WorldWideScience

Sample records for near-term fusion power

  1. Electric power from near-term fusion reactors

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Deis, G.A.; Miller, L.G.

    1981-01-01

    This paper examines requirements and possbilities of electric power production on near-term fusion reactors using low temperature cycle technology similar to that used in some geothermal power systems. Requirements include the need for a working fluid with suitable thermodynamics properties and which is free of oxygen and hydrogen to facilitate tritium management. Thermal storage will also be required due to the short system thermal time constants on near-time reactors. It is possbile to use the FED shield in a binary power cycle, and results are presented of thermodynamic analyses of this system

  2. Development of a high-heat flux cooling element with potential application in a near-term fusion power plant divertor

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Jack Robert, E-mail: jack.nicholas@eng.ox.ac.uk [Osney Thermo-Fluids Laboratory, University of Oxford, Oxford (United Kingdom); Ireland, Peter [Osney Thermo-Fluids Laboratory, University of Oxford, Oxford (United Kingdom); Hancock, David [CCFE, Culham, Oxfordshire (United Kingdom); Robertson, Dan [Rolls-Royce Plc., Derby, Derbyshire (United Kingdom)

    2015-10-15

    Highlights: • Laminate jet impingement system introduced for high pressure operation (17 MPa+). • Numerical thermo-fluid analysis on baseline geometry. • Cascade impingement shown to reduce divertor mass flow rate requirements and increase fluid temperature change. • Numerical thermo-fluid analysis validated using scaled experiments with air. - Abstract: A low temperature jet impingement based heat sink module has been developed for potential application in a near-term fusion power plant divertor. The design is composed of a number of hexagonal CuCrZr sheets bonded together in a stack to form a laminate structure. This method allows the production of complex flow paths using relatively simple manufacturing techniques. The thermo-fluid performance of a baseline design employing cascade jet impingement has been assessed and compared to a non-cascade case. Experimental validation of the numerical work was carried out on a scaled model using air as the working fluid. Local heat transfer coefficients were obtained on the surface using surface temperature data from thermochromic liquid crystals.

  3. First wall lifetime of the near term fusion reactors

    International Nuclear Information System (INIS)

    Matera, R.; Botti, S.; Cerrai, G.

    1985-01-01

    A sensitivity analysis of the influence of the operating conditions and of the design parameters over the first wall lifetime was performed by means of the computer program smile. In the range of operating conditions typical of an experimental fusion reactor like NET/INTOR and for a type AISI 316 stainless steel structural material, fatigue damage and fatigue crack growth are the limiting failure mechanisms of the first wall. The analysis shows in graphical form the limits of the allowable range of operating conditions or of design parameters

  4. Survey of tritium wastes and effluents in near-term fusion-research facilities

    International Nuclear Information System (INIS)

    Bickford, W.E.; Dingee, D.A.; Willingham, C.E.

    1981-08-01

    The use of tritium control technology in near-term research facilities has been studied for both the magnetic and inertial confinement fusion programs. This study focused on routine generation of tritium wastes and effluents, with little referene to accidents or facility decommissioning. This report serves as an independent review of the effectiveness of planned control technology and radiological hazards associated with operation. The facilities examined for the magnetic fusion program included Fusion Materials Irradiation Testing Facility (FMIT), Tritium Systems Test Assembly (TSTA), and Tokamak Fusion Test Reactor (TFTR) in the magnetic fusion program, while NOVA and Antares facilities were examined for the inertial confinement program

  5. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  6. Fusion power plant economics

    International Nuclear Information System (INIS)

    Miller, R.L.

    1996-01-01

    The rationale, methodology, and updated comparative results of cost projections for magnetic-fusion-energy central-station electric power plants are considered. Changing market and regulatory conditions, particularly in the U.S., prompt fundamental reconsideration of what constitutes a competitive future energy-source technology and has implications for the direction and emphasis of appropriate near-term research and development programs, for fusion and other advanced generation systems. 36 refs., 2 figs., 2 tabs

  7. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  8. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  9. Orion Powered Flight Guidance Burn Options for Near Term Exploration

    Science.gov (United States)

    Fill, Tom; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  10. Scaling of the Inertial Electrostatic Confinement (IEC) for near-term thrusters and future fusion propulsion

    International Nuclear Information System (INIS)

    Miley, G.; Bromley, B.; Jurczyk, B.; Stubbers, R.; DeMora, J.; Chacon, L.; Gu, Y.

    1998-01-01

    Inertial Electrostatic Confinement (IEC) is a unique approach to fusion and plasma energy systems that was conceptualized in the 1960s (Hirsch 1967) and has been the focus of recent development in the 1990s (Miley et al. 1995a). In the interests of space power and propulsion systems, conceptual rocket design studies (Bussard and Jameson 1994, Miley et al. 1995b) using the IEC have predicted excellent performance for a variety of space missions, since the power unit avoids the use of magnets and heavy drives resulting in a very high, specific impulse compared to other fusion systems. In their recent survey of prior conceptual design studies of fusion rockets, Williams and Borowski (1997) found that the Bussard IEC conceptual study (the open-quotes QEDclose quotes engine) offered a thrust-to-weight ratio of 10 milli-g close-quote s, a factor of five higher than conventional magnetic confinement concepts and even slightly above anti-proton micro fission/fusion designs. Thus there is considerable motivation to study IEC concepts for eventual space applications. However, the physics feasibility of the IEC still requires experimental demonstration, and an expanded data base is needed to insure that a power unit can in fact be built. copyright 1998 American Institute of Physics

  11. Scaling of the Inertial Electrostatic Confinement (IEC) for near-term thrusters and future fusion propulsion

    International Nuclear Information System (INIS)

    Miley, G.; Bromley, B.; Jurczyk, B.; Stubbers, R.; DeMora, J.; Chacon, L.; Gu, Y.

    1998-01-01

    Inertial Electrostatic Confinement (IEC) is a unique approach to fusion and plasma energy systems that was conceptualized in the 1960s (Hirsch 1967) and has been the focus of recent development in the 1990s (Miley et al. 1995a). In the interests of space power and propulsion systems, conceptual rocket design studies (Bussard and Jameson 1994, Miley et al. 1995b) using the IEC have predicted excellent performance for a variety of space missions, since the power unit avoids the use of magnets and heavy drives resulting in a very high, specific impulse compared to other fusion systems. In their recent survey of prior conceptual design studies of fusion rockets, Williams and Borowski (1997) found that the Bussard IEC conceptual study (the ''QED'' engine) offered a thrust-to-weight ratio of 10 milli-g's, a factor of five higher than conventional magnetic confinement concepts and even slightly above anti-proton micro fission/fusion designs. Thus there is considerable motivation to study IEC concepts for eventual space applications. However, the physics feasibility of the IEC still requires experimental demonstration, and an expanded data base is needed to insure that a power unit can in fact be built

  12. Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul P.H. [Univ. of Wisconsin, Madison, WI (United States); Sawan, Mohamed E. [Univ. of Wisconsin, Madison, WI (United States); Davis, Andrew [Univ. of Wisconsin, Madison, WI (United States); Bohm, Tim D. [Univ. of Wisconsin, Madison, WI (United States)

    2017-09-05

    Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclear science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.

  13. TASKA-M - a low cost, near term tandem mirror device for fusion technology testing

    International Nuclear Information System (INIS)

    Badger, B.; Corradini, M.L.; El-Guebaly, L.; Emmert, G.A.; Kulcinski, G.L.; Larsen, E.M.; Maynard, C.W.; Perkins, L.J.; Peterson, R.R.; Plute, K.E.; Santarius, J.F.; Sawan, M.E.; Scharer, J.E.; Sviatoslavsky, I.N.; Sze, D.K.; Vogelsang, W.F.; Wittenberg, L.J.; Leppelmeier, G.W.; Grover, J.M.; Opperman, E.K.; Vogel, M.A.; Borie, E.; Taczanowski, S.; Arendt, F.; Dittrich, H.G.; Fett, T.; Haferkamp, B.; Heinz, W.; Hoelzchen, E.; Kleefeldt, K.; Klingelhoefer, R.; Komarek, P.; Kuntze, M.; Leiste, H.G.; Link, W.; Malang, S.; Manes, B.M.; Maurer, W.; Michael, I.; Mueller, R.A.; Neffe, G.; Schramm, K.; Suppan, A.; Weinberg, D.

    1984-04-01

    TASKA-M (Modifizierte Tandem Spiegelmaschine Karlsruhe) is a study of a dedicated fusion technology device based on the mirror principle, in continuation of the 1981/82 TASKA study. The main objective is to minimize cost while retaining key requirements of neutron flux and fluence for blanket and material development and for component testing in a nuclear environment. Direct costs are reduced to about 400 M$ by dropping reactor-relevant aspects not essential to technology testing: No thermal barrier and electrostatic plugging of the plasma; fusion power of 7 MW at an injected power of 44 MW; tritium supply from external sources. All technologies for operating the machine are expected to be available by 1990; the plasma physics relies on microstabilization in a sloshing ion population. (orig.) [de

  14. Near-Term Nuclear Power Revival? A U.S. and International Perspective

    International Nuclear Information System (INIS)

    Braun, C.

    2004-01-01

    In this paper I review the causes for the renewed interest in the near-term revival of nuclear power in the U.S. and internationally. I comment on the progress already made in the U.S. in restarting a second era of commercial nuclear power plant construction, and on what is required going forwards, from a utilities perspective, to commit to and implement new plant orders. I review the specific nuclear projects discussed and committed to in the U.S. and abroad in terms of utilities, sites, vendor and suppliers teams, and project arrangements. I will then offer some tentative conclusions regarding the prospects for a near-term U.S. and global nuclear power revival

  15. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    International Nuclear Information System (INIS)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio

  16. Possibilities for breakeven and ignition of D-3He fusion fuel in a near term tokamak

    International Nuclear Information System (INIS)

    Emmert, G.A.; El-Guebaly, L.; Kulcinski, G.L.; Santarius, J.F.; Scharer, J.E.; Sviatoslavsky, I.N.; Walstrom, P.L.; Klinghoefer, R.; Wittenberg, J.L.

    1988-09-01

    The recent realization that the moon contains a large amount of the isotope 3 He has rekindled interest in the D- 3 He fuel cycle. In this study we consider the feasibility of investigating D- 3 He reactor plasma conditions in a tokamak of the NET/INTOR class. We have found that, depending on the energy confinement scaling law, energy breakeven may be achieved without significant modification to the NET design. The best results are for the more optimistic ASDEX H-mode scaling law. Kaye-Goldston scaling with a modest improvement due to the H-mode is more pessimistic and makes achieving breakeven more difficult. Significant improvement in Q (ratio of the fusion power to the injected power), or the ignition margin, can be achieved by taking advantage of the much reduced neutron production of the D- 3 He fuel cycle. Removal of the tritium producing blanket and replacing the inboard neutron shield by a thinner shield optimized for the neutron spectrum in D- 3 He allows the plasma to be increased without changing the magnetic field at the toroidal field magnet. This allows the plasma to achieve higher beta and Q values up to about 3. The implications of D- 3 He operation for fast ion loss, neutron shielding, heat loads on the first wall and divertor, plasma refuelling, changes to the poloidal field coil system, and pumping of the helium from the vacuum chamber are considered in the report. (orig.)

  17. Near-term and next-generation nuclear power plant concepts

    International Nuclear Information System (INIS)

    Shiga, Shigenori; Handa, Norihiko; Heki, Hideaki

    2002-01-01

    Near-term and next-generation nuclear reactors will be required to have high economic competitiveness in the deregulated electricity market, flexibility with respect to electricity demand and investment, and good public acceptability. For near-term reactors in the 2010s, Toshiba is developing an improved advanced boiling water reactor (ABWR) based on the present ABWR with newly rationalized systems and components; a construction period of 36 months, one year shorter than the current period; and a power lineup ranging from 800 MWe to 1,600 MWe. For future reactors in the 2020s and beyond, Toshiba is developing the ABWR-II for large-scale, centralized power sources; a supercritical water-cooled power reactor with high thermal efficiency for medium-scale power sources; a modular reactor with siting flexibility for small-scale power sources; and a small, fast neutron reactor with inherent safety for independent power sources. From the viewpoint of efficient uranium resource utilization, a low-moderation BWR core with a high conversion factor is also being developed. (author)

  18. Near term, low cost, 14 MeV fusion neutron irradiation facility for testing the viability of fusion structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kulcinski, Gerald L., E-mail: glkulcin@wisc.edu [University of Wisconsin-Madison, Madison, WI (United States); Radel, Ross F. [Phoenix Nuclear Labs LLC, Monona, WI (United States); Davis, Andrew [University of Wisconsin-Madison, Madison, WI (United States)

    2016-11-01

    For over 50 years, engineers have been looking for an irradiation facility that can provide a fusion reactor appropriate neutron spectrum over a significant volume to test fusion reactor materials that is relatively inexpensive and can be built in a minimum of time. The 14 MeV neutron irradiation facility described here can nearly exactly duplicate the neutron spectrum typical of a DT fusion reactor first wall at damage rates of ≈4 displacements per atom and 40 appm He generated over a 2 l volume per full power year of operation. The projected cost of this multi-beam facility is estimated at ≈$20 million and it can be built in <4 years. A single-beam prototype, funded by the U.S. Department of Energy, is already being built to produce medical isotopes. The neutrons are produced by a 300 keV deuterium beam accelerated into 4 kPa (30 Torr) tritium target. The total tritium inventory is <2 g and <0.1 g of T{sub 2} is consumed per year. The core technology proposed has already been fully demonstrated, and no new plasma physics or materials innovations will be required for the test facility to become operational.

  19. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  20. Recent results and near-term expectations in Tokamak fusion research in the U.S., Europe, and Japan

    International Nuclear Information System (INIS)

    Meade, D.

    1993-01-01

    The development of fusion is often thought about in terms of three different activities: scientific feasibility, engineering feasibility, and economic feasibility. This paper discusses the scientific feasibility of fusion. Reactor temperatures, reactor densities and confinement, particle control, plasma power handling, and self-heating are some of the issues examined. Collaboration and results from research at the Tokamak Fusion Test Reactor (TFTR) at Princeton, the JT-60U in Japan, and JET, the Joint European Torus Tokamak in Oxford are presented

  1. Analyses of the activation of near term fusion reactor compound materials

    International Nuclear Information System (INIS)

    Lengar, I.

    2007-01-01

    One of the important questions that still have to be solved for the next generation fusion reactors is the choice of the material to be used for the first wall. An important criteria is low activation due to neutron bombardment from the plasma. One of the promising materials is the SiC/SiC composite. Its main elemental constituents, namely the C and Si, have very good activation characteristics. The main contribution to activity arises, however, from trace elements, which are needed in the sintering process and remain in the material afterwards. Before the preparation process of the material, the activation characteristics of individual constituents are needed. The activation properties of the whole sample could than be estimated by summing the weighted properties of individual constituents. The activity of a particular trace element is, however, not necessarily dependent only on the percentage of the element in the sample, but also on the presence of other elements in the compound due to the charge particle production and/or (n, 2n) reactions. The extension of this effect is investigated and to what extent individual calculations, performed for a single element, mimic the real situation. Further the activation characteristic for several possible sintering aid elements is theoretically investigated with the use of the FISPACT inventory code. (author)

  2. California Power-to-Gas and Power-to-Hydrogen Near-Term Business Case Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Flexible operation of electrolysis systems represents an opportunity to reduce the cost of hydrogen for a variety of end-uses while also supporting grid operations and thereby enabling greater renewable penetration. California is an ideal location to realize that value on account of growing renewable capacity and markets for hydrogen as a fuel cell electric vehicle (FCEV) fuel, refineries, and other end-uses. Shifting the production of hydrogen to avoid high cost electricity and participation in utility and system operator markets along with installing renewable generation to avoid utility charges and increase revenue from the Low Carbon Fuel Standard (LCFS) program can result in around $2.5/kg (21%) reduction in the production and delivery cost of hydrogen from electrolysis. This reduction can be achieved without impacting the consumers of hydrogen. Additionally, future strategies for reducing hydrogen cost were explored and include lower cost of capital, participation in the Renewable Fuel Standard program, capital cost reduction, and increased LCFS value. Each must be achieved independently and could each contribute to further reductions. Using the assumptions in this study found a 29% reduction in cost if all future strategies are realized. Flexible hydrogen production can simultaneously improve the performance and decarbonize multiple energy sectors. The lessons learned from this study should be used to understand near-term cost drivers and to support longer-term research activities to further improve cost effectiveness of grid integrated electrolysis systems.

  3. The ORNL fusion power demonstration study

    International Nuclear Information System (INIS)

    Shannon, T.E.; Steiner, D.

    1978-01-01

    In this paper, we review the design approach developed in the ORNL Fusion Power Demonstration Study [1]. The major emphasis of this study is in the application of current and near-term technology as the most logical path to near-term demonstration of tokamak fusion power. In addition we are pursuing a number of concepts to simplify the tokamak reactor to be more acceptable to the utility industry as a future source of energy. The discussion will focus on the areas having the greatest overall impact on reactor feasibility: 1) overall size and power output, 2) remote maintenance considerations, 3) electrical power supplies, 4) blanket design; and 5) economics. The tokamak device, by nature of its configuration and pulsed operation, is an exceptionally complex engineering design problem. We have concluded that innovative design concepts are essential to cope with this basic complexity. We feel that the feasibility of tokamak fusion power has been significantly improved by these design approaches. (author)

  4. Near-term markets for PEM fuel cell power modules: industrial vehicles and hydrogen recovery

    International Nuclear Information System (INIS)

    Chintawar, P.S.; Block, G.

    2004-01-01

    'Full text:' Nuvera Fuel Cells, Inc. is a global leader in the development and advancement of multifuel processing and fuel cell technology. With offices located in Italy and the USA, Nuvera is committed to advancing the commercialization of hydrogen fuel cell power modules for industrial vehicles and equipment and stationary applications by 2006, natural gas fuel cell power systems for cogeneration applications by 2007, and on-board gasoline fuel processors and fuel cell stacks for automotive applications by 2010. Nuvera Fuel Cells Europe is ISO 9001:2000 certified for 'Research, Development, Design, Production and Servicing of Fuel Cell Stacks and Fuel Cell Systems.' In the chemical industry, one of the largest operating expenses today is the cost of electricity. For example, caustic soda and chlorine are produced today using industrial membrane electrolysis which is an energy intensive process. Production of 1 metric ton of caustic soda consumes 2.5 MWh of energy. However, about 20% of the electricity consumed can be recovered by converting the hydrogen byproduct of the caustic soda production process into electricity via PEM fuel cells. The accessible market is a function of the economic value of the hydrogen whether flared, used as fuel, or as chemical. Responding to this market need, we are currently developing large hydrogen fuel cell power modules 'Forza' that use excess hydrogen to produce electricity, representing a practical economic alternative to reducing the net electricity cost. Due for commercial launch in 2006, Forza is a low-pressure, steady state, base-load power generation solution that will operate at high efficiency and 100% capacity over a 24-hour period. We believe this premise is also true for chemical and electrochemical plants and companies that convert hydrogen to electricity using renewable sources like windmills or hydropower. The second near-term market that Nuvera is developing utilizes a 5.5 kW hydrogen fueled power module 'H 2 e

  5. Meeting the near-term demand for hydrogen using nuclear energy in competitive power markets

    International Nuclear Information System (INIS)

    Miller, Alistair I.; Duffey, Romney B.

    2004-01-01

    Hydrogen is becoming the reference fuel for future transportation and, in the USA in particular, a vision for its production from advanced nuclear reactors has been formulated. Fulfillment of this vision depend on its economics in 2020 or later. Prior to 2020, hydrogen needs to gain a substantial foothold without incurring excessive costs for the establishment of the distribution network for the new fuel. Water electrolysis and steam-methane reforming (SMR) are the existing hydrogen-production technologies, used for small-scale and large-scale production, respectively. Provided electricity is produced at costs expected for nuclear reactors of near-term design, electrolysis appears to offer superior economics when the SMR-related costs of distribution and sequestration (or an equivalent emission levy) are included. This is shown to hold at least until several percentage points of road transport have been converted to hydrogen. Electrolysis has large advantages over SMRs in being almost scale-independent and allowing local production. The key requirements for affordable electrolysis are low capital cost and relatively high utilization, although the paper shows that it should be advantageous to avoid the peaks of electricity demand and cost. The electricity source must enable high utilization as well as being itself low-cost and emissions-free. By using off-peak electricity, no extra costs for enhanced electricity distribution should occur. The longer-term supply of hydrogen may ultimately evolve away from low-temperature water electrolysis but it appears to be an excellent technology for early deployment and capable of supplying hydrogen at prices not dissimilar from today's costs for gasoline and diesel provided the vehicle's power unit is a fuel cell. (author)

  6. Fusion Power Deployment

    International Nuclear Information System (INIS)

    Schmidt, J.A.; Ogden, J.M.

    2002-01-01

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment

  7. Towards fusion power

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1975-01-01

    An attempt has been made to present general but broad review of the recent developments in the field of plasma physics and its application to fusion power. The first chapter describes the fusion reactions and fusion power systems. The second chapter deals in detail with production and behaviour of plasma, screening, oscillations, instability, energy losses, temperature effects, etc. Magnetic confinements, including pinch systems, toroidal systems such as Tokamac and stellarator, minor machine, etc. are discussed in detail in chapter III. Laser produced plasma, laser implosion and problems associated with it and future prospects are explained in chapter IV. Chapter V is devoted entirely to the various aspects of hybrid systems. The last chapter throws light on problems of fusion technology, such as plasma heating, vacuum requirements, radiation damage, choice of materials, blanket problems, hazards of fusion reactions, etc. (K.B.)

  8. Orion's Powered Flight Guidance Burn Options for Near Term Exploration Missions

    Science.gov (United States)

    Fill, Thomas; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  9. Near-Term Application of Water-Powered Laser-Propulsion

    International Nuclear Information System (INIS)

    Baasandash, Choijil; Yabe, Takashi; Oku, Takehiro; Ohkubo, Tomomasa; Yamaguchi, Masashi; Ohzono, Hirokazu; Taniguchi, Kazumoto; Miyazaki, Sho; Akoh, Ryosuke; Ogata, Yoichi; Fushinobu, Kazuyoshi

    2004-01-01

    We found that water overlay on a metal layer is more effective than solid overlay. By using this target we demonstrated the successful flight of paper-airplane of 5 cm-size over a distance of 1-2m. In this paper, repetitive water supply system and levitation system are proposed for practical application, and examined by experiments. We succeeded in driving an object continuously using repetitive water supply and air slider. We also succeeded in driving 300g object by 0.5J laser using these equipments. In this paper, we try to find out a new possibility of water-powered laser propulsion

  10. Near-term improvements for nuclear power plant control room annunciator systems

    International Nuclear Information System (INIS)

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700

  11. Externalities: Their role and value in near-term solar power implementation

    International Nuclear Information System (INIS)

    Swindler, G.

    1992-01-01

    The total cost of electricity includes social and environmental costs, or externalities, that have traditionally been discluded from the cost of energy. Under current regulatory and public pressure to account for these costs as they vary between generating resources, externalities are being reviewed and are gradually being added to the construction and operation costs of all generating resources. Accounting for externalities is described as being obligatory for the electric utility industry. This paper analyzes a variety of quantifiable externalities in comparing solar and wind power to coal, nuclear, natural gas and oil. The inclusion of externalities in full-cost resource accounting is shown to make renewable resources such as solar and wind more competitive in a levelized market

  12. Meeting the near-term demand for hydrogen using nuclear energy in competitive power markets

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2004-01-01

    Hydrogen is becoming the reference fuel for future transportation and the timetable for its adoption is shortening. However, to deploy its full potential, hydrogen production either directly or indirectly needs to satisfy three criteria: no associated emissions, including CO 2 ; wide availability; and affordability. This creates a window of great opportunity within the next 15 years for nuclear energy to provide the backbone of hydrogen-based energy systems. But nuclear must establish its hydrogen generating role long before the widespread deployment of Gen IV high-temperature reactors, with their possibility of producing hydrogen directly by heat rather than electricity. For Gen IV the major factors will be efficiency and economic cost, particularly if centralized storage is needed and/or credits for avoided emissions and/or oxygen sales. In the interim, despite its apparently lower overall efficiency, water electrolysis is the only available technology today able to meet the first and second criteria. The third criterion includes costs of electrolysis and electricity. The primary requirements for affordable electrolysis are low capital cost and high utilisation. Consequently, the electricity supply must enable high utilisation as well as being itself low-cost and emissions-free. Evolved Gen III+ nuclear technologies can produce electricity on large scales and at rates competitive with today's CO 2 -emitting, fossil-fuelled technologies. As an example of electrolytic hydrogen's potential, we show competitive deployment in a typical competitive power market. Among the attractions of this approach are reactors supplying a base-loaded market - though permitting occasional, opportunistic diversion of electricity during price spikes on the power grid - and easy delivery of hydrogen to widely distributed users. Gen IV systems with multiple product streams and higher efficiency (e.g., the SCWR) can also be envisaged which can use competitive energy markets to advantage

  13. Impact of Wireless Power Transfer in Transportation: Future Transportation Enabler, or Near Term Distraction

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Jones, Perry T [ORNL

    2014-01-01

    While the total liquid fuels consumed in the U.S. for transportation of goods and people is expected to hold steady, or decline slightly over the next few decades, the world wide consumption is projected to increase of over 30% according to the Annual Energy Outlook 2014 [1]. The balance of energy consumption for transportation between petroleum fuels and electric energy, and the related greenhouse gas (GHG) emissions produced consuming either, is of particular interest to government administrations, vehicle OEMs, and energy suppliers. The market adoption of plug-in electric vehicles (PEVs) appears to be inhibited by many factors relating to the energy storage system (ESS) and charging infrastructure. Wireless power transfer (WPT) technologies have been identified as a key enabling technology to increase the acceptance of EVs. Oak Ridge National Laboratory (ORNL) has been involved in many research areas related to understanding the impacts, opportunities, challenges and costs related to various deployments of WPT technology for transportation use. Though the initial outlook for WPT deployment looks promising, many other emerging technologies have met unfavorable market launches due to unforeseen technology limitations, sometimes due to the complex system in which the new technology was placed. This paper will summarize research and development (R&D) performed at ORNL in the area of Wireless Power Transfer (WPT). ORNL s advanced transportation technology R&D activities provide a unique set of experienced researchers to assist in the creation of a transportation system level view. These activities range from fundamental technology development at the component level to subsystem controls and interactions to applicable system level analysis of impending market and industry responses and beyond.

  14. Near-term benefits of life extension planning for nuclear power plants

    International Nuclear Information System (INIS)

    Pickens, T.; Gregor, F.E.

    1988-01-01

    Life Extension of Nuclear Power Plants is now viewed as a realistic alternative to construction of new generating facilities. The subject has been under intensive study since 1984 and two comprehensive pilot plant programs have been completed under EPRI, U.S. Department of Energy and utility sponsorship. A major lesson learned from these studies is that planning for life extension must start early and that many activities must be implemented as early in life as possible to enhance the option for life extension through mitigate and preventive actions. It was also determined that achievement of a 40-year licensed life is by no means guaranteed without substantial effort during the remaining plant life. In examining these recommended actions, it becomes obvious that conscientious implementation also leads to realization of significant short-term benefits in the form of availability improvement, outage reduction, maintenance optimization and longer term planning decisions. In addition to the economic benefits, plant safety is also enhanced by reducing challenges to the safety systems and slowly switching from a corrective maintenance to a preventive maintenance program

  15. Perspectives of fusion power

    International Nuclear Information System (INIS)

    Jensen, V.O.

    1984-01-01

    New and practically inexhaustible sources of energy must be developed for the period when oil, coal and uranium will become scarce and expensive. Nuclear fusion holds great promise as one of these practically inexhaustible energy sources. Based on the deuteriumtritium reaction with tritium obtained from naturally occuring lithium, which is also widely available in Europe, the accessible energy resources in the world are 3.10 12 to 3.10 16 toe; based on the deuterium-deuterium reaction, the deuterium content of the oceans corresponds to 10 20 toe. It is presently envisaged that in order to establish fusion as a large-scale energy source, three major thresholds must be reached: - Scientific feasibility, - Technical feasibility, i.e. the proof that the basic technical problems of the fusion reactor can be solved. - Commercial feasibility, i.e. proof that fusion power reactors can be built on an industrial scale, can be operated reliably and produce usable energy at prices competitive with other energy sources. From the above it is clear that the route to commercial fusion will be long and costly and involve the solution of extremely difficult technical problems. In view of the many steps which have to be taken, it appears unlikely that commercial fusion power will be in general use within the next 50 years and by that time world-wide expenditure on research, development and demonstration may well have exceeded 100 Bio ECU. (author)

  16. Preliminary evaluation of aircraft impact on a near term nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Frano, R. Lo, E-mail: rosa.lofrano@ing.unipi.it [Department of Mechanical, Nuclear and Production Engineering, University of PISA, L.go L. Lazzarino 2, via Diotisalvi, no. 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of PISA, L.go L. Lazzarino 2, via Diotisalvi, no. 2-56126 Pisa (Italy)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The effects of military/civilian airplanes crash in a NPP were evaluated. Black-Right-Pointing-Pointer We adequately simulated the global response and safety margin of an SMR reactor. Black-Right-Pointing-Pointer The analyses allowed to represent the progressive failure/damaging processes. Black-Right-Pointing-Pointer The outer containment seemed to suffer some localized penetration and spalling. Black-Right-Pointing-Pointer The results highlighted the plant integrity is ensured despite the impact damages. - Abstract: For the assessment of the safety and durability of a nuclear power plant (NPP), the containment building behaviour shall be evaluated, under various service and extreme conditions, both natural or produced by natural accident or vicious man activities, like September 2001 jet aircraft crashes. The aim of this paper is to preliminary evaluate the effects and consequences of the energy transmitted to the outer containment walls (according to the international safety and design code guidelines, as NRC or IAEA ones) due to a military or civil aircraft impact into a nuclear plant, considered as a 'beyond design basis' event. To perform reliable analysis of such a large-scale structure and determine the structural effects of the propagation of this types of impulsive loads (response of containment structure), a realistic but still feasible numerical model with suitable materials characteristics were used by means of which relevant physical phenomena are reflected. Moreover a sensitivity analysis has also been carried out considering the effects of different containment wall thickness and reinforced/prestressed concrete features. The obtained results were analysed to check the NPP containment strength margins.

  17. Critical plasma-wall interaction issues for plasma-facing materials and components in near-term fusion devices

    International Nuclear Information System (INIS)

    Federici, G.; Coad, J.P.; Haasz, A.A.; Janeschitz, G.; Noda, N.; Philipps, V.; Roth, J.; Skinner, C.H.; Tivey, R.; Wu, C.H.

    2000-01-01

    The increase in pulse duration and cumulative run-time, together with the increase of the plasma energy content, will represent the largest changes in operation conditions in future fusion devices such as the International Thermonuclear Experimental Reactor (ITER) compared to today's experimental facilities. These will give rise to important plasma-physics effects and plasma-material interactions (PMIs) which are only partially observed and accessible in present-day experiments and will open new design, operation and safety issues. For the first time in fusion research, erosion and its consequences over many pulses (e.g., co-deposition and dust) may determine the operational schedule of a fusion device. This paper identifies the most critical issues arising from PMIs which represent key elements in the selection of materials, the design, and the optimisation of plasma-facing components (PFCs) for the first-wall and divertor. Significant advances in the knowledge base have been made recently, as part of the R and D supporting the engineering design activities (EDA) of ITER, and some of the most relevant data are reviewed here together with areas where further R and D work is urgently needed

  18. Near-term implications of a ban on new coal-fired power plants in the United States.

    Science.gov (United States)

    Newcomer, Adam; Apt, Jay

    2009-06-01

    Large numbers of proposed new coal power generators in the United States have been canceled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO2 emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changes in dispatch order, CO2 emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO2 reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies.

  19. HPS: A space fission power system suitable for near-term, low-cost lunar and planetary bases

    International Nuclear Information System (INIS)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1996-01-01

    Near-term, low-cost space fission power systems can enhance the feasibility and utility of lunar and planetary bases. One such system, the Heatpipe Power System (HPS), is described in this paper. The HPS draws on 40 yr of United States and international experience to enable a system that can be developed in <5 yr at a cost of <$100M. Total HPS mass is <600 kg at 5 kWe and <2000 kg at 50 kWe, assuming that thermoelectric power conversion is used. More advanced power conversion systems could reduce system mass significantly. System mass for planetary surface systems also may be reduced (1) if indigenous material is used for radiation shielding and (2) because of the positive effect of the gravitational field on heatpipe operation. The HPS is virtually non-radioactive at launch and is passively subcritical during all credible launch accidents. Full-system electrically heated testing is possible, and a ground nuclear power test is not needed for flight qualification. Fuel burnup limits are not reached for several decades, thus giving the system long-life potential

  20. Pulsed power for fusion

    International Nuclear Information System (INIS)

    Martin, T.H.

    1976-01-01

    A review which traces the development of high power pulsed accelerators from the original inception at the Atomic Weapons Research Establishment, Aldermaston, England, for Bremsstrahlung output, through the low impedance accelerators, to the double-sided accelerators for fusion will be given. Proto II is presently being assembled at Sandia and preliminary testing on the Marx has been completed. Examples of various techniques will be shown from Sandia accelerators. Requirements for accelerators capable of achieving fusion levels will be developed and problem areas outlined. The diode insulator flashover problem presently limits the maximum current available from the accelerators

  1. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

    Science.gov (United States)

    H, L. SWAMI; C, DANANI; A, K. SHAW

    2018-06-01

    Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well

  2. Irradiation creep at temperatures of 400 degrees C and below for application to near-term fusion devices

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Gibson, L.T.; Mansur, L.K.

    1996-01-01

    To study irradiation creep at 400 degrees C and below, a series of six austenitic stainless steels and two ferritic alloys was irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor; and, after an atomic displacement level of 7.4 dpa, the specimens were moved to the High Flux Isotope Reactor for the remainder of the 19 dpa accumulated. Irradiation temperatures of 60, 200, 330, and 400 degrees C were studied with internally pressurized tubes of type 316 stainless steel, PCA, HT 9, and a series of four laboratory heats of: Fe-13.5Cr-15Ni, Fe-13.5Cr-35Ni, Fe-1 3.5Cr-1 W-0.18Ti, and Fe-16Cr. At 330 degrees C, irradiation creep was shown to be linear in fluence and stress. There was little or no effect of cold-work on creep under these conditions at all temperatures investigated. The HT9 demonstrated a large deviation from linearity at high stress levels, and a minimum in irradiation creep with increasing stress was observed in the Fe-Cr-Ni ternary alloys

  3. Inertial fusion commercial power plants

    International Nuclear Information System (INIS)

    Logan, B.G.

    1994-01-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an example of an IFE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity

  4. Future with fusion power

    International Nuclear Information System (INIS)

    Hirschfeld, F.

    1977-01-01

    This article reviews several current approaches to the development of nuclear fusion power sources by the year 2000. First mentioned is the only project to develop a nonpolluting, radiation-free source by using only natural and nonradioactive isotopes (nuclei of deuterium, helium 3 and boron) as ''advanced'' fuels. This system will also be capable of direct conversion of the released energy into electricity. Next described is the PACER concept, in which thermonuclear burning of deuterium occurs in fusion explosion taking place underground (e.g., in a salt dome). The released energy is absorbed in high-pressure steam which is then piped to a surface heat exchanger to provide steam for a turbogenerator. After filtration, the steam is returned. The PACER system also produces fissionable fuel. The balance of the article reviews three ''magnetic fusion'' approaches. Tokamak, mirror and theta pinch systems utilize magnetic fields to confine a plasma for either pulsed or steady-state operation. The tokamak and theta pinch are toroidal in shape, while the mirror can be thought of as a magnetic field configuration of roughly tubular shape that confines the plasma by means of higher fields at the ends than at its center. The tokamak approach accounts for about 65 percent of the magnetic fusion research and development, while theta pinches and mirrors represent about 15 percent each. Refs

  5. Fusion power plant studies in Europe

    International Nuclear Information System (INIS)

    Maisonnier, D.

    2007-01-01

    The European fusion programme is reactor oriented and it is aimed at the successive demonstration of the scientific, the technological and the economic feasibility of fusion power. For a reactor-oriented fusion development programme, it is essential to have a clear idea of the ultimate goal of the programme, namely a series of models of fusion power plants, in order to define the correct strategy and to assess the pertinence of the on-going activities. The European Power Plant Conceptual Study (PPCS) has been a study of conceptual designs for commercial fusion power plants. It focused on five power plant models, named PPCS A, B, AB, C and D, which are illustrative of a wider spectrum of possibilities. They are all based on the tokamak concept and they have approximately the same net electrical power output, 1500 MWe. These span a range from relatively near-term, based on limited technology and plasma physics extrapolations, to an advanced conception. All five PPCS plant models differ substantially from the models that formed the basis of earlier European studies. They also differ from one another, which lead to differences in economic performance and in the details of safety and environmental impacts. The main emphasis of the PPCS was on system integration. Systems analyses were used to produce self-consistent plant parameter sets with approximately optimal economic characteristics for all models. In the PPCS models, the favourable, inherent, features of fusion have been exploited to provide substantial safety and environmental advantages. The broad features of the safety and environmental conclusions of previous studies have been confirmed and demonstrated with increased confidence. The PPCS study highlighted the need for specific design and R and D activities, in addition to those already underway within the European long term R and D programme, as well as the need to clarify the concept of DEMO, the device that will bridge the gap between ITER and the first

  6. Fusion Power Demonstration III

    International Nuclear Information System (INIS)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report

  7. Nuclear fusion power

    International Nuclear Information System (INIS)

    Dinghee, D.A.

    1983-01-01

    In this chapter, fusion is compared with other inexhaustible energy sources. Research is currently being conducted both within and outside the USA. The current confinement principles of thermonuclear reactions are reveiwed with the discussion of economics mainly focusing on the magnetic confinement concepts. Environmental, health and safety factors are of great concern to the public and measures are being taken to address them. The magnetic fusion program logic and the inertial fusion program logic are compared

  8. Fusion power and its prospects

    International Nuclear Information System (INIS)

    Kammash, T.

    1981-01-01

    Recent progress in research towards the development of fusion power is reviewed. In the magnetic approach, the impressive advances made in Tokamak research in the past few years have bolstered the confidence that experimental Tokamak devices currently under construction will demonstrate the break-even condition or scientific feasibility of fusion power. Exciting and innovative ideas in mirror magnetic confinement are expected to culminate in high-Q devices which will make open-ended confinement a serious contender for fusion reactors. In the inertial confinement approach, conflicting pellet temperature requirements have placed severe constraints on useful laser intensities and wavelengths for laser-driven fusion. Relativistic electron beam fusion must solve critical focusing and pellet coupling problems, and the newly proposed heavy ion beam fusion, though feasible and attractive in principle, requires very high energy particles for which the accelerator technology may not be available for some time to come

  9. The assessment of fusion power

    International Nuclear Information System (INIS)

    Bickerton, Roy

    1990-01-01

    It is argued that the recent 'Science and Technology Options Assessments' of fusion power produced for the European Parliament is incorrecta and misleading. The report takes no account of the complex organizational structure of the European fusion programme, it misrepresents history, and it presents incomprehensible graphical evidence and criteria which are narrowly-based and largely platitudinous. (author)

  10. Fusion Power measurement at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  11. Power matching for pellet fusion

    International Nuclear Information System (INIS)

    Martin, R.L.; Arnold, R.C.

    1976-01-01

    The number of beams required for optimum power transfer from a given power source to the surface of a pellet is derived. The result is valid for linear optical systems, hence, for pellet fusion by laser or high energy ion beams. The optimum number of beams turns out to be inconceivably large for any practical system. Practical pellet fusion by lasers or high energy heavy ion beams must thus compromise physical principles in favor of reduced cost and optical complexity

  12. Motivation for a near term gun launch to space demonstration and a variable induction power supply concept to minimize initial demonstration costs

    International Nuclear Information System (INIS)

    Palmer, M.R.

    1993-01-01

    The history of the Gun Launch to Space (GLTS) concept is briefly reviewed along with recent progress and motivations for a near term launch demonstration. A current multiplying reconfigurable inductor design is developed which could couple to an existing battery system to power a GLTS railgun demonstration at the 300 megajoule muzzle energy level. The design is developed using proven approaches and performance levels and appears capable of reducing the power supply cost for an initial GLTS demonstration below that of a simple battery charged inductor system. Possible uses are (1) launching of space weapons; (2) launching of communication satellites; (3) and launching of satellites for space disposal of radioactive wastes

  13. Thermonuclear fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, B

    1977-01-01

    The present state and future possibilities of controlled-nuclear-fusion research are reviewed, including basic concepts and problems, as well as various approaches based on magnetic- and nonmagnetic-confinement schemes. Considerable progress has so far been made in both plasma physics and fusion-reactor technology, and a closer relationship has been established between theory and experiments. Still, none of the present approaches will, for certain, lead to the final solution of a full-scale reactor. Intensified work along broad lines, with emphasis also on basic research and new ideas, is necessary for future success.

  14. Bouillabaisse sushi fusion power

    CERN Multimedia

    2004-01-01

    "If avant-garde cuisine is any guide, Japanese-French fusion does not work all that well. And the interminable discussions over the International Thermonuclear Experimental Reactor (ITER) suggest that what is true of cooking is true of physics" (1 page)

  15. The road to sustainable fusion power

    International Nuclear Information System (INIS)

    Meade, D.M.

    1996-01-01

    Fusion energy has the potential to provide a vital, environmentally attractive energy option for a growing world population in the next century and beyond. While the development of a new energy source is not a critical near term need for the US, there is a need to develop long-term energy options that alleviate the environmental problems associated with fossil fuels. Presently, a world-wide fusion energy R and D program is working toward the goal of establishing the scientific and technological foundations for fusion energy. This paper will concentrate on issues related to determining the scientific feasibility of fusion using magnetic confinement

  16. Progress in pulsed power fusion

    Energy Technology Data Exchange (ETDEWEB)

    Quintenz, J P; Adams, R G; Bailey, J E [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    Pulsed power offers an efficient, high energy, economical source of x-rays for inertial confinement fusion (ICF) research. Two main approaches to ICF driven with pulsed power accelerators are pursued: intense light ion beams and z-pinches. Recent progress in each approach and plans for future development is described. (author). 2 figs., 10 refs.

  17. Progress in pulsed power fusion

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Adams, R.G.; Bailey, J.E.

    1996-01-01

    Pulsed power offers an efficient, high energy, economical source of x-rays for inertial confinement fusion (ICF) research. Two main approaches to ICF driven with pulsed power accelerators are pursued: intense light ion beams and z-pinches. Recent progress in each approach and plans for future development is described. (author). 2 figs., 10 refs

  18. Perspectives on the development of fusion power by magnetic confinement, 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The Committee concludes: that recent progress of the magnetic fusion energy program provides a tangible basis for the belief that the development of fusion power will prove feasible; that the primary near-term objective of the program should now be to demonstrate actual reactor-level conditions; and that the potential long-term benefits of fusion power are sufficiently great to warrant a sustained national effort to advance the fusion power option to the stage of commercial availability at an early time

  19. Fusion power economy of scale

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1993-01-01

    In the next 50 yr, the world will need to develop hundreds of gigawatts of non-fossil-fuel energy sources for production of electricity and fuels. Nuclear fusion can probably provide much of the required energy economically, if large single-unit power plants are acceptable. Large power plants are more common than most people realize: There are already many multiple-unit power plants producing 2 to 5 GW(electric) at a single site. The cost of electricity (COE) from fusion energy is predicted to scale as COE ∼ COE 0 (P/P 0 ) -n , where P is the electrical power, the subscript zero denotes reference values, and the exponent n ∼ 0.36 to 0.7 in various designs. The validity ranges of these scalings are limited and need to be extended by future work. The fusion power economy of scale derives from four interrelated effects: improved operations and maintenance costs; scaling of equipment unit costs; a geometric effect that increases the mass power density; and reduction of the recirculating power fraction. Increased plasma size also relaxes the required confinement parameters: For the same neutron wall loading, larger tokamaks can use lower magnetic fields. Fossil-fuel power plants have a weaker economy of scale than fusion because the fuel costs constitute much of their COE. Solar and wind power plants consist of many small units, so they have little economy of scale. Fission power plants have a strong economy of scale but are unable to exploit it because the maximum unit size is limited by safety concerns. Large, steady-state fusion reactors generating 3 to 6 GW(electric) may be able to produce electricity for 4 to 5 cents/kW·h, which would be competitive with other future energy sources. 38 refs., 6 figs., 6 tabs

  20. Fusion Power Associates annual meeting

    International Nuclear Information System (INIS)

    Nickerson, S.B.

    1985-03-01

    The Fusion Power Associates symposium, 'The Search for Attractive Fusion Concepts', was held January 31 - February 1 1985 in La Jolla, California. The purpose of this meeting was to bring together industry, university and government managers of the US fusion program to discuss the state of fusion development and the direction in which the program should be heading, given the cutbacks in the US fusion budget. There was a strong, minority opinion that until the best concept could be identified, the program should be broadly based. But there was also widespread criticism, aimed mainly at the largest segment of the magnetic fusion program, the tokamak. It was felt by many that the tokamak would not develop into a reactor that would be attractive to a utility and therefore should be phased out of the program. If the tokamak will indeed not lead to a commercial product then this meeting shows the US fusion program to be in a healthy state, despite the declining budgets

  1. Utility requirements for fusion power

    International Nuclear Information System (INIS)

    DeBellis, R.J.

    1977-03-01

    A four-man month study was undertaken to identify utility requirements of fusion power and define a role for the utilities in the fusion development process during the 1980s. This report, preliminary in nature, serves mainly as a planning document for future requirements analyses. A requirements organization was defined to consist of three major chronological phases: research and development, plant installation, and plant operation. Thirty-seven requirements were identified, covering all categories. In addition, training, environment, safety, licensing, and utility model were identified as five matrix-type requirements. As the requirement definition process continued during the study period, comments received from utility representatives revealed a consistency of key issues in the fusion development process. These issues form the basis for the eventual establishment of definitive roles for the utilities during the 1980s. The issues are not meant to reflect a negative view of fusion, but are items that must be solved before fusion can be introduced commercially as an electrical power source. As a result of this requirements study, preliminary candidate roles for the utilities in the fusion development process during the 1980s were identified as public education, commercialization studies, industry investment analyses, training plan implementation, alternate reactor concept development, ERDA concept design review, and requirements refinement

  2. Utility requirements for fusion power

    International Nuclear Information System (INIS)

    DeBellis, R.J.

    1977-03-01

    A four-man-month study, jointly funded by EPRI and McDonnell Douglas Astronautics Company-EAST, was undertaken to identify the utility requirements of fusion power and define a role for the utilities in the fusion development process during the 1980's. This report, preliminary in nature, serves mainly as a planning document for future requirements analyses. A requirements organization was defined to consist of three major chronological phases: research and development, plant installation, and plant operation. Thirty-seven requirements were identified, covering all categories. In addition, training, environment, safety, licensing, and utility model were identified as five matrix-type requirements. As the requirement definition process continued during the study period, comments received from utility representatives revealed a consistency of key issues in the fusion development process. These issues form the basis for the eventual establishment of definitive roles for the utilities during the 1980's. The issues are not meant to reflect a negative view of fusion, but are items which must be solved before fusion can be introduced commercially as an electrical power source. As a result of this requirements study, preliminary candidate roles for the utilities in the fusion development process during the 1980's were identified as public education, commercialization studies, industry investment analyses, training plan implementation, alternate reactor concept development, ERDA concept design review, and requirements refinement

  3. An Indispensable Truth How Fusion Power Can Save the Planet

    CERN Document Server

    Chen, Francis F

    2011-01-01

    Both global warming and oil shortage can be solved by controlled fusion, a clean power source that will serve mankind for millennia.� The idea of hydrogen fusion as well as its difficulties are presented in non-technical language to dispel the notion that fusion is always 50 years away.� This book also summarizes the evidence for climate change and explains the principles of both fossil and "green" energy sources to show that fusion is the best alternative for central-station power in the near term as well as the far future. Praise for An Indispensable Truth: How Fusion Power Can Save the Planet: "In this study Professor Chen outlines the underlying physics, recent progress in achieving advanced plasmas and magnetic confinement, and hopes for the future. He recognizes the difficulties that remain in engineering a fusion reactor, but he remains optimistic regarding ultimate success, yet fearful of the consequences were we to fail."- James R. Schlesinger, former Chairman, Atomic Energy Commission; Director,...

  4. Fusion power plant simulations: a progress report

    International Nuclear Information System (INIS)

    Cook, J.M.; Pattern, J.S.; Amend, W.E.

    1976-01-01

    The objective of the fusion systems analysis at ANL is to develop simulations to compare alternative conceptual designs of magnetically confined fusion power plants. The power plant computer simulation progress is described. Some system studies are also discussed

  5. Fusion power from lunar resources

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Schmitt, H.H.

    1992-01-01

    This paper reports that the moon contains an enormous energy source in 3 He deposited by the solar wind. Fusion of only 100 kg of 3 He with deuterium in thermonuclear fusion power plants can produce > 1000 MW (electric) of electrical energy, and the lunar resource base is estimated at 1 x 10 9 kg of 3 He. This fuel can supply >1000 yr of terrestrial electrical energy demand. The methods for extracting this fuel and the other solar wind volatiles are described. Alternate uses of D- 3 He fusion in direct thrust rockets will enable more ambitious deep-space missions to be conducted. The capability of extracting hydrogen, water, nitrogen, and other carbon-containing molecules will open up the moon to a much greater level of human settlement than previously thought

  6. Fusion power, who needs it?

    International Nuclear Information System (INIS)

    Kaw, P.K.

    1993-01-01

    It is pointed out that the fusion community world wide has not aggressively pursued a faster pace of development, which can indeed be justified on the basis of its technical accomplishments, because of certain faulty assumptions. Taking some relevant data of energy consumption (based on fossil fuels) and its environmental impact in the projections for developing countries like India and China, it is demonstrated that there is extreme urgency (time-scale of less than 20-25 years) to develop technologies like fusion if one has to prevent stagnation of per capita energy production (and quality of life) in these countries. We conclude by calling for a new aggressive goal for the world wide fusion programme, namely development of a demonstration power plant producing electricity in an environmentally acceptable manner by the year 2015. (author). 6 refs., 5 tabs., 2 figs

  7. Prospects for commercial fusion power

    International Nuclear Information System (INIS)

    Dean, S.O.

    1993-01-01

    There are a number of issues associated with whether or not, and when, fusion will become commercial. One of the largest factors is cost of development. Development is being delayed by the need to work with other countries to share these costs. Other aspects have to do with the capital costs of the reactors themselves. The ITER reactor may cost 6-7 billion dollars, which is a sizeable investment for a test reactor. The safety and environmental aspects of fusion are other factors which have delayed commercialization. Public acceptance of this form of nuclear power and the licensing and regulatory procedures must be resolved before electric utilities are willing to invest heavily in fusion. The Department of Energy has developed a plan as part of the Energy Policy Act of 1992, wherein a first demonstration power plant will be operating around the year 2025. Much of the ongoing effort is directed toward reducing the size and cost of Tokamak reactors. While Tokamaks are not the only game in town, it is the primary thrust of the world effort and it is the technology which is expected to lead into the first generation of commercial fusion reactors

  8. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  9. Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Clarke, Leon; Edmonds, James; Calvin, Katherine; Kyle, Page

    2014-01-01

    Our paper explores the implication of climate mitigation policy and electricity generation technology performance for capital investment demands by the electric power sector on near term to century time scales. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that would be needed in the absence of climate policy, in the range of 15 to 29 trillion US$ (48–94%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions as well as increased electrification of the global economy. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 18 to 24 trillion US$ (compared to default technology climate policy assumptions), depending on climate policy scenario. We also highlight the implications of different technology evolution scenarios for different regions. Under default technology set, the heaviest investments across scenarios in power generation were observed in China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century. - Highlights: • We present electricity generation investment requirement under different scenarios. • A climate policy will lead to substantial increase in investment requirement. • Stringency of climate policy has significant implications for investments. • Technology evolution and performance alter investment requirements significantly. • China, India, Southeast Asia and Africa dominate as investment destinations

  10. Nuclear fusion power supply device

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: To use a hybrid power supply device, which comprises a thyristor power supply and a diode power supply, to decrease cost of a nuclear fusion power supply device. Structure: The device comprises a thyristor power supply connected through a closing unit and a diode power supply connected in parallel through a breaker, input of each power supply being applied with an output voltage of a flywheel AC generator. When a current transformer is excited, a disconnecting switch is turned on to close the diode power supply and a current of the current transformer is increased by an automatic voltage regulator to a set value within a predetermined period of time. Next, the current is cut off by a breaker, and when the breaker is in on position, the disconnecting switch is opened to turn on the closing unit. Thus, when a plasma electric current reaches a predetermined value, the breaker is turned on, and the current of the current transformer is controlled by the thyristor power supply. (Kamimura, M.)

  11. Fusion power plant availability study

    International Nuclear Information System (INIS)

    Ladra, D.; Sanguinetti, G.P.; Stube, E.

    2001-01-01

    The consideration of fusion as an alternative energy source will need to demonstrate that Fusion Power Plant (FPP) design, operating and maintenance characteristics meet the electrical market requirements forecast for the second half of this century. Until now, fusion has been developed in the framework of research and development programmes following natural technological trends. To bring a greater sense of realism to commercial viability and to guarantee that technology-driven fusion development responds to the demands of the market, a conceptual study of future commercial FPPs has been performed with a Power Plant Availability (PPA) study aimed at identifying the aspects affecting the availability and generating costs of FPPs. EFET, who has also been involved in the study, can visualise it from two different points of view; that of the industry (ANSALDO, IBERTEF, SIEMENS, NNC) and that of the utilities (BELGATOM, FRAMATOME, FORTUM). The work carried out covered the following points: socio-economic forecasting; safety and licensing; operation and maintenance; waste and decommissioning; availability and reliability. The following are the most relevant findings, conclusions and recommendations for all these aspects: Demonstrate definitively that the physical principles of nuclear fusion have been validated by means of experiments; Establish a European Industrial Group to support the demonstration phases; Create the financial and contracting framework required to construct these installations. Secure the necessary budgets for the European Union's 5th and 6th Research Programmes. Look for supplementary long term financing sources; The existing Regulatory Bodies should combine to form a single Working Group with responsibility for fusion reactor safety and licensing activities, working on the harmonisation of the regulatory processes, developing FPP safety criteria and guidelines and reviewing industry standards; To be competitive, FPPs should have high availability

  12. Powerful lasers for thermonuclear fusion

    International Nuclear Information System (INIS)

    Basov, N.; Krokhin, O.; Sklizkov, G.; Fedotov, S.

    1977-01-01

    The parameters are discussed of the radiation of powerful lasers (internal energy of the plasma determined by the volume, density and temperature of the plasma, duration of the heating pulse, focusing of the laser pulse energy in a small volume of matter, radiation contrast) for attaining an effective thermonuclear fusion at minimum microexplosion energy. A survey is given of the methods of shaping laser pulses with limit parameters, and the principle of the construction of powerful laser systems is described. The general diagram and parameters are given of the Delfin thermonuclear apparatus and a diagram is presented of the focusing system of high luminosity for spherical plasma heating using spherical mirrors. A diagram is presented of the vacuum chamber and of the complex diagnostic apparatus for determining the basic parameters of thermonuclear plasma in the Delfin apparatus. The prospects are indicated of the further development of thermonuclear laser apparatus with neodymium and CO 2 lasers. (B.S.)

  13. Fusion power: the transition from fundamental science to fusion reactor engineering

    International Nuclear Information System (INIS)

    Post, R.F.

    1975-01-01

    The historical development of fusion research is outlined. The basics of fusion power along with fuel cost and advantages of fusion are discussed. Some quantitative requirements for fusion power are described. (MOW)

  14. Near term feasibility of nuclear reactor for sea-water desalting: coupling of standard condensing nuclear power stations to low grade heat multieffect distillation plants

    International Nuclear Information System (INIS)

    Adar, J.; Manor, S.; Schaal, M.

    1977-01-01

    Commercial nuclear power reactors exist only in standard sizes and designs. No large nuclear back-pressure turbines are available today. Therefore, near term large scale nuclear desalination plants must be tailored to the NSSS sizes and available turbines and not the contrary. Standard condensing nuclear turbines could operate continuously with a back-presure of up to 5-7'' Hg (depending on the supplier). It means that they can exhaust huge amounts of steam at 56 0 C - 64 0 C with a loss of electricity production of 6% - 10% when compared to 2 1/2'' Hg normal condensing pressure. The horizontal aluminium tube multi-effect distillation process developed by ''Israel Desalination Engineering'' Ltd. is very suitable for the use of such low-grade heat: 4 to 9 effects can operate within these temperature ranges. A special flash-chamber constitutes a positive barrier against any possible contamination being carried over by the steam exhausted from the turbine to the desalination plant. Flow sheets, heat and mass balances have been prepared for two standard sizes of NSSS and turbines (1882sup(Mwth) and 2785sup(Mwth)), two ''back-pressures'' (5 1/2'' and 7'' Hg), and corresponding desalination plants. Only standard equipment is being used in the steam and electricity producing plant. The desalination plant consists of 6 to 12 parallel double lines, each of them similar to a large prototype now being designed and which is going to be coupled to an old fossil power station. Water production varies between 50 and 123 sup(us MGD) and water cost between 23 and 36 sup(cents)/M 3 . Total energy requirements of the desalination plant represent only 19 to 50% of the total water cost as against 75% for a single purpose plant. Costs are based on actual bids for the power plant and actual estimates for the desalination prototype. The operation is designed to be flexible so that the power plant can be operated either in conjunction with the desalination plant, or as a single purpose

  15. Bringing fusion electric power closer

    International Nuclear Information System (INIS)

    Kintner, E.

    1977-01-01

    A review of the controlled fusion research program is given. The tokamak research program is described. Beam injection heating, control systems, and the safety of fusion reactors are topics that are also discussed

  16. Indirect drive targets for fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter A.; Miles, Robin R.

    2016-10-11

    A hohlraum for an inertial confinement fusion power plant is disclosed. The hohlraum includes a generally cylindrical exterior surface, and an interior rugby ball-shaped surface. Windows over laser entrance holes at each end of the hohlraum enclose inert gas. Infrared reflectors on opposite sides of the central point reflect fusion chamber heat away from the capsule. P2 shields disposed on the infrared reflectors help assure an enhanced and more uniform x-ray bath for the fusion fuel capsule.

  17. The economic viability of fusion power

    International Nuclear Information System (INIS)

    Ward, D.J.; Cook, I.; Lechon, Y.; Saez, R.

    2005-01-01

    Although fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety, it is important to investigate the economics of a future fusion power plant to check that the electricity produced can, in fact, have a market. The direct cost of electricity of a fusion power plant and its key dependencies on the physics and technology assumptions, are calculated, as are the materials requirements. The other important aspect of costs, the external costs which can arise from effects such as pollution, accidents and waste are also given. Fusion is found to offer the prospect of a new energy source with acceptable direct costs and very low external costs. This places fusion in a strong position in a future energy market, especially one in which environmental constraints become increasingly important

  18. Synfuel (hydrogen) production from fusion power

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

    1979-01-01

    A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power

  19. Controlled thermonuclear fusion power apparatus and method

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    This invention provides a modular fusion reactor system containing several fusion power cores, each of relatively small size and low cost. Energy from the cores is absorbed in the core structure and within a surrounding blanket, and the cores themselves may be individually removed from the blanket and replaced as they deteriorate from high radiation flux damage

  20. Panel discussion on prospects for fusion power

    International Nuclear Information System (INIS)

    Sheffield, J.

    1986-01-01

    Although substantial progress is made every year in fusion research, the projected time to realize the ultimate goal of commercial fusion always seems to be 25 to 30 years away. This shifting schedule reflects the underlying difficulty of developing fusion. Every new technology improves the prospects for success, yet as each fusion mountain is scaled, it serves mainly to bring a better view of the next mountain. Two questions are considered: (1) why are so many configurations studied, and (2) what constitutes an economic power density

  1. Personnel Safety for Future Magnetic Fusion Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee Cadwallader

    2009-07-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  2. Personnel Safety for Future Magnetic Fusion Power Plants

    International Nuclear Information System (INIS)

    Cadwallader, Lee

    2009-01-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  3. Silicon carbide composites as fusion power reactor structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L., E-mail: SneadLL@ORNL.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Nozawa, T. [Fusion Research and Development Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Ferraris, M. [Politecnico di Torino-DISMIC c. Duca degli Abruzzi, 24I-10129 Torino (Italy); Katoh, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Shinavski, R. [Hypertherm HTC, 18411 Gothard St., Units A/B/C, Huntington Beach, CA 92648 (United States); Sawan, M. [University of Wisconsin, Madison 417 Engineering Research Building, 1500 Engineering Drive Madison, WI 53706-1687 (United States)

    2011-10-01

    Silicon carbide was first proposed as a low activation fusion reactor material in the mid 1970s. However, serious development of this material did not begin until the early 1990s, driven by the emergence of composite materials that provided enhanced toughness and an implied ability to use these typically brittle materials in engineering application. In the decades that followed, SiC composite system was successfully transformed from a poorly performing curiosity into a radiation stable material of sufficient maturity to be considered for near term nuclear and non-nuclear systems. In this paper the recent progress in the understanding and of basic phenomenon related to the use of SiC and SiC composite in fusion applications will be presented. This work includes both fundamental radiation effects in SiC and engineering issues such as joining and general materials properties. Additionally, this paper will briefly discuss the technological gaps remaining for the practical application of this material system in fusion power devices such as DEMO and beyond.

  4. Fusion power and the environment

    International Nuclear Information System (INIS)

    Holdren, J.P.; Fowler, T.K.; Post, R.F.

    1975-01-01

    Environmental characteristics of conceptual fusion-reactor systems based on magnetic confinement are examined quantitatively, and some comparisons with fission systems are made. Fusion, like all other energy sources, will not be completely free of environmental liabilities, but the most obvious of these--tritium leakage and activation of structural materials by neutron bombardment--are susceptible to significant reduction by ingenuity in choice of materials and design. Large fusion reactors can probably be designed so that worst-case releases of radioactivity owing to accident or sabotage would produce no prompt fatalities in the public. A world energy economy relying heavily on fusion could make heavy demands on scarce nonfuel materials, a topic deserving further attention. Fusion's potential environmental advantages are not entirely ''automatic'', converting them into practical reality will require emphasis on environmental characteristics throughout the process of reactor design and engineering. The central role of environmental impact in the long-term energy dilemma of civilization justifies the highest priority on this aspect of fusion

  5. Materials availability for fusion power plant construction

    International Nuclear Information System (INIS)

    Hartley, J.N.; Erickson, L.E.; Engel, R.L.; Foley, T.J.

    1976-09-01

    A preliminary assessment was made of the estimated total U.S. material usage with and without fusion power plants as well as the U.S. and foreign reserves and resources, and U.S. production capacity. The potential environmental impacts of fusion power plant material procurement were also reviewed including land alteration and resultant chemical releases. To provide a general measure for the impact of material procurement for fusion reactors, land requirements were estimated for mining and disposing of waste from mining

  6. The plant efficiency of fusion power stations

    International Nuclear Information System (INIS)

    Darvas, J.; Foerster, S.

    1976-01-01

    Due to the circulating energy, lower efficiencies are to be expected with fusion power plants than with nuclear fission power plants. According to the systems analysis, the mirror machine is not very promising as a power plant. The plant efficiency of the laser fusion strongly depends on the laser efficiency about which one can only make speculative statements at present. The Tokamak requires a relatively low circulating energy and is certainly able to compete regarding efficiency as long as the consumption time can be kept large (> 100 sec) and the dead time between the power pulses small ( [de

  7. Power source system for nuclear fusion

    International Nuclear Information System (INIS)

    Nakagawa, Satoshi.

    1975-01-01

    Object: When using an external system power source and an exclusive power source in a power source circuit for supplying power to the coils of a nuclear fusion apparatus, to minimize the capacity of the exclusive power source and provide an economical power source circuit construction. Structure: In the initial stage of the power supply, rectifying means provided in individual blocks are connected in parallel on the AC side, and power is supplied to the coils of the nuclear fusion apparatus from an external system power source with the exclusive power source held in the disconnected state. Further, at an instant when the limit of permissible input is reached, the afore-mentioned parallel circuit consisting of rectifying means is disconnected, while at the same time the exclusive power source is connected to the input side of the rectifying means provided in a block corresponding to the exclusive power source side, thereby supplying power to the coils of the nuclear fusion apparatus from both the external system power source and exclusive power source. (Kamimura, M.)

  8. EBFA: pulsed power for fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; VanDevender, J.P.; Barr, G.W.; Johnson, D.L.

    1979-01-01

    This paper will describe the EBFA I accelerator under construction for inertial confinement fusion studies with particle beams and will update previous publications concerning particle beam fusion accelerators. Previous information included Proto I, a triggered oil insulated 1 TW accelerator; Proto II, a water insulated 10 TW accelerator; and EBFA I, a 30 TW, 1 MJ accelerator. Some modifications to the original design have occurred. A new pulse-forming-line concept has been developed which increases the flexibility of the accelerator. The major problem of vacuum interface flashover has been solved by the use of long, magnetically-insulated, transmission lines. The first production module of EBFA I has been received, assembled, and is now undergoing extensive testing. The technology is extendable to at least a factor of ten above the projected EBFA capabilities of 30 TW and 1 MJ output. Progress on facilities associated with the Sandia Particle Beam fusion program is reported

  9. EDITORIAL: Safety aspects of fusion power plants

    Science.gov (United States)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  10. Fast power cycle for fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Fillo, J.; Makowitz, H.

    1978-01-01

    The unique, deep penetration capability of 14 MeV neutrons produced in DT fusion reactions allows the generation of very high temperature working fluid temperatures in a thermal power cycle. In the FAST (Fusion Augmented Steam Turbine) power cycle steam is directly superheated by the high temperature ceramic refractory interior of the blanket, after being generated by heat extracted from the relatively cool blanket structure. The steam is then passed to a high temperature gas turbine for power generation. Cycle studies have been carried out for a range of turbine inlet temperatures [1600 0 F to 3000 0 F (870 to 1650 0 C)], number of reheats, turbine mechanical efficiency, recuperator effectiveness, and system pressure losses. Gross cycle efficiency is projected to be in the range of 55 to 60%, (fusion energy to electric power), depending on parameters selected. Turbine inlet temperatures above 2000 0 F, while they do increase efficiency somewhat, are not necessarily for high cycle efficiency

  11. The spherical tokamak fusion power plant

    International Nuclear Information System (INIS)

    Wilson, H.R.; Voss, G.; Ahn, J.W.

    2003-01-01

    The design of a 1GW(e) steady state fusion power plant, based on the spherical tokamak concept, has been further iterated towards a fully self-consistent solution taking account of plasma physics, engineering and neutronics constraints. In particular a plausible solution to exhaust handling is proposed and the steam cycle refined to further improve efficiency. The physics design takes full account of confinement, MHD stability and steady state current drive. It is proposed that such a design may offer a fusion power plant which is easy to maintain: an attractive feature for the power plants following ITER. (author)

  12. Criteria for the assessment of fusion power

    International Nuclear Information System (INIS)

    Sweet, Colin.

    1989-01-01

    Fusion power requires an exceptionally long development time and its future depends on the changing perspectives society uses to evaluate resources in the long term. For 40 years fusion technology developed within a decision making context dominated by technical-political interests, and characterized by a bias towards overoptimism about the future. That is now changing. This article contends that we are still a long way from making rational assessments of large technological projects. However, feasibility for fusion will have to be tested by social criteria at least as important as those used for scientific feasibility. (author)

  13. Compact approach to fusion power reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1984-01-01

    The potential of the Reversed-Field Pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. These compact systems promise to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that largely substantiate these promising results have since been completed. This 1000-MWe(net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion

  14. Z-inertial fusion energy: power plant final report FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  15. Z-inertial fusion energy: power plant final report FY 2006

    International Nuclear Information System (INIS)

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M.; Kern, Brian; Tajima, Yu; Campen, Chistopher; Sketchley, Tomas; Moir, R; Bardet, Philippe M.; Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L.; Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar; Abdel-Khalik, S.; Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar; Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-01-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques

  16. Prospect of laser fusion power generation

    International Nuclear Information System (INIS)

    Nakai, Sadao

    1998-01-01

    Inertial fusion ignition, burn and energy gain are expected to be achieved within the first decade of next century with new Megajoule laser facilities which are under construction in the USA and France. Fusion reactor design studies indicate that Inertial Fusion Energy(IFE) power plants are technically feasible and have attractive safety and environmental features. The recent progress on implosion physics and relevant technologies require us to consider a strategic approach toward IFE development. The design study for a laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories and industries in Japan and also with international collaborations. The progress of high power laser technology gives us feasible project toward a laser driven IFE Power Plant. The technical breakthrough in the field of diode pumped solid state laser (DPSSL) has opened wide application of power laser to industrial technologies. Laser fusion energy development will be proceeded jointly with industrial photonics research and development. International collaborations are also promoted for efficient progress and activation of R and D on advanced technologies which are required for IFE and also useful for modern industries. (author). 7 refs., 1 tab., 7 figs

  17. Current fusion power plant design concepts

    International Nuclear Information System (INIS)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes

  18. Structural materials challenges for fusion power systems

    International Nuclear Information System (INIS)

    Kurtz, Richard J.

    2009-01-01

    Full text: Structural materials in a fusion power system must function in an extraordinarily demanding environment that includes various combinations of high temperatures, reactive chemicals, time-dependent thermal and mechanical stresses, and intense damaging radiation. The fusion neutron environment produces displacement damage equivalent to displacing every atom in the material about 150 times during its expected service life, and changes in chemical composition by transmutation reactions, which includes creation of reactive and insoluble gases. Fundamental materials challenges that must be resolved to effectively harness fusion power include (1) understanding the relationships between material strength, ductility and resistance to cracking, (2) development of materials with extraordinary phase stability, high-temperature strength and resistance to radiation damage, (3) establishment of the means to control corrosion of materials exposed to aggressive environments, (4) development of technologies for large-scale fabrication and joining, and (5) design of structural materials that provide for an economically attractive fusion power system while simultaneously achieving safety and environmental acceptability goals. The most effective approach to solve these challenges is a science-based effort that couples development of physics-based, predictive models of materials behavior with key experiments to validate the models. The U.S. Fusion Materials Sciences program is engaged in an integrated effort of theory, modeling and experiments to develop structural materials that will enable fusion to reach its safety, environmental and economic competitiveness goals. In this presentation, an overview of recent progress on reduced activation ferritic/martensitic steels, nanocomposited ferritic alloys, and silicon carbide fiber reinforced composites for fusion applications will be given

  19. Chemical engineering side of nuclear fusion power

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1976-10-01

    It is widely recognized that chemical engineering has important roles to play in the development of national and world wide energy resources through optimal utilization of fossil fuel reserves. It is much less appreciated that there are crucial chemical engineering problems in the development of energy production from other sources. In particular the successful development of nuclear fusion power generating systems will require the solution of many problems that are uniquely suited to chemical engineers. This article presents a brief overview of the fusion development program and an identification of the major technological problems remaining to be solved

  20. Fast-imploding-linear fusion power

    International Nuclear Information System (INIS)

    Moses, R.W.; Krakowski, R.A.; MIller, R.L.

    1978-01-01

    A Fast-Liner Reactor (FLR) conceptual design is summarized. The FLR is a pulsed D-T fusion concept that envisages the implosion of a small, cylindrical (0.2-m radius, 0.2-m length), metallic shell onto an initially warm plasma to achieve net energy production by means of rapid but adiabatic compression to thermonuclear temperature. The primary purpose of this study is to examine by means of detailed computer models the physical processes and constraints which may limit this unique approach to high-density fusion power. On the basis of an optimized physics operating point, a conceptual reactor embodiment is described

  1. Suggestions for an updated fusion power program

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1976-02-01

    This document contains suggestions for a revised CTR Program strategy which should allow us to achieve equivalent goals while operating within the above constraints. The revised program is designed around three major facilities. The first is an upgrading of the present TFTR facility which will provide a demonstration of the generation of tens of megawatts electric equivalent originally envisioned for the 1985 EPR. The second device is the TTAP which will allow the integration and optimization of the plasma physics results obtained from the next generation of plasma physics experiments. The improvement in tokamak reactor operation resulting from this optimization of fusion plasma performance will enable an EPR to be designed which will produce several hundred megawatts of electric power by 1990. This will move the fusion program much closer to its goal of commercial fusion power by the turn of the century. In addition to this function the TTAP will serve as a prototype of the 1990 EPR system, thus making more certain the successful operation of this device. The third element of this revised program is an intense radiation damage facility which will provide the radiation damage information necessary for the EPR and subsequent fusion reactor facilities. The sum total of experience gained from reacting plasma experiments on TFTR, reactor grade plasma optimization and technological prototyping on TTAP, and end of life radiation damage results from the intense neutron facility will solve all of the presently foreseen problems associated with a tokamak fusion power reactor except those associated with the external nuclear systems. These external system problems such as tritium breeding and optimal power recovery can be developed in parallel on the 1990 EPR

  2. Pulsed power systems for inertial confinement fusion

    International Nuclear Information System (INIS)

    VanDevender, J.P.

    1979-01-01

    Sandis's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. The power and energy requirements for net energy gain are 10 14 to 10 15 W and 1 to 10 MJ. Recent advances in pulsed power and power flow technologies permit suitable accelerators to be built. The first accelerator of this new generation is PBFA I. It operates at 2 MV, 15 MA, 30 TW for 35 ns and is scheduled for completion in June 1980. The principles of this new accelerator technology and their application to ICF will be presented

  3. Pulsed power accelerators for particle beam fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed

  4. Methodology for Scaling Fusion Power Plant Availability

    International Nuclear Information System (INIS)

    Waganer, Lester M.

    2011-01-01

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, 'Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the 'teething' problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated 'mature' subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  5. Towards upper power levels: thermonuclear fusion

    International Nuclear Information System (INIS)

    Vedel, Jean

    1983-01-01

    This paper is a brief introduction to the use of power lasers to achieve controlled thermonuclear fusion. After shortly describing thermonuclear fusion and the conditions of temperature, density and duration required it is showed how the laser enables such conditions to be created. The neodymium-doped glass laser NOVA that is being installed at the Livermore laboratory in the USA is described; at the time of its completion in 1984, this laser will be the most powerful in the world. In comparison, the OCTAL laser in operation at the Limeil establishment ''Centre d'Etudes'' of ''Commissariat Francais a l'Energie Atomique'' (the French atomic energy authority) is more modest; it is presented here [fr

  6. Near-term feasibility of nuclear reactors for seawater desalting. Coupling of standard condensing nuclear power stations to low-grade heat multieffect distillation plants

    International Nuclear Information System (INIS)

    Adar, J.; Manor, S.; Schaal, M.

    1977-01-01

    The paper describes the horizontal aluminium tube, multieffect distillation process developed by Israel Desalination Engineering Ltd., which is very suitable for the use of low-grade heat from standard condensing nuclear turbines operating at increased back-pressure. A special flash-chamber constitutes a positive barrier against any possible contamination being carried over by the steam exhausted from the turbine to the desalination plant. Flow sheets, heat and mass balances have been prepared for two standard sizes of NSSS and turbines, two back-pressures, and corresponding desalination plants. Only standard equipment is being used in the steam and electricity-producing plant. The desalination plant consists of 6 to 12 parallel double lines, each of them similar to a large prototype now being designed and which will be coupled to an old fossil-fuel power station. Total energy requirements of the desalination plant represent only 19 to 50% of the total water cost as against 75% for a single-purpose plant. Costs are based on actual bids for the power plant and actual estimates for the desalination prototype. The operation is designed to be flexible so that the power plant can be operated either in conjunction with the desalination plant, or as a single-purpose plant. (author)

  7. Simulation of fusion power in tokamak reactor

    International Nuclear Information System (INIS)

    Gaber, F.A.; Elsharif, R.N.; Sayed, Y.A.

    1993-01-01

    The paper deals with the transient response of the fusion power against perturbation in the injection rate of the fuel to ± 10% step change. The steady state results are in good agreement with the references results. The adequacy of these study was tested by assessing the physical plausibility of the obtained result, as well as, comparison with other validated model. 2 fig., 2 tab

  8. Safety and environmental aspects of fusion power

    International Nuclear Information System (INIS)

    McCarthy, K.A.

    1993-01-01

    Fusion power has the potential to be a safe and environmentally friendly energy source. Materials and design can limit hazards from accidental release of radioactive material and minimize waste disposal problems. In addition, no emissions are produced to degrade visibility, increase greenhouse gases, cause acid rain or reduce the ozone layer. Because of the flexibility in materials choice, recycling and near-surface burial are potential options for radioactive waste management

  9. Opportunistic replacement of fusion power system parts

    International Nuclear Information System (INIS)

    Day, J.A.; George, L.L.

    1981-01-01

    This paper describes a maintenance problem in a fusion power plant. The problem is to specify which life limited parts should be replaced when there is an opportunity. The objective is to minimize the cost rate of replacement parts and of maintenance actions while satisfying a power plant availability constraint. The maintenance policy is to look ahead and replace all parts that will reach their life limits within a time called a screen. Longer screens yield greater system availabilities because more parts are replaced prior to their life limits

  10. Confinement inertial fusion. Power reactors of nuclear fusion by lasers

    International Nuclear Information System (INIS)

    Velarde, G.; Ahnert, C.; Aragones, J.M.; Leira, G; Martinez-Val, J.M.

    1980-01-01

    The energy crisis and the need of the nuclear fusion energy are analized. The nuclear processes in the laser interation with the ablator material are studied, as well as the thermohydrodinamic processes in the implossion, and the neutronics of the fusion. The fusion reactor components are described and the economic and social impact of its introduction in the future energetic strategies.(author)

  11. Divertor conceptual designs for a fusion power plant

    International Nuclear Information System (INIS)

    Norajitra, P.; Ihli, T.; Janeschitz, G.; Abdel-Khalik, S.; Mazul, I.; Malang, S.

    2007-01-01

    The development of a divertor concept for post-ITER fusion power plants is deemed to be an urgent task to meet the EU Fast Track scenario. Developing a divertor is particularly challenging due to the wide range of requirements to be met including the high incident peak heat flux, the blanket design with which the divertor has to be integrated, sputtering erosion of the plasma-facing material caused by the incident a particles, radiation effects on the properties of structural materials, and efficient recovery and conversion of the divertor thermal power (∝15% of the total fusion thermal power) by maximizing the coolant operating temperature while minimizing the pumping power. In the course of the EU PPCS, three near-term (A, B and AB) and two advanced power plant models (C, D) were investigated. Model A utilizes a water-cooled lead-lithium (WCLL) blanket and a water-cooled divertor with a peak heat flux of 15 MW/m 2 . Model B uses a He-cooled ceramics/beryllium pebble bed (HCPB) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model AB uses a He-cooled lithium-lead (HCLL) blanket and a He-cooled divertor concept (10 MW/m 2 ). Model C is based on a dual-coolant (DC) blanket (lead/lithium self-cooled bulk and He-cooled structures) and a He-cooled divertor (10 MW/m 2 ). Model D employs a self-cooled lead/lithium (SCLL) blanket and lead-lithiumcooled divertor (5 MW/m 2 ). The values in parenthesis correspond to the maximum peak heat fluxes required. It can be noted that the helium-cooled divertor is used in most of the EU plant models; it has also been proposed for the US ARIES-CS reactor study. Since 2002, it has been investigated extensively in Europe under the PPCS with the goal of reaching a maximum heat flux of at least 10 MW/m2. Work has covered many areas including conceptual design, analysis, material and fabrication issues, and experiments. Generally, the helium-cooled divertor is considered to be a suitable solution for fusion power plants, as it

  12. Pulsed power ion accelerators for inertially confined fusion

    International Nuclear Information System (INIS)

    Olson, C.L.

    1976-01-01

    Current research is described on pulsed power ion accelerators for inertial fusion, i.e., ion diodes and collective accelerators. Particle beam energy and power requirements for fusion, and basic deposition characteristics of charged particle beams are discussed. Ion diodes and collective accelerators for fusion are compared with existing conventional accelerators

  13. Economic comparison of fusion power plant designs

    International Nuclear Information System (INIS)

    O'Neill, J.E.

    1986-01-01

    Over the past 10 yr, a number of studies have been developed for fusion power plants of various types (tokamaks, mirrors, etc.) complete with figures of merit such as cost estimates and estimates of the cost of generating electricity (COE). Each of these designs involves unresolved physics and engineering problems which, it is assumed, will eventually be worked out. Because of such uncertainties the figures of merit associated with such designs are not to be compared as absolute measures of worth but as relative indicators of progress within a given concept type. As part of Grumman's involvement in fusion energy development, an effort has been undertaken to compare economic indicators from the referenced studies in order to determine the cost trend in recent reactor design activities

  14. A thermonuclear fusion power program for Israel

    International Nuclear Information System (INIS)

    Friedman, Bruce

    1985-01-01

    Although lacking in financial and physical resources, Israel has a large base of scientific and technological talent that can be organized for the purpose of producing commercial fusion power reactors, thus allowing Israel to attain energy independence and acquiring a monetary inflow through royalties and reactor export. The limited partnership would be suitable for financing a significant portion of the project. Economic feasibility can be estimated through the use of one or more of the approaches supplied by the calculus of variations, cardinal utility theory, catastrophe theory, and noncooperative game theory. (author)

  15. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    Science.gov (United States)

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  16. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  17. Power balancing of multibeam laser fusion lasers

    International Nuclear Information System (INIS)

    Seka, W.; Morse, S.; Letzring, S.; Kremens, R.; Kessler, T.J.; Jaanimagi, P.; Keck, R.; Verdon, C.; Brown, D.

    1989-01-01

    The success of laser fusion depends to a good degree on the ability to compress the target to very high densities of ≥1000 times liquid DT. To achieve such compressions require that the irradiation nonuniformity must not exceed ∼1% rms over the whole time of the compression, particularly during the early phases of irradiation. The stringent requirements for the irradiation uniformity for laser fusion have been known for quite some time but until recently the energy balance was mistakenly equated to power balance. The authors describe their effort on energy balance and irradiation patterns on the target. They significantly improved the laser performance with respect to overall intensity distributions on target including the implementation of distributed (random) phase plates in each high power beam. However, the slightly varying performance of the third harmonic conversion crystals in the twenty-four beams of their laser system was generally compensated for by appropriately adjusted 1.054μm input laser energy. Computational analysis of the results of the recent high density campaign are shown

  18. Fusion neutronics plan in the development of fusion reactor. With the aim of realizing electric power

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Morimoto, Yuichi; Ochiai, Kentarou; Sugimoto, Masayoshi; Nishitani, Takeo; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    On June 1992, Atomic Energy Commission in Japan has settled Third Phase Program of Fusion Research and Development to achieve self-ignition condition, to realize long pulse burning plasma and to establish basis of fusion engineering for demonstration reactor. This report describes research plan of Fusion Neutron Laboratory in JAERI toward a development of fusion reactor with an aim of realizing electric power. The fusion neutron laboratory has a fusion neutronics facility (FNS), intense fusion neutron source. The plan includes research items in the FNS; characteristics of shielding and breeding materials, nuclear characteristics of materials, fundamental irradiation process of insulator, diagnostics materials and structural materials, and development of in-vessel diagnostic technology. Upgrade of the FNS is also described. Also, the International Fusion Material Irradiation Facility (IFMIF) for intense neutron source to develop fusion materials is described. (author)

  19. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies. [various hybrid/electric power train configurations and electrical and mechanical drive-line components

    Science.gov (United States)

    1979-01-01

    The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.

  20. Near-term oil prices

    International Nuclear Information System (INIS)

    Lynch, M.C.

    2001-01-01

    This PowerPoint presentation included 36 slides that described the state of oil prices and how to predict them. Prices are random, stochastic, chaotic, mean-reverting and driven by speculators, oil companies and OPEC. The many factors that enable price forecasting are economic growth, weather, industry behaviour, speculators, OPEC policy choices, Mexico/Russia production policy, non-OPEC supply and the interpretation of the above factors by OPEC, speculators, traders and the petroleum industry. Several graphs were included depicting such things as WTI price forecasts, differentials, oil market change in 2001, inventory levels, and WTI backwardation. The presentation provided some explanations for price uncertainties, price surges and collapses. U.S. GDP growth and the volatility of Iraq's production was also depicted. The author predicted that economic growth will occur and that oil demand will go up. Oil prices will fluctuate as the Middle East will be politically unstable and weather will be a major factor that will influence oil prices. The prices are likely to be more volatile than in the 1986 to 1995 period. 2 tabs., 22 figs

  1. Fusion Power Program biannual progress report, April-September 1979

    International Nuclear Information System (INIS)

    1980-02-01

    This biannual report summarizes the Argonne National Laboratory work performed for the Office of Fusion Energy during the April-September 1979 quarter in the following research and development areas: materials; energy storage and transfer; tritium containment, recovery and control; advanced reactor design; atomic data; reactor safety; fusion-fission hybrid systems; alternate applications of fusion energy; and other work related to fusion power. Separate abstracts were prepared for three sections

  2. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    Miyahara, Akira; Yamamoto, Mitsuyoshi.

    1976-01-01

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  3. Science assessment of fusion power plant

    International Nuclear Information System (INIS)

    Nagai, Toru; Shimazu, Yasuo

    1984-01-01

    A concept of SCIENCE ASSESSMENT (SA) is proposed to support a research program of the so-called big science. The SA System should be established before the demonstration reactor is realized, and the system is classified into four categories: (1) Resource Economy Assessment (REA) (cost evaluation and availability of rare resource materials), (2) Risk Assessment (RA) (structural safety during operation and accident), (3) Environmental Assessment (EA) (adaptability to environments), and (4) Socio-Political Assessment (SPA) (from local public acceptance to national policy acceptance). Here, REA to the published conceptual designs of commercial fusion power plants (most of them are TOKAMAK) is carried out as the first step. The energy analysis method is imployed because the final goal of fusion plant is to supply energy. The evaluation index is the energy ratio (= output/input). Computer code for energy analysis was developed, to which the material inventory table from the conceptual design and the database for the energy intensity (= energy required to obtain a unit amount of materials) were prepared. (Nogami, K.)

  4. Environmental release targets for fusion power plants

    International Nuclear Information System (INIS)

    Gulden, W.; Raskob, W.

    2005-01-01

    Within the European fission community, so called European Utility Requirements were developed to define common targets, criteria and evaluation methods for, amongst others, safety, environmental protection and public health with respect to future nuclear fission power plant development. In the case of severe accidents, the objective is to restrict the radiological consequences to the vicinity of the plant, i.e., to avoid early and late countermeasures such as evacuation or relocation of the population, and to restrict food banning to small areas and the first year after the accident. Within the European Fusion Technology Programme, a methodology is being developed in compliance with these European Utility Requirements, to define design requirements for future fusion reactors. First results are presented. Concerning food banning, calculations revealed extremely conservative values for tritium in EU regulations and recommendations. This does not affect assessments for fission reactors, but is an overestimation of the tritium dose impact from ingestion. Therefore, in compliance with scientific justification, considerably higher maximum permissible activity levels for tritium should be considered

  5. Controlled thermonuclear fusion power apparatus and method

    International Nuclear Information System (INIS)

    Bussaro, R.W.; Coppi, B.

    1977-01-01

    A fusion power device is described comprising: a) a plurality of plasma containment means for containing fusible plasma within a region, b) blanket means surrounding a substantial portion of each of the plurality of containment means, c) means for feeding a fusible fuel into each of the plurality of containment means for forming the plasma, d) each of the plurality of containment means separable from the blanket means for replacement of the containment means by other containment means, and e) means connected to at least one of each of the plurality of plasma containment means and the blanket means for extracting thermal energy therefrom and for converting same into electrical energy and/or into mechanical energy

  6. The ITER fusion reactor and its role in the development of a fusion power plant

    International Nuclear Information System (INIS)

    McLean, A.

    2002-01-01

    Energy from nuclear fusion is the future source of sustained, full life-cycle environmentally benign, intrinsically safe, base-load power production. The nuclear fusion process powers our sun, innumerable other stars in the sky, and some day, it will power the Earth, its cities and our homes. The International Thermonuclear Experimental Reactor, ITER, represents the next step toward fulfilling that promise. ITER will be a test bed for key steppingstones toward engineering feasibility of a demonstration fusion power plant (DEMO) in a single experimental step. It will establish the physics basis for steady state Tokamak magnetic containment fusion reactors to follow it, exploring ion temperature, plasma density and containment time regimes beyond the breakeven power condition, and culminating in experimental fusion self-ignition. (author)

  7. Implications of fusion power plant studies for materials requirements

    International Nuclear Information System (INIS)

    Cook, Ian; Ward, David; Dudarev, Sergei

    2002-01-01

    This paper addresses the key requirements for fusion materials, as these have emerged from studies of commercial fusion power plants. The objective of the international fusion programme is the creation of power stations that will have very attractive safety and environmental features and viable economics. Fusion power plant studies have shown that these objectives may be achieved without requiring extreme advances in materials. But it is required that existing candidate materials perform at least as well as envisaged in the environment of fusion neutrons, heat fluxes and particle fluxes. The development of advanced materials would bring further benefits. The work required entails the investigation of many intellectually exciting physics issues of great scientific interest, and of wider application than fusion. In addition to giving an overview, selected aspects of the science, of particular physics interest, are illustrated

  8. Physics, systems analysis and economics of fusion power plants

    International Nuclear Information System (INIS)

    Ward, D.J.

    2006-01-01

    Fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety. It is important, however, to investigate the economics of a future fusion power plant to check that the electricity produced can, in fact, have a market. Using systems code analysis, including costing algorithms, this paper gives the cost of electricity expected from a range of fusion power plants, assuming that they are brought into successful operation. Although this paper does not purport to show that a first generation of fusion plants is likely to be the cheapest option for a future energy source, such plants look likely to have a market in some countries even without taking account of fusion's environmental advantages. With improved technological maturity fusion looks likely to have a widespread potential market particularly if the value of its environmental advantages are captured, for instance through avoiding a carbon tax. (author)

  9. Impurity control in near-term tokamak reactors

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Smith, D.L.; Brooks, J.N.

    1976-10-01

    Several methods for reducing impurity contamination in near-term tokamak reactors by modifying the first-wall surface with a low-Z or low-sputter material are examined. A review of the sputtering data and an assessment of the technological feasibility of various wall modification schemes are presented. The power performance of a near-term tokamak reactor is simulated for various first-wall surface materials, with and without a divertor, in order to evaluate the likely effect of plasma contamination associated with these surface materials

  10. AREVA HTR concept for near-term deployment

    Energy Technology Data Exchange (ETDEWEB)

    Lommers, L.J., E-mail: lewis.lommers@areva.com [AREVA Inc., 2101 Horn Rapids Road, Richland, WA 99354 (United States); Shahrokhi, F. [AREVA Inc., Lynchburg, VA (United States); Mayer, J.A. [AREVA Inc., Marlborough, MA (United States); Southworth, F.H. [AREVA Inc., Lynchburg, VA (United States)

    2012-10-15

    This paper introduces AREVA's High Temperature Reactor (HTR) steam cycle concept for near-term industrial deployment. Today, nuclear power primarily impacts only electricity generation. The process heat and transportation fuel sectors are completely dependent on fossil fuels. In order to impact this energy sector as rapidly as possible, AREVA has focused its HTR development effort on the steam cycle HTR concept. This reduces near-term development risk and minimizes the delay before a useful contribution to this sector of the energy economy can be realized. It also provides a stepping stone to longer term very high temperature concepts which might serve additional markets. A general description of the current AREVA steam cycle HTR concept is provided. This concept provides a flexible system capable of serving a variety of process heat and cogeneration markets in the near-term.

  11. AREVA HTR concept for near-term deployment

    International Nuclear Information System (INIS)

    Lommers, L.J.; Shahrokhi, F.; Mayer, J.A.; Southworth, F.H.

    2012-01-01

    This paper introduces AREVA's High Temperature Reactor (HTR) steam cycle concept for near-term industrial deployment. Today, nuclear power primarily impacts only electricity generation. The process heat and transportation fuel sectors are completely dependent on fossil fuels. In order to impact this energy sector as rapidly as possible, AREVA has focused its HTR development effort on the steam cycle HTR concept. This reduces near-term development risk and minimizes the delay before a useful contribution to this sector of the energy economy can be realized. It also provides a stepping stone to longer term very high temperature concepts which might serve additional markets. A general description of the current AREVA steam cycle HTR concept is provided. This concept provides a flexible system capable of serving a variety of process heat and cogeneration markets in the near-term.

  12. Fusion power from fast imploding liners

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Moses, R.W.; Miller, R.L.; Germwin, R.A.

    1977-01-01

    An approach to fusion power is described which proposes magnetically driving a thin metal shell at high velocity (approximately 10 4 m/s) onto a warm (200 to 500 eV), dense (10 24 to 10 25 m -3 ) plasma. A description of the plasma/liner interaction by several analytic and numerical models is given. On the basis of theoretical scaling predictions, the advantages, disadvantages and uncertainties associated with a high-efficiency (recirculating power fraction less than or equal to 0.2) Fast-Liner Reactor (FLR) are described, quantified when possible, and summarized. The FLR approach is characterized by (1) a thin cylindrical nonrotating liner that would be magnetically accelerated by axial currents driven through the liner (no external coils or magnets), (2) axial and radial energy confinement would be provided by an azimuthal magnetic field associated either with axial currents driven through a hard core or through the plasma, (3) the plasma particle pressure would be supported directly by the liner surface and material end plugs, and (4) the liner and a portion of associated support structure would be destroyed at each implosion. A preliminary assessment of the technological implications of blast confinement, materials destruction and loss, energy transfer and storage requirements, and possible modes of FLR operation is presented

  13. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1983-01-01

    The net energy balance for a tokamak fusion power plant of present day design is determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the energy expenditures of the fusion power plant turn out to be lower than that of an LWR, HTR, or coal-fired power plant of equal net electric power output and nearly in the same range as FBR power plants. (orig.)

  14. Net energy balance of tokamak fusion power plants

    International Nuclear Information System (INIS)

    Buende, R.

    1981-10-01

    The net energy balance for a tokamak fusion power plant was determined by using a PWR power plant as reference system, replacing the fission-specific components by fusion-specific components and adjusting the non-reactor-specific components to altered conditions. For determining the energy input to the fusion plant a method was developed that combines the advantages of the energetic input-output method with those of process chain analysis. A comparison with PWR, HTR, FBR, and coal-fired power plants is made. As a result the net energy balance of the fusion power plant turns out to be more advantageous than that of an LWR, HTR or coal-fired power plant and nearly in the same range as FBR power plants. (orig.)

  15. Nuclear fusion: power for the next century

    International Nuclear Information System (INIS)

    1980-05-01

    The basis of fusion reactions is outlined, with special reference to deuterium and tritium (from lithium, by neutron reaction) as reactants, and the state of research worldwide is indicated. The problems inherent in fusion reactions are discussed, plasma is defined, and the steps to be taken to generate electricity from controlled nuclear fusion are stated. Methods of plasma heating and plasma confinement are considered, leading to a description of the tokamak plasma confinement system. Devices under construction include the JET (Joint European Torus) Undertaking in the UK. Plans and possibilities for fusion reactors are discussed. (U.K.)

  16. Antimatter Production for Near-Term Propulsion Applications

    Science.gov (United States)

    Gerrish, Harold P.; Schmidt, George R.

    1999-01-01

    This presentation discusses the use and potential of power generated from Proton-Antiproton Annihilation. The problem is that there is not enough production of anti-protons, and that the production methods are inefficient. The cost for 1 gram of antiprotons is estimated at 62.5 trillion dollars. Applications which require large quantities (i.e., about 1 kg) will require dramatic improvements in the efficiency of the production of the antiprotons. However, applications which involve small quantities (i.e., 1 to 10 micrograms may be practical with a relative expansion of capacities. There are four "conventional" antimatter propulsion concepts which are: (1) the solid core, (2) the gas core, (3) the plasma core, and the (4) beam core. These are compared in terms of specific impulse, propulsive energy utilization and vehicle structure/propellant mass ratio. Antimatter-catalyzed fusion propulsion is also evaluated. The improvements outlined in the presentation to the Fermilab production, and other sites. capability would result in worldwide capacity of several micrograms per year, by the middle of the next decade. The conclusions drawn are: (1) the Conventional antimatter propulsion IS not practical due to large p-bar requirement; (2) Antimatter-catalyzed systems can be reasonably considered this "solves" energy cost problem by employing substantially smaller quantities; (3) With current infrastructure, cost for 1 microgram of p-bars is $62.5 million, but with near-term improvements cost should drop; (4) Milligram-scale facility would require a $15 billion investment, but could produce 1 mg, at $0.1/kW-hr, for $6.25 million.

  17. Inertial Fusion Power Plant Concept of Operations and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Anklam, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knutson, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunne, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kasper, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheehan, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lang, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mau, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  18. Fusion Power Demonstrations I and II

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1985-01-01

    In this report we present a summary of the first phase of the Fusion Power Demonstration (FPD) design study. During this first phase, we investigated two configurations, performed detailed studies of major components, and identified and examined critical issues. In addition to these design specific studies, we also assembled a mirror-systems computer code to help optimize future device designs. The two configurations that we have studied are based on the MARS magnet configuration and are labeled FPD-I and FPD-II. The FPD-I configuration employs the same magnet set used in the FY83 FPD study, whereas the FPD-II magnets are a new, much smaller set chosen to help reduce the capital cost of the system. As part of the FPD study, we also identified and explored issues critical to the construction of an Engineering Test Reactor (ETR). These issues involve subsystems or components, which because of their cost or state of technology can have a significant impact on our ability to meet FPD's mission requirements on the assumed schedule. General Dynamics and Grumman Aerospace studied two of these systems, the high-field choke coil and the halo pump/direct converter, in great detail and their findings are presented in this report

  19. Modular control of fusion power heating applications

    International Nuclear Information System (INIS)

    Demers, D. R.

    2012-01-01

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment

  20. Radiological and environmental aspects of fusion power

    International Nuclear Information System (INIS)

    Easterly, C.E.; Shank, K.E.; Shoup, R.L.

    1977-01-01

    Fusion-reactor technology is presently in conceptual and early developmental stages. Concomitant with hardware development, potential health and environmental impacts must be evaluated to ensure that technologists have pertinent information available so that adequate consideration may be given to health and environmental problems. This article discusses problem areas attendant to tritium, activation products, and magnetic fields associated with fusion-reactor systems

  1. Study of Heating and Fusion Power Production in ITER Discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Kritz, A. H.; Bateman, G.; Kessel, C.; McCune, D. C.; Budny, R. V.; Pankin, A. Y.

    2011-01-01

    ITER simulations, in which the temperatures, toroidal angular frequency and currents are evolved, are carried out using the PTRANSP code starting with initial profiles and boundary conditions obtained from TSC code studies. The dependence of heat deposition and current drive on ICRF frequency, number of poloidal modes, beam orientation, number of Monte Carlo particles and ECRH launch angles is studied in order to examine various possibilities and contingencies for ITER steady state and hybrid discharges. For the hybrid discharges, the fusion power production and fusion Q, computed using the Multi-Mode MMM v7.1 anomalous transport model, are compared with those predicted using the GLF23 model. The simulations of the hybrid scenario indicate that the fusion power production at 1000 sec will be approximately 500 MW corresponding to a fusion Q = 10.0. The discharge scenarios simulated aid in understanding the conditions for optimizing fusion power production and in examining measures of plasma performance.

  2. Inherent/passive safety in fusion power plants

    International Nuclear Information System (INIS)

    Piet, S.J.; Crocker, J.G.

    1986-01-01

    The concept of inherent or passive safety for fusion energy is explored, defined, and partially quantified. Four levels of safety assurance are defined, which range from true inherent safety to passive safety to protection via active engineered safeguard systems. Fusion has the clear potential for achieving inherent or passive safety, which should be an objective of fusion research and design. Proper material choice might lead to both inherent/passive safety and high mass power density, improving both safety and economics. When inherent or passive safety is accomplished, fusion will be well on the way to achieving its ultimate potential and to be a truly superior energy source for the future

  3. Revised assessments of the economics of fusion power

    International Nuclear Information System (INIS)

    Han, W.E.; Ward, D.J.

    2009-01-01

    Although fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety, it is also important to investigate the economics of a future fusion power plant in order to assess the potential market for the electricity produced. As part of the PPCS (Power Plant Conceptual Study) in Europe, published in 2005, an assessment was made of the likely economic performance of the range of fusion power plant concepts studied. Since that time, new work has been carried out, within the fusion programme, and particularly in the EU DEMO study, that changes a number of the important assumptions made in the PPCS. These changes allow either reduced cost versions of the PPCS plant models or, alternatively, plants with less ambitious technical assumptions at constant cost. The impact of the new results, emerging from the EU DEMO studies, on the role of fusion in the future energy market is described. A new energy economics model is employed to analyse the potential market performance of fusion power in a range of future energy scenarios and this shows that there can be a significant role for fusion in a future energy market.

  4. Safety issues relating to the design of fusion power facilities

    International Nuclear Information System (INIS)

    Stasko, R.R.; Wong, K.Y.; Russell, S.B.

    1986-06-01

    In order to make fusion power a viable future source of energy, it will be necessary to ensure that the cost of power for fusion electric generation is competitive with advanced fission concepts. In addition, fusion power will have to live up to its original promise of being a more radiologically benign technology than fission, and be able to demonstrate excellent operational safety performance. These two requirements are interrelated, since the selection of an appropriate safety philosophy early in the design phase could greatly reduce or eliminate the capital costs of elaborate safety related and protective sytems. This paper will briefly overview a few of the key safety issues presently recognized as critical to the ultimate achievement of licensable, environmentally safe and socially acceptable fusion power facilities. 12 refs

  5. Fusion power system: technology and engineering considerations

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1976-01-01

    Engineering concepts are discussed for the following topics: (1) blanket environment, (2) blanket materials, (3) tritium breeding, (4) heat removal problems, (5) materials selection for radiation shields, (6) afterheat, and (7) fusion blanket design

  6. The role of fusion as a future power source

    International Nuclear Information System (INIS)

    Kintner, E.E.; Hirsch, R.L.

    1977-01-01

    Nations of western Europe, Japan, the Soviet Union, and the United States are working together to demonstrate the practicality of fusion power early in the 21st century. Many difficult engineering problems make fusion development one of the most formidable scientific and technological challenges ever attempted. However, the outlook is promising for achieving an inexhaustible energy source that is safe, economic, and with acceptable environmental effects. The United States magnetic fusion power development program aims at producing fusion energy experimentally in the early 1980's and demonstrating power production on a commercial scale before 2000. This prognosis reflects the confidence gained in scientific successes of the late 1960's through the present. However, many physics problems remain to be solved and many complex engineering problems without obvious solutions await attention. In response to experimental successes and the perceived importance of the fusion energy alternative, the United States effort has grown rapidly. Scientific investigations of plasma physics continue while planned engineering studies lead toward the practical goal of a commercial technology that will take a prominent place among available energy sources of the next century. Development of laser and electron beam fusion proceeds. Alternative fusion devices are investigated for their potential feasibility while the tokamak configuration is used for principal experimental devices. A national program plan and budget coordinates the efforts of federal laboratories, universities and industry. The utilities industry conducts an independent program which is increasingly coordinated with government-sponsored activity. Fusion energy programs of several nations benefit one another and should cooperate more closely in specific problem areas. Achievement of practical fusion power could be advanced through more effective mutually supporting fusion development programs. The economic and technical

  7. Issues in radioactive waste management for fusion power

    International Nuclear Information System (INIS)

    Maninger, R.C.; Dorn, D.W.

    1983-01-01

    Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of magnitude of the kinds and amounts of radioactivity to be expected. By careful and early evaluation of the impacts of the selections on waste management, designers can produce fusion power systems with radiation from waste well below today's limits for occupational and public health and safety

  8. Issues in radioactive-waste management for fusion power

    International Nuclear Information System (INIS)

    Maninger, R.C.; Dorn, D.W.

    1982-01-01

    Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of-magnitude of the kinds and amounts of radioactivity to be expected. By careful and early evaluation of the impacts of the selections on waste management, designers can produce fusion power systems with radiation from waste well below today's limits for occupational and public health and safety

  9. Radiological design criteria for fusion power test facilities

    International Nuclear Information System (INIS)

    Singh, M.S.; Campbell, G.W.

    1982-01-01

    The quest for fusion power and understanding of plasma physics has resulted in planning, design, and construction of several major fusion power test facilities, based largely on magnetic and inertial confinement concepts. We have considered radiological design aspects of the Joint European Torus (JET), Livermore Mirror and Inertial Fusion projects, and Princeton Tokamak. Our analyses on radiological design criteria cover acceptable exposure levels at the site boundary, man-rem doses for plant personnel and population at large, based upon experience gained for the fission reactors, and on considerations of cost-benefit analyses

  10. Advanced materials: The key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural material for the first wail and blanket (FWB), (2) plasma-facing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications

  11. Advanced materials - the key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural materials for the first wall and blanket (FWB), (2) plasmafacing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications. (author)

  12. Fusion power plant for water desalination and reuse

    International Nuclear Information System (INIS)

    Borisov, A.A.; Desjatov, A.V.; Izvolsky, I.M.; Serikov, A.G.; Smirnov, V.P.; Smirnov, Yu.N.; Shatalov, G.E.; Sheludjakov, S.V.; Vasiliev, N.N.; Velikhov, E.P.

    2001-01-01

    Development of industry and agriculture demands a huge fresh water consumption. Exhaust of water sources together with pollution arises a difficult problem of population, industry, and agriculture water supply. Request for additional water supply in next 50 years is expected from industrial and agricultural sectors of many countries in the world. The presented study of fusion power plant for water desalination and reuse is aimed to widen a range of possible fusion industrial applications. Fusion offers a safe, long-term source of energy with abundant resources and major environmental advantages. Thus fusion can provide an attractive energy option to society in the next century. Fusion power tokamak reactor based on RF DEMO-S project [Proc. ISFNT-5 (2000) in press; Conceptual study of RF DEMO-S fusion reactor (2000)] was chosen as an energy source. A steady state operation mode is considered with thermal power of 4.0 GW. The reactor has to operate in steady-state plasma mode with high fraction of bootstrap current. Average plant availability of ∼0.7 is required. A conventional type of water cooled blanket is the first choice, helium or lithium coolants are under consideration. Desalination plant includes two units: reverse osmosis and distillation. Heat to electricity conversion schemes is optimized fresh water production and satisfy internal plant electricity demand The plant freshwater capacity is ∼6000000 m 3 per day. Fusion power plant of this capacity can provide a region of a million populations with fresh water, heat and electricity

  13. Fusion power plant for water desalination and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, A.A.; Desjatov, A.V.; Izvolsky, I.M.; Serikov, A.G.; Smirnov, V.P.; Smirnov, Yu.N.; Shatalov, G.E.; Sheludjakov, S.V.; Vasiliev, N.N. E-mail: vasiliev@nfi.kiae.ru; Velikhov, E.P

    2001-11-01

    Development of industry and agriculture demands a huge fresh water consumption. Exhaust of water sources together with pollution arises a difficult problem of population, industry, and agriculture water supply. Request for additional water supply in next 50 years is expected from industrial and agricultural sectors of many countries in the world. The presented study of fusion power plant for water desalination and reuse is aimed to widen a range of possible fusion industrial applications. Fusion offers a safe, long-term source of energy with abundant resources and major environmental advantages. Thus fusion can provide an attractive energy option to society in the next century. Fusion power tokamak reactor based on RF DEMO-S project [Proc. ISFNT-5 (2000) in press; Conceptual study of RF DEMO-S fusion reactor (2000)] was chosen as an energy source. A steady state operation mode is considered with thermal power of 4.0 GW. The reactor has to operate in steady-state plasma mode with high fraction of bootstrap current. Average plant availability of {approx}0.7 is required. A conventional type of water cooled blanket is the first choice, helium or lithium coolants are under consideration. Desalination plant includes two units: reverse osmosis and distillation. Heat to electricity conversion schemes is optimized fresh water production and satisfy internal plant electricity demand The plant freshwater capacity is {approx}6000000 m{sup 3} per day. Fusion power plant of this capacity can provide a region of a million populations with fresh water, heat and electricity.

  14. Commercial feasibility of fusion power based on the tokamak concept

    International Nuclear Information System (INIS)

    Reid, R.L.; Steiner, D.

    1977-01-01

    The impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants is determined. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  15. Near-term hybrid vehicle program, phase 1

    Science.gov (United States)

    1979-01-01

    The preliminary design of a hybrid vehicle which fully meets or exceeds the requirements set forth in the Near Term Hybrid Vehicle Program is documented. Topics addressed include the general layout and styling, the power train specifications with discussion of each major component, vehicle weight and weight breakdown, vehicle performance, measures of energy consumption, and initial cost and ownership cost. Alternative design options considered and their relationship to the design adopted, computer simulation used, and maintenance and reliability considerations are also discussed.

  16. Environmental cost/benefit analysis for fusion power plants

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-11-01

    This document presents a cost/benefit analysis of use of fusion power plants early in the 21st century. The first section describes the general formulation of the analysis. Included are the selection of the alternatives to the fusion reactor, selection of the power system cases to be compared, and a general comparison of the environmental effects of the selected alternatives. The second section compares the cumulative environmental effects from 2010 to 2040 for the primary cases of the power system with and without fusion reactors. The third section briefly illustrates the potential economic benefits if fusion reactors produce electricity at a lower unit cost than LMFBRs can. The fourth section summarizes the cost/benefit analysis

  17. Technological implications of fusion power: requirements and status

    International Nuclear Information System (INIS)

    Steiner, D.

    1978-01-01

    The major technological requirements for fusion power, as implied by current conceptual designs of fusion power plants, are identified and assessed relative to the goals of existing technology programs. The focus of the discussion is on the tokamak magnetic confinement concept; however, key technological requirements of mirror magnetic confinement systems and of inertial confinement concepts will also be addressed. The required technology is examined on the basis of three general areas of concern: (a) the power balance, that is, the unique power handling requirements associated with the production of electrical power by fusion; (b) reactor design, focusing primarily on the requirements imposed by a tritium-based fuel cycle, thermal hydraulic considerations, and magnet systems; and (c) materials considerations, including radiation damage effects, neutron-induced activation, and resource limitations

  18. Technology assessment of laser-fusion power production

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1976-01-01

    The inherent features of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described. Technology developments for ultimate commercial application are outlined

  19. Optimization of nonthermal fusion power consistent with channeling of charged fusion product energy

    International Nuclear Information System (INIS)

    Snyder, P.B.; Herrmann, M.C.; Fisch, N.J.

    1994-01-01

    If the energy of charged fusion products can be diverted directly to fuel ions, non-Maxwellian fuel ion distributions and temperature differences between species will result. To determine the importance of these nonthermal effects, the fusion power density is optimized at constant-β for non-thermal distributions that are self-consistently maintained by channeling of energy from charged fusion products. For D-T and D- 3 He reactors, with 75% of charged fusion product power diverted to fuel ions, temperature differences between electrons and ions increase the reactivity by 40-70%, while non-Maxwellian fuel ion distributions and temperature differences between ionic species increase the reactivity by an additional 3-15%

  20. Osiris and SOMBRERO inertial confinement fusion power plant designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe

  1. Optimization of nonthermal fusion power consistent with energy channeling

    International Nuclear Information System (INIS)

    Snyder, P.B.; Herrmann, M.C.; Fisch, N.J.

    1995-02-01

    If the energy of charged fusion products can be diverted directly to fuel ions, non-Maxwellian fuel ion distributions and temperature differences between species will result. To determine the importance of these nonthermal effects, the fusion power density is optimized at constant-β for nonthermal distributions that are self-consistently maintained by channeling of energy from charged fusion products. For D-T and D- 3 He reactors, with 75% of charged fusion product power diverted to fuel ions, temperature differences between electrons and ions increase the reactivity by 40-70%, while non- Maxwellian fuel ion distributions and temperature differences between ionic species increase the reactivity by an additional 3-15%

  2. Configuration and layout of the tandem mirror Fusion Power Demonstrator

    International Nuclear Information System (INIS)

    Clarkson, I.R.; Neef, W.S.

    1983-01-01

    Studies have been performed during the past year to determine the configuration of a tandem mirror Fusion Power Demonstrator (FPD) machine capable of producing 1750 MW of fusion power. The FPD is seen as the next logical step after the Mirror Fusion Test Facility-B (MFTF-B) toward operation of a power reactor. The design of the FPD machine allows a phased construction: Phase I, a hydrogen or deuterium checkout machine; Phase 2, a DT breakeven machine; Phase 3, development of the Phase 2 machine to provide net power and act as a reactor demonstrator. These phases are essential to the development of remote handling equipment and the design of components that will ultimately be remotely handled. Phasing also permits more modes funding early in the program with some costs committed only after reaching major milestones

  3. Local wall power loading variations in thermonuclear fusion devices

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1989-01-01

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  4. Factors affecting potential market penetration of laser fusion power plants

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Fraley, D.W.

    1979-08-01

    A mini-model has been constructed to estimate the optimal size of laser fusion power plants and to estimate the allowable cost of the first such plant in relation to the next best alternative. In estimating the costs of laser fusion, the mini-model incorporates such factors as market penetration, learning, economies of scale, system size, transmission costs, reserve requirements, development and licensing costs and site costs. The results of the mini-model simulations indicate that the optimal laser fusion plant size is approximately 3 GWe; risk considerations unincorporated in the mini-model suggest an optimal size closer to 2.5 GWe

  5. Conceptual design of inertial confinement fusion power plant

    International Nuclear Information System (INIS)

    Mima, Kunioki; Yamanaka, Tatsuhiko; Nakai, Sadao

    1994-01-01

    Presented is the status of the conceptual design studies of inertial confinement fusion reactors. The recent achievements of the laser fusion research enable us to refine the conceptual design of the power plant. In the paper, main features of several new conceptual designs of ICF reactor; KOYO, SIRIUS-P, HYLIFE-II and so on are summarized. In particular, the target design and the reactor chamber design are described. Finally, the overview of the laser fusion reactor and the irradiation system is also described. (author)

  6. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  7. Parameter study toward economical magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Yoshida, Tomoaki; Okano, Kunihiko; Nanahara, Toshiya; Hatayama, Akiyoshi; Yamaji, Kenji; Takuma, Tadashi.

    1996-01-01

    Although the R and D of nuclear fusion reactors has made a steady progress as seen in ITER project, it has become of little doubt that fusion power reactors require hugeness and enormous amount of construction cost as well as surmounting the physics and engineering difficulties. Therefore, it is one of the essential issues to investigate the prospect of realizing fusion power reactors. In this report we investigated the effects of physics and engineering improvements on the economics of ITER-like steady state tokamak fusion reactors using our tokamak system and costing analysis code. With the results of this study, we considered what is the most significant factor for realizing economical competitive fusion reactors. The results show that with the conventional TF coil maximum field (12T), physics progress in β-value (or Troyon coefficient) has the most considerable effect on the reduction of fusion plant COE (Cost of Electricity) while the achievement of H factor = 2-3 and neutron wall load =∼5MW/m 2 is necessary. The results also show that with the improvement of TF coil maximum field, reactors with a high aspect ratio are economically advantageous because of low plasma current driving power while the improvement of current density in the conductors and yield strength of support structures is indispensable. (author)

  8. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  9. Nuclear Power Plants Fault Diagnosis Method Based on Data Fusion

    International Nuclear Information System (INIS)

    Xie Chunli; Liu Yongkuo; Xia Hong

    2009-01-01

    The data fusion is a method suit for complex system fault diagnosis such as nuclear power plants, which is multisource information processing technology. This paper uses data fusion information hierarchical thinking and divides nuclear power plants fault diagnosis into three levels. Data level adopts data mining method to handle data and reduction attributes. Feature level uses three parallel neural networks to deal with attributes of data level reduction and the outputs of three networks are as the basic probability assignment of Dempster-Shafer (D-S) evidence theory. The improved D-S evidence theory synthesizes the outputs of neural networks in decision level, which conquer the traditional D-S evidence theory limitation which can't dispose conflict information. The diagnosis method was tested using correlation data of literature. The test results indicate that the data fusion diagnosis system can diagnose nuclear power plants faults accurately and the method has application value. (authors)

  10. Repetitive pulsed power technology for inertial-confinement fusion

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Buttram, M.T.

    1983-01-01

    The pulsed power requirements for inertial-confinement fusion reactors are defined for ion-beam and laser drivers. Several megajoule beams with 100's of terrawatt peak powers must be delivered to the reactor chamber 1 to 10 times per second. Ion-beam drivers are relatively efficient requiring less energy storage in the pulsed-power system but more time compression in the power flow chain than gas lasers. These high peak powers imply very large numbers of components for conventional pulse-power systems. A new design that significantly reduces the number of components is presented

  11. Fuel procurement for first generation fusion power plants

    International Nuclear Information System (INIS)

    Gore, B.F.; Hendrickson, P.L.

    1976-09-01

    The provision of deuterium, tritium, lithium and beryllium fuel materials for fusion power plants is examined in this document. Possible fusion reactions are discussed for use in first generation power plants. Requirements for fuel materials are considered. A range of expected annual consumption is given for each of the materials for a 1000 megawatts electric (MWe) fusion power plant. Inventory requirements are also given. Requirements for an assumed fusion power plant electrical generating capacity of 10 6 MWe (roughly twice present U.S. generating capacity) are also given. The supply industries are then examined for deuterium, lithium, and beryllium. Methods are discussed for producing the only tritium expected to be purchased by a commercial fusion industry--an initial inventory for the first plant. Present production levels and methods are described for deuterium, lithium and beryllium. The environmental impact associated with production of these materials is then discussed. The toxicity of beryllium is described, and methods are indicated to keep worker exposure to beryllium as low as achievable

  12. The VISTA spacecraft: Advantages of ICF [Inertial Confinement Fusion] for interplanetary fusion propulsion applications

    International Nuclear Information System (INIS)

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted

  13. High density linear systems for fusion power

    International Nuclear Information System (INIS)

    Ellis, W.R.; Krakowski, R.A.

    1975-01-01

    The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed

  14. Effects of waste management on the impact of fusion power

    International Nuclear Information System (INIS)

    Botts, T.; Powell, J.

    1978-01-01

    Throughputs and inventories of radioactive materials that would have to be managed by a country whose primary form of electrical generation is fusion are estimated. Whole body dose rates for the entire population due to normal and off-normal incidents are calculated. For the case of equilibrium systems, two fusion cases are compared to an advanced fission power case. Comparisons are made for various stages of the fuel cycle and activated materials cycles. Fission reactor radiological impact is dominated by fuel reprocessing facility releases. These releases will decrease significantly if methods of containing 85 Kr are implemented. Tritium releases during normal plant operations comprise most of the radiologic impact for both fusion cases. Total dose rates are estimated to be roughly two orders of magnitude lower for fusion than for fission reactors

  15. Progress in the pulsed power Inertial Confinement Fusion program

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Matzen, M.K.; Mehlhorn, T.A.

    1996-01-01

    Pulsed power accelerators are being used in Inertial Confinement Fusion (ICF) research. In order to achieve our goal of a fusion yield in the range of 200 - 1000 MJ from radiation-driven fusion capsules, it is generally believed that ∼10 MJ of driver energy must be deposited within the ICF target in order to deposit ∼1 MJ of radiation energy in the fusion capsule. Pulsed power represents an efficient technology for producing both these energies and these radiation environments in the required short pulses (few tens of ns). Two possible approaches are being developed to utilize pulsed power accelerators in this effort: intense beams of light ions and z- pinches. This paper describes recent progress in both approaches. Over the past several years, experiments have successfully answered many questions critical to ion target design. Increasing the ion beam power and intensity are our next objectives. Last year, the Particle Beam Fusion Accelerator H (PBFA II) was modified to generate ion beams in a geometry that will be required for high yield applications. This 2048 modification has resulted in the production of the highest power ion beam to be accelerated from an extraction ion diode. We are also evaluating fast magnetically-driven implosions (z-pinches) as platforms for ICF ablator physics and EOS experiments. Z-pinch implosions driven by the 20 TW Saturn accelerator have efficiently produced high x- ray power (> 75 TW) and energy (> 400 kJ). Containing these x-ray sources within a hohlraum produces a unique large volume (> 6000 mm 3 ), long lived (>20 ns) radiation environment. In addition to studying fundamental ICF capsule physics, there are several concepts for driving ICF capsules with these x-ray sources. Progress in increasing the x-ray power on the Saturn accelerator and promise of further increases on the higher power PBFA II accelerator will be described

  16. Inertial fusion with ultra-powerful lasers

    International Nuclear Information System (INIS)

    Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

    1993-10-01

    Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel

  17. Which are the competitors for a fusion power plant?

    International Nuclear Information System (INIS)

    Miller, Ronald L.

    2000-01-01

    The (future) competitive position of central-station fusion power will depend on the resolution of several broad public-policy issues, including the provision of adequate electrical energy to a growing world population and the interaction of economic and environmental considerations meeting evolving standards of public acceptance and regulatory compliance. Candidate baseload central-station power plants, fusion or other, will be expected to contend for preferential market penetration against an evolving set of performance indicators or metrics (e.g. cost of electricity) reflecting societal 'customer preferences' for abundant, affordable, safe, reliable, and environmentally benign sources. This competition is enhanced by transitions to price-deregulated regimes, overlaid by nuclear uncertainites and evolution beyond carbon-based fuels toward more renewables in the energy mix. From these top-level considerations, quantifiable attributes, including plant size (output), system power density, surface heat flux, recirculating power fraction, power-conversion efficiency, waste streams, and forced- and planned-outage rates emerge

  18. Pulsed power particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1979-01-01

    Although substantial progress has been made in the last few years in developing the technology of intense particle beam drivers, there are still several unanswered questions which will determine their ultimate feasibility as fusion ignition systems. The questions of efficiency, cost, and single pulse scalability appear to have been answered affirmatively but repetitive pulse technology is still in its infancy. The allowable relatively low pellet gains and high available beam energies should greatly ease questions of pellet implosion physics. Insofar as beam-target coupling is concerned, ion deposition is thought to be understood and our measurements of enhanced electron deposition agree with theory. With the development of plasma discharges for intense beam transport and concentration it appears that light ion beams will be the preferred approach for reactors

  19. Complexity and availability for fusion power plants: The potential advantages of inertial fusion energy

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1997-01-01

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. The author examines these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compares these factors with corresponding scheduled and unscheduled outage data from present day fission experience. The author stresses that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself. Given one must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. The author indicates that such requirements can probably be met for IFE plants. He recommends that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggests that databases are probably adequate for this task. 40 refs., 4 figs., 3 tabs

  20. Near-term electric vehicle program: Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B. H.; Murry, R.

    1977-08-01

    A final report is given for an Energy Research and Development Administration effort aimed at a preliminary design of an energy-efficient electric commuter car. An electric-powered passenger vehicle using a regenerative power system was designed to meet the near-term ERDA electric automobile goals. The program objectives were to (1) study the parameters that affect vehicle performance, range, and cost; (2) design an entirely new electric vehicle that meets performance and economic requirements; and (3) define a program to develop this vehicle design for production in the early 1980's. The design and performance features of the preliminary (baseline) electric-powered passenger vehicle design are described, including the baseline power system, system performance, economic analysis, reliability and safety, alternate designs and options, development plan, and conclusions and recommendations. All aspects of the baseline design were defined in sufficient detail to verify performance expectations and system feasibility.

  1. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  2. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  3. Laser requirements for a laser fusion energy power plant

    Institute of Scientific and Technical Information of China (English)

    Stephen; E.Bodner; Andrew; J.Schmitt; John; D.Sethian

    2013-01-01

    We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.

  4. Regulatory aspects of fusion power-lessons from fission plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Brunnader, H.; Sood, S.K.

    1993-01-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulatory. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. With such significant intrinsic safety advantages there is no a priori need to make fusion requirements/regulations more demanding and more stringent than fission

  5. Investigation of materials for fusion power reactors

    Science.gov (United States)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  6. Developing hydrogen infrastructure through near-term intermediate technology

    International Nuclear Information System (INIS)

    Arthur, D.M.; Checkel, M.D.; Koch, C.R.

    2003-01-01

    The development of a vehicular hydrogen fuelling infrastructure is a necessary first step towards the widespread use of hydrogen-powered vehicles. This paper proposes the case for using a near-term, intermediate technology to stimulate and support the development of that infrastructure. 'Dynamic Hydrogen Multifuel' (DHM) is an engine control and fuel system technology that uses flexible blending of hydrogen and another fuel to optimize emissions and overall fuel economy in a spark ignition engine. DHM vehicles can enhance emissions and fuel economy using techniques such as cold-starting or idling on pure hydrogen. Blending hydrogen can extend lean operation and exhaust gas recirculation limits while normal engine power and vehicle range can be maintained by the conventional fuel. Essentially DHM vehicles are a near-term intermediate technology which provides significant emissions benefits in a vehicle which is sufficiently economical, practical and familiar to achieve significant production numbers and significant fuel station load. The factors leading to successful implementation of current hydrogen filling stations must also be understood if the infrastructure is to be developed further. The paper discusses important lessons on the development of alternative fuel infrastructure that have been learned from natural gas; why were natural gas vehicle conversions largely successful in Argentina while failing in Canada and New Zealand? What ideas can be distilled from the previous successes and failures of the attempted introduction of a new vehicle fuel? It is proposed that hydrogen infrastructure can be developed by introducing a catalytic, near-term technology to provide fuel station demand and operating experience. However, it is imperative to understand the lessons of historic failures and present successes. (author)

  7. Assessment of tritium breeding requirements for fusion power reactors

    International Nuclear Information System (INIS)

    Jung, J.

    1983-12-01

    This report presents an assessment of tritium-breeding requirements for fusion power reactors. The analysis is based on an evaluation of time-dependent tritium inventories in the reactor system. The method presented can be applied to any fusion systems in operation on a steady-state mode as well as on a pulsed mode. As an example, the UWMAK-I design was analyzed and it has been found that the startup inventory requirement calculated by the present method significantly differs from those previously calculated. The effect of reactor-parameter changes on the required tritium breeding ratio is also analyzed for a variety of reactor operation scenarios

  8. Potential environmental effects of fusion reactor power plants

    International Nuclear Information System (INIS)

    Young, J.R.; Gore, B.F.; Coffman, F.E.

    1976-01-01

    Construction and operation of fusion power plants is expected to reduce the total environmental effects of 21st century power generation. Fusion power plant impacts due to noise, odors, vibrations, and sanitary wastes are expected to be insignificant. impacts due to land use, chemical releases, and aesthetics are expected to be reduced. Impacts due to heat releases, local socio-economic changes, and non-radioactive liquid and solid disposal are expected to be comparable to those for the alternative fission or coal-fired power systems. Radiation doses to the public due to radioactive wastes are expected to be comparable to, or less than, the trivial low doses due to fission power systems. Research and development will be required, however, to assure adequate containment of tritium, the primary radioisotope of concern. Prevention of accidental tritium releases is within the capability of current engineering practice. Current technology is capable of handling the solid radioactive waste which may be produced, with insignificant environmental impact. Major research efforts are necessary to determine if subtle long-term effects of magnetic fields exist and should be of concern. In view of the large quantities of construction materials required for fusion. Material availability may dictate 21st century power plant design and construction. The accident potential of fusion power plants should be lower than for fission systems. Accidental criticalities and plasma runaways are not considered to be possible. Loss of coolant accidents are not expected to result in damage to the containment. No fission products or actinides are present to be released in an accident, and most activation products are immobilized in structures. The biological hazard of tritium is orders of magnitude smaller than for fission products and actinides. Safeguards against diversion of fissile materials are not expected to be necessary

  9. Electric power from laser fusion: the HYLIFE concept

    International Nuclear Information System (INIS)

    Monsler, M.; Blink, J.; Hovingh, J.; Meier, W.; Walker, P.; Maniscalco, J.

    1978-06-01

    A high yield lithium injection fusion energy chamber is described which can conceptually be operated with pulsed yields of several thousand megajoules a few times a second, using less than one percent of the gross thermal power to circulate the lithium. Because a one meter thick blanket of lithium protects the structure, no first wall replacement is envisioned for the life of the power plant. The induced radioactivity is reduced by an order of magnitude over solid blanket concepts. The design calls for the use of common ferritic steels and a power density approaching that of a LWR, promising shortened development times over other fusion concepts and reactor vessel costs comparable to a LMFBR

  10. IEC fusion: The future power and propulsion system for space

    International Nuclear Information System (INIS)

    Hammond, Walter E.; Coventry, Matt; Miley, George H.; Nadler, Jon; Hanson, John; Hrbud, Ivana

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production

  11. Fusion blankets for high efficiency power cycles

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Usher, J.L.

    1980-04-01

    Definitions are given of 10 generic blanket types and the specific blanket chosen to be analyzed in detail from each of the 10 types. Dimensions, compositions, energy depositions and breeding ratios (where applicable) are presented for each of the 10 designs. Ultimately, based largely on neutronics and thermal hyraulics results, breeding an nonbreeding blanket options are selected for further design analysis and integration with a suitable power conversion subsystem

  12. Short-acting sulfonamides near term and neonatal jaundice

    DEFF Research Database (Denmark)

    Klarskov, Pia; Andersen, Jon Trærup; Jimenez-Solem, Espen

    2013-01-01

    To investigate the association between maternal use of sulfamethizole near term and the risk of neonatal jaundice.......To investigate the association between maternal use of sulfamethizole near term and the risk of neonatal jaundice....

  13. Propagation of nuclear data uncertainties for fusion power measurements

    Directory of Open Access Journals (Sweden)

    Sjöstrand Henrik

    2017-01-01

    Full Text Available Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  14. Fusion reactor development using high power particle beams

    International Nuclear Information System (INIS)

    Ohara, Y.

    1990-01-01

    The present paper outlines major applications of the ion source/accelerator to fusion research and also addresses the present status and future plans for accelerator development. Applications of ion sources/accelerators for fusion research are discussed first, focusing on plasma heating, plasma current drive, plasma current profile control, and plasma diagnostics. The present status and future plan of ion sources/accelerators development are then described focusing on the features of existing and future tokamak equipment. Positive-ion-based NBI systems of 100 keV class have contributed to obtaining high temperature plasmas whose parameters are close to the fusion break-even condition. For the next tokamak fusion devices, a MeV class high power neutral beam injector, which will be used to obtain a steady state burning plasma, is considered to become the primary heating and current drive system. Development of such a system is a key to realize nuclear fusion reactor. It will be entirely indebted to the development of a MeV class high current negative deuterium ion source/accelerator. (N.K.)

  15. Radioactive waste management and disposal scenario for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tabara, Takashi; Yamano, Naoki [Sumitomo Atomic Energy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao

    1997-10-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a light water reactor (LWR) have been evaluated and compared. At first, the amount and the radioactive level of the radwaste generated in five fusion reactors ware evaluated by an activation calculation code. Next, a possible radwaste disposal scenario applicable to fusion radwaste in Japan is considered and the disposal cost evaluated under certain assumptions. The exposure doses are evaluated for the skyshine of gamma-rays during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical LWR was estimated based on a literature survey and the disposal cost was evaluated using the same assumptions as for the fusion reactors. It is found that the relative cost of disposal is strongly dependent on the cost for interim storage of medium level waste of fusion reactors and the cost of high level waste for the LWR. (author)

  16. Fusion power core engineering for the ARIES-ST power plant

    International Nuclear Information System (INIS)

    Tillack, M.S.; Wang, X.R.; Pulsifer, J.; Malang, S.; Sze, D.K.; Billone, M.; Sviatoslavsky, I.

    2003-01-01

    ARIES-ST is a 1000 MWe fusion power plant based on a low aspect ratio 'spherical torus' (ST) plasma. The ARIES-ST power core was designed to accommodate the unique features of an ST power plant, to meet the top-level requirements of an attractive fusion energy source, and to minimize extrapolation from the fusion technology database under development throughout the world. The result is an advanced helium-cooled ferritic steel blanket with flowing PbLi breeder and tungsten plasma-interactive components. Design improvements, such as the use of SiC inserts in the blanket to extend the outlet coolant temperature range were explored and the results are reported here. In the final design point, the power and particle loads found in ARIES-ST are relatively similar to other advanced tokamak power plants (e.g. ARIES-RS [Fusion Eng. Des. 38 (1997) 3; Fusion Eng. Des. 38 (1997) 87]) such that exotic technologies were not required in order to satisfy all of the design criteria. Najmabadi and the ARIES Team [Fusion Eng. Des. (this issue)] provide an overview of ARIES-ST design. In this article, the details of the power core design are presented together with analysis of the thermal-hydraulic, thermomechanical and materials behavior of in-vessel components. Detailed engineering analysis of ARIES-ST TF and PF systems, nuclear analysis, and safety are given in the companion papers

  17. Poloidal variations in toroidal fusion reactor wall power loadings

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1985-01-01

    A geometric formulation is developed by the authors for determining poloidal variations in bremmstrahlung, cyclotron radiation, and neutron wall power loadings in toroidal fusion devices. Assuming toroidal symmetry and utilizing a numerical model which partitions the plasma into small cells, it was generally found that power loadings are highest on the outer surface of the torus, although variations are not as large as some have predicted. Results are presented for various plasma power generation configurations, plasma volume fractions, and toroidal aspect ratios, and include plasma and wall blockage effects

  18. Management of nontritium radioactive wastes from fusion power plants

    International Nuclear Information System (INIS)

    Kaser, J.D.; Postma, A.K.; Bradley, D.J.

    1976-09-01

    This report identifies nontritium radioactive waste sources for current conceptual fusion reactor designs. Quantities and compositions of the radwaste are estimated for the tokamaks of the University of Wisconsin (UWMAK-I), the Princeton Plasma Physics Laboratory (PPPL), and the Oak Ridge National Laboratory (ORNL); the Reference Theta Pinch Reactor of the Los Alamos Scientific Laboratory (LASL); and the Minimum Activation Blanket of the Brookhaven National Laboratory (BNL). Disposal of large amounts of radioactive waste appears necessary for fusion reactors. Although the curie (Ci) level of the wastes is comparable to that of fission products in fission reactors, the isotopes are less hazardous, and have shorter half-lives. Therefore radioactivity from fusion power production should pose a smaller risk than radioactivity from fission reactors. Radioactive waste sources identified for the five reference plants are summarized. Specific radwaste treatments or systems had to be assumed to estimate these waste quantities. Future fusion power plant conceptual designs should include radwaste treatment system designs so that assumed designs do not have to be used to assess the environmental effects of the radioactive waste

  19. How much laser power can propagate through fusion plasma?

    International Nuclear Information System (INIS)

    Lushnikov, Pavel M; Rose, Harvey A

    2006-01-01

    Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data. This maximum is determined by the collective forward stimulated Brillouin scattering instability which suggests a way to increase the maximum power by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and therefore raises the possibility of indirect control of backscatter through manipulation of plasma ionization state or acoustic damping. We find a simple expression for laser intensity at onset of enhanced beam angular divergence (beam spray)

  20. Design of power control system using SMES and SVC for fusion power plant

    International Nuclear Information System (INIS)

    Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T

    2008-01-01

    A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant

  1. High-energy fusion: A quest for a simple, small and environmentally acceptable colliding-beam fusion power source

    International Nuclear Information System (INIS)

    Maglich, B.

    1978-01-01

    Fusion goals should be lowered for a speedier research and development of a less ambitious but a workable 'low-gain fusion power amplifier', based on proven technologies and concepts. The aim of the Migma Program of Controlled Fusion is a small (10-15 liters) fusion power source based on colliding beams instead of plasma or laser heating. Its scientific and technological 'philosophy' is radically different from that of the governmental fusion programs of the USA and USSR. Migmacell uses radiation-free fuels, ('advanced fuels'), rather than tritium. Economic projections show that such a smaller power cell can be econonomically competitive in spite of its low power gain, because it can be mass produced. Power stations could be made either large or small and the power transmission and distribution pattern in the nation would change. An interspersion of energy resources would result. Minifusion opens the possibility to smaller countries (and medium size institutions of large countries), for participation in fusion research; this resource of research talent is presently excluded from fusion by the high cost of the mainline governmental research (over $ 200 million for one experimental fusion device, as compared to $ 1 million for migmacell). The time-scale for obtaining experimental results is reduced from decades to years. Experimental accomplishments to date and the further research needed, are presented. (orig.) [de

  2. Evaluation of divertor conceptual designs for a fusion power plant

    International Nuclear Information System (INIS)

    Ferrari, M.; Giancarli, L.; Kleefeldt, K.; Nardi, C.; Roedig, M.; Reimann, J.; Salavy, J.F.

    2001-01-01

    In the frame of the preliminary study of plants suitable for the energy production from the fusion power, particular emphasis has been given on the divertor studies. Since a significant percentage of the power generated from the fusion process is absorbed in the divertor, the thermal efficiency of the power conversion cycle requires a high coolant outlet temperature of the divertor, leading to solutions that are different from those adopted for the present experimental fusion plants. Therefore, copper alloys having extremely high thermal conductivity, cannot be used as structural material for this kind of devices. The most suitable coolants to be used in the divertor are water, helium and liquid metals. A conceptual design study has been developed for each of these three fluids, with the aim to evaluate the maximum allowable thermal flux at the divertor target plate and the R and D requirements for each solution. While a water-cooled divertor can be designed with a limited R and D effort, the development of helium or liquid metal cooled divertors requires a more engaging R and D program

  3. A proposal of nuclear fusion power plant equipped with SMES

    International Nuclear Information System (INIS)

    Natsukawa, Tatsuya; Makamura, Hirokazu; Molinas, Marta; Nomura, Shinichi; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2000-01-01

    When we intend to operate the nuclear fusion power plant (NFPP) under the economically efficient conditions as an independent power plant, it is desirable that the generated electric power should be sent to network according to the power demand. With such strategy being expanded, some energy storage system is available. In this paper, NFPP equipped with the superconducting magnetic energy storage system (SMES) as electric power storage device is proposed. The advantages of NFPP equipped with SMES are discussed and a case study of 500 MW NFPP equipped with 6 GWh SMES is done with estimating its operational value. For SMES coil, the concept of Force Balanced Coil (FBC) is applied and 6 GWh class FBC is briefly designed

  4. Pinch me - I'm fusing. Fusion Power - what is it? What is a z pinch? And why are z-pinches a promising fusion power technology?

    International Nuclear Information System (INIS)

    DERZON, MARK S.

    2000-01-01

    The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind

  5. STAR Power, an Interactive Educational Fusion CD with a Dynamic, Shaped Tokamak Power Plant Simulator

    Science.gov (United States)

    Leuer, J. A.; Lee, R. L.; Kellman, A. G.; Chapman Nutt, G. C., Jr.; Holley, G.; Larsen, T. A.

    2000-10-01

    We describe an interactive, educational fusion adventure game developed within our fusion education program. The theme of the adventure is start-up of a state-of-the-art fusion power plant. To gain access to the power plant control room, the student must complete several education modules, including topics on building an atom, fusion reactions, charged particle motion in electric and magnetic fields, and building a power plant. Review questions, a fusion video, library material and glossary provide additional resources. In the control room the student must start-up a complex, dynamic fusion power plant. The simulation model contains primary elements of a tokamak based device, including a magnetic shaper capable of producing limited and diverted elongated plasmas. A zero dimensional plasma model based on ITER scaling and containing rate based conservation equations provides dynamic feedback through major control parameters such as toroidal field, fueling rate and heating. The game is available for use on PC and Mac. computers. Copies will be available at the conference.

  6. An aqueous lithium salt blanket option for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, D.; Varsamis, G. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Nuclear Engineering and Engineering Physics); Deutsch, L.; Rathke, J. (Grumman Corp., Bethpage, NY (USA). Advanced Energy Systems); Gierszewski, P. (Canadian Fusion Fuels Technology Project (CFFTP), Mississauga, ON (Canada))

    1989-04-01

    An aqueous lithium salt blanket (ALSB) concept is proposed which could be the basis for either a power reactor blanket or a test module in an engineering test reactor. The design is based on an austenitic stainless steel structure, a beryllium multiplier, and a salt breeder concentration of about 32 g LiNO/sub 3/ per 100 cm/sup 3/ of H/sub 2/O. To limit tritium release rates, the salt breeder solution is separated from the water coolant circuit. The overall tritium system cost for a 2400 MW (fusion power) reactor is estimated to be 180 million Dollar US87 installed. (orig.).

  7. Recycling of copper used in fusion power plants

    International Nuclear Information System (INIS)

    Forty, C.B.A.; Butterworth, G.J.; Turner, A.D.; Junkison, A.J.

    1997-04-01

    One of the major safety and environmental advantages of fusion power is a limited waste management burden on future generations. In this connection, the ability to recycle end-of-service materials from fusion power plant is beneficial both in terms of the conservation of natural resources and the minimisation of the volumes of activated wastes. After 100 years, the residual activity of near-plasma copper components exceeds that permitted for free release or contact handling. The presence of silver as a common impurity in copper may exacerbate this problem, through generation of 108m Ag. Removal of the silver impurity in a separate refining step prior to use of the copper in a fusion plant obviates the problems associated with formation of 108m Ag. Two alternative desilveration processes have been demonstrated; one involving the segregation of silver as AgBr and the other the absorption of Ag + by ion exchange. The present study demonstrates that conventional electrorefining techniques can be adapted to recover used copper in a single refining stage, with sufficient decontamination to permit its reuse in fusion power plants or, with a second stage, unrestricted release. Shielding requirements for the processing of scrap copper in conventional hot cells indicate a decay storage period of 50-100 years. To maximise the cost of savings of reclamation over direct geological disposal, the activation products may be separated out and disposed of in a metallic form. A substantial reduction in the overall volume of active waste should thus be achievable, especially if supercompaction can be applied to the product. (Author)

  8. Recycling of copper used in fusion power plants

    International Nuclear Information System (INIS)

    Butterworth, G.J.; Forty, C.B.A.

    1998-01-01

    One of the major safety and environmental advantages of fusion power is a limited waste management burden on future generations. In this connection, the ability to recycle end-of-service materials from fusion power plants is beneficial both in terms of the conservation of natural resources and the minimisation of the volume of activated wastes. After 100 years, the residual activity of near-plasma copper components exceeds that permitted for free release or contact handling. The presence of silver as a common impurity in copper may exacerbate this problem, through generation of 108m Ag. Removal of the silver impurity in a separate refining step prior to use of the copper in a fusion plant obviates the problems associated with formation of 108m Ag. Two alternative desilverisation processes have been demonstrated; one involving the segregation of silver as AgBr and the other the absorption of Ag + by ion exchange. The present study demonstrates that conventional electrorefining techniques can be adapted to recover used copper in a single refining stage, with sufficient decontamination to permit its reuse in fusion power plants or, with a second stage, unrestricted release. Shielding requirements for the processing of scrap copper in conventional hot cells indicate a decay storage period of 50-100 years. To maximise the cost savings of reclamation over direct geological disposal, the activation products may be separated out and disposed of in a metallic form. A substantial reduction in the overall volume of active waste should thus be achievable, especially if supercompaction can be applied to the product. (orig.)

  9. Near term hybrid passenger vehicle development program, phase 1

    Science.gov (United States)

    1980-01-01

    Missions for hybrid vehicles that promise to yield high petroleum impact were identified and a preliminary design, was developed that satisfies the mission requirements and performance specifications. Technologies that are critical to successful vehicle design, development and fabrication were determined. Trade-off studies to maximize fuel savings were used to develop initial design specifications of the near term hybrid vehicle. Various designs were "driven" through detailed computer simulations which calculate the petroleum consumption in standard driving cycles, the petroleum and electricity consumptions over the specified missions, and the vehicle's life cycle costs over a 10 year vehicle lifetime. Particular attention was given to the selection of the electric motor, heat engine, drivetrain, battery pack and control system. The preliminary design reflects a modified current compact car powered by a currently available turbocharged diesel engine and a 24 kW (peak) compound dc electric motor.

  10. Near-term benefits of the plant life extension program

    International Nuclear Information System (INIS)

    Kaushansky, M.M.

    1987-01-01

    The aging process can be expected to reduce the availability and increase the production costs of nuclear power plants over time. To mitigate this process and recover or enhance plant availability, capacity, thermal efficiency, and maintenance expenditures, the utility must dedicate increased attention and commitment to a comprehensive plant life extension (PLEX) program. Improvements must be justified by balancing the cost of the recommended modifications with the economic value of benefits obtained from its implementation. It is often extremely difficult for utility management to make an optimal selection from among hundreds of proposed projects, most of which are cost-effective. A properly structured PLEX program with an emphasis on near-term benefits should provide the utility with a means of evaluating proposed projects, thus determining the optimum combination for authorization and implementation

  11. External costs of material recycling strategies for fusion power plants

    International Nuclear Information System (INIS)

    Hallberg, B.; Aquilonius, K.; Lechon, Y.; Cabal, H.; Saez, R.M.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R.

    2003-01-01

    This paper is based on studies performed within the framework of the project Socio-Economic Research on Fusion (SERF3). Several fusion power plant designs (SEAFP Models 1-6) were compared focusing on part of the plant's life cycle: environmental impact of recycling the materials. Recycling was considered for materials replaced during normal operation, as well as materials from decommissioning of the plant. Environmental impact was assessed and expressed as external cost normalised with the total electrical energy output during plant operation. The methodology used for this study has been developed by the Commission of the European Union within the frame of the ExternE project. External costs for recycling, normalised with the energy production during plant operation, are very low compared with those for other energy sources. Results indicate that a high degree of recycling is preferable, at least when considering external costs, because external costs of manufacturing of new materials and disposal costs are higher

  12. Fusion power in the E.E.C. - some considerations concerning the future programme

    International Nuclear Information System (INIS)

    Carruthers, R.

    1976-01-01

    The problems of fusion reactor technology, the assessment of potential reactor systems and an estimate of the overall investment of manpower likely to be needed to reach a practical fusion power reactor are presented. (U.K.)

  13. Exploring novel high power density concepts for attractive fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A. [California State Univ., Los Angeles, CA (United States). Dept. of Mechanical Engineering; APEX Team

    1999-05-01

    The advanced power extraction study is aimed at exploring innovative concepts for fusion power technology (FPT) that can tremendously enhance the potential of fusion as an attractive and competitive energy source. Specifically, the study is exploring new and `revolutionary` concepts that can provide the capability to efficiently extract heat from systems with high neutron and surface heat loads while satisfying all the FPT functional requirements and maximizing reliability, maintainability, safety, and environmental requirements. The primary criteria for measuring performance of the new concepts are: (1) high power density capability with a peak neutron wall load (NWL) of {proportional_to}10 MW m{sup -2} and surface heat flux of {proportional_to}2 MW m{sup -2}; (2) high power conversion efficiency, {proportional_to}40% net; and (3) clear potential to achieve high availability; specifically low failure rate, large design margin, and short downtime for maintenance. A requirement that MTBF{>=}43 MTTR was derived as a necessary condition to achieve the required first wall/blanket availability, where MTBF is the mean time between failures and MTTR is the mean time to recover. Highlights of innovative and promising new concepts that may satisfy these criteria are provided. (orig.) 40 refs.

  14. Osiris and SOMBRERO inertial confinement fusion power plant designs

    International Nuclear Information System (INIS)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs

  15. International ITER fusion energy organization. Paving the way to power generation from nuclear fusion

    International Nuclear Information System (INIS)

    Preuschen-Liebenstein, R. von

    2006-01-01

    ITER (Latin: the way) is the acronym of a new international large research facility gradually taking shape after the meeting of Gorbachev and Reagan in Reykjavik in 1985. Under the auspices of the IAEA, worldwide scientific and industrial cooperation with 'home teams' of each of the ITER partners began at that time which were commissioned to accumulate the knowledge and the technology of nuclear fusion in the participating countries. At the end of the preparation and decisionmaking process, the design draft of the ITER reactor was elaborated in international cooperation as the basis of the ITER Convention. After lengthy negotiations among the international ITER partners, a European site for the ITER organization and its reactor was found at Cadarache, France. As the first ITER member, Europe now initiated worldwide cooperation in research and development, seeking to demonstrate the technical and scientific feasibility of tapping fusion power for peaceful purposes. The Council of the European Union (competitiveness), at its meeting on September 25, 2006, decided to sign the ITER Convention about the establishment of the International ITER Fusion Energy Organization ('ITER Organization') and about the mutual obligation to make the necessary contributions towards the construction of ITER. (orig.)

  16. Limitation of fusion power plant installation on future power grids under the effect of renewable and nuclear power sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shutaro, E-mail: takeda.shutarou.55r@st.kyoto-u.ac.jp [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Sakurai, Shigeki [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Suita, Osaka (Japan); Kasada, Ryuta; Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan)

    2016-11-01

    Graphical abstract: - Highlights: • Future power grids would be unstable due to renewable and nuclear power sources. • Output interruptions of fusion plant would cause disturbances to future grids. • Simulation results suggested they would create limitations in fusion installation. • A novel diagram was presented to illustrate this suggested limitation. - Abstract: Future power grids would be unstable because of the larger share of renewable and nuclear power sources. This instability might bring some additional difficulties to fusion plant installation. Therefore, the authors carried out a quantitative feasibility study from the aspect of grid stability through simulation. Results showed that the more renewable and nuclear sources are linked to a grid, the greater disturbance the grid experiences upon a sudden output interruption of a fusion power plant, e.g. plasma disruption. The frequency deviations surpassed 0.2 Hz on some grids, suggesting potential limitations of fusion plant installation on future grids. To clearly show the suggested limitations of fusion plant installations, a novel diagram was presented.

  17. DEMO and fusion power plant conceptual studies in Europe

    International Nuclear Information System (INIS)

    Maisonnier, David; Cook, Iau; Pierre, Sardain; Lorenzo, Boccaccini; Luigi, Di Pace; Luciano, Giancarli; Prachai, Norajitra; Aldo, Pizzuto

    2006-01-01

    Within the European Power Plant Conceptual Study (PPCS) four fusion power plant 'models' have been developed. Two of these models were developed considering limited extrapolations both in physics and in technology. For the two other models, advanced physics scenarios have been identified and combined with advanced blanket concepts that allow higher thermodynamic efficiencies of the power conversion systems. For all the PPCS models, systems analyses were used to integrate the plasma physics and technology constraints to produce self-consistent plant parameter sets. The broad features of the conclusions of previous studies on safety, environmental impact and economics have been confirmed for the new models and demonstrated with increased confidence. The PPCS also helps in the definition of the objectives and in the identification of the design drivers of DEMO, i.e. the device between the next step (ITER) and a first-of-a-kind reactor. These will constitute the basis of the European DEMO Conceptual Study that has recently started

  18. Evolution of the Fusion Power Demonstration tandem mirror reactor configuration

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Lousteau, D.C.

    1985-01-01

    This paper gives a presentation of the evolution of configurations proposed for tandem mirror Fusion Power Demonstration (FPD) machines. The FPD study was undertaken to scope the mission as well as the technical and design requirements of the next tandem mirror device. Three configurations, entitled FPD I, II, and III were studied. During this process new systems were conceived and integrated into the design, resulting in a significantly changed overall machine configuration. The machine can be divided into two areas. A new center cell configuration, minimizing magnetic field ripple and thus maximizing center cell fusion power, features a semicontinuous solenoid. A new end cell has evolved which maintains the required thermal barrier in a significantly reduced axial length. The reduced end cell effective length leads to a shorter central cell length being required to obtain minimum ignition conditions. Introduced is the concept of an electron mantle stabilized octopole arrangement. The engineering features of the new end cell and maintenance concepts developed are influenced to a great extent by the octopole-based design. The new ideas introduced during the FPD study have brought forth a new perspective of the size, design, and maintenance of tandem mirror reactors, making them more attractive as commercial power sources

  19. Considerations of the social impact of fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Gastil, R.D.; Markus, H.S.

    1976-09-01

    It is concluded that the direct effects of an ideal form of fusion technologies would be socially more desirable than those of the alternatives. This is particularly true of the second generation fusion power plant. However, given our technological inputs, this was a trivial result. Less trivial was consideration of the negative effects that might accrue through the availability of potentially unlimited supplies of low cost energy. It is concluded that while there may be reasonable humanist argument both for and against such abundance, in a democratic society control of energy development for its own sake is likely to be unacceptable. However, if the indirect effects of pollution, despoilment, and resource depletion through ever expanding energy use become sufficiently disturbing to the well-being of the majority, unlimited energy may come to be seen as undesirable by the society. To this extent successful research and development for unlimited sources such as the fusion or mixed solar alternatives might be judged from some point far in the future to have been a mistake. This could occur even though advances in the technology of pollution control and resource use greatly reduce the pollution and hazard accompanying a much higher rate of energy utilization.

  20. Considerations of the social impact of fusion power

    International Nuclear Information System (INIS)

    Gastil, R.D.; Markus, H.S.

    1976-09-01

    It is concluded that the direct effects of an ideal form of fusion technologies would be socially more desirable than those of the alternatives. This is particularly true of the second generation fusion power plant. However, given our technological inputs, this was a trivial result. Less trivial was consideration of the negative effects that might accrue through the availability of potentially unlimited supplies of low cost energy. It is concluded that while there may be reasonable humanist argument both for and against such abundance, in a democratic society control of energy development for its own sake is likely to be unacceptable. However, if the indirect effects of pollution, despoilment, and resource depletion through ever expanding energy use become sufficiently disturbing to the well-being of the majority, unlimited energy may come to be seen as undesirable by the society. To this extent successful research and development for unlimited sources such as the fusion or mixed solar alternatives might be judged from some point far in the future to have been a mistake. This could occur even though advances in the technology of pollution control and resource use greatly reduce the pollution and hazard accompanying a much higher rate of energy utilization

  1. Core fusion accidents in nuclear power reactors. Knowledge review

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    This reference document proposes a large and detailed review of severe core fusion accidents occurring in nuclear power reactors. It aims at presenting the scientific aspects of these accidents, a review of knowledge and research perspectives on this issue. After having recalled design and operation principles and safety principles for reactors operating in France, and the main studied and envisaged accident scenarios for the management of severe accidents in French PWRs, the authors describe the physical phenomena occurring during a core fusion accident, in the reactor vessel and in the containment building, their sequence and means to mitigate their effects: development of the accident within the reactor vessel, phenomena able to result in an early failure of the containment building, phenomena able to result in a delayed failure with the corium-concrete interaction, corium retention and cooling in and out of the vessel, release of fission products. They address the behaviour of containment buildings during such an accident (sizing situations, mechanical behaviour, bypasses). They review and discuss lessons learned from accidents (Three Mile Island and Chernobyl) and simulation tests (Phebus-PF). A last chapter gives an overview of software and approaches for the numerical simulation of a core fusion accident

  2. Divertor development for a future fusion power plant

    International Nuclear Information System (INIS)

    Norajitra, Prachai

    2011-01-01

    Nuclear fusion is considered as a future source of sustainable energy supply. In the first chapter, the physical principle of magnetic plasma confinement, and the function of a tokamak are described. Since the discovery of the H-mode in ASDEX experiment ''Divertor I'' in 1982, the divertor has been an integral part of all modern tokamaks and stellarators, not least the ITER machine. The goal of this work is to develop a feasible divertor design for a fusion power plant to be built after ITER. This task is particularly challenging because a fusion power plant formulates much greater demands on the structural material and the design than ITER in terms of neutron wall load and radiation. First several divertor concepts proposed in the literature e.g. the Power Plant Conceptual Study (PPCS) using different coolants are reviewed and analyzed with respect to their performance. As a result helium cooled divertor concept exhibited the best potential to come up to the highest safety requirements and therefore has been chosen for the design process. From the third chapter the necessary steps towards this goal are described. First, the boundary conditions for the arrangement of a divertor with respect to the fusion plasma are discussed, as this determines the main thermal and neutronic load parameters. Based on the loads material selection criteria are inherently formulated. In the next step, the reference design is defined in accordance with the established functional design specifications. The developed concept is of modular nature and consists of cooling fingers of tungsten using an impingement cooling in order to achieve a heat dissipation of 10 MW/m 2 . In the next step, the design was subjected to the thermal-hydraulic and thermo-mechanical calculations in order to analyze and improve the performance and the manufacturing technologies. Based on these results, a prototype was produced and experimentally tested on their cooling capacity, their thermo-cyclic loading

  3. Conceptual design of a laser fusion power plant

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Meier, W.R.; Monsler, M.J.

    1977-01-01

    A conceptual design of a laser fusion power plant is extensively discussed. Recent advances in high gain targets are exploited in the design. A smaller blanket structure is made possible by use of a thick falling region of liquid lithium for a first wall. Major design features of the plant, reactor, and laser systems are described. A parametric analysis of performance and cost vs. design parameters is presented to show feasible design points. A more definitive follow-on conceptual design study is planned

  4. Design study of electrical power supply system for tokamak fusion power reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Design study of the electrical power supply system for a 2000MWt Tokamak-type fusion reactor has been carried out. The purposes are to reveal and study problems in the system, leading to a plan of the research and development. Performed were study of the electrical power supply system and design of superconducting inductive energy storages and power switches. In study of the system, specification and capability of various power supplies for the fusion power reactor and design of the total system with its components were investigated. For the superconducting inductive energy storages, material choice, design calculation, and structural design were conducted, giving the size, weight and performance. For thyristor switches, circuit design in the parallel / series connection of element valves and cooling design were studied, providing the size and weight. (auth.)

  5. Fast optical shutters for Nova, a high power fusion laser

    International Nuclear Information System (INIS)

    Bradley, L.P.; Gagnon, W.L.; Carder, B.M.

    1977-01-01

    Preliminary design and performance test results for fast optical shutters intended for use in the Nova high power fusion laser system are briefly described. Both an opening shutter to protect the pellet target from amplified spontaneous emission (ASE), and a closing shutter to protect the laser from light reflected back from the target are discussed. Faraday rotators, synchronized by a 400 Hz oscillator, provide an opening shutter mechanism with an opening time of approximately 10 μs. A plasma closing shutter, employing electrical sublimation of a foil, provide a shutter closing time of 70 ns +- 20 ns. Energy for foil sublimation is provided by discharge of a 42 J capacitor bank. Implementation of these shutter techniques in the Nova system is anticipated to improve laser output power and efficiency

  6. Overview of systems requirements for impact fusion power

    International Nuclear Information System (INIS)

    Williams, J.M.; Booth, L.A.; Krakowski, R.A.

    1979-01-01

    The development of impact fusion power reactor concepts is very limited at this time. Key systems factors in arriving at practical concepts will be conception of credible systems and subsystems which promise an acceptable overall energy balance and development of target/projectile designs and gain versus projectile energy curves which allow system design tradeoffs to be accomplished. Important system parameters will be subsystem efficiencies (particularly the accelerator), target/projectile gain as a function of target design, circulating power fraction or engineering gain, system pulse repetition rate, size/cost scaling of components, containment cavity design limits, maximum yield, minimum economical yield, minimum projectile velocity and energy, and overall economics. When more detailed conceptual designs are available, then system tradeoffs and performance optimization will be possible

  7. Overview of JET results, near term plans

    Energy Technology Data Exchange (ETDEWEB)

    Pamela, J.; Rapp, J

    2003-09-01

    In preparation of ITER operation the JET programme has been focussed to consolidate the ITER reference scenario, the ELMy H-mode, and furthermore to mature the Advanced Tokamak Scenarios, candidate for steady state operation on ITER. In type-I ELMy H-modes simultaneously high confinement (f{sub H98}{approx}1) and high densities (n/n{sup GW}>0.85) were achieved in stationary conditions by several techniques: (a) increasing plasma triangularity (close to ITER values), (b) argon seeding and (c) periodic pellet fuelling. Techniques for controlling high-pressure operation (control of neoclassical tearing modes (NTM)) and improving amelioration of transient divertor heat loads due to ELMs have been elaborated. In Advanced Tokamak Scenarios the improvement of LHCD coupling to the plasma led to reversed shear plasmas, providing reliable access to strong Internal Transport barriers (ITBs) at lower auxiliary heating powers. The successful development of real-time feedback schemes allowed ITBs to be controlled in steady state conditions (7.5 s, 27x{tau}{sub E}). In particular the capability to control both the pressure and current profiles has been demonstrated. Studies related to in-vessel material migration have been further extended, in particular with a new quartz-micro balance diagnostic, further tile analysis and an experimental campaign in helium. This led to new insights, underlining the importance of carbon erosion in the main chamber and chemical erosion in the inner divertor on JET. Altogether this might enable the control of Tritium co-deposition. Detritiation technologies are being developed which could find application on ITER. Enhancements of the facility are undertaken, in view of further extending the operational range closer to ITER, thereby supporting the optimisation of ITER operating scenarios and of ITER auxiliaries.

  8. Power-balance analysis of muon-catalyzed fusion-fission hybrid reactor systems

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1985-01-01

    A power-balance model of a muon-catalyzed fusion system in the context of a fission-fuel factory is developed and exercised to predict the required physics performance of systems competitive with either pure muon-catalyzed fusion systems or thermonuclear fusion-fission fuel factory hybrid systems

  9. Power exhaust by impurity seeding in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bernert, Matthias; Kallenbach, Arne; Dux, Ralph; Wischmeier, Marco [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Reimold, Felix [Forschungszentrum Juelich GmbH, IEK, Juelich (Germany); Lipschultz, Bruce [University of York, York Plasma Institute, Heslington, York (United Kingdom); Collaboration: the ASDEX Upgrade team; the EUROfusion MST1 Team

    2016-07-01

    Power exhaust is one of the big challenges for future fusion reactors. The power load at the divertor targets, the primary plasma-wall interaction zone, would exceed material limits and, thus, must be reduced. Therefore, 90% of the exhaust power needs to be dissipated and the divertor is anticipated to be in the detached regime, where the interaction of the plasma with the wall is significantly reduced. Radiation is the dominant dissipation process and is increased by impurity seeding. The radiation distribution can be tailored by using different seed impurities (N for radiation outside, Ne and Ar for radiation at the edge of and Kr for radiation inside the confined region). The tailoring of the radiation profile is required in order to maximize the radiated power and at the same time minimize the impact on the energy confinement. Recent experiments with intense impurity seeding at the ASDEX Upgrade tokamak demonstrate operation at highest heat fluxes and detached divertor targets at radiated power fractions of up to 90%. In these scenarios the radiation originates predominantly from the confined region and leads to an unexpectedly small confinement reduction.

  10. A high power, tunable free electron maser for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Urbanus, W.H.; Bratman, V.L.; Bongers, W.A.; Caplan, M.; Denisov, G.G.; Geer, C.A.J. van der; Manintveld, P.; Militsyn, B.; Oomens, A.A.M.; Poelman, A.J.; Plomp, J.; Pluygers, J.; Savilov, A.V.; Smeets, P.H.M.; Sterk, A.B.; Verhoeven, A.G.A

    2001-01-01

    The Fusion-FEM experiment, a high-power, electrostatic free-electron maser being built at the FOM-Institute for Plasma Physics 'Rijnhuizen', is operated at various frequencies. So far, experiments were done without a depressed collector, and the pulse length was limited to 12 {mu}s. Nevertheless, many aspects of generation of mm-wave power have been explored, such as the dependency on the electron beam energy and beam current, and cavity settings such as the feedback coefficient. An output power of 730 kW at 206 GHz is generated with a 7.2 A, 1.77 MeV electron beam, and 360 kW at 167 GHz is generated with a 7.4 A, 1.61 MeV electron beam. It is shown experimentally and by simulations that, depending on the electron beam energy, the FEM can operate in single-frequency regime. The next step of the FEM experiment is to reach a pulse length of 100 ms. The major part of the beam line, the high voltage systems, and the collector have been completed. The undulator and mm-wave cavity are now at high voltage (2 MV). The new mm-wave transmission line, which transports the mm-wave output power from the high-voltage terminal to ground and outside the pressure tank, has been tested at low power.

  11. The German DEMO working group. Perspectives of a fusion power plant

    International Nuclear Information System (INIS)

    Hesch, Klaus

    2013-01-01

    Fusion development has many different challenges in the areas of plasma physics, fusion technologies, materials development and plasma wall interaction. For making fusion power a reality, a coherent approach is necessary, interlinking the different areas of work. To this end, the German fusion program started in 2010 the German DEMO Working Group, bringing together high-level experts from all the different fields, from the 3 German fusion centers Max-Planck-Institut fuer Plasmaphysik (IPP), Karlsruher Institut fuer Technologie (KIT) and Forschungszentrum Juelich (FZJ). An encompassing view of what will be needed with high priority, in plasma physics, in fusion technology and in the interrelation of the fields, to make fusion energy real, has been elaborated, and is presented here in a condensed way. On this basis, the 3 German fusion centers now are composing their work program, towards a fusion demonstration reactor DEMO. (orig.)

  12. Evaluation of the energy required for constructing and operating a fusion power plant

    International Nuclear Information System (INIS)

    Buende, R.

    1982-09-01

    The energy required for constructing and operating a tokamak fusion power plant is appraised with respect to the energy output during the lifetime of the plant. A harvesting factor is deduced as a relevant figure of energetic merit and is used for a comparison between fusion, fission, and coal-fired power plants. Because fusion power plants involve considerable uncertainties the comparison is supplemented by a sensitivity analysis. In comparison with Light Water Reactor plants fusion power plants appear to be rather favourable in this respect. The energy required for providing the fuel is relatively low for fusion plants, thus overcompensating the considerable higher amount of energy necessary for constructing the fusion power plant. (orig.)

  13. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  14. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  15. Fault diagnosis model for power transformers based on information fusion

    Science.gov (United States)

    Dong, Ming; Yan, Zhang; Yang, Li; Judd, Martin D.

    2005-07-01

    Methods used to assess the insulation status of power transformers before they deteriorate to a critical state include dissolved gas analysis (DGA), partial discharge (PD) detection and transfer function techniques, etc. All of these approaches require experience in order to correctly interpret the observations. Artificial intelligence (AI) is increasingly used to improve interpretation of the individual datasets. However, a satisfactory diagnosis may not be obtained if only one technique is used. For example, the exact location of PD cannot be predicted if only DGA is performed. However, using diverse methods may result in different diagnosis solutions, a problem that is addressed in this paper through the introduction of a fuzzy information infusion model. An inference scheme is proposed that yields consistent conclusions and manages the inherent uncertainty in the various methods. With the aid of information fusion, a framework is established that allows different diagnostic tools to be combined in a systematic way. The application of information fusion technique for insulation diagnostics of transformers is proved promising by means of examples.

  16. Canadian fusion program

    International Nuclear Information System (INIS)

    Brown, T.S.

    1982-06-01

    The National Research Council of Canada is establishing a coordinated national program of fusion research and development that is planned to grow to a total annual operating level of about $20 million in 1985. The long-term objective of the program is to put Canadian industry in a position to manufacture sub-systems and components of fusion power reactors. In the near term the program is designed to establish a minimum base of scientific and technical expertise sufficient to make recognized contributions and thereby gain access to the international effort. The Canadian program must be narrowly focussed on a few specializations where Canada has special indigenous skills or technologies. The programs being funded are the Tokamak de Varennes, the Fusion Fuels Technology Project centered on tritium management, and high-power gas laser technology and associated diagnostic instrumentation

  17. Developing maintainability for fusion power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity.

  18. STARFIRE: a commercial tokamak fusion power plant study

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations.

  19. STARFIRE: a commercial tokamak fusion power plant study

    International Nuclear Information System (INIS)

    1980-09-01

    STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations

  20. Developing maintainability for fusion power systems. Final report

    International Nuclear Information System (INIS)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity

  1. Neutronics requirements for a DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, C. [EUROfusion Consortium , Boltzmannstraße 2, 85748 Garching (Germany); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Villari, R. [ENEA UT-FUS C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)

    2015-10-15

    Highlights: • Discussion and specification of neutronic requirements for a DEMO power plant. • TBR uncertainties are reviewed/discussed and design margins are elaborated. • Limits are given for radiation loads to super-conducting magnets and steel structural components. • Available DEMO results are compared to recommended limits and TBR design target. - Abstract: This paper addresses the neutronic requirements a DEMO fusion power plant needs to fulfil for a reliable and safe operation. The major requirement is to ensure Tritium self-sufficiency taking into account the various uncertainties and plant-internal losses that occur during DEMO operation. A further major requirement is to ensure sufficient protection of the superconducting magnets against the radiation penetrating in-vessel components and vessel. Reliable criteria for the radiation loads need to be defined and verified to ensure the reliable operation of the magnets over the lifetime of DEMO. Other issues include radiation induced effects on structural materials such as the accumulated displacement damage, the generation of gases such as helium which may deteriorate the material performance. The paper discusses these issues and their impact on design options for DEMO taking into account results obtained in the frame of European Power Plant Physics and Technology (PPPT) 2013 programme activities with DEMO models employing the helium cooled pebble bed (HCPB), the helium cooled lithium lead (HCLL), and the water-cooled (WCLL) blanket concepts.

  2. Nuclear challenges and progress in designing stellarator fusion power plants

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.; Wilson, P.; Henderson, D.; Sawan, M.; Sviatoslavsky, G.; Tautges, T.; Slaybaugh, R.; Kiedrowski, B.; Ibrahim, A.

    2008-01-01

    Over the past 5-6 decades, stellarator power plants have been studied in the US, Europe, and Japan as an alternate to the mainline magnetic fusion tokamaks, offering steady-state operation and eliminating the risk of plasma disruptions. The earlier 1980s studies suggested large-scale stellarator power plants with an average major radius exceeding 20 m. The most recent development of the compact stellarator concept delivered ARIES-CS - a compact stellarator with 7.75 m average major radius, approaching that of tokamaks. For stellarators, the most important engineering parameter that determines the machine size and cost is the minimum distance between the plasma boundary and mid-coil. Accommodating the breeding blanket and necessary shield within this distance to protect the ARIES-CS superconducting magnet represents a challenging task. Selecting the ARIES-CS nuclear and engineering parameters to produce an economic optimum, modeling the complex geometry for 3D nuclear analysis to confirm the key parameters, and minimizing the radwaste stream received considerable attention during the design process. These engineering design elements combined with advanced physics helped enable the compact stellarator to be a viable concept. This paper provides a brief historical overview of the progress in designing stellarator power plants and a perspective on the successful integration of the nuclear activity into the final ARIES-CS configuration

  3. Economic requirements for competitive laser fusion power production

    International Nuclear Information System (INIS)

    Hogan, W.J.; Meier, W.R.

    1986-01-01

    An economic model of a laser fusion commercial power plant is used to identify the design and operating regimes of the driver, target and reaction chamber that will result in economic competitiveness with future fission and coal plants. The authors find that, for a plant with a net power of 1 GW/sub e/, the cost of the driver must be less than $0.4 to 0.6 B, and the recirculating power fraction must be less than 25%. Target gain improvements at low driver energy are the most beneficial but also the most difficult to achieve. The optimal driver energy decreases with increasing target technology. The sensitivity of the cost of electricity to variations in cost and performance parameters decreases with increasing target technology. If chamber pulse rates of a few Hz can be achieved, then gains of 80-100 are sufficient, and higher pulse rates do not help much. Economic competitiveness becomes more difficult with decreasing plant size. Finally, decreasing the cost of the balance of plant has the greatest beneficial effect on economic competitiveness

  4. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  5. Conceptual design of China fusion power plant FDS-II

    International Nuclear Information System (INIS)

    Wu, Y.; Liu, S.; Chen, H.

    2007-01-01

    As one of the series of fusion system design concepts developed by the FDS Team of China, FDS-II is designated to exploit and evaluate potential attractiveness of fusion energy application for the generation of electricity on the basis of conservatively advanced plasma parameters, which can be limitedly extrapolated from the successful operation of ITER. The principle of the blanket design is established in both the feasibility and potential attractiveness of technology to meet the requirement for tritium self-sufficiency, safety margin, operation economy and environment protection etc. The plasma physics and engineering parameters of FDS-II are selected on the basis of the progress in recent experiments and associated theoretical studies of magnetic confinement fusion plasma with a fusion power of 2∝3 GW. The neutron wall load of 2∝3 MW/m 2 and the surface heat flux of 0.5∝1 MW/m 2 are considered for high effective power conversion. The ''multi-modules'' scenario is adopted in the FDS-II blanket design to reduce thermal stress and electromagnetic forces under plasma disruption, with liquid metal lithium lead (LiPb) as tritium breeder, the Reduced Activation Ferritic/Martensitic (RAFM) steel as structural material. Two options of specific liquid LiPb blanket concepts have been proposed, named the Dual-cooled Lithium Lead (DLL) breeder blanket and the Quasi-Static Lithium Lead (SLL) breeder blanket. The DLL blanket is a dual-cooled LiPb breeder system with helium gas to cool the first wall and main structure and LiPb eutectic to be self-cooled. The flow channel inserts (FCIs), e.g. SiCf/SiC composites, are designed as the thermal and electrical insulators inside the LiPb flow channels to reduce the magnetohydrodynamic (MHD) pressure drop and to allow the coolant LiPb outlet temperature up to 700 C for high thermal efficiency. The SLL blanket is another option of the FDS-II blanket with the technology developed relatively easily. To avoid or mitigate the

  6. Pulsed power for angular multiplexed laser fusion drivers

    International Nuclear Information System (INIS)

    Eninger, J.E.

    1983-01-01

    The feasibility of using rare gas-halide lasers, in particular the KrF laser, as inertial confinement fusion (ICF) drivers has been assessed. These lasers are scalable to the required high energy (approx. =1-5 MJ) in a short pulse (approx. =10 ns) by optical angular multiplexing, and integration of the output from approx. =100 kJ laser amplifier subsystems. The e-beam current density (approx. =50A/cm 2 ) and voltage (approx. =800 kV) required for these power amplifiers lead to an e-beam impedance of approx. =0.2Ω for approx. =300 ns pump time. This impedance level requires modularization of the large area e-gun, a) to achieve a diode inductance consistent with fast current risetime, b) to circumvent dielectric breakdown constraints in the pulse forming lines, and c) to reduce the requirement for guide magnetic fields. Pulsed power systems requirements, design concepts, scalability, tradeoffs, and performance projections are discussed in this paper

  7. Trends in radiation protection: possible effects on fusion power plant design

    International Nuclear Information System (INIS)

    Eurajoki, Tapani; Frias, Manuel Pascual; Orlandi, Sergio

    2003-01-01

    Since the design of fusion power plants involves long-term issues, ranging over several decades, it is useful to try to foresee under what kind of regulations the first fusion plants are to be operated. Application of present radiological regulations and practice to a fusion power plant concept is considered. The current design phase of fusion power plants motivates the top-down dose assessment, but it is crucial to aim at bottom-up assessments to ensure radiation doses as low as reasonably achievable. Since several issues, relating both to our knowledge on radiation as well as to the practice of radiation protection, may change in the future, it is necessary to continuously follow the development in the further design of fusion power plants

  8. An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion

    International Nuclear Information System (INIS)

    Delene, Jerry G.; Sheffield, John; Williams, Kent A.; Reid, R. Lowell; Hadley, Stan

    2001-01-01

    This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nuclear fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should be in a 30 to 53 mills/kW.h (1999 dollars) range if carbon sequestration is not needed, 30 to 61 mills/kW.h if sequestration is required, or as high as 83 mills/kW.h for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 65 to 102 mills/kW.h for 1- to 1.3-GW(electric) scale power plants, based on the tokamak concept. Tokamak fusion costs will have to be reduced and/or cost-effective alternative nontokamak concepts devised before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal. Recent results from fusion experiments and developments in technology and engineering solutions indicate that lower cost fusion power plants are possible at the 1-GW(electric) level. Another general route for fusion to reduce costs is to go to large plant sizes [multigigawatts (electric)

  9. HYLIFE-II inertial fusion energy power plant design

    International Nuclear Information System (INIS)

    Moir, R.W.

    1992-01-01

    The HYLIFE-II inertial fusion power plant design study uses a liquid fall, in the form of jets, to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-I used liquid lithium. HYLIFE-II avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 BeF 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. In addition, although not adequately considered for HYLIFE-I, there is liquid splash that must be forcibly cleared because gravity is too slow, at higher repetition rates than 1 Hz. Splash removal is accomplished in the central region by oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW·h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost, that is, a zero cost driver would give a calculated cost of electricity of 0.045 $/kWh

  10. HYLIFE-II inertial fusion energy power plant design

    International Nuclear Information System (INIS)

    Moir, R.W.

    1992-01-01

    The HYLIFE-II inertial fusion power plant design study uses a liquid fall, in the form of jets, to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-I used liquid lithium. HYLIFE-II avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 BeF 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 Gj from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. In addition, although not adequately considered for HYLIFE-I, there is liquid splash that must be forcibly cleared because gravity is too slow, at higher repetition rates than 1 Hz. Splash removal is accomplished in the central region by oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW·h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost, that is, a zero cost driver would give a calculated cost of electricity of 0.045 $/kWh

  11. HYLIFE-II inertial confinement: Fusion power plant design

    International Nuclear Information System (INIS)

    Moir, R.W.

    1990-01-01

    The HYLIFE-2 inertial fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. HYLIFE-1 used liquid lithium. HYLIFE 2 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 BeF 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-1. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required. In addition, although not considered for HYLIFE-1, there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.09 $/kW·h in constant 1988 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost. 16 refs., 6 figs., 2 tabs

  12. Fusion power in the E.E.C

    International Nuclear Information System (INIS)

    Carruthers, R.

    1976-01-01

    The work outlines firstly the aims of a fusion reactor development programme, as well as the role regarding plasma physics in this and then deals with the present situation of system studies on a series of various types of fusion apparatus. 15 test systems are listed and discussed. After working out the differences between the terms 'fusion technology' and 'fusion reactor technology', factors based on the organization of technology research and development, and the future technology research and development of the E.E.C. are dealt with. Problems concerning time-tables, resources, and the priorities to be set are touched upon. Suggestions are made regarding the carring-out of a European fusion reactor development programme. Problems concerning fusion reactor technology and some dealing with the tokamak and reversed field pinch are listed and discussed in two appendixes. (GG) [de

  13. Data fusion and sensor management for nuclear power plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, O [Istanbul Technical Univ., Istanbul (Turkey). Nuclear Power Dept.; Turkcan, E [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1997-12-31

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. The organization of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 fits, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. 12 refs, 6 figs.

  14. Data fusion and sensor management for nuclear power plant safety

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1996-01-01

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. The organization of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 fits, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. 12 refs, 6 figs

  15. Fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1984-01-01

    This textbook covers the physics and technology upon which future fusion power reactors will be based. It reviews the history of fusion, reaction physics, plasma physics, heating, and confinement. Descriptions of commercial plants and design concepts are included. Topics covered include: fusion reactions and fuel resources; reaction rates; ignition, and confinement; basic plasma directory; Tokamak confinement physics; fusion technology; STARFIRE: A commercial Tokamak fusion power plant. MARS: A tandem-mirror fusion power plant; and other fusion reactor concepts

  16. Will nuclear fusion be able to power the next century?

    International Nuclear Information System (INIS)

    Grad, P.

    1989-01-01

    Nuclear fusion is widely regarded as potentially the ultimate energy-generation concept. Although an enormous amount of work and resources has already been committed throughout the world on nuclear fusion research, controlled nuclear fusion has so far proved largely elusive and the difficulties to be overcome before the first commercial fusion reactor is put into operation remain daunting and formidable. In Australia there are three main nuclear fusion research efforts. Sydney University's School of Physics operates a tokamak and a team there has been studying plasma properties in general and in particular radio frequency wave heating of the plasma. At the Australian National University a group has pioneered the construction and operation of an advanced stellarator model called a heliac while at Flinders University in Adelaide a team has developed a rotamak model. The US, Europe, Japan and the USSR each has a frontline fusion research tokamak with Princeton University's TFTR and Culham's JET closest to reactor operation conditions. Although several questions remain to be answered about the safety of a fusion reactor, all experts agree that these problems would be easier to solve than those of conventional fission reactors and there would be no major radioactive waste disposal problem. Some argue that fusion would contribute to the greenhouse effect but most authorities have expressed optimism that fusion, once the technical hurdles are overcome, could economically provide virtually unlimited energy with minimal environmental hazards and at a high safety level

  17. The cost and benefit of energy technology in the global context - the case of fusion power

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1994-01-01

    This paper is an attempt to evaluate the economical and environmental consequences of fusion power for the next century. For this evaluation, the Pacific Northwest Laboratory global energy/economy model is used. In applying the model to analyse costs and benefits of fusion energy, the author compares the projections of the model for a world with and without fusion. (TEC). 5 tabs., 7 figs., 18 refs

  18. Fusion power: massive research program aims at formidable problems, almost limitless potential

    International Nuclear Information System (INIS)

    Dingee, D.A.

    1979-01-01

    This article surveys extensively fusion development under the following topics: US research directions; inertial confinement fusion; foreign fusion efforts; fusion issues; fusion applications; and arguments for fusion development. Dr. Dingee points out that, despite persuasive arguments for development, fusion has as yet attracted no substantial constituency; and that winning greater support for fusion may thus require a considerable technical breakthrough (namely, proof of scientific feasibility or achievement of energy breakeven) - or a new focus on an energy source such as hybrids, which offer a nearer-term payoff than pure fusion. Dr. Dingee says the next major facility for magnetic confinement research (to be built in late 1980s) has not yet been selected, but will probably be an engineering test facility; there are similar plans for inertial confinement. Whichever type is chosen, the first experimental power reactor is scheduled for the first few years of the 2000's, this to be followed by commercial demonstration of fusion power in the 2010 to 2020 time frame. He points out, finally, that the complex technical and institutional issues are being considered in a climate in which the benefits of nuclear energy itself are being questioned; and that there is little doubt that future development is tied to overall decisions the nation will make regarding the value of nuclear energy

  19. Power conversion systems based on Brayton cycles for fusion reactors

    International Nuclear Information System (INIS)

    Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.; Serrano, I.P.

    2011-01-01

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO 2 in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO 2 cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO 2 -H 2 O cycle was set.

  20. Power balance in an Ohmically heated fusion reactor

    International Nuclear Information System (INIS)

    Christiansen, J.P.; Roberts, K.V.

    1982-01-01

    A simplified power-balance equation (zero-dimensional model) is used to study the performance of an Ohmically heated fusion reactor with emphasis on a pulsed reversed-field pinch concept (RFP). The energy confinement time tausub(E) is treated as an adjustable function, and empirical tokamak scaling laws are employed in the numerical estimates, which are supplemented by 1-D ATHENE code calculations. The known heating rates and energy losses are represented by the net energy replacement time tausub(W), which is exhibited as a surface in density (n) and temperature (T) space with a saddle point (nsub(*), Tsub(*)), the optimum ignition point. It is concluded that i) ignition by Ohmic heating is more practicable for the RFP reactor than for a tokamak reactor with the same tausub(E), (ii) if at fixed current the minor radius can be reduced or at fixed minor radius the current can be increased, then it is found that Ohmic ignition becomes more likely when present tokamak scaling laws are used. More definitive estimates require, however, a knowledge of tausub(E), which can only be obtained by establishing a reliable set of experimental RFP scaling laws and, in particular, by extending RFP experiments closer to the reactor regime. (author)

  1. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  2. Commercial objectives, technology transfer, and systems analysis for fusion power development

    Science.gov (United States)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  3. Issues in the commercialization of magnetic fusion power

    International Nuclear Information System (INIS)

    Rockwood, A.D.; Willke, T.L.

    1979-12-01

    This study identifies and outlines the issues that must be considered if fusion is to be put into commercial practice. The issues are put into perspective around a consistent framework and a program of study and research is recommended to anticipate and handle the issues for a successful fusion commercialization program

  4. A review of the prospects for fusion power generation

    International Nuclear Information System (INIS)

    Hall, R.S.; Blow, S.; Clarke, R.H.; Tozer, B.A.; Whittingham, A.C.; Bending, R.C.

    1975-07-01

    The physics and engineering problems of both magnetically and inertially (laser) confined fusion systems are reviewed. The materials problems of the two systems are discussed, and their safety implications analysed. A short discussion is given of the possibilities and problems of a hybrid fission/fusion system. (U.K.)

  5. Issues in the commercialization of magnetic fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, A.D.; Willke, T.L.

    1979-12-01

    This study identifies and outlines the issues that must be considered if fusion is to be put into commercial practice. The issues are put into perspective around a consistent framework and a program of study and research is recommended to anticipate and handle the issues for a successful fusion commercialization program. (MOW)

  6. Design aspects of a multipurpose fusion power plant for desalination and agrochemical processes

    International Nuclear Information System (INIS)

    Sabri, Z.A.

    1975-02-01

    A description is given of the skeletal structure of a multipurpose fusion power plant, designed for desalination and agrochemicals production. The plant is a complex that comprises dual purpose power and desalination units, separation and processing units for recovery of soluble salts in the effluent of the desalination unit, mariculture units for production of algae for food and as food for shrimp and other fish species. The electrical power unit is a two-component fusion device that burns deuterium and helium-3 utilizing a fast fusion cycle

  7. ARIES-I Fusion-Power-Core Engineering

    International Nuclear Information System (INIS)

    Sharafat, S.; Najmabadi, F.; Wong, C.P.C.

    1991-01-01

    The ARIES research program is a multi-institutional project, the goal of which is to determine the economic, safety, and environmental potential of tokamak fusion reactors. The ARIES-I steady-state tokamak reactor is a conceptual, DT-burning, 1000 MWe reactor with a major radius of 6.75 m, a minor radius of 1.5 m, and an average neutron wall loading of 2.5 MW/m 2 . The ARIES-I plasma operates in the first MHD stability regime with a toroidal beta of 1.9%. The choice to operate in the first stability regime, with a high aspect ratio and with a low plasma current, leads to the need for high magnetic field to achieve adequate fusion power density (β 2 B 4 ). The toroidal field at the plasma center is 11 T and the maximum field at the coil is 21 T. Nonetheless, it is found that the maximum stress in the structural material of these magnets is ∝700 MPa and industrially available alloys can be used. The impurity-control and particle-exhaust system is based on a high recycling double-null divertor system. The low-activation silicon-carbide (SiC) composite is used as structural material. The breeder material, Li 2 ZrO 3 , and the multiplier material, Be, are both sphere-packed between poloidally nested SiC-composite shells. The divertor plates consist of SiC-composite tube shells protected with 2 mm-thick tungsten armor. The first wall, blanket, shield, and divertor are all helium cooled with an inlet coolant temperature of 350deg C at a pressure of 10 MPa. The high helium-outlet temperature of 650deg C ensures a relatively high gross thermal efficiency of 49%. The ARIES-I design has demonstrated that tokamak reactors have the potential to achieve a high level of safety coupled with a Class-C waste-disposal rating. (orig.)

  8. Comparison of environmental impact of waste disposal from fusion, fission and coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Bruno [Fichtner GmbH und Co. KG, Stuttgart (Germany)

    2011-08-15

    The radiotoxic hazard of waste from fusion power plants has been compared with that of fission power and radioactive trace elements in coal ash within some research programs such as SEAFP and SEIF. Within another program, in 2005 a Power Plant Conceptual Study (PPCS) has been finalized investigating 4 fusion power plant models A to D. In this paper, the radiotoxicity of model B is compared with a fission power plant, concentrating on the production of wastes. The hazard of the respective masses of enriched uranium before use in a fission power plant and coal ash of a power plant generating the same amount of electricity are used as benchmarks. It is evident that the development of ingestion and inhalation hazard of the PPCS model B is different from the results of earlier studies because of different assumptions on material impurities and other constraints. An important aspect is the presence of actinides in fusion power plant waste. (orig.)

  9. Progress in high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  10. Iterative near-term ecological forecasting: Needs, opportunities, and challenges.

    Science.gov (United States)

    Dietze, Michael C; Fox, Andrew; Beck-Johnson, Lindsay M; Betancourt, Julio L; Hooten, Mevin B; Jarnevich, Catherine S; Keitt, Timothy H; Kenney, Melissa A; Laney, Christine M; Larsen, Laurel G; Loescher, Henry W; Lunch, Claire K; Pijanowski, Bryan C; Randerson, James T; Read, Emily K; Tredennick, Andrew T; Vargas, Rodrigo; Weathers, Kathleen C; White, Ethan P

    2018-02-13

    Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.

  11. Overview of robotics and teleoperators in developing fusion power

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1986-01-01

    This paper presents an overview of the maintenance considerations for next-generation fusion reactors. It draws upon the work done at the Fusion Engineering Design Center over the past several years as well as the work of others in the United States and abroad. It specifically addresses the maintenance philosophy adopted for these devices, configuration design using modular components, maintenance operations, and equipment. In addition, the status of fusion development in the United States, Europe, and Japan is reviewed. 14 refs., 10 figs

  12. Vacuum pumping of tritium in fusion power reactors

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    Compound cryopumps of three different designs will be tested with deuterium-tritium (DT) mixtures under simulated fusion reactor conditions at the Tritium Systems Test Assembly (TSTA) now being constructed at the Los Alamos Scientific Laboratory (LASL). The first of these pumps is already in operation, and its preliminary performance is presented. The supporting vacuum facility necessary to regenerate these fusion facility cryopumps is also described. The next generation of fusion system vacuum pumps may include non-cryogenic or conventional-cryogenic hybrid systems, several of which are discussed

  13. First generation of fusion power plants: Design and technology. Proceedings of the 2. IAEA technical meeting

    International Nuclear Information System (INIS)

    2008-01-01

    This series of meetings has been initiated under recommendation of the International Fusion Research Council for the IAEA and is expected to initiate, develop and mature ideas on fusion strategy that would be of benefit for all players. The present objectives of this meeting are to provide a forum to discuss concepts, technology and environmental aspects of future fusion power plants, the next step following ITER, their role in future energy mix and to assess a selection of urgent topics aiming at identifying the physics and the technological requirements that ITER and a fusion grade materials developing programme will have to address to support the construction of a DEMO(s) fusion power plant(s) prototype demonstrating viable economics. The meeting was organized in five sessions addressing five topics: - (PPCA) Power Plant Concepts and systems Analysis. - (MCP) Materials analysis/Components design/Plasma requirements - (NE) Non-Electric applications of fusion - (SESE) Social, Economic, Safety and Environmental aspects of fusion - (EP) Energy Policy, strategy and scenario for fusion development. A summary session took place at the end of the meeting. Thirty-three participants representing 12 Countries and 3 International Organizations were present at the meeting

  14. Antimatter Requirements and Energy Costs for Near-Term Propulsion Applications

    Science.gov (United States)

    Schmidt, G. R.; Gerrish, H. P.; Martin, J. J.; Smith, G. A.; Meyer, K. J.

    1999-01-01

    The superior energy density of antimatter annihilation has often been pointed to as the ultimate source of energy for propulsion. However, the limited capacity and very low efficiency of present-day antiproton production methods suggest that antimatter may be too costly to consider for near-term propulsion applications. We address this issue by assessing the antimatter requirements for six different types of propulsion concepts, including two in which antiprotons are used to drive energy release from combined fission/fusion. These requirements are compared against the capacity of both the current antimatter production infrastructure and the improved capabilities that could exist within the early part of next century. Results show that although it may be impractical to consider systems that rely on antimatter as the sole source of propulsive energy, the requirements for propulsion based on antimatter-assisted fission/fusion do fall within projected near-term production capabilities. In fact, a new facility designed solely for antiproton production but based on existing technology could feasibly support interstellar precursor missions and omniplanetary spaceflight with antimatter costs ranging up to $6.4 million per mission.

  15. Waste management procedures for fusion-based central power stations

    International Nuclear Information System (INIS)

    Botts, T.E.; Powell, J.R.

    1977-08-01

    Several early conceptual designs of fusion demonstration and commercial reactors are used in a discussion of radioactive waste streams, methods of handling these wastes, and their possible environmental effects. Comparisons are made between these waste streams and the fuel cycles of the light water reactor and the liquid metal fast breeder reactor. Most radioactive waste in fusion reactors is generated through replacement of the inner blanket region. Because there is a high degree of uncertainty with regard to blanket lifetimes, there is some uncertainty concerning the activity levels that must be handled. However, in general, fusion reactors are expected to create larger physical amounts of radioactive waste with lower and shorter-lived activity than do fission plants. Material recycling of fusion blanket waste, for nuclear applications, seems feasible after a 100-yr holding time

  16. New directions in fusion machines: report on the MFAC Panel X on high power density options

    International Nuclear Information System (INIS)

    Linford, R.K.

    1985-01-01

    The high cost of fusion is motivating a shift in research interest toward smaller, lower-cost systems. Panel X of the Magnetic Fusion Advisory Committee (MFAC) was charged to assess the potential benefits and problems associated with small, high-power-density approaches to fusion. The Panel identified figures of merit which are useful in evaluating various approaches to reduce the development costs and capital costs of fusion systems. As a result of their deliberations, the Panel recommended that ''...increased emphasis should be given to improving the mass power density of fusion systems, aiming at a minimum target of 100 kWe/tonne'', and that ''Increased emphasis should be given to concepts that offer the potential to reduce substantially the cost of development steps in physics and technology.''

  17. New directions in fusion machines: report on the MFAC Panel X on high power density options

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.

    1985-01-01

    The high cost of fusion is motivating a shift in research interest toward smaller, lower-cost systems. Panel X of the Magnetic Fusion Advisory Committee (MFAC) was charged to assess the potential benefits and problems associated with small, high-power-density approaches to fusion. The Panel identified figures of merit which are useful in evaluating various approaches to reduce the development costs and capital costs of fusion systems. As a result of their deliberations, the Panel recommended that ''...increased emphasis should be given to improving the mass power density of fusion systems, aiming at a minimum target of 100 kWe/tonne'', and that ''Increased emphasis should be given to concepts that offer the potential to reduce substantially the cost of development steps in physics and technology.''

  18. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO_2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  19. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  20. Nuclear Reactor Technology Assessment for Near Term Deployment

    International Nuclear Information System (INIS)

    2013-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Several IAEA Member States have embarked recently on initiatives to establish or reinvigorate nuclear power programmes. In response, the IAEA has developed several guidance and technical publications to identify with Member States the complex tasks associated with such an undertaking and to recommend the processes that can be used in the performance of this work. A major challenge in this undertaking, especially for newcomer Member States, is the process associated with reactor technology assessment (RTA) for near term deployment. RTA permits the evaluation, selection and deployment

  1. Data fusion and sensor management for nuclear power plant safety

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-05-01

    The paper describes the implementation of the data-sensor fusion and sensor management technology for accident management through simulated severe accident (SA) scenarios subjected to study. By means of accident management the appropriate prompt actions to be taken to avoid nuclear accident (SA) scenarios subjected to study. By means of accident management the appropriate prompt actions to be taken to avoid nuclear accidents are meant, while such accidents are deemed to somehow be imminent during plant operation. The organisation of the present paper is as follows. As the data-sensor fusion and sensor management is an emerging technology which is not widely known, in Sec. 2, the definition and goals of data-sensor fusion and sensor management technology is described. In Sec. 3 first, with reference to Kalman filtering as an information filter, statistical data-sensor fusion technology is described. This is followed by the examples of deterministic data-sensor fusion technology using gross plant state variables and neural networks (NN) and the implementation for severe accident management in NPPs. In Sec. 4, the sensor management technology is described. Finally, the performance of the data-sensor fusion technology for NPP safety is discussed. (orig./WL)

  2. The Near-Term Impacts of Carbon Mitigation Policies on Manufacturing Industries

    OpenAIRE

    Morgenstern, Richard; Shih, Jhih-Shyang; Ho, Mun; Zhang, Xuehua

    2002-01-01

    Who will pay for new policies to reduce carbon dioxide and other greenhouse gas emissions in the United States? This paper considers a slice of the question by examining the near-term impact on domestic manufacturing industries of both upstream (economy-wide) and downstream (electric power industry only) carbon mitigation policies. Detailed Census data on the electricity use of four-digit manufacturing industries is combined with input-output information on interindustry purchases to paint a ...

  3. Photovoltaic System Pricing Trends. Historical, Recent, and Near-Term Projections, 2015 Edition

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Darghouth, Naïm [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-25

    This presentation, based on research at Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory, provides a high-level overview of historical, recent, and projected near-term PV pricing trends in the United States focusing on the installed price of PV systems. It also attempts to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices. This PowerPoint is the fourth edition from this series.

  4. Near and long term pulse power requirements for laser driven inertial confinement fusion

    International Nuclear Information System (INIS)

    Gagnon, W.L.

    1979-01-01

    At the Lawrence Livermore Laboraory, major emphasis has been placed upon the development of large, ND:glass laser systems in order to address the basic physics issues associated with light driven fusion targets. A parallel program is directed toward the development of lasers which exhibit higher efficiencies and shorter wavelengths and are thus more suitable as drivers for fusion power plants. This paper discusses the pulse power technology which has been developed to meet the near and far term needs of the laser fusion program at Livermore

  5. Iterative near-term ecological forecasting: Needs, opportunities, and challenges

    Science.gov (United States)

    Dietze, Michael C.; Fox, Andrew; Beck-Johnson, Lindsay; Betancourt, Julio L.; Hooten, Mevin B.; Jarnevich, Catherine S.; Keitt, Timothy H.; Kenney, Melissa A.; Laney, Christine M.; Larsen, Laurel G.; Loescher, Henry W.; Lunch, Claire K.; Pijanowski, Bryan; Randerson, James T.; Read, Emily; Tredennick, Andrew T.; Vargas, Rodrigo; Weathers, Kathleen C.; White, Ethan P.

    2018-01-01

    Two foundational questions about sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect these trajectories?” Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.

  6. Path to Market for Compact Modular Fusion Power Cores

    Science.gov (United States)

    Woodruff, Simon; Baerny, Jennifer K.; Mattor, Nathan; Stoulil, Don; Miller, Ronald; Marston, Theodore

    2012-08-01

    The benefits of an energy source whose reactants are plentiful and whose products are benign is hard to measure, but at no time in history has this energy source been more needed. Nuclear fusion continues to promise to be this energy source. However, the path to market for fusion systems is still regularly a matter for long-term (20 + year) plans. This white paper is intended to stimulate discussion of faster commercialization paths, distilling guidance from investors, utilities, and the wider energy research community (including from ARPA-E). There is great interest in a small modular fusion system that can be developed quickly and inexpensively. A simple model shows how compact modular fusion can produce a low cost development path by optimizing traditional systems that burn deuterium and tritium, operating not only at high magnetic field strength, but also by omitting some components that allow for the core to become more compact and easier to maintain. The dominant hurdles to the development of low cost, practical fusion systems are discussed, primarily in terms of the constraints placed on the cost of development stages in the private sector. The main finding presented here is that the bridge from DOE Office of Science to the energy market can come at the Proof of Principle development stage, providing the concept is sufficiently compact and inexpensive that its development allows for a normal technology commercialization path.

  7. Status of inertial fusion and prospects for practical power plants

    International Nuclear Information System (INIS)

    Blink, J.A.; Monsler, M.J.

    1982-01-01

    We have produced a series of reactor designs to meet the variety of driver-target combinations that could possibly result from the inertial-confinement fusion program. In this paper we discuss four reactor designs, the goals of which are low cost; a low probability of risk to the public, the plant employees, and the utility investment; and a minimal environmental impact under normal plant operation. HYLIFE is a low pulse rate, lithium-cooled reactor. Pulse*Star and Cascade are high pulse rate reactors. In Pulse*Star, fusion energy is absorbed in the PbLi pool; in Cascade it is absorbed by Li 2 O particles. Sunburst, a very low pulse rate, lithium-cooled reactor, directly converts over 40% of the fusion energy to electricity using a pulsed magnetic field

  8. Approaches to achieving inherently safe fusion power plants

    International Nuclear Information System (INIS)

    Piet, S.J.

    1986-01-01

    Achieving inherently safe fusion facilities and conceptual designs is a challenge to the fusion community. Success should provide fusion with important competitive advantages versus other energy technologies. Inherent safety should mean a facility designed with passive safety features such that the public is protected from any acute fatalities under all credible accidental circumstances. A key aspect to inherent safety is demonstrability - the ability to prove that a deign is as safe as claimed. Three complementary approaches to achieving inherent safety are examined: toxin inventory reduction, energy source reduction and design fault tolerance. Four levels of assurance are defined, associated with uncertainty in the words ''credible' and ''demonstrable.'' Sound reasons exist for believing that inherent safety puts a modest upper bound on all accident consequences; it should be considered a part of the collection of safety and environmental issues, which also include lower consequence accidents, waste management, and effluent control

  9. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    Science.gov (United States)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion

  10. Investigation of the transportation requirements for fusion power plants

    International Nuclear Information System (INIS)

    Rhoads, R.E.; Davis, D.K.

    1976-09-01

    This report presents a general investigation of the transport requirements associated with the construction and operation of conceptual fusion reactors. Projections of amounts of construction and operating materials requiring transportation are presented for several proposed designs. The material to be shipped is described along with the shipping containers that might be used, the transport modes and the expected impact of transporting these materials. Transportation of both radioactive and nonradioactive materials will be required. Most of these materials are routinely shipped by the transportation industry. Transportation requirements of a representative fusion reactor are also compared with Liquid Metal Fast Breeder Reactor (LMFBR) requirements

  11. High power microwave diagnostic for the fusion energy experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Goncalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments....... The ITER CTS diagnostic will inject a 1 MW 60 GHz gyrotron beam into the ITER plasma and observe the scattering off fluctuations in the plasma — to monitor the dynamics of the fast ions generated in the fusion reactions....

  12. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  13. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, Frederick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Noe, Susan P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  14. New directions in fusion machines: Report on the MFAC panel X on high power density options

    International Nuclear Information System (INIS)

    Linford, R.K.

    1986-01-01

    The high cost of fusion is motivating a shift in research interest toward smaller, lower-cost systems. Panel X of the Magnetic Fusion Advisory Committee (MFAC) was charged to assess the potential benefits and problems associated with small, highpower-density approaches to fusion. The Panel identified figures of merit which are useful in evaluating various approaches to reduce the development costs and capital costs of fusion systems. As a result of their deliberations, the Panel recommended that ''...increased emphasis should be given to improving the mass power density of fusion systems, aiming at a minimum target of 100 kWe/tonne'', and that ''Increased emphasis should be given to concepts that offer the potential to reduce4 substantially the cost of development steps in physics and technology.''

  15. Fusion power in a future low carbon global electricity system

    DEFF Research Database (Denmark)

    Cabal, H.; Lechón, Y.; Bustreo, C.

    2017-01-01

    Fusion is one of the technologies that may contribute to a future, low carbon, global energy supply system. In this article we investigate the role that it may play under different scenarios. The global energy model ETM (originally EFDA TIMES Model) has been used to analyse the participation...

  16. High Power Microwave Diagnostic for the Fusion Energy Experiment ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Leipold, Frank; Gonçalves, B.

    2016-01-01

    Microwave diagnostics will play an increasingly important role in burning plasma fusion energy experiments like ITER and beyond. The Collective Thomson Scattering (CTS) diagnostic to be installed at ITER is an example of such a diagnostic with great potential in present and future experiments...

  17. Radio-frequency energy in fusion power generation

    International Nuclear Information System (INIS)

    Lawson, J.Q.; Becraft, W.R.; Hoffman, D.J.

    1983-01-01

    The history of radio-frequency (rf) energy in fusion experiments is reviewed, and the status of current efforts is described. Potential applications to tasks other than plasma heating are described, as are the research and development needs of rf energy technology

  18. Study of steam, helium and supercritical CO2 turbine power generations in prototype fusion power reactor

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Muto, Yasushi; Kato, Yasuyoshi; Nishio, Satoshi; Hayashi, Takumi; Nomoto, Yasunobu

    2008-01-01

    Power generation systems such as steam turbine cycle, helium turbine cycle and supercritical CO 2 (S-CO 2 ) turbine cycle are examined for the prototype nuclear fusion reactor. Their achievable cycle thermal efficiencies are revealed to be 40%, 34% and 42% levels for the heat source outlet coolant temperature of 480degC, respectively, if no other restriction is imposed. In the current technology, however, low temperature divertor heat source is included. In this actual case, the steam turbine system and the S-CO 2 turbine system were compared in the light of cycle efficiency and plant cost. The values of cycle efficiency were 37.7% and 36.4% for the steam cycle and S-CO 2 cycle, respectively. The construction cost was estimated by means of component volume. The volume became 16,590 m 3 and 7240 m 3 for the steam turbine system and S-CO 2 turbine system, respectively. In addition, separation of permeated tritium from the coolant is much easier in S-CO 2 than in H 2 O. Therefore, the S-CO 2 turbine system is recommended to the fusion reactor system than the steam turbine system. (author)

  19. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology

  20. Development step toward fusion power plant and role of experimental reactor ITER

    International Nuclear Information System (INIS)

    Hiwatari, Ryouji; Asaoka, Yoshiyuki; Okano, Kunihiko

    2005-01-01

    The development of fusion energy is going into the experimental reactor stage, and the thermal energy from the fusion reaction will be generated in a plant scale through the ITER (International Thermonuclear Experimental Reactor) project. The remaining critical issue toward the realization of fusion energy is to map out the development strategy. Recently early realization approach as for the fusion energy development is being discussed in Japan, Europe, and the United States. This approach implies that the devices for a Demo reactor and a proto-type reactor as seen in the fast breeder reactor are combined into a single device in order to advance the fusion energy development. On the other hand, a clear development road map for fusion energy hasn't been suggested yet, and whether that early realization approach is feasible or not is still ambiguous. In order to realize the fusion energy as an user-friendly energy system, the suggestion of the development missions and the road map from the user-side point of view is instructive not only to Japanese but also to other country's development policy after the ITER project. In this report, first of all, the development missions from the user's point of view have been structured. Second, the development target required to demonstrate net electric generation and to introduce the fusion energy into the market is investigated, respectively. This investigation reveals that the completion of the ITER reference operation gives the outlook toward the demonstration of net electric generation and that the completion of the ITER advanced operation gives the possibility to introduce the fusion energy into the market. At last, the electric demonstration power plant Demo-CREST and the commercial power plant CREST are proposed to construct the development road map for fusion energy. (author)

  1. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    Science.gov (United States)

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  2. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Grotz, S.; Cheng, E.T.; Sharafat, S.; Cooke, P.I.H.

    1988-03-01

    TITAN-II is a compact, high power density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MWm/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a passive safety assurance design. 13 refs., 3 figs., 1 tab.

  3. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Cheng, E.T. (General Atomic Co., San Diego, CA (USA)); Grotz, S.P.; Sharafat, S.; Cooke, P.I.H. (California Univ., Los Angeles (USA). Dept. of Mechanical, Aerospace and Nuclear Engineering; California Univ., Los Angeles, CA (USA). Inst. for Plasma and Fusion Research); TITAN Research Group

    1989-04-01

    TITAN-II is a compact, high-power-density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MW/m/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a level 2 of passive safety assurance design. (orig.).

  4. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  5. Establishment of KAERI Strategy and Organization for Fusion Power Technology Research

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Kim, Sung Kyu; Park, Keun Bae

    2005-04-01

    International and domestic status of development activities of nuclear fusion energy technologies are analyzed and summarized. From these results a verifiable R and D strategy is derived which allows purposeful and successful participation in the ITER project and thus enables a domestic technological basis of the commercialization of nuclear fusion energy. A 45-year, three-stage plan is proposed with a detailed plan for the 10-year, 1st stage where a conceptual design of a Korean demonstration fusion power plant (KDEMO) will be developed as well as its key component designs such as breeder blanket

  6. Open-ended fusion devices and reactors

    International Nuclear Information System (INIS)

    Kawabe, T.; Nariai, H.

    1983-01-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown

  7. Practical methods for near-term piloted Mars missions

    Science.gov (United States)

    Zubrin, Robert M.; Weaver, David B.

    1993-01-01

    An evaluation is made of ways of using near-term technologies for direct and semidirect manned Mars missions. A notable feature of the present schemes is the in situ propellant production of CH4/O2 and H2O on the Martian surface in order to reduce surface consumable and return propellant requirements. Medium-energy conjunction class trajectories are shown to be optimal for such missions. Attention is given to the backup plans and abort philosophy of these missions. Either the Russian Energia B or U.S. Saturn VII launch vehicles may be used.

  8. Blanket options for high-efficiency fusion power

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  9. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  10. Fusion blanket for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  11. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  12. An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion

    International Nuclear Information System (INIS)

    Delene, J.G.; Hadley, S.; Reid, R.L.; Sheffield, J.; Williams, K.A.

    1999-01-01

    This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nuclear fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should remain in the 30-50 mils/kWh (1999 dollars) range of today in carbon sequestration is not needed, 30-60 mils/kWh if sequestration is required, or as high as 75 mils/kWh for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 70-100 nmils/kWh for 1- to 1.3-GW(e) scale power plants. Fusion costs will have to be reduced and/or alternative concepts derived before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal

  13. Tritium instrumentation for a fusion reactor power plant

    International Nuclear Information System (INIS)

    Shank, K.E.; Easterly, C.E.

    1976-09-01

    A review of tritium instrumentation is presented. This includes a discussion of currently available in-plant instrumentation and methods required for sampling stacks, monitoring process streams and reactor coolants, analyzing occupational work areas for air and surface contamination, and personnel monitoring. Off-site instrumentation and collection techniques are also presented. Conclusions are made concerning the adequacy of existing instrumentation in relation to the monitoring needs for fusion reactors

  14. Magnetic field considerations in fusion power plant environs

    International Nuclear Information System (INIS)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions

  15. Case for the fusion hybrid

    International Nuclear Information System (INIS)

    Rose, R.P.

    1981-01-01

    The use of nuclear fusion to produce fuel for nuclear fission power stations is discussed in the context of a crucial need for future energy options. The fusion hybrid is first considered as an element in the future of nuclear fission power to provide long term assurance of adequate fuel supplies for both breeder and convertor reactors. Generic differences in neutronic characteristics lead to a fuel production potential of fusion-fission hybrid systems which is significantly greater than that obtainable with fission systems alone. Furthermore, cost benefit studies show a variety of scenarios in which the hybrid offers sufficient potential to justify development costs ranging in the tens of billions of dollars. The hybrid is then considered as an element in the ultimate development of fusion electric power. The hybrid offers a near term application of fusion where experience with the requisite technologies can be derived as a vital step in mapping a credible route to eventual commercial feasibility of pure fusion systems. Finally, the criteria for assessment of future energy options are discussed with prime emphasis on the need for rational comparision of alternatives

  16. Fusion power demonstration - a baseline for the mirror engineering test reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Neef, W.S.

    1983-01-01

    Developing a definition of an engineering test reactor (ETR) is a current goal of the Office of Fusion Energy (OFE). As a baseline for the mirror ETR, the Fusion Power Demonstration (FPD) concept has been pursued at Lawrence Livermore National Laboratory (LLNL) in cooperation with Grumman Aerospace, TRW, and the Idaho National Engineering Laboratory. Envisioned as an intermediate step to fusion power applications, the FPD would achieve DT ignition in the central cell, after which blankets and power conversion would be added to produce net power. To achieve ignition, a minimum central cell length of 67.5 m is needed to supply the ion and alpha particles radial drift pumping losses in the transition region. The resulting fusion power is 360 MW. Low electron-cyclotron heating power of 12 MW, ion-cyclotron heating of 2.5 MW, and a sloshing ion beam power of 1.0 MW result in a net plasma Q of 22. A primary technological challenge is the 24-T, 45-cm bore choke coil, comprising a copper hybrid insert within a 15 to 18 T superconducting coil

  17. World oil market fundamentals - Part One: The near term outlook

    International Nuclear Information System (INIS)

    Dwarkin, J.; Morton, K.; Datta, R.

    1998-03-01

    Potential implications of a number of uncertainties currently affecting the world oil market are assessed. The influence of the interplay of geopolitical events on demand and supply, inventories, prices and price trends are reviewed. Reference prices which industry and governments can use for investment and policy evaluations are provided. In this volume, the emphasis is on near term developments, with a review of the uncertainties surrounding these projections. Three different scenarios are postulated for the near term, each one taking into account different levels of Iraqi exports during the period which would effect available inventories, and hence price. Depending on which of the three scenarios actually comes to pass, unless refiners are prepared to build up inventories well beyond seasonal norms, or producers shut in, the prevailing view is that oil prices will be under severe pressure during most of 1998 and 1999. Over the longer term, however, the analysis suggests that an average real value of US$18.00 - $18.50 per barrel remains a reasonable expectation as a sustainable price. 34 refs., tabs., figs

  18. Economic analysis of direct hydrogen PEM fuel cells in three near-term markets

    International Nuclear Information System (INIS)

    Mahadevan, K.; Stone, H.; Judd, K.; Paul, D.

    2007-01-01

    Direct hydrogen polymer electrolyte membrane fuel cells (H-PEMFCs) offer several near-term opportunities including backup power applications in state and local agencies of emergency response; forklifts in high throughput distribution centers; and, airport ground support equipment. This paper presented an analysis of the market requirements for introducing H-PEMFCs successfully, as well as an analysis of the lifecycle costs of H-PEMFCs and competing alternatives in three near-term markets. It also used three scenarios as examples of the potential for market penetration of H-PEMFCs. For each of the three potential opportunities, the paper presented the market requirements, a lifecycle cost analysis, and net present value of the lifecycle costs. A sensitivity analysis of the net present value of the lifecycle costs and of the average annual cost of owning and operating each of the H-PEMFC opportunities was also conducted. It was concluded that H-PEMFC-powered pallet trucks in high-productivity environments represented a promising early opportunity. However, the value of H-PEMFC-powered forklifts compared to existing alternatives was reduced for applications with lower hours of operation and declining labor rates. In addition, H-PEMFC-powered baggage tractors in airports were more expensive than battery-powered baggage tractors on a lifecycle cost basis. 9 tabs., 4 figs

  19. Near term and long term materials issues and development needs for plasma interactive components

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1986-01-01

    Plasma interactive components (PICs), including the first wall, limiter blades, divertor collector plates, halo scrapers, and RF launchers, are exposed to high particle fluxes that can result in high sputtering erosion rates and high heat fluxes. In addition, the materials in reactors are exposed to high neutron fluxes which will degrade the bulk properties. This severe environment will limit the materials and designs which can be used in fusion devices. In order to provide a reasonable degree of confidence that plasma interactive components will operate successfully, a comprehensive development program is needed. Materials research and development plays a key role in the successful development of PICs. The range of operating conditions along with a summary of the major issues for materials development is described. The areas covered include plasma/materials interactions, erosion/redeposition, baseline materials properties, fabrication, and irradiation damage effects. Candidate materials and materials development needs in the near term and long term are identified

  20. TOKMINA, Toroidal Magnetic Field Minimization for Tokamak Fusion Reactor. TOKMINA-2, Total Power for Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Hatch, A.J.

    1975-01-01

    1 - Description of problem or function: TOKMINA finds the minimum magnetic field, Bm, required at the toroidal coil of a Tokamak type fusion reactor when the input is beta(ratio of plasma pressure to magnetic pressure), q(Kruskal-Shafranov plasma stability factor), and y(ratio of plasma radius to vacuum wall radius: rp/rw) and arrays of PT (total thermal power from both d-t and tritium breeding reactions), Pw (wall loading or power flux) and TB (thickness of blanket), following the method of Golovin, et al. TOKMINA2 finds the total power, PT, of such a fusion reactor, given a specified magnetic field, Bm, at the toroidal coil. 2 - Method of solution: TOKMINA: the aspect ratio(a) is minimized, giving a minimum value for Bm. TOKMINA2: a search is made for PT; the value of PT which minimizes Bm to the required value within 50 Gauss is chosen. 3 - Restrictions on the complexity of the problem: Input arrays presently are dimensioned at 20. This restriction can be overcome by changing a dimension card

  1. The role of fusion power in energy scenarios. Proposed method and review of existing scenarios

    International Nuclear Information System (INIS)

    Lako, P; Ybema, J.R.; Seebregts, A.J.

    1998-04-01

    The European Commission wishes more insight in the potential role of fusion energy in the second half of the 21st century. Therefore, several scenario studies are carried out in the so-called macro-task Long Term Scenarios to investigate the potential role of fusion power in the energy system. The main contribution of ECN to the macro-task is to perform a long term energy scenario study for Western Europe with special focus on the role of fusion power. This interim report gives some methodological considerations for such an analysis. A discussion is given on the problems related to the long time horizon of the scenario study such as the forecast of technological innovations, the selection of appropriate discount rates and the links with climate change. Key parameters which are expected to have large effects on the role and cost-effectiveness are discussed in general terms. The key parameters to be varied include level and structure of energy demand, availability and prices of fossil energy, CO2 reduction policy, discount rates, cost and potential of renewable energy sources, availability of fission power and CO2 capture and disposal and the cost and the maximum rate of market growth of fusion power. The scenario calculations are to be performed later in the project with the help of an existing cost minimisation model of the Western European energy system. This MARKAL model is briefly introduced. The results of the model calculations are expected to make clear under which combinations of scenario parameters fusion power is needed and how large the expected financial benefits will be. The present interim report also gives an evaluation of existing energy scenarios with respect to the role of fusion power. 18 refs

  2. Tritium breeding potential of the Princeton reference fusion power plant

    International Nuclear Information System (INIS)

    Greenspan, E.; Price, W.G. Jr.

    1974-04-01

    A variational method is used to investigate the tritium breeding potential of the blanket of a fusion reactor. Effectiveness functions indicating the changes in the breeding ratio (BR) due to material density perturbations are calculated with the code SWAN. Results are presented analyzing the sensitivity of the BR both to cross section variations and to material density perturbations. For example, SWAN indicates a 0.176 increase in BR for the replacement of 10% of the flibe by beryllium. Implications of the sensitivity figures for design modification and optimization are discussed. 15 refs., 7 figs

  3. Fusion power production from TFTR plasmas fueled with deuterium and tritium

    International Nuclear Information System (INIS)

    Strachan, J.D.; Adler, H.; Alling, P.

    1994-03-01

    Peak fusion power production of 6.2 ± 0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2 x 10 17 m -3 without the appearance of either disruptive MHD events or detectable changes in Alfven wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits

  4. Costs of magnets for large fusion power reactors: Phase I, cost of superconductors for dc magnets

    International Nuclear Information System (INIS)

    Powell, J.R.

    1972-01-01

    Projections are made for dc magnet conductor costs for large fusion power reactors. A mature fusion economy is assumed sometime after 2000 A. D. in which approximately 90,000 MW(e) of fusion reactors are constructed/year. State of the art critical current vs. field characteristics for superconductors are used in these projections. Present processing techniques are used as a basis for the design of large plants sized to produce approximately one-half of the conductor needed for the fusion magnets. Multifilamentary Nb-Ti, Pb-Bi in glass fiber, GE Nb 3 Sn tape, Linde plasma sprayed Nb 3 Sn tape, and V 3 Ga tape superconductors are investigated, together with high purity aluminum cryoconductor. Conductor costs include processing costs [capital (equipment plus buildings), labor, and operating] and materials costs. Conductor costs are compared for two sets of material costs: current (1971 A. D.) costs, and projected (after 2000 A. D.) costs. (U.S.)

  5. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    International Nuclear Information System (INIS)

    Perkins, L.J.; Betti, R.; Schurtz, G.P.; Craxton, R.S.; Dunne, A.M.; LaFortune, K.N.; Schmitt, A.J.; McKenty, P.W.; Bailey, D.S.; Lambert, M.A.; Ribeyre, X.; Theobald, W.R.; Strozzi, D.J.; Harding, D.R.; Casner, A.; Atzemi, S.; Erbert, G.V.; Andersen, K.S.; Murakami, M.; Comley, A.J.; Cook, R.C.; Stephens, R.B.

    2010-01-01

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term (∼3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of ∼60 may be achievable on NIF at laser drive energies around ∼0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R and D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  6. Neutron streaming evaluation for the DREAM fusion power reactor

    International Nuclear Information System (INIS)

    Seki, Yasushi; Nishio, Satoshi; Ueda, Shuzo; Kurihara, Ryoichi

    2000-01-01

    Aiming at high degree of safety and benign environmental effect, we have proposed a tokamak fusion reactor concept called DREAM, which stands for DRastically EAsy Maintenance Reactor. The blanket structure of the reactor is made from very low activation SiC/SiC composites and cooled by non-reactive helium gas. High net thermal efficiency of about 50% is realized by 900 C helium gas and high plant availability is possible with simple maintenance scheme. In the DREAM Reactor, neutron streaming is a big problem because cooling pipes with diameter larger than 80 cm are used for blanket heat removal. Neutron streaming through the cooling pipes could cause hot spots in the superconducting magnets adjacent to the cooling pipes to shorten the magnet lifetime or increase cryogenic cooling requirement. Neutron streaming could also activate components such as gas turbine further away from the fusion plasma. The effect of neutron streaming through the helium cooling pipes was evaluated for the two types of cooling pipe extraction scheme. The result of a preliminary calculation indicates the gas turbine activation prohibits personnel access in the case of inboard pipe extraction while with additional shielding measures, limited contact maintenance is possible in the case of outboard extraction. (author)

  7. Fusion energy: 'clean' nuclear power with cheap fuel

    International Nuclear Information System (INIS)

    Persson, H.

    1976-01-01

    Because of the world energy crisis the possible use of thermonuclear energy is exciting great interest, particularly in the United States. Of primary importance is that the fuel required is cheap and readily available - it is the world's water resources. The basic long standing fundamental problem is to produce a stable plasma; the difficulties and the reasons for them are discussed. Of the machines and methods designed to overcome the problem, to date the Russian-developed Tokamak appears the most likely to succeed. The confidence in this equipment is shown by the number under construction or design in the U.S.; brief descriptions are given of a number of 'tokamaks' being built by Government agencies and universities and by industry. The Energy Research and Development Administration (ERDA) hopes that some useful energy can be produced by 1985 and a 500MW generator by 1995-97. Of importance also to the understanding of the fusion reaction are fundamental investigations with, for instance, particle accelerators. Work at Oakridge, Livermore, Princeton and Brookhaven is discussed. Other experiments e.g. laser induced fusion, are also considered. (G.P.)

  8. Investigation toward laser driven IFE (inertial fusion energy) power plant

    International Nuclear Information System (INIS)

    Nakai, S.; Kozaki, Y.; Izawa, Y.; Yamanaka, M.; Kanabe, T.; Kato, Y.; Norimatsu, T.; Nagai, K.; Nakatsuka, M.; Jitsuno, T.; Yamanaka, T.

    2000-01-01

    Based on the conceptual design of Laser Driven IFE Power Plant, the technical and physical issues have been examined. R and D on key issues which affect the feasibility of power plant has been performed taking into account the collaboration in the field of laser driver, fuel pellet, reaction chamber and system design. The coordination and collaboration organization of reactor technology experts in Japan on Laser Driven IFE Power Plant are reviewed. (authors)

  9. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    Science.gov (United States)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  10. Structural materials requirements for in-vessel components of fusion power plants

    International Nuclear Information System (INIS)

    Schaaf, B. van der

    2000-01-01

    The economic production of fusion energy is determined by principal choices such as using magnetic plasma confinement or generating inertial fusion energy. The first generation power plants will use deuterium and tritium mixtures as fuel, producing large amounts of highly energetic neutrons resulting in radiation damage in materials. In the far future the advanced fuels, 3 He or 11 B, determine power plant designs with less radiation damage than in the first generation. The first generation power plants design must anticipate radiation damage. Solid sacrificing armour or liquid layers could limit component replacements costs to economic levels. There is more than radiation damage resistance to determine the successful application of structural materials. High endurance against cyclic loading is a prominent requirement, both for magnetic and inertial fusion energy power plants. For high efficiency and compactness of the plant, elevated temperature behaviour should be attractive. Safety and environmental requirements demand that materials have low activation potential and little toxic effects under both normal and accident conditions. The long-term contenders for fusion power plant components near the plasma are materials in the range from innovative steels, such as reduced activation ferritic martensitic steels, to highly advanced ceramic composites based on silicon carbide, and chromium alloys. The steels follow an evolutionary path to basic plant efficiencies. The competition on the energy market in the middle of the next century might necessitate the riskier but more rewarding development of SiCSiC composites or chromium alloys

  11. Development of electrical insulator coatings for fusion power applications

    International Nuclear Information System (INIS)

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1995-01-01

    In the design of liquid-metal cooling systems for fusion blanket applications, the corrosion resistance of structural materials and the magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study was to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal-structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys (V-Ti or V-Ti-Cr) are leading candidate materials for structural applications in fusion reactors. When the system is cooled by liquid metals, insulator coatings are required on piping surfaces in contact with the coolant. Various intermetallic films were produced on V, V-5Ti, and V-20Ti, V-5Cr-5Ti, and V-15Cr-5Ti, and Ti, and on types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid Li containing 3-5at.% dissolved metallic solute (e.g. Al, Be, Mg, Si, Ca, Pt, and Cr) at temperatures of 416-880 C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved N in liquid Li or by air oxidation under controlled conditions at 600-1000 C. These reactions converted the intermetallic layers to electrically insulating oxide-nitride or oxynitride layers. This coating method is applicable to reactor components. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes (e.g. inside or outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. This paper discusses initial results on the nature of the coatings (composition, thickness, adhesion, surface coverage) and their in situ electrical resistivity characteristics in liquid Li at high temperatures. (orig.)

  12. Overview of US heavy-ion fusion commercial electric power systems assessment project. Revision

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Pendergrass, J.H.; Saylor, W.W.

    1986-01-01

    The US heavy-ion fusion (HIF) research program is oriented toward development of multiple-beam induction linacs. Over the last two years an assessment has been performed of the potential of HIF as a competitive commercial electric power source. This assessment involved several technology performance and cost issues (e.g., final beam transport system, target manufacturing, beam stability in reactor cavity environments, and reactor cavity clearing), as well as overall power plant systems integration and tradeoff studies. Results from parametric analyses using a systems code developed in the project show cost of electricity (COE) values comparable with COEs from other magnetic fusion and inertial confinement fusion (ICF) plant studies; viz, 50-60 mills/kWh (1985 dollars) for 1-GWe plants. Also, significant COE insensitivity to major accelerator, target, and reactor parameters was demonstrated

  13. A Multifeature Fusion Approach for Power System Transient Stability Assessment Using PMU Data

    Directory of Open Access Journals (Sweden)

    Yang Li

    2015-01-01

    Full Text Available Taking full advantage of synchrophasors provided by GPS-based wide-area measurement system (WAMS, a novel VBpMKL-based transient stability assessment (TSA method through multifeature fusion is proposed in this paper. First, a group of classification features reflecting the transient stability characteristics of power systems are extracted from synchrophasors, and according to the different stages of the disturbance process they are broken into three nonoverlapped subsets; then a VBpMKL-based TSA model is built using multifeature fusion through combining feature spaces corresponding to each feature subset; and finally application of the proposed model to the IEEE 39-bus system and a real-world power system is demonstrated. The novelty of the proposed approach is that it improves the classification accuracy and reliability of TSA using multifeature fusion with synchrophasors. The application results on the test systems verify the effectiveness of the proposal.

  14. Safety and environmental aspects of deuterium--tritium fusion power plants: work shop summary

    International Nuclear Information System (INIS)

    1978-05-01

    In September of 1977 a workshop was held on the safety and environmental aspects of fusion power plants to consider potential safety and environmental problems of fusion power plants and to reveal solutions or methods of solving those problems. The objective was to promote incorporation of safety and environmental protection into reactor design, thereby reducing the expense and delay of backfitting safety systems after reactor designs are complete. A dialogue was established between fusion reactor designers and safety and environmental researchers. Four topics, each with several subdivisions, were selected for discussion: radiation exposure, accidents, environmental effects, and plant safety. For each topic, discussion focused on the significance of the problem, and adequacy of current technology to solve the problem, design solutions available and research needed to solve the problem

  15. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  16. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  17. A flexible data fusion architecture for persistent surveillance using ultra-low-power wireless sensor networks

    Science.gov (United States)

    Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.

    2011-06-01

    We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.

  18. Power supply requirements for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.L.

    1979-01-01

    The power supply requirements for a 7-m major radius commerical tokamak reactor have been examined, using a system approach combining models of the reactor and poloidal coil set, plasma burn cycle and magnetohydrodynamics calculations, and power supply characteristics and cost data. A conventional system using a motor-generator flywheel set and solid-state rectifier-inverter power supplies was studied in addition to systems using a homopolar generator, superconducting energy storage inductor, and dump resistors. The requirements and cost of the power supplies depend on several factors but most critically on the ohmic heating ramp time used for startup. Long ramp times (greater than or equal to 8 s) seem to be feasible, from the standpoint of resistive volt-second losses, and would appear to make conventional systems quite competitive with nonconventional ones, which require further research and development

  19. Power supply requirements for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.L.

    1979-02-01

    The power supply requirements for a 7-M major radius commercial tokamak reactor have been examined, using a system approach combining models of the reactor and poloidal coil set, plasma burn cycle and MHD calculations, and power supply characteristics and cost data. A conventional system using an MGF set and solid-state rectifier/inverter power supplies was studied in addition to systems using a homopolar generator, superconducting energy storage inductor, and dump resistors. The requirements and cost of the power supplies depend on several factors but most critically on the ohmic heating ramp time used for startup. Long ramp times (approx. > 8 s) seems to be feasible, from the standpoint of resistive volt-second losses, and would appear to make conventional systems quite competitive with nonconventional ones, which require further research and development

  20. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  1. Development of D+3He Fusion Electric Thrusters and Power Supplies for Space

    Science.gov (United States)

    Morse, Thomas M.

    1994-07-01

    Development of D+3He Fusion Electric Thrusters (FET) and Power Supplies (FPS) should occur at a lunar base because of the following: availability of helium-3, a vacuum better than on Earth, low K in shade reachable by radiant cooling, supply of ``high temp'' superconducting ceramic-metals, and a low G environment. The early FET will be much smaller than an Apollo engine, with specific impulse of 10,000-100,000-s. Solar power and low G will aid early development. To counter the effect of low G on humans, centrifuges will be employed for sleeping and resting. Work will be done by telerobotic view control. The FPS will be of comparable size, and will generate power mainly by having replaceable rectennas, resonant to the fusion synchrotron radiation. FPSs are used for house keeping power and initiating superconduction. Spaceships will carry up to ten FETs and two FPSs. In addition to fusion fuel, the FET will inject H or Li low mass propellant into the fusion chamber. Developing an FET would be difficult on Earth. FET spaceships will park between missions in L1, and an FET Bus will fetch humans/supplies from Moon and Earth. Someday FETs, with rocket assist, will lift spaceships from Earth, and make space travel to planets far cheaper, faster, and safer, than at present. Too long a delay due to the space station, or the huge cost of getting into space by current means, will damage the morale of the space program.

  2. High-power pulsed light ion beams for applications in fusion- and matter research

    International Nuclear Information System (INIS)

    Bluhm, H.; Karow, H.U.; Rusch, D.; Zieher, K.W.

    1982-01-01

    The foundations of ultrahigh-power pulse techniques are described together with the two pulse generators KALIF (Karlsruhe Light lion Facility) and Pollux of the INR. The physical principles and diagnostics of ion beam production are discussed as well as possible applications in the field of fusion research. (orig./HT) [de

  3. Preparation of processed nuclear data libraries for thermal, fast and fusion research and power reactor applications

    International Nuclear Information System (INIS)

    Ganesan, S.

    1994-03-01

    A Consultants Meeting on ''Preparation of Processed Nuclear Data Libraries for Thermal, Fast and Fusion Research and Power Reactor Applications'' was convened by the International Atomic Energy Agency and held during December 13-16, 1993 December 8-10, 1993 at the IAEA Headquarters, Vienna. The detailed agenda, the complete list of participants and the recommendations are presented in this report. (author)

  4. Osiris and SOMBRERO inertial fusion power plant designs - summary, conclusions, and recommendations

    International Nuclear Information System (INIS)

    Meier, Wayne R.

    1994-01-01

    An 18 month study to evaluate the potential of inertial fusion energy (IFE) for electric power production has been completed. The primary objective of the study was to provide the US Department of Energy with an evaluation of the potential of inertial fusion for electric power production. The study included the conceptual design of two inertial fusion power plants. Osiris uses an induction linac heavy ion beam driver, and SOMBRERO uses a krypton fluoride laser driver. Conceptual designs were completed for the reactors, power conversion and plant facilities, and drivers. Environmental and safety aspects, technical issues, technology development needs, and economics of the final point designs were assessed and compared. This paper summarizes the results and conclusions of the conceptual designs and results of the assessment studies. We conclude that IFE has the potential of producing technically credible designs with environmental, safety, and economics characteristics that are just as attractive as magnetic fusion. Realizing this potential will require additional research and development on target physics, chamber design, target production and injection systems, and drivers. ((orig.))

  5. Preliminary conceptual design study of the RIGGATRON approach to fusion power. Appendices P--T

    International Nuclear Information System (INIS)

    1978-01-01

    The following appendices are included: (1) background information on high strength materials; (2) parametric systems analysis and economic studies; (3) RIGGATRON plants for materials irradiation testing; (4) RIGGATRON recycling model and cost; and (5) impact analysis of the commerical application of RIGGATRON fusion power concept

  6. Progress in modular-stellarator fusion-power-reactor conceptual designs

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Van Sciver, S.W.; Kulcinski, G.L.

    1982-01-01

    Recent encouraging experimental results on stellarators/torsatrons/heliotrons (S/T/H) have revived interest in these concepts as possible fusion power reactors. The use of modular coils to generate the stellarator topology has added impetus to this renewed interest. Studies of the modular coil approach to stellarators by UW-Madison and Los Alamos National Laboratory are summarized in this paper

  7. Conceptual design of the cryogenic system for the helical-type fusion power plant FFHR

    International Nuclear Information System (INIS)

    Yamada, S.; Sagara, A.; Imagawa, S.; Mito, T.; Motojima, O.

    2007-01-01

    The force-free helical-type fusion reactor, FFHR, is proposed on the basis of the engineering achievements and confinement properties of the experimental fusion device of LHD. The outputs of the thermal power and electric power are optimized to 3 and 1 GW, respectively. Total weight of the superconducting (SC) coils and their supporting structures of the FFHR are estimated to be 18,000 t. An equivalent refrigeration capacity of 98 kW is necessary for coping with different plant loads. Mass-flow rate of the main circulation compressors is 9.5 kg/s and their power consumption is 29 MW. The FFHR is used for the co-generation system of electricity and hydrogen. The pressurized hydrogen of 100 t per day can be produced, when the stem electrolyzer of 150 MW class is applied. Electric power consumption of the hydrogen liquefaction with 100 t per day is estimated to be 26 MW

  8. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    International Nuclear Information System (INIS)

    1981-07-01

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be required for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost

  9. Prospects of High Temperature Superconductors for fusion magnets and power applications

    International Nuclear Information System (INIS)

    Fietz, Walter H.; Barth, Christian; Drotziger, Sandra; Goldacker, Wilfried; Heller, Reinhard; Schlachter, Sonja I.; Weiss, Klaus-Peter

    2013-01-01

    Highlights: • An overview of HTS application in fusion is given. • BSCCO application for current leads is discussed. • Several approaches to come to a high current HTS cable are shown. • Open issues and benefits of REBCO high current HTS cables are discussed. -- Abstract: During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application. For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5 K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb 3 Sn which could be interesting with respect to DEMO. After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed

  10. Solar PV Power Forecasting Using Extreme Learning Machine and Information Fusion

    OpenAIRE

    Le Cadre , Hélène; Aravena , Ignacio; Papavasiliou , Anthony

    2015-01-01

    International audience; We provide a learning algorithm combining distributed Extreme Learning Machine and an information fusion rule based on the ag-gregation of experts advice, to build day ahead probabilistic solar PV power production forecasts. These forecasts use, apart from the current day solar PV power production, local meteorological inputs, the most valuable of which is shown to be precipitation. Experiments are then run in one French region, Provence-Alpes-Côte d'Azur, to evaluate ...

  11. Solar PV power forecasting using extreme machine learning and experts advice fusion

    OpenAIRE

    Le Cadre, Hélène; Aravena Solís, Ignacio Andrés; Papavasiliou, Anthony; European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

    2015-01-01

    We provide a learning algorithm combining distributed Extreme Learning Machine and an information fusion rule based on the aggregation of experts advice, to build day ahead probabilistic solar PV power production forecasts. These forecasts use, apart from the current day solar PV power production, local meteorological inputs, the most valuable of which is shown to be precipitation. Experiments are then run in one French region, Provence-Alpes-Côte d’Azur, to evaluate the algorithm performance...

  12. FRESCO, a simplified code for cost analysis of fusion power plants

    International Nuclear Information System (INIS)

    Bustreo, C.; Casini, G.; Zollino, G.; Bolzonella, T.; Piovan, R.

    2013-01-01

    Highlights: • FRESCO is a code for rapid evaluation of the cost of electricity of a fusion power plant. • Parameters of the basic machine and unitary costs of components derived from ITER. • Power production components and plant power balance are extrapolated from PPCS. • A special effort is made in the investigation of the pulsed operation scenarios. • Technical and economical FRESCO results are compared with those of two PPCS models. -- Abstract: FRESCO (Fusion REactor Simplified COsts) is a code based on simplified models of physics, engineering and economical aspects of a TOKAMAK-like pulsed or steady-state fusion power plant. The experience coming from various aspects of ITER design, including selection of materials and operating scenarios, is exploited as much as possible. Energy production and plant power balance, including the recirculation requirements, are derived from two models of the PPCS European study, the helium cooled lithium/lead blanket model reactor (model AB) and the helium cooled ceramic one (model B). A detailed study of the availability of the power plant due, among others, to the replacement of plasma facing components, is also included in the code. The economics of the fusion power plant is evaluated through the levelized cost approach. Costs of the basic components are scaled from the corresponding values of the ITER project, the ARIES studies and SCAN model. The costs of plant auxiliaries, including those of the magnetic and electric systems, tritium plants, instrumentation, buildings and thermal energy storage if any, are recovered from ITER values and from those of other power plants. Finally, the PPCS models AB and B are simulated and the main results are reported in this paper

  13. Near-term electric-vehicle program. Phase II. Mid-term review summary report

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-27

    The general objective of the Near-Term Electric Vehicle Program is to confirm that, in fact, the complete spectrum of requirements placed on the automobile (e.g., safety, producibility, utility, etc.) can still be satisfied if electric power train concepts are incorporated in lieu of contemporary power train concepts, and that the resultant set of vehicle characteristics are mutually compatible, technologically achievable, and economically achievable. The focus of the approach to meeting this general objective involves the design, development, and fabrication of complete electric vehicles incorporating, where necessary, extensive technological advancements. A mid-term summary is presented of Phase II which is a continuation of the preliminary design study conducted in Phase I of the program. Information is included on vehicle performance and performance simulation models; battery subsystems; control equipment; power systems; vehicle design and components for suspension, steering, and braking; scale model testing; structural analysis; and vehicle dynamics analysis. (LCL)

  14. Space reactor/organic Rankine conversion - A near-term state-of-the-art solution

    Science.gov (United States)

    Niggemann, R. E.; Lacey, D.

    The use of demonstrated reactor technology with organic Rankine cycle (ORC) power conversion can provide a low cost, minimal risk approach to reactor-powered electrical generation systems in the near term. Several reactor technologies, including zirconium hydride, EBR-II and LMFBR, have demonstrated long life and suitability for space application at the operating temperature required by an efficient ORC engine. While this approach would not replace the high temperature space reactor systems presently under development, it could be available in a nearer time frame at a low and predictable cost, allowing some missions requiring high power levels to be flown prior to the availability of advanced systems with lower specific mass. Although this system has relatively high efficiency, the heat rejection temperature is low, requiring a large radiator on the order of 3.4 sq m/kWe. Therefore, a deployable heat pipe radiator configuration will be required.

  15. Low activation structural material candidates for fusion power plants

    International Nuclear Information System (INIS)

    Forty, C.B.A.; Cook, I.

    1997-06-01

    Under the SEAL Programme of the European Long-Term Fusion Safety Programme, an assessment was performed of a number of possible blanket structural materials. These included the steels then under consideration in the European Blanket Programme, as well as materials being considered for investigation in the Advanced Materials Programme. Calculations were performed, using SEAFP methods, of the activation properties of the materials, and these were related, based on the SEAFP experience, to assessments of S and E performance. The materials investigated were the SEAFP low-activation martensitic steel (LA12TaLC); a Japanese low-activation martensitic steel (F-82H), a range of compositional variants about this steel; the vanadium-titanium-chromium alloy which was the original proposal of the ITER JCT for the ITER in-vessel components; a titanium-aluminium intermetallic (Ti-Al) which is under investigation in Japan; and silicon carbide composite (SiC). Assessed impurities were included in the compositions of these materials, and they have very important impacts on the activation properties. Lack of sufficiently detailed data on the composition of chromium alloys precluded their inclusion in the study. (UK)

  16. Focused proton beams propagating in reactor of fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Niu, K [Teikyo Heisei Univ., Uruido, Ichihara, Chiba (Japan)

    1997-12-31

    One of the difficult tasks of light ion beam fusion is to propagate the beam in the reactor cavity and to focus the beam on the target. The light ion beam has a certain local divergence angle because there are several causes for divergence at the diode. The electrostatic force induced at the leading edge causes beam divergence during propagation. To confine the beam within a small radius during propagation, the magnetic field must be employed. Here the electron beam is proposed to be launched simultaneously with the launching of the proton beam. If the electron beam has the excess current, the beam induces a magnetic field in the negative azimuthal direction, which confines the ion beam within a small radius by the electrostatic field as well as the electron beam by the Lorentz force. The metal guide around the beam path helps the beam confinement and reduces the total amount of magnetic field energy induced by the electron current. (author). 2 figs., 15 refs.

  17. Transmutation and activation analysis of fusion power plants

    International Nuclear Information System (INIS)

    White, A.M.

    1985-01-01

    There are three principal objectives of this research: (1) development of an activation computer code that insures no important isotopes are neglected: (2) development of a linear chain code that enables one to compute the stable isotope inventory at all times; and (3) revision of the DCDLIB library using ACTL data. DKR is a computer code that uses the linear chain method to determine the activity, biological hazards potential, afterheat, and dose that will be present should a fusion reactor be constructed and operated. Unfortunately, this code terminates the chains with a strategy that can allow important chains to be neglected or not produced. To remedy this situation, the adjoint method of chain construction was developed. In this study, the adjoint operator is derived and the adjoint nuclide density equations are solved. The validity of using this method for the construction of chains is also demonstrated. A computer code, ANDYKAY, was developed that employs the adjoint method. The structure of this code is described and results obtained running this code in various configurations are given. The DKR and ANDYKAY codes are only capable of computing the radioactive isotope inventory. The code DKR-STABLE, which has been written to calculate the stable isotope inventory, is described. The results of a sample calculation performed using this code are given

  18. Preliminary study on power balance in the plasma of an experimental fusion reactor

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Yamato, Harumi

    1976-03-01

    The preliminary study on power balance in the plasma is described in the first-stage design of an experimental fusion reactor. The purpose is to show the ranges of plasma parameters for the design output of about 100 MW with an injection power less than 50 MW. The impurity is permitted to the extent of Zsub(eff) -- 5 to meet the design requirement. Influences of the uncertainty in scaling law on the power output and injection power are discussed, and also possibility of the self-ignition. (auth.)

  19. Sustaining neutral beam power supply system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

    1980-01-01

    In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year

  20. Status and near-term plans for DIII-D

    International Nuclear Information System (INIS)

    Davis, L.G.; Callis, R.W.; Luxon, J.L.; Stambaugh, R.D.

    1987-10-01

    The DIII-D tokamak at GA Technologies began plasma operation in February of 1986 and is dedicated to the study of highly non-circular plasmas. High beta operation with enhanced energy confinement is paramount among the goals of the DIII-D research program. Commissioning of the device and facility has verified the design capability including coil and vessel loading, volt-second consumption, bakeout temperature, vessel armor, and neutral beamline thermal integrity and control systems performance. Initial experimental results demonstrate the DIII-D is capable of attaining high confinement (H-mode) discharges in a divertor configuration using modest neutral beam heating or ECH. Record values of I/sub p/aB/sub T/ have been achieved with ohmic heating as a first step toward operation at high values of toroidal beta and record values of beta have been achieved using neutral beam heating. This paper summarizes results to date and gives the near term plans for the facility. 13 refs., 6 figs., 1 tab

  1. The ARIES-AT advanced tokamak, Advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, Farrokh; Abdou, A.; Bromberg, L.

    2006-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant and to identifying physics and technology areas with the highest leverage for achieving attractive and competitive fusion power in order to guide fusion R and D. The 1000-MWe ARIES-AT design has a major radius of 5.2 m, a minor radius of 1.3 m, a toroidal β of 9.2% (β N = 5.4) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current-drive power is 35 MW. The ARIES-AT design uses the same physics basis as ARIES-RS, a reversed-shear plasma. A distinct difference between ARIES-RS and ARIES-AT plasmas is the higher plasma elongation of ARIES-AT (κ x = 2.2) which is the result of a 'thinner' blanket leading to a large increase in plasma β to 9.2% (compared to 5% for ARIES-RS) with only a slightly higher β N . ARIES-AT blanket is a simple, low-pressure design consisting of SiC composite boxes with a SiC insert for flow distribution that does not carry any structural load. The breeding coolant (Pb-17Li) enters the fusion core from the bottom, and cools the first wall while traveling in the poloidal direction to the top of the blanket module. The coolant then returns through the blanket channel at a low speed and is superheated to ∼1100 deg. C. As most of the fusion power is deposited directly into the breeding coolant, this method leads to a high coolant outlet temperature while keeping the temperature of the SiC structure as well as interface between SiC structure and Pb-17Li to about 1000 deg. C. This blanket is well matched to an advanced Brayton power cycle, leading to an overall thermal efficiency of ∼59%. The very low afterheat in SiC composites results in exceptional safety and waste disposal characteristics. All of the fusion core components qualify for shallow land burial under U.S. regulations (furthermore, ∼90% of components qualify as Class-A waste, the lowest level). The ARIES

  2. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.

    1977-12-06

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well.

  3. Waste management strategy for nuclear fusion power systems from a regulatory perspective

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1977-01-01

    A waste management strategy for future nuclear fusion power systems is developed using existing regulatory methodology. The first step is the development of a reference fuel cycle. Next, the waste streams from such a facility are identified. Then a waste management system is defined to safely handle and dispose of these wastes. The future regulator must identify the decisions necessary to establish waste management performance criteria. The data base and methodologies necessary to make these decisions must then be developed. Safe management of nuclear fusion wastes is not only a technological challenge, but encompasses significant social, political, and ethical questions as well

  4. A high-power laser system for thermonuclear fusion experiments

    International Nuclear Information System (INIS)

    Azizov, Eh.A.; Ignat'ev, L.P.; Koval'skij, N.G.; Kolesnikov, Yu.A.; Mamzer, A.F.; Pergament, M.I.; Rudnitskij, Yu.P.; Smirnov, G.V.; Yagnov, V.A.; Nikolaevskij, V.G.

    1976-01-01

    A high-power laser system has been designed for an energy output of approximately 3X10 4 J. Neodymium glass was selected based on the level of technical progress, operating experience and the availability of components. The operating performance that has been achieved to date is described. (author)

  5. Lasers and power systems for inertial confinement fusion reactors

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    After discussing the role of lasers in ICF and the candidate lasers, several important areas of technology requirements are discussed. These include the beam transport system, the pulsed power system and the gas flow system. The system requirements, state of the art, as well as needs and prospects for new technology developments are given. Other technology issues and promising developments are described briefly

  6. STARFIRE: a commercial tokamak fusion power plant study

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction.

  7. STARFIRE: a commercial tokamak fusion power plant study

    International Nuclear Information System (INIS)

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction

  8. Biological effects of tritium releases from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Thompson, R.C.

    1976-09-01

    Tritium released as tritium oxide is a much more significant potential hazard to the environment than is elemental tritium. Although most biochemical reactions discriminate against the incorporation of tritium in favor of hydrogen, the possibility of some concentration should not be overlooked. A fraction of tritium accumulated as tritiated water becomes organically bound, that is, exchanges with hydrogen bound in organic molecules. The rate and extent of incorporation are dependent upon metabolic activity of the organism. On this basis, the highest concentration of organically-bound tritium would be expected in tissues and population segments which are in formative or growth stages at the time of exposure. Furthermore, as exposure duration increases from acute to chronic situations, tritium concentrations are shown to approach equilibrium levels with a single tritium-to-hydrogen ratio common to all parts of the hydrogen pool. Organic binding would not be expected to result in significant bioaccumulation of tritium from tritiated water. Tritium loss, both from tissue-free water and the tissue-bound fraction, depends upon metabolic activity. Processes that allow accumulation and incorporation of tritium also assist its elimination. Tritium which is organically bound demonstrates a longer half-time, but it would appear to constitute a small fraction of the total tritium label. The radiation exposure of all living organisms by environmentally dispersed tritium, in whatever form, is essentially a whole body exposure. Uncertainties in the individual parameters, involved in converting measured intake to estimated dose equivalent are probably no larger than a factor of three or four. If fusion reactors hold tritium releases with ICRP standards, no significant adverse impact to the environment from those releases are expected

  9. Development of intermetallic coatings for fusion power applications

    International Nuclear Information System (INIS)

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1994-03-01

    In the design of liquid-metal cooling systems, corrosion resistance of structural materials and magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys are potential materials for structural applications in a fusion reactor. Insulator coatings inside the tubing are required when the system is cooled by liquid metals. Various intermetallic films were produced on V, V-t, and V-20 Ti, V-5Cr-t and V-15Cr-t, and Ti, and Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid lithium of 3--5 at.% and containing dissolved metallic solutes at temperatures of 416--880 degrees C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved nitrogen in liquid lithium or by air oxidation under controlled conditions at 600--1000 degrees C. These reactions converted the intermetallic layers to electrically insulating oxide/nitride or oxy-nitride layers. This coating method could be applied to a commercial product. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes because the coating is formed by liquid-phase reaction. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid lithium at high temperatures

  10. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  11. Liquid lithium loop system to solve challenging technology issues for fusion power plant

    Science.gov (United States)

    Ono, M.; Majeski, R.; Jaworski, M. A.; Hirooka, Y.; Kaita, R.; Gray, T. K.; Maingi, R.; Skinner, C. H.; Christenson, M.; Ruzic, D. N.

    2017-11-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor concept and its variant, the active liquid lithium divertor concept, taking advantage of the enhanced or non-coronal Li radiation in relatively poorly confined divertor plasmas. To maintain the LL purity in a 1 GW-electric class fusion power plant, a closed LL loop system with a modest circulating capacity of ~1 l s-1 is envisioned. We examined two key technology issues: (1) dust or solid particle removal and (2) real time recovery of tritium from LL while keeping the tritium inventory level to an acceptable level. By running the LL-loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to the outside where the dust/impurities can be removed by relatively simple dust filter, cold trap and/or centrifugal separation systems. With ~1 l s-1 LL flow, even a small 0.1% dust content by weight (or 0.5 g s-1) suggests that the LL-loop could carry away nearly 16 tons of dust per year. In a 1 GW-electric (or ~3 GW fusion power) fusion power plant, about 0.5 g s-1 of tritium is needed to maintain the fusion fuel cycle

  12. The fusion-FEM: 0,75 MW of mm-wave power

    Energy Technology Data Exchange (ETDEWEB)

    Smeets, P.H.M.; Bongers, W.A.; Brons, S.; Geer, C.A.J. van der; Lingier, K.L.; Manintveld, P.; Plomp, J.; Pluygers, J.; Poelman, A.J.; Sterk, A.B.; Verhoeven, A.G.A.; Urbanus, W.H. [FOM Inst. voor Plasmafysica ' Rijnhuizen' , Nieuwegein (Netherlands); Bratman, V.L.; Denisov, G.G.; Savilov, A.V. [Inst. of Applied Physics, Nizhny Novgorod (Russian Federation); Caplan, M. [Lawrence Livermore National Lab., CA (United States); Varfolomeev, A.A. [Russian Research Center ' Kurchatov Inst.' , Moscow (Russian Federation)

    1998-07-01

    The free-electron maser for fusion applications (Fusion-FEM) is the prototype for a high power, rapid tunable mm-wave source. The basic parameters such as frequency range (130 - 260 GHz) and output power (1 MW) are dedicated to Electron Cyclotron Resonance applications on future plasma fusion research devices, such as ITER. In October 1996 the electron beam was successfully accelerated and transported through the undulator and the mm-wave cavity. Loss currents are below 0.05 %. In October 1997 first lasing was achieved. The mm-wave output power has been measured at various frequencies and for various electron beam currents and energies. The highest output power reached so far is 730 kW at 205 GHz, for an electron beam of 7.2 A and 1.77 MeV. Both output power and start-up time correspond well with simulation results. The output beam has a Gaussian mode content of more than 99.8 % for all operating frequencies. So far, the pulse length was limited to 12{mu}s, because the electron beam recovery system was not yet installed. This system, an electron decelerator and a 3-stage depressed collector, is presently under construction. It serves to recover the charge and energy of the spend electron beam. In this paper we will address some aspects of the design of the collector. (author)

  13. The fusion-FEM: 0,75 MW of mm-wave power

    International Nuclear Information System (INIS)

    Smeets, P.H.M.; Bongers, W.A.; Brons, S.; Geer, C.A.J. van der; Lingier, K.L.; Manintveld, P.; Plomp, J.; Pluygers, J.; Poelman, A.J.; Sterk, A.B.; Verhoeven, A.G.A.; Urbanus, W.H.; Bratman, V.L.; Denisov, G.G.; Savilov, A.V.; Caplan, M.; Varfolomeev, A.A.

    1998-01-01

    The free-electron maser for fusion applications (Fusion-FEM) is the prototype for a high power, rapid tunable mm-wave source. The basic parameters such as frequency range (130 - 260 GHz) and output power (1 MW) are dedicated to Electron Cyclotron Resonance applications on future plasma fusion research devices, such as ITER. In October 1996 the electron beam was successfully accelerated and transported through the undulator and the mm-wave cavity. Loss currents are below 0.05 %. In October 1997 first lasing was achieved. The mm-wave output power has been measured at various frequencies and for various electron beam currents and energies. The highest output power reached so far is 730 kW at 205 GHz, for an electron beam of 7.2 A and 1.77 MeV. Both output power and start-up time correspond well with simulation results. The output beam has a Gaussian mode content of more than 99.8 % for all operating frequencies. So far, the pulse length was limited to 12μs, because the electron beam recovery system was not yet installed. This system, an electron decelerator and a 3-stage depressed collector, is presently under construction. It serves to recover the charge and energy of the spend electron beam. In this paper we will address some aspects of the design of the collector. (author)

  14. Inertial confinement fusion reaction chamber and power conversion system study

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li 2 O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li 2 O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li 2 O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive

  15. Hydrogen production in early generation fusion power plant and its socio-economic implication

    International Nuclear Information System (INIS)

    Konishi, S.; Yamamoto, Y.

    2007-01-01

    Full text: This paper describes technical possibility of high temperature blanket for the early generation of fusion power plant and its application to hydrogen production. Its anticipated implication and strategy from the socio-economic aspects will be also discussed. Material and energy balances, such as fuel supply and delivery of product energy from fusion plants, as well as waste discharge and accident scenario that lead to environmental impact, are characterized by blanket concepts. Thus blankets are considered to dominate the feature of fusion energy that should respond to the requirements of the sponsors, i.e., public and future market. Fusion blanket concept based on the combinations of LiPb and SiC materials are regarded as a candidate for ITER/TBM, and at the same time, applied in various DEMO designs encompassing high temperature output. Recent developments of SiC-LiPb blanket in Japan, EU, US or China suggests staged development paths starting from TBMs and targeting high temperature blanket and efficient energy output from early generation plants. These strategies are strongly affected by the views of these parties on fusion energy, from the aspects of socio-economics. Hydrogen production process with the high temperature blanket is one of the most important issues, because temperature range much higher than is possible with current or near future fission plants are needed, suggesting market possibility different from that of fission. Fuel cycles, particularly lithium supply and TBR control will be also important. Self-sustained fusion fuel cycle requires technical capability to maintain the lithium contents. Liquid blanket has an advantage in continuous and real-time control TBR in a plant, but large amount of lithium-6 and initial tritium supply remains as issues. As for the environmental effect, normal operation release, assumed accidental scenario, and rad-waste will be the key issue to dominate social acceptance of fusion. (author)

  16. Hydrogen production in early generation fusion power plant and its socio-economic implication

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yamamoto, Yasushi

    2008-01-01

    This paper describes technical possibility of high temperature blanket for the early generation of fusion power plant and its application to hydrogen production. Its anticipated implication and strategy from the socio-economic aspects will be also discussed. Material and energy balances, such as fuel supply and delivery of product energy from fusion plants, as well as waste discharge and accident scenario that lead to environmental impact, are characterized by blanket concepts. Thus blankets are considered to dominate the feature of fusion energy that should respond to the requirements of the sponsors, i.e., public and future market. Fusion blanket concept based on the combinations of LiPb and SiC materials are regarded as a candidate for ITER/TBM, and at the same time, applied in various DEMO designs encompassing high temperature output. Recent developments of SiC-LiPb blanket in Japan, EU, US or China suggests staged development paths starting from TBMs and targeting high temperature blanket and efficient energy output from early generation plants. These strategies are strongly affected by the views of these parties on fusion energy, from the aspects of socio-economics. Hydrogen production process with the high temperature blanket is one of the most important issues, because temperature range much higher than is possible with current or near future fission plants are needed, suggesting market possibility different from that of fission. Fuel cycles, particularly lithium supply and TBR control will be also important. Self-sustained fusion fuel cycle requires technical capability to maintain the lithium contents. Liquid blanket has an advantage in continuous and real-time control TBR in a plant, but large amount of lithium-6 and initial tritium supply remains as issues. As for the environmental effect, normal operation release, assumed accidental scenario, and rad-waste will be the key issue to dominate social acceptance of fusion. (author)

  17. Progress on the European Safety and Environmental Assessment of Fusion Power (SEAFP)

    International Nuclear Information System (INIS)

    Cook, I.

    1994-01-01

    The Safety and Environmental Assessment of Fusion Power (SEAFP) project was set up by the European Community Fusion Programme in response to recommendations made by a high level Fusion Programme Evaluation Board. The Evaluation Board stated that fusion potentially possesses ''inherent environmental and safety advantages over all current alternatives for base load electricity generation'', but that a ''convincing demonstration'' of these potential advantages is necessary. SEAFP is undertaken by three main participants: the NET Team, The Euratom/UKAEA Association, and European industry. Other EC fusion laboratories also participate. The work embraces the outline design of fusion power stations, the safety and environmental assessment of those designs, and interactions between design and assessment to improve the design. The project began in April 1992 and will report in December 1994. In the first year of the project, five candidate blanket concepts were developed in parallel. Other aspects of design were developed as far as possible independently of the blanket designs. Assessments were made of the technical merits of the candidate designs, and scoping calculations were used to provide preliminary assessments of their accident and waste management characteristics. Accident identification studies were used to select the bounding sequences to be analysed later in detail. Targets for safety and environmental performance were developed. This phase of the study culminated, in August 1993, in the selection of two plant models, one based on a water/martensitic steel/lithium-lead blanket, the other based on a helium/vanadium alloy/lithium oxide blanket, to be developed and assessed in more detail. Other design variants will be assessed through sensitivity studies. ((orig.))

  18. Determination of the Jet Neutron Rate and Fusion Power using the Magnetic Proton Recoil Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestrand, Henrik

    2003-01-01

    In this thesis a new independent method has been developed to enable precise measurements of neutron yields and rates from fusion plasmas and thereby determining the fusion power and fusion energy. The new method, together with the associated diagnostics, can provide information of great importance to present and future high fusion yield experiments, such as the Joint European Torus (JET) tokamak and the International Thermonuclear Experiment Reactor (ITER). The method has been applied to data from high fusion rate experiments from the tritium campaign at JET. By using the count-rate from the Magnetic Proton Recoil (MPR) neutron spectrometer the number of neutrons in the spectrometer's line of sight has been calculated. To be able to do this, all relevant factors between the plasma and the instrument have been evaluated. The number of neutrons in the MPR line of sight has been related to the total number of produced neutrons in the plasma by using information on the neutron emission profile. The achieved results have been compared with other JET neutron diagnostic data and the agreement is shown to be very good.

  19. A rationale for large inertial fusion plants producing hydrogen for powering low emission vehicles

    International Nuclear Information System (INIS)

    Logan, B.G.

    1993-01-01

    Inertial Fusion Energy (IFE) has been identified in the 1991 National Energy Strategy, along with Magnetic Fusion Energy (MFE), as one of only three inexhaustible energy sources for long term energy supply (past 2025), the other alternatives being fission and solar energy. Fusion plants, using electrolysis, could also produce hydrogen to power low emission vehicles in a potentially huge future US market: > 500 GWe would be needed for example, to replace all foreign oil imports with equal-energy hydrogen, assuming 70%-efficient electrolysis. Any inexhaustible source of electricity, including IFE and MFE reactors, can thus provide a long term renewable source of hydrogen as well as solar, wind and biomass sources. Hydrogen production by both high temperature thermochemical cycles and by electrolysis has been studied for MFE, but avoiding trace tritium contamination of the hydrogen product would best be assured using electrolysis cells well separated from any fusion coolant loops. The motivations to consider IFE or MFE producing renewable hydrogen are: (1) reducing US dependence on foreign oil imports and the associated trade deficient; (2) a hydrogen-based transportation system could greatly mitigate future air pollution and greenhouse gases; (3) investments in hydrogen pipelines, storage, and distribution systems could be used for a variety of hydrogen sources; (4) a hydrogen pipeline system could access and buffer sufficiently large markets that temporary outages of large (>> 1 GWe size) fusion hydrogen units could be tolerated

  20. Design approaches for enhancing the engineering feasibility of tokamak power reactors

    International Nuclear Information System (INIS)

    Shannon, T.E.; Steiner, D.

    1977-01-01

    The design approach developed in the ORNL Fusion Power Demonstration Study is reviewed. The design concepts having greatest impact on reactor feasibility by the application of current or near term technology are described briefly. These are: blanket structural material, blanket coolant, power conversion system, and pulsed electrical system. Concepts relative to the approach taken to simplify the overall reactor design are listed

  1. A system dynamics model for stock and flow of tritium in fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)

    2015-10-15

    Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.

  2. International power supply policy and the globalisation of research: the example of fusion research

    International Nuclear Information System (INIS)

    Bechmann, G.; Gloede, F.; Lessmann, E.

    2001-01-01

    At the present state of our information, we can affirm that fusion research, as far as the necessary financial expenditures and their political justification are concerned, is a matter of politically controversial debate. In the political arenas, projects like controlled nuclear fusion are discussed primarily with regard to the controllability of complex technical systems and the sustainability of our future supply of electric power. The attempt to discuss this problem will have to consider: (i) on the one hand, already established concepts of sustainability; (ii) and on the other, the - according to the present state of our knowledge - foreseeable characteristics of a system of power generation and supply based on fusion reactors. Not only do the goals of global technology projects have to be embedded in patterns of universally accepted legitimisation (sustainability), but the organisation of research and development is also changing into networks acting globally. In this sense, globalisation means not only the worldwide linking of financial markets and the permanent availability of information and communication networks, but above all the creation of global organisations of research and innovation processes. The globalisation of research and development of technology has several dimensions: (i) the recognition and treatment of global problems; (ii) the transformation and evolution of new forms of organisation and cooperation in a global community of researchers; (iii) the constitution of Global Change Research. Fusion is playing a 'pathfinder role' for these processes and is at the same time itself an expression of the globalisation of the production of technology

  3. Physics of laser fusion. Volume III. High-power pulsed lasers

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO 2 , KrF, and I 2 , for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO 2 gas laser systems; these systems now deliver > 10 4 J and 20 x 10 12 W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10 12 W of 1-μm radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers

  4. Conceptual Design of Low Fusion Power Hybrid System for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    DRUP (Direct Reuse of Used PWR) fuel has same process with DUPIC (Direct Use of spent PWR fuel Into CANDU reactor). There are 2 big benefits by using DRUP fuel in Hybrid system. One is fissile production during operating period. Required power is decreased by fissile production from DRUP fuel. When the fusion power is reduced, integrity of structure materials is not significantly weakened due to reduction of 14.1MeV high energy neutrons. In addition, required amount of tritium for self-sufficiency TBR (Tritium Breeding Ratio ≥ 1.1) is decreased. Therefore, it is possible to further loading the SNF as much as the amount of lithium decreased. It is effective in transmutation. The other one is that DRUP fuel is also SNF. Therefore, using DRUP fuel is reusing of SNF, as a result it makes reduction of SNF from PWR. However, thermal neutron system is suitable for using DRUP fuel compared to fast neutron system. Therefore, transmutation zone designed (U-TRU)Zr fuel and fissile production zone designed DRUP fuel are separated in this study. In this paper, using DRUP fuel for low fusion power in hybrid system is suggested. Fusion power is decreased by using DRUP fuel. As a result, TBR is satisfied design condition despite of using natural lithium. In addition, not only (U-TRU)Zr fuel but also DRUP fuel are transmuted.

  5. Inertial confinement fusion reaction chamber and power conversion system study. Final report

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Bourque, R.F.

    1985-10-01

    This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO 2 granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO 2 granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs

  6. Blanket handling concepts for future fusion power plants

    International Nuclear Information System (INIS)

    Bogusch, E.; Gottfried, R.; Maisonnier, D.

    2003-01-01

    In the frame of the power plant conceptual studies (PPCS) launched by the European Commission, two main blanket handling concepts have been investigated with respect to engineering feasibility and the impact on the plant availability and on cost: the large module handling concept (LMHC) and the large sector handling concept (LSHC). The LMHC has been considered as the reference handling concept while the LSHC has been considered as an attractive alternative to the LMHC due to its potential of smaller replacement times and hence increasing the plant availability. Although no principle feasibility issue has been identified, a number of engineering issues have been highlighted for the LSHC that would require considerable efforts for their resolution. Since its availability of about 77% based on a replacement time for all the internals of about 4.2 months is slightly lower than for the LMHC, the LMHC remains the reference blanket replacement concept for a conceptual reactor

  7. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  8. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  9. The reversed-field pinch: a compact approach to fusion power

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1985-01-01

    The potential of the reversed-field pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. This compact system promises to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that substantiate these promising results have been completed. This 1000 MW(e) (net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion. The RFP presents a robust plasma confinement system capable of providing a range of reactor systems that are compact in both physical size and/or net power output while ensuring acceptable cost and engineering feasibility for a range of assumed physics performance. (author)

  10. Developing maintainability for tokamak fusion power systems. Phase II report. Volume I: executive summary

    International Nuclear Information System (INIS)

    Fuller, G.M.; Zahn, H.S.; Mantz, H.C.; Kaletta, G.R.; Waganer, L.M.; Carosella, L.A.; Conlee, J.L.

    1978-11-01

    The purpose of this report is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Volume 1, the Executive Summary, presents the progress achieved toward this objective in this phase and includes a comparison with the results of the first phase study efforts. A series of maintainability design guidelines and an improved maintenance system are defined as initial steps in developing the requirements for a maintainable tokamak fusion power system. The principle comparative studies that are summarized include the determination of the benefits of various vacuum wall arrangements, the effect of unscheduled and scheduled maintenance of the first wall/blanket, some initial investigation of maintenance required for subsystems other than the first wall/blanket, and the impact of maintenance equipment failures

  11. Near-term directions in the World Stellarator Program

    International Nuclear Information System (INIS)

    Lyon, J.F.

    1990-01-01

    Interest in stellarators has increased because of the progress being made in the development of this concept and the inherent advantages of stellarators as candidates for an attractive, steady-state fusion reactor. Three new stellarator experiments started operation in 1988, and three more are scheduled to start in the next few years. In addition, design studies have started on large next-generation stellarator experiments for the mid-1990s. These devices are designed to test four basic approaches to stellarator configuration optimization. Ways in which these devices complement each other in exploring the potential of the stellarator concept and the main issues that they will address during the next decade are described

  12. Economic goals and requirements for competitive fusion energy

    International Nuclear Information System (INIS)

    Miller, R.L.

    1998-01-01

    Future economic competitiveness, coupled to and constrained by environmental and safety characteristics, continues to provide a central strategic motivation and concern for fusion research. Attention must also be paid to the evolving cost projections of future fusion competitors, with appropriate consideration of externalized impacts, insofar as they establish the eventual market-penetration context and also influence the near-term funding climate for fusion R and D. With concept optimization and selection in mind, tradeoffs among system power density, recirculating power, plant availability (reflecting both forced and planned outages), complexity, and structural materials and coolant choices are best monitored and resolved in the context of their impacts on capital and operating costs, which, together with low fuel costs and financial assumptions, determine the projected life-cycle product cost of fusion. Considerations deriving from deregulation and privatization are elucidated, as are possible implications of modern investment-analysis methods. (orig.)

  13. New results in development of MW output power gyrotrons for fusion systems

    International Nuclear Information System (INIS)

    Litvak, A.G.; Denisov, G.G.; Ilin, V.I.; Kurbatov, V.I.; Myasnikov, V.E.; Soluyanova, E.A.; Tai, E.M.; Usachev, S.V.; Zapevalov, V.E.

    2005-01-01

    The paper presents the latest achievements of the Russian gyrotron team in development of MW power gyrotrons for fusion installations. During two last years four new gyrotrons were designed and tested: a new version of 170 GHz gyrotron for ITER; multi-frequency (105-140 GHz) gyrotron for Asdex-Up, 84GHz gyrotron for LHD and 82.7 GHz gyrotron for SST-1. All these gyrotrons are equipped with diamond CVD windows and depressed collectors

  14. Pulsed-power-supply development for fusion applications: special research support agreement

    International Nuclear Information System (INIS)

    1980-01-01

    This is a final summary describing research and development work carried out by the Center for Electromechanics at The University of Texas at Austin (CEM-UT) for the Department of Energy during calendar years 1978, 1979, and 1980. The general purpose of this special research support program was to conduct research on pulsed power supply development for fusion applications in the areas of homopolar generators (HPGs), tokamak ohmic heating stuides, switching, and pulse compression technology

  15. Substantial reductions of input energy and peak power requirements in targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Pan, Y.L.

    1986-01-01

    Two ways of reducing the requirements of the heavy ion driver for inertial confinement fusion (ICF) target implosion are described. Compared to estimates of target gain not using these methods, the target input energy and peak power may be reduced by about a factor of two with the use of the hybrid-implosion concept. Another factor of two reduction in input energy may be obtained with the use of spin-polarized DT fuel in the ICF target

  16. Assessment of radiological releases to the environment from a fusion reactor power plant

    International Nuclear Information System (INIS)

    Shank, K.E.; Oakes, T.W.; Easterly, C.E.

    1978-05-01

    This report summarizes the expected tritium and activation-product inventories and presents an assessment of the potential radiological releases from a fusion reactor power plant, hypothetically located at the Oak Ridge National Laboratory. Routine tritium releases and the resulting dose assessment are discussed. Uncertainties associated with the conversion of tritium gas to tritium oxide and the global tritium cycling are evaluated. The difficulties of estimating releases of activated materials and the subsequent dose commitment are reviewed

  17. Design issues and implications for the structural integrity and lifetime of fusion power plant components

    International Nuclear Information System (INIS)

    Karditas, P.J.

    1996-05-01

    This review discusses, with example calculations, the criteria, and imposed constraints and limitations, for the design of fusion components and assesses the implications for successful design and power plant operation. The various loading conditions encountered during the operation of a tokamak lead to structural damage and possible failure by such mechanisms as yielding, thermal creep rupture and fatigue due to thermal cycling, plastic strain cycling (ratcheting), crack growth-propagation and radiation induced swelling and creep. Of all the possible damage mechanisms, fatigue, creep and their combination are the most important in the structural design and lifetime of fusion power plant components operating under steady or load varying conditions. Also, the effect of neutron damage inflicted onto the structural materials and the degradation of key properties is of major concern in the design and lifetime prediction of components. Structures are classified by, and will be restricted by existing or future design codes relevant to medium and high temperature power plant environments. The ways in which existing design codes might be used in present and near future design activities, and the implications, are discussed; the desirability of an early start towards the development of fusion-specific design codes is emphasised. (UK)

  18. Developmental validation of the PowerPlex(®) Fusion 6C System.

    Science.gov (United States)

    Ensenberger, Martin G; Lenz, Kristy A; Matthies, Learden K; Hadinoto, Gregory M; Schienman, John E; Przech, Angela J; Morganti, Michael W; Renstrom, Daniel T; Baker, Victoria M; Gawrys, Kori M; Hoogendoorn, Marlijn; Steffen, Carolyn R; Martín, Pablo; Alonso, Antonio; Olson, Hope R; Sprecher, Cynthia J; Storts, Douglas R

    2016-03-01

    The PowerPlex(®) Fusion 6C System is a 27-locus, six-dye, multiplex that includes all markers in the expanded CODIS core loci and increases overlap with STR database standards throughout the world. Additionally, it contains two, rapidly mutating, Y-STRs and is capable of both casework and database workflows, including direct amplification. A multi-laboratory developmental validation study was performed on the PowerPlex(®) Fusion 6C System. Here, we report the results of that study which followed SWGDAM guidelines and includes data for: species specificity, sensitivity, stability, precision, reproducibility and repeatability, case-type samples, concordance, stutter, DNA mixtures, and PCR-based procedures. Where appropriate we report data from both extracted DNA samples and direct amplification samples from various substrates and collection devices. Samples from all studies were separated on both Applied Biosystems 3500 series and 6-dye capable 3130 series Genetic Analyzers and data is reported for each. Together, the data validate the design and demonstrate the performance of the PowerPlex(®) Fusion 6C System. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26 Al, 49 V, 51 Cr, 54 Mn, 55 Fe, 58 Co, 60 Co, 93 Nb, and 94 Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  20. Reduced activation structural materials for fusion power plants - The European Union program

    International Nuclear Information System (INIS)

    Schaaf, B. van der; Le Marois, G.; Moeslang, A.; Victoria, M.

    2003-01-01

    The competition of fusion power plants with the renewable energy sources in the second half of the 21st century requires structural materials operating at high temperatures, and sufficient radiation resistance to ensure high plant efficiency and availability. The reduced activation materials development in the EU counts several steps regarding the radiation damage resistance: 75 dpa for DEMO and 150 dpa and beyond for power plants. The maximum operating temperature development line ranges from the present day from the present day feasible 600 K up to 1300- K in advanced power plants. The reduced activation steel, RAS, forms the reference for the development efforts. EUROFER has been manufactured in the EU on industrial scale with specified purity and mechanical properties up to 825 K. The oxide dispersion strengthened , ODS, variety of RAS should reach the 925 K operation limit. The EU has selected silicon carbide ceramic composite as the primary high temperature, 1300 K, goal. On a small scale the potential of tungsten alloys for higher temperatures is investigated. The present test environments for radiation resistance are insufficient to provide data for DEMO. Hence the support of the EU for the International Fusion Materials Irradiation facility. The computational modelling is expected to guide the materials development and the design of near plasma components. The EU co-operates closely with Japan, the RF and US in IEA and IAEA co-ordinated agreements, which are highly beneficial for the fusion structural materials development. (author)

  1. Mission to Mars by catalyzed nuclear reactions of the commercialized cold fusion power

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2016-01-01

    The chemical compound source is deficient to reach to the power as much as the journey to Mars, unless the massive equipment is installed like the nuclear fusion reactor. However, there is very significant limitations of making up the facility due to the propellant power. Therefore, the light and cheap energy source, Low energy nuclear reactions (LENRs), powered rocket has been proposed. In this paper, the power conditions by LENRs are analyzed. After the successful Apollo mission to Moon of the National Aeronautics and Space Administration (NASA) in the U.S. government, the civilian companies have proposed for the manned mission to Mars for the commercial journey purposes. The nuclear power has been a critical issue for the energy source in the travel, especially, by the LENR of LENUCO, Champaign, USA. As the velocity of the rocket increases, the mass flow rate decreases. It could be imaginable to take the reasonable velocity of spacecraft. The energy of the travel system is and will be created for the better one in economical and safe method. There is the imagination of boarding pass for spacecraft ticket shows the selected companies of cold fusion products. In order to solve the limitations of the conventional power sources like the chemical and solar energies, it is reasonable to design LENR concept. Since the economical and safe spacecraft is very important in the long journey on and beyond the Mars orbit, a new energy source, LENR, should be studied much more

  2. Fluorescence-pumped photolytic gas laser system for a commercial laser fusion power plant

    International Nuclear Information System (INIS)

    Monsler, M.J.

    1977-01-01

    The first results are given for the conceptual design of a short-wavelength gas laser system suitable for use as a driver (high average power ignition source) for a commercial laser fusion power plant. A comparison of projected overall system efficiencies of photolytically excited oxygen, sulfur, selenium and iodine lasers is described, using a unique windowless laser cavity geometry which will allow scaling of single amplifier modules to 125 kJ per aperture for 1 ns pulses. On the basis of highest projected overall efficiency, a selenium laser is chosen for a conceptual power plant fusion laser system. This laser operates on the 489 nm transauroral transition of selenium, excited by photolytic dissociation of COSe by ultraviolet fluorescence radiation. Power balances and relative costs for optics, electrical power conditioning and flow conditioning of both the laser and fluorescer gas streams are discussed for a system with the following characteristics: 8 operating modules, 2 standby modules, 125 kJ per module, 1.4 pulses per second, 1.4 MW total average power. The technical issues of scaling visible and near-infrared photolytic gas laser systems to this size are discussed

  3. Mission to Mars by catalyzed nuclear reactions of the commercialized cold fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Yonsei University, Wonju (Korea, Republic of)

    2016-05-15

    The chemical compound source is deficient to reach to the power as much as the journey to Mars, unless the massive equipment is installed like the nuclear fusion reactor. However, there is very significant limitations of making up the facility due to the propellant power. Therefore, the light and cheap energy source, Low energy nuclear reactions (LENRs), powered rocket has been proposed. In this paper, the power conditions by LENRs are analyzed. After the successful Apollo mission to Moon of the National Aeronautics and Space Administration (NASA) in the U.S. government, the civilian companies have proposed for the manned mission to Mars for the commercial journey purposes. The nuclear power has been a critical issue for the energy source in the travel, especially, by the LENR of LENUCO, Champaign, USA. As the velocity of the rocket increases, the mass flow rate decreases. It could be imaginable to take the reasonable velocity of spacecraft. The energy of the travel system is and will be created for the better one in economical and safe method. There is the imagination of boarding pass for spacecraft ticket shows the selected companies of cold fusion products. In order to solve the limitations of the conventional power sources like the chemical and solar energies, it is reasonable to design LENR concept. Since the economical and safe spacecraft is very important in the long journey on and beyond the Mars orbit, a new energy source, LENR, should be studied much more.

  4. Conceptual design study of closed Brayton cycle gas turbines for fusion power generation

    International Nuclear Information System (INIS)

    Kuo, S.C.

    1976-01-01

    A conceptual design study is presented of closed Brayton cycle gas turbine power conversion systems suitable for integration with advanced-concept Tokamak fusion reactors (such as UWMAK-III) for efficient power generation without requiring cooling water supply for waste heat rejection. A baseline cycle configuration was selected and parametric performance analyses were made. Based on the results of the parametric analysis and trade-off and interface considerations, the reference design conditions for the baseline cycle were selected. Conceptual designs were made of the major helium gas turbine power system components including a 585-MWe single-shaft turbomachine, (three needed), regenerator, precooler, intercooler, and the piping system connecting them. Structural configuration and significant physical dimensions for major components are illustrated, and a brief discussion on major advantages, power control and crucial technologies for the helium gas turbine power system are presented

  5. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    International Nuclear Information System (INIS)

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable open-quotes Integrated Research Experimentclose quotes (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, open-quotes the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenologyclose quotes. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well

  6. Civilian applications of particle-beam-initiated inertial confinement fusion technology

    International Nuclear Information System (INIS)

    Varnado, S.G.; Mitchiner, J.L.

    1977-05-01

    Electrical power generation by controlled fusion may provide a partial solution to the world's long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron or ion beams to compress a fuel pellet. The Sandia Particle Beam Fusion program is developing the particle-beam accelerators necessary to achieve fuel ignition. In this report we review the status of the particle-beam fusion technology development program and identify several potential civilian applications for this technology. We describe program objectives, discuss the specific accelerators presently under development, and briefly review the results of beam-focusing and target-irradiation experiments. Then we identify and discuss applications for the beam technology and for the fusion neutrons. The applications are grouped into near-term, intermediate-term, and long-term categories. Near-term applications for the beam technology include electron-beam (e-beam) pumping of gas lasers and several commercial applications. Intermediate-term applications (pellet gain less than 50) include hybrid reactors for electrical power production and fissile fuel breeding, pure fusion reactors for electrical power production, and medical therapy using ion accelerators. In the long term, complex, high-gain pellets may be used in pure fusion reactors

  7. Standard method for economic analyses of inertial confinement fusion power plants

    International Nuclear Information System (INIS)

    Meier, W.R.

    1986-01-01

    A standard method for calculating the total capital cost and the cost of electricity for a typical inertial confinement fusion electric power plant has been developed. A standard code of accounts at the two-digit level is given for the factors making up the total capital cost of the power plant. Equations are given for calculating the indirect capital costs, the project contingency, and the time-related costs. Expressions for calculating the fixed charge rate, which is necessary to determine the cost of electricity, are also described. Default parameters are given to define a reference case for comparative economic analyses

  8. Closed Nuclear Fuel Cycle Technologies to Meet Near-Term and Transition Period Requirements

    International Nuclear Information System (INIS)

    Collins, E.D.; Felker, L.K.; Benker, D.E.; Campbell, D.O.

    2008-01-01

    A scenario that very likely fits conditions in the U.S. nuclear power industry and can meet the goals of cost minimization, waste minimization, and provisions of engineered safeguards for proliferation resistance, including no separated plutonium, to close the fuel cycle with full actinide recycle is evaluated. Processing aged fuels, removed from the reactor for 30 years or more, can provide significant advantages in cost reduction and waste minimization. The UREX+3 separations process is being developed to separate used fuel components for reuse, thus minimizing waste generation and storage in geologic repositories. Near-term use of existing and new thermal spectrum reactors can be used initially for recycle actinide transmutation. A transition period will eventually occur, when economic conditions will allow commercial deployment of fast reactors; during this time, recycled plutonium can be diverted into fast reactor fuel and conversion of depleted uranium into additional fuel material can be considered. (authors)

  9. Closed Nuclear Fuel Cycle Technologies to Meet Near-Term and Transition Period Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.D.; Felker, L.K.; Benker, D.E.; Campbell, D.O. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee, 37831-6152 (United States)

    2008-07-01

    A scenario that very likely fits conditions in the U.S. nuclear power industry and can meet the goals of cost minimization, waste minimization, and provisions of engineered safeguards for proliferation resistance, including no separated plutonium, to close the fuel cycle with full actinide recycle is evaluated. Processing aged fuels, removed from the reactor for 30 years or more, can provide significant advantages in cost reduction and waste minimization. The UREX+3 separations process is being developed to separate used fuel components for reuse, thus minimizing waste generation and storage in geologic repositories. Near-term use of existing and new thermal spectrum reactors can be used initially for recycle actinide transmutation. A transition period will eventually occur, when economic conditions will allow commercial deployment of fast reactors; during this time, recycled plutonium can be diverted into fast reactor fuel and conversion of depleted uranium into additional fuel material can be considered. (authors)

  10. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point

    OpenAIRE

    Nepstad, Daniel C; Stickler, Claudia M; Filho, Britaldo Soares-; Merry, Frank

    2008-01-01

    Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. For...

  11. Magnetized Target Fusion (MTF): A Low-Cost Fusion Development Path

    International Nuclear Information System (INIS)

    Lindemuth, I.R.; Siemon, R.E.; Kirkpatrick, R.C.; Reinovsky, R.E.

    1998-01-01

    Simple transport-based scaling laws are derived to show that a density and time regime intermediate between conventional magnetic confinement and conventional inertial confinement offers attractive reductions in system size and energy when compared to magnetic confinement and attractive reductions in heating power and intensity when compared to inertial confinement. This intermediate parameter space appears to be readily accessible by existing and near term pulsed power technologies. Hence, the technology of the Megagauss conference opens up an attractive path to controlled thermonuclear fusion

  12. High-power corrugates waveguide components for mm-wave fusion heating systems

    International Nuclear Information System (INIS)

    Olstad, R.A.; Doane, J.L.; Moeller, C.P.; O'Neill, R.C.; Di Martino, M.

    1996-10-01

    Considerable progress has been made over the last year in the U.S., Japan, Russia, and Europe in developing high power long pulse gyrotrons for fusion plasma heating and current drive. These advanced gyrotrons typically operate at a frequency in the range 82 GHz to 170 GHz at nearly megawatt power levels for pulse lengths up to 5 s. To take advantage of these new microwave sources for fusion research, new and improved transmission line components are needed to reliably transmit microwave power to plasmas with minimal losses. Over the last year, General Atomics and collaborating companies (Spinner GmbH in Europe and Toshiba Corporation in Japan) have developed a wide variety of new components which meet the demanding power, pulse length, frequency, and vacuum requirements for effective utilization of the new generation of gyrotrons. These components include low-loss straight corrugated waveguides, miter bends, miter bend polarizers, power monitors, waveguide bellows, de breaks, waveguide switches, dummy loads, and distributed windows. These components have been developed with several different waveguide diameters (32, 64, and 89 mm) and frequency ranges (82 GHz to 170 GHz). This paper describes the design requirements of selected components and their calculated and measured performance characteristics

  13. Alternate applications of fusion power: development of a high-temperature blanket for synthetic-fuel production

    International Nuclear Information System (INIS)

    Howard, P.A.; Mattas, R.F.; Krajcinovic, D.; DePaz, J.; Gohar, Y.

    1981-11-01

    This study has shown that utilization of the unique features of a fusion reactor can result in a novel and potentially economical method of decomposing steam into hydrogen and oxygen. Most of the power of fusion reactors is in the form of energetic neutrons. If this power could be used to produce high temperature uncontaminated steam, a large fraction of the energy needed to decomposee the steam could be supplied as thermal energy by the fusion reaction. Proposed high temperature electrolysis processes require steam temperature in excess of 1000 0 C for high efficiency. The design put forth in this study details a system that can accomplish that end

  14. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S. E-mail: reyessuarezl@llnl.gov; Latkowski, J.F.; Gomez del Rio, J.; Sanz, J

    2001-05-21

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  15. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    Science.gov (United States)

    Reyes, S.; Latkowski, J. F.; Gomez del Rio, J.; Sanz, J.

    2001-05-01

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  16. Fusion Technology for ITER, the ITER Project. Further Development Towards a DEMO Fusion Power Plant (3/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    This is the second half of a lecture series on fusion and will concentrate on fusion technology. The early phase of fusion development was concentrated on physics. However, during the 1980s it was realized that if one wanted to enter the area of fusion reactor plasmas, even in an experimental machine, a significant advance in fusion technologies would be needed. After several conceptual studies of reactor class fusion devices in the 1980s the engineering design phase of ITER started in earnest during the 1990s. The design team was in the beginning confronted with many challenges in the fusion technology area as well as in physics for which no readily available solution existed and in a few cases it was thought that solutions may be impossible to find. However, after the initial 3 years of intensive design and R&D work in an international framework utilizing basic fusion technology R&D from the previous decade it became clear that for all problems a conceptual solution could be found and further devel...

  17. Magnetic fusion 1985: what next

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion

  18. PBFA [Particle Beam Fusion Accelerator] II: The pulsed power characterization phase

    International Nuclear Information System (INIS)

    Martin, T.H.; Turman, B.N.; Goldstein, S.A.

    1987-01-01

    The Particle Beam Fusion Accelerator II, PBFA II, is now the largest pulsed power device in operation. This paper summarizes its first year and a half of operation for the Department of Energy (DOE) Inertial Confinement Fusion (ICF) program. Thirty-six separate modules provide 72 output pulses that combine to form a 100 TW output pulse at the accelerator center. PBFA II was successfully test fired for the first time on December 11, 1985. This test completed the construction phase (Phase 1) within the expected schedule and budget. The accelerator checkout phase then started (Phase 2). The first priority during checkout was to bring the Phase 1 subsystems into full operation. The accelerator was first tested to determine overall system performance. Next, subsystems that were not performing adequately were modified. The accelerator is now being used for ion diode studies. 32 refs

  19. Fault diagnosis method for nuclear power plants based on neural networks and voting fusion

    International Nuclear Information System (INIS)

    Zhou Gang; Ge Shengqi; Yang Li

    2010-01-01

    A new fault diagnosis method based on multiple neural networks (ANNs) and voting fusion for nuclear power plants (NPPs) was proposed in view of the shortcoming of single neural network fault diagnosis method. In this method, multiple neural networks that the types of neural networks were different were trained for the fault diagnosis of NPP. The operation parameters of NPP, which have important affect on the safety of NPP, were selected as the input variable of neural networks. The output of neural networks is fault patterns of NPP. The last results of diagnosis for NPP were obtained by fusing the diagnosing results of different neural networks by voting fusion. The typical operation patterns of NPP were diagnosed to demonstrate the effect of the proposed method. The results show that employing the proposed diagnosing method can improve the precision and reliability of fault diagnosis results of NPPs. (authors)

  20. Low-activation structural ceramic composites for fusion power reactors: materials development and main design issues

    International Nuclear Information System (INIS)

    Perez, A.S.; Le Bars, N.; Giancarli, L.; Proust, E.; Salavy, J.F.

    1994-01-01

    Development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics is discussed, for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (author) 11 refs.; 3 figs

  1. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    International Nuclear Information System (INIS)

    Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; MacIntyre, A.; Miles, R.; Storm, E.

    2008-01-01

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R and D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost

  2. Geospatial Analysis of Near-Term Technical Potential of BECCS in the U.S.

    Science.gov (United States)

    Baik, E.; Sanchez, D.; Turner, P. A.; Mach, K. J.; Field, C. B.; Benson, S. M.

    2017-12-01

    Atmospheric carbon dioxide (CO2) removal using bioenergy with carbon capture and storage (BECCS) is crucial for achieving stringent climate change mitigation targets. To date, previous work discussing the feasibility of BECCS has largely focused on land availability and bioenergy potential, while CCS components - including capacity, injectivity, and location of potential storage sites - have not been thoroughly considered in the context of BECCS. A high-resolution geospatial analysis of both biomass production and potential geologic storage sites is conducted to consider the near-term deployment potential of BECCS in the U.S. The analysis quantifies the overlap between the biomass resource and CO2 storage locations within the context of storage capacity and injectivity. This analysis leverages county-level biomass production data from the U.S. Department of Energy's Billion Ton Report alongside potential CO2 geologic storage sites as provided by the USGS Assessment of Geologic Carbon Dioxide Storage Resources. Various types of lignocellulosic biomass (agricultural residues, dedicated energy crops, and woody biomass) result in a potential 370-400 Mt CO2 /yr of negative emissions in 2020. Of that CO2, only 30-31% of the produced biomass (110-120 Mt CO2 /yr) is co-located with a potential storage site. While large potential exists, there would need to be more than 250 50-MW biomass power plants fitted with CCS to capture all the co-located CO2 capacity in 2020. Neither absolute injectivity nor absolute storage capacity is likely to limit BECCS, but the results show regional capacity and injectivity constraints in the U.S. that had not been identified in previous BECCS analysis studies. The state of Illinois, the Gulf region, and western North Dakota emerge as the best locations for near-term deployment of BECCS with abundant biomass, sufficient storage capacity and injectivity, and the co-location of the two resources. Future studies assessing BECCS potential should

  3. The near-term hybrid vehicle program, phase 1

    Science.gov (United States)

    1979-01-01

    Performance specifications were determined for a hybrid vehicle designed to achieve the greatest reduction in fuel consumption. Based on the results of systems level studies, a baseline vehicle was constructed with the following basic paramaters: a heat engine power peak of 53 kW (VW gasoline engine); a traction motor power peak of 30 kW (Siemens 1GV1, separately excited); a heat engine fraction of 0.64; a vehicle curb weight of 2080 kg; a lead acid battery (35 kg weight); and a battery weight fraction of 0.17. The heat engine and the traction motor are coupled together with their combined output driving a 3 speed automatic transmission with lockup torque converter. The heat engine is equipped withe a clutch which allows it to be decoupled from the system.

  4. Liquid Wall Options for Tritium-Lean Fast Ignition Inertial Fusion Energy Power Plants

    International Nuclear Information System (INIS)

    Reyes, S.; Schmitt, R.C.; Latkowski, J.F.; Durbin, S.G.' Sanz, J.

    2002-01-01

    In an inertial fusion energy (FE) thick-liquid chamber design such as HYLEE-II, a molten-salt is used to attenuate neutrons and protect the chamber structures from radiation damage. In the case of a fast ignition inertial fusion system, advanced targets have been proposed that may be self-sufficient in terms of tritium breeding (i.e., the amount of tritium bred in target exceeds the amount burned). This aspect allows for greater freedom when selecting a liquid for the protective blanket, given that lithium-bearing compounds are no longer required. The present work assesses the characteristics of many single, binary, and ternary molten-salts using the NIST Properties of Molten Salts Database. As an initial screening, salts were evaluated for their safety and environmental (S and E) characteristics, which included an assessment of waste disposal rating, contact dose, and radioactive afterheat. Salts that passed the S and E criteria were then evaluated for required pumping power. The pumping power was calculated using three components: velocity head losses, frictional losses, and lifting power. The results of the assessment are used to identify those molten-salts that are suitable for potential liquid-chamber fast-ignition IFE concepts, from both the S and E and pumping power perspective. Recommendations for further analysis are also made

  5. European development of He-cooled divertors for fusion power plants

    International Nuclear Information System (INIS)

    Norajitra, P.; Giniyatulin, R.; Kuznetsov, V.; Mazul, I.; Ovchinnikov, I.; Ihli, T.; Janeschitz, G.; Krauss, W.; Kruessmann, R.; Karditsas, P.; Maisonnier, D.; Sardain, P.; Nardi, C.; Papastergiou, S.; Pizzuto, A.

    2005-01-01

    Helium-cooled divertor concepts are considered suitable for use in fusion power plants for safety reasons, as they enable the use of a coolant compatible with any blanket concept, since water would not be acceptable e.g. in connection with ceramic breeder blankets using large amounts of beryllium. Moreover, they allow for a high coolant exit temperature for increasing the efficiency of the power conversion system. Within the framework of the European power plant conceptual study (PPCS), different helium-cooled divertor concepts based on different heat transfer mechanisms are being investigated at ENEA Frascati, Italy, and Forschungszentrum Karlsruhe, Germany. They are based on a modular design which helps reduce thermal stresses. The design goal is to withstand a high heat flux of about 10-15 MW/m 2 , a value which is considered relevant to future fusion power plants to be built after ITER. The development and optimisation of the divertor concepts require an iterative design approach with analyses, studies of materials and fabrication technologies, and the execution of experiments. These issues and the state of the art of divertor development shall be the subject of this report. (author)

  6. Hydrogen Fuel Cell: Research Progress and Near-Term Opportunities

    Science.gov (United States)

    2009-04-27

    effort brings together automobile and ener- gy companies , as well as their suppliers and other stakeholders, to evaluate light-duty fuel cell vehicles...emissions compared to conventional power technologies. Grocers, banks, tire and hardware companies , logistics providers, and others in the private sector...Term Direct Hydrogen Proton Exchange Membrane (PEM) Fuel Cell Markets, April 2007. 2. Assumptions: Operate 7 hours/shift, 3 shifts/day, 7 days/week

  7. Minimization of the external heating power by long fusion power rise-up time for self-ignition access in the helical reactor FFHR2m

    International Nuclear Information System (INIS)

    Mitarai, O.; Sagara, A.; Chikaraishi, H.; Imagawa, S.; Shishkin, A.A.; Motojima, O.

    2006-10-01

    Minimization of the external heating power to access self-ignition is advantageous to increase the reactor design flexibility and to reduce the capital and operating costs of the plasma heating device in a helical reactor. In this work we have discovered that a larger density limit leads to a smaller value of the required confinement enhancement factor, lower density limit margin reduces the external heating power, and over 300 s of the fusion power rise-up time makes it possible to reach a minimized heating power. While the fusion power rise-up time in a tokamak is limited by the OH transformer flux or the current drive capability, any fusion power rise-up time can be employed in a helical reactor for reducing the thermal stresses of the blanket and shields, because the confinement field is generated by the external helical coils. (author)

  8. Mirror hybrid (fusion--fission) reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Neef, W.S.; Devoto, R.S.; Galloway, T.R.; Fink, J.H.; Schultz, K.R.; Culver, D.; Rao, S.

    1977-10-01

    The reference mirror hybrid reactor design performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. The resulting reactor may thus be viewed as a comparatively near-term goal of the fusion program, and we project improved performance for the hybrid in the future as more advanced technology becomes available

  9. Managing the fusion burn to improve symbiotic system performance

    International Nuclear Information System (INIS)

    Renier, J.P.; Martin, J.G.

    1979-01-01

    Symbiotic power systems, in which fissile fuel is produced in fusion-powered factories and burned in thermal reactors characterized by high conversion ratios, constitute an interesting near-term fusion application. It is shown that the economic feasibility of such systems depend on adroit management of the fusion burn. The economics of symbiotes is complex: reprocessing and fabrication of the fusion reactor blankets are important components of the production cost of fissile fuel, but burning fissile material in the breeder blanket raises overall costs and lowers the support ratio. Analyses of factories which assume that the fusion power is constant during an irradiation cycle underestimate their potential. To illustrate the effect of adroit engineering of the fusion burn, this paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U-233 breeders. To make the D-T symbiote self-sufficient, tritium is bred in separate lithium blankets designed so as to minimize overall costs. All blankets are assumed to have spherical geometry, with 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries

  10. High-power microwave transmission and launching systems for fusion plasma heating systems

    International Nuclear Information System (INIS)

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE 0,2 ) or a whispering-gallery mode (such as TE 15,2 ), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE 0,1 mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs

  11. Next generation laser optics for a hybrid fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Latkowski, J T; Schaffers, K I

    2009-09-10

    The successful completion of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), followed by a campaign to achieve ignition, creates the proper conditions to begin exploring what development work remains to construct a power plant based on Inertial Confinement Fusion (ICF) technology. Fundamentally, two distinct NIF laser properties must be overcome. The repetition rate must increase from a shot every four hours to several shots per second. Additionally, the efficiency of converting electricity to laser light must increase by 20x to roughly 10 percent. Solid state diode pumped lasers, commercially available for table top applications, have adequate repetition rates and power conversion efficiencies, however, they operate at a tiny fraction of the required energy for an ICF power plant so would need to be scaled in energy and aperture. This paper describes the optics and coatings that would be needed to support this type of laser architecture.

  12. Transport vehicle for manned Mars missions powered by inertial confinement fusion

    International Nuclear Information System (INIS)

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-01-01

    Inertial confinement fusion (ICF) is an ideal engine power source for manned spacecraft to Mars because of its inherently high power-to-mass ratios and high specific impulses. We have produced a concept for a vehicle powered by ICF and utilizing a magnetic thrust chamber to avoid plasma thermalization with wall structures and the resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. This vehicle is capable of 100-day manned Mars missions with a 100-metric-ton payload and a total vehicle launch mass near 6000 metric tons, based on advanced technology assumed to be available by A.D. 2020. Such short-duration missions minimize radiation exposures and physiological deterioration of astronauts

  13. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  14. The ARIES-ST study: Assessment of the spherical tokamak concept as fusion power plants

    International Nuclear Information System (INIS)

    Najmabadi, F.; Tillack, M.; Miller, R.; Mau, T.K.; Jardin, S.; Stambaugh, R.; Steiner, D.; Waganer, L.

    2001-01-01

    Recent experimental achievements and theoretical studies have generated substantial interest in the spherical tokamak concept. The ARIES-ST study was undertaken as a national U.S. effort to investigate the potential of the spherical tokamak concept as a fusion power plant and as a vehicle for fusion development. The 1000-MWe ARIES-ST power plant has an aspect ratio of 1.6, a major radius of 3.2 m, a plasma elongation (at 95% flux surface) of 3.4 and triangularity of 0.64. This configuration attains a β of 54% (which is 90% of the maximum theoretical β). While the plasma current is 31 MA, the almost perfect alignment of bootstrap and equilibrium current density profiles results in a current-drive power of only 31 MW. The on-axis toroidal field is 2.1 T and the peak field at the TF coil is 7.6 T, which leads to 288 MW of Joule losses in the normal-conducting TF system. The ARIES-ST study has highlighted many areas where tradeoffs among physics and engineering systems are critical in determining the optimum regime of operation for spherical tokamaks. Many critical issues also have been identified which must be resolved in R and D programs. (author)

  15. Inertial fusion energy power plant design using the Compact Torus Accelerator: HYLIFE-CT

    International Nuclear Information System (INIS)

    Moir, R.W.; Hammer, J.H.; Hartman, C.W.; Leber, R.L.; Logan, B.G.; Petzoldt, R.W.; Tabak, M.; Tobin, M.T.; Bieri, R.L.; Hoffman, M.A.

    1992-01-01

    The Compact Torus Accelerator (CTA), under development at Lawrence Livermore National Laboratory, offers the promise of a low-cost, high-efficiency, high energy, high-power-density driver for ICF and MICF (Magnetically Insulated ICF) type fusion systems. A CTA with 100 MJ driver capacitor bank energy is predicted to deliver ∼30 MJ CT kinetic energy to a 1 cm 2 target in several nanoseconds for a power density of ∼10 16 watts/cm 2 . The estimated cost of delivered energy is ∼3$/Joule, or $100M for 30 MJ. This driver appears to be cost-effective and, in this regard, is virtually alone among IFE drivers. We discuss indirect-drive ICF with a DT fusion energy gain Q = 70 for a total yield of 2 GJ. The CT can be guided to the target inside a several-meter-long disposable cone made of frozen Li 2 BeF 4 , the same material as the coolant. We have designed a power plant including CT injection, target emplacement, containment, energy recovery, and tritium breeding. The cost of electricity is predicted to be 4.8 cents/kWh, which is competitive with future coal and nuclear costs

  16. ARIES-AT: An advanced tokamak, advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, F.; Jardin, S.C.; Tillack, M.; Waganer, L.M.

    2001-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher β N and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (β N =6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)

  17. The HYLIFE-II inertial fusion energy power plant concept and implications for IFE

    International Nuclear Information System (INIS)

    Moir, R.W.

    1994-01-01

    HYLIFE-II is based on nonflammable, renewable-liquid-wall fusion target chambers formed with Li 2 BeF 4 molten-salt jets, a heavy-ion driver, and single-sided illumination of indirect-drive targets. Building fusion chambers from existing materials with life-of-plant structural walls behind the liquid walls, while still meeting non-nuclear grade construction and low-level waste requirements, has profound implications for IFE development. Fluid-flow work and computational fluid dynamics predict chamber clearing adequate for 6-Hz pulse rates. Predicted electricity cost is reduced about 30% to 4.4 cents/kWh at 1 GWe. Development can be foreshortened and cost reduced by obviating expensive neutron sources to develop first-wall materials. The driver and chamber can be upgraded in stages, avoiding separate and sequential facilities. The most important features of a practical inertial fusion power plant are sufficient ignition and gain in targets; a low-cost, efficient, rep-ratable driver; and low-cost targets

  18. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1991-01-01

    This paper presents a retrospective summary and bibliography of the National Aeronautics and Space Administration research program on fusion energy for space power and propulsion systems conducted at the Lewis Research Center. This effort extended over a 20-yr period ending in 1978, involved several hundred person-years of effort, and included theory, experiment, technology development, and mission analysis. This program was initiated in 1958 and was carried out within the Electromagnetic Propulsion Division. Within this division, mission analysis and basic research on high-temperature plasma physics were carried out in the Advanced Concepts Branch. Three pioneering high-field superconducting magnetic confinement facilities were developed with the support of the Magnetics and Cryophysics Branch. The results of this program serve as a basis for subsequent discussions of the space applications of fusion energy, contribute to the understanding of high-temperature plasmas and how to produce them, and advance the state of the art of superconducting magnet technology used in fusion research

  19. Overview of the STARFIRE reference commercial tokamak fusion power reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Barry, K.

    1980-01-01

    The purpose of the STARFIRE study is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The major features for STARFIRE include a steady-state operating mode based on a continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup, superconducting EF coils outside the TF superconducting coils, fully remote maintenance, and a low-activation shield

  20. Developing maintainability for tokamak fusion power systems. Phase II report. Volume II: study results

    International Nuclear Information System (INIS)

    Fuller, G.M.; Zahn, H.S.; Mantz, H.C.; Kaletta, G.R.; Waganer, L.M.; Carosella, L.A.; Conlee, J.L.

    1978-11-01

    In this second phase the impact of unscheduled maintenance, several vacuum wall arrangements, and maintenance of other reactor interfacing subsystems and maintenance equipment are added to the evaluation of the maintainability of the fusion power reactor concepts. Four concepts are normalized to common performance parameters and evaluated for their capability to achieve availability and cost of electricity goals considering both scheduled and unscheduled maintenance. The results of this evaluation are used to generate a series of maintainability design guidelines and to select the more desirable features and design options which are used to configure a preliminary reactor concept having improved maintainability

  1. Conceptual design of nuclear fusion power reactor DREAM. Reactor structures and remote maintenance

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Seki, Yasushi; Ueda, Shuzo; Kurihara, Ryoichi; Adachi, Junichi; Yamazaki, Seiichiro; Hashimoto, Toshiyuki.

    1997-01-01

    Nuclear fusion reactors are required to be able to compete another energy sources in economy, reliability, safety and environmental integrity for commercial use. In the DREAM (DRastically EAsy Maintenance) reactor, a very low activated material of SiC/SiC composite has been introduced for the structural material, a reactor configuration for very easy maintenance and the helium gas of a high temperature for the cooling system, and hence DREAM has been proven to be very attractively as the commercial power reactor due to the high availability and efficiency of the plant and minimization of radioactive wastes. (author)

  2. Design windows of laser fusion power plants and conceptual design of laser-diode pumped slab laser

    International Nuclear Information System (INIS)

    Kozaki, Y.; Eguchi, T.; Izawa, Y.

    1999-01-01

    An analysis of the design space available to laser fusion power plants has been carried out, in terms of design key parameters such as target gain, laser energy and laser repetition rate, the number of fusion react ion chambers, and plant size. The design windows of economically attractive laser fusion plants is identified with the constraints of key design parameters and the cost conditions. Especially, for achieving high repetition rate lasers, we have proposed and designed a diode-pumped solid-state laser driver which consists of water-cooled zig-zag path slab amplifiers. (author)

  3. A fusion networking model for smart grid power distribution backbone communication network based on PTN

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2016-01-01

    Full Text Available In current communication network for distribution in Chinese power grid systems, the fiber communication backbone network for distribution and TD-LTE power private wireless backhaul network of power grid are both bearing by the SDH optical transmission network, which also carries the communication network of transformer substation and main electric. As the data traffic of the distribution communication and TD-LTE power private wireless network grow rapidly in recent years, it will have a big impact with the SDH network’s bearing capacity which is mainly used for main electric communication in high security level. This paper presents a fusion networking model which use a multiple-layer PTN network as the unified bearing of the TD-LTE power private wireless backhaul network and fiber communication backbone network for distribution. Network dataflow analysis shows that this model can greatly reduce the capacity pressure of the traditional SDH network as well as ensure the reliability of the transmission of the communication network for distribution and TD-LTE power private wireless network.

  4. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    CERN Document Server

    Bayer, Christoph M

    2017-01-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  5. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  6. Development of near-term batteries for electric vehicles. Summary report, October 1977-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, J.B. (comp.)

    1980-06-01

    The status and results through FY 1979 on the Near-Term Electric Vehicle Battery Project of the Argonne National Laboratory are summarized. This project conducts R and D on lead-acid, nickel/zinc and nickel/iron batteries with the objective of achieving commercialization in electric vehicles in the 1980's. Key results of the R and D indicate major technology advancements and achievement of most of FY 1979 performance goals. In the lead-acid system the specific energy was increased from less than 30 Wh/kg to over 40 Wh/kg at the C/3 rate; the peak power density improved from 70 W/kg to over 110 W/kg at the 50% state of charge; and over 200 deep-discharge cycle life demonstrated. In the nickel/iron system a specific energy of 48 Wh/kg was achieved; a peak power of about 100 W/kg demonstrated and a life of 36 cycles obtained. In the nickel/zinc system, specific energies of up to 64 Wh/kg were shown; peak powers of 133 W/kg obtained; and a life of up to 120 cycles measured. Future R and D will emphasize increased cycle life for nickel/zinc batteries and increased cycle life and specific energy for lead-acid and nickel/iron batteries. Testing of 145 cells was completed by NBTL. Cell evaluation included a full set of performance tests plus the application of a simulated power profile equivalent to the power demands of an electric vehicle in stop-start urban driving. Simplified test profiles which approximate electric vehicle demands are also described.

  7. Evolution of near term PBMR steam and cogeneration applications - HTR2008-58219

    International Nuclear Information System (INIS)

    Kuhr, R. W.; Hannink, R.; Paul, K.; Kriel, W.; Greyvenstein, R.; Young, R.

    2008-01-01

    US and international applications for large onsite cogeneration (steam and power) systems are emerging as a near term market for the PBMR. The South African PBMR demonstration project applies a high temperature (900 deg. C) Brayton cycle for high efficiency power generation. In addition, a number of new applications are being investigated using an intermediate temperature range (700-750 deg. C) with a simplified heat supply system design. This intermediate helium delivery temperature supports conventional steam Rankine cycle designs at higher efficiencies than obtained from water type reactor systems. These designs can be adapted for cogeneration of steam, similar to the design of gas turbine cogeneration plants that supply steam and power at many industrial sites. This temperature range allows use of conventional or readily qualifiable materials and equipment, avoiding some cost premiums associated with more difficult operating conditions. As gas prices and CO 2 values increase, the potential value of a small nuclear reactor with advanced safety characteristics increases dramatically. Because of its smaller scale, the 400-500 MWt PBMR offers the economic advantages of onsite thermal integration (steam, hot water and desalination co-production) and of providing onsite power at cost versus at retail industrial rates avoiding transmission and distribution costs. Advanced safety characteristics of the PBMR support the location of plants adjacent to steam users, district energy systems, desalination plants, and other large commercial and industrial facilities. Additional benefits include price stability, long term security of energy supply and substantial CO 2 reductions. Target markets include existing sites using gas fired boilers and cogeneration units, new projects such as refinery and petrochemical expansions, and coal-to-liquids projects where steam and power represent major burdens on fuel use and CO 2 emissions. Lead times associated with the nuclear licensing

  8. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  9. Fusion Implementation

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    2002-01-01

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  10. Study on the impact of the engineering energy gain and the FPC mass power density on the generation cost of fusion power plant

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican

    2004-01-01

    The impact of the engineering energy gain and the fusion-power-core (FPC) mass power density (MPD) on the generation cost of fusion power plant are analyzed based on the economic elasticity approach in this paper. From the functions describing the relationship of the generation cost with the engineering energy gain and the MPD, the elasticity coefficients of the generation cost with the engineering energy gain and the MPD have been derived respectively to analyze their sensitivity to the generation cost and the MPD to the generation cost decreases with increasing the engineering energy gain or the MPD. (authors)

  11. Development of high power solid-state laser for inertial fusion energy driver

    International Nuclear Information System (INIS)

    Yoshida, K.; Yamanaka, M.; Nakatsuka, M.; Sasaki, T.; Nakai, S.

    1997-01-01

    The design study of the laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories, and industries in Japan and also with international collaborations. In the design of KOYO, the gain scaling of direct drive implosion with 0.35 μ m wavelength laser light is used. A driver of diode pumped solid state laser (DPSSL) generates 4 MJ/pulse with 12 Hz and the output pulses are switched to deliver the laser energy successively to four chambers, which operate with 3 Hz. The chamber wall is protected with thick liquid metal which flows down in a SiC woven tube. Following to the conceptual design study, the critical key issues which may affect the technical and economical feasibility of the commercial power plant KOYO have been examined. Research and development of some key technologies have been performed. As the results of the studies on KOYO, it is concluded that the technical and economical feasibility of laser fusion reactor is well in our scope to reach

  12. Simulations of alpha parameters in a TFTR DT supershot with high fusion power

    International Nuclear Information System (INIS)

    Budny, R.V.; Bell, M.G.; Janos, A.C.

    1995-07-01

    A TFTR supershot with a plasma current of 2.5 MA, neutral beam heating power of 33.7 MW, and a peak DT fusion power of 7.5 MW is studied using the TRANSP plasma analysis code. Simulations of alpha parameters such as the alpha heating, pressure, and distributions in energy and v parallel /v are given. The effects of toroidal ripple and mixing of the fast alpha particles during the sawteeth observed after the neutral beam injection phase are modeled. The distributions of alpha particles on the outer midplane are peaked near forward and backward v parallel /v. Ripple losses deplete the distributions in the vicinity of v parallel /v ∼-0.4. Sawtooth mixing of fast alpha particles is computed to reduce their central density and broaden their width in energy

  13. Liquid metals as alternative solution for the power exhaust of future fusion devices: status and perspective

    International Nuclear Information System (INIS)

    Coenen, J W; Philipps, V; Sergienko, G; Terra, A; Unterberg, B; Wegener, T; De Temmerman, G; Van den Bekerom, D C M; Federici, G; Strohmayer, G

    2014-01-01

    Applying liquid metals as plasma facing components for fusion power-exhaust can potentially ameliorate lifetime issues as well as limitations to the maximum allowed surface heat loads by allowing for a more direct contact with the coolant. The material choice has so far been focused on lithium (Li), as it showed beneficial impact on plasma operation. Here materials such as tin (Sn), gallium (Ga) and aluminum (Al) are discussed as alternatives potentially allowing higher operating temperatures without strong evaporation. Power loads of up to 25 MW m −2 for a Sn/W component can be envisioned based on calculations and modeling. Reaching a higher operating temperature due to material re-deposition will be discussed. Liquids typically face stability issues due to j × B forces, potential pressure and magnetohydrodynamic driven instabilities. The capillary porous system is used for stabilization by a mesh (W and Mo) substrate and replenishment by means of capillary action. (paper)

  14. Review of the general atomic experimental fusion power reactor initial conceptual design

    International Nuclear Information System (INIS)

    Baker, C.C.; Sager, P.H. Jr.; Harder, C.R.

    1976-01-01

    The primary objective of the Experimental Power Reactor (EPR) is to provide the necessary interface between physics experiments and the first demonstration power plants. Since economically viable tokamak-type reactors may well have to be very high Q devices (ratio of fusion power out to power into the plasma), it will be essential for a tokamak demonstration reactor to operate at or near ignition conditions. Thus, it is believed that one of the primary objectives of the EPR must be to fully model the behavior of a D-T burning plasma required in the reactor of a demonstration plant. Therefore, a major objective of the EPR should be to achieve ignition conditions. In addition to demonstrating the ability to ignite and control a D-T plasma, it is also desirable that the EPR should produce, or at least demonstrate the ability to produce, a small amount of net electrical power. These objectives should be accomplished at a reasonable cost; this implies achieving a sufficiently high β (ratio of plasma pressure to magnetic field pressure). It is believed that noncircular cross section tokamaks offer the best chance of realizing these objectives. Consequently, noncircular cross sections are a major design feature of the General Atomic EPR

  15. Experimental fusion power reactor conceptual design study. Final report. Volume III

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following appendices: (1) tradeoff code analysis, (2) residual mode transport, (3) blanket/first wall design evaluations, (4) shielding design evaluation, (5) toroidal coil design evaluation, (6) E-coil design evaluation, (7) F-coil design evaluation, (8) plasma recycle system design evaluation, (9) primary coolant purification design evaluation, (10) power supply system design evaluation, (11) number of coolant loops, (12) power conversion system design evaluation, and (13) maintenance methods evaluation

  16. Introduction condition of a tokamak fusion power plant as an advanced technology in world energy scenario

    International Nuclear Information System (INIS)

    Hiwatari, R.; Tokimatsu, K.; Asaoka, Y.; Okano, K.; Konishi, S.; Ogawa, Y.

    2005-01-01

    The present study reveals the following two introduction conditions of a tokamak fusion power plant in a long term world energy scenario. The first condition is the electric breakeven condition, which is required for the fusion energy to be recognized as a suitable candidate of an alternative energy source in the long term world energy scenario. As for the plasma performance (normalized beta value β N , confinement improvement factor for H-mode HH, the ratio of plasma density to Greenwald density limit fn GW ), the electric breakeven condition requires the simultaneous achievement of 1.2 N GW tmax =16 T, thermal efficiency η e =30%, and current drive power P NBI N ∼1.8, HH∼1.0, and fn GW ∼0.9, which correspond to the ITER reference operation parameters, have a strong potential to achieve the electric breakeven condition. The second condition is the economic breakeven condition, which is required to be selected as an alternative energy source. By using a long term world energy and environment model, the potential of the fusion energy in the long term world energy scenario is being investigated. Under the constraint of 550 ppm CO 2 concentration in the atmosphere, a breakeven price for introduction of the fusion energy in the year 2050 is estimated from 65mill/kWh to 135mill/kWh, which is considered as the economic breakeven condition in the present study. Under the conditions of B tmax =16T, η e =40%, plant availability 60%, and a radial build with/without CS coil, the economic breakeven condition requires β N ∼2.5 for 135mill/kWh of higher breakeven price case and β N ∼6.0 for 65mill/kWh of lower breakeven price case. Finally, the demonstration of steady state operation with β N ∼3.0 in the ITER project leads to the prospect to achieve the upper region of breakeven price in the world energy scenario. (author)

  17. First-wall, blanket, and shield engineering test program for magnetically confined fusion power reactors

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1980-01-01

    The key engineering areas identified for early study relate to FW/B/S system thermal-hydraulics, thermomechnics, nucleonics, electromagnetics, assembly, maintenance, and repair. Programmatic guidance derived frm planning exercises involving over thirty organizations (laboratories, industries, and universities) has indicated (1) that meaningful near term engineering testing should be feasible within the bounds of a modest funding base, (2) that there are existing facilities and expertise which can be profitably utilized in this testing, and (3) that near term efforts should focus on the measurement of engineering data and the verification/calibration of predictive methods for anticipated normal operational and transient FW/B/S conditions. The remainder of this paper discusses in more detail the planning strategies, proposed approach to near term testing, and longer range needs for integrated FW/B/S test facilities

  18. Fusion Power: A Strategic Choice for the Future Energy Provision. Why is So Much Time Wasted for Decision Making?

    International Nuclear Information System (INIS)

    D'haeseleer, William D.

    2005-01-01

    From a general analysis of the world energy issue, it is argued that an affordable, clean and reliable energy supply will have to consist of a portfolio of primary energy sources, a large fraction of which will be converted to a secondary carrier in large baseload plants. Because of all future uncertainties, it would be irresponsible not to include thermonuclear fusion as one of the future possibilities for electricity generation.The author tries to understand why nuclear-fusion research is not considered of strategic importance by the major world powers. The fusion programs of the USA and Europe are taken as prime examples to illustrate the 'hesitation'. Europe is now advocating a socalled 'fast-track' approach, thereby seemingly abandoning the 'classic' time frame towards fusion that it has projected for many years. The US 'oscillatory' attitude towards ITER in relation to its domestic program is a second case study that is looked at.From the real history of the ITER design and the 'siting' issue, one can try to understand how important fusion is considered by these world powers. Not words are important, but deeds. Fast tracks are nice to talk about, but timely decisions need to be taken and sufficient money is to be provided. More fundamental understanding of fusion plasma physics is important, but in the end, real hardware devices must be constructed to move along the path of power plant implementation.The author tries to make a balance of where fusion power research is at this moment, and where, according to his views, it should be going

  19. Supercritical CO2 Brayton power cycles for DEMO (demonstration power plant) fusion reactor based on dual coolant lithium lead blanket

    International Nuclear Information System (INIS)

    Linares, José Ignacio; Cantizano, Alexis; Moratilla, Beatriz Yolanda; Martín-Palacios, Víctor; Batet, Lluis

    2016-01-01

    This paper presents an exploratory analysis of the suitability of supercritical CO 2 Brayton power cycles as alternative energy conversion systems for a future fusion reactor based on a DCLL (dual coolant lithium-lead) blanket, as prescribed by EUROfusion. The main issue dealt is the optimization of the integration of the different thermal sources with the power cycle in order to achieve the highest electricity production. The analysis includes the assessment of the pumping consumption in the heating and cooling loops, taking into account additional considerations as control issues and integration of thermal energy storage systems. An exergy analysis has been performed in order to understand the behavior of each layout. Up to ten scenarios have been analyzed assessing different locations for thermal sources heat exchangers. Neglecting the worst four scenarios, it is observed less than 2% of variation among the other six ones. One of the best six scenarios clearly stands out over the others due to the location of the thermal sources in a unique island, being this scenario compatible with the control criteria. In this proposal 34.6% of electric efficiency (before the self-consumptions of the reactor but including pumping consumptions and generator efficiency) is achieved. - Highlights: • Supercritical CO 2 Brayton cycles have been proposed for BoP of DCLL fusion reactor. • Integration of different available thermal sources has been analyzed considering ten scenarios. • Neglecting the four worst scenarios the electricity production varies less than 2%. • Control and energy storage integration issues have been considered in the analysis. • Discarding the vacuum vessel and joining the other sources in an island is proposed.

  20. Direct drive target survival during injection in an inertial fusion energy power plant

    International Nuclear Information System (INIS)

    Petzoldt, R.W.; Goodin, D.T.; Nikroo, A.; Stephens, E.; Alexander, N.B.; Gallix, R.; Siegel, N.; Raffray, A.R.; Mau, T.K.; Tillack, M.; Najmabadi, F.; Krasheninnikov, S.I.

    2002-01-01

    In inertial fusion energy (IFE) power plant designs, the fuel is a spherical layer of frozen DT contained in a target that is injected at high velocity into the reaction chamber. For direct drive, typically laser beams converge at the centre of the chamber (CC) to compress and heat the target to fusion conditions. To obtain the maximum energy yield from the fusion reaction, the frozen DT layer must be at about 18.5 K and the target must maintain a high degree of spherical symmetry and surface smoothness when it reaches the CC. During its transit in the chamber the cryogenic target is heated by radiation from the hot chamber wall. The target is also heated by convection as it passes through the rarefied fill-gas used to control chamber wall damage by x-rays and debris from the target explosion. This article addresses the temperature limits at the target surface beyond which target uniformity may be damaged. It concentrates on direct drive targets because fuel warm up during injection is not currently thought to be an issue for present indirect drive designs and chamber concepts. Detailed results of parametric radiative and convective heating calculations are presented for direct-drive targets during injection into a dry-wall reaction chamber. The baseline approach to target survival utilizes highly reflective targets along with a substantially lower chamber wall temperature and fill-gas pressure than previously assumed. Recently developed high-Z material coatings with high heat reflectivity are discussed and characterized. The article also presents alternate target protection methods that could be developed if targets with inherent survival features cannot be obtained within a reasonable time span. (author)

  1. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, F. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Melton, Stephanie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  2. Review of the conceptual design of a Doublet fusion experimental power reactor

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-01-01

    The results of a two-year, conceptual design study of a fusion experimental power reactor (EPR) are presented. For this study, the primary objectives of the EPR are to obtain plasma ignition conditions and produce net electrical power. The design features a Doublet plasma configuration with a major radius of 4.5 m. The average plasma beta is 10 percent which yields a thermonuclear power level of 410 MW during a 105-sec burn period. With a duty factor of 0.84, the gross electrical output is 124 MW(e) while the net output is 37 MW(e). The design features a 25-cm-thick, helium-cooled, modular, stainless-steel blanket with a 1-cm-thick, silicon carbide first wall. Sufficient shielding is provided to permit contact maintenance outside the shield envelope within 24 hr after shutdown. An overall plant concept has been developed including a superheated steam cycle power conversion system. Preliminary cost estimates and construction schedules have also been developed. 3 refs

  3. The resilience of an operating point for a fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David, E-mail: david.ward@ccfe.ac.uk; Kemp, Richard

    2015-10-15

    Highlights: • The need to control a power plant changes our view of the optimum design. • The need for control can be reduced by finding resilient design points. • It is important to include resilience and control in selecting design points. • Including these additional constraints reduces flexibility in choice of operating points. - Abstract: The operating point for fusion power plant design concepts is often determined by simultaneously satisfying the requirements of all of the main plant systems and finding an optimum solution, for instance the one with the lowest capital cost or cost of electricity. This static assessment takes no account of the sensitivity of that operating point to variations in key parameters and therefore includes no information about how difficult to adjust and control the chosen operating point may be. Control of the operation point is a large subject with much work still to be done, and is expected to play an increasing role in the future in choosing the optimum design point. Here we present results of two analyses: one relates to the ability to load follow, that is, to vary the power production in the light of varying demands for power from the electricity network; the other investigates in simple terms what choices we can make to improve the resilience of static operating points.

  4. Supercritical CO2 Brayton power cycles for DEMO fusion reactor based on Helium Cooled Lithium Lead blanket

    International Nuclear Information System (INIS)

    Linares, José Ignacio; Herranz, Luis Enrique; Fernández, Iván; Cantizano, Alexis; Moratilla, Beatriz Yolanda

    2015-01-01

    Fusion energy is one of the most promising solutions to the world energy supply. This paper presents an exploratory analysis of the suitability of supercritical CO 2 Brayton power cycles (S-CO 2 ) for low-temperature divertor fusion reactors cooled by helium (as defined by EFDA). Integration of three thermal sources (i.e., blanket, divertor and vacuum vessel) has been studied through proposing and analyzing a number of alternative layouts, achieving an improvement on power production higher than 5% over the baseline case, which entails to a gross efficiency (before self-consumptions) higher than 42%. In spite of this achievement, the assessment of power consumption for the circulating heat transfer fluids results in a penalty of 20% in the electricity production. Once the most suitable layout has been selected an optimization process has been conducted to adjust the key parameters to balance performance and size, achieving an electrical efficiency (electricity without taking into account auxiliary consumptions due to operation of the fusion reactor) higher than 33% and a reduction in overall size of heat exchangers of 1/3. Some relevant conclusions can be drawn from the present work: the potential of S-CO 2 cycles as suitable converters of thermal energy to power in fusion reactors; the significance of a suitable integration of thermal sources to maximize power output; the high penalty of pumping power; and the convenience of identifying the key components of the layout as a way to optimize the whole cycle performance. - Highlights: • Supercritical CO 2 Brayton cycles have been proposed for BoP of HCLL fusion reactor. • Low temperature sources have been successfully integrated with high temperature ones. • Optimization of thermal sources integration improves 5% the electricity production. • Assessment of pumping power with sources and sink loops results on 20% of gross power. • Matching of key parameters has conducted to 1/3 of reduction in heat

  5. The near-term impacts of carbon mitigation policies on manufacturing industries

    International Nuclear Information System (INIS)

    Morgenstern, Richard D.; Ho Mun; Shih, J.-S.; Zhang Xuehua

    2004-01-01

    Who pays for new policies to reduce carbon dioxide and other greenhouse gas emissions in the United States? This paper considers a slice of the question by examining the near-term impact on domestic manufacturing industries of both upstream (economy-wide) and downstream (electric power industry only) carbon mitigation policies. Detailed Census data on the electricity use of four-digit manufacturing industries are combined with input-output information on inter-industry purchases to paint a detailed picture of carbon use, including effects on final demand. Regional information on electricity supply and use by region is also incorporated. A relatively simple model is developed which yields estimates of the relative burdens within the manufacturing sector of alternative carbon policies. Overall, the principal conclusion is that within the manufacturing sector (which by definition excludes coal production and electricity generation), only a small number of industries would bear a disproportionate short-term burden of a carbon tax or similar policy. Not surprisingly, an electricity-only policy affects very different manufacturing industries than an economy-wide carbon tax

  6. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

  7. Round and round: Little consensus exists on the near-term future of natural gas

    International Nuclear Information System (INIS)

    Lunan, D.

    2004-01-01

    The various combinations of factors influencing natural gas supply and demand and the future price of natural gas is discussed. Expert opinion is that prices will continue to track higher, demand will grow with the surging American economy, and supplies will remain constrained providing more fuel for another cycle of ever-higher prices. There is also considerable concern about the continuing rise in demand and tight supply situation in the near term, and the uncertainty about when, or even whether, major new sources will become available. The prediction is that the overriding impact of declining domestic supplies will put a premium on natural gas at any given time. Overall, it appears certain that higher prices are here to stay: as a result, industrial gas users will see their competitiveness eroded, and individual consumers will see their heating bills rise. Governments, too, will be affected as the increasing cost of natural gas will slow down the pace of conversion of coal-fired power generating plants to natural gas, reducing anticipated emissions benefits and in the process compromising environmental goals. Current best estimates put prices for the 2004/2005 heating season at about US$5.40 per MMBtu, whereas the longer term price range is estimated to lie in the range of US$4.75 to US$5.25 per MMBtu. 2 figs

  8. Isolation systems influence in the seismic loading propagation analysis applied to an innovative near term reactor

    International Nuclear Information System (INIS)

    Lo Frano, R.; Forasassi, G.

    2010-01-01

    Integrity of a Nuclear Power Plant (NPP) must be ensured during the plant life in any design condition and, particularly, in the event of a severe earthquake. To investigate the seismic resistance capability of as-built structures systems and components, in the event of a Safe Shutdown Earthquake (SSE), and analyse its related effects on a near term deployment reactor and its internals, a deterministic methodological approach, based on the evaluation of the propagation of seismic waves along the structure, was applied considering, also, the use of innovative anti-seismic techniques. In this paper the attention is focused on the use and influence of seismic isolation technologies (e.g. isolators based on passive energy dissipation) that seem able to ensure the full integrity and operability of NPP structures, to enhance the seismic safety (improving the design of new NPPs and if possible, to retrofit existing facilities) and to attain a standardization plant design. To the purpose of this study a numerical assessment of dynamic response/behaviour of the structures was accomplished by means of the finite element approach and setting up, as accurately as possible, a representative three-dimensional model of mentioned NPP structures. The obtained results in terms of response spectra (carried out from both cases of isolated and not isolated seismic analyses) are herein presented and compared in order to highlight the isolation technique effectiveness.

  9. “PROCESS”: A systems code for fusion power plants—Part 1: Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kovari, M., E-mail: michael.kovari@ccfe.ac.uk; Kemp, R.; Lux, H.; Knight, P.; Morris, J.; Ward, D.J.

    2014-12-15

    Highlights: • PROCESS is a fusion reactor systems code. • It optimises a figure of merit subject to constraints chosen by the user. • CCFE are working to make the assumptions and equations explicit and public. • The PROCESS homepage is (www.ccfe.ac.uk/powerplants.aspx). - Abstract: PROCESS is a reactor systems code – it assesses the engineering and economic viability of a hypothetical fusion power station using simple models of all parts of a reactor system, from the basic plasma physics to the generation of electricity. It has been used for many years, but details of its operation have not been previously published. This paper describes some of its capabilities. PROCESS is usually used in optimisation mode, in which it finds a set of parameters that maximise (or minimise) a figure of merit chosen by the user, while being consistent with the inputs and the specified constraints. Because the user can apply all the physically relevant constraints, while allowing a large number of parameters to vary, it is in principle only necessary to run the code once to produce a self-consistent, physically plausible reactor model. The scope of PROCESS is very wide and goes well beyond reactor physics, including conversion of heat to electricity, buildings, and costs, but this paper describes only the plasma physics and magnetic field calculations. The capabilities of PROCESS in plasma physics are limited, as its main aim is to combine engineering, physics and economics. A model is described which shows the main plasma features of an inductive ITER scenario. Significant differences between the PROCESS results and the published scenario include the bootstrap current and loop voltage. The PROCESS models for these are being revised. Two new models for DEMO have been obtained. The first, DEMO A, is intended to be “conservative” in that it might be possible to build it using the technology of the near future. For example, since current drive technologies are not yet

  10. Methods to enhance blanket power density in low-power fusion devices

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01

    The overall objective of this task is to investigate the extent to which the power density in the FED breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow testing of advanced reactor blanket modules on INTOR at representative conditions. The tentative approach adopted for this task consists of three parts. First, the requirements for augmented heating of the test module are outlined for different applications of interest. Second, methods are identified which have potential for augmenting the heating power in a test module, and this list of methods is narrowed to those which appear to be most useful. Finally, these methods are examined in more detail to determine the practical benefits of employing each

  11. Development of high power ceramic lasers and possible application to nuclear fusion

    International Nuclear Information System (INIS)

    Yanagitani, Takagimi; Yagi, Hideki; Ueda, Ken-ichi; Lu, Jianren; Kaminskii, Alexander A.

    2003-01-01

    We have succeeded in fabricating high-transparent Y 3 Al 5 O 12 (YAG) and Y 2 O 3 laser ceramic materials using vacuum sintering method. Compared with single crystal, ceramics have the following advantages, namely: (1) Ease of fabrication; (2) Less expensive; (3) Fabrication of large size and high concentration; (4) Multi-layer and multi-functional ceramic structure; (5) Mass production, etc. On the base of Nd 3+ :YAG ceramics, we performed high efficient and high power (up to 1.46 kW) CW lasers with laser diode pumping. Optical properties of Nd:YAG ceramics, such as absorption, emission and fluorescence lifetime, were found to be similar to those of Nd:YAG single crystal. The thermal conductivity of Nd:YAG ceramics was measured, which is also found to be very similar to that of Nd:YAG single crystal. The simulated emission cross section of Nd 3+ :Y 2 O 3 happened to be in the range that is required for laser fusion driver. This makes Nd:Y 2 O 3 a potential candidate for being used in laser fusion system. Some optical properties of Nd:Y 2 O 3 ceramics were investigated and for the first time, CW room-temperature laser oscillation at two wavelength (1074.6 nm and 1078.6 nm) of 4 F 3/2 → 4 I 11/2 channel was obtained with a slope efficiency of 32%. (author)

  12. Fusion Power Measurement Using a Combined Neutron Spectrometer-Camera System at ITER

    International Nuclear Information System (INIS)

    Sjoestrand, Henrik; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Kaellne, J.

    2008-01-01

    A central task for fusion plasma diagnostics is to measure the 2.5 and 14 MeV neutron emission rate in order to determine the fusion power. A new method for determining the neutron yield has been developed at JET. It makes use of the magnetic proton recoil neutron spectrometer and a neutron camera and provides the neutron yield with small systematic errors. At ITER a similar system could operate if a high-resolution, high-performance neutron spectrometer similar to the MPR was installed. In this paper, we present how such system could be implemented and how well it would perform under different assumption of plasma scenarios and diagnostic capabilities. It is found that the systematic uncertainty for using such a system as an absolute calibration reference is as low as 3% and hence it would be an excellent candidate for the calibration of neutron monitors such as fission chambers. It is also shown that the system could provide a 1 ms time resolved estimation of the neutron rate with a total uncertainty of 5%

  13. Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor

    International Nuclear Information System (INIS)

    Halimi, Burhanuddin; Suh, Kune Y.

    2012-01-01

    Highlights: ► Computational analysis of S-CO 2 Brayton cycle power conversion system. ► Validation of numerical model with literature data. ► Recompression S-CO 2 Brayton cycle thermal efficiency of 42.44%. ► Reheating concept to enhance the cycle thermal efficiency. ► Higher efficiency achieved by the proposed concept. - Abstract: The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO 2 ) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO 2 is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.

  14. The Direct Internal Recycling concept to simplify the fuel cycle of a fusion power plant

    International Nuclear Information System (INIS)

    Day, Christian; Giegerich, Thomas

    2013-01-01

    Highlights: • The fusion fuel cycle is presented and its functions are discussed. • Tritium inventories are estimated for an early DEMO configuration. • The Direct Internal Recycling concept to reduce tritium inventories is described. • Concepts for its technical implementation are developed. -- Abstract: A new concept, the Direct Internal Recycling (DIR) concept, is proposed, which minimizes fuel cycle inventory by adding an additional short-cut between the pumped torus exhaust gas and the fuelling systems. The paper highlights quantitative modelling results derived from a simple fuel cycle spreadsheet which underline the potential benefits that can be achieved by implementation of the DIR concept into a fusion power plant. DIR requires a novel set-up of the torus exhaust pumping system, which replaces the batch-wise and cyclic operated cryogenic pumps by a continuous pumping solution and which offers at the same time an additional integral gas separation function. By that, hydrogen can be removed close to the divertor from all other gases and the main load to the fuel clean-up systems is a smaller, helium-rich gas stream. Candidate DIR relevant pump technology based on liquid metals (vapour diffusion and liquid ring pumps) and metal foils is discussed

  15. LIBRA-LiTE: A commercial size light ion fusion power plant

    International Nuclear Information System (INIS)

    Badger, B.; Choi, B.; Engelstad, R.L.; Kulcinski, G.L.; Lovell, E.G.; MacFarlane, J.J.; Mogehed, E.A.; Moses, G.A.; Peterson, R.R.; Rutledge, S.; Sawan, M.E.; Sviatoslavsky, G.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1992-05-01

    LIBRA-LiTE is a concept study for future 1000 MWe nuclear fusion reactors operating on the principle of inertial confinement. Light ions, e.g. lithium ions, are given an energy of 25-35 MeV in an accelerator and focused symmetrically onto a target (deuterium-tritium filled sphere of 7 mm diameter) in a reactor chamber. The fusion reaction is ignited by shock wave induced compression of the target. The radiation (photons, neutrons, ions) is absorbed in a blanket where the thermal power is removed by a coolant and tritium is rebred. The LIBRA-LiTE concept study is the continuation of the earlier LIBRA study (330 MWe) with a modified concept of light ion beam focusing. Starting from an ion source (diode), the lithium ion beams are focused ballistically onto the target. For this to be achieved, lithium must be used as the coolant in the reactor chamber and the blanket concept must be slightly modified by providing steel tubes (HT-9) as guiding tubes for the coolant flow. A particular engineering problem to be solved are the ion beam focusing magnets, which have to extend rather closely up to the center of the reactor chamber. (orig.) [de

  16. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  17. The Mercury Laser System-A scaleable average-power laser for fusion and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Moses, E I

    2008-03-26

    Nestled in a valley between the whitecaps of the Pacific and the snowcapped crests of the Sierra Nevada, Lawrence Livermore National Laboratory (LLNL) is home to the nearly complete National Ignition Facility (NIF). The purpose of NIF is to create a miniature star-on demand. An enormous amount of laser light energy (1.8 MJ in a pulse that is 20 ns in duration) will be focused into a small gold cylinder approximately the size of a pencil eraser. Centered in the gold cylinder (or hohlraum) will be a nearly perfect sphere filled with a complex mixture of hydrogen gas isotopes that is similar to the atmosphere of our Sun. During experiments, the laser light will hit the inside of the gold cylinder, heating the metal until it emits X-rays (similar to how your electric stove coil emits visible red light when heated). The X-rays will be used to compress the hydrogen-like gas with such pressure that the gas atoms will combine or 'fuse' together, producing the next heavier element (helium) and releasing energy in the form of energetic particles. 2010 will mark the first credible attempt at this world-changing event: the achievement of fusion energy 'break-even' on Earth using NIF, the world's largest laser! NIF is anticipated to eventually perform this immense technological accomplishment once per week, with the capability of firing up to six shots per day - eliminating the need for continued underground testing of our nation's nuclear stockpile, in addition to opening up new realms of science. But what about the day after NIF achieves ignition? Although NIF will achieve fusion energy break-even and gain, the facility is not designed to harness the enormous potential of fusion for energy generation. A fusion power plant, as opposed to a world-class engineering research facility, would require that the laser deliver drive pulses nearly 100,000 times more frequently - a rate closer to 10 shots per second as opposed to several shots per day.

  18. The Mercury Laser System-A scaleable average-power laser for fusion and beyond

    International Nuclear Information System (INIS)

    Ebbers, C.A.; Moses, E.I.

    2009-01-01

    Nestled in a valley between the whitecaps of the Pacific and the snowcapped crests of the Sierra Nevada, Lawrence Livermore National Laboratory (LLNL) is home to the nearly complete National Ignition Facility (NIF). The purpose of NIF is to create a miniature star-on demand. An enormous amount of laser light energy (1.8 MJ in a pulse that is 20 ns in duration) will be focused into a small gold cylinder approximately the size of a pencil eraser. Centered in the gold cylinder (or hohlraum) will be a nearly perfect sphere filled with a complex mixture of hydrogen gas isotopes that is similar to the atmosphere of our Sun. During experiments, the laser light will hit the inside of the gold cylinder, heating the metal until it emits X-rays (similar to how your electric stove coil emits visible red light when heated). The X-rays will be used to compress the hydrogen-like gas with such pressure that the gas atoms will combine or 'fuse' together, producing the next heavier element (helium) and releasing energy in the form of energetic particles. 2010 will mark the first credible attempt at this world-changing event: the achievement of fusion energy 'break-even' on Earth using NIF, the world's largest laser NIF is anticipated to eventually perform this immense technological accomplishment once per week, with the capability of firing up to six shots per day - eliminating the need for continued underground testing of our nation's nuclear stockpile, in addition to opening up new realms of science. But what about the day after NIF achieves ignition? Although NIF will achieve fusion energy break-even and gain, the facility is not designed to harness the enormous potential of fusion for energy generation. A fusion power plant, as opposed to a world-class engineering research facility, would require that the laser deliver drive pulses nearly 100,000 times more frequently - a rate closer to 10 shots per second as opposed to several shots per day.

  19. Beryllium for fusion application - recent results

    International Nuclear Information System (INIS)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-01-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described

  20. Beryllium for fusion application - recent results

    Science.gov (United States)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  1. Fusion driver study. Final technical report, April 1, 1978-March 31, 1980

    International Nuclear Information System (INIS)

    Friedman, H.W.

    1980-04-01

    A conceptual design of a multi-megajoule, repetitively pulsed CO 2 laser system for Inertial Confinement Fusion is presented. System configurations consisting of 50 to 100 kJ modules operating at subatmospheric pressures with multiple pass optical extraction appear feasible with present or near term technology. Overall laser system efficiencies of greater than 10% at repetition rates in excess of 10 Hz are possible with the state-of-the-art pulsed power technology. The synthesis of all the laser subsystems into a specific configuration for a Laser Fusion Driver depends upon the reactor chamber(s) layout, subsystem reliability and restrictions on overall dimensions of the fusion driver. A design is presented which stacks power amplifier modules in series in a large torus with centrally located reactor chamber. Cost estimates of the overall Laser Fusion Driver are also presented

  2. Development of high power radio frequency components for fusion plasma heating. Final report, Revision 3

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this CRADA was to develop advanced microwave heating systems for both ion cyclotron heating and electron cyclotron heating for magnetic fusion reactors. This involved low-frequency (UHF), high-power (millimeter-wave) microwave components, such as antennas, windows, and matching elements. This CRADA also involved developing conceptual designs for new microwave sources. General Atomics built and tested the distributed cooled window and provided LLNL with transmission and reflection test data in order to then benchmark the EM computer codes. The combline antenna built and analyzed by LLNL was based on a GA design. GA provided LLNL with a number of niobium plates for hot pressing and provided the necessary guidance to allow successful bonding. GA representatives were on site at LLNL on numerous occasions to consult and give guidance on the ferroelectric tuner, combline antenna and distributed window analysis

  3. Nonfuel OandM costs for laser and heavy-ion fusion power plants

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1986-01-01

    Very simple nonfuel operating and maintenance (OandM) cost models have been used in many inertial confinement fusion (ICF) commercial applications studies. Often, ICF OandM costs have been accounted for by adding a small fraction of plant initial capital cost to other annual power production costs. Lack of definition of ICF technology and/or perceptions that OandM costs would be small relative to capital-related costs are some reasons for such simple treatments. This approach does not permit rational treatment of potentially significant differences in OandM costs for ICF plants with different driver, reactor, target, etc., technologies or rational comparisons with conventional technologies. Improved understanding of ICF makes more accurate estimates for some OandM costs appear feasible. More detailed OandM cost models, even if of modest accuracy in some areas, are useful for comparisons

  4. VISTA -- A Vehicle for Interplanetary Space Transport Application Powered by Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Orth, C D

    2005-03-31

    Inertial Confinement Fusion (ICF) is an ideal technology to power self-contained single-stage piloted (manned) spacecraft within the solar system because of its inherently high power/mass ratios and high specific impulses (i.e., high exhaust velocities). These technological advantages are retained when ICF is utilized with a magnetic thrust chamber, which avoids the plasma thermalization and resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. We started with Rod Hyde's 1983 description of an ICF-powered engine concept using a magnetic thrust chamber, and conducted a more detailed systems study to develop a viable, realistic, and defensible spacecraft concept based on ICF technology projected to be available in the first half of the 21st century. The results include an entirely new conical spacecraft conceptual design utilizing near-existing radiator technology. We describe the various vehicle systems for this new concept, estimate the missions performance capabilities for general missions to the planets within the solar system, and describe in detail the performance for the baseline mission of a piloted roundtrip to Mars with a 100-ton payload. For this mission, we show that roundtrips totaling {ge}145 days are possible with advanced DT fusion technology and a total (wet) spacecraft mass of about 6000 metric tons. Such short-duration missions are advantageous to minimize the known cosmic-radiation hazards to astronauts, and are even more important to minimize the physiological deteriorations arising from zero gravity. These ICF-powered missions are considerably faster than those available using chemical or nuclear-electric-propulsion technologies with minimum-mass vehicle configurations. VISTA also offers onboard artificial gravity and propellant-based shielding from cosmic rays, thus reducing the known hazards and physiological deteriorations to insignificant levels. We emphasize, however, that the degree

  5. Study on system integration of robots operated in nuclear fusion facility and nuclear power plant facilities

    International Nuclear Information System (INIS)

    Oka, Kiyoshi

    2004-07-01

    A present robot is required to apply to many fields such as amusement, welfare and protection against disasters. The are however only limited numbers of the robots, which can work under the actual conditions as a robot system. It is caused by the following reasons: (1) the robot system cannot be realized by the only collection of the elemental technologies, (2) the performance of the robot is determined by that of the integrated system composed of the complicated elements with many functions, and (3) the respective elements have to be optimized in the integrated robot system with a well balance among them, through their examination, adjustment and improvement. Therefore, the system integration of the robot composed of a large number of elements is the most critical issue to realize the robot system for actual use. In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environment and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. (author)

  6. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    Science.gov (United States)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  7. Liquid Scoping Study for Tritium-Lean, Fast Ignition Inertial Fusion Energy Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R C; Latkowski, J F; Durbin, S G; Meier, W R; Reyes, S

    2001-08-14

    In a thick-liquid protected chamber design, such as HYLIFE-II, a molten-salt is used to attenuate neutrons and protect the chamber structures from radiation damage. The molten-salt absorbs some of the material and energy given off by the target explosion. In the case of a fast ignition inertial fusion system, advanced targets have been proposed that may be Self-sufficient in the tritium breeding (i.e., the amount of tritium bred in target exceeds the amount burned). These ''tritium-lean'' targets contain approximately 0.5% tritium and 99.5% deuterium, but require a large pr of 10-20 g/cm{sup 2}. Although most of the yield is provided by D-T reactions, the majority of fusion reactions are D-D, which produces a net surplus of tritium. This aspect allows for greater freedom when selecting a liquid for the protective blanket (lithium-bearing compounds are not required). This study assesses characteristics of many single, binary, and ternary molten-salts. Using the NIST Properties of Molten Salts Database, approximately 4300 molten-salts were included in the study [1]. As an initial screening, salts were evaluated for their safety and environmental (S&E) characteristics, which included an assessment of waste disposal rating, contact dose, and radioactive afterheat. Salts that passed the S&E criteria were then evaluated for neutron shielding ability and pumping power. The pumping power was calculated using three components: velocity head losses, frictional losses, and lift. This assessment left us with 57 molten-salts to recommend for further analysis. Many of these molten-salts contain elements such as sodium, lithium, beryllium, boron, fluorine, and oxygen. Recommendations for further analysis are also made.

  8. Liquid Scoping Study for Tritium-Lean, Fast Ignition Inertial Fusion Energy Power Plants

    International Nuclear Information System (INIS)

    Schmitt, R C; Latkowski, J F; Durbin, S G; Meier, W R; Reyes, S

    2001-01-01

    In a thick-liquid protected chamber design, such as HYLIFE-II, a molten-salt is used to attenuate neutrons and protect the chamber structures from radiation damage. The molten-salt absorbs some of the material and energy given off by the target explosion. In the case of a fast ignition inertial fusion system, advanced targets have been proposed that may be Self-sufficient in the tritium breeding (i.e., the amount of tritium bred in target exceeds the amount burned). These ''tritium-lean'' targets contain approximately 0.5% tritium and 99.5% deuterium, but require a large pr of 10-20 g/cm 2 . Although most of the yield is provided by D-T reactions, the majority of fusion reactions are D-D, which produces a net surplus of tritium. This aspect allows for greater freedom when selecting a liquid for the protective blanket (lithium-bearing compounds are not required). This study assesses characteristics of many single, binary, and ternary molten-salts. Using the NIST Properties of Molten Salts Database, approximately 4300 molten-salts were included in the study [1]. As an initial screening, salts were evaluated for their safety and environmental (SandE) characteristics, which included an assessment of waste disposal rating, contact dose, and radioactive afterheat. Salts that passed the SandE criteria were then evaluated for neutron shielding ability and pumping power. The pumping power was calculated using three components: velocity head losses, frictional losses, and lift. This assessment left us with 57 molten-salts to recommend for further analysis. Many of these molten-salts contain elements such as sodium, lithium, beryllium, boron, fluorine, and oxygen. Recommendations for further analysis are also made

  9. Optimization of fusion power density in the two-energy-component tokamak reactor

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1974-10-01

    The optimal plasma conditions for maximizing fusion power density P/sub f/ in a beam-driven D--T tokamak reactor (TCT) are considered. Given T/sub e/ = T/sub i/ and fixed total plasma pressure, there is an optimal n/sub e/tau/sub E/ for maximizing P/sub f/, viz. n/sub e/tau/sub E/ = 4 x 10 12 to 2 x 10 13 cm -3 sec for T/sub e/ = 3--15 keV and 200-keV D beams. The corresponding anti GAMMA equals (beam pressure/bulk-plasma pressure) is 0.96 to 0.70. P/sub fmax/ increases as T/sub e/ is reduced and can be an order of magnitude larger than the maximum P/sub f/ of a thermal reactor of the same beta, at any temperature. A lower practical limit to T/sub e/ may be set by requiring a minimum beam power multiplication Q/sub b/. For the purpose of fissile breeding, the minimum Q/sub b/ approximately 0.6, requiring T/sub e/ greater than or equal to 3 keV if Z = 1. The optimal operating conditions of a TCT for obtaining P/sub fmax/ are considerably different from those for enhancing Q/sub b/. Maximizing P/sub f/ requires restricting both T/sub e/ and n/sub e/tau/sub E/, maintaining a bulk plasma markedly enriched in tritium, and spoiling confinement of fusion alphas. Considerable impurity content can be tolerated without seriously degrading P/sub fmax/, and high-Z impurity radiation may be useful for regulating tau/sub E/. (auth)

  10. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance

    2005-01-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  11. Superconducting magnets in the world of energy, especially in fusion power

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Industrial applications of superconducting magnets are only feasible in the near future for superconducting monopolar machines and possible MHD generators. For superconducting synchronous machines, after the successful operation of machines in the MVA range, a new phase of basic investigations has started. Fundamental problems which could not be studied in the MVA machines, but which influence the design of large turbo-alternators, must now be investigated. Fusion power by magnetic confinement will probably be the largest field of application for superconducting magnets in the long run. The present research programmes require large superconducting magnets by the mid-1980s for the experimental reactors envisaged at that time. In addition to dc windings, pulse-operated superconducting windings are required in some systems, such as Tokamak. The high sensitivity of the overall plant efficiency and the active power demand of the pulsed windings require great efficiency from energy storage and transfer systems. Superconducting energy storage systems would be suitable for this, if transfer between inductances could be provided with sufficient efficiency. Basic experiments gave encouraging results. In power plant systems and electric machines an extremely high level of reliability and availability has been achieved. Less reliability will not be accepted for systems with superconducting magnets. This requires great efforts during the development work. (author)

  12. Conceptual design of the Fast-Liner Reactor (FLR) for fusion power

    International Nuclear Information System (INIS)

    Moses, R.W.; Krakowski, R.A.; Miller, R.L.

    1979-02-01

    The generation of fusion power from the Fast-Liner Reactor (FLR) concept envisages the implosion of a thin (3-mm) metallic cylinder (0.2-m radius by 0.2-m length) onto a preinjected plasma. This plasma would be heated to thermonuclear temperatures by adiabatic compression, pressure confinement would be provided by the liner inertia, and thermal insulation of the wall-confined plasma would be established by an embedded azimuthal magnetic field. A 2- to 3-mu s burn would follow the approx. 10 4 m/s radial implosion and would result in a thermonuclear yield equal to 10 to 15 times the energy initially invested into the liner kinetic energy. For implosions occurring once every 10 s a gross thermal power of 430 MWt would be generated. The results of a comprehensive systems study of both physics and technology (economics) optima are presented. Despite unresolved problems associated with both the physics and technology of the FLR, a conceptual power plant design is presented

  13. Experimental fusion power reactor conceptual design study. Final report. Volume II

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following sections: (1) reactor components, (2) auxiliary systems, (3) operations, (4) facility design, (5) program considerations, and (6) conclusions and recommendations

  14. Conceptual design of an electrical power module for the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Jassby, D.L.; Bullis, R.; Sedgeley, D.; Caldwell, C.S.; Pettus, W.G.; Schluderberg, D.C.

    1979-01-01

    The TFTR Engineering Test Station (ETS) can support blanket modules with a fusion-neutron view area of 0.5 m/sup 2/. If the TFTR magnetic systems and beam injectors can operate with pulse lengths of 5 s, once every 300 s, the time-averaged neutron power incident on a module will be 1.5 kW, which can be enhanced by a suitable blanket energy multiplier. A preliminary conceptual design of a dual-loop steam-generating power system that can be housed in the ETS has been carried out. The optimal heat transfer fluid in the primary loop is an organic liquid, which allows an operating temperature of 700/degree/F at low pressure. The primary coolant must be preheated electrically to operating temperature. A ballast tank levels the temperature at the steam generator, so that the secondary loop is in steady-state operation. With a natural-uranium blanket multiplier, the time-averaged net electrical power is 1.2 kW(e). 8 refs

  15. Compact Reversed-Field Pinch Reactors (CRFPR): fusion-power-core integration study

    International Nuclear Information System (INIS)

    Copenhaver, C.; Krakowski, R.A.; Schnurr, N.M.

    1985-08-01

    Using detailed two-dimensional neutronics studies based on the results of a previous framework study (LA-10200-MS), the fusion-power-core (FPC) integration, maintenance, and radio-activity/afterheat control are examined for the Compact Reversed-Field Pinch Reactor (CRFPR). While maintaining as a base case the nominal 20-MW/m 2 neutron first-wall loading design, CRFPR(20), the cost and technology impact of lower-wall-loading designs are also examined. The additional detail developed as part of this follow-on study also allows the cost estimates to be refined. The cost impact of multiplexing lower-wall-loading FPCs into a approx. 1000-MWe(net) plant is also examined. The CRFPR(20) design remains based on a PbLi-cooled FPC with pressurized-water used as a coolant for first-wall, pumped-limiter, and structural-shield systems. Single-piece FPC maintenance of this steady-state power plant is envisaged and evaluated on the basis of a preliminary layout of the reactor building. This follow-on study also develops the groundwork for assessing the feasibility and impact of impurity/ash control by magnetic divertors as an alternative to previously considered pumped-limiter systems. Lastly, directions for future, more-detailed power-plant designs based on the Reversed-Field Pinch are suggested

  16. Preliminary seismic analysis of an innovative near term reactor: Methodology and application

    International Nuclear Information System (INIS)

    Lo Frano, R.; Pugliese, G.; Forasassi, G.

    2010-01-01

    Nuclear power plant (NPP) design is strictly dependent on seismic hazard and safety aspects concerned with the external events of the site. Earthquake resistant structures design requires realistic and accurate physical and theoretical models to describe the response of the nuclear power plants (NPPs) that depend on both the ground motion characteristics and the dynamic properties of the structures themselves. In order to improve the design of new NPPs and, at the same time, to retrofit existing ones the dynamic behaviour of structures subjected to critical seismic excitations that may occur during their expected service life must be evaluated. The aim of this work is to select new effective methods to assess NPPs vulnerability by properly capturing the effects of a safe shutdown earthquake (SSE) event on nuclear structures, like the near term deployment IRIS reactor, and to evaluate the seismic resistance capability of as-built structures systems and components. To attain the purpose a validated deterministic methodology based on an accurate finite element modelling coupled to substructure and time history approaches was employed for studying the overall dynamic behaviour of the NPP relevant components. Moreover the set up three-dimensional model was also validated to evaluate the performance and reliability of the adopted FEM code (mesh refinements and type element influence). This detailed numerical assessment, involving the most widely used finite element numerical codes (MSC.Marc and Ansys, allowed to solve, perform and simulate as accurately as possible the dynamic behaviour of structures which may withstand a lot of more or less complicate structural problems. To evaluate the accuracy and the reliability as well as to determine the related error of the set-up procedure, the obtained seismic analyses results in term of accelerations, propagated from the ground to the auxiliary building systems and components, and displacements were compared highlighting a

  17. Maintainability considerations for the central cell in WITAMIR-I, a conceptual design of a tandem mirror fusion power reactor

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.

    1980-10-01

    The concepts for maintaining the central cell reactor components for WITAMIR-I are described. WITAMIR-I is a conceptual tandem mirror fusion power reactor utilizing thermal barriers designed by the University of Wisconsin-Madison. Unique solutions to the difficult problems of routine blanket replacement and maintenance are proposed. Solutions are also proposed for maintaining the central cell coils and the shield

  18. Fusion technologies for Laser Inertial Fusion Energy (LIFE∗

    Directory of Open Access Journals (Sweden)

    Kramer K.J.

    2013-11-01

    Full Text Available The Laser Inertial Fusion-based Energy (LIFE engine design builds upon on going progress at the National Ignition Facility (NIF and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant.

  19. Elements of power plant design for inertial fusion energy. Final report of a coordinated research project 2000-2004

    International Nuclear Information System (INIS)

    2005-06-01

    There are two major approaches in fusion energy research: magnetic fusion energy (MFE) and inertial fusion energy (IFE). The basic physics of IFE (compression and ignition of small fuel pellets containing deuterium and tritium) is being increasingly understood. Based on recent advances by individual countries, IFE has reached a stage at which benefits could be obtained from a coordinated approach in the form of an IAEA Coordinated Research Project (CRP) on Elements of Power Plant Design for Inertial Fusion Energy. This CRP helped Member States to promote the development of plasma/fusion technology transfer and to emphasize safety and environmental advantages of fusion energy. The CRP was focused on interface issues including those related to, - the driver/target interface (e.g. focusing and beam uniformity required by the target), - the driver/chamber interface (e.g. final optics and magnets protection and shielding), - and the target/chamber interface (e.g. target survival during injection, target positioning and tracking in the chamber). The final report includes an assessment of the state of the art of the technologies required for an IFE power plant (drivers, chambers, targets) and systems integration as presented and evaluated by members of the CRP. Additional contributions by cost free invited experts to the final RCM are included. The overall objective of this CRP was to foster the inertial fusion energy development by improving international cooperation. The variety of contributions compiled in this TECDOC reflects, that the goal of stimulating the exchange of knowledge was well achieved. Further the CRP led to the creation of a network, which not only exchanged their scientific results, but also developed healthy professional relations and strong mutual interest in the work of the group members

  20. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Mason, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability. The problems are both near-term, in developing maintainability for next generation engineering oriented reactors; and long range, in developing full maintainability for the more commercial concepts with their required high level of on-line time. The near-time challenge will include development of unqiue design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full mainatability required by commerical fusion