaking phenomenon. This yields quantitative theoretical results for the ion mobility in the quasi-isotropic B phase and for the ion mobility tensor in the anisotropic A phase which agree with the experimental data. (author)

  5. Improvement of JT-60U Negative Ion Source Performance

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kuriyama, M.; Kawai, M.; Itoh, T.; Umeda, N.

    2000-01-01

    The negative ion neutral beam system now operating on JT-60U was the first application of negative ion technology to the production of beams of high current and power for conversion to neutral beams, and has successfully demonstrated the feasibility of negative ion beam heating systems for ITER and future tokamak reactors [1, 2]. It also demonstrated significant electron heating[3] and high current drive efficiency in JT-60U[4]. Because this was such a large advance in the state of the art with respect to all system parameters, many new physical processes appeared during the earlier phases of the beam injection experiments. We have explored the physical mechanisms responsible for these processes, and implemented solutions for some of them, in particular excessive beam stripping, the secular dependence of the arc and beam parameters, and nonuniformity of the plasma illuminating the beam extraction grid. This has reduced the percentage of beam heat loading on the downstream grids by roug hly a third, and permitted longer beam pulses at higher powers. Progress is being made in improving the negative ion current density, and in coping with the sensitivity of the cesium in the ion sources to oxidation by tiny air or water leaks, and the cathode operation is being altered

  6. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  7. Solitons in a relativistic plasma with negative ions--

    International Nuclear Information System (INIS)

    Das, G.C.; Karmakar, B.; Ibohanbi Singh, KH.

    1990-01-01

    The interaction of the nonlinearity and the dispersiveness causing the solitary waves are studied in a relativistic plasma with negative ions through the derivation of a nonlinear partial differential equation known as the Korteweg-Devries (K-DV) equation. The negative ions play a salient feature on the existence and behavior of the solitons and could be of interest in laboratory plasmas. First, the observations are made in a nonisothermal plasma, and later the reduction to the nonisothermality of the plasma shows entirely different characteristics as compared to the solitons in the isothermal plasmas. A comparison with the various solutions has been emphasized

  8. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  9. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1977-01-01

    The mobility of negative ions is shown to increase rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature independent mobility between 40 mK and T/sub c/ for all pressures between 0 and 28 bar. The increase of μ/sub N/ with increasing pressure is in agreement with the bubble model for the negative ion

  10. Improvements of the versatile multiaperture negative ion source NIO1

    Science.gov (United States)

    Cavenago, M.; Serianni, G.; De Muri, M.; Veltri, P.; Antoni, V.; Baltador, C.; Barbisan, M.; Brombin, M.; Galatá, A.; Ippolito, N.; Kulevoy, T.; Pasqualotto, R.; Petrenko, S.; Pimazzoni, A.; Recchia, M.; Sartori, E.; Taccogna, F.; Variale, V.; Zaniol, B.; Barbato, P.; Baseggio, L.; Cervaro, V.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Laterza, B.; Maniero, M.; Martini, D.; Migliorato, L.; Minarello, A.; Molon, F.; Moro, G.; Patton, T.; Ravarotto, D.; Rizzieri, R.; Rizzolo, A.; Sattin, M.; Stivanello, F.; Zucchetti, S.

    2017-08-01

    The ion source NIO1 (Negative Ion Optimization 1) was developed and installed as a reduced-size model of multi-aperture sources used in neutral beam injectors. NIO1 beam optics is optimized for a 135 mA H- current (subdivided in 9 beamlets) at a Vs = 60 kV extraction voltage, with an electron-to-ion current ratio Rj up to 2. Depending on gas pressure used, NIO1 was up to now operated with Vs qualitative agreement with theoretical and numerical models. A second bias voltage was tested for hydrogen. Beam footprints and a spectral emission sample are shown.

  11. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    Energy Technology Data Exchange (ETDEWEB)

    Gutser, Raphael

    2010-07-21

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  12. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    International Nuclear Information System (INIS)

    Gutser, Raphael

    2010-01-01

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  13. Radiation assisted thermonuclear burn wave dynamics in heavy ion fast ignition of cylindrical deuterium-tritium fuel target

    International Nuclear Information System (INIS)

    Rehman, S.; Kouser, R.; Nazir, R.; Manzoor, Z.; Tasneem, G.; Jehan, N.; Nasim, M.H.; Salahuddin, M.

    2015-01-01

    Dynamics of thermonuclear burn wave propagation assisted by thermal radiation precursor in a heavy ion fast ignition of cylindrical deuterium-tritium (DT) fuel target are studied by two dimensional radiation hydrodynamic simulations using Multi-2D code. Thermal radiations, as they propagate ahead of the burn wave, suffer multiple reflections and preheat the fuel, are found to play a vital role in burn wave dynamics. After fuel ignition, the burn wave propagates in a steady state manner for some time. Multiple reflection and absorption of radiation at the fuel-tamper interface, fuel ablation and radial implosion driven by ablative shock and fast fusion rates on the fuel axis, at relatively later times, result into filamentary wave front. Strong pressure gradients are developed and sausage like structures behind the front are appeared. The situation leads to relatively reduced and non-uniform radial fuel burning and burn wave propagation. The fuel burning due to DD reaction is also taken into account and overall fusion energy and fusion power density, due to DT and DD reactions, during the burn wave propagation are determined as a function of time. (authors)

  14. Solvolysis of deuterium-labeled β-(syn-7-norbornenyl)ethyl p-bromobenzenesulfonates. Multiple cation automerizations in tight ion pairs

    International Nuclear Information System (INIS)

    Bly, R.S.; Bly, R.K.; Hamilton, J.B.; Jindal, S.P.

    1977-01-01

    The brosylates of α,α- 2 H 2 -, β,β- 2 H 2 -, and α,α,β,β- 2 H 4 -β-(syn-7-norbornenyl)ethanol have been prepared and solvolyzed at 25 0 C in buffered acetic acid, in buffered formic acid, and in buffered 90 percent acetone-water. The deuterated exo-2-brendyl and exo-4-brexyl derivatives produced in each case after a single hydrogen or deuterium shift have been converted to deuterated brendan-2-one and brexan-4-one mixtures and the position of the deuterium labels in each ketone determined mass spectrometrically. Comparison of the deuterium content of the brexan-4-one both before and after base-catalyzed exchange with protium permits analysis of the fractions of solvolysis product derived from each recognizably discrete rearranged cation. From these results it is clear that some hydrogen or deuterium migration occurs from each methylenic carbon of the starting brosylate and that 10 to 19 percent of those migrations are preceded by at least one Wagner--Meerwein automerization. It is suggested that the observed effect of the different solvents on the product distribution is due in part to ion pairing which affects the rate of transformations that change the net charge separation in the initial intermediate

  15. Progress of the ''batman'' RF source for negative hydrogen ions

    International Nuclear Information System (INIS)

    Frank, P.; Heinemann, B.; Kraus, W.; Probst, F.; Speth, E.; Vollmer, O.; Bucalossi, J.; Trainham, R.

    1998-01-01

    The aim of a collaboration between CEA Cadarache and IPP Garching is to investigate the ability of an rf source to produce negative-ion current densities compatible with ITER NBI requirements (20 mA/cm 2 D-). A standard PlNI-size rf source developed for ASDEX-Upgrade and a three-grid extraction system form the basis of BATMAN (Bavarian Test Machine for Negative Ions). In the case of a pure hydrogen plasma a current density of 5.5 mA/cm 2 at elevated pressure (2.4 Pa) can be reached. Adding small amounts of argon ( 2 . In the low pressure range (0.7 Pa) the negative ion yield is strongly reduced, but with an admixture of argon and a cesium injection the current density is higher approx. by a factor 8 (4 mA/cm 2 ) compared to the pure hydrogen discharge. The negative ion yield shows a saturation with increasing rf power. (author)

  16. Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion

    Science.gov (United States)

    Astapenko, V. A.; Moroz, N. N.

    2018-05-01

    Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.

  17. National negative-ion-based neutral-beam development plan

    International Nuclear Information System (INIS)

    Cooper, W.S.; Pyle, R.V.

    1983-08-01

    The plan covers facilities required, program milestones, and decision points. It includes identification of applications, experiments, theoretical research areas, development of specific technologies and reactor development and demonstration facilities required to bring about the successful application of negative-ion-based neutral beams. Particular emphasis is placed on those activities leading to use on existing plasma confinement experiments or their upgrades

  18. Recent advancements in sputter-type heavy negative ion sources

    International Nuclear Information System (INIS)

    Alton, G.D.

    1989-01-01

    Significant advancement have been made in sputter-type negative ion sources which utilize direct surface ionization, or a plasma to form the positive ion beam used to effect sputtering of samples containing the material of interest. Typically, such sources can be used to generate usable beam intensities of a few μA to several mA from all chemically active elements, depending on the particular source and the electron affinity of the element in question. The presentation will include an introduction to the fundamental processes underlying negative ion formation by sputtering from a low work function surface and several sources will be described which reflect the progress made in this technology. 21 refs., 9 figs., 1 tab

  19. A Multi-Sample Cs-Sputter Negative Ion Source

    International Nuclear Information System (INIS)

    Alton, G.D.; Ball, J.A.; Bao, Y.; Cui, B.; Reed, C.A.; Williams, C.

    1998-01-01

    A multi-sample Cs sputter negative-ion source, equipped with a conical-geometry, W-surface-ionizer has been designed and fabricated that permits sample changes without disruption of on-line accelerator operation. Sample changing is effected by actuating an electro-pneumatic control system located at ground potential that drives an air-motor-driven sample-indexing-system mounted at high voltage; this arrangement avoids complications associated with indexing mechanisms that rely on electronic power-supplies located at high potential. In-beam targets are identified by LED indicator lights derived from a fiber-optic, Gray-code target-position sensor. Aspects of the overall source design and details of the indexing mechanism along with operational parameters, ion optics. intensities, and typical emittances for a variety of negative-ion species will be presented in this report

  20. A Multi-Sample Cs-Sputter Negative Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.; Ball, J.A.; Bao, Y.; Cui, B.; Reed, C.A.; Williams, C.

    1998-10-05

    A multi-sample Cs sputter negative-ion source, equipped with a conical-geometry, W-surface-ionizer has been designed and fabricated that permits sample changes without disruption of on-line accelerator operation. Sample changing is effected by actuating an electro-pneumatic control system located at ground potential that drives an air-motor-driven sample-indexing-system mounted at high voltage; this arrangement avoids complications associated with indexing mechanisms that rely on electronic power-supplies located at high potential. In-beam targets are identified by LED indicator lights derived from a fiber-optic, Gray-code target-position sensor. Aspects of the overall source design and details of the indexing mechanism along with operational parameters, ion optics. intensities, and typical emittances for a variety of negative-ion species will be presented in this report.

  1. Sources of polarized negative ions: progress and prospects

    International Nuclear Information System (INIS)

    Haeberli, W.

    1980-01-01

    A summary of recent progress in the art of producing beams of polarized ions is given. In all sources of polarized ions, one first produces (or selects) neutral atoms which are polarized in electron spin. Those types of sources which use a beam of thermal polarized hydrogen atoms are discussed. Progress made in the preparation of the atomic beam and the methods used to convert the neutral atoms to polarized ions is summarized. The second type of source discussed is based on fast (keV) polarized hydrogen atoms. Conversion to negative ions is very simple because one only needs to pass the fast atoms through a suitable charge exchange medium (gas or vapor). However, the production of the polarized atoms is more difficult in this case. The proposal to employ polarized alkali vapor to form a beam of polarized fast H atoms, where the polarized alkali atoms are produced either by an atomic beam apparatus or by optical pumping is discussed

  2. Negative ion detachment cross sections: Progress report, March 1, 1986-February 28, 1987

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1986-11-01

    Brief descriptions are given for research performed in (1) the electron detachment of alkali negative ions, (2) collisions of negative ions with alkali atoms, (3) charge exchange involving doubly charged ions, and (4) positive ion production in negative ion-atom collisions

  3. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  4. Ion-acoustic shock waves with negative ions in presence of dust particulates

    International Nuclear Information System (INIS)

    Sarma, Arun; Nakamura, Y.

    2009-01-01

    Dust acoustics shock waves have been investigated experimentally in a homogeneous unmagnetized dusty plasma device containing negative ions. When the negative ion density larger than a critical concentration 'r c ' negative shock waves were observed instead of positive shock waves. Again when it is nearly equal to 'r c ' both positive and negative shock waves propagate. The experimental findings are compared with modified KdV-Burgers equation. The velocity of the shock waves are also measured and compared with the numerical integration of modified KdV-Burgers equation.

  5. Plasma diagnostic tools for optimizing negative hydrogen ion sources

    International Nuclear Information System (INIS)

    Fantz, U.; Falter, H.D.; Franzen, P.; Speth, E.; Hemsworth, R.; Boilson, D.; Krylov, A.

    2006-01-01

    The powerful diagnostic tool of optical emission spectroscopy is used to measure the plasma parameters in negative hydrogen ion sources based on the surface mechanism. Results for electron temperature, electron density, atomic-to-molecular hydrogen density ratio, and gas temperature are presented for two types of sources, a rf source and an arc source, which are currently under development for a neutral beam heating system of ITER. The amount of cesium in the plasma volume is obtained from cesium radiation: the Cs neutral density is five to ten orders of magnitude lower than the hydrogen density and the Cs ion density is two to three orders of magnitude lower than the electron density in front of the grid. It is shown that monitoring of cesium lines is very useful for monitoring the cesium balance in the source. From a line-ratio method negative ion densities are determined. In a well-conditioned source the negative ion density is of the same order of magnitude as the electron density and correlates with extracted current densities

  6. Negative-ion-beam generation with the ORNL SITEX source

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.; Kim, J.

    1982-05-01

    Parametric studies were made on a hot cathode reflex discharge H - Surface Ionization source with Transverse Extraction (SITEX) in both the pure hydrogen and the mixed hydrogen-cesium mode. Extraction current density, beam current, gas efficiency, extracted electron-to-H - current ratio, heavy negative ion impurities, optics, and long pulse operation were investigated as a function of time, arc voltage, arc current, converter voltage, H 2 gas flow, cesium feed rate, and plasma generator geometries. Initial results of the research were an extracted H - beam current density of 56 mA/cm 2 at 23 mA for 5 s pulses and, gas efficiency of 3%, theta/sub perpendicular/ (1/e) approx. 2 +- 1 0 , theta/sub parallel/ (1/e) approx. 1 +- 1 0 , at a beam energy of 25 keV. Negative heavy ion beam impurities were reduced to - ions are produced prinicpally by positive ion surface conversion using elemental cesium fractional monolayer coverage on a molybdenum converter substrate, which is biased negatively with respect to the anode

  7. High-ion temperature experiments with negative-ion-based NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Tsumori, K.; Ikeda, K.; Oka, Y.; Osakabe, M.; Nagaoka, K.; Goto, M.; Miyazawa, J.; Masuzaki, S.; Ashikawa, N.; Yokoyama, M.; Narihara, K.; Yamada, I.; Kubo, S.; Shimozuma, T.; Inagaki, S.; Tanaka, K.; Peterson, B.J.; Ida, K.; Kaneko, O.; Komori, A.; Murakami, S.

    2005-01-01

    High-Z plasmas have been produced with Ar- and/or Ne-gas fuelling to increase the ion temperature in the LHD plasmas heated with the high-energy negative-ion-based NBI. Although the electron heating is dominant in the high-energy NBI heating, the direct ion heating power is much enhanced effectively in low-density plasmas due to both an increase in the beam absorption (ionisation) power and a reduction of the ion density in the high-Z plasmas. Intensive Ne- and/or Ar-glow discharge cleaning works well to suppress dilution of the high-Z plasmas with the wall-absorbed hydrogen. As a result, the ion temperature increases with an increase in the ion heating power normalized by the ion density, and reaches 10 keV. An increase in the ion temperature is also observed with an addition of the centrally focused ECRH to the low-density and high-Z NBI plasma, suggesting improvement of the ion transport. The results obtained in the high-Z plasma experiments with the high-energy NBI heating indicate that an increase in the direct ion heating power and improvement of the ion transport are essential to the ion temperature rise, and that a high-ion temperature would be obtained as well in hydrogen plasmas with low-energy positive-NBI heating which is planed in near future in LHD. (author)

  8. An overview of negative hydrogen ion sources for accelerators

    Science.gov (United States)

    Faircloth, Dan; Lawrie, Scott

    2018-02-01

    An overview of high current (>1 mA) negative hydrogen ion (H-) sources that are currently used on particle accelerators. The current understanding of how H- ions are produced is summarised. Issues relating to caesium usage are explored. The different ways of expressing emittance and beam currents are clarified. Source technology naming conventions are defined and generalised descriptions of each source technology are provided. Examples of currently operating sources are outlined, with their current status and future outlook given. A comparative table is provided.

  9. Power supply system for negative ion source at IPR

    Science.gov (United States)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  10. Power supply system for negative ion source at IPR

    International Nuclear Information System (INIS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K G; Soni, Jignesh; Bandyopadhyay, M; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-01-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ∼5 x 10 12 cm -3 , from which ∼ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (∼15 to 35kV), and high current (∼ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (∼50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (∼ 50kV) isolated from the system. The paper shall

  11. Negative ion test facility ELISE—Status and first results

    International Nuclear Information System (INIS)

    Heinemann, B.; Fantz, U.; Franzen, P.; Froeschle, M.; Kircher, M.; Kraus, W.; Martens, C.; Nocentini, R.; Riedl, R.; Ruf, B.; Schiesko, L.; Wimmer, C.; Wuenderlich, D.

    2013-01-01

    Highlights: ► The negative ion source test facility ELISE has been set up at IPP Garching. ► The Radio frequency source has half the ITER source size. ► It shall demonstrate the required ITER parameters (20 A D-, 0.3 Pa, electron to ion current ratio below 1). ► First plasma and beam operation is starting in October 2012. -- Abstract: The new test facility ELISE (Extraction from a Large Ion Source Experiment) has been designed and installed since November 2009 at IPP Garching to support the development of the radio frequency driven negative ion source for the Neutral Beam System on ITER. The test facility is now completely assembled; all auxiliary systems have been commissioned and are operational. First plasma and beam operation is starting in October 2012. The source is designed to deliver an ion beam of 20 A of D − ions, operating at 0.3 Pa source pressure at an electron to ion current ratio below 1. Beam extraction is limited to 60 kV for 10 s every 3 minutes, while plasma operation of the source can be performed continuously for 1 hour. The ion source and extraction system have the same width as the ITER source, but only half the height, i.e. 1 × 1 m 2 source area with an extraction area of 0.1 m 2 . The aperture pattern of the extraction system and the multi driver source concept stay as close as possible to the ITER design. Easy access to the source for diagnostic tools or modifications allows to analyze and optimize the source performance. Among other possibilities many different magnetic filter field configurations inside the source can be realized to enhance the negative ion extraction and to reduce the co-extraction of electrons. Beam power and profiles are measured by calorimetry and thermography on an inertially cooled target as well as by beam emission spectroscopy. Cs evaporation into the source is done via two dispenser ovens

  12. Biophysical studies with spatially correlated ions. IV. Analysis of cell survival data for diatomic deuterium

    International Nuclear Information System (INIS)

    Kellerer, A.M.; Lam, Y.M.P.; Rossi, H.H.

    1980-01-01

    An analysis is given of previously reported results of experiments in which cells have been irradiated with pairs of ions of variable mean separation. These studies were motivated by the theory of dual radiation action and specifically by the postulate that the lesions responsible for cell impairment by ionizing radiation are formed by the combination of pairs of sublesions that are molecular alterations produced by individual energy transfers in the cell nucleus. It is concluded that the observations are consistent with dual radiation action, and the most striking finding is that there appears to be a bimodal distribution of interaction distances with maxima at less than 0.1 μm and more than 1 μm. Single tracks cause primarily the lesions produced in short-range interactions but they also contribute, at least in late S phase, a relatively small proportion of the long-range interactions which are principally due to a two-track mechanism. The experiments suggest that the radiation-sensitive components of the cell are arranged in a highly nonuniform pattern which may take the form of floccules having diameters of less than 100 nm

  13. Reflection of ion acoustic solitons in a plasma having negative ions

    International Nuclear Information System (INIS)

    Chauhan, S.S.; Malik, H.K.; Dahiya, R.P.

    1996-01-01

    Reflection of compressive and rarefactive ion acoustic solitons propagating in an inhomogeneous plasma in the presence of negative ions is investigated. Modified Korteweg endash deVries equations for incident and reflected solitons are derived and solved. The amplitude of incident and reflected solitons increases with negative to positive ion density ratio. With increasing density ratio, reflection of rarefactive solitons is reinforced whereas that of compressive solitons weakened. The rarefactive solitons are found to undergo stronger reflection than the compressive ones. copyright 1996 American Institute of Physics

  14. Ion-impact secondary emission in negative corona with photoionization

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2017-03-01

    Full Text Available A corona discharge measurement system and simulation model are presented to investigate the effects of photoionization and ion-impact secondary emission process in negative corona discharge. The simulation results obtained is shown good agreement with experimental observations. Distribution of electron density along the symmetry axis at three critical moments is shown and the role of photoionization in negative corona discharge is clearly explained. Moreover, the current pulses are also presented under different secondary emission coefficients and the effect of the secondary emission coefficient is discussed.

  15. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    Evans, C.R.; Hollander, M.G.

    1991-01-01

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  16. Direct extraction of negative lithium ions from a lithium plasma

    International Nuclear Information System (INIS)

    Wada, M.; Tsuda, H.; Sasao, M.

    1990-01-01

    Negative lithium ions (Li - ) were directly extracted from a lithium plasma in a multiline cusp plasma container. A pair of permanent magnets mounted near the extractor electrode created the filter magnetic field that separated the extraction region plasma from the main discharge plasma. The plasma electrode facing the extraction region plasma was biased with respect to the other parts of the chamber wall, which acted as discharge anodes. The larger filter magnetic field resulted larger Li - current. When the bias to the plasma electrode was several volts positive against the anode potential, extracted Li - current took the maximum for a fixed strength of the filter field. These dependences of Li - upon the filter magnetic field and the plasma electrode bias are similar to the ones of negative hydrogen ions

  17. Gabor lens focusing of a negative ion beam

    International Nuclear Information System (INIS)

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab

  18. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Grisham, Larry R.

    2002-01-01

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10 -5 torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing

  19. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  20. Vacancies and negative ions in GaAs

    International Nuclear Information System (INIS)

    Corbel, C.

    1991-01-01

    We use positron lifetime studies performed in GaAs materials to show the defect properties which can be investigated by implanting positive positrons in semiconductors. The studies concern native and electron irradiation induced defects. These studies show that vacancy charge state and vacancy ionization levels can be determined from positron annihilation. They show also that positrons are trapped by negative ions and give information on their concentration

  1. Formation of negative ions on a metal surface

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van.

    1987-01-01

    In this thesis a fundamental study of the charge exchange process of positive ions on the converter surface is presented. Beams of hydrogen ad cesium ions are scattered from a thoroughly cleaned W(110) surface, under ultra-high vacuum conditions. The cesium coverage of the surface is a controlled parameter. Ch. 2 deals with the negative-ion formation probability for hydrogen atoms. The influence of coabsorption of hydrogen is studied in Ch. 3. These measurements are important for understanding the formation process in plasma sources, because the converter surface is expected to be strongly contaminated with hydrogen. The charge state of scattered cesium particles is investigated in Ch. 4. Knowledge of this parameter is essential for Ch. 5, in which a model study of adsorption of cesium on a metal surface in contact with a plasma is presented. Finally, the negative-ion formation process in a plasma environment is studied in Ch. 6. Measurements done on a hollow-cathode discharge equipped with a novel type of converter, a porous tungsten button, are discussed. Liquid cesium diffuses through this button towards the side in contact with the plasma. (Auth.)

  2. Prototype inverted sputter source for negative heavy ions

    International Nuclear Information System (INIS)

    Minehara, Eisuke; Kobayashi, Chiaki; Kikuchi, Shiroh

    1977-10-01

    A sputter source from which negative heavy ion beam is extracted through a tungsten wire and disc ionizer was built and tested. An alkali metal surface ionization gun with the ionizer is described, and also performance of the surface ionization gun and of the sputter source for negative heavy ions using the gun is reported. The gun was tested for three alkali metals, i.e. sodium, potassium and cesium. Total potassium beam current of 1-2mA was obtained at entrance aperture of the magnet. Sputtering materials and gases for producing negative heavy ions are carbon, copper, aluminium, molybdenum, oxygen and air. With carbon and leakage air, the beam intensities analyzed are: 2-5μA (at Faraday cup) and 4.6-11μA (at exit slit) for C - , 3-5μA (at Faraday cup) and 6.8-11μA (at exit slit) for 2C - , and 11-15μA (at Faraday cup) and 25-34μA (at exit slit) for O - . Total beam current at the entrance aperture was 200-400μA. (auth.)

  3. Efficient cesiation in RF driven surface plasma negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Ivanov, A.; Konstantinov, S.; Sanin, A., E-mail: sanin@inp.nsk.su; Sotnikov, O. [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H{sup −} production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H{sup −} production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H{sup −} yield to the high value. The effect of H{sup −} yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H{sup −} yield recovery due to sputtering of cesium from the deteriorated layers is discussed.

  4. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  5. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  6. Transition of ion-acoustic perturbations in multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Sharma, Sumita Kumari; Devi, Kavita; Adhikary, Nirab Chandra; Bailung, Heremba

    2008-01-01

    Evolution of ion-acoustic compressive (positive) and rarefactive (negative) perturbations in a multicomponent plasma with negative ions has been investigated in a double plasma device. Transition of compressive solitons in electron-positive ion plasma, into a dispersing train of oscillations in a multicomponent plasma, when the negative ion concentration r exceeds a critical value r c , has been observed. On the other hand, an initial rarefactive perturbation initially evolves into a dispersing train of oscillations in electron-positive ion plasma and transforms into rarefactive solitons in a multicomponent plasma when the negative ion concentration is higher than the critical value. The Mach velocity and width of the compressive and rarefactive solitons are measured. The compressive solitons in the range 0 c and the rarefactive solitons in the range r>r c have different characteristics than the Korteweg-de Vries (KdV) solitons at r=0 and modified KdV solitons at r=r c . A nonlinear differential equation having two terms to account for the lower and higher order nonlinearity has been used to explain the observed results

  7. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  8. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  9. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  10. A large-area RF source for negative hydrogen ions

    International Nuclear Information System (INIS)

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-01-01

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H - /D - ) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm 2 net extraction area. First results from BATMAN (Bavarian T lowbar est Machine for N lowbar egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm 2 H - (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature T e >2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way

  11. Lattice location studies of deuterium in Pdsub(0.8)Ausub(0.2) and Ta crystals by ion channeling

    International Nuclear Information System (INIS)

    Takahashi, J.; Yamaguchi, S.; Koiwa, M.; Fujino, Y.; Yoshinari, O.; Hirabayashi, M.

    1978-01-01

    The channelling of 300 to 400 KeV deuterons combined with the D(d,p)T reaction has been used to study the lattice location of deuterium in a fcc crystal of (Pdsub(0.8)Ausub(0.2))Dsub(0.04) and a bcc crystal of TaDsub(0.10). The channelling angular distributions are measured for , , axial and brace 100 brace, brace 110 brace, brace 111 brace planar directions. It is concluded that deuterium in Pdsub(0.8)Ausub(0.2) occupies the octahedral interstice of the fcc lattice, while that in Ta occupies the tetrahedral interstice of the bcc lattice. (author)

  12. Optimum extracted H- and D- current densities from gas-pressure-limited high-power hydrogen/deuterium tandem ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1993-01-01

    The tandem hydrogen/deuterium ion source is modelled for the purpose of identifying the maximum current densities that can be extracted subject to the gas-pressure constraints proposed for contemporary beam-line systems. Optimum useful extracted current densities are found to be in the range of approximately 7 to 10 mA cm -2 . The sensitivity of these current densities is examined subject to uncertainties in the underlying atomic/molecular rate processes; A principal uncertainty remains the quantification of the molecular vibrational distribution following H 3 + wall collisions

  13. Techniques for the detection of photodesorbed negative ions

    International Nuclear Information System (INIS)

    Young, C.E.; Schweitzer, E.L.; Pellin, M.J.; Gruen, D.M.; Hurych, Z.; Soukiassian, P.; Bakshi, M.H.; Bommannavar, A.S.

    1987-01-01

    This paper reports the direct observation of H - ions released from a Cs-dosed W(100) crystal by photon-stimulated desorption (PSD). This study utilized the 3m toroidal grating monochromator beamline at the University of Wisconsin-Madison Synchrotron Radiation Center. The main technical problem to be overcome in such experiments is the large background from photoemitted electrons which dominate the weak anion signal by many orders of magnitude. The solution ultimately employed utilized both magnetic suppression of photoelectrons and time-of-flight (TOF) mass separation. No internal modifications to the basic cylindrical mirror analyzer (CMA) were required. We are not aware of any previous reports of the detection of negative ions released from surfaces via photon bombardment, with the exception of high flux laser experiments, in which plasma formation is involved in the ionization process. 16 refs., 3 figs

  14. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    Science.gov (United States)

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  15. Conceptual design of a calorimeter and residual ion dump for the ITER negative ion injectors

    International Nuclear Information System (INIS)

    Watson, M.

    1998-01-01

    A conceptual design for the ITER Negative Ion Injectors' Calorimeter and Residual Ion Dump systems has been carried out. The work was undertaken in support of detailed studies performed by the Russian Federation. Concepts for both systems incorporate actively water cooled hypervapotrons as the primary beam stopping elements. The Calorimeter drive has been based on the utilisation of a novel force translation system via magnetic coupling. The Residual Ion Dump necessitates the use of double sided hypervapotron elements in order to cater for the restricted space envelope defined by the Accelerator Grid hole pattern. (author)

  16. Simple method for determining fullerene negative ion formation★

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred Z.

    2018-04-01

    A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

  17. Photodetachment from negative ions with ns2 subshells

    International Nuclear Information System (INIS)

    Ivanov, V.K.; Ipatov, A.N.; Krukovskaya, L.P.

    1997-01-01

    The theoretical study on multielectron effects in processes of electrons photodetachment from the Cu - and Cr - negative ions is carried out. The calculations were accomplished within the frames of the model, based on the approximation of random phases with exchange with simultaneous account for impact of the static polarization potential and the shell static rearrangement. The calculational results of photodetachment cross sections of the external 4s-electrons from Cu - and Cr - are presented and comparison with the available experimental data and the results of other calculations is carried out

  18. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1976-01-01

    We have found that the mobility of negative ions increases rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature-independent mobility between 30 mK and T/sub c/ for all pressures between 0 and 28 bars

  19. Photodetachment of negative C{sub 60}{sup -} ions

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Baltenkov, A.S.; Krakov, B.G. [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation)]|[U.A. Arifov Institute of Electronics, Tashkent, 700143 (Uzbekistan)

    1998-06-15

    A model that describes the electron structure of negative fullerene C{sub 60}{sup -} ions is proposed. The model contains only two experimentally observed parameters, namely the fullerene radius and the affinity energy of the electron to neutral C{sub 60}. In the frame of this model, cross sections are calculated of elastic scattering of slow electrons on neutral fullerene, of C{sub 60}{sup -} photodetachment near the threshold of this process and of radiative recombination of slow electrons with neutral fullerenes. (orig.) 21 refs.

  20. Development of negative heavy ion sources for plasma potential measurement

    International Nuclear Information System (INIS)

    Sasao, M.; Okabe, Y.; Fujisawa, A.; Iguchi, H.; Fujita, J.; Yamaoka, H.; Wada, M.

    1991-10-01

    A plasma sputter negative ion source was studied for its applicability to the potential measurement of a fusion plasma. Both the beam current density and the beam energy spread are key issues. Energy spectra of a self extracted Au - beam from the source were measured under the condition of a constant work function of the production surface. The full width of half maximum (FWHM) increases from 3 eV to 9 eV monotonically as the target voltage increases from 50 V to 300 V, independently from the target surface work function of 2.2 - 3 eV. (author)

  1. Negative-Ion source for mass selective photodetachment photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kaesmaier, R.; Baemann, C.; Drechsler, G.; Boesl, U.

    1995-01-01

    We have designed and constructed a negative ion source for mass spectrometry and mass selective photodetachement photoelectron spectroscopy. The characteristics of the source are high anion densities and a large variety of accessible systems. Thus, mass spectra and photoelectron spectra of large unvolatile moelcules (biomolecules), of metal-organic compounds and of molecule water clusters, especially mentioned in this article, have been measured. Combining mass spectrometry, photoelectron spectroscopy (PES) and high resolution ZEKE (zero kinetic energy)-PES (1) should make the apparatus to an ideal diagnostic tool for structural assignment

  2. The role of high Rydberg states in the generation of negative ions in negative-ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1995-01-01

    The generation of substantial yields of H - ions in a laser excited H 2 gas has been reported by Pinnaduwage and Christoforu. These H - yields have been attributed to (2 + 1) REMP photoexcitation processes leading to dissociative attachment of doubly-excited or superexcited states (SES), or dissociative attachment of high Rydberg product states. The new feature of these experiments is the implied large dissociative attachment rates, of order 10 -6 cm 3 sec -1 , values that are orders-of-magnitude larger than the dissociative attachment of the vibrationally excited levels of the ground electronic state. While these laser excitations are not directly applicable to a hydrogen negative-ion discharge, the implication of large dissociative attachment rates to the high Rydberg states may affect both the total negative-ion density and the interpretation of discharge performance. Within the discharge energetic electrons will collisionally excite the higher Rydberg states, and the relative contribution of the dissociative attachment of these states when compared with the dissociative attachment to the ground state vibrational levels, is the topic of this paper

  3. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions (1)could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion-ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component--positive ions, negative ions, and electrons--can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed

  4. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  5. Deuterium labeled cannabinoids

    International Nuclear Information System (INIS)

    Driessen, R.A.

    1979-01-01

    Complex reactions involving ring opening, ring closure and rearrangements hamper complete understanding of the fragmentation processes in the mass spectrometric fragmentation patterns of cannabinoids. Specifically labelled compounds are very powerful tools for obtaining more insight into fragmentation mechanisms and ion structures and therefore the synthesis of specifically deuterated cannabinoids was undertaken. For this, it was necessary to investigate the preparation of cannabinoids, appropriately functionalized for specific introduction of deuterium atom labels. The results of mass spectrometry with these labelled cannabinoids are described. (Auth.)

  6. Cross-field dust acoustic instability in a dusty negative ion plasma

    International Nuclear Information System (INIS)

    Rosenberg, M

    2010-01-01

    A cross-field dust acoustic instability in a dusty negative ion plasma in a magnetic field is studied using kinetic theory. The instability is driven by the ExB drifts of the ions. It is assumed that the negative ions are much heavier than the positive ions, and that the dust is negatively charged. The case where the positive ions and electrons are magnetized, the negative ions are marginally unmagnetized, and the dust is unmagnetized is considered. The focus is on a situation where Doppler resonances near harmonics of the positive ion gyrofrequency can affect the spectrum of unstable dust acoustic waves. Application to possible laboratory experimental parameters is discussed.

  7. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    Science.gov (United States)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.

    2011-07-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  8. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    International Nuclear Information System (INIS)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Froeschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Staebler, A.; Wuenderlich, D.

    2011-01-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 x 0.9 m 2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( ∼ 1/8 of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density-being consistent with ion trajectory calculations-and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  9. Negative Ion Source Development and Photodetachment Studies at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2254068; Hanstorp, Dag; Rothe, Sebastian

    Astatine is one of the rarest elements on earth. The small amount of existing astatine is either created in decay chains of heavier elements or artificially. One of its longer lived isotopes, 211At, is of interest for targeted alpha therapy, a method of treating cancer by using the alpha decay of radioactive elements directly at the location of a tumor. However, its chemical properties are yet to be determined due to the short life time of astatine. A milestone towards the determination of the electronegativity of astatine was the measurement of its ionization potential (IP) at CERN-ISOLDE. However, its electron affinity (EA, the binding energy of the additional electron in a negative ion), is still to be measured. In order to determine the EA of radioisotopes by laser photodetachment spectroscopy, the Gothenburg ANion Detector for Affinity measurements by Laser Photodetachment (GANDALPH) has been built in recent years. As a proof-of-principle, the EA of the 128I negative ion, produced at the CERN-ISOLDE rad...

  10. K-shell photodetachment of the negative ion of beryllium

    International Nuclear Information System (INIS)

    Carlin, N M; Ramsbottom, C A; Bell, K L; Hibbert, A

    2003-01-01

    The partial and total cross sections for photodetachment of the metastable 1s 2 2s2p 2 4 P e bound state of the negative ion of beryllium are presented for a range of initial photon energies across and beyond the 1s detachment threshold. The cross sections are computed using a multichannel close-coupling R-matrix approximation, where sophisticated configuration-interaction wavefunctions are used to represent the initial and final states. Twelve target eigenstates with configurations 1s 2 2s2p, 1s 2 2p 2 , 1s2s 2 2p, 1s2s2p 2 and 1s2p 3 are included in the expansion of the total wavefunction describing the neutral Be atom. A number of prominent resonance structures have been identified in the partial cross sections for the three total system symmetry transitions of interest: 4 P e - 4 S o , 4 P o and 4 D o . No comparison can be made at this stage with other theoretical or experimental measurements due to a lack of data describing the inner shell photodetachment of the negative ion of beryllium

  11. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, Stephen Edmund [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN-, NCO- and NCS-. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH30H,F + C2H5OH,F + OH and F + H2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O(3P, 1D) + HF and F + H2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H2 system, comparisons with three-dimensional quantum calculations are made.

  12. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound → bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN - , NCO - and NCS - . Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH 3 0H,F + C 2 H 5 OH,F + OH and F + H 2 . A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3 P, 1 D) + HF and F + H 2 . The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made

  13. Intense negative hydrogen ion source for neutral injection into tokamaks

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1975-01-01

    In this scheme negative ions are extracted from a plasma source, accelerated to the required energy and then neutralized by stripping in a gas, metal vapor or plasma jet. One of the most promising direct extraction sources is the magnetron source, operating in the mixed hydrogen-cesium mode. In the present source cathode current densities are up to 20 A/cm 2 at arc voltages between 100 V and 150 V. In order to utilize the discharge more efficiently multislit extraction geometry was adopted. Highest currents were obtained by using six slits, with a total extraction area of 1.35 cm 2 . At an extraction voltage of 18 kV negative hydrogen ion currents close to 1 A were obtained, which corresponds to current densities of about 0.7 A/cm 2 at the extraction aperture. Pulse length was 10-20 ms and the repetition rate 0.1 Hz. The total extracted current was usually 2-3 times the H - current

  14. Mobility of negative ions in superfluid 3He-B

    International Nuclear Information System (INIS)

    Baym, G.; Pethick, C.J.; Salomaa, M.

    1979-01-01

    We calculate the mobility of negative ions in superfluid 3 He-B. We first derive the general formula for the mobility, and show that to a good approximation the scattering of quasiparticles from an ion may be treated as elastic, both in the superfluid for temperatures not too far below the transition temperature and also in the normal state. The scattering cross section in the superfluid is then calculated in terms of normal state properties; as we show, it is vital to include the effects of superfluid correlations on intermediate states in the scattering process. We find that for quasiparticles near the gap edge, the quasiparticle: ion scattering amplitude has a resonant behavior, and that as a result of interference among many partial waves, the differential scattering cross section is strongly peaked in the forward direction and reduced at larger angles, in much the same way as in diffraction. The transport cross section for such a quasiparticle is strongly reduced compared to that for a normal state quasiparticle, and the mobility is consequently strongly enhanced. Detailed calculations of the mobility which contain essentially no free parameters, agree well with the experimental data

  15. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1992-01-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991

  16. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    International Nuclear Information System (INIS)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-01-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10 18 /m 3 , at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  17. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    Science.gov (United States)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  18. Cross sections and equilibrium fractions of deuterium ions and atoms in metal vapors. Progress report, June 1, 1978-May 31, 1979

    International Nuclear Information System (INIS)

    Morgan, T.J.

    1979-01-01

    The purpose of this program is to measure cross sections and equilibrium fractions of deuterium ions and atoms in metal vapors. In particular, in connection with double charge exchange D - ion sources, there is concern with D - formation in alkaline-earth vapor targets. Also, in connection with possible metal vapor contamination in the system, there is concern with cross sections for high energy D + , D 0 and D - collisions with these metal vapors. Results from this research will fill in a gap in knowledge of single and double charge transfer and multiple collision processes in alkaline-earth targets and provide a better understanding of D - formation mechanisms. A list of publications is included. 6 references

  19. A 1D ion species model for an RF driven negative ion source

    Science.gov (United States)

    Turner, I.; Holmes, A. J. T.

    2017-08-01

    A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.

  20. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1991-01-01

    This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic targets at intermediate energies. The immediate goal is to study elastic scattering, single electron detachment, and target excitation/ionization in H - scattering from noble gas targets. For the target inelastic processes, these cross sections are unknown both experimentally and theoretically. The present measurements will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion collisions. This series of experiments required the construction of a new facility, and significant progress toward its operation has been realized during this period. The proposed research is described in this report. The progress on and the status of the apparatus is also detailed in this report

  1. Experimental studies of the Negative Ion of Hydrogen. Final Report

    International Nuclear Information System (INIS)

    Bryant, Howard C.

    1999-01-01

    This document presents an overview of the results of the DOE'S support of experimental research into the structure and interactions of the negative ion of hydrogen conducted by the Department of Physics and Astronomy of the University of New Mexico at the Los Alamos National Laboratory. The work involves many collaborations with scientists from both institutions, as well as others. Although official DOE support for this work began in 1977, the experiment that led to it was done in 1971, near the time the 800 MeV linear accelerator at Los Alamos (LAMPF) first came on line. Until the mid nineties, the work was performed using the relativistic beam at LAMFF. The most recent results were obtained using the 35 keV injector beam for the Ground Test Accelerator at Los Alamos. A list of all published results from this work is presented

  2. Experimental studies of the Negative Ion of Hydrogen. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Howard C.

    1999-06-30

    This document presents an overview of the results of the DOE'S support of experimental research into the structure and interactions of the negative ion of hydrogen conducted by the Department of Physics and Astronomy of the University of New Mexico at the Los Alamos National Laboratory. The work involves many collaborations with scientists from both institutions, as well as others. Although official DOE support for this work began in 1977, the experiment that led to it was done in 1971, near the time the 800 MeV linear accelerator at Los Alamos (LAMPF) first came on line. Until the mid nineties, the work was performed using the relativistic beam at LAMFF. The most recent results were obtained using the 35 keV injector beam for the Ground Test Accelerator at Los Alamos. A list of all published results from this work is presented.

  3. The First Successful Compact Negative Heavy Ion Cyclotron

    International Nuclear Information System (INIS)

    Liu, Y.; Chen, M.; Li, D.; Lu, X.; Shen, L.; Xu, S.; Chen, G.

    1999-01-01

    A compact negative heavy ion minicyclotron has been set up in 1993 in Shanghai, China which is dedicated to the analysis of radioactive isotope 14 C. This is a new type of cyclotron with a series of gifted ideas, such as adopting triangular-wave Dee Voltage, configuring the asymmetric differential Dee electrodes with varying width and aperture, combining the yoke of the magnet with the vacuum chamber, designing a pair of the spherical electrostatic injection deflectors, adding auxiliary electrodes for extraction, alternately accelerating different particles and using Dynode-MCP detector for counting 14 C etc., all of which have aimed at increasing the transmission efficiency in the injection, acceleration and extraction region, eliminating various backgrounds and improving the precision of 14 C analysis. All of those will be introduced in this article. Finally, its operation performance and some difficulties will be discussed

  4. Negative ion formation in collisions involving excited alkali atoms

    International Nuclear Information System (INIS)

    Cheret, M.

    1988-01-01

    Ion-pair production is considered as the prototype of the crossing problem between potential energy curves. In general an alkali atom is one of the reactants the other being an halogen, hydrogen atom or molecule. Experimental results are generally analyzed in the framework of the Landau-Zener-Stuekelberg theory, ionization potential and electron affinity, being the most important parameters. In order to vary these parameters over a wide range two experimental works have been devoted to systems of excited alkali atoms colliding with ground state alkali atoms. In the first study Rb atoms are excited to various ns or nd states from Rb(5d) to Rb(9s) in a cell. The second study is devoted to the Na(3p)-Na(3s) system, in this study also the possibility of creating excited negative ions (Na - (3s3p)) has been investigated. These results are presented and analyzed. Finally further developments of the subject are suggested. 17 refs.; 8 figs.; 1 table

  5. Two-dimensional particle simulation of negative ion extraction from a volume source

    International Nuclear Information System (INIS)

    Naitou, H.; Fukumasa, O.; Sakachou, K.; Mutou, K.

    1995-01-01

    Two-dimensional electrostatic particle simulation was done to study the extraction of negative ions from a volume plasma source. The simulation model is a rectangular system which consists of an extraction grid, a plasma grid, and a grounded wall. Full dynamics of electrons, ions, and negative ions are followed. Negative ions are extracted from the plasma region to the extraction grid through a slit in the plasma grid. For the lower value of extraction grid potential, the simulation results agree with the Child-Langumuir law, where the extracted negative ion current is proportional to the three-halves power of the potential of the extraction grid. For the higher value of extraction grid potential, the space charge effect of negative ions, which enter into the beamline at the top of the concavity of the positive ion boundary, reduces the negative ion current from the prediction of the Child-Langumuir law. ((orig.))

  6. Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source

    International Nuclear Information System (INIS)

    Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto; Grisham, Larry R.

    2014-01-01

    Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production

  7. Tomography feasibility study on the optical emission spectroscopy diagnostic for the negative ion source of the ELISE test facility

    International Nuclear Information System (INIS)

    Bonomo, F; Agostini, M; Brombin, M; Pasqualotto, R; Fantz, U; Franzen, P; Wünderlich, D

    2014-01-01

    A feasibility study of a spectroscopic tomographic diagnostic for the emissivity reconstruction of the plasma parameters in the large negative ion source of the test facility ELISE is described. Tomographic tools are developed to be applied to the measurements of the ELISE optical emission spectroscopy (OES) diagnostic, in order to reconstruct the emissivity distribution from hydrogen (or deuterium) plasma close to the plasma grid, where negative ions are produced and extracted to be accelerated. Various emissivity phantoms, both symmetric and asymmetric, reproducing different plasma experimental conditions have been simulated to test the tomographic algorithm. The simultaneous algebraic reconstruction technique has been applied, accounting for the OES geometrical layout together with a suitable pixel representation. Even with a limited number of 14 lines of sight (LoSs), the plasma emissivity distribution expected on the ELISE source can be successfully reconstructed. In particular, asymmetries in the emissivity pattern can be detected and reproduced with low errors. A systematic investigation of different geometrical layouts of the LoSs as well as of the pixel arrangements has been carried out, and a final configuration has been identified. Noise on the simulated experimental spectroscopic measurements has been tested, confirming the reliability of the adopted tomographic tools for the plasma emissivity reconstructions of the source plasma in ELISE with the actual OES diagnostic system. (paper)

  8. Design problems of a continuous injector of many amperes of MeV deuterium neutrals

    International Nuclear Information System (INIS)

    Fink, J.H.

    1976-10-01

    A continuous injector of many amperes of MeV deuterium neutrals will require high currents of negative deuterium ions to be generated, accelerated and stripped of electrons by methods that are not fully developed. Each of these processes as briefly described in this report, introduce constraints upon the ion optics, beam line pumping, and high voltage stand-off that must be mutually resolved. Although the design of such an injector represents a difficult task, there is no fundamental reason that very high current beams cannot be handled

  9. Proceedings of the workshop on negative ion formation and beam handling

    International Nuclear Information System (INIS)

    Takagi, A.; Mori, Y.

    1993-01-01

    The Workshop on Negative Ion Formation and Beam Handling was held at National Laboratory for High Energy Physics (KEK) on July 27 and 28. More than 40 participants attended the workshop. Negative ions and beams are becoming very useful and attractive in many fields of science, in particular in accelerator science and nuclear fusion and various types of negative ion sources have been developed so far. However, the fundamental mechanisms of negative ion generation in the ion sources and of beam formation are still not clear. This workshop aimed to discuss the problems on these points in details. (J.P.N.)

  10. Microstructure and deuterium retention after ion irradiation of W–Lu{sub 2}O{sub 3} composites

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jin–Shan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Luo, Lai–Ma, E-mail: luolaima@126.com [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 (China); Xu, Qiu [Research Reactor Institute, Kyoto University, Osaka-fu 590-0494 (Japan); Zan, Xiang; Zhu, Xiao–Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 (China); Wu, Yu–Cheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei 230009 (China)

    2017-07-15

    W–3Lu{sub 2}O{sub 3} composites were prepared by mechanical milling and spark plasma sintering. The obtained composites were subjected to He{sup +} irradiation experiments. The irradiated samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and measurement of Vickers hardness. Thermal desorption spectroscopy analysis was performed to analyze the samples at different damage levels after Fe{sup 2+} and D{sup +} irradiation. Results showed varied degrees of He{sup +} damage under different energies. Fuzz structures were observed on the surface of the material after irradiation. TEM results indicated that the existence of these fuzz structures was related to the formation of He bubbles. Amorphous, polycrystalline, and γ-W phases formed in areas where He bubbles existed. The measured Vickers hardness proved that radiation hardening occurred after irradiation. After Fe{sup 2+} irradiation at different damage levels, the total retained deuterium amount of W–3Lu{sub 2}O{sub 3} and pure W differed, and the impact of Fe{sup 2+} radiation for deuterium retention on pure tungsten was greater.

  11. Sheath-lens probe for negative ion detection in reactive plasmas

    International Nuclear Information System (INIS)

    Stamate, E.; Sugai, H.; Takai, O.; Ohe, K.

    2004-01-01

    A method that allows easy and inexpensive detection of negative ions is introduced. The method is based upon the electrostatic lens effect of the sheath layer evolving to a positively biased planar probe that focuses the negative charges to distinct regions on the surface. Trajectories of negative ions inside the sheath are obtained after computing the potential and electric field distribution by solving in three dimensions the nonlinear Poisson equation. The negative ions' flux to square and disk probes is developed in Ar/SF 6 and O 2 plasmas. The method allows negative ion detection with sensitivity higher than that of Langmuir probes

  12. Deuterium and heavy water

    International Nuclear Information System (INIS)

    Vasaru, G.; Ursu, D.; Mihaila, A.; Szentgyorgyi, P.

    1975-01-01

    This bibliography on deuterium and heavy water contains 3763 references (1932-1974) from 43 sources of information. An author index and a subject index are given. The latter contains a list of 136 subjects, arranged in 13 main topics: abundance of deuterium , catalysts, catalytic exchange, chemical equilibria, chemical kinetics, deuterium and heavy water analysis, deuterium and heavy water properties, deuterium and heavy water separation, exchange reactions, general review, heavy water as moderator, isotope effects, synthesis of deuterium compounds

  13. Nonlinear propagation of ion-acoustic solitary waves in relativistic ion-beam plasma with negative ions

    International Nuclear Information System (INIS)

    Singh, Kh.I.; Das, G.C.

    1993-01-01

    Soliton propagations are studied in a relativistic multicomponent ion-beam plasma through the derivation of Korteweg-deVries (K-dV) and modified K-dV (mK-dV) equations. A generalization of the mK-dV equation involving higher order nonlinearities gives a transitive link between the K-dV and mK-dV equations for isothermal plasma, and the validity of this generalized equation throughout the whole range of negative ion concentrations is investigated through the derivation of Sagdeev potential. Parallel discussion of various K-dV solitons enlightening the experimental implications is also made. (author). 22 refs

  14. Deuterium retention in liquid lithium

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.; Luckhardt, S.C.; Conn, R.W.

    2002-01-01

    Measurements of deuterium retention in samples of lithium exposed in the liquid state to deuterium plasma are reported. Retention was measured as a function of plasma ion dose in the range 6x10 19 -4x10 22 D atoms and exposure temperature between 523 and 673 K using thermal desorption spectrometry. The results are consistent with the full uptake of all deuterium ions incident on the liquid metal surface and are found to be independent of the temperature of the liquid lithium over the range explored. Full uptake, consistent with very low recycling, continues until the sample is volumetrically converted to lithium deuteride. This occurs for exposure temperatures where the gas pressure during exposure was both below and slightly above the corresponding decomposition pressure for LiD in Li. (author)

  15. Determination of the meniscus shape of a negative ion beam from an experimentally obtained beam profile

    Science.gov (United States)

    Ichikawa, M.; Kojima, A.; Chitarin, G.; Agostinetti, P.; Aprile, D.; Baltador, C.; Barbisan, M.; Delogu, R.; Hiratsuka, J.; Marconato, N.; Nishikiori, R.; Pimazzoni, A.; Sartori, E.; Serianni, G.; Tobari, H.; Umeda, N.; Veltri, P.; Watanabe, K.; Yoshida, M.; Antoni, V.; Kashiwagi, M.

    2017-08-01

    In order to understand the physics mechanism of a negative ion extraction in negative ion sources, an emission surface of the negative ions around an aperture at a plasma grid, so-called a meniscus, has been analyzed by an inverse calculation of the negative ion trajectory in a two dimensional beam analysis code. In this method, the meniscus is defined as the final position of the negative ion trajectories which are inversely calculated from the measured beam profile to the plasma grid. In a case of the volume-produced negative ions, the calculated meniscus by the inverse calculation was similar to that obtained in conventional beam simulation codes for positive ion extractions such as BEAMORBT and SLACCAD. The negative ion current density was uniform along the meniscus. This indicates that the negative ions produced in the plasma are transported to the plasma grid uniformly as considered in the transportation of the positive ions. However, in a surface production case of negative ions, where the negative ions are generated near the plasma grid with lower work function by seeding cesium, the current density in the peripheral region of the meniscus close to the plasma grid surface was estimated to be 2 times larger than the center region, which suggested that the extraction process of the surface-produced negative ions was much different with that for the positive ions. Because this non-uniform profile of the current density made the meniscus shape strongly concave, the beam extracted from the peripheral region could have a large divergence angle, which might be one of origins of so-called beam halo. This is the first results of the determination of the meniscus based on the experiment, which is useful to improve the prediction of the meniscus shape and heat loads based on the beam trajectories including beam halo.

  16. Negative hydrogen ion sources for neutral beam injectors

    International Nuclear Information System (INIS)

    Prelec, K.

    1977-01-01

    Negative ion sources offer an attractive alternative in the design of high energy neutral beam injectors. The requirements call for a single source unit capable of yielding H - or D - beam currents of up to 10 A, operating with pulses of 1 s duration or longer, with gas and power efficiencies comparable to or better than achievable with double electron capture systems. H - beam currents of up to 1 A have already been achieved in pulses of 10 ms; gas and power efficiencies were, however, lower than required. In order to increase the H - yield, extend the pulse length and improve gas and power efficiencies fundamental processes in the source plasma and on cesium covered electrode surfaces have to be analyzed; these processes will be briefly reviewed and scaling rules established. Based on these considerations as well as on results obtained with 1 A source models a larger model was designed and constructed, having a 7.5 cm long cathode with forced cooling. Results of initial tests will be presented and possible scaling up to 10 A units discussed

  17. Dopamine negatively modulates the NCA ion channels in C. elegans.

    Science.gov (United States)

    Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael

    2017-10-01

    The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.

  18. High current DC negative ion source for cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S. [Sumitomo Heavy Industries, Ltd., Tokyo 141-6025 (Japan); Onai, M.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Kanagawa 223-8522 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Okumura, Y. [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Aomori 039-3212 (Japan)

    2016-02-15

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H{sup −} beam of 10 mA and D{sup −} beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H{sup −} beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H{sup −} current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H{sup −} production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H{sup −} current dependence on the arc power.

  19. A 1MeV, 1A negative ion accelerator test facility

    International Nuclear Information System (INIS)

    Hanada, M.; Dairaku, M.; Inoue, T.; Miyamoto, K.; Ohara, Y.; Okumura, Y.; Watanabe, K.; Yokoyama, K.

    1995-01-01

    For the Proof-of-Principle test of negative ion acceleration up to 1 MeV, the beam energy required for ITER, a negative ion test facility named MeV Test Facility (MTF) and an ion source/accelerator have been designed and constructed. They are designed to produce a 1 MeV H- beam at a low source pressure of 0.13Pa. The MTF has a power supply system, which constituts of a 1MV, 1A, 60 s Cockcroft-Walton type dc high energy generator and power supplies for negative ion generation and extraction (ion source power supplies). The negative ion source/accelerator is composed of a cesiated volume source and a 5-stage, multi-aperture, electrostatic accelerator. The MTF and the ion source/accelerator have been completed, and the accelertion test up to 1 MeV of the H- ions has started. (orig.)

  20. Physical principles of the surface-plasma method of producing beams of negative ions

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.

    A study is made of the processes used to produce intensive beams of negative ions from surface-plasma sources (SPS). The concepts now being formulated concerning the formation of negative ions upon interaction of bombarding particles with the surface of a solid are analyzed. The peculiarities of the realization of optimal conditions for the production of beams of negative ions in SPS of various designs are discussed

  1. Lower hybrid drift instability in modified Harris current sheet with negative ions

    International Nuclear Information System (INIS)

    Huang Feng; Chen, Y-H; Shi Guifen; Hu, Z-Q; Yu, M Y

    2008-01-01

    The lower hybrid drift instability (LHDI) in a Harris current sheet with negative ions is investigated using the kinetic theory. Numerical results show that the negative ions have considerable effect on the LHDI. With increase of the negative-ion concentration, the growth rate of the LHDI increases and its real frequency decreases for any wave length. The Harris current sheet can thus be significantly modified

  2. Ion-Acoustic Cnoidal Waves In A Plasma With Negative Ions

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal

    2003-01-01

    Using the reductive perturbation method, we present a theory of different nonlinear periodic waves, viz. the Korteweg-de Vries and modified KdV (mKdV) cnoidal waves, in a plasma with negative ions, which in the limiting case reduce to localized structures, namely KdV compressive or rarefactive solitons, and mKdV compressive and rarefactive solitons, respectively. It is found that the amplitude dependence of frequency is different for KdV and mKdV cnoidal waves

  3. Negative ion mass spectra and particulate formation in rf silane plasma deposition experiments

    International Nuclear Information System (INIS)

    Howling, A.A.; Dorier, J.L.; Hollenstein, C.

    1992-09-01

    Negative ions have been clearly identified in silane rf plasmas used for the deposition of amorphous silicon. Mass spectra were measured for monosilicon up to pentasilicon negative ion radical groups in power-modulated plasmas by means of a mass spectrometer mounted just outside the glow region. Negative ions were only observed over a limited range of power modulation frequency which corresponds to particle-free conditions. The importance of negative ions regarding particulate formation is demonstrated and commented upon. (author) 3 figs., 19 refs

  4. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  5. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  6. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  7. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  8. Mechanism of negative hydrogen ion emission from heated saline hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Hiroyuki; Serizawa, Naoshi; Takeda, Makiko; Hasegawa, Seiji [Ehime Univ., Matsuyama (Japan). Faculty of Science

    1997-02-01

    To find a clue to the mechanism of negative hydrogen ion emission from a heated sample ({approx}10 mg) of powdery saline hydride (LiH or CaH{sub 2}) deposited on a molybdenum ribbon ({approx}0.1 cm{sup 2}), both the ionic and electronic emission currents were measured as a function of sample temperature ({approx}700 - 800 K), thereby yielding {approx}10{sup -15} - 10{sup -12} A of H{sup -} after mass analysis and {approx}10{sup -7} - 10{sup -5} A of thermal electron. Thermophysical analysis of these data indicates that the desorption energy (E{sup -}) of H{sup -} and work function ({phi}) of the emitting sample surface are 5.1 {+-} 0.3 and 3.1 {+-} 0.2 eV for LiH, respectively, while E{sup -} is 7.7 {+-} 0.3 eV and {phi} is 5.0 {+-} 0.2 eV for CaH{sub 2}. Thermochemical analysis based on our simple model on the emissions indicates that the values of E{sup -} - {phi} are 2.35 and 2.31 eV for LiH and CaH{sub 2}, respectively, which are in fair agreement with the respective values (2.1 {+-} 0.3 and 2.6 {+-} 0.3 eV) determined experimentally. This agreement indicates that the emission of H{sup -} is reasonably explained by our model from the viewpoint of reaction energy. (author)

  9. Physical performance analysis and progress of the development of the negative ion RF source for the ITER NBI system

    International Nuclear Information System (INIS)

    Fantz, U.; Franzen, P.; Kraus, W.; Berger, M.; Christ-Koch, S.; Falter, H.; Froeschle, M.; Gutser, R.; Heinemann, B.; Martens, C.; McNeely, P.; Riedl, R.; Speth, E.; Staebler, A.; Wuenderlich, D.

    2009-01-01

    For heating and current drive the neutral beam injection (NBI) system for ITER requires a 1 MeV deuterium beam for up to 1 h pulse length. In order to inject the required 17 MW the large area source (1.9 m x 0.9 m) has to deliver 40 A of negative ion current at the specified source pressure of 0.3 Pa. In 2007, the IPP RF driven negative hydrogen ion source was chosen by the ITER board as the new reference source for the ITER NBI system due to, in principle, its maintenance free operation and the progress in the RF source development. The performance analysis of the IPP RF sources is strongly supported by an extensive diagnostic program and modelling of the source and beam extraction. The control of the plasma chemistry and the processes in the plasma region near the extraction system are the most critical topics for source optimization both for long pulse operation as well as for the source homogeneity. The long pulse stability has been demonstrated at the test facility MANITU which is now operating routinely at stable pulses of up to 10 min with parameters near the ITER requirements. A quite uniform plasma illumination of a large area source (0.8 m x 0.8 m) has been demonstrated at the ion source test facility RADI. The new test facility ELISE presently planned at IPP is being designed for long pulse plasma operation and short pulse, but large-scale extraction from a half-size ITER source which is an important intermediate step towards ITER NBI.

  10. Measurement of negative ion mobilities in O2 and O3 mixtures at atmospheric pressure

    International Nuclear Information System (INIS)

    Itoh, H.; Norimoto, K.; Hayashi, T.

    1998-01-01

    Mobility measurements of negative molecular oxygen ions in pure oxygen and in an oxygen-ozone mixture are reported. A cascaded gap consisting of an ion drift gap and an ion detection gap was used in the experiment. The ion detection gap was formed by a positive point and a grounded plane electrode was operated at atmospheric pressure. The zero field mobility of negative molecular oxygen ions was determined to be 2.07+-0.02 cm 2 /V.s. A somewhat higher value of oxygen mobility was found at higher electric field/pressure ratios; this is presumed to be due to negative ozone ions. When changing the electric field/pressure ratio the mobility of negative oxygen ions in oxygen-ozone mixtures becomes smaller than that in pure oxygen; this is probably due to the cumulative effect of other particles produced by silent discharges. (J.U.)

  11. The structure of the stable negative ion of calcium

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    The structure of the Ca/sup /minus// ion has been determined using a crossed laser-ion beams apparatus. The photoelectron detachment spectrum shows that, contrary to earlier expectations, the Ca/sup /minus// ion is stably bound in the (4s 2 4p) 2 p state. The electron affinity of Ca was measured to be 0.043 +- 0.007 eV

  12. High-current negative hydrogen ion beam production in a cesium-injected multicusp source

    International Nuclear Information System (INIS)

    Takeiri, Y.; Tsumori, K.; Kaneko, O.

    1997-01-01

    A high-current negative hydrogen ion source has been developed, where 16.2 A of the H - current was obtained with a current density of 31 mA/cm 2 . The ion source is a multicusp source with a magnetic filter for negative ion production, and cesium vapor is injected into the arc chamber, leading to enhancement of the negative ion yields. The cesium-injection effects are discussed, based on the experimental observations. Although the surface production of the negative ions on the cesium-covered plasma grid is thought to be a dominant mechanism of the H - current enhancement, the cesium effects in the plasma volume, such as the cesium ionization and the electron cooling, are observed, and could contribute to the improved operation of the negative ion source. (author)

  13. Negative ions in the auroral mesosphere during a PCA event around sunset

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    Full Text Available This is a study of the negative ion chemistry in the mesosphere above Tromsø using a number of EISCAT observations of high energy proton precipitation events during the last solar maximum, and in particular around sunset on 23 October, 1989. In these conditions it is possible to look at the relative importance of the various photodetachment and photodissociation processes controlling the concentration of negative ions. The data analysed are from several UHF GEN11 determinations of the ion-plasma ACF together with the pseudo zero-lag estimate of the `raw' electron density, at heights between 55 km and 85 km, at less than 1 km resolution. The power profiles from the UHF are combined with the 55-ion Sodankylä model to obtain consistent estimates of the electron density, the negative ion concentrations, and the average ion mass with height. The neutral concentrations and ion temperature are given by the MSIS90 model. These parameters are then used to compare the calculated widths of the ion-line with the GEN11 determinations. The ion-line spectrum gives information on the effects of negative ions below 70 km where they are dominant; the spectral width is almost a direct measure of the relative abundance of negative ions.

    Key words. Ionosphere (auroral ionosphere; ion chemistry and composition; particle precipitation.

  14. Experimental study of high current negative ion sources D- / H-. Analysis based on the simulation of the negative ion transport in the plasma source

    International Nuclear Information System (INIS)

    Riz, D.

    1996-01-01

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm 2 of D - . The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm 2 have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H - /H + and of charge exchange H - /H 0 are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H - /D - and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author)

  15. Transport of negative ions across a double sheath with a virtual cathode

    International Nuclear Information System (INIS)

    McAdams, R; King, D B; Surrey, E; Holmes, A J T

    2011-01-01

    A one-dimensional analytical model of the sheath in a negative ion source, such as those proposed for heating and diagnostic beams on present and future fusion devices, has been developed. The model, which is collisionless, describes the transport of surface produced negative ions from a cathode, across the sheath to a plasma containing electrons, positive ions and negative ions. It accounts for the situation where the emitted flux of negative ions is greater than the space charge limit, where the electric field at the cathode is negative, and a virtual cathode is formed. It is shown that, in the presence of a virtual cathode, there is a maximum current density of negative ions that can be transported across the sheath into the plasma. Furthermore, for high rates of surface production the virtual cathode persists regardless of the negative bias applied to the cathode, so that the current density transported across the sheath is limited. This is a significant observation and implies that present negative ion sources may not be exploiting all of the surface production available. The model is used to calculate the transported negative ion flux in a number of examples. The limitations of the model and proposed future work are also discussed.

  16. Possibilities for direct optical observation of negative hydrogen ions in ion beam plasma sources via Rayleigh or Thomson scattering

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1985-01-01

    The possibilities of applying optical scattering techniques to the determination of H - concentrations in plasma sources relevant to negative ion beam generation are considered. Rayleigh scattering measurements for incident wavelengths just below the H - photoionization limit appear to be only just feasible experimentally. A more promising possibility is observation of the modification in a plasma containing negative ions of the collective ion-feature in Thomson scattering. Numerical predictions of the effects of H - concentration on the spectral distribution of the ion-feature are presented. (author)

  17. Measuring deuterium permeation through tungsten near room temperature under plasma loading using a getter layer and ion-beam based detection

    Directory of Open Access Journals (Sweden)

    Stefan Kapser

    2017-08-01

    Full Text Available A method to measure deuterium permeation through tungsten near room temperature under plasma loading is presented. The permeating deuterium is accumulated in a getter layer of zirconium, titanium or erbium, respectively, on the unexposed side of the sample. Subsequently, the amount of deuterium in the getter is measured ex-situ using nuclear reaction analysis. A cover layer system on the getter prevents direct loading of the getter with deuterium from the gas phase during plasma loading. In addition, it enables the distinction of deuterium in the getter and at the cover surface. The method appears promising to add additional permeation measurement capabilities to deuterium retention experiments, also in other plasma devices, without the need for a complex in-situ permeation measurement setup.

  18. An improved value for the electron affinity of the negative hydrogen ion

    International Nuclear Information System (INIS)

    Scherk, L.R.

    1979-01-01

    An expression is derived for the lifetime of a negative ion in a weak and static electric field. Using this expression, existing experimental data are analyzed to improve the empirical value of the electron affinity of the negative hydrogen ion by an order of magnitude. (author)

  19. H- production from non-cesiated converter-type negative ion sources

    International Nuclear Information System (INIS)

    van Os, C.F.A.; Leung, K.N.; Lietzke, A.F.; Stearns, J.W.; Kunkel, W.B.

    1989-11-01

    Recent results of surface produced negative ions are presented. Two low work function metal surfaces have been studied, barium and magnesium, in combination with several plasma generators; rf- and dc-filament discharges. The negative ion yield for barium is about 5 to 6 times larger than magnesium. This ratio is confirmed by model calculations on resonant charge exchange. 32 refs., 9 figs

  20. Investigation of the Decelerating Field of an Electron Multiplier under Negative Ion Impact

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Kjeldgaard, K.

    1973-01-01

    The effect of the decelerating field of an electron multiplier towards negative ions was investigated under standard mass spectrometric conditions. Diminishing of this decelerating field by changing of the potential of the electron multiplier increased the overall sensitivity to negative ions...

  1. Experimental measurements of negative hydrogen ion production from surfaces

    International Nuclear Information System (INIS)

    Graham, W.G.

    1977-09-01

    Experimental measurements of the production of H - from surfaces bombarded with hydrogen are reviewed. Some measurements of H + and H 0 production from surfaces are also discussed with particular emphasis on work which might be relevant to ion source applications

  2. Volume and Surface-Enhanced Volume Negative Ion Sources

    International Nuclear Information System (INIS)

    Stockli, M P

    2013-01-01

    H - volume sources and, especially, caesiated H - volume sources are important ion sources for generating high-intensity proton beams, which then in turn generate large quantities of other particles. This chapter discusses the physics and technology of the volume production and the caesium-enhanced (surface) production of H - ions. Starting with Bacal's discovery of the H - volume production, the chapter briefly recounts the development of some H - sources, which capitalized on this process to significantly increase the production of H - beams. Another significant increase was achieved in the 1990s by adding caesiated surfaces to supplement the volume-produced ions with surface-produced ions, as illustrated with other H - sources. Finally, the focus turns to some of the experience gained when such a source was successfully ramped up in H - output and in duty factor to support the generation of 1 MW proton beams for the Spallation Neutron Source. (author)

  3. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  4. Effect of Cesium and Xenon Seeding in Negative Hydrogen Ion Sources

    International Nuclear Information System (INIS)

    Bacal, M.; Brunteau, A.M.; Deniset, C.; Elizarov, L.I.; Sube, F.; Tontegode, A.Y.; Whealton, J.H.

    1999-01-01

    It is well known that cesium seeding in volume hydrogen negative ion sources leads to a large reduction of the extracted electron current and in some cases to the enhancement of the negative ion current. The cooling of the electrons due to the addition of this heavy impurity was proposed as a possible cause of the mentioned observations. In order to verify this assumption, the authors seeded the hydrogen plasma with xenon, which has an atomic weight almost equal to that of cesium. The plasma properties were studied in the extraction region of the negative ion source Camembert III using a cylindrical electrostatic probe while the negative ion relative density was studied using laser photodetachment. It is shown that the xenon mixing does not enhance the negative ion density and leads to the increase of the electron density, while the cesium seeding reduces the electron density

  5. Spectrometric determination of the species distribution of hydrogen and deuterium in the multi-megawatt ion sources (PINI) of the neutral beam injectors NI-1 and NI-2 of TEXTOR

    International Nuclear Information System (INIS)

    Rotter, H.; Uhlemann, R.

    1990-11-01

    The ion species fractions of hydrogen H + , H 2 + , H 3 + and deuterium D + , D 2 + , D 3 + in the extracted beam of the multi-megawatt ion sources (PINI) of the neutral beam injectors of TEXTOR are determined. The measurements are obtained from two grating spectrometers of 0.5 m focal length with a light guiding system of 50 mm aperture using the Doppler shifted H α /D α -light of the accelerated beam particles. The spectral resolution obtained is 0.76 A with a 50 μm entrance slit. The ion source is a bucket source (modified JET PINI) with a multipole magnetic field in checkerboard arrangement. The species fraction measurements are performed as function of beam current, ion source pressure and beam pulse length. The results for hydrogen and deuterium at particle energies of 20-55 keV and beam currents of 13-87 A show no significant difference between neutral injector I and II. For 55 keV and a beam current of 87 A in hydrogen and 63 A in deuterium a species mix of 67.2:24.5:8.4% (H + :H 2 + :H 3 + ) and of 69.1:23.8:7.1% (D + :D 2 + :D 3 + ) is obtained. (orig.) [de

  6. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    International Nuclear Information System (INIS)

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-01-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV

  7. Permeation of deuterium implanted into vanadium alloys

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1986-05-01

    Permeation of deuterium through the vanadium alloy, V-15Cr-5Ti, was investigated using 3-keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurements of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5-mm thick specimens heated to tempertures from 623 to 823 0 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). Analyses of these measurements indicate that for the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This corresponds to approximately 1000 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates D = 1.4 x 10 -8 exp(-.11 eV/kT) (m 2 /s)

  8. Numerical simulation research of 300 kV, 5 electrodes negative ion beam system

    International Nuclear Information System (INIS)

    Wang Huisan; Jian Guangde

    2001-01-01

    According to the characteristic of high current negative ion beam extraction and acceleration system for negative ion-based neutral beam injector, a numerical simulation model and a calculation code of the negative ion beam system are established in order to assist the design of the system. The movement behavior of the negative ion beam and accompanying electron beam in joint effect of the electric and magnetic field of the system is calculated. The effect of relative parameters on the negative ion beam optics characteristic is investigated, such as beam density, negative ion initial temperature and stripping losses, final electrode aperture displacement. The electromagnetic configuration in the system is optimized. The initial optimized results for the 300 kV, 5 electrodes negative ion beam system show that the magnetic field of this system can deflect the electron beam to the extraction electrode as electron acceptor at lower energy and that assuming 20% stripping losses of the H - ion in extraction region and 21 mA ·cm -2 extracted H - beam density, the r.m.s. divergence angle of all output beam lets and divergence angle of 85% output beam lets are 0.327 deg. and 0.460 deg., respectively

  9. Recombination and dissociative recombination of H2+ and H3+ ions on surfaces with application to hydrogen negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1988-12-01

    A four-step model for recombination and dissociative recombination of H 2 + and H 3 + ions on metal surfaces is discussed. Vibrationally excited molecules, H 2 (v''), from H 3 + recombination are produced in a broad spectrum that enhances the excited level distribution. The application of this latter process to hydrogen negative ion discharges is discussed. 5 refs., 3 figs., 1 tab

  10. Fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons

    International Nuclear Information System (INIS)

    Sabry, R.; Shukla, P. K.; Moslem, W. M.

    2009-01-01

    Properties of fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons are investigated. For this purpose, the hydrodynamic equations for the positive-negative ions, nonthermal electron density distribution, and the Poisson equation are used to derive the energy integral equation with a new Sagdeev potential. The latter is analyzed to examine the existence regions of the solitary pulses. It is found that the solitary excitations strongly depend on the mass and density ratios of the positive and negative ions as well as the nonthermal electron parameter. Numerical solution of the energy integral equation clears that both positive and negative potentials exist together. It is found that faster solitary pulses are taller and narrower. Furthermore, increasing the electron nonthermality parameter (negative-to-positive ions density ratio) decreases (increases) the localized excitation amplitude but increases (decreases) the pulse width. The present model is used to investigate the solitary excitations in the (H + ,O 2 - ) and (H + ,H - ) plasmas, where they are presented in the D- and F-regions of the Earth's ionosphere. This investigation should be helpful in understanding the salient features of the fully nonlinear ion-acoustic solitary waves in space and in laboratory plasmas where two distinct groups of ions and non-Boltzmann distributed electrons are present.

  11. Effect of deposited tungsten on deuterium accumulation in beryllium in contact with atomic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, V.M.; Gavrilov, L.E. [Institute of Physical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, V.S.

    1998-01-01

    Usually ion or plasma beam is used for the experiment with beryllium which simulates the interaction of plasma with first wall in fusion devices. However, the use of thermal or subthermal atoms of hydrogen isotopes seems to be useful for that purpose. Recently, the authors have studied the deuterium accumulation in beryllium in contact with atomic deuterium. The experimental setup is shown, and is explained. By means of elastic recoil detection (ERD) technique, it was shown that in the exposure to D atoms at 740 K, deuterium is distributed deeply into the bulk, and is accumulated up to higher concentration than the case of the exposure to molecular deuterium. The depth and concentration of deuterium distribution depend on the exposure time, and those data are shown. During the exposure to atomic deuterium, oxide film grew on the side of a sample facing plasma. In order to understand the mechanism of deuterium trapping, the experiment was performed using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA). The influence that the tungsten deposit from the heated cathode exerted to the deuterium accumulation in beryllium in contact with atomic deuterium was investigated. These results are reported. (K.I.)

  12. RF Negative Ion Source Development at IPP Garching

    International Nuclear Information System (INIS)

    Kraus, W.; McNeely, P.; Berger, M.; Christ-Koch, S.; Falter, H. D.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Leyer, S.; Riedl, R.; Speth, E.; Wuenderlich, D.

    2007-01-01

    IPP Garching is heavily involved in the development of an ion source for Neutral Beam Heating of the ITER Tokamak. RF driven ion sources have been successfully developed and are in operation on the ASDEX-Upgrade Tokamak for positive ion based NBH by the NB Heating group at IPP Garching. Building on this experience a RF driven H- ion source has been under development at IPP Garching as an alternative to the ITER reference design ion source. The number of test beds devoted to source development for ITER has increased from one (BATMAN) by the addition of two test beds (MANITU, RADI). This paper contains descriptions of the three test beds. Results on diagnostic development using laser photodetachment and cavity ringdown spectroscopy are given for BATMAN. The latest results for long pulse development on MANITU are presented including the to date longest pulse (600 s). As well, details of source modifications necessitated for pulses in excess of 100 s are given. The newest test bed RADI is still being commissioned and only technical details of the test bed are included in this paper. The final topic of the paper is an investigation into the effects of biasing the plasma grid

  13. Deuterium isotope separation

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    Deuterium-containing molecules are separated and enriched by exposing commercially available ethylene, vinyl chloride, 1,2-dichloroethane or propylene to the radiation of tuned infrared lasers to selectively decompose these compounds into enriched molecular products containing deuterium atoms. The deuterium containing molecules can be easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. (author)

  14. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources; Profile der Plasmaparameter und Dichte negativer Wasserstoffionen mittels Laserdetachmentmessungen in HF-angeregten Ionenquellen

    Energy Technology Data Exchange (ETDEWEB)

    Christ-Koch, Sina

    2007-12-20

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields ({proportional_to} 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H{sup -})=1.10{sup 17} 1/m{sup 3}, which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  15. High electronegativity multi-dipolar electron cyclotron resonance plasma source for etching by negative ions

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, M.

    2012-01-01

    A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 x 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF6 gas mixture when a magnetic filter was used...... to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F-. The magnetic field...... in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF6/O-2 mixtures was almost similar with that by positive ions reaching 700 nm/min. (C) 2012 American Institute of Physics...

  16. Mechanism of negative ion emission from surfaces of ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Zdeněk

    2012-01-01

    Roč. 606, 15-16 (2012), s. 1327-1330 ISSN 0039-6028 Institutional support: RVO:67985882 Keywords : Surface of ferroelectrics * Ion emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.838, year: 2012 http://www.sciencedirect.com/science/article/pii/S0039602812001525#gts0005

  17. Electron-capture negative-ion mass spectrometry: a technique for environmental contaminant identification

    International Nuclear Information System (INIS)

    Stemmler, E.A.

    1986-01-01

    Electron capture negative ion mass spectrometry (ECNIMS) is a method used to generate negative ions in a mass spectrometer by electron-molecule reactions. This technique facilitates the sensitive and selective detection of many toxic contaminants in environmental samples. Applications of this technique have been hindered by the limited understanding of instrumental parameters, by the questionable reproducibility of negative ion mass spectra, and by the inability to interpret negative ion mass spectra. Instrumental parameters which were important to control include the ion source temperature, ion source pressure, sample concentration, and the focus lens potential. The ability to obtain reproducible spectra was demonstrated by measurement of the spectrum of decafluorotriphenylphosphine (DFTPP) over a period of one year. Negative ion fragmentation mechanisms were studied by measuring the spectra of structurally related classes of compounds and isotopically labelled compounds. These results were combined with data obtained by other researchers. Fragmentations characteristic of particular functional groups or molecular structures have been summarized. From this data set, guidelines for the interpretation of electron capture negative ion mass spectra have been developed

  18. Study of the secondary negative ion emission of copper and several of its alloys by impact with Cs+ ions

    International Nuclear Information System (INIS)

    Vallerand, P.; Baril, M.

    1977-01-01

    Secondary ion emission studies have been undertaken using Cs + as the primary ion beam. A good vacuum (ca. 10 -8 torr) is needed to eliminate contamination by residual gases. Negative ion emission of pure copper is compared with its alloys. The thermodynamic equilibrium model of Andersen is discussed. For low element concentrations, the experimental data show enhancement in negative emission of P, Al, Fe, Sn, Ni, and attenuation for Zn, Pb. The order of magnitude of ionic efficiency S - for copper is evaluated at 10 -4 . (Auth.)

  19. Study of Au- production in a plasma-sputter type negative ion source

    International Nuclear Information System (INIS)

    Okabe, Yushirou.

    1991-10-01

    A negative ion source of plasma-sputter type has been constructed for the purpose of studying physical processes which take place in the ion source. Negative ions of gold are produced on the gold target which is immersed in an argon discharge plasma and biased negatively with respect to the plasma. The work function of the target surface was lowered by the deposition of Cs on the target. An in-situ method has been developed to determine the work function of the target surface in the ion source under discharge conditions. The observed minimum work function of a cesiated gold surface in an argon plasma was 1.3 eV, when the negative ion production rate took the maximum value. The production rate increased monotonically and saturated when the surface work function was reduced from 1.9 eV to 1.3 eV. The dependence of Au - production rate on the incident ion energy and on the number of the incident ion was studied. From the experimental results, it is shown that the sputtering process is an important physical process for the negative ion production in the plasma-sputter type negative ion source. The energy distribution function was also measured. When the bias voltage was smaller than 280 V, the high energy component in the distribution decreased as the target voltage was decreased. Therefore, the energy spread ΔE, of the observed negative ion energy distribution also decreased. This tendency is also seen in the energy spectrum of Cu atoms sputtered in normal direction by Ar + ions. (J.P.N.)

  20. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  1. Present status of the negative ion sources and injectors at JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Minehara, E.; Yoshida, T.; Abe, S.

    1988-01-01

    The JAERI tandem accelerator began regular operation with the 350 kV negative ion jnjector and 3 kinds of nagative ion sources (Direct Extraction Duoplasmatron Ion Source, Heinickie Penning Ion Source, Negative Ion Sputter Source (Refocus-UNIS)) since 1982. An extension with the injector was constructed in 1984, (1) to increase reliability of all devices in the injector, (2) to exclude completely any unsafe operation in the injector, and (3) to tune several ion sources simultaneously, while a certain ion source is in operation. After the extended injector became available, we have been able to run the whole injector system very safely, steadily and effectively, and have had few troubles. Currently, the second injector has been constructed in order to obtain a full strength of resistance against any sudden troubles in the injector. Several other operational and developmental items will be discussed in the text briefly. (author)

  2. Deuterium trapping in carbon fiber composites under high fluence

    International Nuclear Information System (INIS)

    Airapetov, A.A.; Begrambekov, L.B.; Kuzmin, A.A.; Shigin, P.A.; Zakharov, A.M.

    2010-01-01

    The paper is devoted to investigation of deuterium trapping in CFC, dance graphite MPG-8 and pyrolytic graphite (PG) under plasma ion- and electron irradiation. Number of specific features of deuterium trapping and retention under plasma ion and electron irradiation is presented and discussed. In particular it is shown that 1) deuterium trapping takes place even when energy of impinging ions approaches zero; 2) deuterium is trapped under irradiation by plasma electrons; 3) under irradiation at equal fluences deuterium trapping is higher, when ion flux is smaller. High energy ion penetrating the surfaces are trapped in the traps created at the expense of their kinetic energy. The process may be named 'kinetic trapping'. Under low energy (smaller than 200 eV) electron and/or ion irradiation the energy of inelastic interaction on the surface provides creation of active centers, which initiate dissociation of deuterium sorbed on the surface, penetration of deuterium atoms into graphite and their trapping in specific low energy traps. The term 'potential trapping' is proposed for this type of trapping. Under high energy irradiation such atoms can fill the traps formed through kinetic mechanism. Origination of moveable deuterium atoms from the layer of surface sorption seems to be time dependent process and it is a reason of increase of trapping along with irradiation time. New features of deuterium trapping and retention in graphite evaluated in this study offer new opportunities for analysis and correct estimation of hydrogen isotope trapping and retention in tokamaks having graphite tiles. (authors)

  3. Stability of Modified K-dV soliton in plasma with negative ion

    International Nuclear Information System (INIS)

    Matsukawa, Michiaki; Watanabe, Shinsuke

    1988-01-01

    The K-P and Modified K-P equations for ion acoustic wave are derived from the fluid equations for plasma with negative ion. At the critical density of the negative ion where the nonlinearity of the K-P equation vanishes, the ion acoustic soliton is described by the Modified K-P equation. The stability of Modified K-dV soliton against bending are investigated by using the Modified K-P equation. It is found that the soliton is stable, independent of the sign of amplitude. (author)

  4. Kinetic modeling of particle dynamics in H− negative ion sources (invited)

    International Nuclear Information System (INIS)

    Hatayama, A.; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T.; Miyamoto, K.; Fukano, A.; Mizuno, T.

    2014-01-01

    Progress in the kinetic modeling of particle dynamics in H − negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H − ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H − production, and (ii) extraction physics of H − ions and beam optics

  5. Kinetic modeling of particle dynamics in H{sup −} negative ion sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hatayama, A., E-mail: akh@ppl.appi.keio.ac.jp; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Monozukuri Department, Tokyo Metropolitan College of Industrial Technology, Shinagawa, Tokyo 140-0011 (Japan); Mizuno, T. [Department of Management Science, College of Engineering, Tamagawa University, Machida, Tokyo 194-8610 (Japan)

    2014-02-15

    Progress in the kinetic modeling of particle dynamics in H{sup −} negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H{sup −} ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H{sup −} production, and (ii) extraction physics of H{sup −} ions and beam optics.

  6. Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions

    International Nuclear Information System (INIS)

    Ostrikov, K.N.; Kumar, S.; Sugai, H.

    2001-01-01

    Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C 4 F 8 +Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure

  7. Generation of intense polarized beams by selective neutralization of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.I.; Hinds, E.A.

    1983-01-01

    A novel scheme is proposed. This method is based on selective neutralization by laser negative hydrogen ions in a magnetic field. This selectivity is based on the fact that the final state of the neutralized atom depends on nuclear polarization in the magnetic field. A two-scenario approach is to be followed: one in which the resulting neutral atom is in the ground state, and in the other the neutral atom is in the n = 2 level. Limiting factors are discussed. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility to neutralize negative ions with very high efficiency. 15 references, 2 figures

  8. System integration of RF based negative ion experimental facility at IPR

    Science.gov (United States)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  9. System integration of RF based negative ion experimental facility at IPR

    International Nuclear Information System (INIS)

    Bansal, G; Bandyopadhyay, M; Singh, M J; Gahlaut, A; Soni, J; Pandya, K; Parmar, K G; Sonara, J; Chakraborty, A

    2010-01-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ∼5 x 10 12 cm -3 . The source can deliver a negative ion beam of ∼10 A with a current density of ∼30 mA/cm 2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  10. Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced applications

    Czech Academy of Sciences Publication Activity Database

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu.; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtová, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Krása, Josef; Kravarik, J.; Kurmaev, N. E.; Orčíková, Hana; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, Karel; Varlachev, V. A.; Velyhan, Andriy; Wagner, Richard

    2016-01-01

    Roč. 23, č. 3 (2016), 1-10, č. článku 032702. ISSN 1070-664X R&D Projects: GA ČR GA16-07036S; GA MŠk(CZ) LD14089; GA MŠk(CZ) LG13029 Grant - others:GA MŠk(CZ) LH13283 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : neutrons * Z-pinch * ion sources * isotopes * protons Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.115, year: 2016

  11. Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes

    Science.gov (United States)

    Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun

    2017-10-01

    Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.

  12. Development of a versatile multiaperture negative ion sourcea)

    Science.gov (United States)

    Cavenago, M.; Kulevoy, T.; Petrenko, S.; Serianni, G.; Antoni, V.; Bigi, M.; Fellin, F.; Recchia, M.; Veltri, P.

    2012-02-01

    A 60 kV ion source (9 beamlets of 15 mA each of H-) and plasma generators are being developed at Consorzio RFX and INFN-LNL, for their versatility in experimental campaigns and for training. Unlike most experimental sources, the design aimed at continuous operation. Magnetic configuration can achieve a minimum |B| trap, smoothly merged with the extraction filter. Modular design allows for quick substitution and upgrading of parts such as the extraction and postacceleration grids or the electrodes in contact with plasma. Experiments with a radio frequency plasma generator and Faraday cage inside the plasma are also described.

  13. Development of a versatile multiaperture negative ion source

    International Nuclear Information System (INIS)

    Cavenago, M.; Kulevoy, T.; Petrenko, S.; Serianni, G.; Antoni, V.; Bigi, M.; Fellin, F.; Recchia, M.; Veltri, P.

    2012-01-01

    A 60 kV ion source (9 beamlets of 15 mA each of H - ) and plasma generators are being developed at Consorzio RFX and INFN-LNL, for their versatility in experimental campaigns and for training. Unlike most experimental sources, the design aimed at continuous operation. Magnetic configuration can achieve a minimum |B| trap, smoothly merged with the extraction filter. Modular design allows for quick substitution and upgrading of parts such as the extraction and postacceleration grids or the electrodes in contact with plasma. Experiments with a radio frequency plasma generator and Faraday cage inside the plasma are also described.

  14. Development of a versatile multiaperture negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Cavenago, M. [INFN-LNL, viale dell' Universita n.2, I-35020 Legnaro (Padova) (Italy); Kulevoy, T.; Petrenko, S. [INFN-LNL, viale dell' Universita n.2, I-35020 Legnaro (Padova) (Italy); ITEP, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Serianni, G.; Antoni, V.; Bigi, M.; Fellin, F.; Recchia, M.; Veltri, P. [Consorzio RFX, Associazione Euratom-ENEA sulla fusione, c.so S. Uniti 4, 35127 Padova (Italy)

    2012-02-15

    A 60 kV ion source (9 beamlets of 15 mA each of H{sup -}) and plasma generators are being developed at Consorzio RFX and INFN-LNL, for their versatility in experimental campaigns and for training. Unlike most experimental sources, the design aimed at continuous operation. Magnetic configuration can achieve a minimum |B| trap, smoothly merged with the extraction filter. Modular design allows for quick substitution and upgrading of parts such as the extraction and postacceleration grids or the electrodes in contact with plasma. Experiments with a radio frequency plasma generator and Faraday cage inside the plasma are also described.

  15. Development of a versatile multiaperture negative ion source.

    Science.gov (United States)

    Cavenago, M; Kulevoy, T; Petrenko, S; Serianni, G; Antoni, V; Bigi, M; Fellin, F; Recchia, M; Veltri, P

    2012-02-01

    A 60 kV ion source (9 beamlets of 15 mA each of H(-)) and plasma generators are being developed at Consorzio RFX and INFN-LNL, for their versatility in experimental campaigns and for training. Unlike most experimental sources, the design aimed at continuous operation. Magnetic configuration can achieve a minimum ∣B∣ trap, smoothly merged with the extraction filter. Modular design allows for quick substitution and upgrading of parts such as the extraction and postacceleration grids or the electrodes in contact with plasma. Experiments with a radio frequency plasma generator and Faraday cage inside the plasma are also described.

  16. Calculation of von Neumann entropy for hydrogen and positronium negative ions

    International Nuclear Information System (INIS)

    Lin, Chien-Hao; Ho, Yew Kam

    2014-01-01

    In the present work, we carry out calculations of von Neumann entropies and linear entropies for the hydrogen negative ion and the positronium negative ion. We concentrate on the spatial (electron–electron orbital) entanglement in these ions by using highly correlated Hylleraas functions to represent their ground states, and to take care of correlation effects. We apply the Schmidt decomposition method on the partial-wave expanded two-electron wave functions, and from which the one-particle reduced density matrix can be obtained, leading to the quantifications of linear entropy and von Neumann entropy in the H − and Ps − ions. - Highlights: • We calculate von Neumann entropies and linear entropies for hydrogen and positronium negative ions. • We employ highly correlated Hylleraas functions to take into account of correlation effects. • Spatial (electron–electron orbital) entanglement is quantified using the Schmidt decomposition method. • The eigenvalues of the one-particle reduced density matrix are calculated

  17. Towards 20 A negative hydrogen ion beams for up to 1 h: Achievements of the ELISE test facility (invited)

    International Nuclear Information System (INIS)

    Fantz, U.; Heinemann, B.; Wünderlich, D.; Riedl, R.; Kraus, W.; Nocentini, R.; Bonomo, F.

    2016-01-01

    The large-scale RF-driven ion source of the test facility extraction from a large ion source experiment is aimed to deliver an accelerated ion current of 20 A D − (23 A H − ) with an extracted electron-to-ion ratio below one for up to 1 h. Since the first plasma pulses for 20 s in volume operation in early 2013, followed by caesiation of the ion source, substantial progress has been achieved in extending the pulse length and the RF power. The record pulses in hydrogen are stable 400 s pulses with an extracted ion current of 18.3 A at 180 kW total RF power and 9.3 A at 80 kW stable for 1 h. For deuterium pulse, length and RF power are limited by the amount of co-extracted electrons

  18. Overview of the LBL/LLNL negative-ion-based neutral beam program

    International Nuclear Information System (INIS)

    Pyle, R.V.

    1980-01-01

    The LBL/LLNL negative-ion-based neutral beam development program and status are described. The emphasis has shifted in some details since the first symposium in 1977, but our overall objectives remain the same, namely, the development of megawatt d.c. injection systems. Previous emphasis was on a system in which the negative ions were produced by double charge exchange in sodium vapor. At present, the emphasis is on a self-extraction source in which the negative ions are produced on a biased surface imbedded in a plasma. A one-ampere beam will be accelerated to at least 40 keV next year. Studies of negative-ion formation and interactions help provide a data base for the technology program

  19. Physical principles of the surface plasma method for producing beams of negative ions

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.

    1977-01-01

    The processes which are important for the production of intense beams of negative ions from surface plasma sources (SPS) are examined. The formation of negative ions when atomic particles interact with a surface is analyzed on the basis of both experimental results obtained when a surface was bombarded with beams and recently developed theoretical considerations of reflection, scattering, and electron exchange. The characteristic features of these processes in SPS, when a surface is bombarded with intense fluxes of plasma particles, are revealed in special experiments. The characteristics of generation and acceleration of the bombarding particles in a gas discharge SPS plasma, the characteristics of transportation of negative ions through the plasma toward the beam forming system, the role of cesium in SPS, and the characteristics of formation of the intense negative ion beams as well as the removal of parasite electrons from the beam

  20. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    International Nuclear Information System (INIS)

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-01-01

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles

  1. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  2. Measurement of negative ion mobility in O2 at high pressures using a point plate gap as an ion detector

    International Nuclear Information System (INIS)

    Okuyama, Y; Kimura, T; Suzuki, S; Itoh, H

    2012-01-01

    This paper describes the experimental results for negative ion mobility in O 2 at 0.5-2.0 atm. The ion mobility is observed using a high-pressure ion drift tube with a positive corona gap (Geiger counter), which is constructed from a point plate gap and acts as a negative ion detector. The variation of waveforms in the burst pulse is observed by varying the voltage applied to the ion detector to find the optimum voltage that must be applied across the ion detector in O 2 . This is investigated carefully to ensure the precise determination of mobility. The distortion of the electric field near the mesh electrode, which operates as the cathode of the ion detector and as the anode of the ion drift gap, is then examined to determine the optimum applied voltage to suppress its effect on the measurement of mobility. The mobility is subsequently measured at a reduced electric field intensity of 2.83 × 10 -3 to 2.83. The observed mobility of 2.31 ± 0.03 cm 2 V -1 s -1 in O 2 is concluded to be that of O 2 - . This value is also obtained in experiments over a wide range of gas pressures (0.5-2.0 atm) and drift lengths (1.00-9.00 cm). The mobilities of O 3 - and O - are also obtained experimentally. (paper)

  3. The technique of negative ions in mass spectrometry. Application to aromatics

    International Nuclear Information System (INIS)

    George, G.

    1984-01-01

    The author examines the application of NCI (study of negative ions created by chemical ionization and particularly by a reacting negative ion) on a model popular at the present time: the passion fruit. The author stresses that this technique has its limitations and should be considered as auxiliary to electron impact. However, it seems destined for a promising future for the analysis of natural produce [fr

  4. Storing keV negative ions for hours: Lifetime measurements in new time domains

    International Nuclear Information System (INIS)

    Kaminska, M; Bäckström, E; Hole, O M; Nascimento, R F; Blom, M; Björkhage, M; Källberg, A; Löfgren, P; Reinhed, P; Rosèn, S; Thomas, R D; Mannervik, S; Schmidt, H T; Cederquist, H; Hanstorpt, D

    2015-01-01

    We have used one of the cryogenic ion storage rings of DESIREE to measure the lifetime of the 2 P° 1/2 level in the sulfur anion to be 503 ± 43 seconds. This is orders of magnitude longer than any previously measured lifetime in a negatively charged ion. (paper)

  5. Flame Atmospheric Pressure Chemical Ionization Coupled with Negative Electrospray Ionization Mass Spectrometry for Ion Molecule Reactions.

    Science.gov (United States)

    Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie

    2017-07-01

    Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO 3 ) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO 3 -nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO 3 ) was produced in the flame. The HNO 3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO 3 showed the strongest affinity to histidine and formed (M histidine -H+HNO 3 ) - complex ions, whereas some amino acids did not react with HNO 3 at all. Reactions between HNO 3 and histidine residues in AI and AII resulted in the formation of dominant [M AI -H+(HNO 3 )] - and [M AII -H+(HNO 3 )] - ions. Results from analyses of AAs and insulin indicated that HNO 3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO 3 ) n ] 3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins. Graphical Abstract ᅟ.

  6. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Guo, Yanling, E-mail: guoyanling@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Chen, Ximeng, E-mail: chenxm@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China)

    2016-11-30

    Highlights: • We first observe that negative-ion fractions present no variation with the doping concentration, which is very different from the results of low energy Li neutralization from doped Si samples. • Our work shows that the affinity levels and collision time significantly counteract the band gap effect on negative ion formation. The work will improve our understanding on electron transfer on semiconductor surfaces associated with doping. • In addition, we build a complete theoretical framework to quantitatively calculate the negative-ion fractions. • Our work is related to charge transfer on semiconductor surfaces, which will be of interest to a broad audience due to the wide necessity of the knowledge of charge exchange on semiconductor surfaces in different fields. - Abstract: Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5–22.5 keV C{sup −} and F{sup −} ions scattering on H{sub 2}O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  7. Nonresonant excess photon detachment of negative hydrogen ions

    International Nuclear Information System (INIS)

    Gulley, M. S.; Zhao, Xin Miao; Bryant, H. C.; Strauss, Charlie E. M.; Funk, David J.; Stintz, A.; Rislove, D. C.; Kyrala, G. A.; Ingalls, W. B.; Miller, W. A.

    1999-01-01

    One-photon detachment and two-photon nonresonant excess photon detachment of electrons from the H - ion (outer-electron binding energy = 0.7542 eV) are observed with 1.165 eV laser pulses from a Nd:YAG laser (where YAG denotes yttrium aluminum garnet). A Penning ion source produces a pulsed 8 μA, 35 keV H - beam that intersects a laser beam cylindrically focused down to a 17 μm full width at half maximum waist in the ion beam direction, creating a high-intensity interaction region with peak intensities of up to 10 11 W/cm 2 . The interaction time is 7 ps. The detached electrons are detected by a time-of-flight apparatus enabling us to detect a very small two-photon signal in the presence of a very large signal from single photon detachments. By rotating the linear polarization angle, we study the angular distribution of the electrons for both one- and two-photon detachments. The spectra are modeled to determine the asymmetry parameters and one- and two-photon cross sections. We find β 2 to be 2.54+0.44/-0.60 and β 4 to be 2.29+0.07/-0.31, corresponding to a D state of 89+3/-12% of the S wave and D wave detachments for the two-photon results. The relative phase angle between the S and D amplitudes is measured to be less than 59 degree sign . The measured cross sections are found to be consistent with theoretical predictions. The one-photon photodetachment cross section is measured to be (3.6±1.7)x10 -17 cm 2 . The two-photon photodetachment generalized cross section is (1.3±0.5)x10 -48 cm 4 sec, consistent with theoretical calculations of the cross section. The three-photon generalized cross section is less than 4.4x10 -79 cm 6 sec 2 . (c) 1999 The American Physical Society

  8. Production of ultra cold protons and negative hydrogen ions

    International Nuclear Information System (INIS)

    Kenefick, R.A.

    1992-01-01

    Resistive cooling of He + ions has been studied in a 4 K Penning trap optimized for ω + cooling. A Nb/Ti superconducting inductor gives a Q of 1800 resulting in energy cooling time constants as low as 1.8 seconds and the cooling has been followed from 60,000 K to 300 K. In a separate study in a room-temperature trap, the possible conversion of H + to H - at a cesiated trap electrode and subsequent capture of the H - by fast reversal of the trap electrode polarity was not yet proved to be a workable mechanism. Features of the apparatus and technique are briefly described and the details are continued in three publications attached as appendices

  9. Collisions of alkali negative ions with atomic and molecular targets

    International Nuclear Information System (INIS)

    Champion, R.; Scott, D.; Hug, M.S.; Doverspike, L.

    1986-01-01

    Ion-beam measurements are presented for the total cross section σ/sub e/(E) for electron detachment of Na - , K - . and Cs - in low-energy (E/sub lab/ - projectile is previously unreported and extends our recent study of Na - and K - . The motivation for this work is due in part to the observation that these alkali-metal anions (denoted M - ) are similar to H - in that they have two s-electrons outside a closed shell. In particular, it is of interest to determine whether the energy dependence of σ/sub e/(E) for M - is similar to that observed for H - . 21 refs., 5 figs

  10. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  11. Direction for the Future - Successive Acceleration of Positive and Negative Ions Applied to Space Propulsion

    CERN Document Server

    Aanesland, A.; Popelier, L.; Chabert, P.

    2013-12-16

    Electrical space thrusters show important advantages for applications in outer space compared to chemical thrusters, as they allow a longer mission lifetime with lower weight and propellant consumption. Mature technologies on the market today accelerate positive ions to generate thrust. The ion beam is neutralized by electrons downstream, and this need for an additional neutralization system has some drawbacks related to stability, lifetime and total weight and power consumption. Many new concepts, to get rid of the neutralizer, have been proposed, and the PEGASES ion-ion thruster is one of them. This new thruster concept aims at accelerating both positive and negative ions to generate thrust, such that additional neutralization is redundant. This chapter gives an overview of the concept of electric propulsion and the state of the development of this new ion-ion thruster.

  12. Design and setup of an experiment to investigate the properties of the positronium negative ion

    International Nuclear Information System (INIS)

    Plenge, F.

    2000-01-01

    This diploma thesis describes the design and setup of an experiment to investigate the properties of the positronium negative ion Ps - . The positronium negative ion consists of two electrons in singlet spin state and a positron. It represents the simplest three-boby-system with a bound state. It allows tests of quantum electrodynamics practically free from complications due to strong interactions and is of particular interest as its investigation might contribute to a solution of the o-Ps-lifetime-puzzle. The present work particularly focuses on the preparation of the experimental tools necessary to study the Ps - -formation mechanisms and to measure the lifetime of the positronium ion. (orig.) [de

  13. High voltage holding in the negative ion sources with cesium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O., E-mail: O.Z.Sotnikov@inp.nsk.su [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  14. Plasma instability in the presence of negative ions

    International Nuclear Information System (INIS)

    Johnson III, J.A.; Ramaiah, R.

    1987-01-01

    Ion density fluctuations are studied in a diffusion-controlled argon plasma containing, as a dilutant, two electron-attaching species, carbon dioxide, and sulfur hexafluoride. A glow discharge tube is used in this experiment; electrical probes and digital spectral analysis are our principal diagnostic and analytical tools. It is found that the system becomes increasingly unstable as the concentration of the electron-attaching species is increased. Nonlinear mode-mode couplings have been identified and the coupling coefficients for these interactions have been computed. Turbulent fluctuations are observed to have pronounced three dimensionality with distinct axial and azimuthal behaviors. The power spectra of these fluctuations are composed of many discrete modes and follow a P(w)proportionalw - /sup n/ trend with 3 < n < 5. The importance of changes in the total discharge pressure is dependent on the electron-attachment cross section of the dilutant species. From these results we show that the ionization instability is probably responsible for the observed phenomenon

  15. Photodetachment of negative ion in a gradient electric field near a metal surface

    International Nuclear Information System (INIS)

    Liu Tian-Qi; Wang De-Hua; Han Cai; Liu Jiang; Liang Dong-Qi; Xie Si-Cheng

    2012-01-01

    Based on closed-orbit theory, the photodetachment of H − in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H − near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps. (atomic and molecular physics)

  16. Installation of spectrally selective imaging system in RF negative ion source

    International Nuclear Information System (INIS)

    Ikeda, K.; Kisaki, M.; Nagaoka, K.; Nakano, H.; Osakabe, M.; Tsumori, K.; Kaneko, O.; Takeiri, Y.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Geng, S.

    2016-01-01

    A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (H α ) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of H α emission near the bias plate has been clearly observed. The same time trend on H α intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed

  17. Graphite as negative electrode in Li-ion batteries; Le graphite comme electrode negative dans les accumulateurs Li-ion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.; Monnier, A. [Timcal SA (France)

    1996-12-31

    The last developments in lithium batteries design have demonstrated the advantages of graphite: competitive cost, flat output curve, high capacity thanks to the obtention of a final compound close to LiC{sub 6}, good behaviour during cycling and a high mass energy. However, these advantages are slightly tarnished by parasite secondary reactions during the evolution of the element. Two different cases are encountered: the formation of a passivation layer (loss of Li ions and formation of irreversible bounds) and the formation of a passivation layer with a reaction between graphite and the solvent (partial destruction of the graphite crystal lattice). In the first case, the theoretical graphite insertion capacity remains at 372 mAh/g while in the second case the insertion capacity is greatly reduced. Abstract only. (J.S.)

  18. Graphite as negative electrode in Li-ion batteries; Le graphite comme electrode negative dans les accumulateurs Li-ion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F; Monnier, A [Timcal SA (France)

    1997-12-31

    The last developments in lithium batteries design have demonstrated the advantages of graphite: competitive cost, flat output curve, high capacity thanks to the obtention of a final compound close to LiC{sub 6}, good behaviour during cycling and a high mass energy. However, these advantages are slightly tarnished by parasite secondary reactions during the evolution of the element. Two different cases are encountered: the formation of a passivation layer (loss of Li ions and formation of irreversible bounds) and the formation of a passivation layer with a reaction between graphite and the solvent (partial destruction of the graphite crystal lattice). In the first case, the theoretical graphite insertion capacity remains at 372 mAh/g while in the second case the insertion capacity is greatly reduced. Abstract only. (J.S.)

  19. Extraction of low-energy negative oxygen ions for thin film formation

    International Nuclear Information System (INIS)

    Vasquez, M. Jr.; Sasaki, D.; Kasuya, T.; Wada, M.; Maeno, S.

    2011-01-01

    Coextraction of low-energy positive and negative ions were performed using a plasma sputter-type ion source system driven by a 13.56 MHz radio frequency (rf) power. Titanium (Ti) atoms were sputtered out from a target and the sputtered neutrals were postionized in oxygen/argon (O 2 /Ar) plasma prior to extraction. The negative O ions were surface-produced and self-extracted. Mass spectral analyses of the extracted ion beams revealed the dependence of the ion current on the incident rf power, induced target bias and O 2 /Ar partial pressure ratio. Ti + current was found to be dependent on Ar + current and reached a saturation value with increasing O 2 partial pressure while the O - current showed a peak current at around 1:9 O 2 /Ar partial pressure ratio. Ti + current was several orders of magnitude higher than that of the O - current.

  20. Extraction of negative lithium ions from a lithium-containing hydrogen plasma

    International Nuclear Information System (INIS)

    Wada, M.; Sasao, M.

    1996-01-01

    Negative lithium ions (Li - ) were extracted from a 6-cm-diam 7-cm-long negative hydrogen ion (H - ) source to simulate the condition of Li - extraction from a Li vapor introduced ion source for the neutral beam heating. The amount of the Li - current extracted from a hydrogen plasma with Li vapor was comparable to that extracted from a pure Li plasma. However, the amount of the H - current decreased as the H 2 gas pressure in the source decreased due to a getter-pump effect of Li during the introduction of Li vapor. A heat shield installed to keep a high wall temperature was effective in mitigating the pressure decrease. However, the H - current extracted from the ion source equipped with the heat shield became 20% of the original value, as Li vapor was injected into the ion source. copyright 1996 American Institute of Physics

  1. Development of a negative ion-based neutral beam injector in Novosibirsk.

    Science.gov (United States)

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  2. Time-resolved measurements of highly-polymerised negative ions in rf silane plasma deposition experiments

    International Nuclear Information System (INIS)

    Howling, A.A.; Sansonnens, L.; Dorier, J.L.; Hollenstein, C.

    1993-07-01

    The time-resolved fluxes of negative polysilicon hydride ions from a power-modulated rf silane plasma have been measured by quadrupole mass spectrometry and modeled using a simple polymerisation scheme. Experiments were performed with plasma parameters suitable for high-quality amorphous silicon deposition. Polysilicon hydride anions diffuse from the plasma with low energy (approximately 0.5 eV) during the afterglow after the electron density has decayed and the sheath fields have collapsed. The mass-dependence of the temporal behavior of the anion loss flux demonstrates that the plasma composition is influenced by the modulation frequency. The negative species attain much higher masses than the positive or neutral species, and anions containing as many as sixteen silicon atoms have been observed, corresponding to the 500 amu limit of the mass spectrometer. This suggests that negative ions could be the precursors to particle formation. Ion-molecule and ion-ion reactions are discussed and a simple negative ion polymerisation scheme is proposed which qualitatively reproduces the experimental results. The model shows that the densities of high mass negative ions in the plasma are strongly reduced by modulation frequencies near 1 kHz. Each plasma period is then too short for the polymerisation chain to propagate to high masses before the elementary anions are lost in each subsequent afterglow period. This explains why modulation of the rf power can reduce particle contamination. We conclude that, for the case of silane rf plasmas, the initiation steps which ultimately lead to particle contamination proceed by negative ion polymerisation. (author) 15 figs., 72 refs

  3. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    International Nuclear Information System (INIS)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T.; Guharay, S.K.

    1997-01-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H - ) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  4. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  5. Thorium molecular negative ion production in a cesium sputter source at BARC-TIFR pelletron accelerator ion source test set up

    International Nuclear Information System (INIS)

    Gupta, A.K.; Mehrotra, N.; Kale, R.M.; Alamelu, D.; Aggarwal, S.K.

    2005-01-01

    Ion source test set up at Pelletron Accelerator facility has been utilized extensively for the production and characterization of negative ions, with particular emphasis being place at the species of experimental users interest. The attention have been focussed towards the formation of rare earth negative ions, due to their importance in the ongoing accelerator mass spectroscopy program and isotopic abundance measurements using secondary negative ion mass spectrometry

  6. Investigations on Cs-free alternative materials for negative hydrogen ion formation

    Energy Technology Data Exchange (ETDEWEB)

    Kurutz, Uwe

    2017-01-19

    Neutral beam injection (NBI) represents a main auxiliary heating and current drive system for thermonuclear fusion devices. For ITER, a total heating power of up to 33 MW will be delivered for up to one hour pulses at particle energies of up to 1 MeV by two NBI systems. The respective ion sources will therefore have to allow for the extraction and acceleration of negative hydrogen ions at a current density of 200 A/m{sup 2} from a low pressure low temperature hydrogen plasma. Also for the succeeding demonstration reactor DEMO the application of NBI is currently discussed. Respective systems will, however, have to fulfil even higher demands, like higher powers (up to 135 MW), longer pulse lengths (2 h or even cw operation), and more restrictive constrains regarding the reliability and stability. Today efficient NBI negative hydrogen ion sources are based mainly on the conversion of positive hydrogen ions and/or hydrogen atoms at a grid surface coated with caesium. Cs is used for reducing the grid's work function which significantly enhances the particle conversion probability. However, the alkali metal is chemically very reactive and easily forms compounds with residual gas impurities. Furthermore, complex redistribution dynamics of the deposited Cs layer is given. This inherently links the application of Cs with a temporal and spatial non-stability of the negative ion yield, which contradicts the required reliability of a DEMO NBI system. Thus, for DEMO, Cs-free alternative materials for negative ion formation are investigated within this work at a flexible laboratory experiment. An ECR discharge is used which provides comparable parameters (pressure, densities, particle fluxes and -energies) to the NBI ion sources. Negative ion formation is measured above different material samples via laser photodetachment together with global plasma parameters using a Langmuir probe and optical emission spectroscopy. The plasma parameters are used for modelling the

  7. Investigations on Cs-free alternative materials for negative hydrogen ion formation

    International Nuclear Information System (INIS)

    Kurutz, Uwe

    2017-01-01

    Neutral beam injection (NBI) represents a main auxiliary heating and current drive system for thermonuclear fusion devices. For ITER, a total heating power of up to 33 MW will be delivered for up to one hour pulses at particle energies of up to 1 MeV by two NBI systems. The respective ion sources will therefore have to allow for the extraction and acceleration of negative hydrogen ions at a current density of 200 A/m 2 from a low pressure low temperature hydrogen plasma. Also for the succeeding demonstration reactor DEMO the application of NBI is currently discussed. Respective systems will, however, have to fulfil even higher demands, like higher powers (up to 135 MW), longer pulse lengths (2 h or even cw operation), and more restrictive constrains regarding the reliability and stability. Today efficient NBI negative hydrogen ion sources are based mainly on the conversion of positive hydrogen ions and/or hydrogen atoms at a grid surface coated with caesium. Cs is used for reducing the grid's work function which significantly enhances the particle conversion probability. However, the alkali metal is chemically very reactive and easily forms compounds with residual gas impurities. Furthermore, complex redistribution dynamics of the deposited Cs layer is given. This inherently links the application of Cs with a temporal and spatial non-stability of the negative ion yield, which contradicts the required reliability of a DEMO NBI system. Thus, for DEMO, Cs-free alternative materials for negative ion formation are investigated within this work at a flexible laboratory experiment. An ECR discharge is used which provides comparable parameters (pressure, densities, particle fluxes and -energies) to the NBI ion sources. Negative ion formation is measured above different material samples via laser photodetachment together with global plasma parameters using a Langmuir probe and optical emission spectroscopy. The plasma parameters are used for modelling the inherently

  8. Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments

    International Nuclear Information System (INIS)

    Bandyopadhyay, M.

    2004-01-01

    In the frame work of a development project for ITER neutral beam injection system a radio frequency (RF) driven negative hydrogen (H-/D-) ion source, (BATMAN ion source) is developed which is designed to produce several 10s of ampere of H-/D- beam current. This PhD work has been carried out to understand and optimize BATMAN ion source. The study has been done with the help of computer simulations, modeling and experiments. The complete three dimensional Monte-Carlo computer simulation codes have been developed under the scope of this PhD work. A comprehensive description about the volume production and the surface production of H- ions is presented in the thesis along with the study results obtained from the simulations, modeling and the experiments. One of the simulations is based on the volume production of H- ions, where it calculates the density profile of the vibrationally excited H2 molecules, the density profile of H- ions and the transport probability of those H- ions along the source axis towards the grid. The other simulation studies the transport of those H- ions which are produced on the surface of the plasma grid. It is expected that if there is a plasma flow in the source, the transport of plasma components (molecules and ions) would be influenced. Experimentally it is observed that there is a convective plasma flow exists in the ion source. A transverse magnetic filter field which is present near the grid inside the ion source reduces the flow velocity. Negative ions and electrons have the same sign of charge; therefore the electrons are co-extracted with the negative ions through the grid system, which is not desirable. It is observed that a magnetic field near the grid, magnetized the electrons and therefore reduce the co-extracted electron current. It is also observed experimentally that if the plasma grid is biased positively with respect to the source body, the electron density near the plasma grid is reduced and therefore the co

  9. Negative ion molecule reactions of WF6: evidence for a pressure dependent branching ratio

    International Nuclear Information System (INIS)

    Viggiano, A.A.; Paulson, J.F.

    1984-01-01

    Rate coefficients have been measured in a selected ion flow tube (SIFT) for reactions of several negative ions with WF 6 . With the exception of SF - 5 , all the reactant ions studied having an electron detachment energy less than 3.36 eV reacted rapidly by charge exchange. SF - 5 transferred a fluoride ion producing WF - 7 . Ions with detachment energies greater than 3.36 eV associated rapidly with WF - 6 . Br - , with a detachment energy of 3.36 eV, reacted with WF 6 both by ion-neutral association and by charge exchange. The branching ratio for these two channels was found to depend on temperature and pressure. All these data indicate that the electron affinity of WF 6 is nearly equal to that of Br

  10. Surface potential measurement of the insulator with secondary electron caused by negative ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Toyota, Yoshitaka; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1994-01-01

    Ion implantation has the merit of the good controllability of implantation profile and low temperature process, and has been utilized for the impurity introduction in LSI production. However, positive ion implantation is carried out for insulator or insulated conductor substrates, their charged potential rises, which is a serious problem. As the requirement for them advanced, charge compensation method is not the effective means for resolving it. The negative ion implantation in which charging is little was proposed. When the experiment on the negative ion implantation into insulated conductors was carried out, it was verified that negative ion implantation is effective as the implantation process without charging. The method of determining the charged potential of insulators at the time of negative ion implantation by paying attention to the energy distribution of the secondary electrons emitted from substrates at the time was devised. The energy analyzer for measuring the energy distribution of secondary electrons was made, and the measurement of the charged potential of insulators was carried out. The principle of the measurement, the measuring system and the experimental results are reported. (K.I.)

  11. Thermo-mechanical design of the extraction grids for RF negative ion source at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Liu, Kaifeng, E-mail: kfliuhust@hust.edu.cn; Li, Dong; Mei, Zhiyuan; Zhang, Zhe; Chen, Dezhi

    2017-01-15

    Highlights: • An extraction system with cooling channels has been designed for HUST negative ion source. • Corresponding heat loads onto three grids has been used in thermo-mechanical analysis. • The analysis results could be very useful for driving the engineering design. - Abstract: Huazhong University of Science and Technology (HUST) is developing a small radio frequency negative ion source experimental setup to promote research on neutral beam injection ion sources. The extraction system for the negative ion source is the key component to obtain the negative ions. The extraction system is composed of three grids: the plasma grid, the extraction grid and the grounded grid. Each grid is impacted by different heat loads. As the grids have to fulfil specific requirements regarding ion extraction, beam optics, and thermo-mechanical issues, grid cooling systems have been included for ensuring reliable operation. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids. Finite element calculations have been carried out to analyse the temperature and deformation of the grids under heat loads using the fluid dynamics code CFX. Based on these results, the cooling circuit design and cooling parameters are optimised to satisfy the grid requirements.

  12. Negative ion beam formation using thermal contact ionization type plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Fukuura, Yoshiyuki; Murakami, Kazutugu; Masuoka, Toshio; Katsumata, Itsuo [Osaka City Univ. (Japan). Faculty of Engineering

    1997-02-01

    The small ion sources utilizing thermal ionization have been already developed, and at present, in order to increase ion yield, that being developed to the cylindrical plasma prototype having the inner surface of a Re foil cylinder as the ionization surface, and stably functioning at 3,000 K has been developed, and by using this plasma source, the research on the formation of various ions has been carried out. At present, the research on the formation of Li negative ion beam is carried out. The separation of negative ions from electrons is performed with the locally limited magnetic field using a small iron core electromagnet placed behind the electrostatic accelerating lens system. So for, the formation of about 2 {mu}A at maximum of negative ions was confirmed. It was decided to identify the kinds of ions by time of flight (TOF) process, and the various improvements for this purpose were carried out. The experimental setup, the structure of the plasma source, the circuits for TOF measurement and so on are explained. The experimental results are reported. The problems are the possibility of the formation of alkali metals, the resolution of the time axis of the TOF system and so on. (K.I.)

  13. BRIEF COMMUNICATION: The negative ion flux across a double sheath at the formation of a virtual cathode

    Science.gov (United States)

    McAdams, R.; Bacal, M.

    2010-08-01

    For the case of negative ions from a cathode entering a plasma, the maximum negative ion flux and the positive ion flux before the formation of a virtual cathode have been calculated for particular plasma conditions. The calculation is based on a simple modification of an analysis of electron emission into a plasma containing negative ions. The results are in good agreement with a 1d3v PIC code model.

  14. A positive (negative) surface ionization source concept for radioactive ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ ≅ 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered by continually feeding a highly electropositive vapor through the ionizer matrix. The use of this technique to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam (RIB) applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in the use at the Holifield radioactive ion beam facility (HRIBF). The design features and operational principles of the source are described in this report. (orig.)

  15. Development of the negative ion source at the National Laboratory for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Akira [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-02-01

    On formation of direct high frequency chopped negative hydrogen ion beam from surface forming type negative hydrogen ion source, incident acceleration due to proton synchrotron was tried for a forming experiment and its application. By overlapping a high frequency pulse onto a bias DC voltage of convertor electrode, control of formation of negative hydrogen ion with high speed RF pulse of 2 MHz could be realized. And, incidence into 12 GeV proton accelerator to catch RF particles with waiting bucket system due to booster synchrotron, was effective for control of longitudinal emittance in the booster synchrotron. As a result, controls of the beam width and shape emitted from the booster synchrotron were possible. On application of high speed chopped negative hydrogen ion beam to accelerator, improvement of beam capture efficiency to the accelerated RF bucket, control of longitudinal emittance of accelerated beam, beam measurement at incidence into the accelerator and so forth were conducted. In this paper, results of the high speed chopped beam formation experiment using surface plasma forming type negative ion source and application of high speed beam chopping method synchronized with high frequency pulse at the National Laboratory of High Energy Physics are described. (G.K.)

  16. The virtual cathode: Key to the numerical simulation of negative ion extraction

    International Nuclear Information System (INIS)

    Becker, R.; Leung, K.N.; Kunkel, W.

    1998-01-01

    The simulation of volume produced negative ions from a plasma is by far more complicated than the extraction of positive ions, while in experiments the only difficulty seemes to be connected with the power of the electrons, which are extracted at the same time. The reason for this complication in simple minded simulations is the infinite space charge, which builds up in the turning point of the positive ions in the extraction aperture for the negative ions. Smearing out the energy of the positive ions seems to help, however, this is mostly not justified by experiments, showing a low ion energy, especially in the region between the magnetic filter and the extraction hole. This difficulty may be overcome by using experience from virtual cathode formation in magnetically focused, decelerated electron beams. The decelerated electrons behave similarly to the reflected positive ions and are forming a virtual cathode in the reflection zone. From the analysis of the electron deceleration experiment, a simple power law is deduced to describe the decreasing electron current by the local potential. In turn, this power law may also be applied to the positive ion current, resulting in simulations without space charge singularity, even in the case of monoenergetic ions. As a first step towards the numerical simulation of negative ion extraction, a linear model has been made, using this power law. The transition from a Boltzmann distribution for the plasma electrons to a truncated one for the extracted beam electrons is considered as well, parallel to Langmuir close-quote s treatment of a thermal diode for electrons. copyright 1998 American Institute of Physics

  17. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  18. Calculation of deuterium retention in, re-emission and reflection from a tungsten material under D+ ions irradiation with ACAT-DIFFUSE

    International Nuclear Information System (INIS)

    Ono, T.; Muramoto, T.; Kenmotsu, T.; Kawamura, T.

    2008-08-01

    We calculated, with a dynamic Monte Carlo code ACAT-DIFFUSE, fluxes of thermal D 2 re-emission, reflection and self-sputtering from a wrought tungsten material during a time sequence of 100 eV D + implantation, post-implanted isothermal out-gassing and thermal desorption spectroscopy. The obtained result agreed well with an existing experiment, where diffusion was considered in the calculations from the beginning of implantation. The three fluxes in the implantation period were shown to be almost comparable. The integrated deuterium flux released in the same period was estimated. The depth profiles of deuterium retained at 300 K in that period indicate that, while their maximum locations did not move, the profiles were broadened out because of fast diffusion. The amount of deuterium retained at 300 K was one order of magnitude higher than that at 473 K. (author)

  19. Deuterium-depleted water

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Steflea, Dumitru; Saros-Rogobete, Irina; Titescu, Gheorghe; Tamaian, Radu

    2001-01-01

    Deuterium-depleted water represents water that has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Deuterium depleted water is produced by vacuum distillation in columns equipped with structured packing made from phosphor bronze or stainless steel. Deuterium-depleted water, the production technique and structured packing are patents of National Institute of Research - Development for Cryogenics and Isotopic Technologies at Rm. Valcea. Researches made in the last few years showed the deuterium-depleted water is a biological active product that could have many applications in medicine and agriculture. (authors)

  20. Fine target of deuterium

    International Nuclear Information System (INIS)

    Diaz Diaz, J.; Granados Gonzalez, C. E.; Gutierrez Bernal, R.

    1959-01-01

    A fine target of deuterium on a tantalum plate by the absorption method is obtained. In order to obtain the de gasification temperature an induction generator of high frequency is used and the deuterium pass is regulated by means of a palladium valve. Two vacuum measures are available, one to measure the high vacuum in the de gasification process of the tantalum plate and the other, for low vacuum, to measure the deuterium inlet in the installation and the deuterium pressure change in the installation after the absorption in the tantalum plate. A target of 48 μ gr/cm 2 thick is obtained. (Author) 1 refs

  1. Numerical simulation of simultaneous acceleration of positive and negative ions in an RFQ

    International Nuclear Information System (INIS)

    Oguri, Y.

    1994-01-01

    By means of a numerical method, beam dynamics was analyzed for an RFQ, where mixtures of positive and negative ions were injected into the quadrupole channel. In order to simulate simultaneous bunching of ions with opposite charges, motion of particles injected into the cavity during two RF periods were traced under consideration of 3D Coulomb forces between particles. Effects of neighbor bunches were also taken into account. In the radial matching section of the structure, beam divergence due to space charge force was completely suppressed by the charge neutralization. However, it has been found that the attractive forces between positive and negative ions prevent bunch formation in the bunching section, leading to longitudinal beam loss. Dependence of the beam transmission efficiency on the input beam intensity is reported. These results are compared with those obtained when injecting single ion species

  2. Design and fabrication of a Transverse Field Focussing (TFF) 180 keV negative ion accelerator

    International Nuclear Information System (INIS)

    Matuk, C.A.; Anderson, O.A.; Owren, H.M.; Paterson, J.A.; Purgalis, P.

    1985-11-01

    The 180 keV Transverse Field Focussing (TFF) negative ion accelerator described is the final component of a negative ion based neutral beam acceleration system which is being developed as proof-of-principle demonstration of a radiation hardened neutral beamline. The 180 keV beamline consists of: a surface conversion negative ion source, a 80 keV pre-accelerator, a TFF pumping, matching, and transport section, and the 180 keV TFF accelerator presented. This beamline is expected to provide 1 A of H - at 180 keV. In the design of the accelerator, particular importance was given to the rigidity of the accelerator electrode mounting structures and to the electrical isolation of the electrodes along with their related cooling lines. An optical alignment scheme was developed to assemble and to insure precision alignment of the electrodes

  3. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  4. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  5. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Zanni, Martin T.

    1999-01-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents

  6. Reprint of: Negative carbon cluster ion beams: New evidence for the special nature of C60

    Science.gov (United States)

    Liu, Y.; O'brien, S. C.; Zhang, Q.; Heath, J. R.; Tittel, F. K.; Curl, R. F.; Kroto, H. W.; Smalley, R. E.

    2013-12-01

    Cold carbon cluster negative ions are formed by supersonic expansion of a plasma created at the nozzle of a supersonic cluster beam source by an excimer laser pulse. The observed distribution of mass peaks for the Cn- ions for n > 40 demonstrates that the evidence previously given for the special stability of neutral C60 and the existence of spheroidal carbon shells cannot be an artifact of the ionization conditions.

  7. Potential formation in a collisionless plasma produced in an open magnetic field in presence of volume negative ion source

    International Nuclear Information System (INIS)

    Phukan, Ananya; Goswami, K. S.; Bhuyan, P. J.

    2014-01-01

    The electric potential near a wall for a multi-species plasma with volume produced negative ions in presence of axially varying magnetic field is studied following an analytical-numerical approach. A constant negative ion source is assumed throughout the plasma volume, along with finite temperature positive ions and Boltzmann electrons. The particles are assumed to be guided by an open magnetic field that has its maximum at the centre, and field strength decreasing towards the walls. The one dimensional (1D) Poisson equation is derived using an analytical approach, and then solved numerically to study the potential profiles. Effect of (a) negative ion production rate, (b) magnetic field profile, and (c) negative ion temperature on the potential profile has been investigated. A potential peak appears near the wall when the negative ion temperature and density are sufficiently high. Also, the presence of negative ions further decreases the potential in the plasma region for a finite Debye Length (λ D )

  8. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Science.gov (United States)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  9. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  10. The production and destruction of negative ions. Progress report, September 1, 1996 - August 31, 1997

    International Nuclear Information System (INIS)

    Pegg, D.J.

    1997-01-01

    During the grant period, 1994--97, the author continued to investigate the structure of few-electron atomic negative ions and the manner in which they interact with electromagnetic radiation. The experimental procedures and the results of this work have been described in detail in the published papers cited in Section G. Two complementary laser-ion beam apparatus were used in the measurements. A crossed beam apparatus, situated at Oak Ridge National Laboratory (ORNL), was used to perform a spectroscopic study of the electrons ejected, in the forward direction, from moving negative ions in the photodetachment process. In this work, the author isolated specific detachment channels by energy analyzing the electrons. The apparatus was used to investigate photodetachment of an electron from a negative ion in an excited state. The C - ion is unusual in that it can be produced in a bound excited state as well as the ground state. The author also used this apparatus, with ba gaseous target replacing the laser beam, to study resonances in collisional detachment cross sections. In particular, he investigated the simplest of all shape resonances, the 3 P O state in Li - . This state was produced in Li - -He collisions. A collinear beam apparatus, situated at Chalmers University of Technology (CUT) in Gothenburg, Sweden, has been used in spectroscopic studies of the He - and Li - ion in the ultraviolet. Here, the emphasis is on the production and detection of highly correlated, doubly excited states

  11. Relaxation effects in ionic mobility and cluster formation: negative ions in SF6 at high pressures

    International Nuclear Information System (INIS)

    Juarez, A M; De Urquijo, J; Hinojosa, G; Hernandez-Avila, J L; Basurto, E

    2010-01-01

    The relaxation effects of the ionic mobility and the formation of negative-ion clusters in SF 6 are studied in this work. For this purpose, we have measured the mobility of negative ions in SF 6 over the pressure range 100-800 Torr at a fixed value of density-normalized electric field, E/N, of 20 Td (1 Townsend = 10 -17 V cm 2 ). The data obtained show a clear dependence of the negative-ion drift velocity on drift distance. It is observed that the drift velocity (mobility) reaches a steady-state value only for drift distances above 2 cm, over the studied pressure range. In addition to this, we have observed that the ionic mobility depends strongly on the gas pressure. An explanation of this dependence of the ionic mobility on gas pressure is given in terms of a negative-ion clustering formation process. It was found that the assumption of a linear dependence of the cluster ion mass on pressure provides a satisfactory explanation for the observed mobilities.

  12. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-01-01

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  13. Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens

    DEFF Research Database (Denmark)

    Canulescu, Stela; Molchan, Igor S.; Tauziede, C.

    2010-01-01

    A new method is presented for elemental and molecular analysis of halogen-containing samples by glow discharge time-of-flight mass spectrometry, consisting of detection of negative ions from a pulsed RF glow discharge in argon. Analyte signals are mainly extracted from the afterglow regime...... be used to study the distribution of a tantalum fluoride layer within the anodized tantala layer. Further, comparison is made with data obtained using glow-discharge optical emission spectroscopy, where elemental fluorine can only be detected using a neon plasma. The ionization mechanisms responsible...... for the formation of negative ions in glow discharge time-of-flight mass spectrometry are briefly discussed....

  14. Development of the work function monitoring method for a converter of a negative ion source

    International Nuclear Information System (INIS)

    Yamaoka, Hitoshi; Sasao, Mamiko; Wada, Motoi; Ramos, H.J.

    1988-07-01

    A method to monitor the change in the work function of the converter surface in a self-extraction negative ion source is developed. The photoelectron emission from the Cs-Mo surface in a plasma is detected by irradiating surface with laser lights. Negative ions produced at the surface shows a strong correlation with the photoelectron current from the surface in hydrogen and helium discharges. The photoelectron current induced by the Ar + laser is used to detect the change in the cesium coverage, or the work function, while that by the dye laser is found to be suitable to confirm the region of the work function minimum. (author)

  15. Numerical simulations of the first operational conditions of the negative ion test facility SPIDER

    International Nuclear Information System (INIS)

    Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P.; Cavenago, M.

    2016-01-01

    In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained

  16. Confinement and heating of a deuterium-tritium plasma

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Adler, H.; Alling, P.

    1994-03-01

    The Tokamak Fusion Test Reactor (TFTR) has performed initial high-power experiments with the plasma fueled by deuterium and tritium to nominally equal densities. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ∼20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α-particles

  17. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  18. Ion-acoustic waves and drift waves in negative ion sources

    International Nuclear Information System (INIS)

    Gerwin, R.A.

    1989-01-01

    Attention is directed towards instabilities induced in hydrogen plasmas due to the presence of the desired H/sup /minus// ions. Preliminary investigations indicate that when the electron temperature exceeds the temperature of the background ions (H + ), the H/sup /minus// beam causes collective instabilities even at very low (even vanishing) beam velocities, provided that the non-ideal properties of the background plasma are taken into consideration. The most dangerous instabilities involve oscillations transverse to the direction of beam extraction, and may thereby degrade the beam emittance. 5 refs

  19. Effects of the weak magnetic field and electron diffusion on the spatial potential and negative ion transport in the negative ion source

    International Nuclear Information System (INIS)

    Sakurabayashi, T.; Hatayama, A.; Bacal, M.

    2004-01-01

    The effects of the weak magnetic field on the negative ion (H - ) extraction in a negative ion source have been studied by means of a two-dimensional electrostatic particle simulation. A particle-in-cell model is used which simulates the motion of the charged particles in their self-consistent electric field. In addition, the effect of the electron diffusion across the weak magnetic field is taken into account by a simple random-walk model with a step length Δx per time step Δt; Δx=√(2D perpendicular )Δt)·ξ x , where D perpendicular ) and ξ x are the perpendicular diffusion coefficient and normal random numbers. Under this simple diffusion model, the electron diffusion has no significant effects on the H - transport. Most electrons are magnetized by the weak magnetic field and lost along the field line. As a result, more H - ions arrive instead of electrons in the region close to the plasma grid in order to ensure the plasma neutrality

  20. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    International Nuclear Information System (INIS)

    Abid, A. A.; Khan, M. Z.; Yap, S. L.; Terças, H.; Mahmood, S.

    2016-01-01

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q d  = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U 0 ) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0

  1. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)

    2016-01-15

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.

  2. A feature of negative hydrogen ion production in the Uramoto-type sheet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jimbo, Kouichi [Kyoto Univ., Uji (Japan). Inst. of Atomic Energy

    1997-02-01

    It seems that negative hydrogen ions H{sup -} are formed directly from atomic hydrogens H. When the chamber was biased more negative against the anode potential at constant are power, forming a much deeper electrostatic well in the Uramoto-type sheet plasma negative ion source, more negative hydrogen ion currents were extracted. The chamber potential V{sub B} was biased down to -100V in the 150V discharge. The negative ion current J{sup -} was evaluated by the JAERI-probe measurement. J{sup -} increases linearly with the chamber current I{sub B}. The largest J{sup -} value was obtained at absolute value of |V{sub prob,f}|=15V and absolute value of |V{sub B}|=100V; the discharge was not operated for absolute value of |V{sub B}|>100V. We speculate the following collisional (three-body) electron attachment to H as a possible production process for H{sup -}; e+e+H{yields}e+H{sup -}. This process may explain the linear increase of J{sup -} with absolute value of |V{sub prob,f}|. (S.Y.)

  3. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment.

    Science.gov (United States)

    Shepherd, Simon J; Beggs, Clive B; Smith, Caroline F; Kerr, Kevin G; Noakes, Catherine J; Sleigh, P Andrew

    2010-04-12

    In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V) in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene acrylonitrile), did however develop a positive charge in the

  4. First results from negative ion beam extraction in ROBIN in surface mode

    Science.gov (United States)

    Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.

    2017-08-01

    ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the

  5. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    Full Text Available Abstract Background In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. Methods A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. Results The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene

  6. Desorption dynamics of deuterium in CuCrZr alloy

    Science.gov (United States)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  7. Study of a new source for positive and negative ions. Final report

    International Nuclear Information System (INIS)

    Freedman, A.; Davidovits, P.

    1985-05-01

    This study has focused on the feasibility of a novel ion source based on the technique of photodissociation, which could provide both positive and negative ions at considerably higher intensities (potentially 10 15 cm -3 ) than are currently available. Ions are produced by irradiating a sample of a gaseous thallium halide salt with an argon fluoride excimer laser operating at 193 nm. At this wavelength, both thallium bromide and iodide will produce atomic ion pairs in a single photon process and molecular positive ions and an electron in a two-photon induced process. The potential traits of such an excimer-laser pumped thallium salt ion source include the following: high intensity and pulse rate, good spatial and temporal resolution, low temperature, good focusing properties, and production of heavy ions. This report describes a Phase I effort investigating the efficacy of this approach. A review of the relevant photophysics pertaining to laser excitation of thallium halide salts is presented, followed by a description of both experimental and theoretical efforts involving thallium bromide in particular. The last section will summarize the basic conclusions derived from these studies, as well as discuss potential advantages of an ion source derived from photolyzing thallium halide salts

  8. Low-energy hydrogen flux measurements at the TORTUR tokamak with negative ion conversion

    International Nuclear Information System (INIS)

    Toledo, Wiebo van.

    1990-01-01

    The interaction of a tokamak plasma with the vessel wall is one of the most important subjects in thermonuclear research. The information about this interaction is not complete without direct detection of the outward stream of low-energy, down to a few electronvolts, neutral hydrogen or deuterium atoms. The detection of these atoms is the subject of this thesis. An appropriate method to analyse the atoms which are emitted from the edge plasma is to use a time-of-flight analyser. This kind of apparatus selects particles according to their velocities with-out distinguishing between different masses. If these analysers use the Daly-method the lowest measurable energy of the hydrogen atoms is approximately 25 electronvolts. To increase the detection efficiency a new detection method was developed. This new method uses the conversion of hydrogen atoms into H- ions on a cesiated tungsten surface. By this conversion the lowest measurable energy is decreased down to 5 electron-volt. (author). 93 refs.; 44 figs.; 7 tabs

  9. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)

    International Nuclear Information System (INIS)

    Kraus, W.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Riedl, R.; Wuenderlich, D.

    2012-01-01

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut fuer Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  10. Surface potential measurement of insulators in negative-ion implantation by secondary electron energy-peak shift

    International Nuclear Information System (INIS)

    Nagumo, Shoji; Toyota, Yoshitaka; Tsuji, Hiroshi; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1993-01-01

    Negative-ion implantation is expected to realize charge-up free implantation. In this article, about a way to specify surface potential of negative-ion implanted insulator by secondary-electron-energy distribution, its principle and preliminary experimental results are described. By a measuring system with retarding field type energy analyzer, energy distribution of secondary electron from insulator of Fused Quartz in negative-carbon-ion implantation was measured. As a result the peak-shift of its energy distribution resulted according with the surface potential of insulator. It was found that surface potential of insulator is negatively charged by only several volts. Thus, negative-ion implanted insulator reduced its surface charge-up potential (without any electron supply). Therefore negative-ion implantation is considered to be much more effective method than conventional positive-ion implantation. (author)

  11. Considerations involved in the design of negative-ion-based neutral beam systems

    International Nuclear Information System (INIS)

    Cooper, W.S.

    1983-11-01

    We consider the requirements and constraints for negative-ion-based neutral beam injection systems, and show how these are reflected in design considerations. We will attempt to develop a set of guidelines for users and developers to use to see how well (in a qualitative sense, at least) a particular neutral beam system fits a particular proposed need

  12. Large amplitude solitary waves in a multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Nakamura, Y.; Tsukabayashi, I.; Ludwig, G.O.; Ferreira, J.L.

    1987-09-01

    When the concentration of negative ions is larger than a critical value, a small compressive pulse evolves into a subsonic wave train and a large pulse develops into a solitary wave. The threshold amplitude and velocity of the solitary waves are measured and compared with predictions using the pseudopotential method. (author) [pt

  13. New stable multiply charged negative atomic ions in linearly polarized superintense laser fields

    International Nuclear Information System (INIS)

    Wei Qi; Kais, Sabre; Moiseyev, Nimrod

    2006-01-01

    Singly charged negative atomic ions exist in the gas phase and are of fundamental importance in atomic and molecular physics. However, theoretical calculations and experimental results clearly exclude the existence of any stable doubly-negatively-charged atomic ion in the gas phase, only one electron can be added to a free atom in the gas phase. In this report, using the high-frequency Floquet theory, we predict that in a linear superintense laser field one can stabilize multiply charged negative atomic ions in the gas phase. We present self-consistent field calculations for the linear superintense laser fields needed to bind extra one and two electrons to form He - , He 2- , and Li 2- , with detachment energies dependent on the laser intensity and maximal values of 1.2, 0.12, and 0.13 eV, respectively. The fields and frequencies needed for binding extra electrons are within experimental reach. This method of stabilization is general and can be used to predict stability of larger multiply charged negative atomic ions

  14. Electronics system for the 150 kV negative ion test stand at BNL

    International Nuclear Information System (INIS)

    Larson, R.A.

    1977-01-01

    The 150 kV test stand at BNL is being used to investigate the extraction, acceleration and transport problems associated with the development of intense negative ion beams. The power supplies associated with these functions as well as the control and monitoring electronics are described

  15. Numerical analysis of electronegative plasma in the extraction region of negative hydrogen ion sources

    Science.gov (United States)

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2011-01-01

    This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H- ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H- ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H- ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H- ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.

  16. Numerical analysis of electronegative plasma in the extraction region of negative hydrogen ion sources

    International Nuclear Information System (INIS)

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2011-01-01

    This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H - ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H - ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H - ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H - ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.

  17. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  18. New source of MeV negative ion and neutral atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Avetisyan, S., E-mail: sargis@gist.ac.kr [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of); Braenzel, J.; Schnürer, M. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin 12489 (Germany); Prasad, R. [Institute for Laser and Plasma Physics, Heinrich Heine University, Duesseldorf 40225 (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen’s University of Belfast, Belfast BT7-1NN (United Kingdom); Jequier, S.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, CEA, CNRS, University of Bordeaux, 33405 Talence (France)

    2016-02-15

    The scenario of “electron-capture and -loss” was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.

  19. New source of MeV negative ion and neutral atom beams

    International Nuclear Information System (INIS)

    Ter-Avetisyan, S.; Braenzel, J.; Schnürer, M.; Prasad, R.; Borghesi, M.; Jequier, S.; Tikhonchuk, V.

    2016-01-01

    The scenario of “electron-capture and -loss” was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities

  20. Negative ion surface plasma source development for plasma trap injectors in Novosibirsk

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.; Kupriyanov, A.S.

    1989-01-01

    Work on high-current ion sources carried out at the Novosibirsk Institute of Nuclear Physics (INP) is presented. The INP investigations on ''pure plasma'' planotron and ''pure surface'' secondary emission systems of H - generation, which preceded the surface-plasma concept developed in Novosibirsk, are described. The physical basis of the surface-plasma method of negative-ion production is considered. The versions and operating characteristics of different surface-plasma sources including the multi-ampere (approx-gt 10A) source are discussed. Research on efficient large-area (∼10 2 cm 2 ) negative ion surface-plasma emitters is described. The INP long-pulse multiaperture surface- plasma generators, with a current of about 1A, are described. 38 refs., 17 figs

  1. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  2. Experimental investigation of the formation of negative hydrogen ions in collisions between positive ions and atomic or molecular targets

    International Nuclear Information System (INIS)

    Lattouf, Elie

    2013-01-01

    The formation of the negative hydrogen ion (H - ) in collisions between a positive ion and a neutral atomic or molecular target is studied experimentally at impact energies of a few keV. The doubly-differential cross sections for H - formation are measured as a function of the kinetic energy and emission angle for the collision systems OH + + Ar and O + + H 2 O at 412 eV/a.m.u. These H - ions can be emitted at high energies (keV) in hard quasi-elastic two-body collisions involving a large momentum transfer to the H center. However, H - anions are preferentially emitted at low energy (eV) due to soft many-body (≥ 2) collisions resulting in a low momentum transfer. The formation of H - ions by electron capture follows excitation or ionization of the molecule. The molecular fragmentation dynamics is modeled to simulate the emission of H - ions. The overall good agreement between the simulation and the experiment leads to the understanding of most of the experimental observations. (author) [fr

  3. Performance evaluation of oxygen adsorbents using negative corona discharge–ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Azadkish, Kamal; Jafari, Mohammad T., E-mail: jafari@cc.iut.ac.ir; Ghaziaskar, Hassan S.

    2017-02-08

    Trace amounts of oxygen was determined using negative corona discharge as an ionization source for ion mobility spectrometry. A point-in-cylinder geometry with novel design was used to establish the corona discharge without interferences of negative ions such as NO{sub X}{sup −}. The desirable background spectrum shows only electrons peak, providing the instrument capable of trace analysis of oxygen in gaseous samples. The limit of detection and linear dynamic range with high coefficient of determination (r{sup 2} = 0.9997), were obtained for oxygen as 8.5 and 28–14204 ppm, respectively. The relative standard deviations of the method for intraday and interday were obtained 4 and 11%, respectively. The satisfactory results revealed the ability of the negative corona discharge ion mobility spectrometry for investigating the performance of synthesized oxygen adsorbents in nitrogen streams. Two oxygen scavengers of MnO and Cu powder were prepared and the optimum temperature of the reactor containing MnO and Cu powder were obtained as 180 and 230 °C, respectively. Due to higher lifetime of copper powder, it was selected as the oxygen scavenger and some parameters such as: the type of adsorbent support, the size of adsorbent particles, and the amount of copper were studied for preparation of more efficient oxygen adsorbent. - Highlights: • Analysis of oxygen using negative corona discharge-ion mobility spectrometry was investigated for the first time. • Novel designed point-in-cylinder geometry was used to establish the corona discharge without interferences of negative ions. • The method was utilized to evaluate the performance of some synthesized oxygen scavengers.

  4. Secondary emission of negative ions and electrons resulting from electronic sputtering of cesium salts

    International Nuclear Information System (INIS)

    Allali, H.; Nsouli, B.; Thomas, J.P.

    1993-04-01

    Secondary ion emission of negative ions and electrons from alkali salts bombarded with high energy (9 MeV) Ar +++ is discussed. Quite different features are observed according to the nature of the salt investigated (halide or oxygenated). In the case of cesium, the electron emission from halides is characterized by intense electron showers (several hundred electrons) with narrow distributions in intensity and orientation. Conversely, for oxygenated salts, these distributions are broader, much less intense (one order of magnitude), and the ion emission exhibits an dissymmetry, which has never been observed for inorganics. This last result is interpreted in terms of radiolysis of the oxygenated salt, a process well documented for gamma-ray irradiation, but not yet reported in secondary ion emission. (author) 17 refs.; 10 figs

  5. A high-efficiency positive (negative) surface ionization source for radioactive ion beam (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ≡5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ≡1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of this technique for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing considerably the efficiency for negative surface ionization of atoms and molecules with intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the Holifield radioactive beam facility. The design features and operational principles of the source will be described in this report. copyright 1996 American Institute of Physics

  6. Trapping of positron in gallium arsenide: evidencing of vacancies and of ions with a negative charge

    International Nuclear Information System (INIS)

    Pierre, F.

    1989-12-01

    Vacancy type defects in Ga As as grown and irradiated by electrons are characterized by lifetime of positrons. Positron lifetime increases from 230 ps to 258 and 295 ps in presence of native vacancies in n type Ga As. Configuration of native vacancies changes when Fermi level crosses energy levels localized in the forbidden zone at 0.035eV and at 0.10eV from the bottom of the conduction band. Native vacancies are identified to arsenic vacancies with or without other point defects. Positron lifetime increases from 230 to 260 ps in presence of vacancies produced by low temperature irradiation negative ions are also produced. In irradiated Ga As, these ions trap positrons in competition with vacancies produced by irradiation, showing they have a negative charge. Two annealing zones between 180-300K and 300-600K are presented by vacancies. Ions do not anneal below ambient temperature. Vacancies and negative ions are identified respectively to gallium vacancies and gallium antisite [fr

  7. Multiplex Mass Spectrometric Imaging with Polarity Switching for Concurrent Acquisition of Positive and Negative Ion Images

    Science.gov (United States)

    Korte, Andrew R.; Lee, Young Jin

    2013-06-01

    We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS3 imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.

  8. Improvements of the magnetic field design for SPIDER and MITICA negative ion beam sources

    International Nuclear Information System (INIS)

    Chitarin, G.; Agostinetti, P.; Aprile, D.; Marconato, N.; Veltri, P.

    2015-01-01

    The design of the magnetic field configuration in the SPIDER and MITICA negative ion beam sources has evolved considerably during the past four years. This evolution was driven by three factors: 1) the experimental results of the large RF-driven ion sources at IPP, which have provided valuable indications on the optimal magnetic configurations for reliable RF plasma source operation and for large negative ion current extraction, 2) the comprehensive beam optics and heat load simulations, which showed that the magnetic field configuration in the accelerator is crucial for keeping the heat load due to electrons on the accelerator grids within tolerable limits, without compromising the optics of the negative ion beam in the foreseen operating scenarios, 3) the progress of the detailed mechanical design of the accelerator, which stimulated the evaluation of different solutions for the correction of beamlet deflections of various origin and for beamlet aiming. On this basis, new requirements and solution concepts for the magnetic field configuration in the SPIDER and MITICA beam sources have been progressively introduced and updated until the design converged. The paper presents how these concepts have been integrated into a final design solution based on a horizontal “long-range” field (few mT) in combination with a “local” vertical field of some tens of mT on the acceleration grids

  9. Effect of negative ions on current growth and ionizing wave propagation in air

    International Nuclear Information System (INIS)

    Kline, L.E.

    1975-01-01

    The spatiotemporal development of electron and ion densities, electric fields, and luminosity are calculated for electron pulse experiments in overvolted parallel-plane gaps by numerically solving continuity equations together with Poisson's equation. Experimental coefficients for primary ionization, cathode photoemission, photoionization, and luminosity are used. Unambiguous determination of the coefficients for attachment, detachment, and charge transfer is not possible from available experimental results. Therefore, the calculations are repeated for three sets of coefficients for these processes, corresponding to the following assumptions: unstable negative ions, stable negative ions, and no negative ions. The results of the calculations show, in each case, that the electron pulse initiates an avalanche which grows exponentially until the onset of space-charge effects. The calculated growth rate is strongly affected by the assumed attachment, detachment, and charge-transfer coefficients. When the total number of electrons in the avalanche reaches approx.10 8 , anode- and cathode-directed ionizing waves, or streamers, develop from the avalanche and produce a weakly ionized filamentary plasma. The calculated ionizing wave velocities are strongly increasing functions of the space-charge--enhanced electric field within the waves and are insensitive to the assumed attachment, detachment, and charge-transfer coefficients. The numerically calculated ionizing wave velocities are in approximate agreement with a simple analytical theory

  10. Neuron attachment properties of carbon negative-ion implanted bioabsorbable polymer of poly-lactic acid

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Sasaki, Hitoshi; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    2002-01-01

    Modification of a bioabsorbable polymer of poly-lactic acid (PLA) by negative carbon ion implantation was investigated with resect to radiation effects on surface physical properties and nerve-cell attachment properties. Carbon negative ions were implanted to PLA at energy of 5-30 keV with a dose of 10 14 -10 16 ions/cm 2 . Most C-implanted PLA samples showed contact angles near 80 deg. and almost same as that of unimplanted PLA, although a few samples at 5 keV and less 3x10 14 ions/cm 2 had contact angles larger than 90 deg. The attachment properties of nerve cells of PC-12h (rat adrenal phechromocytoma) in vitro were studied. PC-12h cells attached on the unimplanted region in C-implanted PLA samples at 5 and 10 keV. On the contrary, the nerve cells attached on only implanted region for the C-implanted PLA sample at 30 keV and 1x10 15 ions/cm 2

  11. Viscosity and attenuation of sound wave in high density deuterium

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1985-01-01

    The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)

  12. Negative ion emission at field electron emission from amorphous (alpha-C:H) carbon

    CERN Document Server

    Bernatskij, D P; Ivanov-Omskij, V I; Pavlov, V G; Zvonareva, T K

    2001-01-01

    The study on the electrons field emission from the plane cathode surface on the basis of the amorphous carbon film (alpha-C:H) is carried out. The methodology, making it possible to accomplish simultaneously the registration of the emission currents and visually observe the distribution of the emission centers on the plane emitter surface is developed. The analysis of the oscillograms indicated that apart from the proper electron constituent the negative ions of hydrogen (H sup - and H sub 2 sup -), carbon (C sup -) and hydrocarbon (CH sub n sup -) are observed. The ions emission is connected with the processes of formation and degradation of the local emission centers

  13. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  14. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates.

    Science.gov (United States)

    Harvey, David J

    2005-01-01

    Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.

  15. Emission characteristics of negative oxygen ions into vacuum from cerium oxide

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Fujiwara, Yukio; Kaimai, Atsushi; Yashiro, Keiji; Matsumoto, Hiroshige; Nigara, Yutaka; Kawada, Tatsuya; Mizusaki, Junichiro

    2006-01-01

    The oxygen ion emission characteristics of CeO 2 were studied under electric field in a vacuum chamber to find a candidate material for a novel ion source, 'solid oxide ion source (SOIS)'. The emission current was observed from CeO 2 under a pressure of around 10 -3 Pa, at the temperature ranging from 973 K to 1173 K. It was found that the emission current increased with temperature and applied voltage. The ions emitted from CeO 2 were confirmed to be oxygen negative ions (O - ) by the use of quadrupole mass spectrometer. The emission current decreased with time as was observed in the earlier works with other oxide ion conductors such as stabilized zirconia or other materials . To enhance the emission current from CeO 2 , an introduction of donor into CeO 2 was tested using Ce 0.992 Nb 0.008 O 2 . For comparison, effect of acceptor doping was also tested using Ce 0.9 Gd 0.1 O 1.95 . The emission current from Ce 0.9 Gd 0.1 O 1.95 was smaller than that from donor-doped and pure CeO 2. Clear enhancement of the emission current was not observed with Ce 0.992 Nb 0.008 O 2

  16. Formation of negative hydrogen ion: polarization electron capture and nonthermal shielding.

    Science.gov (United States)

    Ki, Dae-Han; Jung, Young-Dae

    2012-09-07

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H(-)) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  17. Formation of negative hydrogen ion: Polarization electron capture and nonthermal shielding

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2012-01-01

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H − ) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  18. Electron and Negative Ion Densities in C2F6 and CHF3 Containing Inductively Coupled Discharges

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Electron and negative ion densities have been measured in inductively coupled discharges containing C 2 F 6 and CHF 3 . Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10 12 cm -2 (line-integrated) or approximately 9 x 10 11 cm -3 . The negative ion density peaked at approximately 1.3 x 10 11 cm -3 . A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F - . Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF 4 , C 2 F 6 and CHF 3 discharges

  19. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    International Nuclear Information System (INIS)

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; Andreev, A.; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-01-01

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source

  20. Negative magnetoresistance in perpendicular of the superlattices axis weak magnetic field at scattering of impurity ions

    International Nuclear Information System (INIS)

    Askerov, B. M.; Figarova, R.; Guseynov, G.I.

    2012-01-01

    Full Text : The transverse magnetoresistance in superlattices with the cosine dispersion law of conduction electrons in a case, when a weak magnetic field in plane of layer at scattering of the charge carriers of impurity ions has been studied. It has been shown that in a quasi-two-dimensional case the magnetoresistance was positive, while in a quasi-three-dimensional case can become negative depending of a degree of mini-band filling. Such behavior of magnetoresistance, apparently, has been related to presence in a mini-band of region with the negative effective mass

  1. Mass spectrometric analysis of small negative ions (e/m < 100) produced by Trichel pulse negative corona discharge fed by ozonised air

    OpenAIRE

    Skalny, J.D.; Horvath, G.; Mason, N.

    2007-01-01

    Mass spectrometric analysis of small negative ions (e/m < 100) produced by DC negative corona discharge in ozonised wet air both in flow and flow-stopped regimes was conducted at pressure of 30 kPa. The point-to-plain electrode system has been used. The yield of individual ions is strongly affected by trace concentrations of ozone in both regimes. Ozone concentration greater than 25 ppm is sufficient to completely suppress the appearance of O2- and a NO2- ion as well as theirs clusters in the...

  2. Simple method for determining binding energies of fullerene and complex atomic negative ions

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred

    2017-04-01

    A robust potential which embeds fully the vital core polarization interaction has been used in the Regge pole method to explore low-energy electron scattering from C60, Eu and Nb through the total cross sections (TCSs) calculations. From the characteristic dramatically sharp resonances in the TCSs manifesting negative ion formation in these systems, we extracted the binding energies for the C60, Euand Nbanions they are found to be in outstanding agreement with the measured electron affinities of C60, Eu and Nb. Common among these considered systems, including the standard atomic Au is the formation of their ground state negative ions at the second Ramsauer-Townsend (R-T) minima of their TCSs. Indeed, this is a signature of all the fullerenes and complex atoms considered thus far. Shape resonances, R-T minima and binding energies of the resultant anions are presented. This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research.

  3. Production of intensive negative lithium beam with caesium sputter-type ion source

    Science.gov (United States)

    Lobanov, Nikolai R.

    2018-01-01

    Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.

  4. System upgradation for surface mode negative ion beam extraction experiments in ROBIN

    International Nuclear Information System (INIS)

    Pandya, Kaushal; Bansal, Gourab; Soni, Jignesh

    2015-01-01

    ROBIN (Replica Of BATMAN source in India) is a replica of BATMAN source of IPP, Garching. Plasma production (inductively coupled, RF produced plasma), plasma diagnostic (langmuir probe, optical emission spectroscopy), negative ion beam extraction in volume mode with reduced extraction area of 2 cm 2 (4 apertures) using small bench top type power supply (10kV, 400mA), with increase extraction area of 73 cm 2 (146 apertures) and using actual power supplies (Extraction Power Supply System, EPSS (11kV, 35A), and Accelerator Power Supply System, APSS (35kV, 15A)) and beam diagnostic etc have been performed successfully in ROBIN. This paper will describe the details of the system upgradation for surface mode negative ion experiments and its performance in ROBIN

  5. Negative ion detachment cross sections: Progress report, March 1, 1985--February 29, 1988

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1987-08-01

    The purpose of the experimental investigations undertaken during the past three years was to perform an extensive and comprehensive study of the collisional dynamics of reactants which involve collisions of negative ions and neutral atomic and molecular targets. The (laboratory) collision energies for these studies ranged from about 1 eV up to 500 eV and the experiments involved measurements of both absolute total cross sections and doubly-differential cross sections. The various processes investigated included electron detachment, charge transfer, dissociative charge transfer and reactive (or rearrangement) scattering. Reactants which were the subject of these investigations included the negative ions O/sup minus/, S/sup minus/, Na/sup minus /, K/sup minus/, Cs/sup minus/, H/sup minus/, D/sup minus/ in collisions with H 2 , D 2 , O 2 , N 2 , CO, CO 2 , CH 4 and the alkali atoms Na, K and Cs

  6. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form

  7. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    Science.gov (United States)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  8. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  9. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    Science.gov (United States)

    Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.

    2009-03-01

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D- and capable of delivering 16.5 MW of D0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option [1]. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H- to 100 keV will inject ≈15 A equivalent of H0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D- and H- current densities as well as long-pulse operation [2, 3]. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R&D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start

  10. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    International Nuclear Information System (INIS)

    Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.

    2009-01-01

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D - and capable of delivering 16.5 MW of D 0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H - to 100 keV will inject ≅15 A equivalent of H 0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D - and H - current densities as well as long-pulse operation. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R and D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start

  11. Experimental study on negative hydrogen ion formation in the quiescent plasma machine at INPE

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Ferreira, J.G.; Damasio, W.C.

    1989-01-01

    The preliminary results from the study on generation of positive and negative hydrogen ions in plasma produced by thermionic discharge confined superficially by magnetic fields, are presented. In the interior of this discharge was inserted a Langmuir electrostatic probe to measure H - , H + , H + 2 and H + 3 concentrations in the plasma produced from argon (Ar) and hydrogen (H 2 ) gas mixture. (M.C.K.) [pt

  12. Theoretical investigation of the β decay of a negative tritium ion

    International Nuclear Information System (INIS)

    Goryaev, F.F.; Sukhanov, L.P.

    1997-01-01

    Calculation of probability of the main channel β decay of tritium negative ion as one of the possible process influencing the β spectrum form is carried out. The corresponding energy characteristics are estimated. The necessity of accounting for the investigated process by interpretation of the β spectrum experimental curves near the end point in connection with the problem of determining the neutrino rest mass, is pointed out

  13. Theoretical study of β-decay of a negative tritium ion

    International Nuclear Information System (INIS)

    Goryaev, F.F.; Sukhanov, L.P.

    1997-01-01

    A calculation of the probability of the main β-decay channel of a negative tritium ion is described as one of the processes that can affect the β-spectrum of a tritium source near the end point. The appropriate energy parameters have been calculated. This process should be taken into account in interpreting measured β-spectra near the end point in connection with determining the neutrino rest mass

  14. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    International Nuclear Information System (INIS)

    Draghici, M.; Stamate, E.

    2010-01-01

    Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF 6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive and negative ions are evaluated on silicon substrate for different Ar/SF 6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.

  15. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive...... and negative ions are evaluated on silicon substrate for different Ar/SF6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.......Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio...

  16. A Langmuir probe system for high power RF-driven negative ion sources on high potential

    International Nuclear Information System (INIS)

    McNeely, P; Christ-Koch, S; Fantz, U; Dudin, S V

    2009-01-01

    A fully automated Langmuir probe system capable of operating simultaneously with beam extraction has been developed and commissioned for the negative hydrogen ion source testbeds at IPP Garching. It allows the measurement of temporal and spatial distributions of the plasma parameters within a single plasma pulse ( 10 18 m -3 ) and hot (T e > 10 eV) plasma with bi-Maxwellian electron energy distribution at low pressures. The plasma found near the plasma grid is very different being of low density (≤10 17 m -3 ) and very cold (T e < 2 eV). This plasma is also strongly influenced by the presence of caesium, the potential of the plasma grid, and if an ion beam is extracted from the source. Caesium strongly reduces the plasma potential of the source and enhances the negative ion density near the plasma grid. Extracting an ion beam is observed to reduce the electron density and increase the potential near the plasma grid. Applying a potential greater than the plasma potential to the plasma grid is found to significantly decrease the electron density near the plasma grid.

  17. The deuterium inventory in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mayer, M.; Rohde, V.; Ramos, G; Vainonen-Ahlgren, E.; Likonen, J.; Herrmann, A.; Neu, R.

    2007-01-01

    The deuterium inventory in ASDEX Upgrade was determined by quantitative ion beam analysis techniques and SIMS for different discharge campaigns between the years 2002 and 2005. ASDEX Upgrade was a carbon dominated machine during this phase. Full poloidal sections of the lower and upper divertor tile surfaces, limiter tiles, gaps between divertor tiles, gaps between inner heat shield tiles and samples from remote areas below the roof baffle and in pump ducts were analysed, thus offering an exhaustive survey of all relevant areas in ASDEX Upgrade. Deuterium is mainly trapped on plasma-exposed surfaces of inner divertor tiles, where about 70% of the retained deuterium inventory is found. About 20% of the inventory is retained at or below the divertor roof baffle, and about 10% is observed in other areas, such as the outer divertor and in gaps between tiles. The long term deuterium retention is 3-4% of the total deuterium input. The obtained results are compared with gas balance measurements, and conclusions about tritium retention in ITER are made

  18. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  19. Single-crate stand-alone CAMAC control system for a negative ion source test facility

    International Nuclear Information System (INIS)

    Juras, R.C.; Ziegler, N.F.

    1979-01-01

    A single-crate CAMAC system was configured to control a negative ion source development facility at ORNL and control software was written for the crate microcomputer. The software uses inputs from a touch panel and a shaft encoder to control the various operating parameters of the test facility and uses the touch panel to display the operating status. Communication to and from the equipment at ion source potential is accomplished over optical fibers from an ORNL-built CAMAC module. A receiver at ion source potential stores the transmitted data and some of these stored values are then used to control discrete parameters of the ion source (i.e., power supply on or off). Other stored values are sent to a multiplexed digital-to-analog converter to provide analog control signals. A transmitter at ion source potential transmits discrete status information and several channels of analog data from an analog-to-digital converter back to the ground-potential receiver where it is stored to be read and displayed by the software

  20. RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chenlong [Key Laboratory of Beam Technology and Material Modification Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, 100875 Beijing (China); Wang, Guangfu, E-mail: 88088@bnu.edu.cn [Key Laboratory of Beam Technology and Material Modification Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, 100875 Beijing (China); Beijing Radiation Center, 100875 Beijing (China); Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi [Key Laboratory of Beam Technology and Material Modification Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, 100875 Beijing (China)

    2016-03-01

    Highlights: • The radiation effect has a greater influence than doping effect on the hydrophilicity of RTV SR. • The implanted ions result in a new surface atomic bonding state and morphology. • Generating hydrophilic functional groups is a reason for the improved cell biocompatibility. • The micro roughness makes the hydrophilicity should be reduced due to the lotus effect. • Cell culture demonstrates that negative-ion implantation can improve biocompatibility. - Abstract: A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C{sub 1}{sup −} implantation dose was increased to 1 × 10{sup 16} ions/cm{sup 2}, and the effects of C{sub 1}{sup −}, C{sub 2}{sup −} and O{sub 1}{sup −} implantation result in only small differences in the water contact angle at 3 × 10{sup 15} ions/cm{sup 2}. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Si−CH{sub 3}, Si−O−Si, C−H) of RTV SR and generates hydrophilic functional groups (−COOH, −OH, Si−(O){sub x} (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method

  1. RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation

    International Nuclear Information System (INIS)

    Zheng, Chenlong; Wang, Guangfu; Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi

    2016-01-01

    Highlights: • The radiation effect has a greater influence than doping effect on the hydrophilicity of RTV SR. • The implanted ions result in a new surface atomic bonding state and morphology. • Generating hydrophilic functional groups is a reason for the improved cell biocompatibility. • The micro roughness makes the hydrophilicity should be reduced due to the lotus effect. • Cell culture demonstrates that negative-ion implantation can improve biocompatibility. - Abstract: A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C_1"− implantation dose was increased to 1 × 10"1"6 ions/cm"2, and the effects of C_1"−, C_2"− and O_1"− implantation result in only small differences in the water contact angle at 3 × 10"1"5 ions/cm"2. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Si−CH_3, Si−O−Si, C−H) of RTV SR and generates hydrophilic functional groups (−COOH, −OH, Si−(O)_x (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method to improve the cell biocompatibility of RTV SR.

  2. Calculation of deuterium retention, re-emission and reflection from a tungsten material under D+ ions irradiation with ACAT-DIFFUSE code

    International Nuclear Information System (INIS)

    Ono, T.; Kenmotsu, T.; Muramoto, T.; Kawamura, T.

    2009-01-01

    We calculated, with a dynamic Monte Carlo code ACAT-DIFFUSE, fluxes of thermal D 2 re-emission, reflection and segregated self-sputtering of D from a D + implanted wrought tungsten material during a time sequence of l00 eV D + implantation, post-implanted isothermal out-gassing and thermal desorption spectroscopy. The obtained result was in good agreement with an existing experiment if two different trap sites with de-trapping energy of 0.85 eV and 2.2 eV and density fraction of 0.05 D/W and 0.01 D/W were assumed to exist. The re-emission, reflection and self-sputtering fluxes in the implantation period were shown to be almost comparable. The integrated deuterium flux released in the same period was estimated. The amount of deuterium retained at 300 K was nearly six times higher than that at 473 K, which reflects the result that mobile atoms and atoms trapped in 0.85 eV trap existed abundantly at 300 K but scarcely at 473 K.

  3. Ex-vacuo nuclear reaction analysis of deuterium

    International Nuclear Information System (INIS)

    Lee, S.R.; Doyle, B.L.

    1989-01-01

    A novel technique for performing in-air d( 3 He, p) nuclear reaction analysis of deuterium using external 3 He ion beams ranging in energy from 0.3-2.0 MeV is presented. Variable on-target beam energies for the depth profiling of deuterium are obtained by varying the transmission distance of the external 3 He beam in air. The ex-vacuo nuclear reaction analysis (XNRA) apparatus is described, and unique aspects and limitations of in-air depth profiling of deuterium using the d( 3 He, p) reaction are discussed. Example analyses where XNRA has been used for the multidimensional measurement of deuterium in fusion reactor components are presented in order to illustrate the advantages of XNRA for deuterium. These advantages include nondestructive analysis of large targets, efficient depth profiling via variable air gap energy tuning, and rapid analysis of numerous samples in the absence of vacuum cycling. (orig.)

  4. Status of the IPP RF Negative Ion Source Development for the ITER NBI System

    International Nuclear Information System (INIS)

    Peter Franzen, P.; Falter, H.-D.; Fantz, U.

    2006-01-01

    For heating and current drive the ITER neutral beam system requires negative hydrogen ion sources capable of delivering above 40 A of D - ions from a 1.5 x 0.6 m 2 source for up to one hour pulses with an accelerated current density of 200 A/m 2 . In order to reduce the losses by electron stripping in the acceleration system and the power loading of the grids, the source pressure is required to be 0.3 Pa at an electron/ion ratio 2 H - / 230 A/m 2 D - ) in excess of the ITER requirements have been already achieved on the small test facility '' BATMAN '' (Bavarian Test Machine for Negative Ions) at the required source pressure (0.3 Pa) and electron/ion ratio ( 2 ) and limited pulse length ( 2 and the pulse length up to 3600 s, using the same source as it is used at BATMAN. In order to demonstrate the required homogeneity of a large RF plasma source as well as the operation of an ITER relevant RF circuit, a so called '' half-size source '' - with roughly the width and half the height of the ITER source - was designed and went into operation on a dedicated plasma source test bed ('' RADI ''). An extensive diagnostic and modelling programme is accompanying those activities. The paper will present as an overview a summary of the latest results of the RF source development, with an emphasis on the first results of the operation of the half size ITER source and on the status of the long pulse operation. The details will be presented in several other papers. (author)

  5. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions

  6. Dependence of Au- production upon the target work function in a plasma-sputter-type negative ion source

    International Nuclear Information System (INIS)

    Okabe, Yushirou; Sasao, Mamiko; Fujita, Junji; Yamaoka, Hitoshi; Wada, Motoi.

    1991-01-01

    A method to measure the work function of the target surface in a plasma-sputter-type negative ion source has been developed. The method can determine the work function by measuring the photoelectric current induced by two lasers (He-Ne, Ar + laser). The dependence of Au - production upon the work function of the target surface in the ion source was studied using this method. The time variation of the target work function and Au - production rate were measured during the cesium coverage decrease due to the plasma ion sputtering. The observed minimum work function of a cesiated gold surface in an Ar plasma was 1.3 eV. At the same time, the negative ion production rate (Au - current/target current) took the maximum value. The negative ion production rate indicated the same dependence on the incident ion energy as that of the sputtering rate when the work function was constant. (author)

  7. Modified Korteweg-deVries soliton evolution at critical density of negative ions in an inhomogeneous magnetized cold plasma

    International Nuclear Information System (INIS)

    Singh, Dhananjay K.; Malik, Hitendra K.

    2007-01-01

    Soliton propagation at critical density of negative ions is studied for weakly inhomogeneous magnetized cold plasma having positive ions, negative ions, and electrons. A general phase velocity relation is obtained and possible modes are studied for different cases involving different constituents of the plasma. Two types of modes (fast and slow) are found to propagate for the equal mass of the positive and negative ions. However, a limit on the obliqueness of magnetic field is obtained for the propagation of slow mode. For both types of modes, a variable coefficient modified Korteweg-deVries equation with an additional term arisen due to the density gradient is realized, which admits solutions for compressive solitons and rarefactive solitons of the same amplitudes at critical negative ion density. The propagation characteristics of these solitons are studied under the effect of densities of ions, magnetic field, and its obliqueness. The amplitudes of fast and slow wave solitons show their opposite behavior with the negative ion concentration, which is consistent with the variation of phase velocities with the negative ion density

  8. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    Science.gov (United States)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  9. Distribution of deuterium and hydrogen in Zr and Ti foil assemblies under the action of a pulsed deuterium high-temperature plasma

    Science.gov (United States)

    Bondarenko, G. G.; Volobuev, I. V.; Eriskin, A. A.; Kobzev, A. P.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Borovitskaya, I. V.

    2017-09-01

    Deuteron and proton elastic recoil detection analysis is used to study the accumulation and redistribution of deuterium and hydrogen in assemblies of two high-pure zirconium or titanium foils upon pulsed action of high-temperature deuterium plasma (PHTDP) in a plasma-focus installation PF-4. It is noted that, under the action of PHTDP, an implanted deuterium and hydrogen gas impurity are redistributed in the irradiated foils in large depths, which are significantly larger than the deuterium ion free paths (at their maximum velocity to 108 cm/s). The observed phenomenon is attributed to the carrying out of implanted deuterium and hydrogen under the action of powerful shock waves formed in the metallic foils under the action of PHTDP and/or the acceleration of diffusion of deuterium and hydrogen atoms under the action of a compression-rarefaction shock wave at the shock wave front with the redistribution of deuterium and hydrogen to large depths.

  10. Mass spectrometric study of the negative and positive secondary ions emitted from ethanol microdroplets by MeV-energy heavy ion impact

    Science.gov (United States)

    Kitajima, Kensei; Majima, Takuya; Nishio, Tatsuya; Oonishi, Yoshiki; Mizutani, Shiori; Kohno, Jun-ya; Saito, Manabu; Tsuchida, Hidetsugu

    2018-06-01

    We have investigated the negative and positive secondary ions emitted from ethanol droplets by 4.0-MeV C3+ impact to reveal the characteristic features of the reaction processes induced by fast heavy ions at the liquid ethanol surface. Analysis of the secondary ions was performed by time-of-flight mass spectrometry for microdroplet targets in a high vacuum environment. Fragment ions, deprotonated cluster ions, and trace amounts of the reaction product ions are observed in the negative secondary ions. The main fragment anions are C2HmO- (m = 1, 3, and 5) and C2H- generated by loss of hydrogen and oxygen atoms. The reaction product anions include deprotonated glycols, larger alcohols, and their dehydrated and dehydrogenated forms generated by secondary reactions between fragments and radicals. Furthermore, C3Hm- (m = 0-2) and C4Hm- (m = 0 and 1) are observed, which could be produced through a plasma state generated in the heavy ion track. Deprotonated ethanol cluster ions, [(EtOH)n - H]-, are observed up to about n = 25. [(EtOH)n - H]- have smaller kinetic energies than the protonated cluster ions (EtOH)nH+. This probably represents the effect of the positive Coulomb potential transiently formed in the ion track. We also discuss the size distributions and structures of the water- and CH2OH-radical-attached ethanol cluster ions.

  11. Confirmatory analysis method for zeranol, its metabolites and related mycotoxins in urine by liquid chromatography-negative ion electrospray tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bennekom, E.O. van; Brouwer, L.; Laurant, E.H.M.; Hooijerink, H.; Nielen, M.W.F

    2002-11-25

    The determination of the banned anabolic substance zeranol and the metabolites taleranol and zearalanone in bovine urine is complicated by the occurrence of the structurally-related mycotoxin zearalenone and the corresponding {alpha}- and {beta}-zearalenol metabolites which possess similar estrogenic properties. A liquid chromatography-negative ion electrospray tandem mass spectrometric method is presented for the confirmatory analysis of all six resorcylic acid lactones ('zeranols') in urine samples using deuterium-labelled internal standards. The method was validated as a confirmatory method for bovine urine samples according to new draft EU guidelines and showed good precision and linearity, and CC{alpha} and CC{beta} values of 0.02-0.30 and <1.0 ng ml{sup -1}, respectively. The applicability was demonstrated by comparing the results of an incurred sample with previous results on the same sample obtained by gas chromatography high resolution mass spectrometry. Preliminary data show that following a simple matrix solid phase dispersion clean-up, liver samples from poultry will be amenable to this method as well.

  12. Confirmatory analysis method for zeranol, its metabolites and related mycotoxins in urine by liquid chromatography-negative ion electrospray tandem mass spectrometry

    International Nuclear Information System (INIS)

    Bennekom, E.O. van; Brouwer, L.; Laurant, E.H.M.; Hooijerink, H.; Nielen, M.W.F.

    2002-01-01

    The determination of the banned anabolic substance zeranol and the metabolites taleranol and zearalanone in bovine urine is complicated by the occurrence of the structurally-related mycotoxin zearalenone and the corresponding α- and β-zearalenol metabolites which possess similar estrogenic properties. A liquid chromatography-negative ion electrospray tandem mass spectrometric method is presented for the confirmatory analysis of all six resorcylic acid lactones ('zeranols') in urine samples using deuterium-labelled internal standards. The method was validated as a confirmatory method for bovine urine samples according to new draft EU guidelines and showed good precision and linearity, and CCα and CCβ values of 0.02-0.30 and -1 , respectively. The applicability was demonstrated by comparing the results of an incurred sample with previous results on the same sample obtained by gas chromatography high resolution mass spectrometry. Preliminary data show that following a simple matrix solid phase dispersion clean-up, liver samples from poultry will be amenable to this method as well

  13. A collisional radiative model of hydrogen plasmas developed for diagnostic purposes of negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Iordanova, Snejana, E-mail: snejana@phys.uni-sofia.bg; Paunska, Tsvetelina [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)

    2016-02-15

    A collisional radiative model of low-pressure hydrogen plasmas is elaborated and applied in optical emission spectroscopy diagnostics of a single element of a matrix source of negative hydrogen ions. The model accounts for the main processes determining both the population densities of the first ten states of the hydrogen atom and the densities of the positive hydrogen ions H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}. In the calculations, the electron density and electron temperature are varied whereas the atomic and molecular temperatures are included as experimentally obtained external parameters. The ratio of the H{sub α} to H{sub β} line intensities is calculated from the numerical results for the excited state population densities, obtained as a solution of the set of the steady-state rate balance equations. The comparison of measured and theoretically obtained ratios of line intensities yields the values of the electron density and temperature as well as of the degree of dissociation, i.e., of the parameters which have a crucial role for the volume production of the negative ions.

  14. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    Science.gov (United States)

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  15. Formation of Negative Metal Ions in a Field-Free Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, E

    1969-02-15

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of {sup 3}He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10{sup -13} cm{sup 3}/s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He{sup +}{sub 2} may therefore be dissociative. A difference in recombination behaviour between {sup 3}He and {sup 4}He at high pressures may therefore exist considering results from previous work on {sup 4}He.

  16. Formation of Negative Metal Ions in a Field-Free Plasma

    International Nuclear Information System (INIS)

    Larsson, E.

    1969-02-01

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of 3 He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10 -13 cm 3 /s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He + 2 may therefore be dissociative. A difference in recombination behaviour between 3 He and 4 He at high pressures may therefore exist considering results from previous work on 4 He

  17. A High-Intensity, RF Plasma-Sputter Negative Ion Source

    International Nuclear Information System (INIS)

    Alton, G.D.; Bao, Y.; Cui, B.; Lohwasser, R.; Reed, C.A.; Zhang, T.

    1999-01-01

    A high-intensity, plasma-sputter negative-ion source based on the use of RF power for plasma generation has been developed that can be operated in either pulsed or dc modes. The source utilizes a high-Q, self-igniting, inductively coupled antenna system, operating at 80 MHz that has been optimized to generate Cs-seeded plasmas at low pressures (typically, - (610 microA); F - (100 microA); Si - (500 microA); S - (500 microA); P - (125 microA); Cl - (200 microA); Ni - (150 microA); Cu - (230 microA); Ge - (125 microA); As - (100 microA); Se - (200 microA); Ag - (70 microA); Pt - (125 microA); Au - (250 microA). The normalized emittance var e psilon n of the source at the 80% contour is: var e psilon n = 7.5 mm.mrad.(MeV) 1/2 . The design principles of the source, operational parameters, ion optics, emittance and intensities for a number of negative-ion species will be presented in this report

  18. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  19. A high-intensity plasma-sputter heavy negative ion source

    International Nuclear Information System (INIS)

    Alton, G.D.; Mori, Y.; Takagi, A.; Ueno, A.; Fukumoto, S.

    1989-01-01

    A multicusp magnetic field plasma surface ion source, normally used for H/sup /minus//ion beam formation, has been modified for the generation of high-intensity, pulsed, heavy negative ion beams suitable for a variety of uses. To date, the source has been utilized to produce mA intensity pulsed beams of more than 24 species. A brief description of the source, and basic pulsed-mode operational data, (e.g., intensity versus cesium oven temperature, sputter probe voltage, and discharge pressure), are given. In addition, illustrative examples of intensity versus time and the mass distributions of ion beams extracted from a number of samples along with emittance data, are also presented. Preliminary results obtained during dc operation of the source under low discharge power conditions suggest that sources of this type may also be used to produce high-intensity (mA) dc beams. The results of these investigations are given, as well, and the technical issues that must be addressed for this mode of operation are discussed. 15 refs., 10 figs., 2 tabs

  20. Aharonov-Bohm Effect in the Photodetachment Microscopy of Hydrogen Negative Ions in an Electric Field

    Science.gov (United States)

    Wang, Dehua

    2014-09-01

    The Aharonov-Bohm (AB) effect in the photodetachment microscopy of the H- ions in an electric field has been studied on the basis of the semiclassical theory. After the H- ion is irradiated by a laser light, they provide a coherent electron source. When the detached electron is accelerated by a uniform electric field, two trajectories of a detached electron which run from the source to the same point on the detector, will interfere with each other and lead to an interference pattern in the photodetachment microscopy. After the solenoid is electrified beside the H- ion, even though no Lorentz force acts on the electron outside the solenoid, the photodetachment microscopy interference pattern on the detector is changed with the variation in the magnetic flux enclosed by the solenoid. This is caused by the AB effect. Under certain conditions, the interference pattern reaches the macroscopic dimensions and could be observed in a direct AB effect experiment. Our study can provide some predictions for the future experimental study of the AB effect in the photodetachment microscopy of negative ions.